1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 100 #include <asm/pgalloc.h> 101 #include <linux/uaccess.h> 102 #include <asm/mmu_context.h> 103 #include <asm/cacheflush.h> 104 #include <asm/tlbflush.h> 105 106 #include <trace/events/sched.h> 107 108 #define CREATE_TRACE_POINTS 109 #include <trace/events/task.h> 110 111 /* 112 * Minimum number of threads to boot the kernel 113 */ 114 #define MIN_THREADS 20 115 116 /* 117 * Maximum number of threads 118 */ 119 #define MAX_THREADS FUTEX_TID_MASK 120 121 /* 122 * Protected counters by write_lock_irq(&tasklist_lock) 123 */ 124 unsigned long total_forks; /* Handle normal Linux uptimes. */ 125 int nr_threads; /* The idle threads do not count.. */ 126 127 static int max_threads; /* tunable limit on nr_threads */ 128 129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 130 131 static const char * const resident_page_types[] = { 132 NAMED_ARRAY_INDEX(MM_FILEPAGES), 133 NAMED_ARRAY_INDEX(MM_ANONPAGES), 134 NAMED_ARRAY_INDEX(MM_SWAPENTS), 135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 136 }; 137 138 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 139 140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 141 142 #ifdef CONFIG_PROVE_RCU 143 int lockdep_tasklist_lock_is_held(void) 144 { 145 return lockdep_is_held(&tasklist_lock); 146 } 147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 148 #endif /* #ifdef CONFIG_PROVE_RCU */ 149 150 int nr_processes(void) 151 { 152 int cpu; 153 int total = 0; 154 155 for_each_possible_cpu(cpu) 156 total += per_cpu(process_counts, cpu); 157 158 return total; 159 } 160 161 void __weak arch_release_task_struct(struct task_struct *tsk) 162 { 163 } 164 165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 166 static struct kmem_cache *task_struct_cachep; 167 168 static inline struct task_struct *alloc_task_struct_node(int node) 169 { 170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 171 } 172 173 static inline void free_task_struct(struct task_struct *tsk) 174 { 175 kmem_cache_free(task_struct_cachep, tsk); 176 } 177 #endif 178 179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 180 181 /* 182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 183 * kmemcache based allocator. 184 */ 185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 186 187 #ifdef CONFIG_VMAP_STACK 188 /* 189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 190 * flush. Try to minimize the number of calls by caching stacks. 191 */ 192 #define NR_CACHED_STACKS 2 193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 194 195 static int free_vm_stack_cache(unsigned int cpu) 196 { 197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 198 int i; 199 200 for (i = 0; i < NR_CACHED_STACKS; i++) { 201 struct vm_struct *vm_stack = cached_vm_stacks[i]; 202 203 if (!vm_stack) 204 continue; 205 206 vfree(vm_stack->addr); 207 cached_vm_stacks[i] = NULL; 208 } 209 210 return 0; 211 } 212 #endif 213 214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 215 { 216 #ifdef CONFIG_VMAP_STACK 217 void *stack; 218 int i; 219 220 for (i = 0; i < NR_CACHED_STACKS; i++) { 221 struct vm_struct *s; 222 223 s = this_cpu_xchg(cached_stacks[i], NULL); 224 225 if (!s) 226 continue; 227 228 /* Mark stack accessible for KASAN. */ 229 kasan_unpoison_range(s->addr, THREAD_SIZE); 230 231 /* Clear stale pointers from reused stack. */ 232 memset(s->addr, 0, THREAD_SIZE); 233 234 tsk->stack_vm_area = s; 235 tsk->stack = s->addr; 236 return s->addr; 237 } 238 239 /* 240 * Allocated stacks are cached and later reused by new threads, 241 * so memcg accounting is performed manually on assigning/releasing 242 * stacks to tasks. Drop __GFP_ACCOUNT. 243 */ 244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 245 VMALLOC_START, VMALLOC_END, 246 THREADINFO_GFP & ~__GFP_ACCOUNT, 247 PAGE_KERNEL, 248 0, node, __builtin_return_address(0)); 249 250 /* 251 * We can't call find_vm_area() in interrupt context, and 252 * free_thread_stack() can be called in interrupt context, 253 * so cache the vm_struct. 254 */ 255 if (stack) { 256 tsk->stack_vm_area = find_vm_area(stack); 257 tsk->stack = stack; 258 } 259 return stack; 260 #else 261 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 262 THREAD_SIZE_ORDER); 263 264 if (likely(page)) { 265 tsk->stack = kasan_reset_tag(page_address(page)); 266 return tsk->stack; 267 } 268 return NULL; 269 #endif 270 } 271 272 static inline void free_thread_stack(struct task_struct *tsk) 273 { 274 #ifdef CONFIG_VMAP_STACK 275 struct vm_struct *vm = task_stack_vm_area(tsk); 276 277 if (vm) { 278 int i; 279 280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 281 memcg_kmem_uncharge_page(vm->pages[i], 0); 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 if (this_cpu_cmpxchg(cached_stacks[i], 285 NULL, tsk->stack_vm_area) != NULL) 286 continue; 287 288 return; 289 } 290 291 vfree_atomic(tsk->stack); 292 return; 293 } 294 #endif 295 296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 297 } 298 # else 299 static struct kmem_cache *thread_stack_cache; 300 301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 302 int node) 303 { 304 unsigned long *stack; 305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 306 stack = kasan_reset_tag(stack); 307 tsk->stack = stack; 308 return stack; 309 } 310 311 static void free_thread_stack(struct task_struct *tsk) 312 { 313 kmem_cache_free(thread_stack_cache, tsk->stack); 314 } 315 316 void thread_stack_cache_init(void) 317 { 318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 319 THREAD_SIZE, THREAD_SIZE, 0, 0, 320 THREAD_SIZE, NULL); 321 BUG_ON(thread_stack_cache == NULL); 322 } 323 # endif 324 #endif 325 326 /* SLAB cache for signal_struct structures (tsk->signal) */ 327 static struct kmem_cache *signal_cachep; 328 329 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 330 struct kmem_cache *sighand_cachep; 331 332 /* SLAB cache for files_struct structures (tsk->files) */ 333 struct kmem_cache *files_cachep; 334 335 /* SLAB cache for fs_struct structures (tsk->fs) */ 336 struct kmem_cache *fs_cachep; 337 338 /* SLAB cache for vm_area_struct structures */ 339 static struct kmem_cache *vm_area_cachep; 340 341 /* SLAB cache for mm_struct structures (tsk->mm) */ 342 static struct kmem_cache *mm_cachep; 343 344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 345 { 346 struct vm_area_struct *vma; 347 348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 349 if (vma) 350 vma_init(vma, mm); 351 return vma; 352 } 353 354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 355 { 356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 357 358 if (new) { 359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 361 /* 362 * orig->shared.rb may be modified concurrently, but the clone 363 * will be reinitialized. 364 */ 365 *new = data_race(*orig); 366 INIT_LIST_HEAD(&new->anon_vma_chain); 367 new->vm_next = new->vm_prev = NULL; 368 } 369 return new; 370 } 371 372 void vm_area_free(struct vm_area_struct *vma) 373 { 374 kmem_cache_free(vm_area_cachep, vma); 375 } 376 377 static void account_kernel_stack(struct task_struct *tsk, int account) 378 { 379 void *stack = task_stack_page(tsk); 380 struct vm_struct *vm = task_stack_vm_area(tsk); 381 382 383 /* All stack pages are in the same node. */ 384 if (vm) 385 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB, 386 account * (THREAD_SIZE / 1024)); 387 else 388 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 389 account * (THREAD_SIZE / 1024)); 390 } 391 392 static int memcg_charge_kernel_stack(struct task_struct *tsk) 393 { 394 #ifdef CONFIG_VMAP_STACK 395 struct vm_struct *vm = task_stack_vm_area(tsk); 396 int ret; 397 398 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 399 400 if (vm) { 401 int i; 402 403 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 404 405 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 406 /* 407 * If memcg_kmem_charge_page() fails, page's 408 * memory cgroup pointer is NULL, and 409 * memcg_kmem_uncharge_page() in free_thread_stack() 410 * will ignore this page. 411 */ 412 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 413 0); 414 if (ret) 415 return ret; 416 } 417 } 418 #endif 419 return 0; 420 } 421 422 static void release_task_stack(struct task_struct *tsk) 423 { 424 if (WARN_ON(tsk->state != TASK_DEAD)) 425 return; /* Better to leak the stack than to free prematurely */ 426 427 account_kernel_stack(tsk, -1); 428 free_thread_stack(tsk); 429 tsk->stack = NULL; 430 #ifdef CONFIG_VMAP_STACK 431 tsk->stack_vm_area = NULL; 432 #endif 433 } 434 435 #ifdef CONFIG_THREAD_INFO_IN_TASK 436 void put_task_stack(struct task_struct *tsk) 437 { 438 if (refcount_dec_and_test(&tsk->stack_refcount)) 439 release_task_stack(tsk); 440 } 441 #endif 442 443 void free_task(struct task_struct *tsk) 444 { 445 scs_release(tsk); 446 447 #ifndef CONFIG_THREAD_INFO_IN_TASK 448 /* 449 * The task is finally done with both the stack and thread_info, 450 * so free both. 451 */ 452 release_task_stack(tsk); 453 #else 454 /* 455 * If the task had a separate stack allocation, it should be gone 456 * by now. 457 */ 458 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 459 #endif 460 rt_mutex_debug_task_free(tsk); 461 ftrace_graph_exit_task(tsk); 462 arch_release_task_struct(tsk); 463 if (tsk->flags & PF_KTHREAD) 464 free_kthread_struct(tsk); 465 free_task_struct(tsk); 466 } 467 EXPORT_SYMBOL(free_task); 468 469 #ifdef CONFIG_MMU 470 static __latent_entropy int dup_mmap(struct mm_struct *mm, 471 struct mm_struct *oldmm) 472 { 473 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 474 struct rb_node **rb_link, *rb_parent; 475 int retval; 476 unsigned long charge; 477 LIST_HEAD(uf); 478 479 uprobe_start_dup_mmap(); 480 if (mmap_write_lock_killable(oldmm)) { 481 retval = -EINTR; 482 goto fail_uprobe_end; 483 } 484 flush_cache_dup_mm(oldmm); 485 uprobe_dup_mmap(oldmm, mm); 486 /* 487 * Not linked in yet - no deadlock potential: 488 */ 489 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 490 491 /* No ordering required: file already has been exposed. */ 492 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 493 494 mm->total_vm = oldmm->total_vm; 495 mm->data_vm = oldmm->data_vm; 496 mm->exec_vm = oldmm->exec_vm; 497 mm->stack_vm = oldmm->stack_vm; 498 499 rb_link = &mm->mm_rb.rb_node; 500 rb_parent = NULL; 501 pprev = &mm->mmap; 502 retval = ksm_fork(mm, oldmm); 503 if (retval) 504 goto out; 505 retval = khugepaged_fork(mm, oldmm); 506 if (retval) 507 goto out; 508 509 prev = NULL; 510 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 511 struct file *file; 512 513 if (mpnt->vm_flags & VM_DONTCOPY) { 514 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 515 continue; 516 } 517 charge = 0; 518 /* 519 * Don't duplicate many vmas if we've been oom-killed (for 520 * example) 521 */ 522 if (fatal_signal_pending(current)) { 523 retval = -EINTR; 524 goto out; 525 } 526 if (mpnt->vm_flags & VM_ACCOUNT) { 527 unsigned long len = vma_pages(mpnt); 528 529 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 530 goto fail_nomem; 531 charge = len; 532 } 533 tmp = vm_area_dup(mpnt); 534 if (!tmp) 535 goto fail_nomem; 536 retval = vma_dup_policy(mpnt, tmp); 537 if (retval) 538 goto fail_nomem_policy; 539 tmp->vm_mm = mm; 540 retval = dup_userfaultfd(tmp, &uf); 541 if (retval) 542 goto fail_nomem_anon_vma_fork; 543 if (tmp->vm_flags & VM_WIPEONFORK) { 544 /* 545 * VM_WIPEONFORK gets a clean slate in the child. 