xref: /linux/kernel/fork.c (revision e26207a3819684e9b4450a2d30bdd065fa92d9c7)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
75 
76 #include <trace/events/sched.h>
77 
78 /*
79  * Protected counters by write_lock_irq(&tasklist_lock)
80  */
81 unsigned long total_forks;	/* Handle normal Linux uptimes. */
82 int nr_threads; 		/* The idle threads do not count.. */
83 
84 int max_threads;		/* tunable limit on nr_threads */
85 
86 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87 
88 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
89 
90 int nr_processes(void)
91 {
92 	int cpu;
93 	int total = 0;
94 
95 	for_each_possible_cpu(cpu)
96 		total += per_cpu(process_counts, cpu);
97 
98 	return total;
99 }
100 
101 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
102 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
103 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
104 static struct kmem_cache *task_struct_cachep;
105 #endif
106 
107 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
108 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
109 {
110 #ifdef CONFIG_DEBUG_STACK_USAGE
111 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
112 #else
113 	gfp_t mask = GFP_KERNEL;
114 #endif
115 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
116 }
117 
118 static inline void free_thread_info(struct thread_info *ti)
119 {
120 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
121 }
122 #endif
123 
124 /* SLAB cache for signal_struct structures (tsk->signal) */
125 static struct kmem_cache *signal_cachep;
126 
127 /* SLAB cache for sighand_struct structures (tsk->sighand) */
128 struct kmem_cache *sighand_cachep;
129 
130 /* SLAB cache for files_struct structures (tsk->files) */
131 struct kmem_cache *files_cachep;
132 
133 /* SLAB cache for fs_struct structures (tsk->fs) */
134 struct kmem_cache *fs_cachep;
135 
136 /* SLAB cache for vm_area_struct structures */
137 struct kmem_cache *vm_area_cachep;
138 
139 /* SLAB cache for mm_struct structures (tsk->mm) */
140 static struct kmem_cache *mm_cachep;
141 
142 static void account_kernel_stack(struct thread_info *ti, int account)
143 {
144 	struct zone *zone = page_zone(virt_to_page(ti));
145 
146 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
147 }
148 
149 void free_task(struct task_struct *tsk)
150 {
151 	prop_local_destroy_single(&tsk->dirties);
152 	account_kernel_stack(tsk->stack, -1);
153 	free_thread_info(tsk->stack);
154 	rt_mutex_debug_task_free(tsk);
155 	ftrace_graph_exit_task(tsk);
156 	free_task_struct(tsk);
157 }
158 EXPORT_SYMBOL(free_task);
159 
160 void __put_task_struct(struct task_struct *tsk)
161 {
162 	WARN_ON(!tsk->exit_state);
163 	WARN_ON(atomic_read(&tsk->usage));
164 	WARN_ON(tsk == current);
165 
166 	exit_creds(tsk);
167 	delayacct_tsk_free(tsk);
168 
169 	if (!profile_handoff_task(tsk))
170 		free_task(tsk);
171 }
172 
173 /*
174  * macro override instead of weak attribute alias, to workaround
175  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
176  */
177 #ifndef arch_task_cache_init
178 #define arch_task_cache_init()
179 #endif
180 
181 void __init fork_init(unsigned long mempages)
182 {
183 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
184 #ifndef ARCH_MIN_TASKALIGN
185 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
186 #endif
187 	/* create a slab on which task_structs can be allocated */
188 	task_struct_cachep =
189 		kmem_cache_create("task_struct", sizeof(struct task_struct),
190 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
191 #endif
192 
193 	/* do the arch specific task caches init */
194 	arch_task_cache_init();
195 
196 	/*
197 	 * The default maximum number of threads is set to a safe
198 	 * value: the thread structures can take up at most half
199 	 * of memory.
200 	 */
201 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
202 
203 	/*
204 	 * we need to allow at least 20 threads to boot a system
205 	 */
206 	if(max_threads < 20)
207 		max_threads = 20;
208 
209 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
210 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
211 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
212 		init_task.signal->rlim[RLIMIT_NPROC];
213 }
214 
215 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
216 					       struct task_struct *src)
217 {
218 	*dst = *src;
219 	return 0;
220 }
221 
222 static struct task_struct *dup_task_struct(struct task_struct *orig)
223 {
224 	struct task_struct *tsk;
225 	struct thread_info *ti;
226 	unsigned long *stackend;
227 
228 	int err;
229 
230 	prepare_to_copy(orig);
231 
232 	tsk = alloc_task_struct();
233 	if (!tsk)
234 		return NULL;
235 
236 	ti = alloc_thread_info(tsk);
237 	if (!ti) {
238 		free_task_struct(tsk);
239 		return NULL;
240 	}
241 
242  	err = arch_dup_task_struct(tsk, orig);
243 	if (err)
244 		goto out;
245 
246 	tsk->stack = ti;
247 
248 	err = prop_local_init_single(&tsk->dirties);
249 	if (err)
250 		goto out;
251 
252 	setup_thread_stack(tsk, orig);
253 	clear_user_return_notifier(tsk);
254 	stackend = end_of_stack(tsk);
255 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
256 
257 #ifdef CONFIG_CC_STACKPROTECTOR
258 	tsk->stack_canary = get_random_int();
259 #endif
260 
261 	/* One for us, one for whoever does the "release_task()" (usually parent) */
262 	atomic_set(&tsk->usage,2);
263 	atomic_set(&tsk->fs_excl, 0);
264 #ifdef CONFIG_BLK_DEV_IO_TRACE
265 	tsk->btrace_seq = 0;
266 #endif
267 	tsk->splice_pipe = NULL;
268 
269 	account_kernel_stack(ti, 1);
270 
271 	return tsk;
272 
273 out:
274 	free_thread_info(ti);
275 	free_task_struct(tsk);
276 	return NULL;
277 }
278 
279 #ifdef CONFIG_MMU
280 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
281 {
282 	struct vm_area_struct *mpnt, *tmp, **pprev;
283 	struct rb_node **rb_link, *rb_parent;
284 	int retval;
285 	unsigned long charge;
286 	struct mempolicy *pol;
287 
