1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/kstack_erase.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 #include <linux/unwind_deferred.h> 109 110 #include <asm/pgalloc.h> 111 #include <linux/uaccess.h> 112 #include <asm/mmu_context.h> 113 #include <asm/cacheflush.h> 114 #include <asm/tlbflush.h> 115 116 /* For dup_mmap(). */ 117 #include "../mm/internal.h" 118 119 #include <trace/events/sched.h> 120 121 #define CREATE_TRACE_POINTS 122 #include <trace/events/task.h> 123 124 #include <kunit/visibility.h> 125 126 /* 127 * Minimum number of threads to boot the kernel 128 */ 129 #define MIN_THREADS 20 130 131 /* 132 * Maximum number of threads 133 */ 134 #define MAX_THREADS FUTEX_TID_MASK 135 136 /* 137 * Protected counters by write_lock_irq(&tasklist_lock) 138 */ 139 unsigned long total_forks; /* Handle normal Linux uptimes. */ 140 int nr_threads; /* The idle threads do not count.. */ 141 142 static int max_threads; /* tunable limit on nr_threads */ 143 144 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 145 146 static const char * const resident_page_types[] = { 147 NAMED_ARRAY_INDEX(MM_FILEPAGES), 148 NAMED_ARRAY_INDEX(MM_ANONPAGES), 149 NAMED_ARRAY_INDEX(MM_SWAPENTS), 150 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 151 }; 152 153 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 154 155 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 156 157 #ifdef CONFIG_PROVE_RCU 158 int lockdep_tasklist_lock_is_held(void) 159 { 160 return lockdep_is_held(&tasklist_lock); 161 } 162 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 163 #endif /* #ifdef CONFIG_PROVE_RCU */ 164 165 int nr_processes(void) 166 { 167 int cpu; 168 int total = 0; 169 170 for_each_possible_cpu(cpu) 171 total += per_cpu(process_counts, cpu); 172 173 return total; 174 } 175 176 void __weak arch_release_task_struct(struct task_struct *tsk) 177 { 178 } 179 180 static struct kmem_cache *task_struct_cachep; 181 182 static inline struct task_struct *alloc_task_struct_node(int node) 183 { 184 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 185 } 186 187 static inline void free_task_struct(struct task_struct *tsk) 188 { 189 kmem_cache_free(task_struct_cachep, tsk); 190 } 191 192 #ifdef CONFIG_VMAP_STACK 193 /* 194 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 195 * flush. Try to minimize the number of calls by caching stacks. 196 */ 197 #define NR_CACHED_STACKS 2 198 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 199 /* 200 * Allocated stacks are cached and later reused by new threads, so memcg 201 * accounting is performed by the code assigning/releasing stacks to tasks. 202 * We need a zeroed memory without __GFP_ACCOUNT. 203 */ 204 #define GFP_VMAP_STACK (GFP_KERNEL | __GFP_ZERO) 205 206 struct vm_stack { 207 struct rcu_head rcu; 208 struct vm_struct *stack_vm_area; 209 }; 210 211 static bool try_release_thread_stack_to_cache(struct vm_struct *vm_area) 212 { 213 unsigned int i; 214 215 for (i = 0; i < NR_CACHED_STACKS; i++) { 216 struct vm_struct *tmp = NULL; 217 218 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm_area)) 219 return true; 220 } 221 return false; 222 } 223 224 static void thread_stack_free_rcu(struct rcu_head *rh) 225 { 226 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 227 struct vm_struct *vm_area = vm_stack->stack_vm_area; 228 229 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 230 return; 231 232 vfree(vm_area->addr); 233 } 234 235 static void thread_stack_delayed_free(struct task_struct *tsk) 236 { 237 struct vm_stack *vm_stack = tsk->stack; 238 239 vm_stack->stack_vm_area = tsk->stack_vm_area; 240 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 241 } 242 243 static int free_vm_stack_cache(unsigned int cpu) 244 { 245 struct vm_struct **cached_vm_stack_areas = per_cpu_ptr(cached_stacks, cpu); 246 int i; 247 248 for (i = 0; i < NR_CACHED_STACKS; i++) { 249 struct vm_struct *vm_area = cached_vm_stack_areas[i]; 250 251 if (!vm_area) 252 continue; 253 254 vfree(vm_area->addr); 255 cached_vm_stack_areas[i] = NULL; 256 } 257 258 return 0; 259 } 260 261 static int memcg_charge_kernel_stack(struct vm_struct *vm_area) 262 { 263 int i; 264 int ret; 265 int nr_charged = 0; 266 267 BUG_ON(vm_area->nr_pages != THREAD_SIZE / PAGE_SIZE); 268 269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 270 ret = memcg_kmem_charge_page(vm_area->pages[i], GFP_KERNEL, 0); 271 if (ret) 272 goto err; 273 nr_charged++; 274 } 275 return 0; 276 err: 277 for (i = 0; i < nr_charged; i++) 278 memcg_kmem_uncharge_page(vm_area->pages[i], 0); 279 return ret; 280 } 281 282 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 283 { 284 struct vm_struct *vm_area; 285 void *stack; 286 int i; 287 288 for (i = 0; i < NR_CACHED_STACKS; i++) { 289 vm_area = this_cpu_xchg(cached_stacks[i], NULL); 290 if (!vm_area) 291 continue; 292 293 /* Reset stack metadata. */ 294 kasan_unpoison_range(vm_area->addr, THREAD_SIZE); 295 296 stack = kasan_reset_tag(vm_area->addr); 297 298 /* Clear stale pointers from reused stack. */ 299 memset(stack, 0, THREAD_SIZE); 300 301 if (memcg_charge_kernel_stack(vm_area)) { 302 vfree(vm_area->addr); 303 return -ENOMEM; 304 } 305 306 tsk->stack_vm_area = vm_area; 307 tsk->stack = stack; 308 return 0; 309 } 310 311 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN, 312 GFP_VMAP_STACK, 313 node, __builtin_return_address(0)); 314 if (!stack) 315 return -ENOMEM; 316 317 vm_area = find_vm_area(stack); 318 if (memcg_charge_kernel_stack(vm_area)) { 319 vfree(stack); 320 return -ENOMEM; 321 } 322 /* 323 * We can't call find_vm_area() in interrupt context, and 324 * free_thread_stack() can be called in interrupt context, 325 * so cache the vm_struct. 326 */ 327 tsk->stack_vm_area = vm_area; 328 stack = kasan_reset_tag(stack); 329 tsk->stack = stack; 330 return 0; 331 } 332 333 static void free_thread_stack(struct task_struct *tsk) 334 { 335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 336 thread_stack_delayed_free(tsk); 337 338 tsk->stack = NULL; 339 tsk->stack_vm_area = NULL; 340 } 341 342 #else /* !CONFIG_VMAP_STACK */ 343 344 /* 345 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 346 * kmemcache based allocator. 347 */ 348 #if THREAD_SIZE >= PAGE_SIZE 349 350 static void thread_stack_free_rcu(struct rcu_head *rh) 351 { 352 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 353 } 354 355 static void thread_stack_delayed_free(struct task_struct *tsk) 356 { 357 struct rcu_head *rh = tsk->stack; 358 359 call_rcu(rh, thread_stack_free_rcu); 360 } 361 362 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 363 { 364 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 365 THREAD_SIZE_ORDER); 366 367 if (likely(page)) { 368 tsk->stack = kasan_reset_tag(page_address(page)); 369 return 0; 370 } 371 return -ENOMEM; 372 } 373 374 static void free_thread_stack(struct task_struct *tsk) 375 { 376 thread_stack_delayed_free(tsk); 377 tsk->stack = NULL; 378 } 379 380 #else /* !(THREAD_SIZE >= PAGE_SIZE) */ 381 382 static struct kmem_cache *thread_stack_cache; 383 384 static void thread_stack_free_rcu(struct rcu_head *rh) 385 { 386 kmem_cache_free(thread_stack_cache, rh); 387 } 388 389 static void thread_stack_delayed_free(struct task_struct *tsk) 390 { 391 struct rcu_head *rh = tsk->stack; 392 393 call_rcu(rh, thread_stack_free_rcu); 394 } 395 396 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 397 { 398 unsigned long *stack; 399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 400 stack = kasan_reset_tag(stack); 401 tsk->stack = stack; 402 return stack ? 0 : -ENOMEM; 403 } 404 405 static void free_thread_stack(struct task_struct *tsk) 406 { 407 thread_stack_delayed_free(tsk); 408 tsk->stack = NULL; 409 } 410 411 void thread_stack_cache_init(void) 412 { 413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 414 THREAD_SIZE, THREAD_SIZE, 0, 0, 415 THREAD_SIZE, NULL); 416 BUG_ON(thread_stack_cache == NULL); 417 } 418 419 #endif /* THREAD_SIZE >= PAGE_SIZE */ 420 #endif /* CONFIG_VMAP_STACK */ 421 422 /* SLAB cache for signal_struct structures (tsk->signal) */ 423 static struct kmem_cache *signal_cachep; 424 425 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 426 struct kmem_cache *sighand_cachep; 427 428 /* SLAB cache for files_struct structures (tsk->files) */ 429 struct kmem_cache *files_cachep; 430 431 /* SLAB cache for fs_struct structures (tsk->fs) */ 432 struct kmem_cache *fs_cachep; 433 434 /* SLAB cache for mm_struct structures (tsk->mm) */ 435 static struct kmem_cache *mm_cachep; 436 437 static void account_kernel_stack(struct task_struct *tsk, int account) 438 { 439 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 440 struct vm_struct *vm_area = task_stack_vm_area(tsk); 441 int i; 442 443 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 444 mod_lruvec_page_state(vm_area->pages[i], NR_KERNEL_STACK_KB, 445 account * (PAGE_SIZE / 1024)); 446 } else { 447 void *stack = task_stack_page(tsk); 448 449 /* All stack pages are in the same node. */ 450 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 451 account * (THREAD_SIZE / 1024)); 452 } 453 } 454 455 void exit_task_stack_account(struct task_struct *tsk) 456 { 457 account_kernel_stack(tsk, -1); 458 459 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 460 struct vm_struct *vm_area; 461 int i; 462 463 vm_area = task_stack_vm_area(tsk); 464 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 465 memcg_kmem_uncharge_page(vm_area->pages[i], 0); 466 } 467 } 468 469 static void release_task_stack(struct task_struct *tsk) 470 { 471 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 472 return; /* Better to leak the stack than to free prematurely */ 473 474 free_thread_stack(tsk); 475 } 476 477 #ifdef CONFIG_THREAD_INFO_IN_TASK 478 void put_task_stack(struct task_struct *tsk) 479 { 480 if (refcount_dec_and_test(&tsk->stack_refcount)) 481 release_task_stack(tsk); 482 } 483 #endif 484 485 void free_task(struct task_struct *tsk) 486 { 487 #ifdef CONFIG_SECCOMP 488 WARN_ON_ONCE(tsk->seccomp.filter); 489 #endif 490 release_user_cpus_ptr(tsk); 491 scs_release(tsk); 492 493 #ifndef CONFIG_THREAD_INFO_IN_TASK 494 /* 495 * The task is finally done with both the stack and thread_info, 496 * so free both. 497 */ 498 release_task_stack(tsk); 499 #else 500 /* 501 * If the task had a separate stack allocation, it should be gone 502 * by now. 503 */ 504 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 505 #endif 506 rt_mutex_debug_task_free(tsk); 507 ftrace_graph_exit_task(tsk); 508 arch_release_task_struct(tsk); 509 if (tsk->flags & PF_KTHREAD) 510 free_kthread_struct(tsk); 511 bpf_task_storage_free(tsk); 512 free_task_struct(tsk); 513 } 514 EXPORT_SYMBOL(free_task); 515 516 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 517 { 518 struct file *exe_file; 519 520 exe_file = get_mm_exe_file(oldmm); 521 RCU_INIT_POINTER(mm->exe_file, exe_file); 522 /* 523 * We depend on the oldmm having properly denied write access to the 524 * exe_file already. 