1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 # ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 struct vm_stack { 197 struct rcu_head rcu; 198 struct vm_struct *stack_vm_area; 199 }; 200 201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 202 { 203 unsigned int i; 204 205 for (i = 0; i < NR_CACHED_STACKS; i++) { 206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 static void thread_stack_free_rcu(struct rcu_head *rh) 214 { 215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 216 217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 218 return; 219 220 vfree(vm_stack); 221 } 222 223 static void thread_stack_delayed_free(struct task_struct *tsk) 224 { 225 struct vm_stack *vm_stack = tsk->stack; 226 227 vm_stack->stack_vm_area = tsk->stack_vm_area; 228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 229 } 230 231 static int free_vm_stack_cache(unsigned int cpu) 232 { 233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 234 int i; 235 236 for (i = 0; i < NR_CACHED_STACKS; i++) { 237 struct vm_struct *vm_stack = cached_vm_stacks[i]; 238 239 if (!vm_stack) 240 continue; 241 242 vfree(vm_stack->addr); 243 cached_vm_stacks[i] = NULL; 244 } 245 246 return 0; 247 } 248 249 static int memcg_charge_kernel_stack(struct vm_struct *vm) 250 { 251 int i; 252 int ret; 253 254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 256 257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 259 if (ret) 260 goto err; 261 } 262 return 0; 263 err: 264 /* 265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 267 * ignore this page. 268 */ 269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 270 memcg_kmem_uncharge_page(vm->pages[i], 0); 271 return ret; 272 } 273 274 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 275 { 276 struct vm_struct *vm; 277 void *stack; 278 int i; 279 280 for (i = 0; i < NR_CACHED_STACKS; i++) { 281 struct vm_struct *s; 282 283 s = this_cpu_xchg(cached_stacks[i], NULL); 284 285 if (!s) 286 continue; 287 288 /* Reset stack metadata. */ 289 kasan_unpoison_range(s->addr, THREAD_SIZE); 290 291 stack = kasan_reset_tag(s->addr); 292 293 /* Clear stale pointers from reused stack. */ 294 memset(stack, 0, THREAD_SIZE); 295 296 if (memcg_charge_kernel_stack(s)) { 297 vfree(s->addr); 298 return -ENOMEM; 299 } 300 301 tsk->stack_vm_area = s; 302 tsk->stack = stack; 303 return 0; 304 } 305 306 /* 307 * Allocated stacks are cached and later reused by new threads, 308 * so memcg accounting is performed manually on assigning/releasing 309 * stacks to tasks. Drop __GFP_ACCOUNT. 310 */ 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 312 VMALLOC_START, VMALLOC_END, 313 THREADINFO_GFP & ~__GFP_ACCOUNT, 314 PAGE_KERNEL, 315 0, node, __builtin_return_address(0)); 316 if (!stack) 317 return -ENOMEM; 318 319 vm = find_vm_area(stack); 320 if (memcg_charge_kernel_stack(vm)) { 321 vfree(stack); 322 return -ENOMEM; 323 } 324 /* 325 * We can't call find_vm_area() in interrupt context, and 326 * free_thread_stack() can be called in interrupt context, 327 * so cache the vm_struct. 