288 	down_write(&oldmm->mmap_sem);
289 	flush_cache_dup_mm(oldmm);
290 	/*
291 	 * Not linked in yet - no deadlock potential:
292 	 */
293 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
294 
295 	mm->locked_vm = 0;
296 	mm->mmap = NULL;
297 	mm->mmap_cache = NULL;
298 	mm->free_area_cache = oldmm->mmap_base;
299 	mm->cached_hole_size = ~0UL;
300 	mm->map_count = 0;
301 	cpumask_clear(mm_cpumask(mm));
302 	mm->mm_rb = RB_ROOT;
303 	rb_link = &mm->mm_rb.rb_node;
304 	rb_parent = NULL;
305 	pprev = &mm->mmap;
306 	retval = ksm_fork(mm, oldmm);
307 	if (retval)
308 		goto out;
309 
310 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
311 		struct file *file;
312 
313 		if (mpnt->vm_flags & VM_DONTCOPY) {
314 			long pages = vma_pages(mpnt);
315 			mm->total_vm -= pages;
316 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
317 								-pages);
318 			continue;
319 		}
320 		charge = 0;
321 		if (mpnt->vm_flags & VM_ACCOUNT) {
322 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
323 			if (security_vm_enough_memory(len))
324 				goto fail_nomem;
325 			charge = len;
326 		}
327 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
328 		if (!tmp)
329 			goto fail_nomem;
330 		*tmp = *mpnt;
331 		pol = mpol_dup(vma_policy(mpnt));
332 		retval = PTR_ERR(pol);
333 		if (IS_ERR(pol))
334 			goto fail_nomem_policy;
335 		vma_set_policy(tmp, pol);
336 		tmp->vm_flags &= ~VM_LOCKED;
337 		tmp->vm_mm = mm;
338 		tmp->vm_next = NULL;
339 		anon_vma_link(tmp);
340 		file = tmp->vm_file;
341 		if (file) {
342 			struct inode *inode = file->f_path.dentry->d_inode;
343 			struct address_space *mapping = file->f_mapping;
344 
345 			get_file(file);
346 			if (tmp->vm_flags & VM_DENYWRITE)
347 				atomic_dec(&inode->i_writecount);
348 			spin_lock(&mapping->i_mmap_lock);
349 			if (tmp->vm_flags & VM_SHARED)
350 				mapping->i_mmap_writable++;
351 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
352 			flush_dcache_mmap_lock(mapping);
353 			/* insert tmp into the share list, just after mpnt */
354 			vma_prio_tree_add(tmp, mpnt);
355 			flush_dcache_mmap_unlock(mapping);
356 			spin_unlock(&mapping->i_mmap_lock);
357 		}
358 
359 		/*
360 		 * Clear hugetlb-related page reserves for children. This only
361 		 * affects MAP_PRIVATE mappings. Faults generated by the child
362 		 * are not guaranteed to succeed, even if read-only
363 		 */
364 		if (is_vm_hugetlb_page(tmp))
365 			reset_vma_resv_huge_pages(tmp);
366 
367 		/*
368 		 * Link in the new vma and copy the page table entries.
369 		 */
370 		*pprev = tmp;
371 		pprev = &tmp->vm_next;
372 
373 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
374 		rb_link = &tmp->vm_rb.rb_right;
375 		rb_parent = &tmp->vm_rb;
376 
377 		mm->map_count++;
378 		retval = copy_page_range(mm, oldmm, mpnt);
379 
380 		if (tmp->vm_ops && tmp->vm_ops->open)
381 			tmp->vm_ops->open(tmp);
382 
383 		if (retval)
384 			goto out;
385 	}
386 	/* a new mm has just been created */
387 	arch_dup_mmap(oldmm, mm);
388 	retval = 0;
389 out:
390 	up_write(&mm->mmap_sem);
391 	flush_tlb_mm(oldmm);
392 	up_write(&oldmm->mmap_sem);
393 	return retval;
394 fail_nomem_policy:
395 	kmem_cache_free(vm_area_cachep, tmp);
396 fail_nomem:
397 	retval = -ENOMEM;
398 	vm_unacct_memory(charge);
399 	goto out;
400 }
401 
402 static inline int mm_alloc_pgd(struct mm_struct * mm)
403 {
404 	mm->pgd = pgd_alloc(mm);
405 	if (unlikely(!mm->pgd))
406 		return -ENOMEM;
407 	return 0;
408 }
409 
410 static inline void mm_free_pgd(struct mm_struct * mm)
411 {
412 	pgd_free(mm, mm->pgd);
413 }
414 #else
415 #define dup_mmap(mm, oldmm)	(0)
416 #define mm_alloc_pgd(mm)	(0)
417 #define mm_free_pgd(mm)
418 #endif /* CONFIG_MMU */
419 
420 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
421 
422 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
423 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
424 
425 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
426 
427 static int __init coredump_filter_setup(char *s)
428 {
429 	default_dump_filter =
430 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
431 		MMF_DUMP_FILTER_MASK;
432 	return 1;
433 }
434 
435 __setup("coredump_filter=", coredump_filter_setup);
436 
437 #include <linux/init_task.h>
438 
439 static void mm_init_aio(struct mm_struct *mm)
440 {
441 #ifdef CONFIG_AIO
442 	spin_lock_init(&mm->ioctx_lock);
443 	INIT_HLIST_HEAD(&mm->ioctx_list);
444 #endif
445 }
446 
447 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
448 {
449 	atomic_set(&mm->mm_users, 1);
450 	atomic_set(&mm->mm_count, 1);
451 	init_rwsem(&mm->mmap_sem);
452 	INIT_LIST_HEAD(&mm->mmlist);
453 	mm->flags = (current->mm) ?
454 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
455 	mm->core_state = NULL;
456 	mm->nr_ptes = 0;
457 	set_mm_counter(mm, file_rss, 0);
458 	set_mm_counter(mm, anon_rss, 0);
459 	spin_lock_init(&mm->page_table_lock);
460 	mm->free_area_cache = TASK_UNMAPPED_BASE;
461 	mm->cached_hole_size = ~0UL;
462 	mm_init_aio(mm);
463 	mm_init_owner(mm, p);
464 
465 	if (likely(!mm_alloc_pgd(mm))) {
466 		mm->def_flags = 0;
467 		mmu_notifier_mm_init(mm);
468 		return mm;
469 	}
470 
471 	free_mm(mm);
472 	return NULL;
473 }
474 
475 /*
476  * Allocate and initialize an mm_struct.
477  */
478 struct mm_struct * mm_alloc(void)
479 {
480 	struct mm_struct * mm;
481 
482 	mm = allocate_mm();
483 	if (mm) {
484 		memset(mm, 0, sizeof(*mm));
485 		mm = mm_init(mm, current);
486 	}
487 	return mm;
488 }
489 
490 /*
491  * Called when the last reference to the mm
492  * is dropped: either by a lazy thread or by
493  * mmput. Free the page directory and the mm.
494  */
495 void __mmdrop(struct mm_struct *mm)
496 {
497 	BUG_ON(mm == &init_mm);
498 	mm_free_pgd(mm);
499 	destroy_context(mm);
500 	mmu_notifier_mm_destroy(mm);
501 	free_mm(mm);
502 }
503 EXPORT_SYMBOL_GPL(__mmdrop);
504 
505 /*
506  * Decrement the use count and release all resources for an mm.