546 * Don't prepare anon_vma until fault since we don't 547 * copy page for current vma. 548 */ 549 tmp->anon_vma = NULL; 550 } else if (anon_vma_fork(tmp, mpnt)) 551 goto fail_nomem_anon_vma_fork; 552 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 553 file = tmp->vm_file; 554 if (file) { 555 struct inode *inode = file_inode(file); 556 struct address_space *mapping = file->f_mapping; 557 558 get_file(file); 559 if (tmp->vm_flags & VM_DENYWRITE) 560 put_write_access(inode); 561 i_mmap_lock_write(mapping); 562 if (tmp->vm_flags & VM_SHARED) 563 mapping_allow_writable(mapping); 564 flush_dcache_mmap_lock(mapping); 565 /* insert tmp into the share list, just after mpnt */ 566 vma_interval_tree_insert_after(tmp, mpnt, 567 &mapping->i_mmap); 568 flush_dcache_mmap_unlock(mapping); 569 i_mmap_unlock_write(mapping); 570 } 571 572 /* 573 * Clear hugetlb-related page reserves for children. This only 574 * affects MAP_PRIVATE mappings. Faults generated by the child 575 * are not guaranteed to succeed, even if read-only 576 */ 577 if (is_vm_hugetlb_page(tmp)) 578 reset_vma_resv_huge_pages(tmp); 579 580 /* 581 * Link in the new vma and copy the page table entries. 582 */ 583 *pprev = tmp; 584 pprev = &tmp->vm_next; 585 tmp->vm_prev = prev; 586 prev = tmp; 587 588 __vma_link_rb(mm, tmp, rb_link, rb_parent); 589 rb_link = &tmp->vm_rb.rb_right; 590 rb_parent = &tmp->vm_rb; 591 592 mm->map_count++; 593 if (!(tmp->vm_flags & VM_WIPEONFORK)) 594 retval = copy_page_range(tmp, mpnt); 595 596 if (tmp->vm_ops && tmp->vm_ops->open) 597 tmp->vm_ops->open(tmp); 598 599 if (retval) 600 goto out; 601 } 602 /* a new mm has just been created */ 603 retval = arch_dup_mmap(oldmm, mm); 604 out: 605 mmap_write_unlock(mm); 606 flush_tlb_mm(oldmm); 607 mmap_write_unlock(oldmm); 608 dup_userfaultfd_complete(&uf); 609 fail_uprobe_end: 610 uprobe_end_dup_mmap(); 611 return retval; 612 fail_nomem_anon_vma_fork: 613 mpol_put(vma_policy(tmp)); 614 fail_nomem_policy: 615 vm_area_free(tmp); 616 fail_nomem: 617 retval = -ENOMEM; 618 vm_unacct_memory(charge); 619 goto out; 620 } 621 622 static inline int mm_alloc_pgd(struct mm_struct *mm) 623 { 624 mm->pgd = pgd_alloc(mm); 625 if (unlikely(!mm->pgd)) 626 return -ENOMEM; 627 return 0; 628 } 629 630 static inline void mm_free_pgd(struct mm_struct *mm) 631 { 632 pgd_free(mm, mm->pgd); 633 } 634 #else 635 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 636 { 637 mmap_write_lock(oldmm); 638 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 639 mmap_write_unlock(oldmm); 640 return 0; 641 } 642 #define mm_alloc_pgd(mm) (0) 643 #define mm_free_pgd(mm) 644 #endif /* CONFIG_MMU */ 645 646 static void check_mm(struct mm_struct *mm) 647 { 648 int i; 649 650 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 651 "Please make sure 'struct resident_page_types[]' is updated as well"); 652 653 for (i = 0; i < NR_MM_COUNTERS; i++) { 654 long x = atomic_long_read(&mm->rss_stat.count[i]); 655 656 if (unlikely(x)) 657 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 658 mm, resident_page_types[i], x); 659 } 660 661 if (mm_pgtables_bytes(mm)) 662 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 663 mm_pgtables_bytes(mm)); 664 665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 666 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 667 #endif 668 } 669 670 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 671 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 672 673 /* 674 * Called when the last reference to the mm 675 * is dropped: either by a lazy thread or by 676 * mmput. Free the page directory and the mm. 677 */ 678 void __mmdrop(struct mm_struct *mm) 679 { 680 BUG_ON(mm == &init_mm); 681 WARN_ON_ONCE(mm == current->mm); 682 WARN_ON_ONCE(mm == current->active_mm); 683 mm_free_pgd(mm); 684 destroy_context(mm); 685 mmu_notifier_subscriptions_destroy(mm); 686 check_mm(mm); 687 put_user_ns(mm->user_ns); 688 free_mm(mm); 689 } 690 EXPORT_SYMBOL_GPL(__mmdrop); 691 692 static void mmdrop_async_fn(struct work_struct *work) 693 { 694 struct mm_struct *mm; 695 696 mm = container_of(work, struct mm_struct, async_put_work); 697 __mmdrop(mm); 698 } 699 700 static void mmdrop_async(struct mm_struct *mm) 701 { 702 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 703 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 704 schedule_work(&mm->async_put_work); 705 } 706 } 707 708 static inline void free_signal_struct(struct signal_struct *sig) 709 { 710 taskstats_tgid_free(sig); 711 sched_autogroup_exit(sig); 712 /* 713 * __mmdrop is not safe to call from softirq context on x86 due to 714 * pgd_dtor so postpone it to the async context 715 */ 716 if (sig->oom_mm) 717 mmdrop_async(sig->oom_mm); 718 kmem_cache_free(signal_cachep, sig); 719 } 720 721 static inline void put_signal_struct(struct signal_struct *sig) 722 { 723 if (refcount_dec_and_test(&sig->sigcnt)) 724 free_signal_struct(sig); 725 } 726 727 void __put_task_struct(struct task_struct *tsk) 728 { 729 WARN_ON(!tsk->exit_state); 730 WARN_ON(refcount_read(&tsk->usage)); 731 WARN_ON(tsk == current); 732 733 io_uring_free(tsk); 734 cgroup_free(tsk); 735 task_numa_free(tsk, true); 736 security_task_free(tsk); 737 exit_creds(tsk); 738 delayacct_tsk_free(tsk); 739 put_signal_struct(tsk->signal); 740 741 if (!profile_handoff_task(tsk)) 742 free_task(tsk); 743 } 744 EXPORT_SYMBOL_GPL(__put_task_struct); 745 746 void __init __weak arch_task_cache_init(void) { } 747 748 /* 749 * set_max_threads 750 */ 751 static void set_max_threads(unsigned int max_threads_suggested) 752 { 753 u64 threads; 754 unsigned long nr_pages = totalram_pages(); 755 756 /* 757 * The number of threads shall be limited such that the thread 758 * structures may only consume a small part of the available memory. 759 */ 760 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 761 threads = MAX_THREADS; 762 else 763 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 764 (u64) THREAD_SIZE * 8UL); 765 766 if (threads > max_threads_suggested) 767 threads = max_threads_suggested; 768 769 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 770 } 771 772 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 773 /* Initialized by the architecture: */ 774 int arch_task_struct_size __read_mostly; 775 #endif 776 777 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 778 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 779 { 780 /* Fetch thread_struct whitelist for the architecture. */ 781 arch_thread_struct_whitelist(offset, size); 782 783 /* 784 * Handle zero-sized whitelist or empty thread_struct, otherwise 785 * adjust offset to position of thread_struct in task_struct. 786 */ 787 if (unlikely(*size == 0)) 788 *offset = 0; 789 else 790 *offset += offsetof(struct task_struct, thread); 791 } 792 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 793 794 void __init fork_init(void) 795 { 796 int i; 797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 798 #ifndef ARCH_MIN_TASKALIGN 799 #define ARCH_MIN_TASKALIGN 0 800 #endif 801 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 802 unsigned long useroffset, usersize; 803 804 /* create a slab on which task_structs can be allocated */ 805 task_struct_whitelist(&useroffset, &usersize); 806 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 807 arch_task_struct_size, align, 808 SLAB_PANIC|SLAB_ACCOUNT, 809 useroffset, usersize, NULL); 810 #endif 811 812 /* do the arch specific task caches init */ 813 arch_task_cache_init(); 814 815 set_max_threads(MAX_THREADS); 816 817 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 818 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 819 init_task.signal->rlim[RLIMIT_SIGPENDING] = 820 init_task.signal->rlim[RLIMIT_NPROC]; 821 822 for (i = 0; i < UCOUNT_COUNTS; i++) 823 init_user_ns.ucount_max[i] = max_threads/2; 824 825 #ifdef CONFIG_VMAP_STACK 826 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 827 NULL, free_vm_stack_cache); 828 #endif 829 830 scs_init(); 831 832 lockdep_init_task(&init_task); 833 uprobes_init(); 834 } 835 836 int __weak arch_dup_task_struct(struct task_struct *dst, 837 struct task_struct *src) 838 { 839 *dst = *src; 840 return 0; 841 } 842 843 void set_task_stack_end_magic(struct task_struct *tsk) 844 { 845 unsigned long *stackend; 846 847 stackend = end_of_stack(tsk); 848 *stackend = STACK_END_MAGIC; /* for overflow detection */ 849 } 850 851 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 852 { 853 struct task_struct *tsk; 854 unsigned long *stack; 855 struct vm_struct *stack_vm_area __maybe_unused; 856 int err; 857 858 if (node == NUMA_NO_NODE) 859 node = tsk_fork_get_node(orig); 860 tsk = alloc_task_struct_node(node); 861 if (!tsk) 862 return NULL; 863 864 stack = alloc_thread_stack_node(tsk, node); 865 if (!stack) 866 goto free_tsk; 867 868 if (memcg_charge_kernel_stack(tsk)) 869 goto free_stack; 870 871 stack_vm_area = task_stack_vm_area(tsk); 872 873 err = arch_dup_task_struct(tsk, orig); 874 875 /* 876 * arch_dup_task_struct() clobbers the stack-related fields. Make 877 * sure they're properly initialized before using any stack-related 878 * functions again. 