328 */ 329 tsk->stack_vm_area = vm; 330 stack = kasan_reset_tag(stack); 331 tsk->stack = stack; 332 return 0; 333 } 334 335 static void free_thread_stack(struct task_struct *tsk) 336 { 337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 338 thread_stack_delayed_free(tsk); 339 340 tsk->stack = NULL; 341 tsk->stack_vm_area = NULL; 342 } 343 344 # else /* !CONFIG_VMAP_STACK */ 345 346 static void thread_stack_free_rcu(struct rcu_head *rh) 347 { 348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 349 } 350 351 static void thread_stack_delayed_free(struct task_struct *tsk) 352 { 353 struct rcu_head *rh = tsk->stack; 354 355 call_rcu(rh, thread_stack_free_rcu); 356 } 357 358 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 359 { 360 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 361 THREAD_SIZE_ORDER); 362 363 if (likely(page)) { 364 tsk->stack = kasan_reset_tag(page_address(page)); 365 return 0; 366 } 367 return -ENOMEM; 368 } 369 370 static void free_thread_stack(struct task_struct *tsk) 371 { 372 thread_stack_delayed_free(tsk); 373 tsk->stack = NULL; 374 } 375 376 # endif /* CONFIG_VMAP_STACK */ 377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 378 379 static struct kmem_cache *thread_stack_cache; 380 381 static void thread_stack_free_rcu(struct rcu_head *rh) 382 { 383 kmem_cache_free(thread_stack_cache, rh); 384 } 385 386 static void thread_stack_delayed_free(struct task_struct *tsk) 387 { 388 struct rcu_head *rh = tsk->stack; 389 390 call_rcu(rh, thread_stack_free_rcu); 391 } 392 393 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 394 { 395 unsigned long *stack; 396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 397 stack = kasan_reset_tag(stack); 398 tsk->stack = stack; 399 return stack ? 0 : -ENOMEM; 400 } 401 402 static void free_thread_stack(struct task_struct *tsk) 403 { 404 thread_stack_delayed_free(tsk); 405 tsk->stack = NULL; 406 } 407 408 void thread_stack_cache_init(void) 409 { 410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 411 THREAD_SIZE, THREAD_SIZE, 0, 0, 412 THREAD_SIZE, NULL); 413 BUG_ON(thread_stack_cache == NULL); 414 } 415 416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 418 419 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 420 { 421 unsigned long *stack; 422 423 stack = arch_alloc_thread_stack_node(tsk, node); 424 tsk->stack = stack; 425 return stack ? 0 : -ENOMEM; 426 } 427 428 static void free_thread_stack(struct task_struct *tsk) 429 { 430 arch_free_thread_stack(tsk); 431 tsk->stack = NULL; 432 } 433 434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 435 436 /* SLAB cache for signal_struct structures (tsk->signal) */ 437 static struct kmem_cache *signal_cachep; 438 439 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 440 struct kmem_cache *sighand_cachep; 441 442 /* SLAB cache for files_struct structures (tsk->files) */ 443 struct kmem_cache *files_cachep; 444 445 /* SLAB cache for fs_struct structures (tsk->fs) */ 446 struct kmem_cache *fs_cachep; 447 448 /* SLAB cache for vm_area_struct structures */ 449 static struct kmem_cache *vm_area_cachep; 450 451 /* SLAB cache for mm_struct structures (tsk->mm) */ 452 static struct kmem_cache *mm_cachep; 453 454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 455 { 456 struct vm_area_struct *vma; 457 458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 459 if (vma) 460 vma_init(vma, mm); 461 return vma; 462 } 463 464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 465 { 466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 467 468 if (new) { 469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 471 /* 472 * orig->shared.rb may be modified concurrently, but the clone 473 * will be reinitialized. 