xref: /linux/kernel/fork.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
47 
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54 
55 /*
56  * Protected counters by write_lock_irq(&tasklist_lock)
57  */
58 unsigned long total_forks;	/* Handle normal Linux uptimes. */
59 int nr_threads; 		/* The idle threads do not count.. */
60 
61 int max_threads;		/* tunable limit on nr_threads */
62 
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64 
65  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
66 
67 EXPORT_SYMBOL(tasklist_lock);
68 
69 int nr_processes(void)
70 {
71 	int cpu;
72 	int total = 0;
73 
74 	for_each_online_cpu(cpu)
75 		total += per_cpu(process_counts, cpu);
76 
77 	return total;
78 }
79 
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85 
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t *signal_cachep;
88 
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91 
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94 
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97 
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100 
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103 
104 void free_task(struct task_struct *tsk)
105 {
106 	free_thread_info(tsk->thread_info);
107 	free_task_struct(tsk);
108 }
109 EXPORT_SYMBOL(free_task);
110 
111 void __put_task_struct_cb(struct rcu_head *rhp)
112 {
113 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
114 
115 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
116 	WARN_ON(atomic_read(&tsk->usage));
117 	WARN_ON(tsk == current);
118 
119 	if (unlikely(tsk->audit_context))
120 		audit_free(tsk);
121 	security_task_free(tsk);
122 	free_uid(tsk->user);
123 	put_group_info(tsk->group_info);
124 
125 	if (!profile_handoff_task(tsk))
126 		free_task(tsk);
127 }
128 
129 void __init fork_init(unsigned long mempages)
130 {
131 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
132 #ifndef ARCH_MIN_TASKALIGN
133 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
134 #endif
135 	/* create a slab on which task_structs can be allocated */
136 	task_struct_cachep =
137 		kmem_cache_create("task_struct", sizeof(struct task_struct),
138 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
139 #endif
140 
141 	/*
142 	 * The default maximum number of threads is set to a safe
143 	 * value: the thread structures can take up at most half
144 	 * of memory.
145 	 */
146 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
147 
148 	/*
149 	 * we need to allow at least 20 threads to boot a system
150 	 */
151 	if(max_threads < 20)
152 		max_threads = 20;
153 
154 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
155 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
156 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
157 		init_task.signal->rlim[RLIMIT_NPROC];
158 }
159 
160 static struct task_struct *dup_task_struct(struct task_struct *orig)
161 {
162 	struct task_struct *tsk;
163 	struct thread_info *ti;
164 
165 	prepare_to_copy(orig);
166 
167 	tsk = alloc_task_struct();
168 	if (!tsk)
169 		return NULL;
170 
171 	ti = alloc_thread_info(tsk);
172 	if (!ti) {
173 		free_task_struct(tsk);
174 		return NULL;
175 	}
176 
177 	*tsk = *orig;
178 	tsk->thread_info = ti;
179 	setup_thread_stack(tsk, orig);
180 
181 	/* One for us, one for whoever does the "release_task()" (usually parent) */
182 	atomic_set(&tsk->usage,2);
183 	atomic_set(&tsk->fs_excl, 0);
184 	tsk->btrace_seq = 0;
185 	return tsk;
186 }
187 
188 #ifdef CONFIG_MMU
189 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
190 {
191 	struct vm_area_struct *mpnt, *tmp, **pprev;
192 	struct rb_node **rb_link, *rb_parent;
193 	int retval;
194 	unsigned long charge;
195 	struct mempolicy *pol;
196 
197 	down_write(&oldmm->mmap_sem);
198 	flush_cache_mm(oldmm);
199 	down_write(&mm->mmap_sem);
200 
201 	mm->locked_vm = 0;
202 	mm->mmap = NULL;
203 	mm->mmap_cache = NULL;
204 	mm->free_area_cache = oldmm->mmap_base;
205 	mm->cached_hole_size = ~0UL;
206 	mm->map_count = 0;
207 	cpus_clear(mm->cpu_vm_mask);
208 	mm->mm_rb = RB_ROOT;
209 	rb_link = &mm->mm_rb.rb_node;
210 	rb_parent = NULL;
211 	pprev = &mm->mmap;
212 
213 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
214 		struct file *file;
215 
216 		if (mpnt->vm_flags & VM_DONTCOPY) {
217 			long pages = vma_pages(mpnt);
218 			mm->total_vm -= pages;
219 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
220 								-pages);
221 			continue;
222 		}
223 		charge = 0;
224 		if (mpnt->vm_flags & VM_ACCOUNT) {
225 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
226 			if (security_vm_enough_memory(len))
227 				goto fail_nomem;
228 			charge = len;
229 		}
230 		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
231 		if (!tmp)
232 			goto fail_nomem;
233 		*tmp = *mpnt;
234 		pol = mpol_copy(vma_policy(mpnt));
235 		retval = PTR_ERR(pol);
236 		if (IS_ERR(pol))
237 			goto fail_nomem_policy;
238 		vma_set_policy(tmp, pol);
239 		tmp->vm_flags &= ~VM_LOCKED;
240 		tmp->vm_mm = mm;
241 		tmp->vm_next = NULL;
242 		anon_vma_link(tmp);
243 		file = tmp->vm_file;
244 		if (file) {
245 			struct inode *inode = file->f_dentry->d_inode;
246 			get_file(file);
247 			if (tmp->vm_flags & VM_DENYWRITE)
248 				atomic_dec(&inode->i_writecount);
249 
250 			/* insert tmp into the share list, just after mpnt */
251 			spin_lock(&file->f_mapping->i_mmap_lock);
252 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
253 			flush_dcache_mmap_lock(file->f_mapping);
254 			vma_prio_tree_add(tmp, mpnt);
255 			flush_dcache_mmap_unlock(file->f_mapping);
256 			spin_unlock(&file->f_mapping->i_mmap_lock);
257 		}
258 
259 		/*
260 		 * Link in the new vma and copy the page table entries.