507  */
508 void mmput(struct mm_struct *mm)
509 {
510 	might_sleep();
511 
512 	if (atomic_dec_and_test(&mm->mm_users)) {
513 		exit_aio(mm);
514 		ksm_exit(mm);
515 		exit_mmap(mm);
516 		set_mm_exe_file(mm, NULL);
517 		if (!list_empty(&mm->mmlist)) {
518 			spin_lock(&mmlist_lock);
519 			list_del(&mm->mmlist);
520 			spin_unlock(&mmlist_lock);
521 		}
522 		put_swap_token(mm);
523 		if (mm->binfmt)
524 			module_put(mm->binfmt->module);
525 		mmdrop(mm);
526 	}
527 }
528 EXPORT_SYMBOL_GPL(mmput);
529 
530 /**
531  * get_task_mm - acquire a reference to the task's mm
532  *
533  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
534  * this kernel workthread has transiently adopted a user mm with use_mm,
535  * to do its AIO) is not set and if so returns a reference to it, after
536  * bumping up the use count.  User must release the mm via mmput()
537  * after use.  Typically used by /proc and ptrace.
538  */
539 struct mm_struct *get_task_mm(struct task_struct *task)
540 {
541 	struct mm_struct *mm;
542 
543 	task_lock(task);
544 	mm = task->mm;
545 	if (mm) {
546 		if (task->flags & PF_KTHREAD)
547 			mm = NULL;
548 		else
549 			atomic_inc(&mm->mm_users);
550 	}
551 	task_unlock(task);
552 	return mm;
553 }
554 EXPORT_SYMBOL_GPL(get_task_mm);
555 
556 /* Please note the differences between mmput and mm_release.
557  * mmput is called whenever we stop holding onto a mm_struct,
558  * error success whatever.
559  *
560  * mm_release is called after a mm_struct has been removed
561  * from the current process.
562  *
563  * This difference is important for error handling, when we
564  * only half set up a mm_struct for a new process and need to restore
565  * the old one.  Because we mmput the new mm_struct before
566  * restoring the old one. . .
567  * Eric Biederman 10 January 1998
568  */
569 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
570 {
571 	struct completion *vfork_done = tsk->vfork_done;
572 
573 	/* Get rid of any futexes when releasing the mm */
574 #ifdef CONFIG_FUTEX
575 	if (unlikely(tsk->robust_list)) {
576 		exit_robust_list(tsk);
577 		tsk->robust_list = NULL;
578 	}
579 #ifdef CONFIG_COMPAT
580 	if (unlikely(tsk->compat_robust_list)) {
581 		compat_exit_robust_list(tsk);
582 		tsk->compat_robust_list = NULL;
583 	}
584 #endif
585 	if (unlikely(!list_empty(&tsk->pi_state_list)))
586 		exit_pi_state_list(tsk);
587 #endif
588 
589 	/* Get rid of any cached register state */
590 	deactivate_mm(tsk, mm);
591 
592 	/* notify parent sleeping on vfork() */
593 	if (vfork_done) {
594 		tsk->vfork_done = NULL;
595 		complete(vfork_done);
596 	}
597 
598 	/*
599 	 * If we're exiting normally, clear a user-space tid field if
600 	 * requested.  We leave this alone when dying by signal, to leave
601 	 * the value intact in a core dump, and to save the unnecessary
602 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
603 	 */
604 	if (tsk->clear_child_tid) {
605 		if (!(tsk->flags & PF_SIGNALED) &&
606 		    atomic_read(&mm->mm_users) > 1) {
607 			/*
608 			 * We don't check the error code - if userspace has
609 			 * not set up a proper pointer then tough luck.
610 			 */
611 			put_user(0, tsk->clear_child_tid);
612 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
613 					1, NULL, NULL, 0);
614 		}
615 		tsk->clear_child_tid = NULL;
616 	}
617 }
618 
619 /*
620  * Allocate a new mm structure and copy contents from the
621  * mm structure of the passed in task structure.
622  */
623 struct mm_struct *dup_mm(struct task_struct *tsk)
624 {
625 	struct mm_struct *mm, *oldmm = current->mm;
626 	int err;
627 
628 	if (!oldmm)
629 		return NULL;
630 
631 	mm = allocate_mm();
632 	if (!mm)
633 		goto fail_nomem;
634 
635 	memcpy(mm, oldmm, sizeof(*mm));
636 
637 	/* Initializing for Swap token stuff */
638 	mm->token_priority = 0;
639 	mm->last_interval = 0;
640 
641 	if (!mm_init(mm, tsk))
642 		goto fail_nomem;
643 
644 	if (init_new_context(tsk, mm))
645 		goto fail_nocontext;
646 
647 	dup_mm_exe_file(oldmm, mm);
648 
649 	err = dup_mmap(mm, oldmm);
650 	if (err)
651 		goto free_pt;
652 
653 	mm->hiwater_rss = get_mm_rss(mm);
654 	mm->hiwater_vm = mm->total_vm;
655 
656 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
657 		goto free_pt;
658 
659 	return mm;
660 
661 free_pt:
662 	/* don't put binfmt in mmput, we haven't got module yet */
663 	mm->binfmt = NULL;
664 	mmput(mm);
665 
666 fail_nomem:
667 	return NULL;
668 
669 fail_nocontext:
670 	/*
671 	 * If init_new_context() failed, we cannot use mmput() to free the mm
672 	 * because it calls destroy_context()
673 	 */
674 	mm_free_pgd(mm);
675 	free_mm(mm);
676 	return NULL;
677 }
678 
679 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
680 {
681 	struct mm_struct * mm, *oldmm;
682 	int retval;
683 
684 	tsk->min_flt = tsk->maj_flt = 0;
685 	tsk->nvcsw = tsk->nivcsw = 0;
686 #ifdef CONFIG_DETECT_HUNG_TASK
687 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
688 #endif
689 
690 	tsk->mm = NULL;
691 	tsk->active_mm = NULL;
692 
693 	/*
694 	 * Are we cloning a kernel thread?
695 	 *
696 	 * We need to steal a active VM for that..
697 	 */
698 	oldmm = current->mm;
699 	if (!oldmm)
700 		return 0;
701 
702 	if (clone_flags & CLONE_VM) {
703 		atomic_inc(&oldmm->mm_users);
704 		mm = oldmm;
705 		goto good_mm;
706 	}
707 
708 	retval = -ENOMEM;
709 	mm = dup_mm(tsk);
710 	if (!mm)
711 		goto fail_nomem;
712 
713 good_mm:
714 	/* Initializing for Swap token stuff */
715 	mm->token_priority = 0;
716 	mm->last_interval = 0;
717 
718 	tsk->mm = mm;
719 	tsk->active_mm = mm;
720 	return 0;
721 
722 fail_nomem:
723 	return retval;
724 }
725 
726 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
727 {
728 	struct fs_struct *fs = current->fs;
729 	if (clone_flags & CLONE_FS) {
730 		/* tsk->fs is already what we want */
731 		write_lock(&fs->lock);
732 		if (fs->in_exec) {
733 			write_unlock(&fs->lock);
734 			return -EAGAIN;
735 		}
736 		fs->users++;
737 		write_unlock(&fs->lock);
738 		return 0;
739 	}
740 	tsk->fs = copy_fs_struct(fs);
741 	if (!tsk->fs)
742 		return -ENOMEM;
743 	return 0;
744 }
745 
746 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
747 {
748 	struct files_struct *oldf, *newf;
749 	int error = 0;
750 
751 	/*
752 	 * A background process may not have any files ...
