xref: /linux/kernel/fork.c (revision e880275ccfa120bf6235180ca76f01271b7b97ec)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 
100 #include <asm/pgalloc.h>
101 #include <linux/uaccess.h>
102 #include <asm/mmu_context.h>
103 #include <asm/cacheflush.h>
104 #include <asm/tlbflush.h>
105 
106 #include <trace/events/sched.h>
107 
108 #define CREATE_TRACE_POINTS
109 #include <trace/events/task.h>
110 
111 /*
112  * Minimum number of threads to boot the kernel
113  */
114 #define MIN_THREADS 20
115 
116 /*
117  * Maximum number of threads
118  */
119 #define MAX_THREADS FUTEX_TID_MASK
120 
121 /*
122  * Protected counters by write_lock_irq(&tasklist_lock)
123  */
124 unsigned long total_forks;	/* Handle normal Linux uptimes. */
125 int nr_threads;			/* The idle threads do not count.. */
126 
127 static int max_threads;		/* tunable limit on nr_threads */
128 
129 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
130 
131 static const char * const resident_page_types[] = {
132 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
133 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
134 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
135 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
136 };
137 
138 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
139 
140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
141 
142 #ifdef CONFIG_PROVE_RCU
143 int lockdep_tasklist_lock_is_held(void)
144 {
145 	return lockdep_is_held(&tasklist_lock);
146 }
147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
148 #endif /* #ifdef CONFIG_PROVE_RCU */
149 
150 int nr_processes(void)
151 {
152 	int cpu;
153 	int total = 0;
154 
155 	for_each_possible_cpu(cpu)
156 		total += per_cpu(process_counts, cpu);
157 
158 	return total;
159 }
160 
161 void __weak arch_release_task_struct(struct task_struct *tsk)
162 {
163 }
164 
165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
166 static struct kmem_cache *task_struct_cachep;
167 
168 static inline struct task_struct *alloc_task_struct_node(int node)
169 {
170 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
171 }
172 
173 static inline void free_task_struct(struct task_struct *tsk)
174 {
175 	kmem_cache_free(task_struct_cachep, tsk);
176 }
177 #endif
178 
179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
180 
181 /*
182  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
183  * kmemcache based allocator.
184  */
185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
186 
187 #ifdef CONFIG_VMAP_STACK
188 /*
189  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
190  * flush.  Try to minimize the number of calls by caching stacks.
191  */
192 #define NR_CACHED_STACKS 2
193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
194 
195 static int free_vm_stack_cache(unsigned int cpu)
196 {
197 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
198 	int i;
199 
200 	for (i = 0; i < NR_CACHED_STACKS; i++) {
201 		struct vm_struct *vm_stack = cached_vm_stacks[i];
202 
203 		if (!vm_stack)
204 			continue;
205 
206 		vfree(vm_stack->addr);
207 		cached_vm_stacks[i] = NULL;
208 	}
209 
210 	return 0;
211 }
212 #endif
213 
214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
215 {
216 #ifdef CONFIG_VMAP_STACK
217 	void *stack;
218 	int i;
219 
220 	for (i = 0; i < NR_CACHED_STACKS; i++) {
221 		struct vm_struct *s;
222 
223 		s = this_cpu_xchg(cached_stacks[i], NULL);
224 
225 		if (!s)
226 			continue;
227 
228 		/* Mark stack accessible for KASAN. */
229 		kasan_unpoison_range(s->addr, THREAD_SIZE);
230 
231 		/* Clear stale pointers from reused stack. */
232 		memset(s->addr, 0, THREAD_SIZE);
233 
234 		tsk->stack_vm_area = s;
235 		tsk->stack = s->addr;
236 		return s->addr;
237 	}
238 
239 	/*
240 	 * Allocated stacks are cached and later reused by new threads,
241 	 * so memcg accounting is performed manually on assigning/releasing
242 	 * stacks to tasks. Drop __GFP_ACCOUNT.
243 	 */
244 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
245 				     VMALLOC_START, VMALLOC_END,
246 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
247 				     PAGE_KERNEL,
248 				     0, node, __builtin_return_address(0));
249 
250 	/*
251 	 * We can't call find_vm_area() in interrupt context, and
252 	 * free_thread_stack() can be called in interrupt context,
253 	 * so cache the vm_struct.
254 	 */
255 	if (stack) {
256 		tsk->stack_vm_area = find_vm_area(stack);
257 		tsk->stack = stack;
258 	}
259 	return stack;
260 #else
261 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
262 					     THREAD_SIZE_ORDER);
263 
264 	if (likely(page)) {
265 		tsk->stack = kasan_reset_tag(page_address(page));
266 		return tsk->stack;
267 	}
268 	return NULL;
269 #endif
270 }
271 
272 static inline void free_thread_stack(struct task_struct *tsk)
273 {
274 #ifdef CONFIG_VMAP_STACK
275 	struct vm_struct *vm = task_stack_vm_area(tsk);
276 
277 	if (vm) {
278 		int i;
279 
280 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
281 			memcg_kmem_uncharge_page(vm->pages[i], 0);
282 
283 		for (i = 0; i < NR_CACHED_STACKS; i++) {
284 			if (this_cpu_cmpxchg(cached_stacks[i],
285 					NULL, tsk->stack_vm_area) != NULL)
286 				continue;
287 
288 			return;
289 		}
290 
291 		vfree_atomic(tsk->stack);
292 		return;
293 	}
294 #endif
295 
296 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
297 }
298 # else
299 static struct kmem_cache *thread_stack_cache;
300 
301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
302 						  int node)
303 {
304 	unsigned long *stack;
305 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
306 	stack = kasan_reset_tag(stack);
307 	tsk->stack = stack;
308 	return stack;
309 }
310 
311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 	kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315 
316 void thread_stack_cache_init(void)
317 {
318 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 					THREAD_SIZE, THREAD_SIZE, 0, 0,
320 					THREAD_SIZE, NULL);
321 	BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325 
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328 
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331 
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334 
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337 
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340 
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343 
344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 	struct vm_area_struct *vma;
347 
348 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 	if (vma)
350 		vma_init(vma, mm);
351 	return vma;
352 }
353 
354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357 
358 	if (new) {
359 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
360 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
361 		/*
362 		 * orig->shared.rb may be modified concurrently, but the clone
363 		 * will be reinitialized.
364 		 */
365 		*new = data_race(*orig);
366 		INIT_LIST_HEAD(&new->anon_vma_chain);
367 		new->vm_next = new->vm_prev = NULL;
368 	}
369 	return new;
370 }
371 
372 void vm_area_free(struct vm_area_struct *vma)
373 {
374 	kmem_cache_free(vm_area_cachep, vma);
375 }
376 
377 static void account_kernel_stack(struct task_struct *tsk, int account)
378 {
379 	void *stack = task_stack_page(tsk);
380 	struct vm_struct *vm = task_stack_vm_area(tsk);
381 
382 
383 	/* All stack pages are in the same node. */
384 	if (vm)
385 		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
386 				      account * (THREAD_SIZE / 1024));
387 	else
388 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
389 				      account * (THREAD_SIZE / 1024));
390 }
391 
392 static int memcg_charge_kernel_stack(struct task_struct *tsk)
393 {
394 #ifdef CONFIG_VMAP_STACK
395 	struct vm_struct *vm = task_stack_vm_area(tsk);
396 	int ret;
397 
398 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
399 
400 	if (vm) {
401 		int i;
402 
403 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
404 
405 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
406 			/*
407 			 * If memcg_kmem_charge_page() fails, page's
408 			 * memory cgroup pointer is NULL, and
409 			 * memcg_kmem_uncharge_page() in free_thread_stack()
410 			 * will ignore this page.
411 			 */
412 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
413 						     0);
414 			if (ret)
415 				return ret;
416 		}
417 	}
418 #endif
419 	return 0;
420 }
421 
422 static void release_task_stack(struct task_struct *tsk)
423 {
424 	if (WARN_ON(tsk->state != TASK_DEAD))
425 		return;  /* Better to leak the stack than to free prematurely */
426 
427 	account_kernel_stack(tsk, -1);
428 	free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 #ifdef CONFIG_VMAP_STACK
431 	tsk->stack_vm_area = NULL;
432 #endif
433 }
434 
435 #ifdef CONFIG_THREAD_INFO_IN_TASK
436 void put_task_stack(struct task_struct *tsk)
437 {
438 	if (refcount_dec_and_test(&tsk->stack_refcount))
439 		release_task_stack(tsk);
440 }
441 #endif
442 
443 void free_task(struct task_struct *tsk)
444 {
445 	scs_release(tsk);
446 
447 #ifndef CONFIG_THREAD_INFO_IN_TASK
448 	/*
449 	 * The task is finally done with both the stack and thread_info,
450 	 * so free both.
451 	 */
452 	release_task_stack(tsk);
453 #else
454 	/*
455 	 * If the task had a separate stack allocation, it should be gone
456 	 * by now.
457 	 */
458 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
459 #endif
460 	rt_mutex_debug_task_free(tsk);
461 	ftrace_graph_exit_task(tsk);
462 	arch_release_task_struct(tsk);
463 	if (tsk->flags & PF_KTHREAD)
464 		free_kthread_struct(tsk);
465 	free_task_struct(tsk);
466 }
467 EXPORT_SYMBOL(free_task);
468 
469 #ifdef CONFIG_MMU
470 static __latent_entropy int dup_mmap(struct mm_struct *mm,
471 					struct mm_struct *oldmm)
472 {
473 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
474 	struct rb_node **rb_link, *rb_parent;
475 	int retval;
476 	unsigned long charge;
477 	LIST_HEAD(uf);
478 
479 	uprobe_start_dup_mmap();
480 	if (mmap_write_lock_killable(oldmm)) {
481 		retval = -EINTR;
482 		goto fail_uprobe_end;
483 	}
484 	flush_cache_dup_mm(oldmm);
485 	uprobe_dup_mmap(oldmm, mm);
486 	/*
487 	 * Not linked in yet - no deadlock potential:
488 	 */
489 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
490 
491 	/* No ordering required: file already has been exposed. */
492 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
493 
494 	mm->total_vm = oldmm->total_vm;
495 	mm->data_vm = oldmm->data_vm;
496 	mm->exec_vm = oldmm->exec_vm;
497 	mm->stack_vm = oldmm->stack_vm;
498 
499 	rb_link = &mm->mm_rb.rb_node;
500 	rb_parent = NULL;
501 	pprev = &mm->mmap;
502 	retval = ksm_fork(mm, oldmm);
503 	if (retval)
504 		goto out;
505 	retval = khugepaged_fork(mm, oldmm);
506 	if (retval)
507 		goto out;
508 
509 	prev = NULL;
510 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
511 		struct file *file;
512 
513 		if (mpnt->vm_flags & VM_DONTCOPY) {
514 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
515 			continue;
516 		}
517 		charge = 0;
518 		/*
519 		 * Don't duplicate many vmas if we've been oom-killed (for
520 		 * example)
521 		 */
522 		if (fatal_signal_pending(current)) {
523 			retval = -EINTR;
524 			goto out;
525 		}
526 		if (mpnt->vm_flags & VM_ACCOUNT) {
527 			unsigned long len = vma_pages(mpnt);
528 
529 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
530 				goto fail_nomem;
531 			charge = len;
532 		}
533 		tmp = vm_area_dup(mpnt);
534 		if (!tmp)
535 			goto fail_nomem;
536 		retval = vma_dup_policy(mpnt, tmp);
537 		if (retval)
538 			goto fail_nomem_policy;
539 		tmp->vm_mm = mm;
540 		retval = dup_userfaultfd(tmp, &uf);
541 		if (retval)
542 			goto fail_nomem_anon_vma_fork;
543 		if (tmp->vm_flags & VM_WIPEONFORK) {
544 			/*
545 			 * VM_WIPEONFORK gets a clean slate in the child.