261 		 */
262 		*pprev = tmp;
263 		pprev = &tmp->vm_next;
264 
265 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
266 		rb_link = &tmp->vm_rb.rb_right;
267 		rb_parent = &tmp->vm_rb;
268 
269 		mm->map_count++;
270 		retval = copy_page_range(mm, oldmm, mpnt);
271 
272 		if (tmp->vm_ops && tmp->vm_ops->open)
273 			tmp->vm_ops->open(tmp);
274 
275 		if (retval)
276 			goto out;
277 	}
278 	retval = 0;
279 out:
280 	up_write(&mm->mmap_sem);
281 	flush_tlb_mm(oldmm);
282 	up_write(&oldmm->mmap_sem);
283 	return retval;
284 fail_nomem_policy:
285 	kmem_cache_free(vm_area_cachep, tmp);
286 fail_nomem:
287 	retval = -ENOMEM;
288 	vm_unacct_memory(charge);
289 	goto out;
290 }
291 
292 static inline int mm_alloc_pgd(struct mm_struct * mm)
293 {
294 	mm->pgd = pgd_alloc(mm);
295 	if (unlikely(!mm->pgd))
296 		return -ENOMEM;
297 	return 0;
298 }
299 
300 static inline void mm_free_pgd(struct mm_struct * mm)
301 {
302 	pgd_free(mm->pgd);
303 }
304 #else
305 #define dup_mmap(mm, oldmm)	(0)
306 #define mm_alloc_pgd(mm)	(0)
307 #define mm_free_pgd(mm)
308 #endif /* CONFIG_MMU */
309 
310  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
311 
312 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
313 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
314 
315 #include <linux/init_task.h>
316 
317 static struct mm_struct * mm_init(struct mm_struct * mm)
318 {
319 	atomic_set(&mm->mm_users, 1);
320 	atomic_set(&mm->mm_count, 1);
321 	init_rwsem(&mm->mmap_sem);
322 	INIT_LIST_HEAD(&mm->mmlist);
323 	mm->core_waiters = 0;
324 	mm->nr_ptes = 0;
325 	set_mm_counter(mm, file_rss, 0);
326 	set_mm_counter(mm, anon_rss, 0);
327 	spin_lock_init(&mm->page_table_lock);
328 	rwlock_init(&mm->ioctx_list_lock);
329 	mm->ioctx_list = NULL;
330 	mm->free_area_cache = TASK_UNMAPPED_BASE;
331 	mm->cached_hole_size = ~0UL;
332 
333 	if (likely(!mm_alloc_pgd(mm))) {
334 		mm->def_flags = 0;
335 		return mm;
336 	}
337 	free_mm(mm);
338 	return NULL;
339 }
340 
341 /*
342  * Allocate and initialize an mm_struct.
343  */
344 struct mm_struct * mm_alloc(void)
345 {
346 	struct mm_struct * mm;
347 
348 	mm = allocate_mm();
349 	if (mm) {
350 		memset(mm, 0, sizeof(*mm));
351 		mm = mm_init(mm);
352 	}
353 	return mm;
354 }
355 
356 /*
357  * Called when the last reference to the mm
358  * is dropped: either by a lazy thread or by
359  * mmput. Free the page directory and the mm.
360  */
361 void fastcall __mmdrop(struct mm_struct *mm)
362 {
363 	BUG_ON(mm == &init_mm);
364 	mm_free_pgd(mm);
365 	destroy_context(mm);
366 	free_mm(mm);
367 }
368 
369 /*
370  * Decrement the use count and release all resources for an mm.
371  */
372 void mmput(struct mm_struct *mm)
373 {
374 	if (atomic_dec_and_test(&mm->mm_users)) {
375 		exit_aio(mm);
376 		exit_mmap(mm);
377 		if (!list_empty(&mm->mmlist)) {
378 			spin_lock(&mmlist_lock);
379 			list_del(&mm->mmlist);
380 			spin_unlock(&mmlist_lock);
381 		}
382 		put_swap_token(mm);
383 		mmdrop(mm);
384 	}
385 }
386 EXPORT_SYMBOL_GPL(mmput);
387 
388 /**
389  * get_task_mm - acquire a reference to the task's mm
390  *
391  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
392  * this kernel workthread has transiently adopted a user mm with use_mm,
393  * to do its AIO) is not set and if so returns a reference to it, after
394  * bumping up the use count.  User must release the mm via mmput()
395  * after use.  Typically used by /proc and ptrace.
396  */
397 struct mm_struct *get_task_mm(struct task_struct *task)
398 {
399 	struct mm_struct *mm;
400 
401 	task_lock(task);
402 	mm = task->mm;
403 	if (mm) {
404 		if (task->flags & PF_BORROWED_MM)
405 			mm = NULL;
406 		else
407 			atomic_inc(&mm->mm_users);
408 	}
409 	task_unlock(task);
410 	return mm;
411 }
412 EXPORT_SYMBOL_GPL(get_task_mm);
413 
414 /* Please note the differences between mmput and mm_release.
415  * mmput is called whenever we stop holding onto a mm_struct,
416  * error success whatever.
417  *
418  * mm_release is called after a mm_struct has been removed
419  * from the current process.
420  *
421  * This difference is important for error handling, when we
422  * only half set up a mm_struct for a new process and need to restore
423  * the old one.  Because we mmput the new mm_struct before
424  * restoring the old one. . .
425  * Eric Biederman 10 January 1998
426  */
427 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
428 {
429 	struct completion *vfork_done = tsk->vfork_done;
430 
431 	/* Get rid of any cached register state */
432 	deactivate_mm(tsk, mm);
433 
434 	/* notify parent sleeping on vfork() */
435 	if (vfork_done) {
436 		tsk->vfork_done = NULL;
437 		complete(vfork_done);
438 	}
439 	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
440 		u32 __user * tidptr = tsk->clear_child_tid;
441 		tsk->clear_child_tid = NULL;
442 
443 		/*
444 		 * We don't check the error code - if userspace has
445 		 * not set up a proper pointer then tough luck.
446 		 */
447 		put_user(0, tidptr);
448 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
449 	}
450 }
451 
452 /*
453  * Allocate a new mm structure and copy contents from the
454  * mm structure of the passed in task structure.