753 	 */
754 	oldf = current->files;
755 	if (!oldf)
756 		goto out;
757 
758 	if (clone_flags & CLONE_FILES) {
759 		atomic_inc(&oldf->count);
760 		goto out;
761 	}
762 
763 	newf = dup_fd(oldf, &error);
764 	if (!newf)
765 		goto out;
766 
767 	tsk->files = newf;
768 	error = 0;
769 out:
770 	return error;
771 }
772 
773 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
774 {
775 #ifdef CONFIG_BLOCK
776 	struct io_context *ioc = current->io_context;
777 
778 	if (!ioc)
779 		return 0;
780 	/*
781 	 * Share io context with parent, if CLONE_IO is set
782 	 */
783 	if (clone_flags & CLONE_IO) {
784 		tsk->io_context = ioc_task_link(ioc);
785 		if (unlikely(!tsk->io_context))
786 			return -ENOMEM;
787 	} else if (ioprio_valid(ioc->ioprio)) {
788 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
789 		if (unlikely(!tsk->io_context))
790 			return -ENOMEM;
791 
792 		tsk->io_context->ioprio = ioc->ioprio;
793 	}
794 #endif
795 	return 0;
796 }
797 
798 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
799 {
800 	struct sighand_struct *sig;
801 
802 	if (clone_flags & CLONE_SIGHAND) {
803 		atomic_inc(&current->sighand->count);
804 		return 0;
805 	}
806 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
807 	rcu_assign_pointer(tsk->sighand, sig);
808 	if (!sig)
809 		return -ENOMEM;
810 	atomic_set(&sig->count, 1);
811 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
812 	return 0;
813 }
814 
815 void __cleanup_sighand(struct sighand_struct *sighand)
816 {
817 	if (atomic_dec_and_test(&sighand->count))
818 		kmem_cache_free(sighand_cachep, sighand);
819 }
820 
821 
822 /*
823  * Initialize POSIX timer handling for a thread group.
824  */
825 static void posix_cpu_timers_init_group(struct signal_struct *sig)
826 {
827 	/* Thread group counters. */
828 	thread_group_cputime_init(sig);
829 
830 	/* Expiration times and increments. */
831 	sig->it[CPUCLOCK_PROF].expires = cputime_zero;
832 	sig->it[CPUCLOCK_PROF].incr = cputime_zero;
833 	sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
834 	sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
835 
836 	/* Cached expiration times. */
837 	sig->cputime_expires.prof_exp = cputime_zero;
838 	sig->cputime_expires.virt_exp = cputime_zero;
839 	sig->cputime_expires.sched_exp = 0;
840 
841 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
842 		sig->cputime_expires.prof_exp =
843 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
844 		sig->cputimer.running = 1;
845 	}
846 
847 	/* The timer lists. */
848 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
849 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
850 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
851 }
852 
853 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
854 {
855 	struct signal_struct *sig;
856 
857 	if (clone_flags & CLONE_THREAD)
858 		return 0;
859 
860 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
861 	tsk->signal = sig;
862 	if (!sig)
863 		return -ENOMEM;
864 
865 	atomic_set(&sig->count, 1);
866 	atomic_set(&sig->live, 1);
867 	init_waitqueue_head(&sig->wait_chldexit);
868 	sig->flags = 0;
869 	if (clone_flags & CLONE_NEWPID)
870 		sig->flags |= SIGNAL_UNKILLABLE;
871 	sig->group_exit_code = 0;
872 	sig->group_exit_task = NULL;
873 	sig->group_stop_count = 0;
874 	sig->curr_target = tsk;
875 	init_sigpending(&sig->shared_pending);
876 	INIT_LIST_HEAD(&sig->posix_timers);
877 
878 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
879 	sig->it_real_incr.tv64 = 0;
880 	sig->real_timer.function = it_real_fn;
881 
882 	sig->leader = 0;	/* session leadership doesn't inherit */
883 	sig->tty_old_pgrp = NULL;
884 	sig->tty = NULL;
885 
886 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
887 	sig->gtime = cputime_zero;
888 	sig->cgtime = cputime_zero;
889 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
890 	sig->prev_utime = sig->prev_stime = cputime_zero;
891 #endif
892 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
893 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
894 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
895 	sig->maxrss = sig->cmaxrss = 0;
896 	task_io_accounting_init(&sig->ioac);
897 	sig->sum_sched_runtime = 0;
898 	taskstats_tgid_init(sig);
899 
900 	task_lock(current->group_leader);
901 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
902 	task_unlock(current->group_leader);
903 
904 	posix_cpu_timers_init_group(sig);
905 
906 	acct_init_pacct(&sig->pacct);
907 
908 	tty_audit_fork(sig);
909 
910 	sig->oom_adj = current->signal->oom_adj;
911 
912 	return 0;
913 }
914 
915 void __cleanup_signal(struct signal_struct *sig)
916 {
917 	thread_group_cputime_free(sig);
918 	tty_kref_put(sig->tty);
919 	kmem_cache_free(signal_cachep, sig);
920 }
921 
922 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
923 {
924 	unsigned long new_flags = p->flags;
925 
926 	new_flags &= ~PF_SUPERPRIV;
927 	new_flags |= PF_FORKNOEXEC;
928 	new_flags |= PF_STARTING;
929 	p->flags = new_flags;
930 	clear_freeze_flag(p);
931 }
932 
933 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
934 {
935 	current->clear_child_tid = tidptr;
936 
937 	return task_pid_vnr(current);
938 }
939 
940 static void rt_mutex_init_task(struct task_struct *p)
941 {
942 	raw_spin_lock_init(&p->pi_lock);
943 #ifdef CONFIG_RT_MUTEXES
944 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
945 	p->pi_blocked_on = NULL;
946 #endif
947 }
948 
949 #ifdef CONFIG_MM_OWNER
950 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
951 {
952 	mm->owner = p;
953 }
954 #endif /* CONFIG_MM_OWNER */
955 
956 /*
957  * Initialize POSIX timer handling for a single task.
958  */
959 static void posix_cpu_timers_init(struct task_struct *tsk)
960 {
961 	tsk->cputime_expires.prof_exp = cputime_zero;
962 	tsk->cputime_expires.virt_exp = cputime_zero;
963 	tsk->cputime_expires.sched_exp = 0;
964 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
965 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
966 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
967 }
968 
969 /*
970  * This creates a new process as a copy of the old one,
971  * but does not actually start it yet.
972  *
973  * It copies the registers, and all the appropriate
974  * parts of the process environment (as per the clone
975  * flags). The actual kick-off is left to the caller.