525 */ 526 if (exe_file && exe_file_deny_write_access(exe_file)) 527 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); 528 } 529 530 #ifdef CONFIG_MMU 531 static inline int mm_alloc_pgd(struct mm_struct *mm) 532 { 533 mm->pgd = pgd_alloc(mm); 534 if (unlikely(!mm->pgd)) 535 return -ENOMEM; 536 return 0; 537 } 538 539 static inline void mm_free_pgd(struct mm_struct *mm) 540 { 541 pgd_free(mm, mm->pgd); 542 } 543 #else 544 #define mm_alloc_pgd(mm) (0) 545 #define mm_free_pgd(mm) 546 #endif /* CONFIG_MMU */ 547 548 #ifdef CONFIG_MM_ID 549 static DEFINE_IDA(mm_ida); 550 551 static inline int mm_alloc_id(struct mm_struct *mm) 552 { 553 int ret; 554 555 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL); 556 if (ret < 0) 557 return ret; 558 mm->mm_id = ret; 559 return 0; 560 } 561 562 static inline void mm_free_id(struct mm_struct *mm) 563 { 564 const mm_id_t id = mm->mm_id; 565 566 mm->mm_id = MM_ID_DUMMY; 567 if (id == MM_ID_DUMMY) 568 return; 569 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX)) 570 return; 571 ida_free(&mm_ida, id); 572 } 573 #else /* !CONFIG_MM_ID */ 574 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; } 575 static inline void mm_free_id(struct mm_struct *mm) {} 576 #endif /* CONFIG_MM_ID */ 577 578 static void check_mm(struct mm_struct *mm) 579 { 580 int i; 581 582 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 583 "Please make sure 'struct resident_page_types[]' is updated as well"); 584 585 for (i = 0; i < NR_MM_COUNTERS; i++) { 586 long x = percpu_counter_sum(&mm->rss_stat[i]); 587 588 if (unlikely(x)) 589 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 590 mm, resident_page_types[i], x); 591 } 592 593 if (mm_pgtables_bytes(mm)) 594 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 595 mm_pgtables_bytes(mm)); 596 597 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 598 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 599 #endif 600 } 601 602 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 603 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 604 605 static void do_check_lazy_tlb(void *arg) 606 { 607 struct mm_struct *mm = arg; 608 609 WARN_ON_ONCE(current->active_mm == mm); 610 } 611 612 static void do_shoot_lazy_tlb(void *arg) 613 { 614 struct mm_struct *mm = arg; 615 616 if (current->active_mm == mm) { 617 WARN_ON_ONCE(current->mm); 618 current->active_mm = &init_mm; 619 switch_mm(mm, &init_mm, current); 620 } 621 } 622 623 static void cleanup_lazy_tlbs(struct mm_struct *mm) 624 { 625 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 626 /* 627 * In this case, lazy tlb mms are refounted and would not reach 628 * __mmdrop until all CPUs have switched away and mmdrop()ed. 629 */ 630 return; 631 } 632 633 /* 634 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 635 * requires lazy mm users to switch to another mm when the refcount 636 * drops to zero, before the mm is freed. This requires IPIs here to 637 * switch kernel threads to init_mm. 638 * 639 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 640 * switch with the final userspace teardown TLB flush which leaves the 641 * mm lazy on this CPU but no others, reducing the need for additional 642 * IPIs here. There are cases where a final IPI is still required here, 643 * such as the final mmdrop being performed on a different CPU than the 644 * one exiting, or kernel threads using the mm when userspace exits. 645 * 646 * IPI overheads have not found to be expensive, but they could be 647 * reduced in a number of possible ways, for example (roughly 648 * increasing order of complexity): 649 * - The last lazy reference created by exit_mm() could instead switch 650 * to init_mm, however it's probable this will run on the same CPU 651 * immediately afterwards, so this may not reduce IPIs much. 652 * - A batch of mms requiring IPIs could be gathered and freed at once. 653 * - CPUs store active_mm where it can be remotely checked without a 654 * lock, to filter out false-positives in the cpumask. 655 * - After mm_users or mm_count reaches zero, switching away from the 656 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 657 * with some batching or delaying of the final IPIs. 658 * - A delayed freeing and RCU-like quiescing sequence based on mm 659 * switching to avoid IPIs completely. 660 */ 661 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 662 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 663 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 664 } 665 666 /* 667 * Called when the last reference to the mm 668 * is dropped: either by a lazy thread or by 669 * mmput. Free the page directory and the mm. 670 */ 671 void __mmdrop(struct mm_struct *mm) 672 { 673 BUG_ON(mm == &init_mm); 674 WARN_ON_ONCE(mm == current->mm); 675 676 /* Ensure no CPUs are using this as their lazy tlb mm */ 677 cleanup_lazy_tlbs(mm); 678 679 WARN_ON_ONCE(mm == current->active_mm); 680 mm_free_pgd(mm); 681 mm_free_id(mm); 682 destroy_context(mm); 683 mmu_notifier_subscriptions_destroy(mm); 684 check_mm(mm); 685 put_user_ns(mm->user_ns); 686 mm_pasid_drop(mm); 687 mm_destroy_cid(mm); 688 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 689 690 free_mm(mm); 691 } 692 EXPORT_SYMBOL_GPL(__mmdrop); 693 694 static void mmdrop_async_fn(struct work_struct *work) 695 { 696 struct mm_struct *mm; 697 698 mm = container_of(work, struct mm_struct, async_put_work); 699 __mmdrop(mm); 700 } 701 702 static void mmdrop_async(struct mm_struct *mm) 703 { 704 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 705 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 706 schedule_work(&mm->async_put_work); 707 } 708 } 709 710 static inline void free_signal_struct(struct signal_struct *sig) 711 { 712 taskstats_tgid_free(sig); 713 sched_autogroup_exit(sig); 714 /* 715 * __mmdrop is not safe to call from softirq context on x86 due to 716 * pgd_dtor so postpone it to the async context 717 */ 718 if (sig->oom_mm) 719 mmdrop_async(sig->oom_mm); 720 kmem_cache_free(signal_cachep, sig); 721 } 722 723 static inline void put_signal_struct(struct signal_struct *sig) 724 { 725 if (refcount_dec_and_test(&sig->sigcnt)) 726 free_signal_struct(sig); 727 } 728 729 void __put_task_struct(struct task_struct *tsk) 730 { 731 WARN_ON(!tsk->exit_state); 732 WARN_ON(refcount_read(&tsk->usage)); 733 WARN_ON(tsk == current); 734 735 unwind_task_free(tsk); 736 sched_ext_free(tsk); 737 io_uring_free(tsk); 738 cgroup_free(tsk); 739 task_numa_free(tsk, true); 740 security_task_free(tsk); 741 exit_creds(tsk); 742 delayacct_tsk_free(tsk); 743 put_signal_struct(tsk->signal); 744 sched_core_free(tsk); 745 free_task(tsk); 746 } 747 EXPORT_SYMBOL_GPL(__put_task_struct); 748 749 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 750 { 751 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 752 753 __put_task_struct(task); 754 } 755 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 756 757 void __init __weak arch_task_cache_init(void) { } 758 759 /* 760 * set_max_threads 761 */ 762 static void __init set_max_threads(unsigned int max_threads_suggested) 763 { 764 u64 threads; 765 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 766 767 /* 768 * The number of threads shall be limited such that the thread 769 * structures may only consume a small part of the available memory. 770 */ 771 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 772 threads = MAX_THREADS; 773 else 774 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 775 (u64) THREAD_SIZE * 8UL); 776 777 if (threads > max_threads_suggested) 778 threads = max_threads_suggested; 779 780 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 781 } 782 783 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 784 /* Initialized by the architecture: */ 785 int arch_task_struct_size __read_mostly; 786 #endif 787 788 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 789 { 790 /* Fetch thread_struct whitelist for the architecture. */ 791 arch_thread_struct_whitelist(offset, size); 792 793 /* 794 * Handle zero-sized whitelist or empty thread_struct, otherwise 795 * adjust offset to position of thread_struct in task_struct. 796 */ 797 if (unlikely(*size == 0)) 798 *offset = 0; 799 else 800 *offset += offsetof(struct task_struct, thread); 801 } 802 803 void __init fork_init(void) 804 { 805 int i; 806 #ifndef ARCH_MIN_TASKALIGN 807 #define ARCH_MIN_TASKALIGN 0 808 #endif 809 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 810 unsigned long useroffset, usersize; 811 812 /* create a slab on which task_structs can be allocated */ 813 task_struct_whitelist(&useroffset, &usersize); 814 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 815 arch_task_struct_size, align, 816 SLAB_PANIC|SLAB_ACCOUNT, 817 useroffset, usersize, NULL); 818 819 /* do the arch specific task caches init */ 820 arch_task_cache_init(); 821 822 set_max_threads(MAX_THREADS); 823 824 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 825 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 826 init_task.signal->rlim[RLIMIT_SIGPENDING] = 827 init_task.signal->rlim[RLIMIT_NPROC]; 828 829 for (i = 0; i < UCOUNT_COUNTS; i++) 830 init_user_ns.ucount_max[i] = max_threads/2; 831 832 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 833 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 834 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 835 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 836 837 #ifdef CONFIG_VMAP_STACK 838 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 839 NULL, free_vm_stack_cache); 840 #endif 841 842 scs_init(); 843 844 lockdep_init_task(&init_task); 845 uprobes_init(); 846 } 847 848 int __weak arch_dup_task_struct(struct task_struct *dst, 849 struct task_struct *src) 850 { 851 *dst = *src; 852 return 0; 853 } 854 855 void set_task_stack_end_magic(struct task_struct *tsk) 856 { 857 unsigned long *stackend; 858 859 stackend = end_of_stack(tsk); 860 *stackend = STACK_END_MAGIC; /* for overflow detection */ 861 } 862 863 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 864 { 865 struct task_struct *tsk; 866 int err; 867 868 if (node == NUMA_NO_NODE) 869 node = tsk_fork_get_node(orig); 870 tsk = alloc_task_struct_node(node); 871 if (!tsk) 872 return NULL; 873 874 err = arch_dup_task_struct(tsk, orig); 875 if (err) 876 goto free_tsk; 877 878 err = alloc_thread_stack_node(tsk, node); 879 if (err) 880 goto free_tsk; 881 882 #ifdef CONFIG_THREAD_INFO_IN_TASK 883 refcount_set(&tsk->stack_refcount, 1); 884 #endif 885 account_kernel_stack(tsk, 1); 886 887 err = scs_prepare(tsk, node); 888 if (err) 889 goto free_stack; 890 891 #ifdef CONFIG_SECCOMP 892 /* 893 * We must handle setting up seccomp filters once we're under 894 * the sighand lock in case orig has changed between now and 895 * then. Until then, filter must be NULL to avoid messing up 896 * the usage counts on the error path calling free_task. 897 */ 898 tsk->seccomp.filter = NULL; 899 #endif 900 901 setup_thread_stack(tsk, orig); 902 clear_user_return_notifier(tsk); 903 clear_tsk_need_resched(tsk); 904 set_task_stack_end_magic(tsk); 905 clear_syscall_work_syscall_user_dispatch(tsk); 906 907 #ifdef CONFIG_STACKPROTECTOR 908 tsk->stack_canary = get_random_canary(); 909 #endif 910 if (orig->cpus_ptr == &orig->cpus_mask) 911 tsk->cpus_ptr = &tsk->cpus_mask; 912 dup_user_cpus_ptr(tsk, orig, node); 913 914 /* 915 * One for the user space visible state that goes away when reaped. 