455  */
456 static struct mm_struct *dup_mm(struct task_struct *tsk)
457 {
458 	struct mm_struct *mm, *oldmm = current->mm;
459 	int err;
460 
461 	if (!oldmm)
462 		return NULL;
463 
464 	mm = allocate_mm();
465 	if (!mm)
466 		goto fail_nomem;
467 
468 	memcpy(mm, oldmm, sizeof(*mm));
469 
470 	if (!mm_init(mm))
471 		goto fail_nomem;
472 
473 	if (init_new_context(tsk, mm))
474 		goto fail_nocontext;
475 
476 	err = dup_mmap(mm, oldmm);
477 	if (err)
478 		goto free_pt;
479 
480 	mm->hiwater_rss = get_mm_rss(mm);
481 	mm->hiwater_vm = mm->total_vm;
482 
483 	return mm;
484 
485 free_pt:
486 	mmput(mm);
487 
488 fail_nomem:
489 	return NULL;
490 
491 fail_nocontext:
492 	/*
493 	 * If init_new_context() failed, we cannot use mmput() to free the mm
494 	 * because it calls destroy_context()
495 	 */
496 	mm_free_pgd(mm);
497 	free_mm(mm);
498 	return NULL;
499 }
500 
501 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
502 {
503 	struct mm_struct * mm, *oldmm;
504 	int retval;
505 
506 	tsk->min_flt = tsk->maj_flt = 0;
507 	tsk->nvcsw = tsk->nivcsw = 0;
508 
509 	tsk->mm = NULL;
510 	tsk->active_mm = NULL;
511 
512 	/*
513 	 * Are we cloning a kernel thread?
514 	 *
515 	 * We need to steal a active VM for that..
516 	 */
517 	oldmm = current->mm;
518 	if (!oldmm)
519 		return 0;
520 
521 	if (clone_flags & CLONE_VM) {
522 		atomic_inc(&oldmm->mm_users);
523 		mm = oldmm;
524 		goto good_mm;
525 	}
526 
527 	retval = -ENOMEM;
528 	mm = dup_mm(tsk);
529 	if (!mm)
530 		goto fail_nomem;
531 
532 good_mm:
533 	tsk->mm = mm;
534 	tsk->active_mm = mm;
535 	return 0;
536 
537 fail_nomem:
538 	return retval;
539 }
540 
541 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
542 {
543 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
544 	/* We don't need to lock fs - think why ;-) */
545 	if (fs) {
546 		atomic_set(&fs->count, 1);
547 		rwlock_init(&fs->lock);
548 		fs->umask = old->umask;
549 		read_lock(&old->lock);
550 		fs->rootmnt = mntget(old->rootmnt);
551 		fs->root = dget(old->root);
552 		fs->pwdmnt = mntget(old->pwdmnt);
553 		fs->pwd = dget(old->pwd);
554 		if (old->altroot) {
555 			fs->altrootmnt = mntget(old->altrootmnt);
556 			fs->altroot = dget(old->altroot);
557 		} else {
558 			fs->altrootmnt = NULL;
559 			fs->altroot = NULL;
560 		}
561 		read_unlock(&old->lock);
562 	}
563 	return fs;
564 }
565 
566 struct fs_struct *copy_fs_struct(struct fs_struct *old)
567 {
568 	return __copy_fs_struct(old);
569 }
570 
571 EXPORT_SYMBOL_GPL(copy_fs_struct);
572 
573 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
574 {
575 	if (clone_flags & CLONE_FS) {
576 		atomic_inc(&current->fs->count);
577 		return 0;
578 	}
579 	tsk->fs = __copy_fs_struct(current->fs);
580 	if (!tsk->fs)
581 		return -ENOMEM;
582 	return 0;
583 }
584 
585 static int count_open_files(struct fdtable *fdt)
586 {
587 	int size = fdt->max_fdset;
588 	int i;
589 
590 	/* Find the last open fd */
591 	for (i = size/(8*sizeof(long)); i > 0; ) {
592 		if (fdt->open_fds->fds_bits[--i])
593 			break;
594 	}
595 	i = (i+1) * 8 * sizeof(long);
596 	return i;
597 }
598 
599 static struct files_struct *alloc_files(void)
600 {
601 	struct files_struct *newf;
602 	struct fdtable *fdt;
603 
604 	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
605 	if (!newf)
606 		goto out;
607 
608 	atomic_set(&newf->count, 1);
609 
610 	spin_lock_init(&newf->file_lock);
611 	newf->next_fd = 0;
612 	fdt = &newf->fdtab;
613 	fdt->max_fds = NR_OPEN_DEFAULT;
614 	fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
615 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
616 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
617 	fdt->fd = &newf->fd_array[0];
618 	INIT_RCU_HEAD(&fdt->rcu);
619 	fdt->free_files = NULL;
620 	fdt->next = NULL;
621 	rcu_assign_pointer(newf->fdt, fdt);
622 out:
623 	return newf;
624 }
625 
626 /*
627  * Allocate a new files structure and copy contents from the
628  * passed in files structure.
629  */
630 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
631 {
632 	struct files_struct *newf;
633 	struct file **old_fds, **new_fds;
634 	int open_files, size, i, expand;
635 	struct fdtable *old_fdt, *new_fdt;
636 
637 	newf = alloc_files();
638 	if (!newf)
639 		goto out;
640 
641 	spin_lock(&oldf->file_lock);
642 	old_fdt = files_fdtable(oldf);
643 	new_fdt = files_fdtable(newf);
644 	size = old_fdt->max_fdset;
645 	open_files = count_open_files(old_fdt);
646 	expand = 0;
647 
648 	/*
649 	 * Check whether we need to allocate a larger fd array or fd set.
650 	 * Note: we're not a clone task, so the open count won't  change.
651 	 */
652 	if (open_files > new_fdt->max_fdset) {
653 		new_fdt->max_fdset = 0;
654 		expand = 1;
655 	}
656 	if (open_files > new_fdt->max_fds) {
657 		new_fdt->max_fds = 0;
658 		expand = 1;
659 	}
660 
661 	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
662 	if (expand) {
663 		spin_unlock(&oldf->file_lock);
664 		spin_lock(&newf->file_lock);
665 		*errorp = expand_files(newf, open_files-1);
666 		spin_unlock(&newf->file_lock);
667 		if (*errorp < 0)
668 			goto out_release;
669 		new_fdt = files_fdtable(newf);
670 		/*
671 		 * Reacquire the oldf lock and a pointer to its fd table
672 		 * who knows it may have a new bigger fd table. We need
673 		 * the latest pointer.