546 			 * Don't prepare anon_vma until fault since we don't
547 			 * copy page for current vma.
548 			 */
549 			tmp->anon_vma = NULL;
550 		} else if (anon_vma_fork(tmp, mpnt))
551 			goto fail_nomem_anon_vma_fork;
552 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
553 		file = tmp->vm_file;
554 		if (file) {
555 			struct inode *inode = file_inode(file);
556 			struct address_space *mapping = file->f_mapping;
557 
558 			get_file(file);
559 			if (tmp->vm_flags & VM_DENYWRITE)
560 				put_write_access(inode);
561 			i_mmap_lock_write(mapping);
562 			if (tmp->vm_flags & VM_SHARED)
563 				mapping_allow_writable(mapping);
564 			flush_dcache_mmap_lock(mapping);
565 			/* insert tmp into the share list, just after mpnt */
566 			vma_interval_tree_insert_after(tmp, mpnt,
567 					&mapping->i_mmap);
568 			flush_dcache_mmap_unlock(mapping);
569 			i_mmap_unlock_write(mapping);
570 		}
571 
572 		/*
573 		 * Clear hugetlb-related page reserves for children. This only
574 		 * affects MAP_PRIVATE mappings. Faults generated by the child
575 		 * are not guaranteed to succeed, even if read-only
576 		 */
577 		if (is_vm_hugetlb_page(tmp))
578 			reset_vma_resv_huge_pages(tmp);
579 
580 		/*
581 		 * Link in the new vma and copy the page table entries.
582 		 */
583 		*pprev = tmp;
584 		pprev = &tmp->vm_next;
585 		tmp->vm_prev = prev;
586 		prev = tmp;
587 
588 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
589 		rb_link = &tmp->vm_rb.rb_right;
590 		rb_parent = &tmp->vm_rb;
591 
592 		mm->map_count++;
593 		if (!(tmp->vm_flags & VM_WIPEONFORK))
594 			retval = copy_page_range(tmp, mpnt);
595 
596 		if (tmp->vm_ops && tmp->vm_ops->open)
597 			tmp->vm_ops->open(tmp);
598 
599 		if (retval)
600 			goto out;
601 	}
602 	/* a new mm has just been created */
603 	retval = arch_dup_mmap(oldmm, mm);
604 out:
605 	mmap_write_unlock(mm);
606 	flush_tlb_mm(oldmm);
607 	mmap_write_unlock(oldmm);
608 	dup_userfaultfd_complete(&uf);
609 fail_uprobe_end:
610 	uprobe_end_dup_mmap();
611 	return retval;
612 fail_nomem_anon_vma_fork:
613 	mpol_put(vma_policy(tmp));
614 fail_nomem_policy:
615 	vm_area_free(tmp);
616 fail_nomem:
617 	retval = -ENOMEM;
618 	vm_unacct_memory(charge);
619 	goto out;
620 }
621 
622 static inline int mm_alloc_pgd(struct mm_struct *mm)
623 {
624 	mm->pgd = pgd_alloc(mm);
625 	if (unlikely(!mm->pgd))
626 		return -ENOMEM;
627 	return 0;
628 }
629 
630 static inline void mm_free_pgd(struct mm_struct *mm)
631 {
632 	pgd_free(mm, mm->pgd);
633 }
634 #else
635 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
636 {
637 	mmap_write_lock(oldmm);
638 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
639 	mmap_write_unlock(oldmm);
640 	return 0;
641 }
642 #define mm_alloc_pgd(mm)	(0)
643 #define mm_free_pgd(mm)
644 #endif /* CONFIG_MMU */
645 
646 static void check_mm(struct mm_struct *mm)
647 {
648 	int i;
649 
650 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
651 			 "Please make sure 'struct resident_page_types[]' is updated as well");
652 
653 	for (i = 0; i < NR_MM_COUNTERS; i++) {
654 		long x = atomic_long_read(&mm->rss_stat.count[i]);
655 
656 		if (unlikely(x))
657 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
658 				 mm, resident_page_types[i], x);
659 	}
660 
661 	if (mm_pgtables_bytes(mm))
662 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
663 				mm_pgtables_bytes(mm));
664 
665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
666 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
667 #endif
668 }
669 
670 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
671 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
672 
673 /*
674  * Called when the last reference to the mm
675  * is dropped: either by a lazy thread or by
676  * mmput. Free the page directory and the mm.
677  */
678 void __mmdrop(struct mm_struct *mm)
679 {
680 	BUG_ON(mm == &init_mm);
681 	WARN_ON_ONCE(mm == current->mm);
682 	WARN_ON_ONCE(mm == current->active_mm);
683 	mm_free_pgd(mm);
684 	destroy_context(mm);
685 	mmu_notifier_subscriptions_destroy(mm);
686 	check_mm(mm);
687 	put_user_ns(mm->user_ns);
688 	free_mm(mm);
689 }
690 EXPORT_SYMBOL_GPL(__mmdrop);
691 
692 static void mmdrop_async_fn(struct work_struct *work)
693 {
694 	struct mm_struct *mm;
695 
696 	mm = container_of(work, struct mm_struct, async_put_work);
697 	__mmdrop(mm);
698 }
699 
700 static void mmdrop_async(struct mm_struct *mm)
701 {
702 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
703 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
704 		schedule_work(&mm->async_put_work);
705 	}
706 }
707 
708 static inline void free_signal_struct(struct signal_struct *sig)
709 {
710 	taskstats_tgid_free(sig);
711 	sched_autogroup_exit(sig);
712 	/*
713 	 * __mmdrop is not safe to call from softirq context on x86 due to
714 	 * pgd_dtor so postpone it to the async context
715 	 */
716 	if (sig->oom_mm)
717 		mmdrop_async(sig->oom_mm);
718 	kmem_cache_free(signal_cachep, sig);
719 }
720 
721 static inline void put_signal_struct(struct signal_struct *sig)
722 {
723 	if (refcount_dec_and_test(&sig->sigcnt))
724 		free_signal_struct(sig);
725 }
726 
727 void __put_task_struct(struct task_struct *tsk)
728 {
729 	WARN_ON(!tsk->exit_state);
730 	WARN_ON(refcount_read(&tsk->usage));
731 	WARN_ON(tsk == current);
732 
733 	io_uring_free(tsk);
734 	cgroup_free(tsk);
735 	task_numa_free(tsk, true);
736 	security_task_free(tsk);
737 	exit_creds(tsk);
738 	delayacct_tsk_free(tsk);
739 	put_signal_struct(tsk->signal);
740 
741 	if (!profile_handoff_task(tsk))
742 		free_task(tsk);
743 }
744 EXPORT_SYMBOL_GPL(__put_task_struct);
745 
746 void __init __weak arch_task_cache_init(void) { }
747 
748 /*
749  * set_max_threads
750  */
751 static void set_max_threads(unsigned int max_threads_suggested)
752 {
753 	u64 threads;
754 	unsigned long nr_pages = totalram_pages();
755 
756 	/*
757 	 * The number of threads shall be limited such that the thread
758 	 * structures may only consume a small part of the available memory.
759 	 */
760 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
761 		threads = MAX_THREADS;
762 	else
763 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
764 				    (u64) THREAD_SIZE * 8UL);
765 
766 	if (threads > max_threads_suggested)
767 		threads = max_threads_suggested;
768 
769 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
770 }
771 
772 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
773 /* Initialized by the architecture: */
774 int arch_task_struct_size __read_mostly;
775 #endif
776 
777 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
778 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
779 {
780 	/* Fetch thread_struct whitelist for the architecture. */
781 	arch_thread_struct_whitelist(offset, size);
782 
783 	/*
784 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
785 	 * adjust offset to position of thread_struct in task_struct.
786 	 */
787 	if (unlikely(*size == 0))
788 		*offset = 0;
789 	else
790 		*offset += offsetof(struct task_struct, thread);
791 }
792 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
793 
794 void __init fork_init(void)
795 {
796 	int i;
797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
798 #ifndef ARCH_MIN_TASKALIGN
799 #define ARCH_MIN_TASKALIGN	0
800 #endif
801 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
802 	unsigned long useroffset, usersize;
803 
804 	/* create a slab on which task_structs can be allocated */
805 	task_struct_whitelist(&useroffset, &usersize);
806 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
807 			arch_task_struct_size, align,
808 			SLAB_PANIC|SLAB_ACCOUNT,
809 			useroffset, usersize, NULL);
810 #endif
811 
812 	/* do the arch specific task caches init */
813 	arch_task_cache_init();
814 
815 	set_max_threads(MAX_THREADS);
816 
817 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
818 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
819 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
820 		init_task.signal->rlim[RLIMIT_NPROC];
821 
822 	for (i = 0; i < UCOUNT_COUNTS; i++)
823 		init_user_ns.ucount_max[i] = max_threads/2;
824 
825 #ifdef CONFIG_VMAP_STACK
826 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
827 			  NULL, free_vm_stack_cache);
828 #endif
829 
830 	scs_init();
831 
832 	lockdep_init_task(&init_task);
833 	uprobes_init();
834 }
835 
836 int __weak arch_dup_task_struct(struct task_struct *dst,
837 					       struct task_struct *src)
838 {
839 	*dst = *src;
840 	return 0;
841 }
842 
843 void set_task_stack_end_magic(struct task_struct *tsk)
844 {
845 	unsigned long *stackend;
846 
847 	stackend = end_of_stack(tsk);
848 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
849 }
850 
851 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
852 {
853 	struct task_struct *tsk;
854 	unsigned long *stack;
855 	struct vm_struct *stack_vm_area __maybe_unused;
856 	int err;
857 
858 	if (node == NUMA_NO_NODE)
859 		node = tsk_fork_get_node(orig);
860 	tsk = alloc_task_struct_node(node);
861 	if (!tsk)
862 		return NULL;
863 
864 	stack = alloc_thread_stack_node(tsk, node);
865 	if (!stack)
866 		goto free_tsk;
867 
868 	if (memcg_charge_kernel_stack(tsk))
869 		goto free_stack;
870 
871 	stack_vm_area = task_stack_vm_area(tsk);
872 
873 	err = arch_dup_task_struct(tsk, orig);
874 
875 	/*
876 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
877 	 * sure they're properly initialized before using any stack-related
878 	 * functions again.
879 	 */
880 	tsk->stack = stack;
881 #ifdef CONFIG_VMAP_STACK
882 	tsk->stack_vm_area = stack_vm_area;
883 #endif
884 #ifdef CONFIG_THREAD_INFO_IN_TASK
885 	refcount_set(&tsk->stack_refcount, 1);
886 #endif
887 
888 	if (err)
889 		goto free_stack;
890 
891 	err = scs_prepare(tsk, node);
892 	if (err)
893 		goto free_stack;
894 
895 #ifdef CONFIG_SECCOMP
896 	/*
897 	 * We must handle setting up seccomp filters once we're under
898 	 * the sighand lock in case orig has changed between now and
899 	 * then. Until then, filter must be NULL to avoid messing up
900 	 * the usage counts on the error path calling free_task.
901 	 */
902 	tsk->seccomp.filter = NULL;
903 #endif
904 
905 	setup_thread_stack(tsk, orig);
906 	clear_user_return_notifier(tsk);
907 	clear_tsk_need_resched(tsk);
908 	set_task_stack_end_magic(tsk);
909 	clear_syscall_work_syscall_user_dispatch(tsk);
910 
911 #ifdef CONFIG_STACKPROTECTOR
912 	tsk->stack_canary = get_random_canary();
913 #endif
914 	if (orig->cpus_ptr == &orig->cpus_mask)
915 		tsk->cpus_ptr = &tsk->cpus_mask;
916 
917 	/*
918 	 * One for the user space visible state that goes away when reaped.
919 	 * One for the scheduler.