879 */ 880 tsk->stack = stack; 881 #ifdef CONFIG_VMAP_STACK 882 tsk->stack_vm_area = stack_vm_area; 883 #endif 884 #ifdef CONFIG_THREAD_INFO_IN_TASK 885 refcount_set(&tsk->stack_refcount, 1); 886 #endif 887 888 if (err) 889 goto free_stack; 890 891 err = scs_prepare(tsk, node); 892 if (err) 893 goto free_stack; 894 895 #ifdef CONFIG_SECCOMP 896 /* 897 * We must handle setting up seccomp filters once we're under 898 * the sighand lock in case orig has changed between now and 899 * then. Until then, filter must be NULL to avoid messing up 900 * the usage counts on the error path calling free_task. 901 */ 902 tsk->seccomp.filter = NULL; 903 #endif 904 905 setup_thread_stack(tsk, orig); 906 clear_user_return_notifier(tsk); 907 clear_tsk_need_resched(tsk); 908 set_task_stack_end_magic(tsk); 909 clear_syscall_work_syscall_user_dispatch(tsk); 910 911 #ifdef CONFIG_STACKPROTECTOR 912 tsk->stack_canary = get_random_canary(); 913 #endif 914 if (orig->cpus_ptr == &orig->cpus_mask) 915 tsk->cpus_ptr = &tsk->cpus_mask; 916 917 /* 918 * One for the user space visible state that goes away when reaped. 919 * One for the scheduler. 920 */ 921 refcount_set(&tsk->rcu_users, 2); 922 /* One for the rcu users */ 923 refcount_set(&tsk->usage, 1); 924 #ifdef CONFIG_BLK_DEV_IO_TRACE 925 tsk->btrace_seq = 0; 926 #endif 927 tsk->splice_pipe = NULL; 928 tsk->task_frag.page = NULL; 929 tsk->wake_q.next = NULL; 930 tsk->pf_io_worker = NULL; 931 932 account_kernel_stack(tsk, 1); 933 934 kcov_task_init(tsk); 935 kmap_local_fork(tsk); 936 937 #ifdef CONFIG_FAULT_INJECTION 938 tsk->fail_nth = 0; 939 #endif 940 941 #ifdef CONFIG_BLK_CGROUP 942 tsk->throttle_queue = NULL; 943 tsk->use_memdelay = 0; 944 #endif 945 946 #ifdef CONFIG_MEMCG 947 tsk->active_memcg = NULL; 948 #endif 949 return tsk; 950 951 free_stack: 952 free_thread_stack(tsk); 953 free_tsk: 954 free_task_struct(tsk); 955 return NULL; 956 } 957 958 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 959 960 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 961 962 static int __init coredump_filter_setup(char *s) 963 { 964 default_dump_filter = 965 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 966 MMF_DUMP_FILTER_MASK; 967 return 1; 968 } 969 970 __setup("coredump_filter=", coredump_filter_setup); 971 972 #include <linux/init_task.h> 973 974 static void mm_init_aio(struct mm_struct *mm) 975 { 976 #ifdef CONFIG_AIO 977 spin_lock_init(&mm->ioctx_lock); 978 mm->ioctx_table = NULL; 979 #endif 980 } 981 982 static __always_inline void mm_clear_owner(struct mm_struct *mm, 983 struct task_struct *p) 984 { 985 #ifdef CONFIG_MEMCG 986 if (mm->owner == p) 987 WRITE_ONCE(mm->owner, NULL); 988 #endif 989 } 990 991 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 992 { 993 #ifdef CONFIG_MEMCG 994 mm->owner = p; 995 #endif 996 } 997 998 static void mm_init_pasid(struct mm_struct *mm) 999 { 1000 #ifdef CONFIG_IOMMU_SUPPORT 1001 mm->pasid = INIT_PASID; 1002 #endif 1003 } 1004 1005 static void mm_init_uprobes_state(struct mm_struct *mm) 1006 { 1007 #ifdef CONFIG_UPROBES 1008 mm->uprobes_state.xol_area = NULL; 1009 #endif 1010 } 1011 1012 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1013 struct user_namespace *user_ns) 1014 { 1015 mm->mmap = NULL; 1016 mm->mm_rb = RB_ROOT; 1017 mm->vmacache_seqnum = 0; 1018 atomic_set(&mm->mm_users, 1); 1019 atomic_set(&mm->mm_count, 1); 1020 seqcount_init(&mm->write_protect_seq); 1021 mmap_init_lock(mm); 1022 INIT_LIST_HEAD(&mm->mmlist); 1023 mm->core_state = NULL; 1024 mm_pgtables_bytes_init(mm); 1025 mm->map_count = 0; 1026 mm->locked_vm = 0; 1027 atomic_set(&mm->has_pinned, 0); 1028 atomic64_set(&mm->pinned_vm, 0); 1029 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1030 spin_lock_init(&mm->page_table_lock); 1031 spin_lock_init(&mm->arg_lock); 1032 mm_init_cpumask(mm); 1033 mm_init_aio(mm); 1034 mm_init_owner(mm, p); 1035 mm_init_pasid(mm); 1036 RCU_INIT_POINTER(mm->exe_file, NULL); 1037 mmu_notifier_subscriptions_init(mm); 1038 init_tlb_flush_pending(mm); 1039 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1040 mm->pmd_huge_pte = NULL; 1041 #endif 1042 mm_init_uprobes_state(mm); 1043 1044 if (current->mm) { 1045 mm->flags = current->mm->flags & MMF_INIT_MASK; 1046 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1047 } else { 1048 mm->flags = default_dump_filter; 1049 mm->def_flags = 0; 1050 } 1051 1052 if (mm_alloc_pgd(mm)) 1053 goto fail_nopgd; 1054 1055 if (init_new_context(p, mm)) 1056 goto fail_nocontext; 1057 1058 mm->user_ns = get_user_ns(user_ns); 1059 return mm; 1060 1061 fail_nocontext: 1062 mm_free_pgd(mm); 1063 fail_nopgd: 1064 free_mm(mm); 1065 return NULL; 1066 } 1067 1068 /* 1069 * Allocate and initialize an mm_struct. 1070 */ 1071 struct mm_struct *mm_alloc(void) 1072 { 1073 struct mm_struct *mm; 1074 1075 mm = allocate_mm(); 1076 if (!mm) 1077 return NULL; 1078 1079 memset(mm, 0, sizeof(*mm)); 1080 return mm_init(mm, current, current_user_ns()); 1081 } 1082 1083 static inline void __mmput(struct mm_struct *mm) 1084 { 1085 VM_BUG_ON(atomic_read(&mm->mm_users)); 1086 1087 uprobe_clear_state(mm); 1088 exit_aio(mm); 1089 ksm_exit(mm); 1090 khugepaged_exit(mm); /* must run before exit_mmap */ 1091 exit_mmap(mm); 1092 mm_put_huge_zero_page(mm); 1093 set_mm_exe_file(mm, NULL); 1094 if (!list_empty(&mm->mmlist)) { 1095 spin_lock(&mmlist_lock); 1096 list_del(&mm->mmlist); 1097 spin_unlock(&mmlist_lock); 1098 } 1099 if (mm->binfmt) 1100 module_put(mm->binfmt->module); 1101 mmdrop(mm); 1102 } 1103 1104 /* 1105 * Decrement the use count and release all resources for an mm. 1106 */ 1107 void mmput(struct mm_struct *mm) 1108 { 1109 might_sleep(); 1110 1111 if (atomic_dec_and_test(&mm->mm_users)) 1112 __mmput(mm); 1113 } 1114 EXPORT_SYMBOL_GPL(mmput); 1115 1116 #ifdef CONFIG_MMU 1117 static void mmput_async_fn(struct work_struct *work) 1118 { 1119 struct mm_struct *mm = container_of(work, struct mm_struct, 1120 async_put_work); 1121 1122 __mmput(mm); 1123 } 1124 1125 void mmput_async(struct mm_struct *mm) 1126 { 1127 if (atomic_dec_and_test(&mm->mm_users)) { 1128 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1129 schedule_work(&mm->async_put_work); 1130 } 1131 } 1132 #endif 1133 1134 /** 1135 * set_mm_exe_file - change a reference to the mm's executable file 1136 * 1137 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1138 * 1139 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1140 * invocations: in mmput() nobody alive left, in execve task is single 1141 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1142 * mm->exe_file, but does so without using set_mm_exe_file() in order 1143 * to do avoid the need for any locks. 1144 */ 1145 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1146 { 1147 struct file *old_exe_file; 1148 1149 /* 1150 * It is safe to dereference the exe_file without RCU as 1151 * this function is only called if nobody else can access 1152 * this mm -- see comment above for justification. 1153 */ 1154 old_exe_file = rcu_dereference_raw(mm->exe_file); 1155 1156 if (new_exe_file) 1157 get_file(new_exe_file); 1158 rcu_assign_pointer(mm->exe_file, new_exe_file); 1159 if (old_exe_file) 1160 fput(old_exe_file); 1161 } 1162 1163 /** 1164 * get_mm_exe_file - acquire a reference to the mm's executable file 1165 * 1166 * Returns %NULL if mm has no associated executable file. 1167 * User must release file via fput(). 1168 */ 1169 struct file *get_mm_exe_file(struct mm_struct *mm) 1170 { 1171 struct file *exe_file; 1172 1173 rcu_read_lock(); 1174 exe_file = rcu_dereference(mm->exe_file); 1175 if (exe_file && !get_file_rcu(exe_file)) 1176 exe_file = NULL; 1177 rcu_read_unlock(); 1178 return exe_file; 1179 } 1180 EXPORT_SYMBOL(get_mm_exe_file); 1181 1182 /** 1183 * get_task_exe_file - acquire a reference to the task's executable file 1184 * 1185 * Returns %NULL if task's mm (if any) has no associated executable file or 1186 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1187 * User must release file via fput(). 1188 */ 1189 struct file *get_task_exe_file(struct task_struct *task) 1190 { 1191 struct file *exe_file = NULL; 1192 struct mm_struct *mm; 1193 1194 task_lock(task); 1195 mm = task->mm; 1196 if (mm) { 1197 if (!(task->flags & PF_KTHREAD)) 1198 exe_file = get_mm_exe_file(mm); 1199 } 1200 task_unlock(task); 1201 return exe_file; 1202 } 1203 EXPORT_SYMBOL(get_task_exe_file); 1204 1205 /** 1206 * get_task_mm - acquire a reference to the task's mm 1207 * 1208 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1209 * this kernel workthread has transiently adopted a user mm with use_mm, 1210 * to do its AIO) is not set and if so returns a reference to it, after 1211 * bumping up the use count. User must release the mm via mmput() 1212 * after use. Typically used by /proc and ptrace. 1213 */ 1214 struct mm_struct *get_task_mm(struct task_struct *task) 1215 { 1216 struct mm_struct *mm; 1217 1218 task_lock(task); 1219 mm = task->mm; 1220 if (mm) { 1221 if (task->flags & PF_KTHREAD) 1222 mm = NULL; 1223 else 1224 mmget(mm); 1225 } 1226 task_unlock(task); 1227 return mm; 1228 } 1229 EXPORT_SYMBOL_GPL(get_task_mm); 1230 1231 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1232 { 1233 struct mm_struct *mm; 1234 int err; 1235 1236 err = down_read_killable(&task->signal->exec_update_lock); 1237 if (err) 1238 return ERR_PTR(err); 1239 1240 mm = get_task_mm(task); 1241 if (mm && mm != current->mm && 1242 !ptrace_may_access(task, mode)) { 1243 mmput(mm); 1244 mm = ERR_PTR(-EACCES); 1245 } 1246 up_read(&task->signal->exec_update_lock); 1247 1248 return mm; 1249 } 1250 1251 static void complete_vfork_done(struct task_struct *tsk) 1252 { 1253 struct completion *vfork; 1254 1255 task_lock(tsk); 1256 vfork = tsk->vfork_done; 1257 if (likely(vfork)) { 1258 tsk->vfork_done = NULL; 1259 complete(vfork); 1260 } 1261 task_unlock(tsk); 1262 } 1263 1264 static int wait_for_vfork_done(struct task_struct *child, 1265 struct completion *vfork) 1266 { 1267 int killed; 1268 1269 freezer_do_not_count(); 1270 cgroup_enter_frozen(); 1271 killed = wait_for_completion_killable(vfork); 1272 cgroup_leave_frozen(false); 1273 freezer_count(); 1274 1275 if (killed) { 1276 task_lock(child); 1277 child->vfork_done = NULL; 1278 task_unlock(child); 1279 } 1280 1281 put_task_struct(child); 1282 return killed; 1283 } 1284 1285 /* Please note the differences between mmput and mm_release. 1286 * mmput is called whenever we stop holding onto a mm_struct, 1287 * error success whatever. 1288 * 1289 * mm_release is called after a mm_struct has been removed 1290 * from the current process. 1291 * 1292 * This difference is important for error handling, when we 1293 * only half set up a mm_struct for a new process and need to restore 1294 * the old one. Because we mmput the new mm_struct before 1295 * restoring the old one. . . 