674 		 */
675 		spin_lock(&oldf->file_lock);
676 		old_fdt = files_fdtable(oldf);
677 	}
678 
679 	old_fds = old_fdt->fd;
680 	new_fds = new_fdt->fd;
681 
682 	memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
683 	memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
684 
685 	for (i = open_files; i != 0; i--) {
686 		struct file *f = *old_fds++;
687 		if (f) {
688 			get_file(f);
689 		} else {
690 			/*
691 			 * The fd may be claimed in the fd bitmap but not yet
692 			 * instantiated in the files array if a sibling thread
693 			 * is partway through open().  So make sure that this
694 			 * fd is available to the new process.
695 			 */
696 			FD_CLR(open_files - i, new_fdt->open_fds);
697 		}
698 		rcu_assign_pointer(*new_fds++, f);
699 	}
700 	spin_unlock(&oldf->file_lock);
701 
702 	/* compute the remainder to be cleared */
703 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
704 
705 	/* This is long word aligned thus could use a optimized version */
706 	memset(new_fds, 0, size);
707 
708 	if (new_fdt->max_fdset > open_files) {
709 		int left = (new_fdt->max_fdset-open_files)/8;
710 		int start = open_files / (8 * sizeof(unsigned long));
711 
712 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
713 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
714 	}
715 
716 out:
717 	return newf;
718 
719 out_release:
720 	free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
721 	free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
722 	free_fd_array(new_fdt->fd, new_fdt->max_fds);
723 	kmem_cache_free(files_cachep, newf);
724 	goto out;
725 }
726 
727 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
728 {
729 	struct files_struct *oldf, *newf;
730 	int error = 0;
731 
732 	/*
733 	 * A background process may not have any files ...
734 	 */
735 	oldf = current->files;
736 	if (!oldf)
737 		goto out;
738 
739 	if (clone_flags & CLONE_FILES) {
740 		atomic_inc(&oldf->count);
741 		goto out;
742 	}
743 
744 	/*
745 	 * Note: we may be using current for both targets (See exec.c)
746 	 * This works because we cache current->files (old) as oldf. Don't
747 	 * break this.
748 	 */
749 	tsk->files = NULL;
750 	error = -ENOMEM;
751 	newf = dup_fd(oldf, &error);
752 	if (!newf)
753 		goto out;
754 
755 	tsk->files = newf;
756 	error = 0;
757 out:
758 	return error;
759 }
760 
761 /*
762  *	Helper to unshare the files of the current task.
763  *	We don't want to expose copy_files internals to
764  *	the exec layer of the kernel.
765  */
766 
767 int unshare_files(void)
768 {
769 	struct files_struct *files  = current->files;
770 	int rc;
771 
772 	BUG_ON(!files);
773 
774 	/* This can race but the race causes us to copy when we don't
775 	   need to and drop the copy */
776 	if(atomic_read(&files->count) == 1)
777 	{
778 		atomic_inc(&files->count);
779 		return 0;
780 	}
781 	rc = copy_files(0, current);
782 	if(rc)
783 		current->files = files;
784 	return rc;
785 }
786 
787 EXPORT_SYMBOL(unshare_files);
788 
789 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
790 {
791 	struct sighand_struct *sig;
792 
793 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
794 		atomic_inc(&current->sighand->count);
795 		return 0;
796 	}
797 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
798 	rcu_assign_pointer(tsk->sighand, sig);
799 	if (!sig)
800 		return -ENOMEM;
801 	atomic_set(&sig->count, 1);
802 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
803 	return 0;
804 }
805 
806 void __cleanup_sighand(struct sighand_struct *sighand)
807 {
808 	if (atomic_dec_and_test(&sighand->count))
809 		kmem_cache_free(sighand_cachep, sighand);
810 }
811 
812 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
813 {
814 	struct signal_struct *sig;
815 	int ret;
816 
817 	if (clone_flags & CLONE_THREAD) {
818 		atomic_inc(&current->signal->count);
819 		atomic_inc(&current->signal->live);
820 		return 0;
821 	}
822 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
823 	tsk->signal = sig;
824 	if (!sig)
825 		return -ENOMEM;
826 
827 	ret = copy_thread_group_keys(tsk);
828 	if (ret < 0) {
829 		kmem_cache_free(signal_cachep, sig);
830 		return ret;
831 	}
832 
833 	atomic_set(&sig->count, 1);
834 	atomic_set(&sig->live, 1);
835 	init_waitqueue_head(&sig->wait_chldexit);
836 	sig->flags = 0;
837 	sig->group_exit_code = 0;
838 	sig->group_exit_task = NULL;
839 	sig->group_stop_count = 0;
840 	sig->curr_target = NULL;
841 	init_sigpending(&sig->shared_pending);
842 	INIT_LIST_HEAD(&sig->posix_timers);
843 
844 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
845 	sig->it_real_incr.tv64 = 0;
846 	sig->real_timer.function = it_real_fn;
847 	sig->tsk = tsk;
848 
849 	sig->it_virt_expires = cputime_zero;
850 	sig->it_virt_incr = cputime_zero;
851 	sig->it_prof_expires = cputime_zero;
852 	sig->it_prof_incr = cputime_zero;
853 
854 	sig->leader = 0;	/* session leadership doesn't inherit */
855 	sig->tty_old_pgrp = 0;
856 
857 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
858 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
859 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
860 	sig->sched_time = 0;
861 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
862 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
863 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
864 
865 	task_lock(current->group_leader);
866 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
867 	task_unlock(current->group_leader);
868 
869 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
870 		/*
871 		 * New sole thread in the process gets an expiry time
872 		 * of the whole CPU time limit.
873 		 */
874 		tsk->it_prof_expires =
875 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
876 	}
877 
878 	return 0;
879 }
880 
881 void __cleanup_signal(struct signal_struct *sig)
882 {
883 	exit_thread_group_keys(sig);
884 	kmem_cache_free(signal_cachep, sig);
885 }
886 
887 static inline void cleanup_signal(struct task_struct *tsk)
888 {
889 	struct signal_struct *sig = tsk->signal;
890 
891 	atomic_dec(&sig->live);
892 
893 	if (atomic_dec_and_test(&sig->count))
894 		__cleanup_signal(sig);
895 }
896 
897 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
898 {
899 	unsigned long new_flags = p->flags;
900 
901 	new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
902 	new_flags |= PF_FORKNOEXEC;
903 	if (!(clone_flags & CLONE_PTRACE))
904 		p->ptrace = 0;
905 	p->flags = new_flags;
906 }
907 
908 asmlinkage long sys_set_tid_address(int __user *tidptr)
909 {
910 	current->clear_child_tid = tidptr;
911 
912 	return current->pid;
913 }
914 
915 /*
916  * This creates a new process as a copy of the old one,
917  * but does not actually start it yet.