920 	 */
921 	refcount_set(&tsk->rcu_users, 2);
922 	/* One for the rcu users */
923 	refcount_set(&tsk->usage, 1);
924 #ifdef CONFIG_BLK_DEV_IO_TRACE
925 	tsk->btrace_seq = 0;
926 #endif
927 	tsk->splice_pipe = NULL;
928 	tsk->task_frag.page = NULL;
929 	tsk->wake_q.next = NULL;
930 	tsk->pf_io_worker = NULL;
931 
932 	account_kernel_stack(tsk, 1);
933 
934 	kcov_task_init(tsk);
935 	kmap_local_fork(tsk);
936 
937 #ifdef CONFIG_FAULT_INJECTION
938 	tsk->fail_nth = 0;
939 #endif
940 
941 #ifdef CONFIG_BLK_CGROUP
942 	tsk->throttle_queue = NULL;
943 	tsk->use_memdelay = 0;
944 #endif
945 
946 #ifdef CONFIG_MEMCG
947 	tsk->active_memcg = NULL;
948 #endif
949 	return tsk;
950 
951 free_stack:
952 	free_thread_stack(tsk);
953 free_tsk:
954 	free_task_struct(tsk);
955 	return NULL;
956 }
957 
958 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
959 
960 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
961 
962 static int __init coredump_filter_setup(char *s)
963 {
964 	default_dump_filter =
965 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
966 		MMF_DUMP_FILTER_MASK;
967 	return 1;
968 }
969 
970 __setup("coredump_filter=", coredump_filter_setup);
971 
972 #include <linux/init_task.h>
973 
974 static void mm_init_aio(struct mm_struct *mm)
975 {
976 #ifdef CONFIG_AIO
977 	spin_lock_init(&mm->ioctx_lock);
978 	mm->ioctx_table = NULL;
979 #endif
980 }
981 
982 static __always_inline void mm_clear_owner(struct mm_struct *mm,
983 					   struct task_struct *p)
984 {
985 #ifdef CONFIG_MEMCG
986 	if (mm->owner == p)
987 		WRITE_ONCE(mm->owner, NULL);
988 #endif
989 }
990 
991 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
992 {
993 #ifdef CONFIG_MEMCG
994 	mm->owner = p;
995 #endif
996 }
997 
998 static void mm_init_pasid(struct mm_struct *mm)
999 {
1000 #ifdef CONFIG_IOMMU_SUPPORT
1001 	mm->pasid = INIT_PASID;
1002 #endif
1003 }
1004 
1005 static void mm_init_uprobes_state(struct mm_struct *mm)
1006 {
1007 #ifdef CONFIG_UPROBES
1008 	mm->uprobes_state.xol_area = NULL;
1009 #endif
1010 }
1011 
1012 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1013 	struct user_namespace *user_ns)
1014 {
1015 	mm->mmap = NULL;
1016 	mm->mm_rb = RB_ROOT;
1017 	mm->vmacache_seqnum = 0;
1018 	atomic_set(&mm->mm_users, 1);
1019 	atomic_set(&mm->mm_count, 1);
1020 	seqcount_init(&mm->write_protect_seq);
1021 	mmap_init_lock(mm);
1022 	INIT_LIST_HEAD(&mm->mmlist);
1023 	mm->core_state = NULL;
1024 	mm_pgtables_bytes_init(mm);
1025 	mm->map_count = 0;
1026 	mm->locked_vm = 0;
1027 	atomic_set(&mm->has_pinned, 0);
1028 	atomic64_set(&mm->pinned_vm, 0);
1029 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1030 	spin_lock_init(&mm->page_table_lock);
1031 	spin_lock_init(&mm->arg_lock);
1032 	mm_init_cpumask(mm);
1033 	mm_init_aio(mm);
1034 	mm_init_owner(mm, p);
1035 	mm_init_pasid(mm);
1036 	RCU_INIT_POINTER(mm->exe_file, NULL);
1037 	mmu_notifier_subscriptions_init(mm);
1038 	init_tlb_flush_pending(mm);
1039 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1040 	mm->pmd_huge_pte = NULL;
1041 #endif
1042 	mm_init_uprobes_state(mm);
1043 
1044 	if (current->mm) {
1045 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1046 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1047 	} else {
1048 		mm->flags = default_dump_filter;
1049 		mm->def_flags = 0;
1050 	}
1051 
1052 	if (mm_alloc_pgd(mm))
1053 		goto fail_nopgd;
1054 
1055 	if (init_new_context(p, mm))
1056 		goto fail_nocontext;
1057 
1058 	mm->user_ns = get_user_ns(user_ns);
1059 	return mm;
1060 
1061 fail_nocontext:
1062 	mm_free_pgd(mm);
1063 fail_nopgd:
1064 	free_mm(mm);
1065 	return NULL;
1066 }
1067 
1068 /*
1069  * Allocate and initialize an mm_struct.
1070  */
1071 struct mm_struct *mm_alloc(void)
1072 {
1073 	struct mm_struct *mm;
1074 
1075 	mm = allocate_mm();
1076 	if (!mm)
1077 		return NULL;
1078 
1079 	memset(mm, 0, sizeof(*mm));
1080 	return mm_init(mm, current, current_user_ns());
1081 }
1082 
1083 static inline void __mmput(struct mm_struct *mm)
1084 {
1085 	VM_BUG_ON(atomic_read(&mm->mm_users));
1086 
1087 	uprobe_clear_state(mm);
1088 	exit_aio(mm);
1089 	ksm_exit(mm);
1090 	khugepaged_exit(mm); /* must run before exit_mmap */
1091 	exit_mmap(mm);
1092 	mm_put_huge_zero_page(mm);
1093 	set_mm_exe_file(mm, NULL);
1094 	if (!list_empty(&mm->mmlist)) {
1095 		spin_lock(&mmlist_lock);
1096 		list_del(&mm->mmlist);
1097 		spin_unlock(&mmlist_lock);
1098 	}
1099 	if (mm->binfmt)
1100 		module_put(mm->binfmt->module);
1101 	mmdrop(mm);
1102 }
1103 
1104 /*
1105  * Decrement the use count and release all resources for an mm.
1106  */
1107 void mmput(struct mm_struct *mm)
1108 {
1109 	might_sleep();
1110 
1111 	if (atomic_dec_and_test(&mm->mm_users))
1112 		__mmput(mm);
1113 }
1114 EXPORT_SYMBOL_GPL(mmput);
1115 
1116 #ifdef CONFIG_MMU
1117 static void mmput_async_fn(struct work_struct *work)
1118 {
1119 	struct mm_struct *mm = container_of(work, struct mm_struct,
1120 					    async_put_work);
1121 
1122 	__mmput(mm);
1123 }
1124 
1125 void mmput_async(struct mm_struct *mm)
1126 {
1127 	if (atomic_dec_and_test(&mm->mm_users)) {
1128 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1129 		schedule_work(&mm->async_put_work);
1130 	}
1131 }
1132 #endif
1133 
1134 /**
1135  * set_mm_exe_file - change a reference to the mm's executable file
1136  *
1137  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1138  *
1139  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1140  * invocations: in mmput() nobody alive left, in execve task is single
1141  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1142  * mm->exe_file, but does so without using set_mm_exe_file() in order
1143  * to do avoid the need for any locks.
1144  */
1145 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1146 {
1147 	struct file *old_exe_file;
1148 
1149 	/*
1150 	 * It is safe to dereference the exe_file without RCU as
1151 	 * this function is only called if nobody else can access
1152 	 * this mm -- see comment above for justification.
1153 	 */
1154 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1155 
1156 	if (new_exe_file)
1157 		get_file(new_exe_file);
1158 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1159 	if (old_exe_file)
1160 		fput(old_exe_file);
1161 }
1162 
1163 /**
1164  * get_mm_exe_file - acquire a reference to the mm's executable file
1165  *
1166  * Returns %NULL if mm has no associated executable file.
1167  * User must release file via fput().
1168  */
1169 struct file *get_mm_exe_file(struct mm_struct *mm)
1170 {
1171 	struct file *exe_file;
1172 
1173 	rcu_read_lock();
1174 	exe_file = rcu_dereference(mm->exe_file);
1175 	if (exe_file && !get_file_rcu(exe_file))
1176 		exe_file = NULL;
1177 	rcu_read_unlock();
1178 	return exe_file;
1179 }
1180 EXPORT_SYMBOL(get_mm_exe_file);
1181 
1182 /**
1183  * get_task_exe_file - acquire a reference to the task's executable file
1184  *
1185  * Returns %NULL if task's mm (if any) has no associated executable file or
1186  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1187  * User must release file via fput().
1188  */
1189 struct file *get_task_exe_file(struct task_struct *task)
1190 {
1191 	struct file *exe_file = NULL;
1192 	struct mm_struct *mm;
1193 
1194 	task_lock(task);
1195 	mm = task->mm;
1196 	if (mm) {
1197 		if (!(task->flags & PF_KTHREAD))
1198 			exe_file = get_mm_exe_file(mm);
1199 	}
1200 	task_unlock(task);
1201 	return exe_file;
1202 }
1203 EXPORT_SYMBOL(get_task_exe_file);
1204 
1205 /**
1206  * get_task_mm - acquire a reference to the task's mm
1207  *
1208  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1209  * this kernel workthread has transiently adopted a user mm with use_mm,
1210  * to do its AIO) is not set and if so returns a reference to it, after
1211  * bumping up the use count.  User must release the mm via mmput()
1212  * after use.  Typically used by /proc and ptrace.
1213  */
1214 struct mm_struct *get_task_mm(struct task_struct *task)
1215 {
1216 	struct mm_struct *mm;
1217 
1218 	task_lock(task);
1219 	mm = task->mm;
1220 	if (mm) {
1221 		if (task->flags & PF_KTHREAD)
1222 			mm = NULL;
1223 		else
1224 			mmget(mm);
1225 	}
1226 	task_unlock(task);
1227 	return mm;
1228 }
1229 EXPORT_SYMBOL_GPL(get_task_mm);
1230 
1231 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1232 {
1233 	struct mm_struct *mm;
1234 	int err;
1235 
1236 	err =  down_read_killable(&task->signal->exec_update_lock);
1237 	if (err)
1238 		return ERR_PTR(err);
1239 
1240 	mm = get_task_mm(task);
1241 	if (mm && mm != current->mm &&
1242 			!ptrace_may_access(task, mode)) {
1243 		mmput(mm);
1244 		mm = ERR_PTR(-EACCES);
1245 	}
1246 	up_read(&task->signal->exec_update_lock);
1247 
1248 	return mm;
1249 }
1250 
1251 static void complete_vfork_done(struct task_struct *tsk)
1252 {
1253 	struct completion *vfork;
1254 
1255 	task_lock(tsk);
1256 	vfork = tsk->vfork_done;
1257 	if (likely(vfork)) {
1258 		tsk->vfork_done = NULL;
1259 		complete(vfork);
1260 	}
1261 	task_unlock(tsk);
1262 }
1263 
1264 static int wait_for_vfork_done(struct task_struct *child,
1265 				struct completion *vfork)
1266 {
1267 	int killed;
1268 
1269 	freezer_do_not_count();
1270 	cgroup_enter_frozen();
1271 	killed = wait_for_completion_killable(vfork);
1272 	cgroup_leave_frozen(false);
1273 	freezer_count();
1274 
1275 	if (killed) {
1276 		task_lock(child);
1277 		child->vfork_done = NULL;
1278 		task_unlock(child);
1279 	}
1280 
1281 	put_task_struct(child);
1282 	return killed;
1283 }
1284 
1285 /* Please note the differences between mmput and mm_release.
1286  * mmput is called whenever we stop holding onto a mm_struct,
1287  * error success whatever.
1288  *
1289  * mm_release is called after a mm_struct has been removed
1290  * from the current process.
1291  *
1292  * This difference is important for error handling, when we
1293  * only half set up a mm_struct for a new process and need to restore
1294  * the old one.  Because we mmput the new mm_struct before
1295  * restoring the old one. . .