1296 * Eric Biederman 10 January 1998 1297 */ 1298 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1299 { 1300 uprobe_free_utask(tsk); 1301 1302 /* Get rid of any cached register state */ 1303 deactivate_mm(tsk, mm); 1304 1305 /* 1306 * Signal userspace if we're not exiting with a core dump 1307 * because we want to leave the value intact for debugging 1308 * purposes. 1309 */ 1310 if (tsk->clear_child_tid) { 1311 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1312 atomic_read(&mm->mm_users) > 1) { 1313 /* 1314 * We don't check the error code - if userspace has 1315 * not set up a proper pointer then tough luck. 1316 */ 1317 put_user(0, tsk->clear_child_tid); 1318 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1319 1, NULL, NULL, 0, 0); 1320 } 1321 tsk->clear_child_tid = NULL; 1322 } 1323 1324 /* 1325 * All done, finally we can wake up parent and return this mm to him. 1326 * Also kthread_stop() uses this completion for synchronization. 1327 */ 1328 if (tsk->vfork_done) 1329 complete_vfork_done(tsk); 1330 } 1331 1332 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1333 { 1334 futex_exit_release(tsk); 1335 mm_release(tsk, mm); 1336 } 1337 1338 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1339 { 1340 futex_exec_release(tsk); 1341 mm_release(tsk, mm); 1342 } 1343 1344 /** 1345 * dup_mm() - duplicates an existing mm structure 1346 * @tsk: the task_struct with which the new mm will be associated. 1347 * @oldmm: the mm to duplicate. 1348 * 1349 * Allocates a new mm structure and duplicates the provided @oldmm structure 1350 * content into it. 1351 * 1352 * Return: the duplicated mm or NULL on failure. 1353 */ 1354 static struct mm_struct *dup_mm(struct task_struct *tsk, 1355 struct mm_struct *oldmm) 1356 { 1357 struct mm_struct *mm; 1358 int err; 1359 1360 mm = allocate_mm(); 1361 if (!mm) 1362 goto fail_nomem; 1363 1364 memcpy(mm, oldmm, sizeof(*mm)); 1365 1366 if (!mm_init(mm, tsk, mm->user_ns)) 1367 goto fail_nomem; 1368 1369 err = dup_mmap(mm, oldmm); 1370 if (err) 1371 goto free_pt; 1372 1373 mm->hiwater_rss = get_mm_rss(mm); 1374 mm->hiwater_vm = mm->total_vm; 1375 1376 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1377 goto free_pt; 1378 1379 return mm; 1380 1381 free_pt: 1382 /* don't put binfmt in mmput, we haven't got module yet */ 1383 mm->binfmt = NULL; 1384 mm_init_owner(mm, NULL); 1385 mmput(mm); 1386 1387 fail_nomem: 1388 return NULL; 1389 } 1390 1391 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1392 { 1393 struct mm_struct *mm, *oldmm; 1394 int retval; 1395 1396 tsk->min_flt = tsk->maj_flt = 0; 1397 tsk->nvcsw = tsk->nivcsw = 0; 1398 #ifdef CONFIG_DETECT_HUNG_TASK 1399 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1400 tsk->last_switch_time = 0; 1401 #endif 1402 1403 tsk->mm = NULL; 1404 tsk->active_mm = NULL; 1405 1406 /* 1407 * Are we cloning a kernel thread? 1408 * 1409 * We need to steal a active VM for that.. 1410 */ 1411 oldmm = current->mm; 1412 if (!oldmm) 1413 return 0; 1414 1415 /* initialize the new vmacache entries */ 1416 vmacache_flush(tsk); 1417 1418 if (clone_flags & CLONE_VM) { 1419 mmget(oldmm); 1420 mm = oldmm; 1421 goto good_mm; 1422 } 1423 1424 retval = -ENOMEM; 1425 mm = dup_mm(tsk, current->mm); 1426 if (!mm) 1427 goto fail_nomem; 1428 1429 good_mm: 1430 tsk->mm = mm; 1431 tsk->active_mm = mm; 1432 return 0; 1433 1434 fail_nomem: 1435 return retval; 1436 } 1437 1438 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1439 { 1440 struct fs_struct *fs = current->fs; 1441 if (clone_flags & CLONE_FS) { 1442 /* tsk->fs is already what we want */ 1443 spin_lock(&fs->lock); 1444 if (fs->in_exec) { 1445 spin_unlock(&fs->lock); 1446 return -EAGAIN; 1447 } 1448 fs->users++; 1449 spin_unlock(&fs->lock); 1450 return 0; 1451 } 1452 tsk->fs = copy_fs_struct(fs); 1453 if (!tsk->fs) 1454 return -ENOMEM; 1455 return 0; 1456 } 1457 1458 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1459 { 1460 struct files_struct *oldf, *newf; 1461 int error = 0; 1462 1463 /* 1464 * A background process may not have any files ... 1465 */ 1466 oldf = current->files; 1467 if (!oldf) 1468 goto out; 1469 1470 if (clone_flags & CLONE_FILES) { 1471 atomic_inc(&oldf->count); 1472 goto out; 1473 } 1474 1475 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1476 if (!newf) 1477 goto out; 1478 1479 tsk->files = newf; 1480 error = 0; 1481 out: 1482 return error; 1483 } 1484 1485 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1486 { 1487 #ifdef CONFIG_BLOCK 1488 struct io_context *ioc = current->io_context; 1489 struct io_context *new_ioc; 1490 1491 if (!ioc) 1492 return 0; 1493 /* 1494 * Share io context with parent, if CLONE_IO is set 1495 */ 1496 if (clone_flags & CLONE_IO) { 1497 ioc_task_link(ioc); 1498 tsk->io_context = ioc; 1499 } else if (ioprio_valid(ioc->ioprio)) { 1500 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1501 if (unlikely(!new_ioc)) 1502 return -ENOMEM; 1503 1504 new_ioc->ioprio = ioc->ioprio; 1505 put_io_context(new_ioc); 1506 } 1507 #endif 1508 return 0; 1509 } 1510 1511 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1512 { 1513 struct sighand_struct *sig; 1514 1515 if (clone_flags & CLONE_SIGHAND) { 1516 refcount_inc(¤t->sighand->count); 1517 return 0; 1518 } 1519 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1520 RCU_INIT_POINTER(tsk->sighand, sig); 1521 if (!sig) 1522 return -ENOMEM; 1523 1524 refcount_set(&sig->count, 1); 1525 spin_lock_irq(¤t->sighand->siglock); 1526 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1527 spin_unlock_irq(¤t->sighand->siglock); 1528 1529 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1530 if (clone_flags & CLONE_CLEAR_SIGHAND) 1531 flush_signal_handlers(tsk, 0); 1532 1533 return 0; 1534 } 1535 1536 void __cleanup_sighand(struct sighand_struct *sighand) 1537 { 1538 if (refcount_dec_and_test(&sighand->count)) { 1539 signalfd_cleanup(sighand); 1540 /* 1541 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1542 * without an RCU grace period, see __lock_task_sighand(). 1543 */ 1544 kmem_cache_free(sighand_cachep, sighand); 1545 } 1546 } 1547 1548 /* 1549 * Initialize POSIX timer handling for a thread group. 1550 */ 1551 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1552 { 1553 struct posix_cputimers *pct = &sig->posix_cputimers; 1554 unsigned long cpu_limit; 1555 1556 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1557 posix_cputimers_group_init(pct, cpu_limit); 1558 } 1559 1560 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1561 { 1562 struct signal_struct *sig; 1563 1564 if (clone_flags & CLONE_THREAD) 1565 return 0; 1566 1567 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1568 tsk->signal = sig; 1569 if (!sig) 1570 return -ENOMEM; 1571 1572 sig->nr_threads = 1; 1573 atomic_set(&sig->live, 1); 1574 refcount_set(&sig->sigcnt, 1); 1575 1576 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1577 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1578 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1579 1580 init_waitqueue_head(&sig->wait_chldexit); 1581 sig->curr_target = tsk; 1582 init_sigpending(&sig->shared_pending); 1583 INIT_HLIST_HEAD(&sig->multiprocess); 1584 seqlock_init(&sig->stats_lock); 1585 prev_cputime_init(&sig->prev_cputime); 1586 1587 #ifdef CONFIG_POSIX_TIMERS 1588 INIT_LIST_HEAD(&sig->posix_timers); 1589 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1590 sig->real_timer.function = it_real_fn; 1591 #endif 1592 1593 task_lock(current->group_leader); 1594 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1595 task_unlock(current->group_leader); 1596 1597 posix_cpu_timers_init_group(sig); 1598 1599 tty_audit_fork(sig); 1600 sched_autogroup_fork(sig); 1601 1602 sig->oom_score_adj = current->signal->oom_score_adj; 1603 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1604 1605 mutex_init(&sig->cred_guard_mutex); 1606 init_rwsem(&sig->exec_update_lock); 1607 1608 return 0; 1609 } 1610 1611 static void copy_seccomp(struct task_struct *p) 1612 { 1613 #ifdef CONFIG_SECCOMP 1614 /* 1615 * Must be called with sighand->lock held, which is common to 1616 * all threads in the group. Holding cred_guard_mutex is not 1617 * needed because this new task is not yet running and cannot 1618 * be racing exec. 1619 */ 1620 assert_spin_locked(¤t->sighand->siglock); 1621 1622 /* Ref-count the new filter user, and assign it. */ 1623 get_seccomp_filter(current); 1624 p->seccomp = current->seccomp; 1625 1626 /* 1627 * Explicitly enable no_new_privs here in case it got set 1628 * between the task_struct being duplicated and holding the 1629 * sighand lock. The seccomp state and nnp must be in sync. 1630 */ 1631 if (task_no_new_privs(current)) 1632 task_set_no_new_privs(p); 1633 1634 /* 1635 * If the parent gained a seccomp mode after copying thread 1636 * flags and between before we held the sighand lock, we have 1637 * to manually enable the seccomp thread flag here. 1638 */ 1639 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1640 set_task_syscall_work(p, SECCOMP); 1641 #endif 1642 } 1643 1644 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1645 { 1646 current->clear_child_tid = tidptr; 1647 1648 return task_pid_vnr(current); 1649 } 1650 1651 static void rt_mutex_init_task(struct task_struct *p) 1652 { 1653 raw_spin_lock_init(&p->pi_lock); 1654 #ifdef CONFIG_RT_MUTEXES 1655 p->pi_waiters = RB_ROOT_CACHED; 1656 p->pi_top_task = NULL; 1657 p->pi_blocked_on = NULL; 1658 #endif 1659 } 1660 1661 static inline void init_task_pid_links(struct task_struct *task) 1662 { 1663 enum pid_type type; 1664 1665 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1666 INIT_HLIST_NODE(&task->pid_links[type]); 1667 } 1668 1669 static inline void 1670 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1671 { 1672 if (type == PIDTYPE_PID) 1673 task->thread_pid = pid; 1674 else 1675 task->signal->pids[type] = pid; 1676 } 1677 1678 static inline void rcu_copy_process(struct task_struct *p) 1679 { 1680 #ifdef CONFIG_PREEMPT_RCU 1681 p->rcu_read_lock_nesting = 0; 1682 p->rcu_read_unlock_special.s = 0; 1683 p->rcu_blocked_node = NULL; 1684 INIT_LIST_HEAD(&p->rcu_node_entry); 1685 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1686 #ifdef CONFIG_TASKS_RCU 1687 p->rcu_tasks_holdout = false; 1688 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1689 p->rcu_tasks_idle_cpu = -1; 1690 #endif /* #ifdef CONFIG_TASKS_RCU */ 1691 #ifdef CONFIG_TASKS_TRACE_RCU 1692 p->trc_reader_nesting = 0; 1693 p->trc_reader_special.s = 0; 1694 INIT_LIST_HEAD(&p->trc_holdout_list); 1695 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1696 } 1697 1698 struct pid *pidfd_pid(const struct file *file) 1699 { 1700 if (file->f_op == &pidfd_fops) 1701 return file->private_data; 1702 1703 return ERR_PTR(-EBADF); 1704 } 1705 1706 static int pidfd_release(struct inode *inode, struct file *file) 1707 { 1708 struct pid *pid = file->private_data; 1709 1710 file->private_data = NULL; 1711 put_pid(pid); 1712 return 0; 1713 } 1714 1715 #ifdef CONFIG_PROC_FS 1716 /** 1717 * pidfd_show_fdinfo - print information about a pidfd 1718 * @m: proc fdinfo file 1719 * @f: file referencing a pidfd 1720 * 1721 * Pid: 1722 * This function will print the pid that a given pidfd refers to in the 1723 * pid namespace of the procfs instance. 