916 * One for the scheduler. 917 */ 918 refcount_set(&tsk->rcu_users, 2); 919 /* One for the rcu users */ 920 refcount_set(&tsk->usage, 1); 921 #ifdef CONFIG_BLK_DEV_IO_TRACE 922 tsk->btrace_seq = 0; 923 #endif 924 tsk->splice_pipe = NULL; 925 tsk->task_frag.page = NULL; 926 tsk->wake_q.next = NULL; 927 tsk->worker_private = NULL; 928 929 kcov_task_init(tsk); 930 kmsan_task_create(tsk); 931 kmap_local_fork(tsk); 932 933 #ifdef CONFIG_FAULT_INJECTION 934 tsk->fail_nth = 0; 935 #endif 936 937 #ifdef CONFIG_BLK_CGROUP 938 tsk->throttle_disk = NULL; 939 tsk->use_memdelay = 0; 940 #endif 941 942 #ifdef CONFIG_ARCH_HAS_CPU_PASID 943 tsk->pasid_activated = 0; 944 #endif 945 946 #ifdef CONFIG_MEMCG 947 tsk->active_memcg = NULL; 948 #endif 949 950 #ifdef CONFIG_X86_BUS_LOCK_DETECT 951 tsk->reported_split_lock = 0; 952 #endif 953 954 #ifdef CONFIG_SCHED_MM_CID 955 tsk->mm_cid = -1; 956 tsk->last_mm_cid = -1; 957 tsk->mm_cid_active = 0; 958 tsk->migrate_from_cpu = -1; 959 #endif 960 return tsk; 961 962 free_stack: 963 exit_task_stack_account(tsk); 964 free_thread_stack(tsk); 965 free_tsk: 966 free_task_struct(tsk); 967 return NULL; 968 } 969 970 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 971 972 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 973 974 static int __init coredump_filter_setup(char *s) 975 { 976 default_dump_filter = 977 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 978 MMF_DUMP_FILTER_MASK; 979 return 1; 980 } 981 982 __setup("coredump_filter=", coredump_filter_setup); 983 984 #include <linux/init_task.h> 985 986 static void mm_init_aio(struct mm_struct *mm) 987 { 988 #ifdef CONFIG_AIO 989 spin_lock_init(&mm->ioctx_lock); 990 mm->ioctx_table = NULL; 991 #endif 992 } 993 994 static __always_inline void mm_clear_owner(struct mm_struct *mm, 995 struct task_struct *p) 996 { 997 #ifdef CONFIG_MEMCG 998 if (mm->owner == p) 999 WRITE_ONCE(mm->owner, NULL); 1000 #endif 1001 } 1002 1003 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1004 { 1005 #ifdef CONFIG_MEMCG 1006 mm->owner = p; 1007 #endif 1008 } 1009 1010 static void mm_init_uprobes_state(struct mm_struct *mm) 1011 { 1012 #ifdef CONFIG_UPROBES 1013 mm->uprobes_state.xol_area = NULL; 1014 #endif 1015 } 1016 1017 static void mmap_init_lock(struct mm_struct *mm) 1018 { 1019 init_rwsem(&mm->mmap_lock); 1020 mm_lock_seqcount_init(mm); 1021 #ifdef CONFIG_PER_VMA_LOCK 1022 rcuwait_init(&mm->vma_writer_wait); 1023 #endif 1024 } 1025 1026 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1027 struct user_namespace *user_ns) 1028 { 1029 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1030 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1031 atomic_set(&mm->mm_users, 1); 1032 atomic_set(&mm->mm_count, 1); 1033 seqcount_init(&mm->write_protect_seq); 1034 mmap_init_lock(mm); 1035 INIT_LIST_HEAD(&mm->mmlist); 1036 mm_pgtables_bytes_init(mm); 1037 mm->map_count = 0; 1038 mm->locked_vm = 0; 1039 atomic64_set(&mm->pinned_vm, 0); 1040 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1041 spin_lock_init(&mm->page_table_lock); 1042 spin_lock_init(&mm->arg_lock); 1043 mm_init_cpumask(mm); 1044 mm_init_aio(mm); 1045 mm_init_owner(mm, p); 1046 mm_pasid_init(mm); 1047 RCU_INIT_POINTER(mm->exe_file, NULL); 1048 mmu_notifier_subscriptions_init(mm); 1049 init_tlb_flush_pending(mm); 1050 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1051 mm->pmd_huge_pte = NULL; 1052 #endif 1053 mm_init_uprobes_state(mm); 1054 hugetlb_count_init(mm); 1055 1056 if (current->mm) { 1057 mm->flags = mmf_init_flags(current->mm->flags); 1058 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1059 } else { 1060 mm->flags = default_dump_filter; 1061 mm->def_flags = 0; 1062 } 1063 1064 if (futex_mm_init(mm)) 1065 goto fail_mm_init; 1066 1067 if (mm_alloc_pgd(mm)) 1068 goto fail_nopgd; 1069 1070 if (mm_alloc_id(mm)) 1071 goto fail_noid; 1072 1073 if (init_new_context(p, mm)) 1074 goto fail_nocontext; 1075 1076 if (mm_alloc_cid(mm, p)) 1077 goto fail_cid; 1078 1079 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1080 NR_MM_COUNTERS)) 1081 goto fail_pcpu; 1082 1083 mm->user_ns = get_user_ns(user_ns); 1084 lru_gen_init_mm(mm); 1085 return mm; 1086 1087 fail_pcpu: 1088 mm_destroy_cid(mm); 1089 fail_cid: 1090 destroy_context(mm); 1091 fail_nocontext: 1092 mm_free_id(mm); 1093 fail_noid: 1094 mm_free_pgd(mm); 1095 fail_nopgd: 1096 futex_hash_free(mm); 1097 fail_mm_init: 1098 free_mm(mm); 1099 return NULL; 1100 } 1101 1102 /* 1103 * Allocate and initialize an mm_struct. 1104 */ 1105 struct mm_struct *mm_alloc(void) 1106 { 1107 struct mm_struct *mm; 1108 1109 mm = allocate_mm(); 1110 if (!mm) 1111 return NULL; 1112 1113 memset(mm, 0, sizeof(*mm)); 1114 return mm_init(mm, current, current_user_ns()); 1115 } 1116 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1117 1118 static inline void __mmput(struct mm_struct *mm) 1119 { 1120 VM_BUG_ON(atomic_read(&mm->mm_users)); 1121 1122 uprobe_clear_state(mm); 1123 exit_aio(mm); 1124 ksm_exit(mm); 1125 khugepaged_exit(mm); /* must run before exit_mmap */ 1126 exit_mmap(mm); 1127 mm_put_huge_zero_folio(mm); 1128 set_mm_exe_file(mm, NULL); 1129 if (!list_empty(&mm->mmlist)) { 1130 spin_lock(&mmlist_lock); 1131 list_del(&mm->mmlist); 1132 spin_unlock(&mmlist_lock); 1133 } 1134 if (mm->binfmt) 1135 module_put(mm->binfmt->module); 1136 lru_gen_del_mm(mm); 1137 futex_hash_free(mm); 1138 mmdrop(mm); 1139 } 1140 1141 /* 1142 * Decrement the use count and release all resources for an mm. 1143 */ 1144 void mmput(struct mm_struct *mm) 1145 { 1146 might_sleep(); 1147 1148 if (atomic_dec_and_test(&mm->mm_users)) 1149 __mmput(mm); 1150 } 1151 EXPORT_SYMBOL_GPL(mmput); 1152 1153 #if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH) 1154 static void mmput_async_fn(struct work_struct *work) 1155 { 1156 struct mm_struct *mm = container_of(work, struct mm_struct, 1157 async_put_work); 1158 1159 __mmput(mm); 1160 } 1161 1162 void mmput_async(struct mm_struct *mm) 1163 { 1164 if (atomic_dec_and_test(&mm->mm_users)) { 1165 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1166 schedule_work(&mm->async_put_work); 1167 } 1168 } 1169 EXPORT_SYMBOL_GPL(mmput_async); 1170 #endif 1171 1172 /** 1173 * set_mm_exe_file - change a reference to the mm's executable file 1174 * @mm: The mm to change. 1175 * @new_exe_file: The new file to use. 1176 * 1177 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1178 * 1179 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1180 * invocations: in mmput() nobody alive left, in execve it happens before 1181 * the new mm is made visible to anyone. 1182 * 1183 * Can only fail if new_exe_file != NULL. 1184 */ 1185 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1186 { 1187 struct file *old_exe_file; 1188 1189 /* 1190 * It is safe to dereference the exe_file without RCU as 1191 * this function is only called if nobody else can access 1192 * this mm -- see comment above for justification. 1193 */ 1194 old_exe_file = rcu_dereference_raw(mm->exe_file); 1195 1196 if (new_exe_file) { 1197 /* 1198 * We expect the caller (i.e., sys_execve) to already denied 1199 * write access, so this is unlikely to fail. 1200 */ 1201 if (unlikely(exe_file_deny_write_access(new_exe_file))) 1202 return -EACCES; 1203 get_file(new_exe_file); 1204 } 1205 rcu_assign_pointer(mm->exe_file, new_exe_file); 1206 if (old_exe_file) { 1207 exe_file_allow_write_access(old_exe_file); 1208 fput(old_exe_file); 1209 } 1210 return 0; 1211 } 1212 1213 /** 1214 * replace_mm_exe_file - replace a reference to the mm's executable file 1215 * @mm: The mm to change. 1216 * @new_exe_file: The new file to use. 1217 * 1218 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1219 * 1220 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1221 */ 1222 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1223 { 1224 struct vm_area_struct *vma; 1225 struct file *old_exe_file; 1226 int ret = 0; 1227 1228 /* Forbid mm->exe_file change if old file still mapped. */ 1229 old_exe_file = get_mm_exe_file(mm); 1230 if (old_exe_file) { 1231 VMA_ITERATOR(vmi, mm, 0); 1232 mmap_read_lock(mm); 1233 for_each_vma(vmi, vma) { 1234 if (!vma->vm_file) 1235 continue; 1236 if (path_equal(&vma->vm_file->f_path, 1237 &old_exe_file->f_path)) { 1238 ret = -EBUSY; 1239 break; 1240 } 1241 } 1242 mmap_read_unlock(mm); 1243 fput(old_exe_file); 1244 if (ret) 1245 return ret; 1246 } 1247 1248 ret = exe_file_deny_write_access(new_exe_file); 1249 if (ret) 1250 return -EACCES; 1251 get_file(new_exe_file); 1252 1253 /* set the new file */ 1254 mmap_write_lock(mm); 1255 old_exe_file = rcu_dereference_raw(mm->exe_file); 1256 rcu_assign_pointer(mm->exe_file, new_exe_file); 1257 mmap_write_unlock(mm); 1258 1259 if (old_exe_file) { 1260 exe_file_allow_write_access(old_exe_file); 1261 fput(old_exe_file); 1262 } 1263 return 0; 1264 } 1265 1266 /** 1267 * get_mm_exe_file - acquire a reference to the mm's executable file 1268 * @mm: The mm of interest. 1269 * 1270 * Returns %NULL if mm has no associated executable file. 1271 * User must release file via fput(). 1272 */ 1273 struct file *get_mm_exe_file(struct mm_struct *mm) 1274 { 1275 struct file *exe_file; 1276 1277 rcu_read_lock(); 1278 exe_file = get_file_rcu(&mm->exe_file); 1279 rcu_read_unlock(); 1280 return exe_file; 1281 } 1282 1283 /** 1284 * get_task_exe_file - acquire a reference to the task's executable file 1285 * @task: The task. 1286 * 1287 * Returns %NULL if task's mm (if any) has no associated executable file or 1288 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1289 * User must release file via fput(). 1290 */ 1291 struct file *get_task_exe_file(struct task_struct *task) 1292 { 1293 struct file *exe_file = NULL; 1294 struct mm_struct *mm; 1295 1296 if (task->flags & PF_KTHREAD) 1297 return NULL; 1298 1299 task_lock(task); 1300 mm = task->mm; 1301 if (mm) 1302 exe_file = get_mm_exe_file(mm); 1303 task_unlock(task); 1304 return exe_file; 1305 } 1306 1307 /** 1308 * get_task_mm - acquire a reference to the task's mm 1309 * @task: The task. 1310 * 1311 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1312 * this kernel workthread has transiently adopted a user mm with use_mm, 1313 * to do its AIO) is not set and if so returns a reference to it, after 1314 * bumping up the use count. User must release the mm via mmput() 1315 * after use. Typically used by /proc and ptrace. 