1296  * Eric Biederman 10 January 1998
1297  */
1298 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1299 {
1300 	uprobe_free_utask(tsk);
1301 
1302 	/* Get rid of any cached register state */
1303 	deactivate_mm(tsk, mm);
1304 
1305 	/*
1306 	 * Signal userspace if we're not exiting with a core dump
1307 	 * because we want to leave the value intact for debugging
1308 	 * purposes.
1309 	 */
1310 	if (tsk->clear_child_tid) {
1311 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1312 		    atomic_read(&mm->mm_users) > 1) {
1313 			/*
1314 			 * We don't check the error code - if userspace has
1315 			 * not set up a proper pointer then tough luck.
1316 			 */
1317 			put_user(0, tsk->clear_child_tid);
1318 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1319 					1, NULL, NULL, 0, 0);
1320 		}
1321 		tsk->clear_child_tid = NULL;
1322 	}
1323 
1324 	/*
1325 	 * All done, finally we can wake up parent and return this mm to him.
1326 	 * Also kthread_stop() uses this completion for synchronization.
1327 	 */
1328 	if (tsk->vfork_done)
1329 		complete_vfork_done(tsk);
1330 }
1331 
1332 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1333 {
1334 	futex_exit_release(tsk);
1335 	mm_release(tsk, mm);
1336 }
1337 
1338 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1339 {
1340 	futex_exec_release(tsk);
1341 	mm_release(tsk, mm);
1342 }
1343 
1344 /**
1345  * dup_mm() - duplicates an existing mm structure
1346  * @tsk: the task_struct with which the new mm will be associated.
1347  * @oldmm: the mm to duplicate.
1348  *
1349  * Allocates a new mm structure and duplicates the provided @oldmm structure
1350  * content into it.
1351  *
1352  * Return: the duplicated mm or NULL on failure.
1353  */
1354 static struct mm_struct *dup_mm(struct task_struct *tsk,
1355 				struct mm_struct *oldmm)
1356 {
1357 	struct mm_struct *mm;
1358 	int err;
1359 
1360 	mm = allocate_mm();
1361 	if (!mm)
1362 		goto fail_nomem;
1363 
1364 	memcpy(mm, oldmm, sizeof(*mm));
1365 
1366 	if (!mm_init(mm, tsk, mm->user_ns))
1367 		goto fail_nomem;
1368 
1369 	err = dup_mmap(mm, oldmm);
1370 	if (err)
1371 		goto free_pt;
1372 
1373 	mm->hiwater_rss = get_mm_rss(mm);
1374 	mm->hiwater_vm = mm->total_vm;
1375 
1376 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1377 		goto free_pt;
1378 
1379 	return mm;
1380 
1381 free_pt:
1382 	/* don't put binfmt in mmput, we haven't got module yet */
1383 	mm->binfmt = NULL;
1384 	mm_init_owner(mm, NULL);
1385 	mmput(mm);
1386 
1387 fail_nomem:
1388 	return NULL;
1389 }
1390 
1391 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1392 {
1393 	struct mm_struct *mm, *oldmm;
1394 	int retval;
1395 
1396 	tsk->min_flt = tsk->maj_flt = 0;
1397 	tsk->nvcsw = tsk->nivcsw = 0;
1398 #ifdef CONFIG_DETECT_HUNG_TASK
1399 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1400 	tsk->last_switch_time = 0;
1401 #endif
1402 
1403 	tsk->mm = NULL;
1404 	tsk->active_mm = NULL;
1405 
1406 	/*
1407 	 * Are we cloning a kernel thread?
1408 	 *
1409 	 * We need to steal a active VM for that..
1410 	 */
1411 	oldmm = current->mm;
1412 	if (!oldmm)
1413 		return 0;
1414 
1415 	/* initialize the new vmacache entries */
1416 	vmacache_flush(tsk);
1417 
1418 	if (clone_flags & CLONE_VM) {
1419 		mmget(oldmm);
1420 		mm = oldmm;
1421 		goto good_mm;
1422 	}
1423 
1424 	retval = -ENOMEM;
1425 	mm = dup_mm(tsk, current->mm);
1426 	if (!mm)
1427 		goto fail_nomem;
1428 
1429 good_mm:
1430 	tsk->mm = mm;
1431 	tsk->active_mm = mm;
1432 	return 0;
1433 
1434 fail_nomem:
1435 	return retval;
1436 }
1437 
1438 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1439 {
1440 	struct fs_struct *fs = current->fs;
1441 	if (clone_flags & CLONE_FS) {
1442 		/* tsk->fs is already what we want */
1443 		spin_lock(&fs->lock);
1444 		if (fs->in_exec) {
1445 			spin_unlock(&fs->lock);
1446 			return -EAGAIN;
1447 		}
1448 		fs->users++;
1449 		spin_unlock(&fs->lock);
1450 		return 0;
1451 	}
1452 	tsk->fs = copy_fs_struct(fs);
1453 	if (!tsk->fs)
1454 		return -ENOMEM;
1455 	return 0;
1456 }
1457 
1458 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1459 {
1460 	struct files_struct *oldf, *newf;
1461 	int error = 0;
1462 
1463 	/*
1464 	 * A background process may not have any files ...
1465 	 */
1466 	oldf = current->files;
1467 	if (!oldf)
1468 		goto out;
1469 
1470 	if (clone_flags & CLONE_FILES) {
1471 		atomic_inc(&oldf->count);
1472 		goto out;
1473 	}
1474 
1475 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1476 	if (!newf)
1477 		goto out;
1478 
1479 	tsk->files = newf;
1480 	error = 0;
1481 out:
1482 	return error;
1483 }
1484 
1485 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1486 {
1487 #ifdef CONFIG_BLOCK
1488 	struct io_context *ioc = current->io_context;
1489 	struct io_context *new_ioc;
1490 
1491 	if (!ioc)
1492 		return 0;
1493 	/*
1494 	 * Share io context with parent, if CLONE_IO is set
1495 	 */
1496 	if (clone_flags & CLONE_IO) {
1497 		ioc_task_link(ioc);
1498 		tsk->io_context = ioc;
1499 	} else if (ioprio_valid(ioc->ioprio)) {
1500 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1501 		if (unlikely(!new_ioc))
1502 			return -ENOMEM;
1503 
1504 		new_ioc->ioprio = ioc->ioprio;
1505 		put_io_context(new_ioc);
1506 	}
1507 #endif
1508 	return 0;
1509 }
1510 
1511 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1512 {
1513 	struct sighand_struct *sig;
1514 
1515 	if (clone_flags & CLONE_SIGHAND) {
1516 		refcount_inc(&current->sighand->count);
1517 		return 0;
1518 	}
1519 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1520 	RCU_INIT_POINTER(tsk->sighand, sig);
1521 	if (!sig)
1522 		return -ENOMEM;
1523 
1524 	refcount_set(&sig->count, 1);
1525 	spin_lock_irq(&current->sighand->siglock);
1526 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1527 	spin_unlock_irq(&current->sighand->siglock);
1528 
1529 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1530 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1531 		flush_signal_handlers(tsk, 0);
1532 
1533 	return 0;
1534 }
1535 
1536 void __cleanup_sighand(struct sighand_struct *sighand)
1537 {
1538 	if (refcount_dec_and_test(&sighand->count)) {
1539 		signalfd_cleanup(sighand);
1540 		/*
1541 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1542 		 * without an RCU grace period, see __lock_task_sighand().
1543 		 */
1544 		kmem_cache_free(sighand_cachep, sighand);
1545 	}
1546 }
1547 
1548 /*
1549  * Initialize POSIX timer handling for a thread group.
1550  */
1551 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1552 {
1553 	struct posix_cputimers *pct = &sig->posix_cputimers;
1554 	unsigned long cpu_limit;
1555 
1556 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1557 	posix_cputimers_group_init(pct, cpu_limit);
1558 }
1559 
1560 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1561 {
1562 	struct signal_struct *sig;
1563 
1564 	if (clone_flags & CLONE_THREAD)
1565 		return 0;
1566 
1567 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1568 	tsk->signal = sig;
1569 	if (!sig)
1570 		return -ENOMEM;
1571 
1572 	sig->nr_threads = 1;
1573 	atomic_set(&sig->live, 1);
1574 	refcount_set(&sig->sigcnt, 1);
1575 
1576 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1577 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1578 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1579 
1580 	init_waitqueue_head(&sig->wait_chldexit);
1581 	sig->curr_target = tsk;
1582 	init_sigpending(&sig->shared_pending);
1583 	INIT_HLIST_HEAD(&sig->multiprocess);
1584 	seqlock_init(&sig->stats_lock);
1585 	prev_cputime_init(&sig->prev_cputime);
1586 
1587 #ifdef CONFIG_POSIX_TIMERS
1588 	INIT_LIST_HEAD(&sig->posix_timers);
1589 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1590 	sig->real_timer.function = it_real_fn;
1591 #endif
1592 
1593 	task_lock(current->group_leader);
1594 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1595 	task_unlock(current->group_leader);
1596 
1597 	posix_cpu_timers_init_group(sig);
1598 
1599 	tty_audit_fork(sig);
1600 	sched_autogroup_fork(sig);
1601 
1602 	sig->oom_score_adj = current->signal->oom_score_adj;
1603 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1604 
1605 	mutex_init(&sig->cred_guard_mutex);
1606 	init_rwsem(&sig->exec_update_lock);
1607 
1608 	return 0;
1609 }
1610 
1611 static void copy_seccomp(struct task_struct *p)
1612 {
1613 #ifdef CONFIG_SECCOMP
1614 	/*
1615 	 * Must be called with sighand->lock held, which is common to
1616 	 * all threads in the group. Holding cred_guard_mutex is not
1617 	 * needed because this new task is not yet running and cannot
1618 	 * be racing exec.
1619 	 */
1620 	assert_spin_locked(&current->sighand->siglock);
1621 
1622 	/* Ref-count the new filter user, and assign it. */
1623 	get_seccomp_filter(current);
1624 	p->seccomp = current->seccomp;
1625 
1626 	/*
1627 	 * Explicitly enable no_new_privs here in case it got set
1628 	 * between the task_struct being duplicated and holding the
1629 	 * sighand lock. The seccomp state and nnp must be in sync.
1630 	 */
1631 	if (task_no_new_privs(current))
1632 		task_set_no_new_privs(p);
1633 
1634 	/*
1635 	 * If the parent gained a seccomp mode after copying thread
1636 	 * flags and between before we held the sighand lock, we have
1637 	 * to manually enable the seccomp thread flag here.
