xref: /linux/kernel/fork.c (revision d89dffa976bcd13fd87eb76e02e3b71c3a7868e3)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80 
81 #include <trace/events/sched.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85 
86 /*
87  * Protected counters by write_lock_irq(&tasklist_lock)
88  */
89 unsigned long total_forks;	/* Handle normal Linux uptimes. */
90 int nr_threads;			/* The idle threads do not count.. */
91 
92 int max_threads;		/* tunable limit on nr_threads */
93 
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95 
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
97 
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 	return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105 
106 int nr_processes(void)
107 {
108 	int cpu;
109 	int total = 0;
110 
111 	for_each_possible_cpu(cpu)
112 		total += per_cpu(process_counts, cpu);
113 
114 	return total;
115 }
116 
117 void __weak arch_release_task_struct(struct task_struct *tsk)
118 {
119 }
120 
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
123 
124 static inline struct task_struct *alloc_task_struct_node(int node)
125 {
126 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
127 }
128 
129 static inline void free_task_struct(struct task_struct *tsk)
130 {
131 	kmem_cache_free(task_struct_cachep, tsk);
132 }
133 #endif
134 
135 void __weak arch_release_thread_info(struct thread_info *ti)
136 {
137 }
138 
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
140 
141 /*
142  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143  * kmemcache based allocator.
144  */
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
147 						  int node)
148 {
149 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
150 					     THREAD_SIZE_ORDER);
151 
152 	return page ? page_address(page) : NULL;
153 }
154 
155 static inline void free_thread_info(struct thread_info *ti)
156 {
157 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
158 }
159 # else
160 static struct kmem_cache *thread_info_cache;
161 
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 						  int node)
164 {
165 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
166 }
167 
168 static void free_thread_info(struct thread_info *ti)
169 {
170 	kmem_cache_free(thread_info_cache, ti);
171 }
172 
173 void thread_info_cache_init(void)
174 {
175 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176 					      THREAD_SIZE, 0, NULL);
177 	BUG_ON(thread_info_cache == NULL);
178 }
179 # endif
180 #endif
181 
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
184 
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache *sighand_cachep;
187 
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache *files_cachep;
190 
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache *fs_cachep;
193 
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache *vm_area_cachep;
196 
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
199 
200 static void account_kernel_stack(struct thread_info *ti, int account)
201 {
202 	struct zone *zone = page_zone(virt_to_page(ti));
203 
204 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 }
206 
207 void free_task(struct task_struct *tsk)
208 {
209 	account_kernel_stack(tsk->stack, -1);
210 	arch_release_thread_info(tsk->stack);
211 	free_thread_info(tsk->stack);
212 	rt_mutex_debug_task_free(tsk);
213 	ftrace_graph_exit_task(tsk);
214 	put_seccomp_filter(tsk);
215 	arch_release_task_struct(tsk);
216 	free_task_struct(tsk);
217 }
218 EXPORT_SYMBOL(free_task);
219 
220 static inline void free_signal_struct(struct signal_struct *sig)
221 {
222 	taskstats_tgid_free(sig);
223 	sched_autogroup_exit(sig);
224 	kmem_cache_free(signal_cachep, sig);
225 }
226 
227 static inline void put_signal_struct(struct signal_struct *sig)
228 {
229 	if (atomic_dec_and_test(&sig->sigcnt))
230 		free_signal_struct(sig);
231 }
232 
233 void __put_task_struct(struct task_struct *tsk)
234 {
235 	WARN_ON(!tsk->exit_state);
236 	WARN_ON(atomic_read(&tsk->usage));
237 	WARN_ON(tsk == current);
238 
239 	security_task_free(tsk);
240 	exit_creds(tsk);
241 	delayacct_tsk_free(tsk);
242 	put_signal_struct(tsk->signal);
243 
244 	if (!profile_handoff_task(tsk))
245 		free_task(tsk);
246 }
247 EXPORT_SYMBOL_GPL(__put_task_struct);
248 
249 void __init __weak arch_task_cache_init(void) { }
250 
251 void __init fork_init(unsigned long mempages)
252 {
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
256 #endif
257 	/* create a slab on which task_structs can be allocated */
258 	task_struct_cachep =
259 		kmem_cache_create("task_struct", sizeof(struct task_struct),
260 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
261 #endif
262 
263 	/* do the arch specific task caches init */
264 	arch_task_cache_init();
265 
266 	/*
267 	 * The default maximum number of threads is set to a safe
268 	 * value: the thread structures can take up at most half
269 	 * of memory.
270 	 */
271 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
272 
273 	/*
274 	 * we need to allow at least 20 threads to boot a system
275 	 */
276 	if (max_threads < 20)
277 		max_threads = 20;
278 
279 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
282 		init_task.signal->rlim[RLIMIT_NPROC];
283 }
284 
285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
286 					       struct task_struct *src)
287 {
288 	*dst = *src;
289 	return 0;
290 }
291 
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
293 {
294 	struct task_struct *tsk;
295 	struct thread_info *ti;
296 	unsigned long *stackend;
297 	int node = tsk_fork_get_node(orig);
298 	int err;
299 
300 	tsk = alloc_task_struct_node(node);
301 	if (!tsk)
302 		return NULL;
303 
304 	ti = alloc_thread_info_node(tsk, node);
305 	if (!ti)
306 		goto free_tsk;
307 
308 	err = arch_dup_task_struct(tsk, orig);
309 	if (err)
310 		goto free_ti;
311 
312 	tsk->stack = ti;
313 
314 	setup_thread_stack(tsk, orig);
315 	clear_user_return_notifier(tsk);
316 	clear_tsk_need_resched(tsk);
317 	stackend = end_of_stack(tsk);
318 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
319 
320 #ifdef CONFIG_CC_STACKPROTECTOR
321 	tsk->stack_canary = get_random_int();
322 #endif
323 
324 	/*
325 	 * One for us, one for whoever does the "release_task()" (usually
326 	 * parent)
327 	 */
328 	atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
330 	tsk->btrace_seq = 0;
331 #endif
332 	tsk->splice_pipe = NULL;
333 