918  *
919  * It copies the registers, and all the appropriate
920  * parts of the process environment (as per the clone
921  * flags). The actual kick-off is left to the caller.
922  */
923 static task_t *copy_process(unsigned long clone_flags,
924 				 unsigned long stack_start,
925 				 struct pt_regs *regs,
926 				 unsigned long stack_size,
927 				 int __user *parent_tidptr,
928 				 int __user *child_tidptr,
929 				 int pid)
930 {
931 	int retval;
932 	struct task_struct *p = NULL;
933 
934 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
935 		return ERR_PTR(-EINVAL);
936 
937 	/*
938 	 * Thread groups must share signals as well, and detached threads
939 	 * can only be started up within the thread group.
940 	 */
941 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
942 		return ERR_PTR(-EINVAL);
943 
944 	/*
945 	 * Shared signal handlers imply shared VM. By way of the above,
946 	 * thread groups also imply shared VM. Blocking this case allows
947 	 * for various simplifications in other code.
948 	 */
949 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
950 		return ERR_PTR(-EINVAL);
951 
952 	retval = security_task_create(clone_flags);
953 	if (retval)
954 		goto fork_out;
955 
956 	retval = -ENOMEM;
957 	p = dup_task_struct(current);
958 	if (!p)
959 		goto fork_out;
960 
961 	retval = -EAGAIN;
962 	if (atomic_read(&p->user->processes) >=
963 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
964 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
965 				p->user != &root_user)
966 			goto bad_fork_free;
967 	}
968 
969 	atomic_inc(&p->user->__count);
970 	atomic_inc(&p->user->processes);
971 	get_group_info(p->group_info);
972 
973 	/*
974 	 * If multiple threads are within copy_process(), then this check
975 	 * triggers too late. This doesn't hurt, the check is only there
976 	 * to stop root fork bombs.
977 	 */
978 	if (nr_threads >= max_threads)
979 		goto bad_fork_cleanup_count;
980 
981 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
982 		goto bad_fork_cleanup_count;
983 
984 	if (p->binfmt && !try_module_get(p->binfmt->module))
985 		goto bad_fork_cleanup_put_domain;
986 
987 	p->did_exec = 0;
988 	copy_flags(clone_flags, p);
989 	p->pid = pid;
990 	retval = -EFAULT;
991 	if (clone_flags & CLONE_PARENT_SETTID)
992 		if (put_user(p->pid, parent_tidptr))
993 			goto bad_fork_cleanup;
994 
995 	p->proc_dentry = NULL;
996 
997 	INIT_LIST_HEAD(&p->children);
998 	INIT_LIST_HEAD(&p->sibling);
999 	p->vfork_done = NULL;
1000 	spin_lock_init(&p->alloc_lock);
1001 	spin_lock_init(&p->proc_lock);
1002 
1003 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1004 	init_sigpending(&p->pending);
1005 
1006 	p->utime = cputime_zero;
1007 	p->stime = cputime_zero;
1008  	p->sched_time = 0;
1009 	p->rchar = 0;		/* I/O counter: bytes read */
1010 	p->wchar = 0;		/* I/O counter: bytes written */
1011 	p->syscr = 0;		/* I/O counter: read syscalls */
1012 	p->syscw = 0;		/* I/O counter: write syscalls */
1013 	acct_clear_integrals(p);
1014 
1015  	p->it_virt_expires = cputime_zero;
1016 	p->it_prof_expires = cputime_zero;
1017  	p->it_sched_expires = 0;
1018  	INIT_LIST_HEAD(&p->cpu_timers[0]);
1019  	INIT_LIST_HEAD(&p->cpu_timers[1]);
1020  	INIT_LIST_HEAD(&p->cpu_timers[2]);
1021 
1022 	p->lock_depth = -1;		/* -1 = no lock */
1023 	do_posix_clock_monotonic_gettime(&p->start_time);
1024 	p->security = NULL;
1025 	p->io_context = NULL;
1026 	p->io_wait = NULL;
1027 	p->audit_context = NULL;
1028 	cpuset_fork(p);
1029 #ifdef CONFIG_NUMA
1030  	p->mempolicy = mpol_copy(p->mempolicy);
1031  	if (IS_ERR(p->mempolicy)) {
1032  		retval = PTR_ERR(p->mempolicy);
1033  		p->mempolicy = NULL;
1034  		goto bad_fork_cleanup_cpuset;
1035  	}
1036 	mpol_fix_fork_child_flag(p);
1037 #endif
1038 
1039 #ifdef CONFIG_DEBUG_MUTEXES
1040 	p->blocked_on = NULL; /* not blocked yet */
1041 #endif
1042 
1043 	p->tgid = p->pid;
1044 	if (clone_flags & CLONE_THREAD)
1045 		p->tgid = current->tgid;
1046 
1047 	if ((retval = security_task_alloc(p)))
1048 		goto bad_fork_cleanup_policy;
1049 	if ((retval = audit_alloc(p)))
1050 		goto bad_fork_cleanup_security;
1051 	/* copy all the process information */
1052 	if ((retval = copy_semundo(clone_flags, p)))
1053 		goto bad_fork_cleanup_audit;
1054 	if ((retval = copy_files(clone_flags, p)))
1055 		goto bad_fork_cleanup_semundo;
1056 	if ((retval = copy_fs(clone_flags, p)))
1057 		goto bad_fork_cleanup_files;
1058 	if ((retval = copy_sighand(clone_flags, p)))
1059 		goto bad_fork_cleanup_fs;
1060 	if ((retval = copy_signal(clone_flags, p)))
1061 		goto bad_fork_cleanup_sighand;
1062 	if ((retval = copy_mm(clone_flags, p)))
1063 		goto bad_fork_cleanup_signal;
1064 	if ((retval = copy_keys(clone_flags, p)))
1065 		goto bad_fork_cleanup_mm;
1066 	if ((retval = copy_namespace(clone_flags, p)))
1067 		goto bad_fork_cleanup_keys;
1068 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1069 	if (retval)
1070 		goto bad_fork_cleanup_namespace;
1071 
1072 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1073 	/*
1074 	 * Clear TID on mm_release()?