1724 * If the pid namespace of the process is not a descendant of the pid 1725 * namespace of the procfs instance 0 will be shown as its pid. This is 1726 * similar to calling getppid() on a process whose parent is outside of 1727 * its pid namespace. 1728 * 1729 * NSpid: 1730 * If pid namespaces are supported then this function will also print 1731 * the pid of a given pidfd refers to for all descendant pid namespaces 1732 * starting from the current pid namespace of the instance, i.e. the 1733 * Pid field and the first entry in the NSpid field will be identical. 1734 * If the pid namespace of the process is not a descendant of the pid 1735 * namespace of the procfs instance 0 will be shown as its first NSpid 1736 * entry and no others will be shown. 1737 * Note that this differs from the Pid and NSpid fields in 1738 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1739 * the pid namespace of the procfs instance. The difference becomes 1740 * obvious when sending around a pidfd between pid namespaces from a 1741 * different branch of the tree, i.e. where no ancestoral relation is 1742 * present between the pid namespaces: 1743 * - create two new pid namespaces ns1 and ns2 in the initial pid 1744 * namespace (also take care to create new mount namespaces in the 1745 * new pid namespace and mount procfs) 1746 * - create a process with a pidfd in ns1 1747 * - send pidfd from ns1 to ns2 1748 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1749 * have exactly one entry, which is 0 1750 */ 1751 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1752 { 1753 struct pid *pid = f->private_data; 1754 struct pid_namespace *ns; 1755 pid_t nr = -1; 1756 1757 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1758 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1759 nr = pid_nr_ns(pid, ns); 1760 } 1761 1762 seq_put_decimal_ll(m, "Pid:\t", nr); 1763 1764 #ifdef CONFIG_PID_NS 1765 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1766 if (nr > 0) { 1767 int i; 1768 1769 /* If nr is non-zero it means that 'pid' is valid and that 1770 * ns, i.e. the pid namespace associated with the procfs 1771 * instance, is in the pid namespace hierarchy of pid. 1772 * Start at one below the already printed level. 1773 */ 1774 for (i = ns->level + 1; i <= pid->level; i++) 1775 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1776 } 1777 #endif 1778 seq_putc(m, '\n'); 1779 } 1780 #endif 1781 1782 /* 1783 * Poll support for process exit notification. 1784 */ 1785 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1786 { 1787 struct pid *pid = file->private_data; 1788 __poll_t poll_flags = 0; 1789 1790 poll_wait(file, &pid->wait_pidfd, pts); 1791 1792 /* 1793 * Inform pollers only when the whole thread group exits. 1794 * If the thread group leader exits before all other threads in the 1795 * group, then poll(2) should block, similar to the wait(2) family. 1796 */ 1797 if (thread_group_exited(pid)) 1798 poll_flags = EPOLLIN | EPOLLRDNORM; 1799 1800 return poll_flags; 1801 } 1802 1803 const struct file_operations pidfd_fops = { 1804 .release = pidfd_release, 1805 .poll = pidfd_poll, 1806 #ifdef CONFIG_PROC_FS 1807 .show_fdinfo = pidfd_show_fdinfo, 1808 #endif 1809 }; 1810 1811 static void __delayed_free_task(struct rcu_head *rhp) 1812 { 1813 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1814 1815 free_task(tsk); 1816 } 1817 1818 static __always_inline void delayed_free_task(struct task_struct *tsk) 1819 { 1820 if (IS_ENABLED(CONFIG_MEMCG)) 1821 call_rcu(&tsk->rcu, __delayed_free_task); 1822 else 1823 free_task(tsk); 1824 } 1825 1826 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1827 { 1828 /* Skip if kernel thread */ 1829 if (!tsk->mm) 1830 return; 1831 1832 /* Skip if spawning a thread or using vfork */ 1833 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1834 return; 1835 1836 /* We need to synchronize with __set_oom_adj */ 1837 mutex_lock(&oom_adj_mutex); 1838 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1839 /* Update the values in case they were changed after copy_signal */ 1840 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1841 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1842 mutex_unlock(&oom_adj_mutex); 1843 } 1844 1845 /* 1846 * This creates a new process as a copy of the old one, 1847 * but does not actually start it yet. 1848 * 1849 * It copies the registers, and all the appropriate 1850 * parts of the process environment (as per the clone 1851 * flags). The actual kick-off is left to the caller. 1852 */ 1853 static __latent_entropy struct task_struct *copy_process( 1854 struct pid *pid, 1855 int trace, 1856 int node, 1857 struct kernel_clone_args *args) 1858 { 1859 int pidfd = -1, retval; 1860 struct task_struct *p; 1861 struct multiprocess_signals delayed; 1862 struct file *pidfile = NULL; 1863 u64 clone_flags = args->flags; 1864 struct nsproxy *nsp = current->nsproxy; 1865 1866 /* 1867 * Don't allow sharing the root directory with processes in a different 1868 * namespace 1869 */ 1870 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1871 return ERR_PTR(-EINVAL); 1872 1873 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1874 return ERR_PTR(-EINVAL); 1875 1876 /* 1877 * Thread groups must share signals as well, and detached threads 1878 * can only be started up within the thread group. 1879 */ 1880 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1881 return ERR_PTR(-EINVAL); 1882 1883 /* 1884 * Shared signal handlers imply shared VM. By way of the above, 1885 * thread groups also imply shared VM. Blocking this case allows 1886 * for various simplifications in other code. 1887 */ 1888 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1889 return ERR_PTR(-EINVAL); 1890 1891 /* 1892 * Siblings of global init remain as zombies on exit since they are 1893 * not reaped by their parent (swapper). To solve this and to avoid 1894 * multi-rooted process trees, prevent global and container-inits 1895 * from creating siblings. 1896 */ 1897 if ((clone_flags & CLONE_PARENT) && 1898 current->signal->flags & SIGNAL_UNKILLABLE) 1899 return ERR_PTR(-EINVAL); 1900 1901 /* 1902 * If the new process will be in a different pid or user namespace 1903 * do not allow it to share a thread group with the forking task. 1904 */ 1905 if (clone_flags & CLONE_THREAD) { 1906 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1907 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1908 return ERR_PTR(-EINVAL); 1909 } 1910 1911 /* 1912 * If the new process will be in a different time namespace 1913 * do not allow it to share VM or a thread group with the forking task. 1914 */ 1915 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1916 if (nsp->time_ns != nsp->time_ns_for_children) 1917 return ERR_PTR(-EINVAL); 1918 } 1919 1920 if (clone_flags & CLONE_PIDFD) { 1921 /* 1922 * - CLONE_DETACHED is blocked so that we can potentially 1923 * reuse it later for CLONE_PIDFD. 1924 * - CLONE_THREAD is blocked until someone really needs it. 1925 */ 1926 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1927 return ERR_PTR(-EINVAL); 1928 } 1929 1930 /* 1931 * Force any signals received before this point to be delivered 1932 * before the fork happens. Collect up signals sent to multiple 1933 * processes that happen during the fork and delay them so that 1934 * they appear to happen after the fork. 1935 */ 1936 sigemptyset(&delayed.signal); 1937 INIT_HLIST_NODE(&delayed.node); 1938 1939 spin_lock_irq(¤t->sighand->siglock); 1940 if (!(clone_flags & CLONE_THREAD)) 1941 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1942 recalc_sigpending(); 1943 spin_unlock_irq(¤t->sighand->siglock); 1944 retval = -ERESTARTNOINTR; 1945 if (task_sigpending(current)) 1946 goto fork_out; 1947 1948 retval = -ENOMEM; 1949 p = dup_task_struct(current, node); 1950 if (!p) 1951 goto fork_out; 1952 if (args->io_thread) { 1953 /* 1954 * Mark us an IO worker, and block any signal that isn't 1955 * fatal or STOP 1956 */ 1957 p->flags |= PF_IO_WORKER; 1958 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1959 } 1960 1961 /* 1962 * This _must_ happen before we call free_task(), i.e. before we jump 1963 * to any of the bad_fork_* labels. This is to avoid freeing 1964 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1965 * kernel threads (PF_KTHREAD). 1966 */ 1967 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1968 /* 1969 * Clear TID on mm_release()? 1970 */ 1971 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1972 1973 ftrace_graph_init_task(p); 1974 1975 rt_mutex_init_task(p); 1976 1977 lockdep_assert_irqs_enabled(); 1978 #ifdef CONFIG_PROVE_LOCKING 1979 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1980 #endif 1981 retval = -EAGAIN; 1982 if (atomic_read(&p->real_cred->user->processes) >= 1983 task_rlimit(p, RLIMIT_NPROC)) { 1984 if (p->real_cred->user != INIT_USER && 1985 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1986 goto bad_fork_free; 1987 } 1988 current->flags &= ~PF_NPROC_EXCEEDED; 1989 1990 retval = copy_creds(p, clone_flags); 1991 if (retval < 0) 1992 goto bad_fork_free; 1993 1994 /* 1995 * If multiple threads are within copy_process(), then this check 1996 * triggers too late. This doesn't hurt, the check is only there 1997 * to stop root fork bombs. 