474 */ 475 *new = data_race(*orig); 476 INIT_LIST_HEAD(&new->anon_vma_chain); 477 dup_anon_vma_name(orig, new); 478 } 479 return new; 480 } 481 482 void vm_area_free(struct vm_area_struct *vma) 483 { 484 free_anon_vma_name(vma); 485 kmem_cache_free(vm_area_cachep, vma); 486 } 487 488 static void account_kernel_stack(struct task_struct *tsk, int account) 489 { 490 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 491 struct vm_struct *vm = task_stack_vm_area(tsk); 492 int i; 493 494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 496 account * (PAGE_SIZE / 1024)); 497 } else { 498 void *stack = task_stack_page(tsk); 499 500 /* All stack pages are in the same node. */ 501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 502 account * (THREAD_SIZE / 1024)); 503 } 504 } 505 506 void exit_task_stack_account(struct task_struct *tsk) 507 { 508 account_kernel_stack(tsk, -1); 509 510 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 511 struct vm_struct *vm; 512 int i; 513 514 vm = task_stack_vm_area(tsk); 515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 516 memcg_kmem_uncharge_page(vm->pages[i], 0); 517 } 518 } 519 520 static void release_task_stack(struct task_struct *tsk) 521 { 522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 523 return; /* Better to leak the stack than to free prematurely */ 524 525 free_thread_stack(tsk); 526 } 527 528 #ifdef CONFIG_THREAD_INFO_IN_TASK 529 void put_task_stack(struct task_struct *tsk) 530 { 531 if (refcount_dec_and_test(&tsk->stack_refcount)) 532 release_task_stack(tsk); 533 } 534 #endif 535 536 void free_task(struct task_struct *tsk) 537 { 538 #ifdef CONFIG_SECCOMP 539 WARN_ON_ONCE(tsk->seccomp.filter); 540 #endif 541 release_user_cpus_ptr(tsk); 542 scs_release(tsk); 543 544 #ifndef CONFIG_THREAD_INFO_IN_TASK 545 /* 546 * The task is finally done with both the stack and thread_info, 547 * so free both. 548 */ 549 release_task_stack(tsk); 550 #else 551 /* 552 * If the task had a separate stack allocation, it should be gone 553 * by now. 554 */ 555 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 556 #endif 557 rt_mutex_debug_task_free(tsk); 558 ftrace_graph_exit_task(tsk); 559 arch_release_task_struct(tsk); 560 if (tsk->flags & PF_KTHREAD) 561 free_kthread_struct(tsk); 562 free_task_struct(tsk); 563 } 564 EXPORT_SYMBOL(free_task); 565 566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 567 { 568 struct file *exe_file; 569 570 exe_file = get_mm_exe_file(oldmm); 571 RCU_INIT_POINTER(mm->exe_file, exe_file); 572 /* 573 * We depend on the oldmm having properly denied write access to the 574 * exe_file already. 575 */ 576 if (exe_file && deny_write_access(exe_file)) 577 pr_warn_once("deny_write_access() failed in %s\n", __func__); 578 } 579 580 #ifdef CONFIG_MMU 581 static __latent_entropy int dup_mmap(struct mm_struct *mm, 582 struct mm_struct *oldmm) 583 { 584 struct vm_area_struct *mpnt, *tmp; 585 int retval; 586 unsigned long charge = 0; 587 LIST_HEAD(uf); 588 MA_STATE(old_mas, &oldmm->mm_mt, 0, 0); 589 MA_STATE(mas, &mm->mm_mt, 0, 0); 590 591 uprobe_start_dup_mmap(); 592 if (mmap_write_lock_killable(oldmm)) { 593 retval = -EINTR; 594 goto fail_uprobe_end; 595 } 596 flush_cache_dup_mm(oldmm); 597 uprobe_dup_mmap(oldmm, mm); 598 /* 599 * Not linked in yet - no deadlock potential: 600 */ 601 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 602 603 /* No ordering required: file already has been exposed. */ 604 dup_mm_exe_file(mm, oldmm); 605 606 mm->total_vm = oldmm->total_vm; 607 mm->data_vm = oldmm->data_vm; 608 mm->exec_vm = oldmm->exec_vm; 609 mm->stack_vm = oldmm->stack_vm; 610 611 retval = ksm_fork(mm, oldmm); 612 if (retval) 613 goto out; 614 khugepaged_fork(mm, oldmm); 615 616 retval = mas_expected_entries(&mas, oldmm->map_count); 617 if (retval) 618 goto out; 619 620 mas_for_each(&old_mas, mpnt, ULONG_MAX) { 621 struct file *file; 622 623 if (mpnt->vm_flags & VM_DONTCOPY) { 624 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 625 continue; 626 } 627 charge = 0; 628 /* 629 * Don't duplicate many vmas if we've been oom-killed (for 630 * example) 631 */ 632 if (fatal_signal_pending(current)) { 633 retval = -EINTR; 634 goto loop_out; 635 } 636 if (mpnt->vm_flags & VM_ACCOUNT) { 637 unsigned long len = vma_pages(mpnt); 638 639 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 640 goto fail_nomem; 641 charge = len; 642 } 643 tmp = vm_area_dup(mpnt); 644 if (!tmp) 645 goto fail_nomem; 646 retval = vma_dup_policy(mpnt, tmp); 647 if (retval) 648 goto fail_nomem_policy; 649 tmp->vm_mm = mm; 650 retval = dup_userfaultfd(tmp, &uf); 651 if (retval) 652 goto fail_nomem_anon_vma_fork; 653 if (tmp->vm_flags & VM_WIPEONFORK) { 654 /* 655 * VM_WIPEONFORK gets a clean slate in the child. 656 * Don't prepare anon_vma until fault since we don't 657 * copy page for current vma. 658 */ 659 tmp->anon_vma = NULL; 660 } else if (anon_vma_fork(tmp, mpnt)) 661 goto fail_nomem_anon_vma_fork; 662 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 663 file = tmp->vm_file; 664 if (file) { 665 struct address_space *mapping = file->f_mapping; 666 667 get_file(file); 668 i_mmap_lock_write(mapping); 669 if (tmp->vm_flags & VM_SHARED) 670 mapping_allow_writable(mapping); 671 flush_dcache_mmap_lock(mapping); 672 /* insert tmp into the share list, just after mpnt */ 673 vma_interval_tree_insert_after(tmp, mpnt, 674 &mapping->i_mmap); 675 flush_dcache_mmap_unlock(mapping); 676 i_mmap_unlock_write(mapping); 677 } 678 679 /* 680 * Copy/update hugetlb private vma information. 681 */ 682 if (is_vm_hugetlb_page(tmp)) 683 hugetlb_dup_vma_private(tmp); 684 685 /* Link the vma into the MT */ 686 mas.index = tmp->vm_start; 687 mas.last = tmp->vm_end - 1; 688 mas_store(&mas, tmp); 689 if (mas_is_err(&mas)) 690 goto fail_nomem_mas_store; 691 692 mm->map_count++; 693 if (!(tmp->vm_flags & VM_WIPEONFORK)) 694 retval = copy_page_range(tmp, mpnt); 695 696 if (tmp->vm_ops && tmp->vm_ops->open) 697 tmp->vm_ops->open(tmp); 698 699 if (retval) 700 goto loop_out; 701 } 702 /* a new mm has just been created */ 703 retval = arch_dup_mmap(oldmm, mm); 704 loop_out: 705 mas_destroy(&mas); 706 out: 707 mmap_write_unlock(mm); 708 flush_tlb_mm(oldmm); 709 mmap_write_unlock(oldmm); 710 dup_userfaultfd_complete(&uf); 711 fail_uprobe_end: 712 uprobe_end_dup_mmap(); 713 return retval; 714 715 fail_nomem_mas_store: 716 unlink_anon_vmas(tmp); 717 fail_nomem_anon_vma_fork: 718 mpol_put(vma_policy(tmp)); 719 fail_nomem_policy: 720 vm_area_free(tmp); 721 fail_nomem: 722 retval = -ENOMEM; 723 vm_unacct_memory(charge); 724 goto loop_out; 725 } 726 727 static inline int mm_alloc_pgd(struct mm_struct *mm) 728 { 729 mm->pgd = pgd_alloc(mm); 730 if (unlikely(!mm->pgd)) 731 return -ENOMEM; 732 return 0; 733 } 734 735 static inline void mm_free_pgd(struct mm_struct *mm) 736 { 737 pgd_free(mm, mm->pgd); 738 } 739 #else 740 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 741 { 742 mmap_write_lock(oldmm); 743 dup_mm_exe_file(mm, oldmm); 744 mmap_write_unlock(oldmm); 745 return 0; 746 } 747 #define mm_alloc_pgd(mm) (0) 