334 	account_kernel_stack(ti, 1);
335 
336 	return tsk;
337 
338 free_ti:
339 	free_thread_info(ti);
340 free_tsk:
341 	free_task_struct(tsk);
342 	return NULL;
343 }
344 
345 #ifdef CONFIG_MMU
346 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
347 {
348 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
349 	struct rb_node **rb_link, *rb_parent;
350 	int retval;
351 	unsigned long charge;
352 	struct mempolicy *pol;
353 
354 	down_write(&oldmm->mmap_sem);
355 	flush_cache_dup_mm(oldmm);
356 	/*
357 	 * Not linked in yet - no deadlock potential:
358 	 */
359 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
360 
361 	mm->locked_vm = 0;
362 	mm->mmap = NULL;
363 	mm->mmap_cache = NULL;
364 	mm->free_area_cache = oldmm->mmap_base;
365 	mm->cached_hole_size = ~0UL;
366 	mm->map_count = 0;
367 	cpumask_clear(mm_cpumask(mm));
368 	mm->mm_rb = RB_ROOT;
369 	rb_link = &mm->mm_rb.rb_node;
370 	rb_parent = NULL;
371 	pprev = &mm->mmap;
372 	retval = ksm_fork(mm, oldmm);
373 	if (retval)
374 		goto out;
375 	retval = khugepaged_fork(mm, oldmm);
376 	if (retval)
377 		goto out;
378 
379 	prev = NULL;
380 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
381 		struct file *file;
382 
383 		if (mpnt->vm_flags & VM_DONTCOPY) {
384 			long pages = vma_pages(mpnt);
385 			mm->total_vm -= pages;
386 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
387 								-pages);
388 			continue;
389 		}
390 		charge = 0;
391 		if (mpnt->vm_flags & VM_ACCOUNT) {
392 			unsigned long len = vma_pages(mpnt);
393 
394 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
395 				goto fail_nomem;
396 			charge = len;
397 		}
398 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
399 		if (!tmp)
400 			goto fail_nomem;
401 		*tmp = *mpnt;
402 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
403 		pol = mpol_dup(vma_policy(mpnt));
404 		retval = PTR_ERR(pol);
405 		if (IS_ERR(pol))
406 			goto fail_nomem_policy;
407 		vma_set_policy(tmp, pol);
408 		tmp->vm_mm = mm;
409 		if (anon_vma_fork(tmp, mpnt))
410 			goto fail_nomem_anon_vma_fork;
411 		tmp->vm_flags &= ~VM_LOCKED;
412 		tmp->vm_next = tmp->vm_prev = NULL;
413 		file = tmp->vm_file;
414 		if (file) {
415 			struct inode *inode = file->f_path.dentry->d_inode;
416 			struct address_space *mapping = file->f_mapping;
417 
418 			get_file(file);
419 			if (tmp->vm_flags & VM_DENYWRITE)
420 				atomic_dec(&inode->i_writecount);
421 			mutex_lock(&mapping->i_mmap_mutex);
422 			if (tmp->vm_flags & VM_SHARED)
423 				mapping->i_mmap_writable++;
424 			flush_dcache_mmap_lock(mapping);
425 			/* insert tmp into the share list, just after mpnt */
426 			vma_prio_tree_add(tmp, mpnt);
427 			flush_dcache_mmap_unlock(mapping);
428 			mutex_unlock(&mapping->i_mmap_mutex);
429 		}
430 
431 		/*
432 		 * Clear hugetlb-related page reserves for children. This only
433 		 * affects MAP_PRIVATE mappings. Faults generated by the child
434 		 * are not guaranteed to succeed, even if read-only
435 		 */
436 		if (is_vm_hugetlb_page(tmp))
437 			reset_vma_resv_huge_pages(tmp);
438 
439 		/*
440 		 * Link in the new vma and copy the page table entries.
441 		 */
442 		*pprev = tmp;
443 		pprev = &tmp->vm_next;
444 		tmp->vm_prev = prev;
445 		prev = tmp;
446 
447 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
448 		rb_link = &tmp->vm_rb.rb_right;
449 		rb_parent = &tmp->vm_rb;
450 
451 		mm->map_count++;
452 		retval = copy_page_range(mm, oldmm, mpnt);
453 
454 		if (tmp->vm_ops && tmp->vm_ops->open)
455 			tmp->vm_ops->open(tmp);
456 
457 		if (retval)
458 			goto out;
459 
460 		if (file && uprobe_mmap(tmp))
461 			goto out;
462 	}
463 	/* a new mm has just been created */
464 	arch_dup_mmap(oldmm, mm);
465 	retval = 0;
466 out:
467 	up_write(&mm->mmap_sem);
468 	flush_tlb_mm(oldmm);
469 	up_write(&oldmm->mmap_sem);
470 	return retval;
471 fail_nomem_anon_vma_fork:
472 	mpol_put(pol);
473 fail_nomem_policy:
474 	kmem_cache_free(vm_area_cachep, tmp);
475 fail_nomem:
476 	retval = -ENOMEM;
477 	vm_unacct_memory(charge);
478 	goto out;
479 }
480 
481 static inline int mm_alloc_pgd(struct mm_struct *mm)
482 {
483 	mm->pgd = pgd_alloc(mm);
484 	if (unlikely(!mm->pgd))
485 		return -ENOMEM;
486 	return 0;
487 }
488 
489 static inline void mm_free_pgd(struct mm_struct *mm)
490 {
491 	pgd_free(mm, mm->pgd);
492 }
493 #else
494 #define dup_mmap(mm, oldmm)	(0)
495 #define mm_alloc_pgd(mm)	(0)
496 #define mm_free_pgd(mm)
497 #endif /* CONFIG_MMU */
498 
499 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
500 
501 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
502 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
503 
504 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
505 
506 static int __init coredump_filter_setup(char *s)
507 {
508 	default_dump_filter =
509 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
510 		MMF_DUMP_FILTER_MASK;
511 	return 1;
512 }
513 
514 __setup("coredump_filter=", coredump_filter_setup);
515 
516 #include <linux/init_task.h>
517 
518 static void mm_init_aio(struct mm_struct *mm)
519 {
520 #ifdef CONFIG_AIO
521 	spin_lock_init(&mm->ioctx_lock);
522 	INIT_HLIST_HEAD(&mm->ioctx_list);
523 #endif
524 }
525 
526 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
527 {
528 	atomic_set(&mm->mm_users, 1);
529 	atomic_set(&mm->mm_count, 1);
530 	init_rwsem(&mm->mmap_sem);
531 	INIT_LIST_HEAD(&mm->mmlist);
532 	mm->flags = (current->mm) ?
533 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
534 	mm->core_state = NULL;
535 	mm->nr_ptes = 0;
536 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
537 	spin_lock_init(&mm->page_table_lock);
538 	mm->free_area_cache = TASK_UNMAPPED_BASE;
539 	mm->cached_hole_size = ~0UL;
540 	mm_init_aio(mm);
541 	mm_init_owner(mm, p);
542 
543 	if (likely(!mm_alloc_pgd(mm))) {
544 		mm->def_flags = 0;
545 		mmu_notifier_mm_init(mm);
546 		return mm;
547 	}
548 
549 	free_mm(mm);
550 	return NULL;
551 }
552 
553 static void check_mm(struct mm_struct *mm)
554 {
555 	int i;
556 
557 	for (i = 0; i < NR_MM_COUNTERS; i++) {
558 		long x = atomic_long_read(&mm->rss_stat.count[i]);
559 
560 		if (unlikely(x))
561 			printk(KERN_ALERT "BUG: Bad rss-counter state "
562 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
563 	}
564 
565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
566 	VM_BUG_ON(mm->pmd_huge_pte);
567 #endif
568 }
569 
570 /*
571  * Allocate and initialize an mm_struct.