976  */
977 static struct task_struct *copy_process(unsigned long clone_flags,
978 					unsigned long stack_start,
979 					struct pt_regs *regs,
980 					unsigned long stack_size,
981 					int __user *child_tidptr,
982 					struct pid *pid,
983 					int trace)
984 {
985 	int retval;
986 	struct task_struct *p;
987 	int cgroup_callbacks_done = 0;
988 
989 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
990 		return ERR_PTR(-EINVAL);
991 
992 	/*
993 	 * Thread groups must share signals as well, and detached threads
994 	 * can only be started up within the thread group.
995 	 */
996 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
997 		return ERR_PTR(-EINVAL);
998 
999 	/*
1000 	 * Shared signal handlers imply shared VM. By way of the above,
1001 	 * thread groups also imply shared VM. Blocking this case allows
1002 	 * for various simplifications in other code.
1003 	 */
1004 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1005 		return ERR_PTR(-EINVAL);
1006 
1007 	/*
1008 	 * Siblings of global init remain as zombies on exit since they are
1009 	 * not reaped by their parent (swapper). To solve this and to avoid
1010 	 * multi-rooted process trees, prevent global and container-inits
1011 	 * from creating siblings.
1012 	 */
1013 	if ((clone_flags & CLONE_PARENT) &&
1014 				current->signal->flags & SIGNAL_UNKILLABLE)
1015 		return ERR_PTR(-EINVAL);
1016 
1017 	retval = security_task_create(clone_flags);
1018 	if (retval)
1019 		goto fork_out;
1020 
1021 	retval = -ENOMEM;
1022 	p = dup_task_struct(current);
1023 	if (!p)
1024 		goto fork_out;
1025 
1026 	ftrace_graph_init_task(p);
1027 
1028 	rt_mutex_init_task(p);
1029 
1030 #ifdef CONFIG_PROVE_LOCKING
1031 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1032 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1033 #endif
1034 	retval = -EAGAIN;
1035 	if (atomic_read(&p->real_cred->user->processes) >=
1036 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1037 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1038 		    p->real_cred->user != INIT_USER)
1039 			goto bad_fork_free;
1040 	}
1041 
1042 	retval = copy_creds(p, clone_flags);
1043 	if (retval < 0)
1044 		goto bad_fork_free;
1045 
1046 	/*
1047 	 * If multiple threads are within copy_process(), then this check
1048 	 * triggers too late. This doesn't hurt, the check is only there
1049 	 * to stop root fork bombs.
1050 	 */
1051 	retval = -EAGAIN;
1052 	if (nr_threads >= max_threads)
1053 		goto bad_fork_cleanup_count;
1054 
1055 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1056 		goto bad_fork_cleanup_count;
1057 
1058 	p->did_exec = 0;
1059 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1060 	copy_flags(clone_flags, p);
1061 	INIT_LIST_HEAD(&p->children);
1062 	INIT_LIST_HEAD(&p->sibling);
1063 	rcu_copy_process(p);
1064 	p->vfork_done = NULL;
1065 	spin_lock_init(&p->alloc_lock);
1066 
1067 	init_sigpending(&p->pending);
1068 
1069 	p->utime = cputime_zero;
1070 	p->stime = cputime_zero;
1071 	p->gtime = cputime_zero;
1072 	p->utimescaled = cputime_zero;
1073 	p->stimescaled = cputime_zero;
1074 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1075 	p->prev_utime = cputime_zero;
1076 	p->prev_stime = cputime_zero;
1077 #endif
1078 
1079 	p->default_timer_slack_ns = current->timer_slack_ns;
1080 
1081 	task_io_accounting_init(&p->ioac);
1082 	acct_clear_integrals(p);
1083 
1084 	posix_cpu_timers_init(p);
1085 
1086 	p->lock_depth = -1;		/* -1 = no lock */
1087 	do_posix_clock_monotonic_gettime(&p->start_time);
1088 	p->real_start_time = p->start_time;
1089 	monotonic_to_bootbased(&p->real_start_time);
1090 	p->io_context = NULL;
1091 	p->audit_context = NULL;
1092 	cgroup_fork(p);
1093 #ifdef CONFIG_NUMA
1094 	p->mempolicy = mpol_dup(p->mempolicy);
1095  	if (IS_ERR(p->mempolicy)) {
1096  		retval = PTR_ERR(p->mempolicy);
1097  		p->mempolicy = NULL;
1098  		goto bad_fork_cleanup_cgroup;
1099  	}
1100 	mpol_fix_fork_child_flag(p);
1101 #endif
1102 #ifdef CONFIG_TRACE_IRQFLAGS
1103 	p->irq_events = 0;
1104 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1105 	p->hardirqs_enabled = 1;
1106 #else
1107 	p->hardirqs_enabled = 0;
1108 #endif
1109 	p->hardirq_enable_ip = 0;
1110 	p->hardirq_enable_event = 0;
1111 	p->hardirq_disable_ip = _THIS_IP_;
1112 	p->hardirq_disable_event = 0;
1113 	p->softirqs_enabled = 1;
1114 	p->softirq_enable_ip = _THIS_IP_;
1115 	p->softirq_enable_event = 0;
1116 	p->softirq_disable_ip = 0;
1117 	p->softirq_disable_event = 0;
1118 	p->hardirq_context = 0;
1119 	p->softirq_context = 0;
1120 #endif
1121 #ifdef CONFIG_LOCKDEP
1122 	p->lockdep_depth = 0; /* no locks held yet */
1123 	p->curr_chain_key = 0;
1124 	p->lockdep_recursion = 0;
1125 #endif
1126 
1127 #ifdef CONFIG_DEBUG_MUTEXES
1128 	p->blocked_on = NULL; /* not blocked yet */
1129 #endif
1130 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1131 	p->memcg_batch.do_batch = 0;
1132 	p->memcg_batch.memcg = NULL;
1133 #endif
1134 
1135 	p->bts = NULL;
1136 
1137 	p->stack_start = stack_start;
1138 
1139 	/* Perform scheduler related setup. Assign this task to a CPU. */
1140 	sched_fork(p, clone_flags);
1141 
1142 	retval = perf_event_init_task(p);
1143 	if (retval)
1144 		goto bad_fork_cleanup_policy;
1145 
1146 	if ((retval = audit_alloc(p)))
1147 		goto bad_fork_cleanup_policy;
1148 	/* copy all the process information */
1149 	if ((retval = copy_semundo(clone_flags, p)))
1150 		goto bad_fork_cleanup_audit;
1151 	if ((retval = copy_files(clone_flags, p)))
1152 		goto bad_fork_cleanup_semundo;
1153 	if ((retval = copy_fs(clone_flags, p)))
1154 		goto bad_fork_cleanup_files;
1155 	if ((retval = copy_sighand(clone_flags, p)))
1156 		goto bad_fork_cleanup_fs;
1157 	if ((retval = copy_signal(clone_flags, p)))
1158 		goto bad_fork_cleanup_sighand;
1159 	if ((retval = copy_mm(clone_flags, p)))
1160 		goto bad_fork_cleanup_signal;
1161 	if ((retval = copy_namespaces(clone_flags, p)))
1162 		goto bad_fork_cleanup_mm;
1163 	if ((retval = copy_io(clone_flags, p)))
1164 		goto bad_fork_cleanup_namespaces;
1165 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1166 	if (retval)
1167 		goto bad_fork_cleanup_io;
1168 
1169 	if (pid != &init_struct_pid) {
1170 		retval = -ENOMEM;
1171 		pid = alloc_pid(p->nsproxy->pid_ns);
1172 		if (!pid)
1173 			goto bad_fork_cleanup_io;
1174 
1175 		if (clone_flags & CLONE_NEWPID) {
1176 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1177 			if (retval < 0)
1178 				goto bad_fork_free_pid;
1179 		}
1180 	}
1181 
1182 	p->pid = pid_nr(pid);
1183 	p->tgid = p->pid;
1184 	if (clone_flags & CLONE_THREAD)
1185 		p->tgid = current->tgid;
1186 
1187 	if (current->nsproxy != p->nsproxy) {
1188 		retval = ns_cgroup_clone(p, pid);
1189 		if (retval)
1190 			goto bad_fork_free_pid;
1191 	}
1192 
1193 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1194 	/*
1195 	 * Clear TID on mm_release()?