1638 	 */
1639 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1640 		set_task_syscall_work(p, SECCOMP);
1641 #endif
1642 }
1643 
1644 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1645 {
1646 	current->clear_child_tid = tidptr;
1647 
1648 	return task_pid_vnr(current);
1649 }
1650 
1651 static void rt_mutex_init_task(struct task_struct *p)
1652 {
1653 	raw_spin_lock_init(&p->pi_lock);
1654 #ifdef CONFIG_RT_MUTEXES
1655 	p->pi_waiters = RB_ROOT_CACHED;
1656 	p->pi_top_task = NULL;
1657 	p->pi_blocked_on = NULL;
1658 #endif
1659 }
1660 
1661 static inline void init_task_pid_links(struct task_struct *task)
1662 {
1663 	enum pid_type type;
1664 
1665 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1666 		INIT_HLIST_NODE(&task->pid_links[type]);
1667 }
1668 
1669 static inline void
1670 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1671 {
1672 	if (type == PIDTYPE_PID)
1673 		task->thread_pid = pid;
1674 	else
1675 		task->signal->pids[type] = pid;
1676 }
1677 
1678 static inline void rcu_copy_process(struct task_struct *p)
1679 {
1680 #ifdef CONFIG_PREEMPT_RCU
1681 	p->rcu_read_lock_nesting = 0;
1682 	p->rcu_read_unlock_special.s = 0;
1683 	p->rcu_blocked_node = NULL;
1684 	INIT_LIST_HEAD(&p->rcu_node_entry);
1685 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1686 #ifdef CONFIG_TASKS_RCU
1687 	p->rcu_tasks_holdout = false;
1688 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1689 	p->rcu_tasks_idle_cpu = -1;
1690 #endif /* #ifdef CONFIG_TASKS_RCU */
1691 #ifdef CONFIG_TASKS_TRACE_RCU
1692 	p->trc_reader_nesting = 0;
1693 	p->trc_reader_special.s = 0;
1694 	INIT_LIST_HEAD(&p->trc_holdout_list);
1695 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1696 }
1697 
1698 struct pid *pidfd_pid(const struct file *file)
1699 {
1700 	if (file->f_op == &pidfd_fops)
1701 		return file->private_data;
1702 
1703 	return ERR_PTR(-EBADF);
1704 }
1705 
1706 static int pidfd_release(struct inode *inode, struct file *file)
1707 {
1708 	struct pid *pid = file->private_data;
1709 
1710 	file->private_data = NULL;
1711 	put_pid(pid);
1712 	return 0;
1713 }
1714 
1715 #ifdef CONFIG_PROC_FS
1716 /**
1717  * pidfd_show_fdinfo - print information about a pidfd
1718  * @m: proc fdinfo file
1719  * @f: file referencing a pidfd
1720  *
1721  * Pid:
1722  * This function will print the pid that a given pidfd refers to in the
1723  * pid namespace of the procfs instance.
1724  * If the pid namespace of the process is not a descendant of the pid
1725  * namespace of the procfs instance 0 will be shown as its pid. This is
1726  * similar to calling getppid() on a process whose parent is outside of
1727  * its pid namespace.
1728  *
1729  * NSpid:
1730  * If pid namespaces are supported then this function will also print
1731  * the pid of a given pidfd refers to for all descendant pid namespaces
1732  * starting from the current pid namespace of the instance, i.e. the
1733  * Pid field and the first entry in the NSpid field will be identical.
1734  * If the pid namespace of the process is not a descendant of the pid
1735  * namespace of the procfs instance 0 will be shown as its first NSpid
1736  * entry and no others will be shown.
1737  * Note that this differs from the Pid and NSpid fields in
1738  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1739  * the  pid namespace of the procfs instance. The difference becomes
1740  * obvious when sending around a pidfd between pid namespaces from a
1741  * different branch of the tree, i.e. where no ancestoral relation is
1742  * present between the pid namespaces:
1743  * - create two new pid namespaces ns1 and ns2 in the initial pid
1744  *   namespace (also take care to create new mount namespaces in the
1745  *   new pid namespace and mount procfs)
1746  * - create a process with a pidfd in ns1
1747  * - send pidfd from ns1 to ns2
1748  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1749  *   have exactly one entry, which is 0
1750  */
1751 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1752 {
1753 	struct pid *pid = f->private_data;
1754 	struct pid_namespace *ns;
1755 	pid_t nr = -1;
1756 
1757 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1758 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1759 		nr = pid_nr_ns(pid, ns);
1760 	}
1761 
1762 	seq_put_decimal_ll(m, "Pid:\t", nr);
1763 
1764 #ifdef CONFIG_PID_NS
1765 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1766 	if (nr > 0) {
1767 		int i;
1768 
1769 		/* If nr is non-zero it means that 'pid' is valid and that
1770 		 * ns, i.e. the pid namespace associated with the procfs
1771 		 * instance, is in the pid namespace hierarchy of pid.
1772 		 * Start at one below the already printed level.
1773 		 */
1774 		for (i = ns->level + 1; i <= pid->level; i++)
1775 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1776 	}
1777 #endif
1778 	seq_putc(m, '\n');
1779 }
1780 #endif
1781 
1782 /*
1783  * Poll support for process exit notification.
1784  */
1785 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1786 {
1787 	struct pid *pid = file->private_data;
1788 	__poll_t poll_flags = 0;
1789 
1790 	poll_wait(file, &pid->wait_pidfd, pts);
1791 
1792 	/*
1793 	 * Inform pollers only when the whole thread group exits.
1794 	 * If the thread group leader exits before all other threads in the
1795 	 * group, then poll(2) should block, similar to the wait(2) family.
1796 	 */
1797 	if (thread_group_exited(pid))
1798 		poll_flags = EPOLLIN | EPOLLRDNORM;
1799 
1800 	return poll_flags;
1801 }
1802 
1803 const struct file_operations pidfd_fops = {
1804 	.release = pidfd_release,
1805 	.poll = pidfd_poll,
1806 #ifdef CONFIG_PROC_FS
1807 	.show_fdinfo = pidfd_show_fdinfo,
1808 #endif
1809 };
1810 
1811 static void __delayed_free_task(struct rcu_head *rhp)
1812 {
1813 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1814 
1815 	free_task(tsk);
1816 }
1817 
1818 static __always_inline void delayed_free_task(struct task_struct *tsk)
1819 {
1820 	if (IS_ENABLED(CONFIG_MEMCG))
1821 		call_rcu(&tsk->rcu, __delayed_free_task);
1822 	else
1823 		free_task(tsk);
1824 }
1825 
1826 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1827 {
1828 	/* Skip if kernel thread */
1829 	if (!tsk->mm)
1830 		return;
1831 
1832 	/* Skip if spawning a thread or using vfork */
1833 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1834 		return;
1835 
1836 	/* We need to synchronize with __set_oom_adj */
1837 	mutex_lock(&oom_adj_mutex);
1838 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1839 	/* Update the values in case they were changed after copy_signal */
1840 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1841 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1842 	mutex_unlock(&oom_adj_mutex);
1843 }
1844 
1845 /*
1846  * This creates a new process as a copy of the old one,
1847  * but does not actually start it yet.
1848  *
1849  * It copies the registers, and all the appropriate
1850  * parts of the process environment (as per the clone
1851  * flags). The actual kick-off is left to the caller.
1852  */
1853 static __latent_entropy struct task_struct *copy_process(
1854 					struct pid *pid,
1855 					int trace,
1856 					int node,
1857 					struct kernel_clone_args *args)
1858 {
1859 	int pidfd = -1, retval;
1860 	struct task_struct *p;
1861 	struct multiprocess_signals delayed;
1862 	struct file *pidfile = NULL;
1863 	u64 clone_flags = args->flags;
1864 	struct nsproxy *nsp = current->nsproxy;
1865 
1866 	/*
1867 	 * Don't allow sharing the root directory with processes in a different
1868 	 * namespace
1869 	 */
1870 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1871 		return ERR_PTR(-EINVAL);
1872 
1873 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1874 		return ERR_PTR(-EINVAL);
1875 
1876 	/*
1877 	 * Thread groups must share signals as well, and detached threads
1878 	 * can only be started up within the thread group.
1879 	 */
1880 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1881 		return ERR_PTR(-EINVAL);
1882 
1883 	/*
1884 	 * Shared signal handlers imply shared VM. By way of the above,
1885 	 * thread groups also imply shared VM. Blocking this case allows
1886 	 * for various simplifications in other code.
1887 	 */
1888 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1889 		return ERR_PTR(-EINVAL);
1890 
1891 	/*
1892 	 * Siblings of global init remain as zombies on exit since they are
1893 	 * not reaped by their parent (swapper). To solve this and to avoid
1894 	 * multi-rooted process trees, prevent global and container-inits
1895 	 * from creating siblings.
1896 	 */
1897 	if ((clone_flags & CLONE_PARENT) &&
1898 				current->signal->flags & SIGNAL_UNKILLABLE)
1899 		return ERR_PTR(-EINVAL);
1900 
1901 	/*
1902 	 * If the new process will be in a different pid or user namespace
1903 	 * do not allow it to share a thread group with the forking task.
1904 	 */
1905 	if (clone_flags & CLONE_THREAD) {
1906 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1907 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1908 			return ERR_PTR(-EINVAL);
1909 	}
1910 
1911 	/*
1912 	 * If the new process will be in a different time namespace
1913 	 * do not allow it to share VM or a thread group with the forking task.
1914 	 */
1915 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1916 		if (nsp->time_ns != nsp->time_ns_for_children)
1917 			return ERR_PTR(-EINVAL);
1918 	}
1919 
1920 	if (clone_flags & CLONE_PIDFD) {
1921 		/*
1922 		 * - CLONE_DETACHED is blocked so that we can potentially
1923 		 *   reuse it later for CLONE_PIDFD.
1924 		 * - CLONE_THREAD is blocked until someone really needs it.
1925 		 */
1926 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1927 			return ERR_PTR(-EINVAL);
1928 	}
1929 
1930 	/*
1931 	 * Force any signals received before this point to be delivered
1932 	 * before the fork happens.  Collect up signals sent to multiple
1933 	 * processes that happen during the fork and delay them so that
1934 	 * they appear to happen after the fork.
1935 	 */
1936 	sigemptyset(&delayed.signal);
1937 	INIT_HLIST_NODE(&delayed.node);
1938 
1939 	spin_lock_irq(&current->sighand->siglock);
1940 	if (!(clone_flags & CLONE_THREAD))
1941 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1942 	recalc_sigpending();
1943 	spin_unlock_irq(&current->sighand->siglock);
1944 	retval = -ERESTARTNOINTR;
1945 	if (task_sigpending(current))
1946 		goto fork_out;
1947 
1948 	retval = -ENOMEM;
1949 	p = dup_task_struct(current, node);
1950 	if (!p)
1951 		goto fork_out;
1952 	if (args->io_thread) {
1953 		/*
1954 		 * Mark us an IO worker, and block any signal that isn't
1955 		 * fatal or STOP
1956 		 */
1957 		p->flags |= PF_IO_WORKER;
1958 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1959 	}
1960 
1961 	/*
1962 	 * This _must_ happen before we call free_task(), i.e. before we jump
1963 	 * to any of the bad_fork_* labels. This is to avoid freeing
1964 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1965 	 * kernel threads (PF_KTHREAD).
1966 	 */
1967 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1968 	/*
1969 	 * Clear TID on mm_release()?
1970 	 */
1971 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1972 
1973 	ftrace_graph_init_task(p);
1974 
1975 	rt_mutex_init_task(p);
1976 
1977 	lockdep_assert_irqs_enabled();
1978 #ifdef CONFIG_PROVE_LOCKING
1979 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1980 #endif
1981 	retval = -EAGAIN;
1982 	if (atomic_read(&p->real_cred->user->processes) >=
1983 			task_rlimit(p, RLIMIT_NPROC)) {
1984 		if (p->real_cred->user != INIT_USER &&
1985 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1986 			goto bad_fork_free;
1987 	}
1988 	current->flags &= ~PF_NPROC_EXCEEDED;
1989 
1990 	retval = copy_creds(p, clone_flags);
1991 	if (retval < 0)
1992 		goto bad_fork_free;
1993 
1994 	/*
1995 	 * If multiple threads are within copy_process(), then this check
1996 	 * triggers too late. This doesn't hurt, the check is only there
1997 	 * to stop root fork bombs.