572  */
573 struct mm_struct *mm_alloc(void)
574 {
575 	struct mm_struct *mm;
576 
577 	mm = allocate_mm();
578 	if (!mm)
579 		return NULL;
580 
581 	memset(mm, 0, sizeof(*mm));
582 	mm_init_cpumask(mm);
583 	return mm_init(mm, current);
584 }
585 
586 /*
587  * Called when the last reference to the mm
588  * is dropped: either by a lazy thread or by
589  * mmput. Free the page directory and the mm.
590  */
591 void __mmdrop(struct mm_struct *mm)
592 {
593 	BUG_ON(mm == &init_mm);
594 	mm_free_pgd(mm);
595 	destroy_context(mm);
596 	mmu_notifier_mm_destroy(mm);
597 	check_mm(mm);
598 	free_mm(mm);
599 }
600 EXPORT_SYMBOL_GPL(__mmdrop);
601 
602 /*
603  * Decrement the use count and release all resources for an mm.
604  */
605 void mmput(struct mm_struct *mm)
606 {
607 	might_sleep();
608 
609 	if (atomic_dec_and_test(&mm->mm_users)) {
610 		uprobe_clear_state(mm);
611 		exit_aio(mm);
612 		ksm_exit(mm);
613 		khugepaged_exit(mm); /* must run before exit_mmap */
614 		exit_mmap(mm);
615 		set_mm_exe_file(mm, NULL);
616 		if (!list_empty(&mm->mmlist)) {
617 			spin_lock(&mmlist_lock);
618 			list_del(&mm->mmlist);
619 			spin_unlock(&mmlist_lock);
620 		}
621 		if (mm->binfmt)
622 			module_put(mm->binfmt->module);
623 		mmdrop(mm);
624 	}
625 }
626 EXPORT_SYMBOL_GPL(mmput);
627 
628 /*
629  * We added or removed a vma mapping the executable. The vmas are only mapped
630  * during exec and are not mapped with the mmap system call.
631  * Callers must hold down_write() on the mm's mmap_sem for these
632  */
633 void added_exe_file_vma(struct mm_struct *mm)
634 {
635 	mm->num_exe_file_vmas++;
636 }
637 
638 void removed_exe_file_vma(struct mm_struct *mm)
639 {
640 	mm->num_exe_file_vmas--;
641 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
642 		fput(mm->exe_file);
643 		mm->exe_file = NULL;
644 	}
645 
646 }
647 
648 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
649 {
650 	if (new_exe_file)
651 		get_file(new_exe_file);
652 	if (mm->exe_file)
653 		fput(mm->exe_file);
654 	mm->exe_file = new_exe_file;
655 	mm->num_exe_file_vmas = 0;
656 }
657 
658 struct file *get_mm_exe_file(struct mm_struct *mm)
659 {
660 	struct file *exe_file;
661 
662 	/* We need mmap_sem to protect against races with removal of
663 	 * VM_EXECUTABLE vmas */
664 	down_read(&mm->mmap_sem);
665 	exe_file = mm->exe_file;
666 	if (exe_file)
667 		get_file(exe_file);
668 	up_read(&mm->mmap_sem);
669 	return exe_file;
670 }
671 
672 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
673 {
674 	/* It's safe to write the exe_file pointer without exe_file_lock because
675 	 * this is called during fork when the task is not yet in /proc */
676 	newmm->exe_file = get_mm_exe_file(oldmm);
677 }
678 
679 /**
680  * get_task_mm - acquire a reference to the task's mm
681  *
682  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
683  * this kernel workthread has transiently adopted a user mm with use_mm,
684  * to do its AIO) is not set and if so returns a reference to it, after
685  * bumping up the use count.  User must release the mm via mmput()
686  * after use.  Typically used by /proc and ptrace.
687  */
688 struct mm_struct *get_task_mm(struct task_struct *task)
689 {
690 	struct mm_struct *mm;
691 
692 	task_lock(task);
693 	mm = task->mm;
694 	if (mm) {
695 		if (task->flags & PF_KTHREAD)
696 			mm = NULL;
697 		else
698 			atomic_inc(&mm->mm_users);
699 	}
700 	task_unlock(task);
701 	return mm;
702 }
703 EXPORT_SYMBOL_GPL(get_task_mm);
704 
705 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
706 {
707 	struct mm_struct *mm;
708 	int err;
709 
710 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
711 	if (err)
712 		return ERR_PTR(err);
713 
714 	mm = get_task_mm(task);
715 	if (mm && mm != current->mm &&
716 			!ptrace_may_access(task, mode)) {
717 		mmput(mm);
718 		mm = ERR_PTR(-EACCES);
719 	}
720 	mutex_unlock(&task->signal->cred_guard_mutex);
721 
722 	return mm;
723 }
724 
725 static void complete_vfork_done(struct task_struct *tsk)
726 {
727 	struct completion *vfork;
728 
729 	task_lock(tsk);
730 	vfork = tsk->vfork_done;
731 	if (likely(vfork)) {
732 		tsk->vfork_done = NULL;
733 		complete(vfork);
734 	}
735 	task_unlock(tsk);
736 }
737 
738 static int wait_for_vfork_done(struct task_struct *child,
739 				struct completion *vfork)
740 {
741 	int killed;
742 
743 	freezer_do_not_count();
744 	killed = wait_for_completion_killable(vfork);
745 	freezer_count();
746 
747 	if (killed) {
748 		task_lock(child);
749 		child->vfork_done = NULL;
750 		task_unlock(child);
751 	}
752 
753 	put_task_struct(child);
754 	return killed;
755 }
756 
757 /* Please note the differences between mmput and mm_release.
758  * mmput is called whenever we stop holding onto a mm_struct,
759  * error success whatever.
760  *
761  * mm_release is called after a mm_struct has been removed
762  * from the current process.
763  *
764  * This difference is important for error handling, when we
765  * only half set up a mm_struct for a new process and need to restore
766  * the old one.  Because we mmput the new mm_struct before
767  * restoring the old one. . .
768  * Eric Biederman 10 January 1998
769  */
770 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
771 {
772 	/* Get rid of any futexes when releasing the mm */
773 #ifdef CONFIG_FUTEX
774 	if (unlikely(tsk->robust_list)) {
775 		exit_robust_list(tsk);
776 		tsk->robust_list = NULL;
777 	}
778 #ifdef CONFIG_COMPAT
779 	if (unlikely(tsk->compat_robust_list)) {
780 		compat_exit_robust_list(tsk);
781 		tsk->compat_robust_list = NULL;
782 	}
783 #endif
784 	if (unlikely(!list_empty(&tsk->pi_state_list)))
785 		exit_pi_state_list(tsk);
786 #endif
787 
788 	uprobe_free_utask(tsk);
789 
790 	/* Get rid of any cached register state */
791 	deactivate_mm(tsk, mm);
792 
793 	/*
794 	 * If we're exiting normally, clear a user-space tid field if
795 	 * requested.  We leave this alone when dying by signal, to leave
796 	 * the value intact in a core dump, and to save the unnecessary
797 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
798 	 * Userland only wants this done for a sys_exit.
799 	 */
800 	if (tsk->clear_child_tid) {
801 		if (!(tsk->flags & PF_SIGNALED) &&
802 		    atomic_read(&mm->mm_users) > 1) {
803 			/*
804 			 * We don't check the error code - if userspace has
805 			 * not set up a proper pointer then tough luck.