1196 	 */
1197 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1198 #ifdef CONFIG_FUTEX
1199 	p->robust_list = NULL;
1200 #ifdef CONFIG_COMPAT
1201 	p->compat_robust_list = NULL;
1202 #endif
1203 	INIT_LIST_HEAD(&p->pi_state_list);
1204 	p->pi_state_cache = NULL;
1205 #endif
1206 	/*
1207 	 * sigaltstack should be cleared when sharing the same VM
1208 	 */
1209 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1210 		p->sas_ss_sp = p->sas_ss_size = 0;
1211 
1212 	/*
1213 	 * Syscall tracing and stepping should be turned off in the
1214 	 * child regardless of CLONE_PTRACE.
1215 	 */
1216 	user_disable_single_step(p);
1217 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1218 #ifdef TIF_SYSCALL_EMU
1219 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1220 #endif
1221 	clear_all_latency_tracing(p);
1222 
1223 	/* ok, now we should be set up.. */
1224 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1225 	p->pdeath_signal = 0;
1226 	p->exit_state = 0;
1227 
1228 	/*
1229 	 * Ok, make it visible to the rest of the system.
1230 	 * We dont wake it up yet.
1231 	 */
1232 	p->group_leader = p;
1233 	INIT_LIST_HEAD(&p->thread_group);
1234 
1235 	/* Now that the task is set up, run cgroup callbacks if
1236 	 * necessary. We need to run them before the task is visible
1237 	 * on the tasklist. */
1238 	cgroup_fork_callbacks(p);
1239 	cgroup_callbacks_done = 1;
1240 
1241 	/* Need tasklist lock for parent etc handling! */
1242 	write_lock_irq(&tasklist_lock);
1243 
1244 	/*
1245 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1246 	 * not be changed, nor will its assigned CPU.
1247 	 *
1248 	 * The cpus_allowed mask of the parent may have changed after it was
1249 	 * copied first time - so re-copy it here, then check the child's CPU
1250 	 * to ensure it is on a valid CPU (and if not, just force it back to
1251 	 * parent's CPU). This avoids alot of nasty races.
1252 	 */
1253 	p->cpus_allowed = current->cpus_allowed;
1254 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1255 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1256 			!cpu_online(task_cpu(p))))
1257 		set_task_cpu(p, smp_processor_id());
1258 
1259 	/* CLONE_PARENT re-uses the old parent */
1260 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1261 		p->real_parent = current->real_parent;
1262 		p->parent_exec_id = current->parent_exec_id;
1263 	} else {
1264 		p->real_parent = current;
1265 		p->parent_exec_id = current->self_exec_id;
1266 	}
1267 
1268 	spin_lock(&current->sighand->siglock);
1269 
1270 	/*
1271 	 * Process group and session signals need to be delivered to just the
1272 	 * parent before the fork or both the parent and the child after the
1273 	 * fork. Restart if a signal comes in before we add the new process to
1274 	 * it's process group.
1275 	 * A fatal signal pending means that current will exit, so the new
1276 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1277  	 */
1278 	recalc_sigpending();
1279 	if (signal_pending(current)) {
1280 		spin_unlock(&current->sighand->siglock);
1281 		write_unlock_irq(&tasklist_lock);
1282 		retval = -ERESTARTNOINTR;
1283 		goto bad_fork_free_pid;
1284 	}
1285 
1286 	if (clone_flags & CLONE_THREAD) {
1287 		atomic_inc(&current->signal->count);
1288 		atomic_inc(&current->signal->live);
1289 		p->group_leader = current->group_leader;
1290 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1291 	}
1292 
1293 	if (likely(p->pid)) {
1294 		tracehook_finish_clone(p, clone_flags, trace);
1295 
1296 		if (thread_group_leader(p)) {
1297 			if (clone_flags & CLONE_NEWPID)
1298 				p->nsproxy->pid_ns->child_reaper = p;
1299 
1300 			p->signal->leader_pid = pid;
1301 			tty_kref_put(p->signal->tty);
1302 			p->signal->tty = tty_kref_get(current->signal->tty);
1303 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1304 			attach_pid(p, PIDTYPE_SID, task_session(current));
1305 			list_add_tail(&p->sibling, &p->real_parent->children);
1306 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1307 			__get_cpu_var(process_counts)++;
1308 		}
1309 		attach_pid(p, PIDTYPE_PID, pid);
1310 		nr_threads++;
1311 	}
1312 
1313 	total_forks++;
1314 	spin_unlock(&current->sighand->siglock);
1315 	write_unlock_irq(&tasklist_lock);
1316 	proc_fork_connector(p);
1317 	cgroup_post_fork(p);
1318 	perf_event_fork(p);
1319 	return p;
1320 
1321 bad_fork_free_pid:
1322 	if (pid != &init_struct_pid)
1323 		free_pid(pid);
1324 bad_fork_cleanup_io:
1325 	if (p->io_context)
1326 		exit_io_context(p);
1327 bad_fork_cleanup_namespaces:
1328 	exit_task_namespaces(p);
1329 bad_fork_cleanup_mm:
1330 	if (p->mm)
1331 		mmput(p->mm);
1332 bad_fork_cleanup_signal:
1333 	if (!(clone_flags & CLONE_THREAD))
1334 		__cleanup_signal(p->signal);
1335 bad_fork_cleanup_sighand:
1336 	__cleanup_sighand(p->sighand);
1337 bad_fork_cleanup_fs:
1338 	exit_fs(p); /* blocking */
1339 bad_fork_cleanup_files:
1340 	exit_files(p); /* blocking */
1341 bad_fork_cleanup_semundo:
1342 	exit_sem(p);
1343 bad_fork_cleanup_audit:
1344 	audit_free(p);
1345 bad_fork_cleanup_policy:
1346 	perf_event_free_task(p);
1347 #ifdef CONFIG_NUMA
1348 	mpol_put(p->mempolicy);
1349 bad_fork_cleanup_cgroup:
1350 #endif
1351 	cgroup_exit(p, cgroup_callbacks_done);
1352 	delayacct_tsk_free(p);
1353 	module_put(task_thread_info(p)->exec_domain->module);
1354 bad_fork_cleanup_count:
1355 	atomic_dec(&p->cred->user->processes);
1356 	exit_creds(p);
1357 bad_fork_free:
1358 	free_task(p);
1359 fork_out:
1360 	return ERR_PTR(retval);
1361 }
1362 
1363 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1364 {
1365 	memset(regs, 0, sizeof(struct pt_regs));
1366 	return regs;
1367 }
1368 
1369 struct task_struct * __cpuinit fork_idle(int cpu)
1370 {
1371 	struct task_struct *task;
1372 	struct pt_regs regs;
1373 
1374 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1375 			    &init_struct_pid, 0);
1376 	if (!IS_ERR(task))
1377 		init_idle(task, cpu);
1378 
1379 	return task;
1380 }
1381 
1382 /*
1383  *  Ok, this is the main fork-routine.