1075 	 */
1076 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1077 	p->robust_list = NULL;
1078 #ifdef CONFIG_COMPAT
1079 	p->compat_robust_list = NULL;
1080 #endif
1081 	/*
1082 	 * sigaltstack should be cleared when sharing the same VM
1083 	 */
1084 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1085 		p->sas_ss_sp = p->sas_ss_size = 0;
1086 
1087 	/*
1088 	 * Syscall tracing should be turned off in the child regardless
1089 	 * of CLONE_PTRACE.
1090 	 */
1091 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1092 #ifdef TIF_SYSCALL_EMU
1093 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1094 #endif
1095 
1096 	/* Our parent execution domain becomes current domain
1097 	   These must match for thread signalling to apply */
1098 
1099 	p->parent_exec_id = p->self_exec_id;
1100 
1101 	/* ok, now we should be set up.. */
1102 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1103 	p->pdeath_signal = 0;
1104 	p->exit_state = 0;
1105 
1106 	/*
1107 	 * Ok, make it visible to the rest of the system.
1108 	 * We dont wake it up yet.
1109 	 */
1110 	p->group_leader = p;
1111 	INIT_LIST_HEAD(&p->thread_group);
1112 	INIT_LIST_HEAD(&p->ptrace_children);
1113 	INIT_LIST_HEAD(&p->ptrace_list);
1114 
1115 	/* Perform scheduler related setup. Assign this task to a CPU. */
1116 	sched_fork(p, clone_flags);
1117 
1118 	/* Need tasklist lock for parent etc handling! */
1119 	write_lock_irq(&tasklist_lock);
1120 
1121 	/*
1122 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1123 	 * not be changed, nor will its assigned CPU.
1124 	 *
1125 	 * The cpus_allowed mask of the parent may have changed after it was
1126 	 * copied first time - so re-copy it here, then check the child's CPU
1127 	 * to ensure it is on a valid CPU (and if not, just force it back to
1128 	 * parent's CPU). This avoids alot of nasty races.
1129 	 */
1130 	p->cpus_allowed = current->cpus_allowed;
1131 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1132 			!cpu_online(task_cpu(p))))
1133 		set_task_cpu(p, smp_processor_id());
1134 
1135 	/* CLONE_PARENT re-uses the old parent */
1136 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1137 		p->real_parent = current->real_parent;
1138 	else
1139 		p->real_parent = current;
1140 	p->parent = p->real_parent;
1141 
1142 	spin_lock(&current->sighand->siglock);
1143 
1144 	/*
1145 	 * Process group and session signals need to be delivered to just the
1146 	 * parent before the fork or both the parent and the child after the
1147 	 * fork. Restart if a signal comes in before we add the new process to
1148 	 * it's process group.
1149 	 * A fatal signal pending means that current will exit, so the new
1150 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1151  	 */
1152  	recalc_sigpending();
1153 	if (signal_pending(current)) {
1154 		spin_unlock(&current->sighand->siglock);
1155 		write_unlock_irq(&tasklist_lock);
1156 		retval = -ERESTARTNOINTR;
1157 		goto bad_fork_cleanup_namespace;
1158 	}
1159 
1160 	if (clone_flags & CLONE_THREAD) {
1161 		/*
1162 		 * Important: if an exit-all has been started then
1163 		 * do not create this new thread - the whole thread
1164 		 * group is supposed to exit anyway.
1165 		 */
1166 		if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1167 			spin_unlock(&current->sighand->siglock);
1168 			write_unlock_irq(&tasklist_lock);
1169 			retval = -EAGAIN;
1170 			goto bad_fork_cleanup_namespace;
1171 		}
1172 
1173 		p->group_leader = current->group_leader;
1174 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1175 
1176 		if (!cputime_eq(current->signal->it_virt_expires,
1177 				cputime_zero) ||
1178 		    !cputime_eq(current->signal->it_prof_expires,
1179 				cputime_zero) ||
1180 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1181 		    !list_empty(&current->signal->cpu_timers[0]) ||
1182 		    !list_empty(&current->signal->cpu_timers[1]) ||
1183 		    !list_empty(&current->signal->cpu_timers[2])) {
1184 			/*
1185 			 * Have child wake up on its first tick to check
1186 			 * for process CPU timers.
1187 			 */
1188 			p->it_prof_expires = jiffies_to_cputime(1);
1189 		}
1190 	}
1191 
1192 	/*
1193 	 * inherit ioprio
1194 	 */
1195 	p->ioprio = current->ioprio;
1196 
1197 	if (likely(p->pid)) {
1198 		add_parent(p);
1199 		if (unlikely(p->ptrace & PT_PTRACED))
1200 			__ptrace_link(p, current->parent);
1201 
1202 		if (thread_group_leader(p)) {
1203 			p->signal->tty = current->signal->tty;
1204 			p->signal->pgrp = process_group(current);
1205 			p->signal->session = current->signal->session;
1206 			attach_pid(p, PIDTYPE_PGID, process_group(p));
1207 			attach_pid(p, PIDTYPE_SID, p->signal->session);
1208 
1209 			list_add_tail(&p->tasks, &init_task.tasks);
1210 			__get_cpu_var(process_counts)++;
1211 		}
1212 		attach_pid(p, PIDTYPE_PID, p->pid);
1213 		nr_threads++;
1214 	}
1215 
1216 	total_forks++;
1217 	spin_unlock(&current->sighand->siglock);
1218 	write_unlock_irq(&tasklist_lock);
1219 	proc_fork_connector(p);
1220 	return p;
1221 
1222 bad_fork_cleanup_namespace:
1223 	exit_namespace(p);
1224 bad_fork_cleanup_keys:
1225 	exit_keys(p);
1226 bad_fork_cleanup_mm:
1227 	if (p->mm)
1228 		mmput(p->mm);
1229 bad_fork_cleanup_signal:
1230 	cleanup_signal(p);
1231 bad_fork_cleanup_sighand:
1232 	__cleanup_sighand(p->sighand);
1233 bad_fork_cleanup_fs:
1234 	exit_fs(p); /* blocking */
1235 bad_fork_cleanup_files:
1236 	exit_files(p); /* blocking */
1237 bad_fork_cleanup_semundo:
1238 	exit_sem(p);
1239 bad_fork_cleanup_audit:
1240 	audit_free(p);
1241 bad_fork_cleanup_security:
1242 	security_task_free(p);
1243 bad_fork_cleanup_policy:
1244 #ifdef CONFIG_NUMA
1245 	mpol_free(p->mempolicy);