806 			 */
807 			put_user(0, tsk->clear_child_tid);
808 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
809 					1, NULL, NULL, 0);
810 		}
811 		tsk->clear_child_tid = NULL;
812 	}
813 
814 	/*
815 	 * All done, finally we can wake up parent and return this mm to him.
816 	 * Also kthread_stop() uses this completion for synchronization.
817 	 */
818 	if (tsk->vfork_done)
819 		complete_vfork_done(tsk);
820 }
821 
822 /*
823  * Allocate a new mm structure and copy contents from the
824  * mm structure of the passed in task structure.
825  */
826 struct mm_struct *dup_mm(struct task_struct *tsk)
827 {
828 	struct mm_struct *mm, *oldmm = current->mm;
829 	int err;
830 
831 	if (!oldmm)
832 		return NULL;
833 
834 	mm = allocate_mm();
835 	if (!mm)
836 		goto fail_nomem;
837 
838 	memcpy(mm, oldmm, sizeof(*mm));
839 	mm_init_cpumask(mm);
840 
841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
842 	mm->pmd_huge_pte = NULL;
843 #endif
844 	uprobe_reset_state(mm);
845 
846 	if (!mm_init(mm, tsk))
847 		goto fail_nomem;
848 
849 	if (init_new_context(tsk, mm))
850 		goto fail_nocontext;
851 
852 	dup_mm_exe_file(oldmm, mm);
853 
854 	err = dup_mmap(mm, oldmm);
855 	if (err)
856 		goto free_pt;
857 
858 	mm->hiwater_rss = get_mm_rss(mm);
859 	mm->hiwater_vm = mm->total_vm;
860 
861 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
862 		goto free_pt;
863 
864 	return mm;
865 
866 free_pt:
867 	/* don't put binfmt in mmput, we haven't got module yet */
868 	mm->binfmt = NULL;
869 	mmput(mm);
870 
871 fail_nomem:
872 	return NULL;
873 
874 fail_nocontext:
875 	/*
876 	 * If init_new_context() failed, we cannot use mmput() to free the mm
877 	 * because it calls destroy_context()
878 	 */
879 	mm_free_pgd(mm);
880 	free_mm(mm);
881 	return NULL;
882 }
883 
884 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
885 {
886 	struct mm_struct *mm, *oldmm;
887 	int retval;
888 
889 	tsk->min_flt = tsk->maj_flt = 0;
890 	tsk->nvcsw = tsk->nivcsw = 0;
891 #ifdef CONFIG_DETECT_HUNG_TASK
892 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
893 #endif
894 
895 	tsk->mm = NULL;
896 	tsk->active_mm = NULL;
897 
898 	/*
899 	 * Are we cloning a kernel thread?
900 	 *
901 	 * We need to steal a active VM for that..
902 	 */
903 	oldmm = current->mm;
904 	if (!oldmm)
905 		return 0;
906 
907 	if (clone_flags & CLONE_VM) {
908 		atomic_inc(&oldmm->mm_users);
909 		mm = oldmm;
910 		goto good_mm;
911 	}
912 
913 	retval = -ENOMEM;
914 	mm = dup_mm(tsk);
915 	if (!mm)
916 		goto fail_nomem;
917 
918 good_mm:
919 	tsk->mm = mm;
920 	tsk->active_mm = mm;
921 	return 0;
922 
923 fail_nomem:
924 	return retval;
925 }
926 
927 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
928 {
929 	struct fs_struct *fs = current->fs;
930 	if (clone_flags & CLONE_FS) {
931 		/* tsk->fs is already what we want */
932 		spin_lock(&fs->lock);
933 		if (fs->in_exec) {
934 			spin_unlock(&fs->lock);
935 			return -EAGAIN;
936 		}
937 		fs->users++;
938 		spin_unlock(&fs->lock);
939 		return 0;
940 	}
941 	tsk->fs = copy_fs_struct(fs);
942 	if (!tsk->fs)
943 		return -ENOMEM;
944 	return 0;
945 }
946 
947 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
948 {
949 	struct files_struct *oldf, *newf;
950 	int error = 0;
951 
952 	/*
953 	 * A background process may not have any files ...
954 	 */
955 	oldf = current->files;
956 	if (!oldf)
957 		goto out;
958 
959 	if (clone_flags & CLONE_FILES) {
960 		atomic_inc(&oldf->count);
961 		goto out;
962 	}
963 
964 	newf = dup_fd(oldf, &error);
965 	if (!newf)
966 		goto out;
967 
968 	tsk->files = newf;
969 	error = 0;
970 out:
971 	return error;
972 }
973 
974 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
975 {
976 #ifdef CONFIG_BLOCK
977 	struct io_context *ioc = current->io_context;
978 	struct io_context *new_ioc;
979 
980 	if (!ioc)
981 		return 0;
982 	/*
983 	 * Share io context with parent, if CLONE_IO is set
984 	 */
985 	if (clone_flags & CLONE_IO) {
986 		ioc_task_link(ioc);
987 		tsk->io_context = ioc;
988 	} else if (ioprio_valid(ioc->ioprio)) {
989 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
990 		if (unlikely(!new_ioc))
991 			return -ENOMEM;
992 
993 		new_ioc->ioprio = ioc->ioprio;
994 		put_io_context(new_ioc);
995 	}
996 #endif
997 	return 0;
998 }
999 
1000 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1001 {
1002 	struct sighand_struct *sig;
1003 
1004 	if (clone_flags & CLONE_SIGHAND) {
1005 		atomic_inc(&current->sighand->count);
1006 		return 0;
1007 	}
1008 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1009 	rcu_assign_pointer(tsk->sighand, sig);
1010 	if (!sig)
1011 		return -ENOMEM;
1012 	atomic_set(&sig->count, 1);
1013 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1014 	return 0;
1015 }
1016 
1017 void __cleanup_sighand(struct sighand_struct *sighand)
1018 {
1019 	if (atomic_dec_and_test(&sighand->count)) {
1020 		signalfd_cleanup(sighand);
1021 		kmem_cache_free(sighand_cachep, sighand);
1022 	}
1023 }
1024 
1025 
1026 /*
1027  * Initialize POSIX timer handling for a thread group.