1998 	 */
1999 	retval = -EAGAIN;
2000 	if (data_race(nr_threads >= max_threads))
2001 		goto bad_fork_cleanup_count;
2002 
2003 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2004 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2005 	p->flags |= PF_FORKNOEXEC;
2006 	INIT_LIST_HEAD(&p->children);
2007 	INIT_LIST_HEAD(&p->sibling);
2008 	rcu_copy_process(p);
2009 	p->vfork_done = NULL;
2010 	spin_lock_init(&p->alloc_lock);
2011 
2012 	init_sigpending(&p->pending);
2013 	p->sigqueue_cache = NULL;
2014 
2015 	p->utime = p->stime = p->gtime = 0;
2016 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2017 	p->utimescaled = p->stimescaled = 0;
2018 #endif
2019 	prev_cputime_init(&p->prev_cputime);
2020 
2021 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2022 	seqcount_init(&p->vtime.seqcount);
2023 	p->vtime.starttime = 0;
2024 	p->vtime.state = VTIME_INACTIVE;
2025 #endif
2026 
2027 #ifdef CONFIG_IO_URING
2028 	p->io_uring = NULL;
2029 #endif
2030 
2031 #if defined(SPLIT_RSS_COUNTING)
2032 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2033 #endif
2034 
2035 	p->default_timer_slack_ns = current->timer_slack_ns;
2036 
2037 #ifdef CONFIG_PSI
2038 	p->psi_flags = 0;
2039 #endif
2040 
2041 	task_io_accounting_init(&p->ioac);
2042 	acct_clear_integrals(p);
2043 
2044 	posix_cputimers_init(&p->posix_cputimers);
2045 
2046 	p->io_context = NULL;
2047 	audit_set_context(p, NULL);
2048 	cgroup_fork(p);
2049 #ifdef CONFIG_NUMA
2050 	p->mempolicy = mpol_dup(p->mempolicy);
2051 	if (IS_ERR(p->mempolicy)) {
2052 		retval = PTR_ERR(p->mempolicy);
2053 		p->mempolicy = NULL;
2054 		goto bad_fork_cleanup_threadgroup_lock;
2055 	}
2056 #endif
2057 #ifdef CONFIG_CPUSETS
2058 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2059 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2060 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2061 #endif
2062 #ifdef CONFIG_TRACE_IRQFLAGS
2063 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2064 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2065 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2066 	p->softirqs_enabled		= 1;
2067 	p->softirq_context		= 0;
2068 #endif
2069 
2070 	p->pagefault_disabled = 0;
2071 
2072 #ifdef CONFIG_LOCKDEP
2073 	lockdep_init_task(p);
2074 #endif
2075 
2076 #ifdef CONFIG_DEBUG_MUTEXES
2077 	p->blocked_on = NULL; /* not blocked yet */
2078 #endif
2079 #ifdef CONFIG_BCACHE
2080 	p->sequential_io	= 0;
2081 	p->sequential_io_avg	= 0;
2082 #endif
2083 
2084 	/* Perform scheduler related setup. Assign this task to a CPU. */
2085 	retval = sched_fork(clone_flags, p);
2086 	if (retval)
2087 		goto bad_fork_cleanup_policy;
2088 
2089 	retval = perf_event_init_task(p, clone_flags);
2090 	if (retval)
2091 		goto bad_fork_cleanup_policy;
2092 	retval = audit_alloc(p);
2093 	if (retval)
2094 		goto bad_fork_cleanup_perf;
2095 	/* copy all the process information */
2096 	shm_init_task(p);
2097 	retval = security_task_alloc(p, clone_flags);
2098 	if (retval)
2099 		goto bad_fork_cleanup_audit;
2100 	retval = copy_semundo(clone_flags, p);
2101 	if (retval)
2102 		goto bad_fork_cleanup_security;
2103 	retval = copy_files(clone_flags, p);
2104 	if (retval)
2105 		goto bad_fork_cleanup_semundo;
2106 	retval = copy_fs(clone_flags, p);
2107 	if (retval)
2108 		goto bad_fork_cleanup_files;
2109 	retval = copy_sighand(clone_flags, p);
2110 	if (retval)
2111 		goto bad_fork_cleanup_fs;
2112 	retval = copy_signal(clone_flags, p);
2113 	if (retval)
2114 		goto bad_fork_cleanup_sighand;
2115 	retval = copy_mm(clone_flags, p);
2116 	if (retval)
2117 		goto bad_fork_cleanup_signal;
2118 	retval = copy_namespaces(clone_flags, p);
2119 	if (retval)
2120 		goto bad_fork_cleanup_mm;
2121 	retval = copy_io(clone_flags, p);
2122 	if (retval)
2123 		goto bad_fork_cleanup_namespaces;
2124 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2125 	if (retval)
2126 		goto bad_fork_cleanup_io;
2127 
2128 	stackleak_task_init(p);
2129 
2130 	if (pid != &init_struct_pid) {
2131 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2132 				args->set_tid_size);
2133 		if (IS_ERR(pid)) {
2134 			retval = PTR_ERR(pid);
2135 			goto bad_fork_cleanup_thread;
2136 		}
2137 	}
2138 
2139 	/*
2140 	 * This has to happen after we've potentially unshared the file
2141 	 * descriptor table (so that the pidfd doesn't leak into the child
2142 	 * if the fd table isn't shared).
2143 	 */
2144 	if (clone_flags & CLONE_PIDFD) {
2145 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2146 		if (retval < 0)
2147 			goto bad_fork_free_pid;
2148 
2149 		pidfd = retval;
2150 
2151 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2152 					      O_RDWR | O_CLOEXEC);
2153 		if (IS_ERR(pidfile)) {
2154 			put_unused_fd(pidfd);
2155 			retval = PTR_ERR(pidfile);
2156 			goto bad_fork_free_pid;
2157 		}
2158 		get_pid(pid);	/* held by pidfile now */
2159 
2160 		retval = put_user(pidfd, args->pidfd);
2161 		if (retval)
2162 			goto bad_fork_put_pidfd;
2163 	}
2164 
2165 #ifdef CONFIG_BLOCK
2166 	p->plug = NULL;
2167 #endif
2168 	futex_init_task(p);
2169 
2170 	/*
2171 	 * sigaltstack should be cleared when sharing the same VM
2172 	 */
2173 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2174 		sas_ss_reset(p);
2175 
2176 	/*
2177 	 * Syscall tracing and stepping should be turned off in the
2178 	 * child regardless of CLONE_PTRACE.
2179 	 */
2180 	user_disable_single_step(p);
2181 	clear_task_syscall_work(p, SYSCALL_TRACE);
2182 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2183 	clear_task_syscall_work(p, SYSCALL_EMU);
2184 #endif
2185 	clear_tsk_latency_tracing(p);
2186 
2187 	/* ok, now we should be set up.. */
2188 	p->pid = pid_nr(pid);
2189 	if (clone_flags & CLONE_THREAD) {
2190 		p->group_leader = current->group_leader;
2191 		p->tgid = current->tgid;
2192 	} else {
2193 		p->group_leader = p;
2194 		p->tgid = p->pid;
2195 	}
2196 
2197 	p->nr_dirtied = 0;
2198 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2199 	p->dirty_paused_when = 0;
2200 
2201 	p->pdeath_signal = 0;
2202 	INIT_LIST_HEAD(&p->thread_group);
2203 	p->task_works = NULL;
2204 
2205 #ifdef CONFIG_KRETPROBES
2206 	p->kretprobe_instances.first = NULL;
2207 #endif
2208 
2209 	/*
2210 	 * Ensure that the cgroup subsystem policies allow the new process to be
2211 	 * forked. It should be noted that the new process's css_set can be changed
2212 	 * between here and cgroup_post_fork() if an organisation operation is in
2213 	 * progress.
2214 	 */
2215 	retval = cgroup_can_fork(p, args);
2216 	if (retval)
2217 		goto bad_fork_put_pidfd;
2218 
2219 	/*
2220 	 * From this point on we must avoid any synchronous user-space
2221 	 * communication until we take the tasklist-lock. In particular, we do
2222 	 * not want user-space to be able to predict the process start-time by
2223 	 * stalling fork(2) after we recorded the start_time but before it is
2224 	 * visible to the system.
2225 	 */
2226 
2227 	p->start_time = ktime_get_ns();
2228 	p->start_boottime = ktime_get_boottime_ns();
2229 
2230 	/*
2231 	 * Make it visible to the rest of the system, but dont wake it up yet.
2232 	 * Need tasklist lock for parent etc handling!
2233 	 */
2234 	write_lock_irq(&tasklist_lock);
2235 
2236 	/* CLONE_PARENT re-uses the old parent */
2237 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2238 		p->real_parent = current->real_parent;
2239 		p->parent_exec_id = current->parent_exec_id;
2240 		if (clone_flags & CLONE_THREAD)
2241 			p->exit_signal = -1;
2242 		else
2243 			p->exit_signal = current->group_leader->exit_signal;
2244 	} else {
2245 		p->real_parent = current;
2246 		p->parent_exec_id = current->self_exec_id;
2247 		p->exit_signal = args->exit_signal;
2248 	}
2249 
2250 	klp_copy_process(p);
2251 
2252 	spin_lock(&current->sighand->siglock);
2253 
2254 	/*
2255 	 * Copy seccomp details explicitly here, in case they were changed
2256 	 * before holding sighand lock.
2257 	 */
2258 	copy_seccomp(p);
2259 
2260 	rseq_fork(p, clone_flags);
2261 
2262 	/* Don't start children in a dying pid namespace */
2263 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2264 		retval = -ENOMEM;
2265 		goto bad_fork_cancel_cgroup;
2266 	}
2267 
2268 	/* Let kill terminate clone/fork in the middle */
2269 	if (fatal_signal_pending(current)) {
2270 		retval = -EINTR;
2271 		goto bad_fork_cancel_cgroup;
2272 	}
2273 
2274 	/* past the last point of failure */
2275 	if (pidfile)
2276 		fd_install(pidfd, pidfile);
2277 
2278 	init_task_pid_links(p);
2279 	if (likely(p->pid)) {
2280 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2281 
2282 		init_task_pid(p, PIDTYPE_PID, pid);
2283 		if (thread_group_leader(p)) {
2284 			init_task_pid(p, PIDTYPE_TGID, pid);
2285 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2286 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2287 
2288 			if (is_child_reaper(pid)) {
2289 				ns_of_pid(pid)->child_reaper = p;
2290 				p->signal->flags |= SIGNAL_UNKILLABLE;
2291 			}
2292 			p->signal->shared_pending.signal = delayed.signal;
2293 			p->signal->tty = tty_kref_get(current->signal->tty);
2294 			/*
2295 			 * Inherit has_child_subreaper flag under the same
2296 			 * tasklist_lock with adding child to the process tree
2297 			 * for propagate_has_child_subreaper optimization.