748 #define mm_free_pgd(mm) 749 #endif /* CONFIG_MMU */ 750 751 static void check_mm(struct mm_struct *mm) 752 { 753 int i; 754 755 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 756 "Please make sure 'struct resident_page_types[]' is updated as well"); 757 758 for (i = 0; i < NR_MM_COUNTERS; i++) { 759 long x = percpu_counter_sum(&mm->rss_stat[i]); 760 761 if (likely(!x)) 762 continue; 763 764 /* Making sure this is not due to race with CPU offlining. */ 765 x = percpu_counter_sum_all(&mm->rss_stat[i]); 766 if (unlikely(x)) 767 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 768 mm, resident_page_types[i], x); 769 } 770 771 if (mm_pgtables_bytes(mm)) 772 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 773 mm_pgtables_bytes(mm)); 774 775 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 776 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 777 #endif 778 } 779 780 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 781 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 782 783 /* 784 * Called when the last reference to the mm 785 * is dropped: either by a lazy thread or by 786 * mmput. Free the page directory and the mm. 787 */ 788 void __mmdrop(struct mm_struct *mm) 789 { 790 int i; 791 792 BUG_ON(mm == &init_mm); 793 WARN_ON_ONCE(mm == current->mm); 794 WARN_ON_ONCE(mm == current->active_mm); 795 mm_free_pgd(mm); 796 destroy_context(mm); 797 mmu_notifier_subscriptions_destroy(mm); 798 check_mm(mm); 799 put_user_ns(mm->user_ns); 800 mm_pasid_drop(mm); 801 802 for (i = 0; i < NR_MM_COUNTERS; i++) 803 percpu_counter_destroy(&mm->rss_stat[i]); 804 free_mm(mm); 805 } 806 EXPORT_SYMBOL_GPL(__mmdrop); 807 808 static void mmdrop_async_fn(struct work_struct *work) 809 { 810 struct mm_struct *mm; 811 812 mm = container_of(work, struct mm_struct, async_put_work); 813 __mmdrop(mm); 814 } 815 816 static void mmdrop_async(struct mm_struct *mm) 817 { 818 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 819 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 820 schedule_work(&mm->async_put_work); 821 } 822 } 823 824 static inline void free_signal_struct(struct signal_struct *sig) 825 { 826 taskstats_tgid_free(sig); 827 sched_autogroup_exit(sig); 828 /* 829 * __mmdrop is not safe to call from softirq context on x86 due to 830 * pgd_dtor so postpone it to the async context 831 */ 832 if (sig->oom_mm) 833 mmdrop_async(sig->oom_mm); 834 kmem_cache_free(signal_cachep, sig); 835 } 836 837 static inline void put_signal_struct(struct signal_struct *sig) 838 { 839 if (refcount_dec_and_test(&sig->sigcnt)) 840 free_signal_struct(sig); 841 } 842 843 void __put_task_struct(struct task_struct *tsk) 844 { 845 WARN_ON(!tsk->exit_state); 846 WARN_ON(refcount_read(&tsk->usage)); 847 WARN_ON(tsk == current); 848 849 io_uring_free(tsk); 850 cgroup_free(tsk); 851 task_numa_free(tsk, true); 852 security_task_free(tsk); 853 bpf_task_storage_free(tsk); 854 exit_creds(tsk); 855 delayacct_tsk_free(tsk); 856 put_signal_struct(tsk->signal); 857 sched_core_free(tsk); 858 free_task(tsk); 859 } 860 EXPORT_SYMBOL_GPL(__put_task_struct); 861 862 void __init __weak arch_task_cache_init(void) { } 863 864 /* 865 * set_max_threads 866 */ 867 static void set_max_threads(unsigned int max_threads_suggested) 868 { 869 u64 threads; 870 unsigned long nr_pages = totalram_pages(); 871 872 /* 873 * The number of threads shall be limited such that the thread 874 * structures may only consume a small part of the available memory. 