1028  */
1029 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1030 {
1031 	unsigned long cpu_limit;
1032 
1033 	/* Thread group counters. */
1034 	thread_group_cputime_init(sig);
1035 
1036 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1037 	if (cpu_limit != RLIM_INFINITY) {
1038 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1039 		sig->cputimer.running = 1;
1040 	}
1041 
1042 	/* The timer lists. */
1043 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1044 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1045 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1046 }
1047 
1048 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1049 {
1050 	struct signal_struct *sig;
1051 
1052 	if (clone_flags & CLONE_THREAD)
1053 		return 0;
1054 
1055 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1056 	tsk->signal = sig;
1057 	if (!sig)
1058 		return -ENOMEM;
1059 
1060 	sig->nr_threads = 1;
1061 	atomic_set(&sig->live, 1);
1062 	atomic_set(&sig->sigcnt, 1);
1063 	init_waitqueue_head(&sig->wait_chldexit);
1064 	if (clone_flags & CLONE_NEWPID)
1065 		sig->flags |= SIGNAL_UNKILLABLE;
1066 	sig->curr_target = tsk;
1067 	init_sigpending(&sig->shared_pending);
1068 	INIT_LIST_HEAD(&sig->posix_timers);
1069 
1070 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1071 	sig->real_timer.function = it_real_fn;
1072 
1073 	task_lock(current->group_leader);
1074 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1075 	task_unlock(current->group_leader);
1076 
1077 	posix_cpu_timers_init_group(sig);
1078 
1079 	tty_audit_fork(sig);
1080 	sched_autogroup_fork(sig);
1081 
1082 #ifdef CONFIG_CGROUPS
1083 	init_rwsem(&sig->group_rwsem);
1084 #endif
1085 
1086 	sig->oom_adj = current->signal->oom_adj;
1087 	sig->oom_score_adj = current->signal->oom_score_adj;
1088 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1089 
1090 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1091 				   current->signal->is_child_subreaper;
1092 
1093 	mutex_init(&sig->cred_guard_mutex);
1094 
1095 	return 0;
1096 }
1097 
1098 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1099 {
1100 	unsigned long new_flags = p->flags;
1101 
1102 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1103 	new_flags |= PF_FORKNOEXEC;
1104 	p->flags = new_flags;
1105 }
1106 
1107 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1108 {
1109 	current->clear_child_tid = tidptr;
1110 
1111 	return task_pid_vnr(current);
1112 }
1113 
1114 static void rt_mutex_init_task(struct task_struct *p)
1115 {
1116 	raw_spin_lock_init(&p->pi_lock);
1117 #ifdef CONFIG_RT_MUTEXES
1118 	plist_head_init(&p->pi_waiters);
1119 	p->pi_blocked_on = NULL;
1120 #endif
1121 }
1122 
1123 #ifdef CONFIG_MM_OWNER
1124 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1125 {
1126 	mm->owner = p;
1127 }
1128 #endif /* CONFIG_MM_OWNER */
1129 
1130 /*
1131  * Initialize POSIX timer handling for a single task.
1132  */
1133 static void posix_cpu_timers_init(struct task_struct *tsk)
1134 {
1135 	tsk->cputime_expires.prof_exp = 0;
1136 	tsk->cputime_expires.virt_exp = 0;
1137 	tsk->cputime_expires.sched_exp = 0;
1138 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1139 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1140 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1141 }
1142 
1143 /*
1144  * This creates a new process as a copy of the old one,
1145  * but does not actually start it yet.
1146  *
1147  * It copies the registers, and all the appropriate
1148  * parts of the process environment (as per the clone
1149  * flags). The actual kick-off is left to the caller.
1150  */
1151 static struct task_struct *copy_process(unsigned long clone_flags,
1152 					unsigned long stack_start,
1153 					struct pt_regs *regs,
1154 					unsigned long stack_size,
1155 					int __user *child_tidptr,
1156 					struct pid *pid,
1157 					int trace)
1158 {
1159 	int retval;
1160 	struct task_struct *p;
1161 	int cgroup_callbacks_done = 0;
1162 
1163 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1164 		return ERR_PTR(-EINVAL);
1165 
1166 	/*
1167 	 * Thread groups must share signals as well, and detached threads
1168 	 * can only be started up within the thread group.
1169 	 */
1170 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1171 		return ERR_PTR(-EINVAL);
1172 
1173 	/*
1174 	 * Shared signal handlers imply shared VM. By way of the above,
1175 	 * thread groups also imply shared VM. Blocking this case allows
1176 	 * for various simplifications in other code.
1177 	 */
1178 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1179 		return ERR_PTR(-EINVAL);
1180 
1181 	/*
1182 	 * Siblings of global init remain as zombies on exit since they are
1183 	 * not reaped by their parent (swapper). To solve this and to avoid
1184 	 * multi-rooted process trees, prevent global and container-inits
1185 	 * from creating siblings.
1186 	 */
1187 	if ((clone_flags & CLONE_PARENT) &&
1188 				current->signal->flags & SIGNAL_UNKILLABLE)
1189 		return ERR_PTR(-EINVAL);
1190 
1191 	retval = security_task_create(clone_flags);
1192 	if (retval)
1193 		goto fork_out;
1194 
1195 	retval = -ENOMEM;
1196 	p = dup_task_struct(current);
1197 	if (!p)
1198 		goto fork_out;
1199 
1200 	ftrace_graph_init_task(p);
1201 	get_seccomp_filter(p);
1202 
1203 	rt_mutex_init_task(p);
1204 
1205 #ifdef CONFIG_PROVE_LOCKING
1206 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1207 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1208 #endif
1209 	retval = -EAGAIN;
1210 	if (atomic_read(&p->real_cred->user->processes) >=
1211 			task_rlimit(p, RLIMIT_NPROC)) {
1212 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1213 		    p->real_cred->user != INIT_USER)
1214 			goto bad_fork_free;
1215 	}
1216 	current->flags &= ~PF_NPROC_EXCEEDED;
1217 
1218 	retval = copy_creds(p, clone_flags);
1219 	if (retval < 0)
1220 		goto bad_fork_free;
1221 
1222 	/*
1223 	 * If multiple threads are within copy_process(), then this check
1224 	 * triggers too late. This doesn't hurt, the check is only there
1225 	 * to stop root fork bombs.