1316 */ 1317 struct mm_struct *get_task_mm(struct task_struct *task) 1318 { 1319 struct mm_struct *mm; 1320 1321 if (task->flags & PF_KTHREAD) 1322 return NULL; 1323 1324 task_lock(task); 1325 mm = task->mm; 1326 if (mm) 1327 mmget(mm); 1328 task_unlock(task); 1329 return mm; 1330 } 1331 EXPORT_SYMBOL_GPL(get_task_mm); 1332 1333 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode) 1334 { 1335 if (mm == current->mm) 1336 return true; 1337 if (ptrace_may_access(task, mode)) 1338 return true; 1339 if ((mode & PTRACE_MODE_READ) && perfmon_capable()) 1340 return true; 1341 return false; 1342 } 1343 1344 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1345 { 1346 struct mm_struct *mm; 1347 int err; 1348 1349 err = down_read_killable(&task->signal->exec_update_lock); 1350 if (err) 1351 return ERR_PTR(err); 1352 1353 mm = get_task_mm(task); 1354 if (!mm) { 1355 mm = ERR_PTR(-ESRCH); 1356 } else if (!may_access_mm(mm, task, mode)) { 1357 mmput(mm); 1358 mm = ERR_PTR(-EACCES); 1359 } 1360 up_read(&task->signal->exec_update_lock); 1361 1362 return mm; 1363 } 1364 1365 static void complete_vfork_done(struct task_struct *tsk) 1366 { 1367 struct completion *vfork; 1368 1369 task_lock(tsk); 1370 vfork = tsk->vfork_done; 1371 if (likely(vfork)) { 1372 tsk->vfork_done = NULL; 1373 complete(vfork); 1374 } 1375 task_unlock(tsk); 1376 } 1377 1378 static int wait_for_vfork_done(struct task_struct *child, 1379 struct completion *vfork) 1380 { 1381 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1382 int killed; 1383 1384 cgroup_enter_frozen(); 1385 killed = wait_for_completion_state(vfork, state); 1386 cgroup_leave_frozen(false); 1387 1388 if (killed) { 1389 task_lock(child); 1390 child->vfork_done = NULL; 1391 task_unlock(child); 1392 } 1393 1394 put_task_struct(child); 1395 return killed; 1396 } 1397 1398 /* Please note the differences between mmput and mm_release. 1399 * mmput is called whenever we stop holding onto a mm_struct, 1400 * error success whatever. 1401 * 1402 * mm_release is called after a mm_struct has been removed 1403 * from the current process. 1404 * 1405 * This difference is important for error handling, when we 1406 * only half set up a mm_struct for a new process and need to restore 1407 * the old one. Because we mmput the new mm_struct before 1408 * restoring the old one. . . 1409 * Eric Biederman 10 January 1998 1410 */ 1411 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1412 { 1413 uprobe_free_utask(tsk); 1414 1415 /* Get rid of any cached register state */ 1416 deactivate_mm(tsk, mm); 1417 1418 /* 1419 * Signal userspace if we're not exiting with a core dump 1420 * because we want to leave the value intact for debugging 1421 * purposes. 1422 */ 1423 if (tsk->clear_child_tid) { 1424 if (atomic_read(&mm->mm_users) > 1) { 1425 /* 1426 * We don't check the error code - if userspace has 1427 * not set up a proper pointer then tough luck. 1428 */ 1429 put_user(0, tsk->clear_child_tid); 1430 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1431 1, NULL, NULL, 0, 0); 1432 } 1433 tsk->clear_child_tid = NULL; 1434 } 1435 1436 /* 1437 * All done, finally we can wake up parent and return this mm to him. 1438 * Also kthread_stop() uses this completion for synchronization. 1439 */ 1440 if (tsk->vfork_done) 1441 complete_vfork_done(tsk); 1442 } 1443 1444 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1445 { 1446 futex_exit_release(tsk); 1447 mm_release(tsk, mm); 1448 } 1449 1450 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1451 { 1452 futex_exec_release(tsk); 1453 mm_release(tsk, mm); 1454 } 1455 1456 /** 1457 * dup_mm() - duplicates an existing mm structure 1458 * @tsk: the task_struct with which the new mm will be associated. 1459 * @oldmm: the mm to duplicate. 1460 * 1461 * Allocates a new mm structure and duplicates the provided @oldmm structure 1462 * content into it. 1463 * 1464 * Return: the duplicated mm or NULL on failure. 1465 */ 1466 static struct mm_struct *dup_mm(struct task_struct *tsk, 1467 struct mm_struct *oldmm) 1468 { 1469 struct mm_struct *mm; 1470 int err; 1471 1472 mm = allocate_mm(); 1473 if (!mm) 1474 goto fail_nomem; 1475 1476 memcpy(mm, oldmm, sizeof(*mm)); 1477 1478 if (!mm_init(mm, tsk, mm->user_ns)) 1479 goto fail_nomem; 1480 1481 uprobe_start_dup_mmap(); 1482 err = dup_mmap(mm, oldmm); 1483 if (err) 1484 goto free_pt; 1485 uprobe_end_dup_mmap(); 1486 1487 mm->hiwater_rss = get_mm_rss(mm); 1488 mm->hiwater_vm = mm->total_vm; 1489 1490 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1491 goto free_pt; 1492 1493 return mm; 1494 1495 free_pt: 1496 /* don't put binfmt in mmput, we haven't got module yet */ 1497 mm->binfmt = NULL; 1498 mm_init_owner(mm, NULL); 1499 mmput(mm); 1500 if (err) 1501 uprobe_end_dup_mmap(); 1502 1503 fail_nomem: 1504 return NULL; 1505 } 1506 1507 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1508 { 1509 struct mm_struct *mm, *oldmm; 1510 1511 tsk->min_flt = tsk->maj_flt = 0; 1512 tsk->nvcsw = tsk->nivcsw = 0; 1513 #ifdef CONFIG_DETECT_HUNG_TASK 1514 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1515 tsk->last_switch_time = 0; 1516 #endif 1517 1518 tsk->mm = NULL; 1519 tsk->active_mm = NULL; 1520 1521 /* 1522 * Are we cloning a kernel thread? 1523 * 1524 * We need to steal a active VM for that.. 1525 */ 1526 oldmm = current->mm; 1527 if (!oldmm) 1528 return 0; 1529 1530 if (clone_flags & CLONE_VM) { 1531 mmget(oldmm); 1532 mm = oldmm; 1533 } else { 1534 mm = dup_mm(tsk, current->mm); 1535 if (!mm) 1536 return -ENOMEM; 1537 } 1538 1539 tsk->mm = mm; 1540 tsk->active_mm = mm; 1541 sched_mm_cid_fork(tsk); 1542 return 0; 1543 } 1544 1545 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1546 { 1547 struct fs_struct *fs = current->fs; 1548 if (clone_flags & CLONE_FS) { 1549 /* tsk->fs is already what we want */ 1550 read_seqlock_excl(&fs->seq); 1551 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1552 if (fs->in_exec) { 1553 read_sequnlock_excl(&fs->seq); 1554 return -EAGAIN; 1555 } 1556 fs->users++; 1557 read_sequnlock_excl(&fs->seq); 1558 return 0; 1559 } 1560 tsk->fs = copy_fs_struct(fs); 1561 if (!tsk->fs) 1562 return -ENOMEM; 1563 return 0; 1564 } 1565 1566 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1567 int no_files) 1568 { 1569 struct files_struct *oldf, *newf; 1570 1571 /* 1572 * A background process may not have any files ... 1573 */ 1574 oldf = current->files; 1575 if (!oldf) 1576 return 0; 1577 1578 if (no_files) { 1579 tsk->files = NULL; 1580 return 0; 1581 } 1582 1583 if (clone_flags & CLONE_FILES) { 1584 atomic_inc(&oldf->count); 1585 return 0; 1586 } 1587 1588 newf = dup_fd(oldf, NULL); 1589 if (IS_ERR(newf)) 1590 return PTR_ERR(newf); 1591 1592 tsk->files = newf; 1593 return 0; 1594 } 1595 1596 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1597 { 1598 struct sighand_struct *sig; 1599 1600 if (clone_flags & CLONE_SIGHAND) { 1601 refcount_inc(¤t->sighand->count); 1602 return 0; 1603 } 1604 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1605 RCU_INIT_POINTER(tsk->sighand, sig); 1606 if (!sig) 1607 return -ENOMEM; 1608 1609 refcount_set(&sig->count, 1); 1610 spin_lock_irq(¤t->sighand->siglock); 1611 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1612 spin_unlock_irq(¤t->sighand->siglock); 1613 1614 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1615 if (clone_flags & CLONE_CLEAR_SIGHAND) 1616 flush_signal_handlers(tsk, 0); 1617 1618 return 0; 1619 } 1620 1621 void __cleanup_sighand(struct sighand_struct *sighand) 1622 { 1623 if (refcount_dec_and_test(&sighand->count)) { 1624 signalfd_cleanup(sighand); 1625 /* 1626 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1627 * without an RCU grace period, see __lock_task_sighand(). 1628 */ 1629 kmem_cache_free(sighand_cachep, sighand); 1630 } 1631 } 1632 1633 /* 1634 * Initialize POSIX timer handling for a thread group. 1635 */ 1636 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1637 { 1638 struct posix_cputimers *pct = &sig->posix_cputimers; 1639 unsigned long cpu_limit; 1640 1641 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1642 posix_cputimers_group_init(pct, cpu_limit); 1643 } 1644 1645 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1646 { 1647 struct signal_struct *sig; 1648 1649 if (clone_flags & CLONE_THREAD) 1650 return 0; 1651 1652 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1653 tsk->signal = sig; 1654 if (!sig) 1655 return -ENOMEM; 1656 1657 sig->nr_threads = 1; 1658 sig->quick_threads = 1; 1659 atomic_set(&sig->live, 1); 1660 refcount_set(&sig->sigcnt, 1); 1661 1662 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1663 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1664 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1665 1666 init_waitqueue_head(&sig->wait_chldexit); 1667 sig->curr_target = tsk; 1668 init_sigpending(&sig->shared_pending); 1669 INIT_HLIST_HEAD(&sig->multiprocess); 1670 seqlock_init(&sig->stats_lock); 1671 prev_cputime_init(&sig->prev_cputime); 1672 1673 #ifdef CONFIG_POSIX_TIMERS 1674 INIT_HLIST_HEAD(&sig->posix_timers); 1675 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1676 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1677 #endif 1678 1679 task_lock(current->group_leader); 1680 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1681 task_unlock(current->group_leader); 1682 1683 posix_cpu_timers_init_group(sig); 1684 1685 tty_audit_fork(sig); 1686 sched_autogroup_fork(sig); 1687 1688 sig->oom_score_adj = current->signal->oom_score_adj; 1689 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1690 1691 mutex_init(&sig->cred_guard_mutex); 1692 init_rwsem(&sig->exec_update_lock); 1693 1694 return 0; 1695 } 1696 1697 static void copy_seccomp(struct task_struct *p) 1698 { 1699 #ifdef CONFIG_SECCOMP 1700 /* 1701 * Must be called with sighand->lock held, which is common to 1702 * all threads in the group. Holding cred_guard_mutex is not 1703 * needed because this new task is not yet running and cannot 1704 * be racing exec. 1705 */ 1706 assert_spin_locked(¤t->sighand->siglock); 1707 1708 /* Ref-count the new filter user, and assign it. */ 1709 get_seccomp_filter(current); 1710 p->seccomp = current->seccomp; 1711 1712 /* 1713 * Explicitly enable no_new_privs here in case it got set 1714 * between the task_struct being duplicated and holding the 1715 * sighand lock. The seccomp state and nnp must be in sync. 1716 */ 1717 if (task_no_new_privs(current)) 1718 task_set_no_new_privs(p); 1719 1720 /* 1721 * If the parent gained a seccomp mode after copying thread 1722 * flags and between before we held the sighand lock, we have 1723 * to manually enable the seccomp thread flag here. 1724 */ 1725 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1726 set_task_syscall_work(p, SECCOMP); 1727 #endif 1728 } 1729 1730 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1731 { 1732 current->clear_child_tid = tidptr; 1733 1734 return task_pid_vnr(current); 1735 } 1736 1737 static void rt_mutex_init_task(struct task_struct *p) 1738 { 1739 raw_spin_lock_init(&p->pi_lock); 1740 #ifdef CONFIG_RT_MUTEXES 1741 p->pi_waiters = RB_ROOT_CACHED; 1742 