875 */ 876 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 877 threads = MAX_THREADS; 878 else 879 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 880 (u64) THREAD_SIZE * 8UL); 881 882 if (threads > max_threads_suggested) 883 threads = max_threads_suggested; 884 885 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 886 } 887 888 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 889 /* Initialized by the architecture: */ 890 int arch_task_struct_size __read_mostly; 891 #endif 892 893 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 894 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 895 { 896 /* Fetch thread_struct whitelist for the architecture. */ 897 arch_thread_struct_whitelist(offset, size); 898 899 /* 900 * Handle zero-sized whitelist or empty thread_struct, otherwise 901 * adjust offset to position of thread_struct in task_struct. 902 */ 903 if (unlikely(*size == 0)) 904 *offset = 0; 905 else 906 *offset += offsetof(struct task_struct, thread); 907 } 908 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 909 910 void __init fork_init(void) 911 { 912 int i; 913 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 914 #ifndef ARCH_MIN_TASKALIGN 915 #define ARCH_MIN_TASKALIGN 0 916 #endif 917 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 918 unsigned long useroffset, usersize; 919 920 /* create a slab on which task_structs can be allocated */ 921 task_struct_whitelist(&useroffset, &usersize); 922 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 923 arch_task_struct_size, align, 924 SLAB_PANIC|SLAB_ACCOUNT, 925 useroffset, usersize, NULL); 926 #endif 927 928 /* do the arch specific task caches init */ 929 arch_task_cache_init(); 930 931 set_max_threads(MAX_THREADS); 932 933 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 934 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 935 init_task.signal->rlim[RLIMIT_SIGPENDING] = 936 init_task.signal->rlim[RLIMIT_NPROC]; 937 938 for (i = 0; i < UCOUNT_COUNTS; i++) 939 init_user_ns.ucount_max[i] = max_threads/2; 940 941 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 942 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 943 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 944 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 945 946 #ifdef CONFIG_VMAP_STACK 947 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 948 NULL, free_vm_stack_cache); 949 #endif 950 951 scs_init(); 952 953 lockdep_init_task(&init_task); 954 uprobes_init(); 955 } 956 957 int __weak arch_dup_task_struct(struct task_struct *dst, 958 struct task_struct *src) 959 { 960 *dst = *src; 961 return 0; 962 } 963 964 void set_task_stack_end_magic(struct task_struct *tsk) 965 { 966 unsigned long *stackend; 967 968 stackend = end_of_stack(tsk); 969 *stackend = STACK_END_MAGIC; /* for overflow detection */ 970 } 971 972 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 973 { 974 struct task_struct *tsk; 975 int err; 976 977 if (node == NUMA_NO_NODE) 978 node = tsk_fork_get_node(orig); 979 tsk = alloc_task_struct_node(node); 980 if (!tsk) 981 return NULL; 982 983 err = arch_dup_task_struct(tsk, orig); 984 if (err) 985 goto free_tsk; 986 987 err = alloc_thread_stack_node(tsk, node); 988 if (err) 989 goto free_tsk; 990 991 #ifdef CONFIG_THREAD_INFO_IN_TASK 992 refcount_set(&tsk->stack_refcount, 1); 993 #endif 994 account_kernel_stack(tsk, 1); 995 996 err = scs_prepare(tsk, node); 997 if (err) 998 goto free_stack; 