1226 	 */
1227 	retval = -EAGAIN;
1228 	if (nr_threads >= max_threads)
1229 		goto bad_fork_cleanup_count;
1230 
1231 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1232 		goto bad_fork_cleanup_count;
1233 
1234 	p->did_exec = 0;
1235 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1236 	copy_flags(clone_flags, p);
1237 	INIT_LIST_HEAD(&p->children);
1238 	INIT_LIST_HEAD(&p->sibling);
1239 	rcu_copy_process(p);
1240 	p->vfork_done = NULL;
1241 	spin_lock_init(&p->alloc_lock);
1242 
1243 	init_sigpending(&p->pending);
1244 
1245 	p->utime = p->stime = p->gtime = 0;
1246 	p->utimescaled = p->stimescaled = 0;
1247 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1248 	p->prev_utime = p->prev_stime = 0;
1249 #endif
1250 #if defined(SPLIT_RSS_COUNTING)
1251 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1252 #endif
1253 
1254 	p->default_timer_slack_ns = current->timer_slack_ns;
1255 
1256 	task_io_accounting_init(&p->ioac);
1257 	acct_clear_integrals(p);
1258 
1259 	posix_cpu_timers_init(p);
1260 
1261 	do_posix_clock_monotonic_gettime(&p->start_time);
1262 	p->real_start_time = p->start_time;
1263 	monotonic_to_bootbased(&p->real_start_time);
1264 	p->io_context = NULL;
1265 	p->audit_context = NULL;
1266 	if (clone_flags & CLONE_THREAD)
1267 		threadgroup_change_begin(current);
1268 	cgroup_fork(p);
1269 #ifdef CONFIG_NUMA
1270 	p->mempolicy = mpol_dup(p->mempolicy);
1271 	if (IS_ERR(p->mempolicy)) {
1272 		retval = PTR_ERR(p->mempolicy);
1273 		p->mempolicy = NULL;
1274 		goto bad_fork_cleanup_cgroup;
1275 	}
1276 	mpol_fix_fork_child_flag(p);
1277 #endif
1278 #ifdef CONFIG_CPUSETS
1279 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1280 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1281 	seqcount_init(&p->mems_allowed_seq);
1282 #endif
1283 #ifdef CONFIG_TRACE_IRQFLAGS
1284 	p->irq_events = 0;
1285 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1286 	p->hardirqs_enabled = 1;
1287 #else
1288 	p->hardirqs_enabled = 0;
1289 #endif
1290 	p->hardirq_enable_ip = 0;
1291 	p->hardirq_enable_event = 0;
1292 	p->hardirq_disable_ip = _THIS_IP_;
1293 	p->hardirq_disable_event = 0;
1294 	p->softirqs_enabled = 1;
1295 	p->softirq_enable_ip = _THIS_IP_;
1296 	p->softirq_enable_event = 0;
1297 	p->softirq_disable_ip = 0;
1298 	p->softirq_disable_event = 0;
1299 	p->hardirq_context = 0;
1300 	p->softirq_context = 0;
1301 #endif
1302 #ifdef CONFIG_LOCKDEP
1303 	p->lockdep_depth = 0; /* no locks held yet */
1304 	p->curr_chain_key = 0;
1305 	p->lockdep_recursion = 0;
1306 #endif
1307 
1308 #ifdef CONFIG_DEBUG_MUTEXES
1309 	p->blocked_on = NULL; /* not blocked yet */
1310 #endif
1311 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1312 	p->memcg_batch.do_batch = 0;
1313 	p->memcg_batch.memcg = NULL;
1314 #endif
1315 
1316 	/* Perform scheduler related setup. Assign this task to a CPU. */
1317 	sched_fork(p);
1318 
1319 	retval = perf_event_init_task(p);
1320 	if (retval)
1321 		goto bad_fork_cleanup_policy;
1322 	retval = audit_alloc(p);
1323 	if (retval)
1324 		goto bad_fork_cleanup_policy;
1325 	/* copy all the process information */
1326 	retval = copy_semundo(clone_flags, p);
1327 	if (retval)
1328 		goto bad_fork_cleanup_audit;
1329 	retval = copy_files(clone_flags, p);
1330 	if (retval)
1331 		goto bad_fork_cleanup_semundo;
1332 	retval = copy_fs(clone_flags, p);
1333 	if (retval)
1334 		goto bad_fork_cleanup_files;
1335 	retval = copy_sighand(clone_flags, p);
1336 	if (retval)
1337 		goto bad_fork_cleanup_fs;
1338 	retval = copy_signal(clone_flags, p);
1339 	if (retval)
1340 		goto bad_fork_cleanup_sighand;
1341 	retval = copy_mm(clone_flags, p);
1342 	if (retval)
1343 		goto bad_fork_cleanup_signal;
1344 	retval = copy_namespaces(clone_flags, p);
1345 	if (retval)
1346 		goto bad_fork_cleanup_mm;
1347 	retval = copy_io(clone_flags, p);
1348 	if (retval)
1349 		goto bad_fork_cleanup_namespaces;
1350 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1351 	if (retval)
1352 		goto bad_fork_cleanup_io;
1353 
1354 	if (pid != &init_struct_pid) {
1355 		retval = -ENOMEM;
1356 		pid = alloc_pid(p->nsproxy->pid_ns);
1357 		if (!pid)
1358 			goto bad_fork_cleanup_io;
1359 	}
1360 
1361 	p->pid = pid_nr(pid);
1362 	p->tgid = p->pid;
1363 	if (clone_flags & CLONE_THREAD)
1364 		p->tgid = current->tgid;
1365 
1366 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1367 	/*
1368 	 * Clear TID on mm_release()?
1369 	 */
1370 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1371 #ifdef CONFIG_BLOCK
1372 	p->plug = NULL;
1373 #endif
1374 #ifdef CONFIG_FUTEX
1375 	p->robust_list = NULL;
1376 #ifdef CONFIG_COMPAT
1377 	p->compat_robust_list = NULL;
1378 #endif
1379 	INIT_LIST_HEAD(&p->pi_state_list);
1380 	p->pi_state_cache = NULL;
1381 #endif
1382 	uprobe_copy_process(p);
1383 	/*
1384 	 * sigaltstack should be cleared when sharing the same VM
1385 	 */
1386 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1387 		p->sas_ss_sp = p->sas_ss_size = 0;
1388 
1389 	/*
1390 	 * Syscall tracing and stepping should be turned off in the
1391 	 * child regardless of CLONE_PTRACE.
1392 	 */
1393 	user_disable_single_step(p);
1394 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1395 #ifdef TIF_SYSCALL_EMU
1396 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1397 #endif
1398 	clear_all_latency_tracing(p);
1399 
1400 	/* ok, now we should be set up.. */
1401 	if (clone_flags & CLONE_THREAD)
1402 		p->exit_signal = -1;
1403 	else if (clone_flags & CLONE_PARENT)
1404 		p->exit_signal = current->group_leader->exit_signal;
1405 	else
1406 		p->exit_signal = (clone_flags & CSIGNAL);
1407 
1408 	p->pdeath_signal = 0;
1409 	p->exit_state = 0;
1410 
1411 	p->nr_dirtied = 0;
1412 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1413 	p->dirty_paused_when = 0;
1414 
1415 	/*
1416 	 * Ok, make it visible to the rest of the system.
1417 	 * We dont wake it up yet.
1418 	 */
1419 	p->group_leader = p;
1420 	INIT_LIST_HEAD(&p->thread_group);
1421 	p->task_works = NULL;
1422 
1423 	/* Now that the task is set up, run cgroup callbacks if
1424 	 * necessary. We need to run them before the task is visible
1425 	 * on the tasklist. */
1426 	cgroup_fork_callbacks(p);
1427 	cgroup_callbacks_done = 1;
1428 
1429 	/* Need tasklist lock for parent etc handling! */
1430 	write_lock_irq(&tasklist_lock);
1431 
1432 	/* CLONE_PARENT re-uses the old parent */
1433 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1434 		p->real_parent = current->real_parent;
1435 		p->parent_exec_id = current->parent_exec_id;
1436 	} else {
1437 		p->real_parent = current;
1438 		p->parent_exec_id = current->self_exec_id;
1439 	}
1440 
1441 	spin_lock(&current->sighand->siglock);
1442 
1443 	/*
1444 	 * Process group and session signals need to be delivered to just the
1445 	 * parent before the fork or both the parent and the child after the
1446 	 * fork. Restart if a signal comes in before we add the new process to
1447 	 * it's process group.