1246 bad_fork_cleanup_cpuset:
1247 #endif
1248 	cpuset_exit(p);
1249 bad_fork_cleanup:
1250 	if (p->binfmt)
1251 		module_put(p->binfmt->module);
1252 bad_fork_cleanup_put_domain:
1253 	module_put(task_thread_info(p)->exec_domain->module);
1254 bad_fork_cleanup_count:
1255 	put_group_info(p->group_info);
1256 	atomic_dec(&p->user->processes);
1257 	free_uid(p->user);
1258 bad_fork_free:
1259 	free_task(p);
1260 fork_out:
1261 	return ERR_PTR(retval);
1262 }
1263 
1264 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1265 {
1266 	memset(regs, 0, sizeof(struct pt_regs));
1267 	return regs;
1268 }
1269 
1270 task_t * __devinit fork_idle(int cpu)
1271 {
1272 	task_t *task;
1273 	struct pt_regs regs;
1274 
1275 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1276 	if (!task)
1277 		return ERR_PTR(-ENOMEM);
1278 	init_idle(task, cpu);
1279 
1280 	return task;
1281 }
1282 
1283 static inline int fork_traceflag (unsigned clone_flags)
1284 {
1285 	if (clone_flags & CLONE_UNTRACED)
1286 		return 0;
1287 	else if (clone_flags & CLONE_VFORK) {
1288 		if (current->ptrace & PT_TRACE_VFORK)
1289 			return PTRACE_EVENT_VFORK;
1290 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1291 		if (current->ptrace & PT_TRACE_CLONE)
1292 			return PTRACE_EVENT_CLONE;
1293 	} else if (current->ptrace & PT_TRACE_FORK)
1294 		return PTRACE_EVENT_FORK;
1295 
1296 	return 0;
1297 }
1298 
1299 /*
1300  *  Ok, this is the main fork-routine.
1301  *
1302  * It copies the process, and if successful kick-starts
1303  * it and waits for it to finish using the VM if required.
1304  */
1305 long do_fork(unsigned long clone_flags,
1306 	      unsigned long stack_start,
1307 	      struct pt_regs *regs,
1308 	      unsigned long stack_size,
1309 	      int __user *parent_tidptr,
1310 	      int __user *child_tidptr)
1311 {
1312 	struct task_struct *p;
1313 	int trace = 0;
1314 	long pid = alloc_pidmap();
1315 
1316 	if (pid < 0)
1317 		return -EAGAIN;
1318 	if (unlikely(current->ptrace)) {
1319 		trace = fork_traceflag (clone_flags);
1320 		if (trace)
1321 			clone_flags |= CLONE_PTRACE;
1322 	}
1323 
1324 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1325 	/*
1326 	 * Do this prior waking up the new thread - the thread pointer
1327 	 * might get invalid after that point, if the thread exits quickly.
1328 	 */
1329 	if (!IS_ERR(p)) {
1330 		struct completion vfork;
1331 
1332 		if (clone_flags & CLONE_VFORK) {
1333 			p->vfork_done = &vfork;
1334 			init_completion(&vfork);
1335 		}
1336 
1337 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1338 			/*
1339 			 * We'll start up with an immediate SIGSTOP.
1340 			 */
1341 			sigaddset(&p->pending.signal, SIGSTOP);
1342 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1343 		}
1344 
1345 		if (!(clone_flags & CLONE_STOPPED))
1346 			wake_up_new_task(p, clone_flags);
1347 		else
1348 			p->state = TASK_STOPPED;
1349 
1350 		if (unlikely (trace)) {
1351 			current->ptrace_message = pid;
1352 			ptrace_notify ((trace << 8) | SIGTRAP);
1353 		}
1354 
1355 		if (clone_flags & CLONE_VFORK) {
1356 			wait_for_completion(&vfork);
1357 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1358 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1359 		}
1360 	} else {
1361 		free_pidmap(pid);
1362 		pid = PTR_ERR(p);
1363 	}
1364 	return pid;
1365 }
1366 
1367 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1368 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1369 #endif
1370 
1371 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1372 {
1373 	struct sighand_struct *sighand = data;
1374 
1375 	if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1376 					SLAB_CTOR_CONSTRUCTOR)
1377 		spin_lock_init(&sighand->siglock);
1378 }
1379 
1380 void __init proc_caches_init(void)
1381 {
1382 	sighand_cachep = kmem_cache_create("sighand_cache",
1383 			sizeof(struct sighand_struct), 0,
1384 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1385 			sighand_ctor, NULL);
1386 	signal_cachep = kmem_cache_create("signal_cache",
1387 			sizeof(struct signal_struct), 0,
1388 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1389 	files_cachep = kmem_cache_create("files_cache",
1390 			sizeof(struct files_struct), 0,
1391 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1392 	fs_cachep = kmem_cache_create("fs_cache",
1393 			sizeof(struct fs_struct), 0,
1394 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1395 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1396 			sizeof(struct vm_area_struct), 0,
1397 			SLAB_PANIC, NULL, NULL);
1398 	mm_cachep = kmem_cache_create("mm_struct",
1399 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1400 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1401 }
1402 
1403 
1404 /*
1405  * Check constraints on flags passed to the unshare system call and
1406  * force unsharing of additional process context as appropriate.
1407  */
1408 static inline void check_unshare_flags(unsigned long *flags_ptr)
1409 {
1410 	/*
1411 	 * If unsharing a thread from a thread group, must also
1412 	 * unshare vm.
1413 	 */
1414 	if (*flags_ptr & CLONE_THREAD)
1415 		*flags_ptr |= CLONE_VM;
1416 
1417 	/*
1418 	 * If unsharing vm, must also unshare signal handlers.
1419 	 */
1420 	if (*flags_ptr & CLONE_VM)
1421 		*flags_ptr |= CLONE_SIGHAND;
1422 
1423 	/*
1424 	 * If unsharing signal handlers and the task was created
1425 	 * using CLONE_THREAD, then must unshare the thread
1426 	 */
1427 	if ((*flags_ptr & CLONE_SIGHAND) &&
1428 	    (atomic_read(&current->signal->count) > 1))
1429 		*flags_ptr |= CLONE_THREAD;
1430 
1431 	/*
1432 	 * If unsharing namespace, must also unshare filesystem information.