1384  *
1385  * It copies the process, and if successful kick-starts
1386  * it and waits for it to finish using the VM if required.
1387  */
1388 long do_fork(unsigned long clone_flags,
1389 	      unsigned long stack_start,
1390 	      struct pt_regs *regs,
1391 	      unsigned long stack_size,
1392 	      int __user *parent_tidptr,
1393 	      int __user *child_tidptr)
1394 {
1395 	struct task_struct *p;
1396 	int trace = 0;
1397 	long nr;
1398 
1399 	/*
1400 	 * Do some preliminary argument and permissions checking before we
1401 	 * actually start allocating stuff
1402 	 */
1403 	if (clone_flags & CLONE_NEWUSER) {
1404 		if (clone_flags & CLONE_THREAD)
1405 			return -EINVAL;
1406 		/* hopefully this check will go away when userns support is
1407 		 * complete
1408 		 */
1409 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1410 				!capable(CAP_SETGID))
1411 			return -EPERM;
1412 	}
1413 
1414 	/*
1415 	 * We hope to recycle these flags after 2.6.26
1416 	 */
1417 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1418 		static int __read_mostly count = 100;
1419 
1420 		if (count > 0 && printk_ratelimit()) {
1421 			char comm[TASK_COMM_LEN];
1422 
1423 			count--;
1424 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1425 					"clone flags 0x%lx\n",
1426 				get_task_comm(comm, current),
1427 				clone_flags & CLONE_STOPPED);
1428 		}
1429 	}
1430 
1431 	/*
1432 	 * When called from kernel_thread, don't do user tracing stuff.
1433 	 */
1434 	if (likely(user_mode(regs)))
1435 		trace = tracehook_prepare_clone(clone_flags);
1436 
1437 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1438 			 child_tidptr, NULL, trace);
1439 	/*
1440 	 * Do this prior waking up the new thread - the thread pointer
1441 	 * might get invalid after that point, if the thread exits quickly.
1442 	 */
1443 	if (!IS_ERR(p)) {
1444 		struct completion vfork;
1445 
1446 		trace_sched_process_fork(current, p);
1447 
1448 		nr = task_pid_vnr(p);
1449 
1450 		if (clone_flags & CLONE_PARENT_SETTID)
1451 			put_user(nr, parent_tidptr);
1452 
1453 		if (clone_flags & CLONE_VFORK) {
1454 			p->vfork_done = &vfork;
1455 			init_completion(&vfork);
1456 		}
1457 
1458 		audit_finish_fork(p);
1459 		tracehook_report_clone(regs, clone_flags, nr, p);
1460 
1461 		/*
1462 		 * We set PF_STARTING at creation in case tracing wants to
1463 		 * use this to distinguish a fully live task from one that
1464 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1465 		 * clear it and set the child going.
1466 		 */
1467 		p->flags &= ~PF_STARTING;
1468 
1469 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1470 			/*
1471 			 * We'll start up with an immediate SIGSTOP.
1472 			 */
1473 			sigaddset(&p->pending.signal, SIGSTOP);
1474 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1475 			__set_task_state(p, TASK_STOPPED);
1476 		} else {
1477 			wake_up_new_task(p, clone_flags);
1478 		}
1479 
1480 		tracehook_report_clone_complete(trace, regs,
1481 						clone_flags, nr, p);
1482 
1483 		if (clone_flags & CLONE_VFORK) {
1484 			freezer_do_not_count();
1485 			wait_for_completion(&vfork);
1486 			freezer_count();
1487 			tracehook_report_vfork_done(p, nr);
1488 		}
1489 	} else {
1490 		nr = PTR_ERR(p);
1491 	}
1492 	return nr;
1493 }
1494 
1495 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1496 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1497 #endif
1498 
1499 static void sighand_ctor(void *data)
1500 {
1501 	struct sighand_struct *sighand = data;
1502 
1503 	spin_lock_init(&sighand->siglock);
1504 	init_waitqueue_head(&sighand->signalfd_wqh);
1505 }
1506 
1507 void __init proc_caches_init(void)
1508 {
1509 	sighand_cachep = kmem_cache_create("sighand_cache",
1510 			sizeof(struct sighand_struct), 0,
1511 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1512 			SLAB_NOTRACK, sighand_ctor);
1513 	signal_cachep = kmem_cache_create("signal_cache",
1514 			sizeof(struct signal_struct), 0,
1515 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1516 	files_cachep = kmem_cache_create("files_cache",
1517 			sizeof(struct files_struct), 0,
1518 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1519 	fs_cachep = kmem_cache_create("fs_cache",
1520 			sizeof(struct fs_struct), 0,
1521 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1522 	mm_cachep = kmem_cache_create("mm_struct",
1523 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1524 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1525 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1526 	mmap_init();
1527 }
1528 
1529 /*
1530  * Check constraints on flags passed to the unshare system call and
1531  * force unsharing of additional process context as appropriate.
1532  */
1533 static void check_unshare_flags(unsigned long *flags_ptr)
1534 {
1535 	/*
1536 	 * If unsharing a thread from a thread group, must also
1537 	 * unshare vm.
1538 	 */
1539 	if (*flags_ptr & CLONE_THREAD)
1540 		*flags_ptr |= CLONE_VM;
1541 
1542 	/*
1543 	 * If unsharing vm, must also unshare signal handlers.