999 1000 #ifdef CONFIG_SECCOMP 1001 /* 1002 * We must handle setting up seccomp filters once we're under 1003 * the sighand lock in case orig has changed between now and 1004 * then. Until then, filter must be NULL to avoid messing up 1005 * the usage counts on the error path calling free_task. 1006 */ 1007 tsk->seccomp.filter = NULL; 1008 #endif 1009 1010 setup_thread_stack(tsk, orig); 1011 clear_user_return_notifier(tsk); 1012 clear_tsk_need_resched(tsk); 1013 set_task_stack_end_magic(tsk); 1014 clear_syscall_work_syscall_user_dispatch(tsk); 1015 1016 #ifdef CONFIG_STACKPROTECTOR 1017 tsk->stack_canary = get_random_canary(); 1018 #endif 1019 if (orig->cpus_ptr == &orig->cpus_mask) 1020 tsk->cpus_ptr = &tsk->cpus_mask; 1021 dup_user_cpus_ptr(tsk, orig, node); 1022 1023 /* 1024 * One for the user space visible state that goes away when reaped. 1025 * One for the scheduler. 1026 */ 1027 refcount_set(&tsk->rcu_users, 2); 1028 /* One for the rcu users */ 1029 refcount_set(&tsk->usage, 1); 1030 #ifdef CONFIG_BLK_DEV_IO_TRACE 1031 tsk->btrace_seq = 0; 1032 #endif 1033 tsk->splice_pipe = NULL; 1034 tsk->task_frag.page = NULL; 1035 tsk->wake_q.next = NULL; 1036 tsk->worker_private = NULL; 1037 1038 kcov_task_init(tsk); 1039 kmsan_task_create(tsk); 1040 kmap_local_fork(tsk); 1041 1042 #ifdef CONFIG_FAULT_INJECTION 1043 tsk->fail_nth = 0; 1044 #endif 1045 1046 #ifdef CONFIG_BLK_CGROUP 1047 tsk->throttle_disk = NULL; 1048 tsk->use_memdelay = 0; 1049 #endif 1050 1051 #ifdef CONFIG_IOMMU_SVA 1052 tsk->pasid_activated = 0; 1053 #endif 1054 1055 #ifdef CONFIG_MEMCG 1056 tsk->active_memcg = NULL; 1057 #endif 1058 1059 #ifdef CONFIG_CPU_SUP_INTEL 1060 tsk->reported_split_lock = 0; 1061 #endif 1062 1063 #ifdef CONFIG_SCHED_MM_CID 1064 tsk->mm_cid = -1; 1065 tsk->mm_cid_active = 0; 1066 #endif 1067 return tsk; 1068 1069 free_stack: 1070 exit_task_stack_account(tsk); 1071 free_thread_stack(tsk); 1072 free_tsk: 1073 free_task_struct(tsk); 1074 return NULL; 1075 } 1076 1077 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1078 1079 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1080 1081 static int __init coredump_filter_setup(char *s) 1082 { 1083 default_dump_filter = 1084 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1085 MMF_DUMP_FILTER_MASK; 1086 return 1; 1087 } 1088 1089 __setup("coredump_filter=", coredump_filter_setup); 1090 1091 #include <linux/init_task.h> 1092 1093 static void mm_init_aio(struct mm_struct *mm) 1094 { 1095 #ifdef CONFIG_AIO 1096 spin_lock_init(&mm->ioctx_lock); 1097 mm->ioctx_table = NULL; 1098 #endif 1099 } 1100 1101 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1102 struct task_struct *p) 1103 { 1104 #ifdef CONFIG_MEMCG 1105 if (mm->owner == p) 1106 WRITE_ONCE(mm->owner, NULL); 1107 #endif 1108 } 1109 1110 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1111 { 1112 #ifdef CONFIG_MEMCG 1113 mm->owner = p; 1114 #endif 1115 } 1116 1117 static void mm_init_uprobes_state(struct mm_struct *mm) 1118 { 1119 #ifdef CONFIG_UPROBES 1120 mm->uprobes_state.xol_area = NULL; 1121 #endif 1122 } 1123 1124 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1125 struct user_namespace *user_ns) 1126 { 1127 int i; 1128 1129 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1130 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1131 atomic_set(&mm->mm_users, 1); 1132 atomic_set(&mm->mm_count, 1); 1133 seqcount_init(&mm->write_protect_seq); 1134 mmap_init_lock(mm); 1135 