p->pi_top_task = NULL; 1743 p->pi_blocked_on = NULL; 1744 #endif 1745 } 1746 1747 static inline void init_task_pid_links(struct task_struct *task) 1748 { 1749 enum pid_type type; 1750 1751 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1752 INIT_HLIST_NODE(&task->pid_links[type]); 1753 } 1754 1755 static inline void 1756 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1757 { 1758 if (type == PIDTYPE_PID) 1759 task->thread_pid = pid; 1760 else 1761 task->signal->pids[type] = pid; 1762 } 1763 1764 static inline void rcu_copy_process(struct task_struct *p) 1765 { 1766 #ifdef CONFIG_PREEMPT_RCU 1767 p->rcu_read_lock_nesting = 0; 1768 p->rcu_read_unlock_special.s = 0; 1769 p->rcu_blocked_node = NULL; 1770 INIT_LIST_HEAD(&p->rcu_node_entry); 1771 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1772 #ifdef CONFIG_TASKS_RCU 1773 p->rcu_tasks_holdout = false; 1774 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1775 p->rcu_tasks_idle_cpu = -1; 1776 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1777 #endif /* #ifdef CONFIG_TASKS_RCU */ 1778 #ifdef CONFIG_TASKS_TRACE_RCU 1779 p->trc_reader_nesting = 0; 1780 p->trc_reader_special.s = 0; 1781 INIT_LIST_HEAD(&p->trc_holdout_list); 1782 INIT_LIST_HEAD(&p->trc_blkd_node); 1783 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1784 } 1785 1786 /** 1787 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1788 * @pid: the struct pid for which to create a pidfd 1789 * @flags: flags of the new @pidfd 1790 * @ret_file: return the new pidfs file 1791 * 1792 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1793 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1794 * 1795 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 1796 * task identified by @pid must be a thread-group leader. 1797 * 1798 * If this function returns successfully the caller is responsible to either 1799 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1800 * order to install the pidfd into its file descriptor table or they must use 1801 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1802 * respectively. 1803 * 1804 * This function is useful when a pidfd must already be reserved but there 1805 * might still be points of failure afterwards and the caller wants to ensure 1806 * that no pidfd is leaked into its file descriptor table. 1807 * 1808 * Return: On success, a reserved pidfd is returned from the function and a new 1809 * pidfd file is returned in the last argument to the function. On 1810 * error, a negative error code is returned from the function and the 1811 * last argument remains unchanged. 1812 */ 1813 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file) 1814 { 1815 struct file *pidfs_file; 1816 1817 /* 1818 * PIDFD_STALE is only allowed to be passed if the caller knows 1819 * that @pid is already registered in pidfs and thus 1820 * PIDFD_INFO_EXIT information is guaranteed to be available. 1821 */ 1822 if (!(flags & PIDFD_STALE)) { 1823 /* 1824 * While holding the pidfd waitqueue lock removing the 1825 * task linkage for the thread-group leader pid 1826 * (PIDTYPE_TGID) isn't possible. Thus, if there's still 1827 * task linkage for PIDTYPE_PID not having thread-group 1828 * leader linkage for the pid means it wasn't a 1829 * thread-group leader in the first place. 1830 */ 1831 guard(spinlock_irq)(&pid->wait_pidfd.lock); 1832 1833 /* Task has already been reaped. */ 1834 if (!pid_has_task(pid, PIDTYPE_PID)) 1835 return -ESRCH; 1836 /* 1837 * If this struct pid isn't used as a thread-group 1838 * leader but the caller requested to create a 1839 * thread-group leader pidfd then report ENOENT. 1840 */ 1841 if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID)) 1842 return -ENOENT; 1843 } 1844 1845 CLASS(get_unused_fd, pidfd)(O_CLOEXEC); 1846 if (pidfd < 0) 1847 return pidfd; 1848 1849 pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR); 1850 if (IS_ERR(pidfs_file)) 1851 return PTR_ERR(pidfs_file); 1852 1853 *ret_file = pidfs_file; 1854 return take_fd(pidfd); 1855 } 1856 1857 static void __delayed_free_task(struct rcu_head *rhp) 1858 { 1859 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1860 1861 free_task(tsk); 1862 } 1863 1864 static __always_inline void delayed_free_task(struct task_struct *tsk) 1865 { 1866 if (IS_ENABLED(CONFIG_MEMCG)) 1867 call_rcu(&tsk->rcu, __delayed_free_task); 1868 else 1869 free_task(tsk); 1870 } 1871 1872 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1873 { 1874 /* Skip if kernel thread */ 1875 if (!tsk->mm) 1876 return; 1877 1878 /* Skip if spawning a thread or using vfork */ 1879 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1880 return; 1881 1882 /* We need to synchronize with __set_oom_adj */ 1883 mutex_lock(&oom_adj_mutex); 1884 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1885 /* Update the values in case they were changed after copy_signal */ 1886 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1887 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1888 mutex_unlock(&oom_adj_mutex); 1889 } 1890 1891 #ifdef CONFIG_RV 1892 static void rv_task_fork(struct task_struct *p) 1893 { 1894 memset(&p->rv, 0, sizeof(p->rv)); 1895 } 1896 #else 1897 #define rv_task_fork(p) do {} while (0) 1898 #endif 1899 1900 static bool need_futex_hash_allocate_default(u64 clone_flags) 1901 { 1902 if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM)) 1903 return false; 1904 return true; 1905 } 1906 1907 /* 1908 * This creates a new process as a copy of the old one, 1909 * but does not actually start it yet. 1910 * 1911 * It copies the registers, and all the appropriate 1912 * parts of the process environment (as per the clone 1913 * flags). The actual kick-off is left to the caller. 1914 */ 1915 __latent_entropy struct task_struct *copy_process( 1916 struct pid *pid, 1917 int trace, 1918 int node, 1919 struct kernel_clone_args *args) 1920 { 1921 int pidfd = -1, retval; 1922 struct task_struct *p; 1923 struct multiprocess_signals delayed; 1924 struct file *pidfile = NULL; 1925 const u64 clone_flags = args->flags; 1926 struct nsproxy *nsp = current->nsproxy; 1927 1928 /* 1929 * Don't allow sharing the root directory with processes in a different 1930 * namespace 1931 */ 1932 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1933 return ERR_PTR(-EINVAL); 1934 1935 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1936 return ERR_PTR(-EINVAL); 1937 1938 /* 1939 * Thread groups must share signals as well, and detached threads 1940 * can only be started up within the thread group. 1941 */ 1942 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1943 return ERR_PTR(-EINVAL); 1944 1945 /* 1946 * Shared signal handlers imply shared VM. By way of the above, 1947 * thread groups also imply shared VM. Blocking this case allows 1948 * for various simplifications in other code. 1949 */ 1950 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1951 return ERR_PTR(-EINVAL); 1952 1953 /* 1954 * Siblings of global init remain as zombies on exit since they are 1955 * not reaped by their parent (swapper). To solve this and to avoid 1956 * multi-rooted process trees, prevent global and container-inits 1957 * from creating siblings. 1958 */ 1959 if ((clone_flags & CLONE_PARENT) && 1960 current->signal->flags & SIGNAL_UNKILLABLE) 1961 return ERR_PTR(-EINVAL); 1962 1963 /* 1964 * If the new process will be in a different pid or user namespace 1965 * do not allow it to share a thread group with the forking task. 1966 */ 1967 if (clone_flags & CLONE_THREAD) { 1968 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1969 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1970 return ERR_PTR(-EINVAL); 1971 } 1972 1973 if (clone_flags & CLONE_PIDFD) { 1974 /* 1975 * - CLONE_DETACHED is blocked so that we can potentially 1976 * reuse it later for CLONE_PIDFD. 1977 */ 1978 if (clone_flags & CLONE_DETACHED) 1979 return ERR_PTR(-EINVAL); 1980 } 1981 1982 /* 1983 * Force any signals received before this point to be delivered 1984 * before the fork happens. Collect up signals sent to multiple 1985 * processes that happen during the fork and delay them so that 1986 * they appear to happen after the fork. 1987 */ 1988 sigemptyset(&delayed.signal); 1989 INIT_HLIST_NODE(&delayed.node); 1990 1991 spin_lock_irq(¤t->sighand->siglock); 1992 if (!(clone_flags & CLONE_THREAD)) 1993 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1994 recalc_sigpending(); 1995 spin_unlock_irq(¤t->sighand->siglock); 1996 retval = -ERESTARTNOINTR; 1997 if (task_sigpending(current)) 1998 goto fork_out; 1999 2000 retval = -ENOMEM; 2001 p = dup_task_struct(current, node); 2002 if (!p) 2003 goto fork_out; 2004 p->flags &= ~PF_KTHREAD; 2005 if (args->kthread) 2006 p->flags |= PF_KTHREAD; 2007 if (args->user_worker) { 2008 /* 2009 * Mark us a user worker, and block any signal that isn't 2010 * fatal or STOP 2011 */ 2012 p->flags |= PF_USER_WORKER; 2013 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2014 } 2015 if (args->io_thread) 2016 p->flags |= PF_IO_WORKER; 2017 2018 if (args->name) 2019 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2020 2021 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2022 /* 2023 * Clear TID on mm_release()? 2024 */ 2025 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2026 2027 ftrace_graph_init_task(p); 2028 2029 rt_mutex_init_task(p); 2030 2031 lockdep_assert_irqs_enabled(); 2032 #ifdef CONFIG_PROVE_LOCKING 2033 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2034 #endif 2035 retval = copy_creds(p, clone_flags); 2036 if (retval < 0) 2037 goto bad_fork_free; 2038 2039 retval = -EAGAIN; 2040 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2041 if (p->real_cred->user != INIT_USER && 2042 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2043 goto bad_fork_cleanup_count; 2044 } 2045 current->flags &= ~PF_NPROC_EXCEEDED; 2046 2047 /* 2048 * If multiple threads are within copy_process(), then this check 2049 * triggers too late. This doesn't hurt, the check is only there 2050 * to stop root fork bombs. 