1544 	 */
1545 	if (*flags_ptr & CLONE_VM)
1546 		*flags_ptr |= CLONE_SIGHAND;
1547 
1548 	/*
1549 	 * If unsharing signal handlers and the task was created
1550 	 * using CLONE_THREAD, then must unshare the thread
1551 	 */
1552 	if ((*flags_ptr & CLONE_SIGHAND) &&
1553 	    (atomic_read(&current->signal->count) > 1))
1554 		*flags_ptr |= CLONE_THREAD;
1555 
1556 	/*
1557 	 * If unsharing namespace, must also unshare filesystem information.
1558 	 */
1559 	if (*flags_ptr & CLONE_NEWNS)
1560 		*flags_ptr |= CLONE_FS;
1561 }
1562 
1563 /*
1564  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1565  */
1566 static int unshare_thread(unsigned long unshare_flags)
1567 {
1568 	if (unshare_flags & CLONE_THREAD)
1569 		return -EINVAL;
1570 
1571 	return 0;
1572 }
1573 
1574 /*
1575  * Unshare the filesystem structure if it is being shared
1576  */
1577 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1578 {
1579 	struct fs_struct *fs = current->fs;
1580 
1581 	if (!(unshare_flags & CLONE_FS) || !fs)
1582 		return 0;
1583 
1584 	/* don't need lock here; in the worst case we'll do useless copy */
1585 	if (fs->users == 1)
1586 		return 0;
1587 
1588 	*new_fsp = copy_fs_struct(fs);
1589 	if (!*new_fsp)
1590 		return -ENOMEM;
1591 
1592 	return 0;
1593 }
1594 
1595 /*
1596  * Unsharing of sighand is not supported yet
1597  */
1598 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1599 {
1600 	struct sighand_struct *sigh = current->sighand;
1601 
1602 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1603 		return -EINVAL;
1604 	else
1605 		return 0;
1606 }
1607 
1608 /*
1609  * Unshare vm if it is being shared
1610  */
1611 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1612 {
1613 	struct mm_struct *mm = current->mm;
1614 
1615 	if ((unshare_flags & CLONE_VM) &&
1616 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1617 		return -EINVAL;
1618 	}
1619 
1620 	return 0;
1621 }
1622 
1623 /*
1624  * Unshare file descriptor table if it is being shared
1625  */
1626 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1627 {
1628 	struct files_struct *fd = current->files;
1629 	int error = 0;
1630 
1631 	if ((unshare_flags & CLONE_FILES) &&
1632 	    (fd && atomic_read(&fd->count) > 1)) {
1633 		*new_fdp = dup_fd(fd, &error);
1634 		if (!*new_fdp)
1635 			return error;
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 /*
1642  * unshare allows a process to 'unshare' part of the process
1643  * context which was originally shared using clone.  copy_*
1644  * functions used by do_fork() cannot be used here directly
1645  * because they modify an inactive task_struct that is being
1646  * constructed. Here we are modifying the current, active,
1647  * task_struct.
1648  */
1649 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1650 {
1651 	int err = 0;
1652 	struct fs_struct *fs, *new_fs = NULL;
1653 	struct sighand_struct *new_sigh = NULL;
1654 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1655 	struct files_struct *fd, *new_fd = NULL;
1656 	struct nsproxy *new_nsproxy = NULL;
1657 	int do_sysvsem = 0;
1658 
1659 	check_unshare_flags(&unshare_flags);
1660 
1661 	/* Return -EINVAL for all unsupported flags */
1662 	err = -EINVAL;
1663 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1664 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1665 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1666 		goto bad_unshare_out;
1667 
1668 	/*
1669 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1670 	 * to a new ipc namespace, the semaphore arrays from the old
1671 	 * namespace are unreachable.
1672 	 */
1673 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1674 		do_sysvsem = 1;
1675 	if ((err = unshare_thread(unshare_flags)))
1676 		goto bad_unshare_out;
1677 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1678 		goto bad_unshare_cleanup_thread;
1679 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1680 		goto bad_unshare_cleanup_fs;
1681 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1682 		goto bad_unshare_cleanup_sigh;
1683 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1684 		goto bad_unshare_cleanup_vm;
1685 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1686 			new_fs)))
1687 		goto bad_unshare_cleanup_fd;
1688 
1689 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1690 		if (do_sysvsem) {
1691 			/*
1692 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1693 			 */
1694 			exit_sem(current);
1695 		}
1696 
1697 		if (new_nsproxy) {
1698 			switch_task_namespaces(current, new_nsproxy);
1699 			new_nsproxy = NULL;
1700 		}
1701 
1702 		task_lock(current);
1703 
1704 		if (new_fs) {
1705 			fs = current->fs;
1706 			write_lock(&fs->lock);
1707 			current->fs = new_fs;
1708 			if (--fs->users)
1709 				new_fs = NULL;
1710 			else
1711 				new_fs = fs;
1712 			write_unlock(&fs->lock);
1713 		}
1714 
1715 		if (new_mm) {
1716 			mm = current->mm;
1717 			active_mm = current->active_mm;
1718 			current->mm = new_mm;
1719 			current->active_mm = new_mm;
1720 			activate_mm(active_mm, new_mm);
1721 			new_mm = mm;
1722 		}
1723 
1724 		if (new_fd) {
1725 			fd = current->files;
1726 			current->files = new_fd;
1727 			new_fd = fd;
1728 		}
1729 
1730 		task_unlock(current);
1731 	}
1732 
1733 	if (new_nsproxy)
1734 		put_nsproxy(new_nsproxy);
1735 
1736 bad_unshare_cleanup_fd:
1737 	if (new_fd)
1738 		put_files_struct(new_fd);
1739 
1740 bad_unshare_cleanup_vm:
1741 	if (new_mm)
1742 		mmput(new_mm);
1743 
1744 bad_unshare_cleanup_sigh:
1745 	if (new_sigh)
1746 		if (atomic_dec_and_test(&new_sigh->count))
1747 			kmem_cache_free(sighand_cachep, new_sigh);
1748 
1749 bad_unshare_cleanup_fs:
1750 	if (new_fs)
1751 		free_fs_struct(new_fs);
1752 
1753 bad_unshare_cleanup_thread:
1754 bad_unshare_out:
1755 	return err;
1756 }
1757 
1758 /*
1759  *	Helper to unshare the files of the current task.
1760  *	We don't want to expose copy_files internals to
1761  *	the exec layer of the kernel.
1762  */
1763 
1764 int unshare_files(struct files_struct **displaced)
1765 {
1766 	struct task_struct *task = current;
1767 	struct files_struct *copy = NULL;
1768 	int error;
1769 
1770 	error = unshare_fd(CLONE_FILES, &copy);
1771 	if (error || !copy) {
1772 		*displaced = NULL;
1773 		return error;
1774 	}
1775 	*displaced = task->files;
1776 	task_lock(task);
1777 	task->files = copy;
1778 	task_unlock(task);
1779 	return 0;
1780 }
1781