1998 */ 1999 retval = -EAGAIN; 2000 if (data_race(nr_threads >= max_threads)) 2001 goto bad_fork_cleanup_count; 2002 2003 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2004 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 2005 p->flags |= PF_FORKNOEXEC; 2006 INIT_LIST_HEAD(&p->children); 2007 INIT_LIST_HEAD(&p->sibling); 2008 rcu_copy_process(p); 2009 p->vfork_done = NULL; 2010 spin_lock_init(&p->alloc_lock); 2011 2012 init_sigpending(&p->pending); 2013 p->sigqueue_cache = NULL; 2014 2015 p->utime = p->stime = p->gtime = 0; 2016 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2017 p->utimescaled = p->stimescaled = 0; 2018 #endif 2019 prev_cputime_init(&p->prev_cputime); 2020 2021 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2022 seqcount_init(&p->vtime.seqcount); 2023 p->vtime.starttime = 0; 2024 p->vtime.state = VTIME_INACTIVE; 2025 #endif 2026 2027 #ifdef CONFIG_IO_URING 2028 p->io_uring = NULL; 2029 #endif 2030 2031 #if defined(SPLIT_RSS_COUNTING) 2032 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2033 #endif 2034 2035 p->default_timer_slack_ns = current->timer_slack_ns; 2036 2037 #ifdef CONFIG_PSI 2038 p->psi_flags = 0; 2039 #endif 2040 2041 task_io_accounting_init(&p->ioac); 2042 acct_clear_integrals(p); 2043 2044 posix_cputimers_init(&p->posix_cputimers); 2045 2046 p->io_context = NULL; 2047 audit_set_context(p, NULL); 2048 cgroup_fork(p); 2049 #ifdef CONFIG_NUMA 2050 p->mempolicy = mpol_dup(p->mempolicy); 2051 if (IS_ERR(p->mempolicy)) { 2052 retval = PTR_ERR(p->mempolicy); 2053 p->mempolicy = NULL; 2054 goto bad_fork_cleanup_threadgroup_lock; 2055 } 2056 #endif 2057 #ifdef CONFIG_CPUSETS 2058 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2059 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2060 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2061 #endif 2062 #ifdef CONFIG_TRACE_IRQFLAGS 2063 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2064 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2065 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2066 p->softirqs_enabled = 1; 2067 p->softirq_context = 0; 2068 #endif 2069 2070 p->pagefault_disabled = 0; 2071 2072 #ifdef CONFIG_LOCKDEP 2073 lockdep_init_task(p); 2074 #endif 2075 2076 #ifdef CONFIG_DEBUG_MUTEXES 2077 p->blocked_on = NULL; /* not blocked yet */ 2078 #endif 2079 #ifdef CONFIG_BCACHE 2080 p->sequential_io = 0; 2081 p->sequential_io_avg = 0; 2082 #endif 2083 2084 /* Perform scheduler related setup. Assign this task to a CPU. */ 2085 retval = sched_fork(clone_flags, p); 2086 if (retval) 2087 goto bad_fork_cleanup_policy; 2088 2089 retval = perf_event_init_task(p, clone_flags); 2090 if (retval) 2091 goto bad_fork_cleanup_policy; 2092 retval = audit_alloc(p); 2093 if (retval) 2094 goto bad_fork_cleanup_perf; 2095 /* copy all the process information */ 2096 shm_init_task(p); 2097 retval = security_task_alloc(p, clone_flags); 2098 if (retval) 2099 goto bad_fork_cleanup_audit; 2100 retval = copy_semundo(clone_flags, p); 2101 if (retval) 2102 goto bad_fork_cleanup_security; 2103 retval = copy_files(clone_flags, p); 2104 if (retval) 2105 goto bad_fork_cleanup_semundo; 2106 retval = copy_fs(clone_flags, p); 2107 if (retval) 2108 goto bad_fork_cleanup_files; 2109 retval = copy_sighand(clone_flags, p); 2110 if (retval) 2111 goto bad_fork_cleanup_fs; 2112 retval = copy_signal(clone_flags, p); 2113 if (retval) 2114 goto bad_fork_cleanup_sighand; 2115 retval = copy_mm(clone_flags, p); 2116 if (retval) 2117 goto bad_fork_cleanup_signal; 2118 retval = copy_namespaces(clone_flags, p); 2119 if (retval) 2120 goto bad_fork_cleanup_mm; 2121 retval = copy_io(clone_flags, p); 2122 if (retval) 2123 goto bad_fork_cleanup_namespaces; 2124 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2125 if (retval) 2126 goto bad_fork_cleanup_io; 2127 2128 stackleak_task_init(p); 2129 2130 if (pid != &init_struct_pid) { 2131 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2132 args->set_tid_size); 2133 if (IS_ERR(pid)) { 2134 retval = PTR_ERR(pid); 2135 goto bad_fork_cleanup_thread; 2136 } 2137 } 2138 2139 /* 2140 * This has to happen after we've potentially unshared the file 2141 * descriptor table (so that the pidfd doesn't leak into the child 2142 * if the fd table isn't shared). 2143 */ 2144 if (clone_flags & CLONE_PIDFD) { 2145 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2146 if (retval < 0) 2147 goto bad_fork_free_pid; 2148 2149 pidfd = retval; 2150 2151 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2152 O_RDWR | O_CLOEXEC); 2153 if (IS_ERR(pidfile)) { 2154 put_unused_fd(pidfd); 2155 retval = PTR_ERR(pidfile); 2156 goto bad_fork_free_pid; 2157 } 2158 get_pid(pid); /* held by pidfile now */ 2159 2160 retval = put_user(pidfd, args->pidfd); 2161 if (retval) 2162 goto bad_fork_put_pidfd; 2163 } 2164 2165 #ifdef CONFIG_BLOCK 2166 p->plug = NULL; 2167 #endif 2168 futex_init_task(p); 2169 2170 /* 2171 * sigaltstack should be cleared when sharing the same VM 2172 */ 2173 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2174 sas_ss_reset(p); 2175 2176 /* 2177 * Syscall tracing and stepping should be turned off in the 2178 * child regardless of CLONE_PTRACE. 2179 */ 2180 user_disable_single_step(p); 2181 clear_task_syscall_work(p, SYSCALL_TRACE); 2182 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2183 clear_task_syscall_work(p, SYSCALL_EMU); 2184 #endif 2185 clear_tsk_latency_tracing(p); 2186 2187 /* ok, now we should be set up.. */ 2188 p->pid = pid_nr(pid); 2189 if (clone_flags & CLONE_THREAD) { 2190 p->group_leader = current->group_leader; 2191 p->tgid = current->tgid; 2192 } else { 2193 p->group_leader = p; 2194 p->tgid = p->pid; 2195 } 2196 2197 p->nr_dirtied = 0; 2198 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2199 p->dirty_paused_when = 0; 2200 2201 p->pdeath_signal = 0; 2202 INIT_LIST_HEAD(&p->thread_group); 2203 p->task_works = NULL; 2204 2205 #ifdef CONFIG_KRETPROBES 2206 p->kretprobe_instances.first = NULL; 2207 #endif 2208 2209 /* 2210 * Ensure that the cgroup subsystem policies allow the new process to be 2211 * forked. It should be noted that the new process's css_set can be changed 2212 * between here and cgroup_post_fork() if an organisation operation is in 2213 * progress. 2214 */ 2215 retval = cgroup_can_fork(p, args); 2216 if (retval) 2217 goto bad_fork_put_pidfd; 2218 2219 /* 2220 * From this point on we must avoid any synchronous user-space 2221 * communication until we take the tasklist-lock. In particular, we do 2222 * not want user-space to be able to predict the process start-time by 2223 * stalling fork(2) after we recorded the start_time but before it is 2224 * visible to the system. 2225 */ 2226 2227 p->start_time = ktime_get_ns(); 2228 p->start_boottime = ktime_get_boottime_ns(); 2229 2230 /* 2231 * Make it visible to the rest of the system, but dont wake it up yet. 2232 * Need tasklist lock for parent etc handling! 2233 */ 2234 write_lock_irq(&tasklist_lock); 2235 2236 /* CLONE_PARENT re-uses the old parent */ 2237 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2238 p->real_parent = current->real_parent; 2239 p->parent_exec_id = current->parent_exec_id; 2240 if (clone_flags & CLONE_THREAD) 2241 p->exit_signal = -1; 2242 else 2243 p->exit_signal = current->group_leader->exit_signal; 2244 } else { 2245 p->real_parent = current; 2246 p->parent_exec_id = current->self_exec_id; 2247 p->exit_signal = args->exit_signal; 2248 } 2249 2250 klp_copy_process(p); 2251 2252 spin_lock(¤t->sighand->siglock); 2253 2254 /* 2255 * Copy seccomp details explicitly here, in case they were changed 2256 * before holding sighand lock. 2257 */ 2258 copy_seccomp(p); 2259 2260 rseq_fork(p, clone_flags); 2261 2262 /* Don't start children in a dying pid namespace */ 2263 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2264 retval = -ENOMEM; 2265 goto bad_fork_cancel_cgroup; 2266 } 2267 2268 /* Let kill terminate clone/fork in the middle */ 2269 if (fatal_signal_pending(current)) { 2270 retval = -EINTR; 2271 goto bad_fork_cancel_cgroup; 2272 } 2273 2274 /* past the last point of failure */ 2275 if (pidfile) 2276 fd_install(pidfd, pidfile); 2277 2278 init_task_pid_links(p); 2279 if (likely(p->pid)) { 2280 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2281 2282 init_task_pid(p, PIDTYPE_PID, pid); 2283 if (thread_group_leader(p)) { 2284 init_task_pid(p, PIDTYPE_TGID, pid); 2285 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2286 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2287 2288 if (is_child_reaper(pid)) { 2289 ns_of_pid(pid)->child_reaper = p; 2290 p->signal->flags |= SIGNAL_UNKILLABLE; 2291 } 2292 p->signal->shared_pending.signal = delayed.signal; 2293 p->signal->tty = tty_kref_get(current->signal->tty); 2294 /* 2295 * Inherit has_child_subreaper flag under the same 2296 * tasklist_lock with adding child to the process tree 2297 * for propagate_has_child_subreaper optimization. 2298 */ 2299 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2300 p->real_parent->signal->is_child_subreaper; 2301 list_add_tail(&p->sibling, &p->real_parent->children); 2302 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2303 attach_pid(p, PIDTYPE_TGID); 2304 attach_pid(p, PIDTYPE_PGID); 2305 attach_pid(p, PIDTYPE_SID); 2306 __this_cpu_inc(process_counts); 2307 } else { 2308 current->signal->nr_threads++; 2309 atomic_inc(¤t->signal->live); 2310 refcount_inc(¤t->signal->sigcnt); 2311 task_join_group_stop(p); 2312 list_add_tail_rcu(&p->thread_group, 2313 &p->group_leader->thread_group); 2314 list_add_tail_rcu(&p->thread_node, 2315 &p->signal->thread_head); 2316 } 2317 attach_pid(p, PIDTYPE_PID); 2318 nr_threads++; 2319 } 2320 total_forks++; 2321 hlist_del_init(&delayed.node); 2322 spin_unlock(¤t->sighand->siglock); 2323 syscall_tracepoint_update(p); 2324 write_unlock_irq(&tasklist_lock); 2325 2326 proc_fork_connector(p); 2327 sched_post_fork(p); 2328 cgroup_post_fork(p, args); 2329 perf_event_fork(p); 2330 2331 trace_task_newtask(p, clone_flags); 2332 uprobe_copy_process(p, clone_flags); 2333 2334 copy_oom_score_adj(clone_flags, p); 2335 2336 return p; 2337 2338 bad_fork_cancel_cgroup: 2339 spin_unlock(¤t->sighand->siglock); 2340 write_unlock_irq(&tasklist_lock); 2341 cgroup_cancel_fork(p, args); 2342 bad_fork_put_pidfd: 2343 if (clone_flags & CLONE_PIDFD) { 2344 fput(pidfile); 2345 put_unused_fd(pidfd); 2346 } 2347 bad_fork_free_pid: 2348 if (pid != &init_struct_pid) 2349 free_pid(pid); 2350 bad_fork_cleanup_thread: 2351 exit_thread(p); 2352 bad_fork_cleanup_io: 2353 if (p->io_context) 2354 exit_io_context(p); 2355 bad_fork_cleanup_namespaces: 2356 exit_task_namespaces(p); 2357 bad_fork_cleanup_mm: 2358 if (p->mm) { 2359 mm_clear_owner(p->mm, p); 2360 mmput(p->mm); 2361 } 2362 bad_fork_cleanup_signal: 2363 if (!