2051 */ 2052 retval = -EAGAIN; 2053 if (data_race(nr_threads >= max_threads)) 2054 goto bad_fork_cleanup_count; 2055 2056 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2057 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2058 p->flags |= PF_FORKNOEXEC; 2059 INIT_LIST_HEAD(&p->children); 2060 INIT_LIST_HEAD(&p->sibling); 2061 rcu_copy_process(p); 2062 p->vfork_done = NULL; 2063 spin_lock_init(&p->alloc_lock); 2064 2065 init_sigpending(&p->pending); 2066 2067 p->utime = p->stime = p->gtime = 0; 2068 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2069 p->utimescaled = p->stimescaled = 0; 2070 #endif 2071 prev_cputime_init(&p->prev_cputime); 2072 2073 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2074 seqcount_init(&p->vtime.seqcount); 2075 p->vtime.starttime = 0; 2076 p->vtime.state = VTIME_INACTIVE; 2077 #endif 2078 2079 #ifdef CONFIG_IO_URING 2080 p->io_uring = NULL; 2081 #endif 2082 2083 p->default_timer_slack_ns = current->timer_slack_ns; 2084 2085 #ifdef CONFIG_PSI 2086 p->psi_flags = 0; 2087 #endif 2088 2089 task_io_accounting_init(&p->ioac); 2090 acct_clear_integrals(p); 2091 2092 posix_cputimers_init(&p->posix_cputimers); 2093 tick_dep_init_task(p); 2094 2095 p->io_context = NULL; 2096 audit_set_context(p, NULL); 2097 cgroup_fork(p); 2098 if (args->kthread) { 2099 if (!set_kthread_struct(p)) 2100 goto bad_fork_cleanup_delayacct; 2101 } 2102 #ifdef CONFIG_NUMA 2103 p->mempolicy = mpol_dup(p->mempolicy); 2104 if (IS_ERR(p->mempolicy)) { 2105 retval = PTR_ERR(p->mempolicy); 2106 p->mempolicy = NULL; 2107 goto bad_fork_cleanup_delayacct; 2108 } 2109 #endif 2110 #ifdef CONFIG_CPUSETS 2111 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2112 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2113 #endif 2114 #ifdef CONFIG_TRACE_IRQFLAGS 2115 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2116 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2117 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2118 p->softirqs_enabled = 1; 2119 p->softirq_context = 0; 2120 #endif 2121 2122 p->pagefault_disabled = 0; 2123 2124 #ifdef CONFIG_LOCKDEP 2125 lockdep_init_task(p); 2126 #endif 2127 2128 p->blocked_on = NULL; /* not blocked yet */ 2129 2130 #ifdef CONFIG_BCACHE 2131 p->sequential_io = 0; 2132 p->sequential_io_avg = 0; 2133 #endif 2134 #ifdef CONFIG_BPF_SYSCALL 2135 RCU_INIT_POINTER(p->bpf_storage, NULL); 2136 p->bpf_ctx = NULL; 2137 #endif 2138 2139 unwind_task_init(p); 2140 2141 /* Perform scheduler related setup. Assign this task to a CPU. */ 2142 retval = sched_fork(clone_flags, p); 2143 if (retval) 2144 goto bad_fork_cleanup_policy; 2145 2146 retval = perf_event_init_task(p, clone_flags); 2147 if (retval) 2148 goto bad_fork_sched_cancel_fork; 2149 retval = audit_alloc(p); 2150 if (retval) 2151 goto bad_fork_cleanup_perf; 2152 /* copy all the process information */ 2153 shm_init_task(p); 2154 retval = security_task_alloc(p, clone_flags); 2155 if (retval) 2156 goto bad_fork_cleanup_audit; 2157 retval = copy_semundo(clone_flags, p); 2158 if (retval) 2159 goto bad_fork_cleanup_security; 2160 retval = copy_files(clone_flags, p, args->no_files); 2161 if (retval) 2162 goto bad_fork_cleanup_semundo; 2163 retval = copy_fs(clone_flags, p); 2164 if (retval) 2165 goto bad_fork_cleanup_files; 2166 retval = copy_sighand(clone_flags, p); 2167 if (retval) 2168 goto bad_fork_cleanup_fs; 2169 retval = copy_signal(clone_flags, p); 2170 if (retval) 2171 goto bad_fork_cleanup_sighand; 2172 retval = copy_mm(clone_flags, p); 2173 if (retval) 2174 goto bad_fork_cleanup_signal; 2175 retval = copy_namespaces(clone_flags, p); 2176 if (retval) 2177 goto bad_fork_cleanup_mm; 2178 retval = copy_io(clone_flags, p); 2179 if (retval) 2180 goto bad_fork_cleanup_namespaces; 2181 retval = copy_thread(p, args); 2182 if (retval) 2183 goto bad_fork_cleanup_io; 2184 2185 stackleak_task_init(p); 2186 2187 if (pid != &init_struct_pid) { 2188 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2189 args->set_tid_size); 2190 if (IS_ERR(pid)) { 2191 retval = PTR_ERR(pid); 2192 goto bad_fork_cleanup_thread; 2193 } 2194 } 2195 2196 /* 2197 * This has to happen after we've potentially unshared the file 2198 * descriptor table (so that the pidfd doesn't leak into the child 2199 * if the fd table isn't shared). 2200 */ 2201 if (clone_flags & CLONE_PIDFD) { 2202 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2203 2204 /* 2205 * Note that no task has been attached to @pid yet indicate 2206 * that via CLONE_PIDFD. 2207 */ 2208 retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile); 2209 if (retval < 0) 2210 goto bad_fork_free_pid; 2211 pidfd = retval; 2212 2213 retval = put_user(pidfd, args->pidfd); 2214 if (retval) 2215 goto bad_fork_put_pidfd; 2216 } 2217 2218 #ifdef CONFIG_BLOCK 2219 p->plug = NULL; 2220 #endif 2221 futex_init_task(p); 2222 2223 /* 2224 * sigaltstack should be cleared when sharing the same VM 2225 */ 2226 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2227 sas_ss_reset(p); 2228 2229 /* 2230 * Syscall tracing and stepping should be turned off in the 2231 * child regardless of CLONE_PTRACE. 2232 */ 2233 user_disable_single_step(p); 2234 clear_task_syscall_work(p, SYSCALL_TRACE); 2235 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2236 clear_task_syscall_work(p, SYSCALL_EMU); 2237 #endif 2238 clear_tsk_latency_tracing(p); 2239 2240 /* ok, now we should be set up.. */ 2241 p->pid = pid_nr(pid); 2242 if (clone_flags & CLONE_THREAD) { 2243 p->group_leader = current->group_leader; 2244 p->tgid = current->tgid; 2245 } else { 2246 p->group_leader = p; 2247 p->tgid = p->pid; 2248 } 2249 2250 p->nr_dirtied = 0; 2251 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2252 p->dirty_paused_when = 0; 2253 2254 p->pdeath_signal = 0; 2255 p->task_works = NULL; 2256 clear_posix_cputimers_work(p); 2257 2258 #ifdef CONFIG_KRETPROBES 2259 p->kretprobe_instances.first = NULL; 2260 #endif 2261 #ifdef CONFIG_RETHOOK 2262 p->rethooks.first = NULL; 2263 #endif 2264 2265 /* 2266 * Ensure that the cgroup subsystem policies allow the new process to be 2267 * forked. It should be noted that the new process's css_set can be changed 2268 * between here and cgroup_post_fork() if an organisation operation is in 2269 * progress. 2270 */ 2271 retval = cgroup_can_fork(p, args); 2272 if (retval) 2273 goto bad_fork_put_pidfd; 2274 2275 /* 2276 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2277 * the new task on the correct runqueue. All this *before* the task 2278 * becomes visible. 2279 * 2280 * This isn't part of ->can_fork() because while the re-cloning is 2281 * cgroup specific, it unconditionally needs to place the task on a 2282 * runqueue. 2283 */ 2284 retval = sched_cgroup_fork(p, args); 2285 if (retval) 2286 goto bad_fork_cancel_cgroup; 2287 2288 /* 2289 * Allocate a default futex hash for the user process once the first 2290 * thread spawns. 2291 */ 2292 if (need_futex_hash_allocate_default(clone_flags)) { 2293 retval = futex_hash_allocate_default(); 2294 if (retval) 2295 goto bad_fork_core_free; 2296 /* 2297 * If we fail beyond this point we don't free the allocated 2298 * futex hash map. We assume that another thread will be created 2299 * and makes use of it. The hash map will be freed once the main 2300 * thread terminates. 2301 */ 2302 } 2303 /* 2304 * From this point on we must avoid any synchronous user-space 2305 * communication until we take the tasklist-lock. In particular, we do 2306 * not want user-space to be able to predict the process start-time by 2307 * stalling fork(2) after we recorded the start_time but before it is 2308 * visible to the system. 2309 */ 2310 2311 p->start_time = ktime_get_ns(); 2312 p->start_boottime = ktime_get_boottime_ns(); 2313 2314 /* 2315 * Make it visible to the rest of the system, but dont wake it up yet. 2316 * Need tasklist lock for parent etc handling! 2317 */ 2318 write_lock_irq(&tasklist_lock); 2319 2320 /* CLONE_PARENT re-uses the old parent */ 2321 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2322 p->real_parent = current->real_parent; 2323 p->parent_exec_id = current->parent_exec_id; 2324 if (clone_flags & CLONE_THREAD) 2325 p->exit_signal = -1; 2326 else 2327 p->exit_signal = current->group_leader->exit_signal; 2328 } else { 2329 p->real_parent = current; 2330 p->parent_exec_id = current->self_exec_id; 2331 p->exit_signal = args->exit_signal; 2332 } 2333 2334 klp_copy_process(p); 2335 2336 sched_core_fork(p); 2337 2338 spin_lock(¤t->sighand->siglock); 2339 2340 rv_task_fork(p); 2341 2342 rseq_fork(p, clone_flags); 2343 2344 /* Don't start children in a dying pid namespace */ 2345 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2346 retval = -ENOMEM; 2347 goto bad_fork_core_free; 2348 } 2349 2350 /* Let kill terminate clone/fork in the middle */ 2351 if (fatal_signal_pending(current)) { 2352 retval = -EINTR; 2353 goto bad_fork_core_free; 2354 } 2355 2356 /* No more failure paths after this point. */ 2357 2358 /* 2359 * Copy seccomp details explicitly here, in case they were changed 2360 * before holding sighand lock. 2361 */ 2362 copy_seccomp(p); 2363 2364 init_task_pid_links(p); 2365 if (likely(p->pid)) { 2366 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2367 2368 init_task_pid(p, PIDTYPE_PID, pid); 2369 if (thread_group_leader(p)) { 2370 init_task_pid(p, PIDTYPE_TGID, pid); 2371 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2372 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2373 2374 if (is_child_reaper(pid)) { 2375 ns_of_pid(pid)->child_reaper = p; 2376 p->signal->flags |= SIGNAL_UNKILLABLE; 2377 } 2378 p->signal->shared_pending.signal = delayed.signal; 2379 p->signal->tty = tty_kref_get(current->signal->tty); 2380 /* 2381 * Inherit has_child_subreaper flag under the same 2382 * tasklist_lock with adding child to the process tree 2383 * for propagate_has_child_subreaper optimization. 2384 */ 2385 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2386 p->real_parent->signal->is_child_subreaper; 2387 list_add_tail(&p->sibling, &p->real_parent->children); 2388 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2389 attach_pid(p, PIDTYPE_TGID); 2390 attach_pid(p, PIDTYPE_PGID); 2391 attach_pid(p, PIDTYPE_SID); 2392 __this_cpu_inc(process_counts); 2393 } else { 2394 current->signal->nr_threads++; 2395 current->signal->quick_threads++; 2396 atomic_inc(¤t->signal->live); 2397 refcount_inc(¤t->signal->sigcnt); 2398 task_join_group_stop(p); 2399 list_add_tail_rcu(&p->thread_node, 2400 &p->signal->thread_head); 2401 } 2402 attach_pid(p, PIDTYPE_PID); 2403 nr_threads++; 2404 } 2405 total_forks++; 2406 hlist_del_init(&delayed.node); 2407 spin_unlock(¤t->sighand->siglock); 2408 syscall_tracepoint_update(p); 2409 write_unlock_irq(&tasklist_lock); 2410 2411 if (pidfile) 2412 fd_install(pidfd, pidfile); 2413 2414 proc_fork_connector(p); 2415 sched_post_fork(p); 2416 cgroup_post_fork(p, args); 2417 perf_event_fork(p); 2418 2419 trace_task_newtask(p, clone_flags); 2420 uprobe_copy_process(p, clone_flags); 2421 user_events_fork(p, clone_flags); 2422 2423 copy_oom_score_adj(clone_flags, p); 2424 2425 return p; 2426 2427 bad_fork_core_free: 2428 sched_core_free(p); 2429 spin_unlock(¤t->sighand->siglock); 2430 write_unlock_irq(&tasklist_lock); 2431 bad_fork_cancel_cgroup: 2432 cgroup_cancel_fork(p, args); 2433 bad_fork_put_pidfd: 2434 if (clone_flags & CLONE_PIDFD) { 2435 fput(pidfile); 2436 put_unused_fd(pidfd); 2437 } 2438 bad_fork_free_pid: 2439 if (pid != &init_struct_pid) 2440 free_pid(pid); 2441 bad_fork_cleanup_thread: 2442 exit_thread(p); 2443 bad_fork_cleanup_io: 2444 if (p->io_context) 2445 exit_io_context(p); 2446 bad_fork_cleanup_namespaces: 2447 exit_task_namespaces(p); 2448 bad_fork_cleanup_mm: 2449 if (p->mm) { 2450 mm_clear_owner(p->mm, p); 2451 mmput(p->mm); 2452 } 2453 bad_fork_cleanup_signal: 2454 if (!