2298 			 */
2299 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2300 							 p->real_parent->signal->is_child_subreaper;
2301 			list_add_tail(&p->sibling, &p->real_parent->children);
2302 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2303 			attach_pid(p, PIDTYPE_TGID);
2304 			attach_pid(p, PIDTYPE_PGID);
2305 			attach_pid(p, PIDTYPE_SID);
2306 			__this_cpu_inc(process_counts);
2307 		} else {
2308 			current->signal->nr_threads++;
2309 			atomic_inc(&current->signal->live);
2310 			refcount_inc(&current->signal->sigcnt);
2311 			task_join_group_stop(p);
2312 			list_add_tail_rcu(&p->thread_group,
2313 					  &p->group_leader->thread_group);
2314 			list_add_tail_rcu(&p->thread_node,
2315 					  &p->signal->thread_head);
2316 		}
2317 		attach_pid(p, PIDTYPE_PID);
2318 		nr_threads++;
2319 	}
2320 	total_forks++;
2321 	hlist_del_init(&delayed.node);
2322 	spin_unlock(&current->sighand->siglock);
2323 	syscall_tracepoint_update(p);
2324 	write_unlock_irq(&tasklist_lock);
2325 
2326 	proc_fork_connector(p);
2327 	sched_post_fork(p);
2328 	cgroup_post_fork(p, args);
2329 	perf_event_fork(p);
2330 
2331 	trace_task_newtask(p, clone_flags);
2332 	uprobe_copy_process(p, clone_flags);
2333 
2334 	copy_oom_score_adj(clone_flags, p);
2335 
2336 	return p;
2337 
2338 bad_fork_cancel_cgroup:
2339 	spin_unlock(&current->sighand->siglock);
2340 	write_unlock_irq(&tasklist_lock);
2341 	cgroup_cancel_fork(p, args);
2342 bad_fork_put_pidfd:
2343 	if (clone_flags & CLONE_PIDFD) {
2344 		fput(pidfile);
2345 		put_unused_fd(pidfd);
2346 	}
2347 bad_fork_free_pid:
2348 	if (pid != &init_struct_pid)
2349 		free_pid(pid);
2350 bad_fork_cleanup_thread:
2351 	exit_thread(p);
2352 bad_fork_cleanup_io:
2353 	if (p->io_context)
2354 		exit_io_context(p);
2355 bad_fork_cleanup_namespaces:
2356 	exit_task_namespaces(p);
2357 bad_fork_cleanup_mm:
2358 	if (p->mm) {
2359 		mm_clear_owner(p->mm, p);
2360 		mmput(p->mm);
2361 	}
2362 bad_fork_cleanup_signal:
2363 	if (!(clone_flags & CLONE_THREAD))
2364 		free_signal_struct(p->signal);
2365 bad_fork_cleanup_sighand:
2366 	__cleanup_sighand(p->sighand);
2367 bad_fork_cleanup_fs:
2368 	exit_fs(p); /* blocking */
2369 bad_fork_cleanup_files:
2370 	exit_files(p); /* blocking */
2371 bad_fork_cleanup_semundo:
2372 	exit_sem(p);
2373 bad_fork_cleanup_security:
2374 	security_task_free(p);
2375 bad_fork_cleanup_audit:
2376 	audit_free(p);
2377 bad_fork_cleanup_perf:
2378 	perf_event_free_task(p);
2379 bad_fork_cleanup_policy:
2380 	lockdep_free_task(p);
2381 #ifdef CONFIG_NUMA
2382 	mpol_put(p->mempolicy);
2383 bad_fork_cleanup_threadgroup_lock:
2384 #endif
2385 	delayacct_tsk_free(p);
2386 bad_fork_cleanup_count:
2387 	atomic_dec(&p->cred->user->processes);
2388 	exit_creds(p);
2389 bad_fork_free:
2390 	p->state = TASK_DEAD;
2391 	put_task_stack(p);
2392 	delayed_free_task(p);
2393 fork_out:
2394 	spin_lock_irq(&current->sighand->siglock);
2395 	hlist_del_init(&delayed.node);
2396 	spin_unlock_irq(&current->sighand->siglock);
2397 	return ERR_PTR(retval);
2398 }
2399 
2400 static inline void init_idle_pids(struct task_struct *idle)
2401 {
2402 	enum pid_type type;
2403 
2404 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2405 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2406 		init_task_pid(idle, type, &init_struct_pid);
2407 	}
2408 }
2409 
2410 struct task_struct *fork_idle(int cpu)
2411 {
2412 	struct task_struct *task;
2413 	struct kernel_clone_args args = {
2414 		.flags = CLONE_VM,
2415 	};
2416 
2417 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2418 	if (!IS_ERR(task)) {
2419 		init_idle_pids(task);
2420 		init_idle(task, cpu);
2421 	}
2422 
2423 	return task;
2424 }
2425 
2426 struct mm_struct *copy_init_mm(void)
2427 {
2428 	return dup_mm(NULL, &init_mm);
2429 }
2430 
2431 /*
2432  * This is like kernel_clone(), but shaved down and tailored to just
2433  * creating io_uring workers. It returns a created task, or an error pointer.
2434  * The returned task is inactive, and the caller must fire it up through
2435  * wake_up_new_task(p). All signals are blocked in the created task.
2436  */
2437 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2438 {
2439 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2440 				CLONE_IO;
2441 	struct kernel_clone_args args = {
2442 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2443 				    CLONE_UNTRACED) & ~CSIGNAL),
2444 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2445 		.stack		= (unsigned long)fn,
2446 		.stack_size	= (unsigned long)arg,
2447 		.io_thread	= 1,
2448 	};
2449 
2450 	return copy_process(NULL, 0, node, &args);
2451 }
2452 
2453 /*
2454  *  Ok, this is the main fork-routine.
2455  *
2456  * It copies the process, and if successful kick-starts
2457  * it and waits for it to finish using the VM if required.
2458  *
2459  * args->exit_signal is expected to be checked for sanity by the caller.
2460  */
2461 pid_t kernel_clone(struct kernel_clone_args *args)
2462 {
2463 	u64 clone_flags = args->flags;
2464 	struct completion vfork;
2465 	struct pid *pid;
2466 	struct task_struct *p;
2467 	int trace = 0;
2468 	pid_t nr;
2469 
2470 	/*
2471 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2472 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2473 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2474 	 * field in struct clone_args and it still doesn't make sense to have
2475 	 * them both point at the same memory location. Performing this check
2476 	 * here has the advantage that we don't need to have a separate helper
2477 	 * to check for legacy clone().
2478 	 */
2479 	if ((args->flags & CLONE_PIDFD) &&
2480 	    (args->flags & CLONE_PARENT_SETTID) &&
2481 	    (args->pidfd == args->parent_tid))
2482 		return -EINVAL;
2483 
2484 	/*
2485 	 * Determine whether and which event to report to ptracer.  When
2486 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2487 	 * requested, no event is reported; otherwise, report if the event
2488 	 * for the type of forking is enabled.
2489 	 */
2490 	if (!(clone_flags & CLONE_UNTRACED)) {
2491 		if (clone_flags & CLONE_VFORK)
2492 			trace = PTRACE_EVENT_VFORK;
2493 		else if (args->exit_signal != SIGCHLD)
2494 			trace = PTRACE_EVENT_CLONE;
2495 		else
2496 			trace = PTRACE_EVENT_FORK;
2497 
2498 		if (likely(!ptrace_event_enabled(current, trace)))
2499 			trace = 0;
2500 	}
2501 
2502 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2503 	add_latent_entropy();
2504 
2505 	if (IS_ERR(p))
2506 		return PTR_ERR(p);
2507 
2508 	/*
2509 	 * Do this prior waking up the new thread - the thread pointer
2510 	 * might get invalid after that point, if the thread exits quickly.
2511 	 */
2512 	trace_sched_process_fork(current, p);
2513 
2514 	pid = get_task_pid(p, PIDTYPE_PID);
2515 	nr = pid_vnr(pid);
2516 
2517 	if (clone_flags & CLONE_PARENT_SETTID)
2518 		put_user(nr, args->parent_tid);
2519 
2520 	if (clone_flags & CLONE_VFORK) {
2521 		p->vfork_done = &vfork;
2522 		init_completion(&vfork);
2523 		get_task_struct(p);
2524 	}
2525 
2526 	wake_up_new_task(p);
2527 
2528 	/* forking complete and child started to run, tell ptracer */
2529 	if (unlikely(trace))
2530 		ptrace_event_pid(trace, pid);
2531 
2532 	if (clone_flags & CLONE_VFORK) {
2533 		if (!wait_for_vfork_done(p, &vfork))
2534 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2535 	}
2536 
2537 	put_pid(pid);
2538 	return nr;
2539 }
2540 
2541 /*
2542  * Create a kernel thread.
2543  */
2544 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2545 {
2546 	struct kernel_clone_args args = {
2547 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2548 				    CLONE_UNTRACED) & ~CSIGNAL),
2549 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2550 		.stack		= (unsigned long)fn,
2551 		.stack_size	= (unsigned long)arg,
2552 	};
2553 
2554 	return kernel_clone(&args);
2555 }
2556 
2557 #ifdef __ARCH_WANT_SYS_FORK
2558 SYSCALL_DEFINE0(fork)
2559 {
2560 #ifdef CONFIG_MMU
2561 	struct kernel_clone_args args = {
2562 		.exit_signal = SIGCHLD,
2563 	};
2564 
2565 	return kernel_clone(&args);
2566 #else
2567 	/* can not support in nommu mode */
2568 	return -EINVAL;
2569 #endif
2570 }
2571 #endif
2572 
2573 #ifdef __ARCH_WANT_SYS_VFORK
2574 SYSCALL_DEFINE0(vfork)
2575 {
2576 	struct kernel_clone_args args = {
2577 		.flags		= CLONE_VFORK | CLONE_VM,
2578 		.exit_signal	= SIGCHLD,
2579 	};
2580 
2581 	return kernel_clone(&args);
2582 }
2583 #endif
2584 
2585 #ifdef __ARCH_WANT_SYS_CLONE
2586 #ifdef CONFIG_CLONE_BACKWARDS
2587 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2588 		 int __user *, parent_tidptr,
2589 		 unsigned long, tls,
2590 		 int __user *, child_tidptr)
2591 #elif defined(CONFIG_CLONE_BACKWARDS2)
2592 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2593 		 int __user *, parent_tidptr,
2594 		 int __user *, child_tidptr,
2595 		 unsigned long, tls)
2596 #elif defined(CONFIG_CLONE_BACKWARDS3)
2597 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2598 		int, stack_size,
2599 		int __user *, parent_tidptr,
2600 		int __user *, child_tidptr,
2601 		unsigned long, tls)
2602 #else
2603 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2604 		 int __user *, parent_tidptr,
2605 		 int __user *, child_tidptr,
2606 		 unsigned long, tls)
2607 #endif
2608 {
2609 	struct kernel_clone_args args = {
2610 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2611 		.pidfd		= parent_tidptr,
2612 		.child_tid	= child_tidptr,
2613 		.parent_tid	= parent_tidptr,
2614 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2615 		.stack		= newsp,
2616 		.tls		= tls,
2617 	};
2618 
2619 	return kernel_clone(&args);
2620 }
2621 #endif
2622 
2623 #ifdef __ARCH_WANT_SYS_CLONE3
2624 
2625 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2626 					      struct clone_args __user *uargs,
2627 					      size_t usize)
2628 {
2629 	int err;
2630 	struct clone_args args;
2631 	pid_t *kset_tid = kargs->set_tid;
2632 
2633 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2634 		     CLONE_ARGS_SIZE_VER0);
2635 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2636 		     CLONE_ARGS_SIZE_VER1);
2637 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2638 		     CLONE_ARGS_SIZE_VER2);
2639 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2640 
2641 	if (unlikely(usize > PAGE_SIZE))
2642 		return -E2BIG;
2643 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2644 		return -EINVAL;
2645 
2646 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2647 	if (err)
2648 		return err;
2649 
2650 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2651 		return -EINVAL;
2652 
2653 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2654 		return -EINVAL;
2655 
2656 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2657 		return -EINVAL;
2658 
2659 	/*
2660 	 * Verify that higher 32bits of exit_signal are unset and that
2661 	 * it is a valid signal
2662 	 */
2663 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2664 		     !valid_signal(args.exit_signal)))
2665 		return -EINVAL;
2666 
2667 	if ((args.flags & CLONE_INTO_CGROUP) &&
2668 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2669 		return -EINVAL;
2670 
2671 	*kargs = (struct kernel_clone_args){
2672 		.flags		= args.flags,
2673 		.pidfd		= u64_to_user_ptr(args.pidfd),
2674 		.child_tid	= u64_to_user_ptr(args.child_tid),
2675 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2676 		.exit_signal	= args.exit_signal,
2677 		.stack		= args.stack,
2678 		.stack_size	= args.stack_size,
2679 		.tls		= args.tls,
2680 		.set_tid_size	= args.set_tid_size,
2681 		.cgroup		= args.cgroup,
2682 	};
2683 
2684 	if (args.set_tid &&
2685 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2686 			(kargs->set_tid_size * sizeof(pid_t))))
2687 		return -EFAULT;
2688 
2689 	kargs->set_tid = kset_tid;
2690 
2691 	return 0;
2692 }
2693 
2694 /**
2695  * clone3_stack_valid - check and prepare stack
2696  * @kargs: kernel clone args
2697  *
2698  * Verify that the stack arguments userspace gave us are sane.
2699  * In addition, set the stack direction for userspace since it's easy for us to
2700  * determine.