1448 	 * A fatal signal pending means that current will exit, so the new
1449 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1450 	*/
1451 	recalc_sigpending();
1452 	if (signal_pending(current)) {
1453 		spin_unlock(&current->sighand->siglock);
1454 		write_unlock_irq(&tasklist_lock);
1455 		retval = -ERESTARTNOINTR;
1456 		goto bad_fork_free_pid;
1457 	}
1458 
1459 	if (clone_flags & CLONE_THREAD) {
1460 		current->signal->nr_threads++;
1461 		atomic_inc(&current->signal->live);
1462 		atomic_inc(&current->signal->sigcnt);
1463 		p->group_leader = current->group_leader;
1464 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1465 	}
1466 
1467 	if (likely(p->pid)) {
1468 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1469 
1470 		if (thread_group_leader(p)) {
1471 			if (is_child_reaper(pid))
1472 				p->nsproxy->pid_ns->child_reaper = p;
1473 
1474 			p->signal->leader_pid = pid;
1475 			p->signal->tty = tty_kref_get(current->signal->tty);
1476 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1477 			attach_pid(p, PIDTYPE_SID, task_session(current));
1478 			list_add_tail(&p->sibling, &p->real_parent->children);
1479 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1480 			__this_cpu_inc(process_counts);
1481 		}
1482 		attach_pid(p, PIDTYPE_PID, pid);
1483 		nr_threads++;
1484 	}
1485 
1486 	total_forks++;
1487 	spin_unlock(&current->sighand->siglock);
1488 	write_unlock_irq(&tasklist_lock);
1489 	proc_fork_connector(p);
1490 	cgroup_post_fork(p);
1491 	if (clone_flags & CLONE_THREAD)
1492 		threadgroup_change_end(current);
1493 	perf_event_fork(p);
1494 
1495 	trace_task_newtask(p, clone_flags);
1496 
1497 	return p;
1498 
1499 bad_fork_free_pid:
1500 	if (pid != &init_struct_pid)
1501 		free_pid(pid);
1502 bad_fork_cleanup_io:
1503 	if (p->io_context)
1504 		exit_io_context(p);
1505 bad_fork_cleanup_namespaces:
1506 	if (unlikely(clone_flags & CLONE_NEWPID))
1507 		pid_ns_release_proc(p->nsproxy->pid_ns);
1508 	exit_task_namespaces(p);
1509 bad_fork_cleanup_mm:
1510 	if (p->mm)
1511 		mmput(p->mm);
1512 bad_fork_cleanup_signal:
1513 	if (!(clone_flags & CLONE_THREAD))
1514 		free_signal_struct(p->signal);
1515 bad_fork_cleanup_sighand:
1516 	__cleanup_sighand(p->sighand);
1517 bad_fork_cleanup_fs:
1518 	exit_fs(p); /* blocking */
1519 bad_fork_cleanup_files:
1520 	exit_files(p); /* blocking */
1521 bad_fork_cleanup_semundo:
1522 	exit_sem(p);
1523 bad_fork_cleanup_audit:
1524 	audit_free(p);
1525 bad_fork_cleanup_policy:
1526 	perf_event_free_task(p);
1527 #ifdef CONFIG_NUMA
1528 	mpol_put(p->mempolicy);
1529 bad_fork_cleanup_cgroup:
1530 #endif
1531 	if (clone_flags & CLONE_THREAD)
1532 		threadgroup_change_end(current);
1533 	cgroup_exit(p, cgroup_callbacks_done);
1534 	delayacct_tsk_free(p);
1535 	module_put(task_thread_info(p)->exec_domain->module);
1536 bad_fork_cleanup_count:
1537 	atomic_dec(&p->cred->user->processes);
1538 	exit_creds(p);
1539 bad_fork_free:
1540 	free_task(p);
1541 fork_out:
1542 	return ERR_PTR(retval);
1543 }
1544 
1545 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1546 {
1547 	memset(regs, 0, sizeof(struct pt_regs));
1548 	return regs;
1549 }
1550 
1551 static inline void init_idle_pids(struct pid_link *links)
1552 {
1553 	enum pid_type type;
1554 
1555 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1556 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1557 		links[type].pid = &init_struct_pid;
1558 	}
1559 }
1560 
1561 struct task_struct * __cpuinit fork_idle(int cpu)
1562 {
1563 	struct task_struct *task;
1564 	struct pt_regs regs;
1565 
1566 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1567 			    &init_struct_pid, 0);
1568 	if (!IS_ERR(task)) {
1569 		init_idle_pids(task->pids);
1570 		init_idle(task, cpu);
1571 	}
1572 
1573 	return task;
1574 }
1575 
1576 /*
1577  *  Ok, this is the main fork-routine.
1578  *
1579  * It copies the process, and if successful kick-starts
1580  * it and waits for it to finish using the VM if required.
1581  */
1582 long do_fork(unsigned long clone_flags,
1583 	      unsigned long stack_start,
1584 	      struct pt_regs *regs,
1585 	      unsigned long stack_size,
1586 	      int __user *parent_tidptr,
1587 	      int __user *child_tidptr)
1588 {
1589 	struct task_struct *p;
1590 	int trace = 0;
1591 	long nr;
1592 
1593 	/*
1594 	 * Do some preliminary argument and permissions checking before we
1595 	 * actually start allocating stuff
1596 	 */
1597 	if (clone_flags & CLONE_NEWUSER) {
1598 		if (clone_flags & CLONE_THREAD)
1599 			return -EINVAL;
1600 		/* hopefully this check will go away when userns support is
1601 		 * complete
1602 		 */
1603 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1604 				!capable(CAP_SETGID))
1605 			return -EPERM;
1606 	}
1607 
1608 	/*
1609 	 * Determine whether and which event to report to ptracer.  When
1610 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1611 	 * requested, no event is reported; otherwise, report if the event
1612 	 * for the type of forking is enabled.
1613 	 */
1614 	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1615 		if (clone_flags & CLONE_VFORK)
1616 			trace = PTRACE_EVENT_VFORK;
1617 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1618 			trace = PTRACE_EVENT_CLONE;
1619 		else
1620 			trace = PTRACE_EVENT_FORK;
1621 
1622 		if (likely(!ptrace_event_enabled(current, trace)))
1623 			trace = 0;
1624 	}
1625 
1626 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1627 			 child_tidptr, NULL, trace);
1628 	/*
1629 	 * Do this prior waking up the new thread - the thread pointer
1630 	 * might get invalid after that point, if the thread exits quickly.