(clone_flags & CLONE_THREAD)) 2455 free_signal_struct(p->signal); 2456 bad_fork_cleanup_sighand: 2457 __cleanup_sighand(p->sighand); 2458 bad_fork_cleanup_fs: 2459 exit_fs(p); /* blocking */ 2460 bad_fork_cleanup_files: 2461 exit_files(p); /* blocking */ 2462 bad_fork_cleanup_semundo: 2463 exit_sem(p); 2464 bad_fork_cleanup_security: 2465 security_task_free(p); 2466 bad_fork_cleanup_audit: 2467 audit_free(p); 2468 bad_fork_cleanup_perf: 2469 perf_event_free_task(p); 2470 bad_fork_sched_cancel_fork: 2471 sched_cancel_fork(p); 2472 bad_fork_cleanup_policy: 2473 lockdep_free_task(p); 2474 #ifdef CONFIG_NUMA 2475 mpol_put(p->mempolicy); 2476 #endif 2477 bad_fork_cleanup_delayacct: 2478 delayacct_tsk_free(p); 2479 bad_fork_cleanup_count: 2480 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2481 exit_creds(p); 2482 bad_fork_free: 2483 WRITE_ONCE(p->__state, TASK_DEAD); 2484 exit_task_stack_account(p); 2485 put_task_stack(p); 2486 delayed_free_task(p); 2487 fork_out: 2488 spin_lock_irq(¤t->sighand->siglock); 2489 hlist_del_init(&delayed.node); 2490 spin_unlock_irq(¤t->sighand->siglock); 2491 return ERR_PTR(retval); 2492 } 2493 2494 static inline void init_idle_pids(struct task_struct *idle) 2495 { 2496 enum pid_type type; 2497 2498 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2499 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2500 init_task_pid(idle, type, &init_struct_pid); 2501 } 2502 } 2503 2504 static int idle_dummy(void *dummy) 2505 { 2506 /* This function is never called */ 2507 return 0; 2508 } 2509 2510 struct task_struct * __init fork_idle(int cpu) 2511 { 2512 struct task_struct *task; 2513 struct kernel_clone_args args = { 2514 .flags = CLONE_VM, 2515 .fn = &idle_dummy, 2516 .fn_arg = NULL, 2517 .kthread = 1, 2518 .idle = 1, 2519 }; 2520 2521 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2522 if (!IS_ERR(task)) { 2523 init_idle_pids(task); 2524 init_idle(task, cpu); 2525 } 2526 2527 return task; 2528 } 2529 2530 /* 2531 * This is like kernel_clone(), but shaved down and tailored to just 2532 * creating io_uring workers. It returns a created task, or an error pointer. 2533 * The returned task is inactive, and the caller must fire it up through 2534 * wake_up_new_task(p). All signals are blocked in the created task. 2535 */ 2536 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2537 { 2538 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2539 CLONE_IO; 2540 struct kernel_clone_args args = { 2541 .flags = ((lower_32_bits(flags) | CLONE_VM | 2542 CLONE_UNTRACED) & ~CSIGNAL), 2543 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2544 .fn = fn, 2545 .fn_arg = arg, 2546 .io_thread = 1, 2547 .user_worker = 1, 2548 }; 2549 2550 return copy_process(NULL, 0, node, &args); 2551 } 2552 2553 /* 2554 * Ok, this is the main fork-routine. 2555 * 2556 * It copies the process, and if successful kick-starts 2557 * it and waits for it to finish using the VM if required. 2558 * 2559 * args->exit_signal is expected to be checked for sanity by the caller. 2560 */ 2561 pid_t kernel_clone(struct kernel_clone_args *args) 2562 { 2563 u64 clone_flags = args->flags; 2564 struct completion vfork; 2565 struct pid *pid; 2566 struct task_struct *p; 2567 int trace = 0; 2568 pid_t nr; 2569 2570 /* 2571 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2572 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2573 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2574 * field in struct clone_args and it still doesn't make sense to have 2575 * them both point at the same memory location. Performing this check 2576 * here has the advantage that we don't need to have a separate helper 2577 * to check for legacy clone(). 2578 */ 2579 if ((clone_flags & CLONE_PIDFD) && 2580 (clone_flags & CLONE_PARENT_SETTID) && 2581 (args->pidfd == args->parent_tid)) 2582 return -EINVAL; 2583 2584 /* 2585 * Determine whether and which event to report to ptracer. When 2586 * called from kernel_thread or CLONE_UNTRACED is explicitly 2587 * requested, no event is reported; otherwise, report if the event 2588 * for the type of forking is enabled. 2589 */ 2590 if (!(clone_flags & CLONE_UNTRACED)) { 2591 if (clone_flags & CLONE_VFORK) 2592 trace = PTRACE_EVENT_VFORK; 2593 else if (args->exit_signal != SIGCHLD) 2594 trace = PTRACE_EVENT_CLONE; 2595 else 2596 trace = PTRACE_EVENT_FORK; 2597 2598 if (likely(!ptrace_event_enabled(current, trace))) 2599 trace = 0; 2600 } 2601 2602 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2603 add_latent_entropy(); 2604 2605 if (IS_ERR(p)) 2606 return PTR_ERR(p); 2607 2608 /* 2609 * Do this prior waking up the new thread - the thread pointer 2610 * might get invalid after that point, if the thread exits quickly. 2611 */ 2612 trace_sched_process_fork(current, p); 2613 2614 pid = get_task_pid(p, PIDTYPE_PID); 2615 nr = pid_vnr(pid); 2616 2617 if (clone_flags & CLONE_PARENT_SETTID) 2618 put_user(nr, args->parent_tid); 2619 2620 if (clone_flags & CLONE_VFORK) { 2621 p->vfork_done = &vfork; 2622 init_completion(&vfork); 2623 get_task_struct(p); 2624 } 2625 2626 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2627 /* lock the task to synchronize with memcg migration */ 2628 task_lock(p); 2629 lru_gen_add_mm(p->mm); 2630 task_unlock(p); 2631 } 2632 2633 wake_up_new_task(p); 2634 2635 /* forking complete and child started to run, tell ptracer */ 2636 if (unlikely(trace)) 2637 ptrace_event_pid(trace, pid); 2638 2639 if (clone_flags & CLONE_VFORK) { 2640 if (!wait_for_vfork_done(p, &vfork)) 2641 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2642 } 2643 2644 put_pid(pid); 2645 return nr; 2646 } 2647 2648 /* 2649 * Create a kernel thread. 2650 */ 2651 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2652 unsigned long flags) 2653 { 2654 struct kernel_clone_args args = { 2655 .flags = ((lower_32_bits(flags) | CLONE_VM | 2656 CLONE_UNTRACED) & ~CSIGNAL), 2657 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2658 .fn = fn, 2659 .fn_arg = arg, 2660 .name = name, 2661 .kthread = 1, 2662 }; 2663 2664 return kernel_clone(&args); 2665 } 2666 2667 /* 2668 * Create a user mode thread. 2669 */ 2670 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2671 { 2672 struct kernel_clone_args args = { 2673 .flags = ((lower_32_bits(flags) | CLONE_VM | 2674 CLONE_UNTRACED) & ~CSIGNAL), 2675 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2676 .fn = fn, 2677 .fn_arg = arg, 2678 }; 2679 2680 return kernel_clone(&args); 2681 } 2682 2683 #ifdef __ARCH_WANT_SYS_FORK 2684 SYSCALL_DEFINE0(fork) 2685 { 2686 #ifdef CONFIG_MMU 2687 struct kernel_clone_args args = { 2688 .exit_signal = SIGCHLD, 2689 }; 2690 2691 return kernel_clone(&args); 2692 #else 2693 /* can not support in nommu mode */ 2694 return -EINVAL; 2695 #endif 2696 } 2697 #endif 2698 2699 #ifdef __ARCH_WANT_SYS_VFORK 2700 SYSCALL_DEFINE0(vfork) 2701 { 2702 struct kernel_clone_args args = { 2703 .flags = CLONE_VFORK | CLONE_VM, 2704 .exit_signal = SIGCHLD, 2705 }; 2706 2707 return kernel_clone(&args); 2708 } 2709 #endif 2710 2711 #ifdef __ARCH_WANT_SYS_CLONE 2712 #ifdef CONFIG_CLONE_BACKWARDS 2713 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2714 int __user *, parent_tidptr, 2715 unsigned long, tls, 2716 int __user *, child_tidptr) 2717 #elif defined(CONFIG_CLONE_BACKWARDS2) 2718 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2719 int __user *, parent_tidptr, 2720 int __user *, child_tidptr, 2721 unsigned long, tls) 2722 #elif defined(CONFIG_CLONE_BACKWARDS3) 2723 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2724 int, stack_size, 2725 int __user *, parent_tidptr, 2726 int __user *, child_tidptr, 2727 unsigned long, tls) 2728 #else 2729 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2730 int __user *, parent_tidptr, 2731 int __user *, child_tidptr, 2732 unsigned long, tls) 2733 #endif 2734 { 2735 struct kernel_clone_args args = { 2736 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2737 .pidfd = parent_tidptr, 2738 .child_tid = child_tidptr, 2739 .parent_tid = parent_tidptr, 2740 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2741 .stack = newsp, 2742 .tls = tls, 2743 }; 2744 2745 return kernel_clone(&args); 2746 } 2747 #endif 2748 2749 static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2750 struct clone_args __user *uargs, 2751 size_t usize) 2752 { 2753 int err; 2754 struct clone_args args; 2755 pid_t *kset_tid = kargs->set_tid; 2756 2757 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2758 CLONE_ARGS_SIZE_VER0); 2759 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2760 CLONE_ARGS_SIZE_VER1); 2761 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2762 CLONE_ARGS_SIZE_VER2); 2763 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2764 2765 if (unlikely(usize > PAGE_SIZE)) 2766 return -E2BIG; 2767 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2768 return -EINVAL; 2769 2770 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2771 if (err) 2772 return err; 2773 2774 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2775 return -EINVAL; 2776 2777 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2778 return -EINVAL; 2779 2780 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2781 return -EINVAL; 2782 2783 /* 2784 * Verify that higher 32bits of exit_signal are unset and that 2785 * it is a valid signal 2786 */ 2787 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2788 !valid_signal(args.exit_signal))) 2789 return -EINVAL; 2790 2791 if ((args.flags & CLONE_INTO_CGROUP) && 2792 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2793 return -EINVAL; 2794 2795 *kargs = (struct kernel_clone_args){ 2796 .flags = args.flags, 2797 .pidfd = u64_to_user_ptr(args.pidfd), 2798 .child_tid = u64_to_user_ptr(args.child_tid), 2799 .parent_tid = u64_to_user_ptr(args.parent_tid), 2800 .exit_signal = args.exit_signal, 2801 .stack = args.stack, 2802 .stack_size = args.stack_size, 2803 .tls = args.tls, 2804 .set_tid_size = args.set_tid_size, 2805 .cgroup = args.cgroup, 2806 }; 2807 2808 if (args.set_tid && 2809 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2810 (kargs->set_tid_size * sizeof(pid_t)))) 2811 return -EFAULT; 2812 2813 kargs->set_tid = kset_tid; 2814 2815 return 0; 2816 } 2817 2818 /** 2819 * clone3_stack_valid - check and prepare stack 2820 * @kargs: kernel clone args 2821 * 2822 * Verify that the stack arguments userspace gave us are sane. 2823 * In addition, set the stack direction for userspace since it's easy for us to 2824 * determine. 