1433 	 */
1434 	if (*flags_ptr & CLONE_NEWNS)
1435 		*flags_ptr |= CLONE_FS;
1436 }
1437 
1438 /*
1439  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1440  */
1441 static int unshare_thread(unsigned long unshare_flags)
1442 {
1443 	if (unshare_flags & CLONE_THREAD)
1444 		return -EINVAL;
1445 
1446 	return 0;
1447 }
1448 
1449 /*
1450  * Unshare the filesystem structure if it is being shared
1451  */
1452 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1453 {
1454 	struct fs_struct *fs = current->fs;
1455 
1456 	if ((unshare_flags & CLONE_FS) &&
1457 	    (fs && atomic_read(&fs->count) > 1)) {
1458 		*new_fsp = __copy_fs_struct(current->fs);
1459 		if (!*new_fsp)
1460 			return -ENOMEM;
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 /*
1467  * Unshare the namespace structure if it is being shared
1468  */
1469 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1470 {
1471 	struct namespace *ns = current->namespace;
1472 
1473 	if ((unshare_flags & CLONE_NEWNS) &&
1474 	    (ns && atomic_read(&ns->count) > 1)) {
1475 		if (!capable(CAP_SYS_ADMIN))
1476 			return -EPERM;
1477 
1478 		*new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1479 		if (!*new_nsp)
1480 			return -ENOMEM;
1481 	}
1482 
1483 	return 0;
1484 }
1485 
1486 /*
1487  * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1488  * supported yet
1489  */
1490 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1491 {
1492 	struct sighand_struct *sigh = current->sighand;
1493 
1494 	if ((unshare_flags & CLONE_SIGHAND) &&
1495 	    (sigh && atomic_read(&sigh->count) > 1))
1496 		return -EINVAL;
1497 	else
1498 		return 0;
1499 }
1500 
1501 /*
1502  * Unshare vm if it is being shared
1503  */
1504 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1505 {
1506 	struct mm_struct *mm = current->mm;
1507 
1508 	if ((unshare_flags & CLONE_VM) &&
1509 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1510 		return -EINVAL;
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 /*
1517  * Unshare file descriptor table if it is being shared
1518  */
1519 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1520 {
1521 	struct files_struct *fd = current->files;
1522 	int error = 0;
1523 
1524 	if ((unshare_flags & CLONE_FILES) &&
1525 	    (fd && atomic_read(&fd->count) > 1)) {
1526 		*new_fdp = dup_fd(fd, &error);
1527 		if (!*new_fdp)
1528 			return error;
1529 	}
1530 
1531 	return 0;
1532 }
1533 
1534 /*
1535  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1536  * supported yet
1537  */
1538 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1539 {
1540 	if (unshare_flags & CLONE_SYSVSEM)
1541 		return -EINVAL;
1542 
1543 	return 0;
1544 }
1545 
1546 /*
1547  * unshare allows a process to 'unshare' part of the process
1548  * context which was originally shared using clone.  copy_*
1549  * functions used by do_fork() cannot be used here directly
1550  * because they modify an inactive task_struct that is being
1551  * constructed. Here we are modifying the current, active,
1552  * task_struct.
1553  */
1554 asmlinkage long sys_unshare(unsigned long unshare_flags)
1555 {
1556 	int err = 0;
1557 	struct fs_struct *fs, *new_fs = NULL;
1558 	struct namespace *ns, *new_ns = NULL;
1559 	struct sighand_struct *sigh, *new_sigh = NULL;
1560 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1561 	struct files_struct *fd, *new_fd = NULL;
1562 	struct sem_undo_list *new_ulist = NULL;
1563 
1564 	check_unshare_flags(&unshare_flags);
1565 
1566 	/* Return -EINVAL for all unsupported flags */
1567 	err = -EINVAL;
1568 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1569 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1570 		goto bad_unshare_out;
1571 
1572 	if ((err = unshare_thread(unshare_flags)))
1573 		goto bad_unshare_out;
1574 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1575 		goto bad_unshare_cleanup_thread;
1576 	if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1577 		goto bad_unshare_cleanup_fs;
1578 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1579 		goto bad_unshare_cleanup_ns;
1580 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1581 		goto bad_unshare_cleanup_sigh;
1582 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1583 		goto bad_unshare_cleanup_vm;
1584 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1585 		goto bad_unshare_cleanup_fd;
1586 
1587 	if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1588 
1589 		task_lock(current);
1590 
1591 		if (new_fs) {
1592 			fs = current->fs;
1593 			current->fs = new_fs;
1594 			new_fs = fs;
1595 		}
1596 
1597 		if (new_ns) {
1598 			ns = current->namespace;
1599 			current->namespace = new_ns;
1600 			new_ns = ns;
1601 		}
1602 
1603 		if (new_sigh) {
1604 			sigh = current->sighand;
1605 			rcu_assign_pointer(current->sighand, new_sigh);
1606 			new_sigh = sigh;
1607 		}
1608 
1609 		if (new_mm) {
1610 			mm = current->mm;
1611 			active_mm = current->active_mm;
1612 			current->mm = new_mm;
1613 			current->active_mm = new_mm;
1614 			activate_mm(active_mm, new_mm);
1615 			new_mm = mm;
1616 		}
1617 
1618 		if (new_fd) {
1619 			fd = current->files;
1620 			current->files = new_fd;
1621 			new_fd = fd;
1622 		}
1623 
1624 		task_unlock(current);
1625 	}
1626 
1627 bad_unshare_cleanup_fd:
1628 	if (new_fd)
1629 		put_files_struct(new_fd);
1630 
1631 bad_unshare_cleanup_vm:
1632 	if (new_mm)
1633 		mmput(new_mm);
1634 
1635 bad_unshare_cleanup_sigh:
1636 	if (new_sigh)
1637 		if (atomic_dec_and_test(&new_sigh->count))
1638 			kmem_cache_free(sighand_cachep, new_sigh);
1639 
1640 bad_unshare_cleanup_ns:
1641 	if (new_ns)
1642 		put_namespace(new_ns);
1643 
1644 bad_unshare_cleanup_fs:
1645 	if (new_fs)
1646 		put_fs_struct(new_fs);
1647 
1648 bad_unshare_cleanup_thread:
1649 bad_unshare_out:
1650 	return err;
1651 }
1652