1631 	 */
1632 	if (!IS_ERR(p)) {
1633 		struct completion vfork;
1634 
1635 		trace_sched_process_fork(current, p);
1636 
1637 		nr = task_pid_vnr(p);
1638 
1639 		if (clone_flags & CLONE_PARENT_SETTID)
1640 			put_user(nr, parent_tidptr);
1641 
1642 		if (clone_flags & CLONE_VFORK) {
1643 			p->vfork_done = &vfork;
1644 			init_completion(&vfork);
1645 			get_task_struct(p);
1646 		}
1647 
1648 		wake_up_new_task(p);
1649 
1650 		/* forking complete and child started to run, tell ptracer */
1651 		if (unlikely(trace))
1652 			ptrace_event(trace, nr);
1653 
1654 		if (clone_flags & CLONE_VFORK) {
1655 			if (!wait_for_vfork_done(p, &vfork))
1656 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1657 		}
1658 	} else {
1659 		nr = PTR_ERR(p);
1660 	}
1661 	return nr;
1662 }
1663 
1664 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1665 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1666 #endif
1667 
1668 static void sighand_ctor(void *data)
1669 {
1670 	struct sighand_struct *sighand = data;
1671 
1672 	spin_lock_init(&sighand->siglock);
1673 	init_waitqueue_head(&sighand->signalfd_wqh);
1674 }
1675 
1676 void __init proc_caches_init(void)
1677 {
1678 	sighand_cachep = kmem_cache_create("sighand_cache",
1679 			sizeof(struct sighand_struct), 0,
1680 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1681 			SLAB_NOTRACK, sighand_ctor);
1682 	signal_cachep = kmem_cache_create("signal_cache",
1683 			sizeof(struct signal_struct), 0,
1684 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1685 	files_cachep = kmem_cache_create("files_cache",
1686 			sizeof(struct files_struct), 0,
1687 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1688 	fs_cachep = kmem_cache_create("fs_cache",
1689 			sizeof(struct fs_struct), 0,
1690 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1691 	/*
1692 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1693 	 * whole struct cpumask for the OFFSTACK case. We could change
1694 	 * this to *only* allocate as much of it as required by the
1695 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1696 	 * is at the end of the structure, exactly for that reason.
1697 	 */
1698 	mm_cachep = kmem_cache_create("mm_struct",
1699 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1700 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1701 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1702 	mmap_init();
1703 	nsproxy_cache_init();
1704 }
1705 
1706 /*
1707  * Check constraints on flags passed to the unshare system call.
1708  */
1709 static int check_unshare_flags(unsigned long unshare_flags)
1710 {
1711 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1712 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1713 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1714 		return -EINVAL;
1715 	/*
1716 	 * Not implemented, but pretend it works if there is nothing to
1717 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1718 	 * needs to unshare vm.
1719 	 */
1720 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1721 		/* FIXME: get_task_mm() increments ->mm_users */
1722 		if (atomic_read(&current->mm->mm_users) > 1)
1723 			return -EINVAL;
1724 	}
1725 
1726 	return 0;
1727 }
1728 
1729 /*
1730  * Unshare the filesystem structure if it is being shared
1731  */
1732 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1733 {
1734 	struct fs_struct *fs = current->fs;
1735 
1736 	if (!(unshare_flags & CLONE_FS) || !fs)
1737 		return 0;
1738 
1739 	/* don't need lock here; in the worst case we'll do useless copy */
1740 	if (fs->users == 1)
1741 		return 0;
1742 
1743 	*new_fsp = copy_fs_struct(fs);
1744 	if (!*new_fsp)
1745 		return -ENOMEM;
1746 
1747 	return 0;
1748 }
1749 
1750 /*
1751  * Unshare file descriptor table if it is being shared
1752  */
1753 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1754 {
1755 	struct files_struct *fd = current->files;
1756 	int error = 0;
1757 
1758 	if ((unshare_flags & CLONE_FILES) &&
1759 	    (fd && atomic_read(&fd->count) > 1)) {
1760 		*new_fdp = dup_fd(fd, &error);
1761 		if (!*new_fdp)
1762 			return error;
1763 	}
1764 
1765 	return 0;
1766 }
1767 
1768 /*
1769  * unshare allows a process to 'unshare' part of the process
1770  * context which was originally shared using clone.  copy_*
1771  * functions used by do_fork() cannot be used here directly
1772  * because they modify an inactive task_struct that is being
1773  * constructed. Here we are modifying the current, active,
1774  * task_struct.
1775  */
1776 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1777 {
1778 	struct fs_struct *fs, *new_fs = NULL;
1779 	struct files_struct *fd, *new_fd = NULL;
1780 	struct nsproxy *new_nsproxy = NULL;
1781 	int do_sysvsem = 0;
1782 	int err;
1783 
1784 	err = check_unshare_flags(unshare_flags);
1785 	if (err)
1786 		goto bad_unshare_out;
1787 
1788 	/*
1789 	 * If unsharing namespace, must also unshare filesystem information.
1790 	 */
1791 	if (unshare_flags & CLONE_NEWNS)
1792 		unshare_flags |= CLONE_FS;
1793 	/*
1794 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1795 	 * to a new ipc namespace, the semaphore arrays from the old
1796 	 * namespace are unreachable.
1797 	 */
1798 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1799 		do_sysvsem = 1;
1800 	err = unshare_fs(unshare_flags, &new_fs);
1801 	if (err)
1802 		goto bad_unshare_out;
1803 	err = unshare_fd(unshare_flags, &new_fd);
1804 	if (err)
1805 		goto bad_unshare_cleanup_fs;
1806 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1807 	if (err)
1808 		goto bad_unshare_cleanup_fd;
1809 
1810 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1811 		if (do_sysvsem) {
1812 			/*
1813 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1814 			 */
1815 			exit_sem(current);
1816 		}
1817 
1818 		if (new_nsproxy) {
1819 			switch_task_namespaces(current, new_nsproxy);
1820 			new_nsproxy = NULL;
1821 		}
1822 
1823 		task_lock(current);
1824 
1825 		if (new_fs) {
1826 			fs = current->fs;
1827 			spin_lock(&fs->lock);
1828 			current->fs = new_fs;
1829 			if (--fs->users)
1830 				new_fs = NULL;
1831 			else
1832 				new_fs = fs;
1833 			spin_unlock(&fs->lock);
1834 		}
1835 
1836 		if (new_fd) {
1837 			fd = current->files;
1838 			current->files = new_fd;
1839 			new_fd = fd;
1840 		}
1841 
1842 		task_unlock(current);
1843 	}
1844 
1845 	if (new_nsproxy)
1846 		put_nsproxy(new_nsproxy);
1847 
1848 bad_unshare_cleanup_fd:
1849 	if (new_fd)
1850 		put_files_struct(new_fd);
1851 
1852 bad_unshare_cleanup_fs:
1853 	if (new_fs)
1854 		free_fs_struct(new_fs);
1855 
1856 bad_unshare_out:
1857 	return err;
1858 }
1859 
1860 /*
1861  *	Helper to unshare the files of the current task.
1862  *	We don't want to expose copy_files internals to
1863  *	the exec layer of the kernel.
1864  */
1865 
1866 int unshare_files(struct files_struct **displaced)
1867 {
1868 	struct task_struct *task = current;
1869 	struct files_struct *copy = NULL;
1870 	int error;
1871 
1872 	error = unshare_fd(CLONE_FILES, &copy);
1873 	if (error || !copy) {
1874 		*displaced = NULL;
1875 		return error;
1876 	}
1877 	*displaced = task->files;
1878 	task_lock(task);
1879 	task->files = copy;
1880 	task_unlock(task);
1881 	return 0;
1882 }
1883