(clone_flags & CLONE_THREAD)) 2364 free_signal_struct(p->signal); 2365 bad_fork_cleanup_sighand: 2366 __cleanup_sighand(p->sighand); 2367 bad_fork_cleanup_fs: 2368 exit_fs(p); /* blocking */ 2369 bad_fork_cleanup_files: 2370 exit_files(p); /* blocking */ 2371 bad_fork_cleanup_semundo: 2372 exit_sem(p); 2373 bad_fork_cleanup_security: 2374 security_task_free(p); 2375 bad_fork_cleanup_audit: 2376 audit_free(p); 2377 bad_fork_cleanup_perf: 2378 perf_event_free_task(p); 2379 bad_fork_cleanup_policy: 2380 lockdep_free_task(p); 2381 #ifdef CONFIG_NUMA 2382 mpol_put(p->mempolicy); 2383 bad_fork_cleanup_threadgroup_lock: 2384 #endif 2385 delayacct_tsk_free(p); 2386 bad_fork_cleanup_count: 2387 atomic_dec(&p->cred->user->processes); 2388 exit_creds(p); 2389 bad_fork_free: 2390 p->state = TASK_DEAD; 2391 put_task_stack(p); 2392 delayed_free_task(p); 2393 fork_out: 2394 spin_lock_irq(¤t->sighand->siglock); 2395 hlist_del_init(&delayed.node); 2396 spin_unlock_irq(¤t->sighand->siglock); 2397 return ERR_PTR(retval); 2398 } 2399 2400 static inline void init_idle_pids(struct task_struct *idle) 2401 { 2402 enum pid_type type; 2403 2404 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2405 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2406 init_task_pid(idle, type, &init_struct_pid); 2407 } 2408 } 2409 2410 struct task_struct *fork_idle(int cpu) 2411 { 2412 struct task_struct *task; 2413 struct kernel_clone_args args = { 2414 .flags = CLONE_VM, 2415 }; 2416 2417 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2418 if (!IS_ERR(task)) { 2419 init_idle_pids(task); 2420 init_idle(task, cpu); 2421 } 2422 2423 return task; 2424 } 2425 2426 struct mm_struct *copy_init_mm(void) 2427 { 2428 return dup_mm(NULL, &init_mm); 2429 } 2430 2431 /* 2432 * This is like kernel_clone(), but shaved down and tailored to just 2433 * creating io_uring workers. It returns a created task, or an error pointer. 2434 * The returned task is inactive, and the caller must fire it up through 2435 * wake_up_new_task(p). All signals are blocked in the created task. 2436 */ 2437 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2438 { 2439 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2440 CLONE_IO; 2441 struct kernel_clone_args args = { 2442 .flags = ((lower_32_bits(flags) | CLONE_VM | 2443 CLONE_UNTRACED) & ~CSIGNAL), 2444 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2445 .stack = (unsigned long)fn, 2446 .stack_size = (unsigned long)arg, 2447 .io_thread = 1, 2448 }; 2449 2450 return copy_process(NULL, 0, node, &args); 2451 } 2452 2453 /* 2454 * Ok, this is the main fork-routine. 2455 * 2456 * It copies the process, and if successful kick-starts 2457 * it and waits for it to finish using the VM if required. 2458 * 2459 * args->exit_signal is expected to be checked for sanity by the caller. 2460 */ 2461 pid_t kernel_clone(struct kernel_clone_args *args) 2462 { 2463 u64 clone_flags = args->flags; 2464 struct completion vfork; 2465 struct pid *pid; 2466 struct task_struct *p; 2467 int trace = 0; 2468 pid_t nr; 2469 2470 /* 2471 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2472 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2473 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2474 * field in struct clone_args and it still doesn't make sense to have 2475 * them both point at the same memory location. Performing this check 2476 * here has the advantage that we don't need to have a separate helper 2477 * to check for legacy clone(). 2478 */ 2479 if ((args->flags & CLONE_PIDFD) && 2480 (args->flags & CLONE_PARENT_SETTID) && 2481 (args->pidfd == args->parent_tid)) 2482 return -EINVAL; 2483 2484 /* 2485 * Determine whether and which event to report to ptracer. When 2486 * called from kernel_thread or CLONE_UNTRACED is explicitly 2487 * requested, no event is reported; otherwise, report if the event 2488 * for the type of forking is enabled. 2489 */ 2490 if (!(clone_flags & CLONE_UNTRACED)) { 2491 if (clone_flags & CLONE_VFORK) 2492 trace = PTRACE_EVENT_VFORK; 2493 else if (args->exit_signal != SIGCHLD) 2494 trace = PTRACE_EVENT_CLONE; 2495 else 2496 trace = PTRACE_EVENT_FORK; 2497 2498 if (likely(!ptrace_event_enabled(current, trace))) 2499 trace = 0; 2500 } 2501 2502 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2503 add_latent_entropy(); 2504 2505 if (IS_ERR(p)) 2506 return PTR_ERR(p); 2507 2508 /* 2509 * Do this prior waking up the new thread - the thread pointer 2510 * might get invalid after that point, if the thread exits quickly. 2511 */ 2512 trace_sched_process_fork(current, p); 2513 2514 pid = get_task_pid(p, PIDTYPE_PID); 2515 nr = pid_vnr(pid); 2516 2517 if (clone_flags & CLONE_PARENT_SETTID) 2518 put_user(nr, args->parent_tid); 2519 2520 if (clone_flags & CLONE_VFORK) { 2521 p->vfork_done = &vfork; 2522 init_completion(&vfork); 2523 get_task_struct(p); 2524 } 2525 2526 wake_up_new_task(p); 2527 2528 /* forking complete and child started to run, tell ptracer */ 2529 if (unlikely(trace)) 2530 ptrace_event_pid(trace, pid); 2531 2532 if (clone_flags & CLONE_VFORK) { 2533 if (!wait_for_vfork_done(p, &vfork)) 2534 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2535 } 2536 2537 put_pid(pid); 2538 return nr; 2539 } 2540 2541 /* 2542 * Create a kernel thread. 2543 */ 2544 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2545 { 2546 struct kernel_clone_args args = { 2547 .flags = ((lower_32_bits(flags) | CLONE_VM | 2548 CLONE_UNTRACED) & ~CSIGNAL), 2549 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2550 .stack = (unsigned long)fn, 2551 .stack_size = (unsigned long)arg, 2552 }; 2553 2554 return kernel_clone(&args); 2555 } 2556 2557 #ifdef __ARCH_WANT_SYS_FORK 2558 SYSCALL_DEFINE0(fork) 2559 { 2560 #ifdef CONFIG_MMU 2561 struct kernel_clone_args args = { 2562 .exit_signal = SIGCHLD, 2563 }; 2564 2565 return kernel_clone(&args); 2566 #else 2567 /* can not support in nommu mode */ 2568 return -EINVAL; 2569 #endif 2570 } 2571 #endif 2572 2573 #ifdef __ARCH_WANT_SYS_VFORK 2574 SYSCALL_DEFINE0(vfork) 2575 { 2576 struct kernel_clone_args args = { 2577 .flags = CLONE_VFORK | CLONE_VM, 2578 .exit_signal = SIGCHLD, 2579 }; 2580 2581 return kernel_clone(&args); 2582 } 2583 #endif 2584 2585 #ifdef __ARCH_WANT_SYS_CLONE 2586 #ifdef CONFIG_CLONE_BACKWARDS 2587 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2588 int __user *, parent_tidptr, 2589 unsigned long, tls, 2590 int __user *, child_tidptr) 2591 #elif defined(CONFIG_CLONE_BACKWARDS2) 2592 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2593 int __user *, parent_tidptr, 2594 int __user *, child_tidptr, 2595 unsigned long, tls) 2596 #elif defined(CONFIG_CLONE_BACKWARDS3) 2597 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2598 int, stack_size, 2599 int __user *, parent_tidptr, 2600 int __user *, child_tidptr, 2601 unsigned long, tls) 2602 #else 2603 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2604 int __user *, parent_tidptr, 2605 int __user *, child_tidptr, 2606 unsigned long, tls) 2607 #endif 2608 { 2609 struct kernel_clone_args args = { 2610 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2611 .pidfd = parent_tidptr, 2612 .child_tid = child_tidptr, 2613 .parent_tid = parent_tidptr, 2614 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2615 .stack = newsp, 2616 .tls = tls, 2617 }; 2618 2619 return kernel_clone(&args); 2620 } 2621 #endif 2622 2623 #ifdef __ARCH_WANT_SYS_CLONE3 2624 2625 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2626 struct clone_args __user *uargs, 2627 size_t usize) 2628 { 2629 int err; 2630 struct clone_args args; 2631 pid_t *kset_tid = kargs->set_tid; 2632 2633 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2634 CLONE_ARGS_SIZE_VER0); 2635 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2636 CLONE_ARGS_SIZE_VER1); 2637 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2638 CLONE_ARGS_SIZE_VER2); 2639 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2640 2641 if (unlikely(usize > PAGE_SIZE)) 2642 return -E2BIG; 2643 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2644 return -EINVAL; 2645 2646 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2647 if (err) 2648 return err; 2649 2650 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2651 return -EINVAL; 2652 2653 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2654 return -EINVAL; 2655 2656 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2657 return -EINVAL; 2658 2659 /* 2660 * Verify that higher 32bits of exit_signal are unset and that 2661 * it is a valid signal 2662 */ 2663 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2664 !valid_signal(args.exit_signal))) 2665 return -EINVAL; 2666 2667 if ((args.flags & CLONE_INTO_CGROUP) && 2668 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2669 return -EINVAL; 2670 2671 *kargs = (struct kernel_clone_args){ 2672 .flags = args.flags, 2673 .pidfd = u64_to_user_ptr(args.pidfd), 2674 .child_tid = u64_to_user_ptr(args.child_tid), 2675 .parent_tid = u64_to_user_ptr(args.parent_tid), 2676 .exit_signal = args.exit_signal, 2677 .stack = args.stack, 2678 .stack_size = args.stack_size, 2679 .tls = args.tls, 2680 .set_tid_size = args.set_tid_size, 2681 .cgroup = args.cgroup, 2682 }; 2683 2684 if (args.set_tid && 2685 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2686 (kargs->set_tid_size * sizeof(pid_t)))) 2687 return -EFAULT; 2688 2689 kargs->set_tid = kset_tid; 2690 2691 return 0; 2692 } 2693 2694 /** 2695 * clone3_stack_valid - check and prepare stack 2696 * @kargs: kernel clone args 2697 * 2698 * Verify that the stack arguments userspace gave us are sane. 2699 * In addition, set the stack direction for userspace since it's easy for us to 2700 * determine. 