2825 */ 2826 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2827 { 2828 if (kargs->stack == 0) { 2829 if (kargs->stack_size > 0) 2830 return false; 2831 } else { 2832 if (kargs->stack_size == 0) 2833 return false; 2834 2835 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2836 return false; 2837 2838 #if !defined(CONFIG_STACK_GROWSUP) 2839 kargs->stack += kargs->stack_size; 2840 #endif 2841 } 2842 2843 return true; 2844 } 2845 2846 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2847 { 2848 /* Verify that no unknown flags are passed along. */ 2849 if (kargs->flags & 2850 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2851 return false; 2852 2853 /* 2854 * - make the CLONE_DETACHED bit reusable for clone3 2855 * - make the CSIGNAL bits reusable for clone3 2856 */ 2857 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 2858 return false; 2859 2860 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2861 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2862 return false; 2863 2864 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2865 kargs->exit_signal) 2866 return false; 2867 2868 if (!clone3_stack_valid(kargs)) 2869 return false; 2870 2871 return true; 2872 } 2873 2874 /** 2875 * sys_clone3 - create a new process with specific properties 2876 * @uargs: argument structure 2877 * @size: size of @uargs 2878 * 2879 * clone3() is the extensible successor to clone()/clone2(). 2880 * It takes a struct as argument that is versioned by its size. 2881 * 2882 * Return: On success, a positive PID for the child process. 2883 * On error, a negative errno number. 2884 */ 2885 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2886 { 2887 int err; 2888 2889 struct kernel_clone_args kargs; 2890 pid_t set_tid[MAX_PID_NS_LEVEL]; 2891 2892 #ifdef __ARCH_BROKEN_SYS_CLONE3 2893 #warning clone3() entry point is missing, please fix 2894 return -ENOSYS; 2895 #endif 2896 2897 kargs.set_tid = set_tid; 2898 2899 err = copy_clone_args_from_user(&kargs, uargs, size); 2900 if (err) 2901 return err; 2902 2903 if (!clone3_args_valid(&kargs)) 2904 return -EINVAL; 2905 2906 return kernel_clone(&kargs); 2907 } 2908 2909 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2910 { 2911 struct task_struct *leader, *parent, *child; 2912 int res; 2913 2914 read_lock(&tasklist_lock); 2915 leader = top = top->group_leader; 2916 down: 2917 for_each_thread(leader, parent) { 2918 list_for_each_entry(child, &parent->children, sibling) { 2919 res = visitor(child, data); 2920 if (res) { 2921 if (res < 0) 2922 goto out; 2923 leader = child; 2924 goto down; 2925 } 2926 up: 2927 ; 2928 } 2929 } 2930 2931 if (leader != top) { 2932 child = leader; 2933 parent = child->real_parent; 2934 leader = parent->group_leader; 2935 goto up; 2936 } 2937 out: 2938 read_unlock(&tasklist_lock); 2939 } 2940 2941 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2942 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2943 #endif 2944 2945 static void sighand_ctor(void *data) 2946 { 2947 struct sighand_struct *sighand = data; 2948 2949 spin_lock_init(&sighand->siglock); 2950 init_waitqueue_head(&sighand->signalfd_wqh); 2951 } 2952 2953 void __init mm_cache_init(void) 2954 { 2955 unsigned int mm_size; 2956 2957 /* 2958 * The mm_cpumask is located at the end of mm_struct, and is 2959 * dynamically sized based on the maximum CPU number this system 2960 * can have, taking hotplug into account (nr_cpu_ids). 2961 */ 2962 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 2963 2964 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2965 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2966 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2967 offsetof(struct mm_struct, saved_auxv), 2968 sizeof_field(struct mm_struct, saved_auxv), 2969 NULL); 2970 } 2971 2972 void __init proc_caches_init(void) 2973 { 2974 sighand_cachep = kmem_cache_create("sighand_cache", 2975 sizeof(struct sighand_struct), 0, 2976 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2977 SLAB_ACCOUNT, sighand_ctor); 2978 signal_cachep = kmem_cache_create("signal_cache", 2979 sizeof(struct signal_struct), 0, 2980 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2981 NULL); 2982 files_cachep = kmem_cache_create("files_cache", 2983 sizeof(struct files_struct), 0, 2984 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2985 NULL); 2986 fs_cachep = kmem_cache_create("fs_cache", 2987 sizeof(struct fs_struct), 0, 2988 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2989 NULL); 2990 mmap_init(); 2991 nsproxy_cache_init(); 2992 } 2993 2994 /* 2995 * Check constraints on flags passed to the unshare system call. 2996 */ 2997 static int check_unshare_flags(unsigned long unshare_flags) 2998 { 2999 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3000 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3001 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3002 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3003 CLONE_NEWTIME)) 3004 return -EINVAL; 3005 /* 3006 * Not implemented, but pretend it works if there is nothing 3007 * to unshare. Note that unsharing the address space or the 3008 * signal handlers also need to unshare the signal queues (aka 3009 * CLONE_THREAD). 3010 */ 3011 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3012 if (!thread_group_empty(current)) 3013 return -EINVAL; 3014 } 3015 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3016 if (refcount_read(¤t->sighand->count) > 1) 3017 return -EINVAL; 3018 } 3019 if (unshare_flags & CLONE_VM) { 3020 if (!current_is_single_threaded()) 3021 return -EINVAL; 3022 } 3023 3024 return 0; 3025 } 3026 3027 /* 3028 * Unshare the filesystem structure if it is being shared 3029 */ 3030 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3031 { 3032 struct fs_struct *fs = current->fs; 3033 3034 if (!(unshare_flags & CLONE_FS) || !fs) 3035 return 0; 3036 3037 /* don't need lock here; in the worst case we'll do useless copy */ 3038 if (fs->users == 1) 3039 return 0; 3040 3041 *new_fsp = copy_fs_struct(fs); 3042 if (!*new_fsp) 3043 return -ENOMEM; 3044 3045 return 0; 3046 } 3047 3048 /* 3049 * Unshare file descriptor table if it is being shared 3050 */ 3051 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3052 { 3053 struct files_struct *fd = current->files; 3054 3055 if ((unshare_flags & CLONE_FILES) && 3056 (fd && atomic_read(&fd->count) > 1)) { 3057 fd = dup_fd(fd, NULL); 3058 if (IS_ERR(fd)) 3059 return PTR_ERR(fd); 3060 *new_fdp = fd; 3061 } 3062 3063 return 0; 3064 } 3065 3066 /* 3067 * unshare allows a process to 'unshare' part of the process 3068 * context which was originally shared using clone. copy_* 3069 * functions used by kernel_clone() cannot be used here directly 3070 * because they modify an inactive task_struct that is being 3071 * constructed. Here we are modifying the current, active, 3072 * task_struct. 3073 */ 3074 int ksys_unshare(unsigned long unshare_flags) 3075 { 3076 struct fs_struct *fs, *new_fs = NULL; 3077 struct files_struct *new_fd = NULL; 3078 struct cred *new_cred = NULL; 3079 struct nsproxy *new_nsproxy = NULL; 3080 int do_sysvsem = 0; 3081 int err; 3082 3083 /* 3084 * If unsharing a user namespace must also unshare the thread group 3085 * and unshare the filesystem root and working directories. 3086 */ 3087 if (unshare_flags & CLONE_NEWUSER) 3088 unshare_flags |= CLONE_THREAD | CLONE_FS; 3089 /* 3090 * If unsharing vm, must also unshare signal handlers. 3091 */ 3092 if (unshare_flags & CLONE_VM) 3093 unshare_flags |= CLONE_SIGHAND; 3094 /* 3095 * If unsharing a signal handlers, must also unshare the signal queues. 3096 */ 3097 if (unshare_flags & CLONE_SIGHAND) 3098 unshare_flags |= CLONE_THREAD; 3099 /* 3100 * If unsharing namespace, must also unshare filesystem information. 3101 */ 3102 if (unshare_flags & CLONE_NEWNS) 3103 unshare_flags |= CLONE_FS; 3104 3105 err = check_unshare_flags(unshare_flags); 3106 if (err) 3107 goto bad_unshare_out; 3108 /* 3109 * CLONE_NEWIPC must also detach from the undolist: after switching 3110 * to a new ipc namespace, the semaphore arrays from the old 3111 * namespace are unreachable. 3112 */ 3113 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3114 do_sysvsem = 1; 3115 err = unshare_fs(unshare_flags, &new_fs); 3116 if (err) 3117 goto bad_unshare_out; 3118 err = unshare_fd(unshare_flags, &new_fd); 3119 if (err) 3120 goto bad_unshare_cleanup_fs; 3121 err = unshare_userns(unshare_flags, &new_cred); 3122 if (err) 3123 goto bad_unshare_cleanup_fd; 3124 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3125 new_cred, new_fs); 3126 if (err) 3127 goto bad_unshare_cleanup_cred; 3128 3129 if (new_cred) { 3130 err = set_cred_ucounts(new_cred); 3131 if (err) 3132 goto bad_unshare_cleanup_cred; 3133 } 3134 3135 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3136 if (do_sysvsem) { 3137 /* 3138 * CLONE_SYSVSEM is equivalent to sys_exit(). 3139 */ 3140 exit_sem(current); 3141 } 3142 if (unshare_flags & CLONE_NEWIPC) { 3143 /* Orphan segments in old ns (see sem above). */ 3144 exit_shm(current); 3145 shm_init_task(current); 3146 } 3147 3148 if (new_nsproxy) 3149 switch_task_namespaces(current, new_nsproxy); 3150 3151 task_lock(current); 3152 3153 if (new_fs) { 3154 fs = current->fs; 3155 read_seqlock_excl(&fs->seq); 3156 current->fs = new_fs; 3157 if (--fs->users) 3158 new_fs = NULL; 3159 else 3160 new_fs = fs; 3161 read_sequnlock_excl(&fs->seq); 3162 } 3163 3164 if (new_fd) 3165 swap(current->files, new_fd); 3166 3167 task_unlock(current); 3168 3169 if (new_cred) { 3170 /* Install the new user namespace */ 3171 commit_creds(new_cred); 3172 new_cred = NULL; 3173 } 3174 } 3175 3176 perf_event_namespaces(current); 3177 3178 bad_unshare_cleanup_cred: 3179 if (new_cred) 3180 put_cred(new_cred); 3181 bad_unshare_cleanup_fd: 3182 if (new_fd) 3183 put_files_struct(new_fd); 3184 3185 bad_unshare_cleanup_fs: 3186 if (new_fs) 3187 free_fs_struct(new_fs); 3188 3189 bad_unshare_out: 3190 return err; 3191 } 3192 3193 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3194 { 3195 return ksys_unshare(unshare_flags); 3196 } 3197 3198 /* 3199 * Helper to unshare the files of the current task. 3200 * We don't want to expose copy_files internals to 3201 * the exec layer of the kernel. 3202 */ 3203 3204 int unshare_files(void) 3205 { 3206 struct task_struct *task = current; 3207 struct files_struct *old, *copy = NULL; 3208 int error; 3209 3210 error = unshare_fd(CLONE_FILES, ©); 3211 if (error || !copy) 3212 return error; 3213 3214 old = task->files; 3215 task_lock(task); 3216 task->files = copy; 3217 task_unlock(task); 3218 put_files_struct(old); 3219 return 0; 3220 } 3221 3222 static int sysctl_max_threads(const struct ctl_table *table, int write, 3223 void *buffer, size_t *lenp, loff_t *ppos) 3224 { 3225 struct ctl_table t; 3226 int ret; 3227 int threads = max_threads; 3228 int min = 1; 3229 int max = MAX_THREADS; 3230 3231 t = *table; 3232 t.data = &threads; 3233 t.extra1 = &min; 3234 t.extra2 = &max; 3235 3236 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3237 if (ret || !write) 3238 return ret; 3239 3240 max_threads = threads; 3241 3242 return 0; 3243 } 3244 3245 static const struct ctl_table fork_sysctl_table[] = { 3246 { 3247 .procname = "threads-max", 3248 .data = NULL, 3249 .maxlen = sizeof(int), 3250 .mode = 0644, 3251 .proc_handler = sysctl_max_threads, 3252 }, 3253 }; 3254 3255 static int __init init_fork_sysctl(void) 3256 { 3257 register_sysctl_init("kernel", fork_sysctl_table); 3258 return 0; 3259 } 3260 3261 subsys_initcall(init_fork_sysctl); 3262