2701  */
2702 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2703 {
2704 	if (kargs->stack == 0) {
2705 		if (kargs->stack_size > 0)
2706 			return false;
2707 	} else {
2708 		if (kargs->stack_size == 0)
2709 			return false;
2710 
2711 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2712 			return false;
2713 
2714 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2715 		kargs->stack += kargs->stack_size;
2716 #endif
2717 	}
2718 
2719 	return true;
2720 }
2721 
2722 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2723 {
2724 	/* Verify that no unknown flags are passed along. */
2725 	if (kargs->flags &
2726 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2727 		return false;
2728 
2729 	/*
2730 	 * - make the CLONE_DETACHED bit reuseable for clone3
2731 	 * - make the CSIGNAL bits reuseable for clone3
2732 	 */
2733 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2734 		return false;
2735 
2736 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2737 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2738 		return false;
2739 
2740 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2741 	    kargs->exit_signal)
2742 		return false;
2743 
2744 	if (!clone3_stack_valid(kargs))
2745 		return false;
2746 
2747 	return true;
2748 }
2749 
2750 /**
2751  * clone3 - create a new process with specific properties
2752  * @uargs: argument structure
2753  * @size:  size of @uargs
2754  *
2755  * clone3() is the extensible successor to clone()/clone2().
2756  * It takes a struct as argument that is versioned by its size.
2757  *
2758  * Return: On success, a positive PID for the child process.
2759  *         On error, a negative errno number.
2760  */
2761 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2762 {
2763 	int err;
2764 
2765 	struct kernel_clone_args kargs;
2766 	pid_t set_tid[MAX_PID_NS_LEVEL];
2767 
2768 	kargs.set_tid = set_tid;
2769 
2770 	err = copy_clone_args_from_user(&kargs, uargs, size);
2771 	if (err)
2772 		return err;
2773 
2774 	if (!clone3_args_valid(&kargs))
2775 		return -EINVAL;
2776 
2777 	return kernel_clone(&kargs);
2778 }
2779 #endif
2780 
2781 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2782 {
2783 	struct task_struct *leader, *parent, *child;
2784 	int res;
2785 
2786 	read_lock(&tasklist_lock);
2787 	leader = top = top->group_leader;
2788 down:
2789 	for_each_thread(leader, parent) {
2790 		list_for_each_entry(child, &parent->children, sibling) {
2791 			res = visitor(child, data);
2792 			if (res) {
2793 				if (res < 0)
2794 					goto out;
2795 				leader = child;
2796 				goto down;
2797 			}
2798 up:
2799 			;
2800 		}
2801 	}
2802 
2803 	if (leader != top) {
2804 		child = leader;
2805 		parent = child->real_parent;
2806 		leader = parent->group_leader;
2807 		goto up;
2808 	}
2809 out:
2810 	read_unlock(&tasklist_lock);
2811 }
2812 
2813 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2814 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2815 #endif
2816 
2817 static void sighand_ctor(void *data)
2818 {
2819 	struct sighand_struct *sighand = data;
2820 
2821 	spin_lock_init(&sighand->siglock);
2822 	init_waitqueue_head(&sighand->signalfd_wqh);
2823 }
2824 
2825 void __init proc_caches_init(void)
2826 {
2827 	unsigned int mm_size;
2828 
2829 	sighand_cachep = kmem_cache_create("sighand_cache",
2830 			sizeof(struct sighand_struct), 0,
2831 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2832 			SLAB_ACCOUNT, sighand_ctor);
2833 	signal_cachep = kmem_cache_create("signal_cache",
2834 			sizeof(struct signal_struct), 0,
2835 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2836 			NULL);
2837 	files_cachep = kmem_cache_create("files_cache",
2838 			sizeof(struct files_struct), 0,
2839 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2840 			NULL);
2841 	fs_cachep = kmem_cache_create("fs_cache",
2842 			sizeof(struct fs_struct), 0,
2843 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2844 			NULL);
2845 
2846 	/*
2847 	 * The mm_cpumask is located at the end of mm_struct, and is
2848 	 * dynamically sized based on the maximum CPU number this system
2849 	 * can have, taking hotplug into account (nr_cpu_ids).
2850 	 */
2851 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2852 
2853 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2854 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2855 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2856 			offsetof(struct mm_struct, saved_auxv),
2857 			sizeof_field(struct mm_struct, saved_auxv),
2858 			NULL);
2859 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2860 	mmap_init();
2861 	nsproxy_cache_init();
2862 }
2863 
2864 /*
2865  * Check constraints on flags passed to the unshare system call.
2866  */
2867 static int check_unshare_flags(unsigned long unshare_flags)
2868 {
2869 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2870 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2871 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2872 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2873 				CLONE_NEWTIME))
2874 		return -EINVAL;
2875 	/*
2876 	 * Not implemented, but pretend it works if there is nothing
2877 	 * to unshare.  Note that unsharing the address space or the
2878 	 * signal handlers also need to unshare the signal queues (aka
2879 	 * CLONE_THREAD).
2880 	 */
2881 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2882 		if (!thread_group_empty(current))
2883 			return -EINVAL;
2884 	}
2885 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2886 		if (refcount_read(&current->sighand->count) > 1)
2887 			return -EINVAL;
2888 	}
2889 	if (unshare_flags & CLONE_VM) {
2890 		if (!current_is_single_threaded())
2891 			return -EINVAL;
2892 	}
2893 
2894 	return 0;
2895 }
2896 
2897 /*
2898  * Unshare the filesystem structure if it is being shared
2899  */
2900 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2901 {
2902 	struct fs_struct *fs = current->fs;
2903 
2904 	if (!(unshare_flags & CLONE_FS) || !fs)
2905 		return 0;
2906 
2907 	/* don't need lock here; in the worst case we'll do useless copy */
2908 	if (fs->users == 1)
2909 		return 0;
2910 
2911 	*new_fsp = copy_fs_struct(fs);
2912 	if (!*new_fsp)
2913 		return -ENOMEM;
2914 
2915 	return 0;
2916 }
2917 
2918 /*
2919  * Unshare file descriptor table if it is being shared
2920  */
2921 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2922 	       struct files_struct **new_fdp)
2923 {
2924 	struct files_struct *fd = current->files;
2925 	int error = 0;
2926 
2927 	if ((unshare_flags & CLONE_FILES) &&
2928 	    (fd && atomic_read(&fd->count) > 1)) {
2929 		*new_fdp = dup_fd(fd, max_fds, &error);
2930 		if (!*new_fdp)
2931 			return error;
2932 	}
2933 
2934 	return 0;
2935 }
2936 
2937 /*
2938  * unshare allows a process to 'unshare' part of the process
2939  * context which was originally shared using clone.  copy_*
2940  * functions used by kernel_clone() cannot be used here directly
2941  * because they modify an inactive task_struct that is being
2942  * constructed. Here we are modifying the current, active,
2943  * task_struct.
2944  */
2945 int ksys_unshare(unsigned long unshare_flags)
2946 {
2947 	struct fs_struct *fs, *new_fs = NULL;
2948 	struct files_struct *fd, *new_fd = NULL;
2949 	struct cred *new_cred = NULL;
2950 	struct nsproxy *new_nsproxy = NULL;
2951 	int do_sysvsem = 0;
2952 	int err;
2953 
2954 	/*
2955 	 * If unsharing a user namespace must also unshare the thread group
2956 	 * and unshare the filesystem root and working directories.
2957 	 */
2958 	if (unshare_flags & CLONE_NEWUSER)
2959 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2960 	/*
2961 	 * If unsharing vm, must also unshare signal handlers.
2962 	 */
2963 	if (unshare_flags & CLONE_VM)
2964 		unshare_flags |= CLONE_SIGHAND;
2965 	/*
2966 	 * If unsharing a signal handlers, must also unshare the signal queues.
2967 	 */
2968 	if (unshare_flags & CLONE_SIGHAND)
2969 		unshare_flags |= CLONE_THREAD;
2970 	/*
2971 	 * If unsharing namespace, must also unshare filesystem information.
2972 	 */
2973 	if (unshare_flags & CLONE_NEWNS)
2974 		unshare_flags |= CLONE_FS;
2975 
2976 	err = check_unshare_flags(unshare_flags);
2977 	if (err)
2978 		goto bad_unshare_out;
2979 	/*
2980 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2981 	 * to a new ipc namespace, the semaphore arrays from the old
2982 	 * namespace are unreachable.
2983 	 */
2984 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2985 		do_sysvsem = 1;
2986 	err = unshare_fs(unshare_flags, &new_fs);
2987 	if (err)
2988 		goto bad_unshare_out;
2989 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2990 	if (err)
2991 		goto bad_unshare_cleanup_fs;
2992 	err = unshare_userns(unshare_flags, &new_cred);
2993 	if (err)
2994 		goto bad_unshare_cleanup_fd;
2995 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2996 					 new_cred, new_fs);
2997 	if (err)
2998 		goto bad_unshare_cleanup_cred;
2999 
3000 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3001 		if (do_sysvsem) {
3002 			/*
3003 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3004 			 */
3005 			exit_sem(current);
3006 		}
3007 		if (unshare_flags & CLONE_NEWIPC) {
3008 			/* Orphan segments in old ns (see sem above). */
3009 			exit_shm(current);
3010 			shm_init_task(current);
3011 		}
3012 
3013 		if (new_nsproxy)
3014 			switch_task_namespaces(current, new_nsproxy);
3015 
3016 		task_lock(current);
3017 
3018 		if (new_fs) {
3019 			fs = current->fs;
3020 			spin_lock(&fs->lock);
3021 			current->fs = new_fs;
3022 			if (--fs->users)
3023 				new_fs = NULL;
3024 			else
3025 				new_fs = fs;
3026 			spin_unlock(&fs->lock);
3027 		}
3028 
3029 		if (new_fd) {
3030 			fd = current->files;
3031 			current->files = new_fd;
3032 			new_fd = fd;
3033 		}
3034 
3035 		task_unlock(current);
3036 
3037 		if (new_cred) {
3038 			/* Install the new user namespace */
3039 			commit_creds(new_cred);
3040 			new_cred = NULL;
3041 		}
3042 	}
3043 
3044 	perf_event_namespaces(current);
3045 
3046 bad_unshare_cleanup_cred:
3047 	if (new_cred)
3048 		put_cred(new_cred);
3049 bad_unshare_cleanup_fd:
3050 	if (new_fd)
3051 		put_files_struct(new_fd);
3052 
3053 bad_unshare_cleanup_fs:
3054 	if (new_fs)
3055 		free_fs_struct(new_fs);
3056 
3057 bad_unshare_out:
3058 	return err;
3059 }
3060 
3061 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3062 {
3063 	return ksys_unshare(unshare_flags);
3064 }
3065 
3066 /*
3067  *	Helper to unshare the files of the current task.
3068  *	We don't want to expose copy_files internals to
3069  *	the exec layer of the kernel.
3070  */
3071 
3072 int unshare_files(void)
3073 {
3074 	struct task_struct *task = current;
3075 	struct files_struct *old, *copy = NULL;
3076 	int error;
3077 
3078 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3079 	if (error || !copy)
3080 		return error;
3081 
3082 	old = task->files;
3083 	task_lock(task);
3084 	task->files = copy;
3085 	task_unlock(task);
3086 	put_files_struct(old);
3087 	return 0;
3088 }
3089 
3090 int sysctl_max_threads(struct ctl_table *table, int write,
3091 		       void *buffer, size_t *lenp, loff_t *ppos)
3092 {
3093 	struct ctl_table t;
3094 	int ret;
3095 	int threads = max_threads;
3096 	int min = 1;
3097 	int max = MAX_THREADS;
3098 
3099 	t = *table;
3100 	t.data = &threads;
3101 	t.extra1 = &min;
3102 	t.extra2 = &max;
3103 
3104 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3105 	if (ret || !write)
3106 		return ret;
3107 
3108 	max_threads = threads;
3109 
3110 	return 0;
3111 }
3112