2701 */ 2702 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2703 { 2704 if (kargs->stack == 0) { 2705 if (kargs->stack_size > 0) 2706 return false; 2707 } else { 2708 if (kargs->stack_size == 0) 2709 return false; 2710 2711 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2712 return false; 2713 2714 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2715 kargs->stack += kargs->stack_size; 2716 #endif 2717 } 2718 2719 return true; 2720 } 2721 2722 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2723 { 2724 /* Verify that no unknown flags are passed along. */ 2725 if (kargs->flags & 2726 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2727 return false; 2728 2729 /* 2730 * - make the CLONE_DETACHED bit reuseable for clone3 2731 * - make the CSIGNAL bits reuseable for clone3 2732 */ 2733 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2734 return false; 2735 2736 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2737 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2738 return false; 2739 2740 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2741 kargs->exit_signal) 2742 return false; 2743 2744 if (!clone3_stack_valid(kargs)) 2745 return false; 2746 2747 return true; 2748 } 2749 2750 /** 2751 * clone3 - create a new process with specific properties 2752 * @uargs: argument structure 2753 * @size: size of @uargs 2754 * 2755 * clone3() is the extensible successor to clone()/clone2(). 2756 * It takes a struct as argument that is versioned by its size. 2757 * 2758 * Return: On success, a positive PID for the child process. 2759 * On error, a negative errno number. 2760 */ 2761 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2762 { 2763 int err; 2764 2765 struct kernel_clone_args kargs; 2766 pid_t set_tid[MAX_PID_NS_LEVEL]; 2767 2768 kargs.set_tid = set_tid; 2769 2770 err = copy_clone_args_from_user(&kargs, uargs, size); 2771 if (err) 2772 return err; 2773 2774 if (!clone3_args_valid(&kargs)) 2775 return -EINVAL; 2776 2777 return kernel_clone(&kargs); 2778 } 2779 #endif 2780 2781 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2782 { 2783 struct task_struct *leader, *parent, *child; 2784 int res; 2785 2786 read_lock(&tasklist_lock); 2787 leader = top = top->group_leader; 2788 down: 2789 for_each_thread(leader, parent) { 2790 list_for_each_entry(child, &parent->children, sibling) { 2791 res = visitor(child, data); 2792 if (res) { 2793 if (res < 0) 2794 goto out; 2795 leader = child; 2796 goto down; 2797 } 2798 up: 2799 ; 2800 } 2801 } 2802 2803 if (leader != top) { 2804 child = leader; 2805 parent = child->real_parent; 2806 leader = parent->group_leader; 2807 goto up; 2808 } 2809 out: 2810 read_unlock(&tasklist_lock); 2811 } 2812 2813 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2814 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2815 #endif 2816 2817 static void sighand_ctor(void *data) 2818 { 2819 struct sighand_struct *sighand = data; 2820 2821 spin_lock_init(&sighand->siglock); 2822 init_waitqueue_head(&sighand->signalfd_wqh); 2823 } 2824 2825 void __init proc_caches_init(void) 2826 { 2827 unsigned int mm_size; 2828 2829 sighand_cachep = kmem_cache_create("sighand_cache", 2830 sizeof(struct sighand_struct), 0, 2831 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2832 SLAB_ACCOUNT, sighand_ctor); 2833 signal_cachep = kmem_cache_create("signal_cache", 2834 sizeof(struct signal_struct), 0, 2835 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2836 NULL); 2837 files_cachep = kmem_cache_create("files_cache", 2838 sizeof(struct files_struct), 0, 2839 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2840 NULL); 2841 fs_cachep = kmem_cache_create("fs_cache", 2842 sizeof(struct fs_struct), 0, 2843 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2844 NULL); 2845 2846 /* 2847 * The mm_cpumask is located at the end of mm_struct, and is 2848 * dynamically sized based on the maximum CPU number this system 2849 * can have, taking hotplug into account (nr_cpu_ids). 2850 */ 2851 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2852 2853 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2854 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2855 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2856 offsetof(struct mm_struct, saved_auxv), 2857 sizeof_field(struct mm_struct, saved_auxv), 2858 NULL); 2859 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2860 mmap_init(); 2861 nsproxy_cache_init(); 2862 } 2863 2864 /* 2865 * Check constraints on flags passed to the unshare system call. 2866 */ 2867 static int check_unshare_flags(unsigned long unshare_flags) 2868 { 2869 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2870 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2871 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2872 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2873 CLONE_NEWTIME)) 2874 return -EINVAL; 2875 /* 2876 * Not implemented, but pretend it works if there is nothing 2877 * to unshare. Note that unsharing the address space or the 2878 * signal handlers also need to unshare the signal queues (aka 2879 * CLONE_THREAD). 2880 */ 2881 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2882 if (!thread_group_empty(current)) 2883 return -EINVAL; 2884 } 2885 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2886 if (refcount_read(¤t->sighand->count) > 1) 2887 return -EINVAL; 2888 } 2889 if (unshare_flags & CLONE_VM) { 2890 if (!current_is_single_threaded()) 2891 return -EINVAL; 2892 } 2893 2894 return 0; 2895 } 2896 2897 /* 2898 * Unshare the filesystem structure if it is being shared 2899 */ 2900 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2901 { 2902 struct fs_struct *fs = current->fs; 2903 2904 if (!(unshare_flags & CLONE_FS) || !fs) 2905 return 0; 2906 2907 /* don't need lock here; in the worst case we'll do useless copy */ 2908 if (fs->users == 1) 2909 return 0; 2910 2911 *new_fsp = copy_fs_struct(fs); 2912 if (!*new_fsp) 2913 return -ENOMEM; 2914 2915 return 0; 2916 } 2917 2918 /* 2919 * Unshare file descriptor table if it is being shared 2920 */ 2921 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2922 struct files_struct **new_fdp) 2923 { 2924 struct files_struct *fd = current->files; 2925 int error = 0; 2926 2927 if ((unshare_flags & CLONE_FILES) && 2928 (fd && atomic_read(&fd->count) > 1)) { 2929 *new_fdp = dup_fd(fd, max_fds, &error); 2930 if (!*new_fdp) 2931 return error; 2932 } 2933 2934 return 0; 2935 } 2936 2937 /* 2938 * unshare allows a process to 'unshare' part of the process 2939 * context which was originally shared using clone. copy_* 2940 * functions used by kernel_clone() cannot be used here directly 2941 * because they modify an inactive task_struct that is being 2942 * constructed. Here we are modifying the current, active, 2943 * task_struct. 2944 */ 2945 int ksys_unshare(unsigned long unshare_flags) 2946 { 2947 struct fs_struct *fs, *new_fs = NULL; 2948 struct files_struct *fd, *new_fd = NULL; 2949 struct cred *new_cred = NULL; 2950 struct nsproxy *new_nsproxy = NULL; 2951 int do_sysvsem = 0; 2952 int err; 2953 2954 /* 2955 * If unsharing a user namespace must also unshare the thread group 2956 * and unshare the filesystem root and working directories. 2957 */ 2958 if (unshare_flags & CLONE_NEWUSER) 2959 unshare_flags |= CLONE_THREAD | CLONE_FS; 2960 /* 2961 * If unsharing vm, must also unshare signal handlers. 2962 */ 2963 if (unshare_flags & CLONE_VM) 2964 unshare_flags |= CLONE_SIGHAND; 2965 /* 2966 * If unsharing a signal handlers, must also unshare the signal queues. 2967 */ 2968 if (unshare_flags & CLONE_SIGHAND) 2969 unshare_flags |= CLONE_THREAD; 2970 /* 2971 * If unsharing namespace, must also unshare filesystem information. 2972 */ 2973 if (unshare_flags & CLONE_NEWNS) 2974 unshare_flags |= CLONE_FS; 2975 2976 err = check_unshare_flags(unshare_flags); 2977 if (err) 2978 goto bad_unshare_out; 2979 /* 2980 * CLONE_NEWIPC must also detach from the undolist: after switching 2981 * to a new ipc namespace, the semaphore arrays from the old 2982 * namespace are unreachable. 2983 */ 2984 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2985 do_sysvsem = 1; 2986 err = unshare_fs(unshare_flags, &new_fs); 2987 if (err) 2988 goto bad_unshare_out; 2989 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2990 if (err) 2991 goto bad_unshare_cleanup_fs; 2992 err = unshare_userns(unshare_flags, &new_cred); 2993 if (err) 2994 goto bad_unshare_cleanup_fd; 2995 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2996 new_cred, new_fs); 2997 if (err) 2998 goto bad_unshare_cleanup_cred; 2999 3000 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3001 if (do_sysvsem) { 3002 /* 3003 * CLONE_SYSVSEM is equivalent to sys_exit(). 3004 */ 3005 exit_sem(current); 3006 } 3007 if (unshare_flags & CLONE_NEWIPC) { 3008 /* Orphan segments in old ns (see sem above). */ 3009 exit_shm(current); 3010 shm_init_task(current); 3011 } 3012 3013 if (new_nsproxy) 3014 switch_task_namespaces(current, new_nsproxy); 3015 3016 task_lock(current); 3017 3018 if (new_fs) { 3019 fs = current->fs; 3020 spin_lock(&fs->lock); 3021 current->fs = new_fs; 3022 if (--fs->users) 3023 new_fs = NULL; 3024 else 3025 new_fs = fs; 3026 spin_unlock(&fs->lock); 3027 } 3028 3029 if (new_fd) { 3030 fd = current->files; 3031 current->files = new_fd; 3032 new_fd = fd; 3033 } 3034 3035 task_unlock(current); 3036 3037 if (new_cred) { 3038 /* Install the new user namespace */ 3039 commit_creds(new_cred); 3040 new_cred = NULL; 3041 } 3042 } 3043 3044 perf_event_namespaces(current); 3045 3046 bad_unshare_cleanup_cred: 3047 if (new_cred) 3048 put_cred(new_cred); 3049 bad_unshare_cleanup_fd: 3050 if (new_fd) 3051 put_files_struct(new_fd); 3052 3053 bad_unshare_cleanup_fs: 3054 if (new_fs) 3055 free_fs_struct(new_fs); 3056 3057 bad_unshare_out: 3058 return err; 3059 } 3060 3061 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3062 { 3063 return ksys_unshare(unshare_flags); 3064 } 3065 3066 /* 3067 * Helper to unshare the files of the current task. 3068 * We don't want to expose copy_files internals to 3069 * the exec layer of the kernel. 3070 */ 3071 3072 int unshare_files(void) 3073 { 3074 struct task_struct *task = current; 3075 struct files_struct *old, *copy = NULL; 3076 int error; 3077 3078 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3079 if (error || !copy) 3080 return error; 3081 3082 old = task->files; 3083 task_lock(task); 3084 task->files = copy; 3085 task_unlock(task); 3086 put_files_struct(old); 3087 return 0; 3088 } 3089 3090 int sysctl_max_threads(struct ctl_table *table, int write, 3091 void *buffer, size_t *lenp, loff_t *ppos) 3092 { 3093 struct ctl_table t; 3094 int ret; 3095 int threads = max_threads; 3096 int min = 1; 3097 int max = MAX_THREADS; 3098 3099 t = *table; 3100 t.data = &threads; 3101 t.extra1 = &min; 3102 t.extra2 = &max; 3103 3104 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3105 if (ret || !write) 3106 return ret; 3107 3108 max_threads = threads; 3109 3110 return 0; 3111 } 3112