INIT_LIST_HEAD(&mm->mmlist); 1136 mm_pgtables_bytes_init(mm); 1137 mm->map_count = 0; 1138 mm->locked_vm = 0; 1139 atomic64_set(&mm->pinned_vm, 0); 1140 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1141 spin_lock_init(&mm->page_table_lock); 1142 spin_lock_init(&mm->arg_lock); 1143 mm_init_cpumask(mm); 1144 mm_init_aio(mm); 1145 mm_init_owner(mm, p); 1146 mm_pasid_init(mm); 1147 RCU_INIT_POINTER(mm->exe_file, NULL); 1148 mmu_notifier_subscriptions_init(mm); 1149 init_tlb_flush_pending(mm); 1150 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1151 mm->pmd_huge_pte = NULL; 1152 #endif 1153 mm_init_uprobes_state(mm); 1154 hugetlb_count_init(mm); 1155 1156 if (current->mm) { 1157 mm->flags = current->mm->flags & MMF_INIT_MASK; 1158 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1159 } else { 1160 mm->flags = default_dump_filter; 1161 mm->def_flags = 0; 1162 } 1163 1164 if (mm_alloc_pgd(mm)) 1165 goto fail_nopgd; 1166 1167 if (init_new_context(p, mm)) 1168 goto fail_nocontext; 1169 1170 for (i = 0; i < NR_MM_COUNTERS; i++) 1171 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1172 goto fail_pcpu; 1173 1174 mm->user_ns = get_user_ns(user_ns); 1175 lru_gen_init_mm(mm); 1176 mm_init_cid(mm); 1177 return mm; 1178 1179 fail_pcpu: 1180 while (i > 0) 1181 percpu_counter_destroy(&mm->rss_stat[--i]); 1182 fail_nocontext: 1183 mm_free_pgd(mm); 1184 fail_nopgd: 1185 free_mm(mm); 1186 return NULL; 1187 } 1188 1189 /* 1190 * Allocate and initialize an mm_struct. 1191 */ 1192 struct mm_struct *mm_alloc(void) 1193 { 1194 struct mm_struct *mm; 1195 1196 mm = allocate_mm(); 1197 if (!mm) 1198 return NULL; 1199 1200 memset(mm, 0, sizeof(*mm)); 1201 return mm_init(mm, current, current_user_ns()); 1202 } 1203 1204 static inline void __mmput(struct mm_struct *mm) 1205 { 1206 VM_BUG_ON(atomic_read(&mm->mm_users)); 1207 1208 uprobe_clear_state(mm); 1209 exit_aio(mm); 1210 ksm_exit(mm); 1211 khugepaged_exit(mm); /* must run before exit_mmap */ 1212 exit_mmap(mm); 1213 mm_put_huge_zero_page(mm); 1214 set_mm_exe_file(mm, NULL); 1215 if (!list_empty(&mm->mmlist)) { 1216 spin_lock(&mmlist_lock); 1217 list_del(&mm->mmlist); 1218 spin_unlock(&mmlist_lock); 1219 } 1220 if (mm->binfmt) 1221 module_put(mm->binfmt->module); 1222 lru_gen_del_mm(mm); 1223 mmdrop(mm); 1224 } 1225 1226 /* 1227 * Decrement the use count and release all resources for an mm. 1228 */ 1229 void mmput(struct mm_struct *mm) 1230 { 1231 might_sleep(); 1232 1233 if (atomic_dec_and_test(&mm->mm_users)) 1234 __mmput(mm); 1235 } 1236 EXPORT_SYMBOL_GPL(mmput); 1237 1238 #ifdef CONFIG_MMU 1239 static void mmput_async_fn(struct work_struct *work) 1240 { 1241 struct mm_struct *mm = container_of(work, struct mm_struct, 1242 async_put_work); 1243 1244 __mmput(mm); 1245 } 1246 1247 void mmput_async(struct mm_struct *mm) 1248 { 1249 if (atomic_dec_and_test(&mm->mm_users)) { 1250 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1251 schedule_work(&mm->async_put_work); 1252 } 1253 } 1254 EXPORT_SYMBOL_GPL(mmput_async); 1255 #endif 1256 1257 /** 1258 * set_mm_exe_file - change a reference to the mm's executable file 1259 * 1260 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1261 * 1262 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1263 * invocations: in mmput() nobody alive left, in execve task is single 1264 * threaded. 1265 * 1266 * Can only fail if new_exe_file != NULL. 1267 */ 1268 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1269 { 1270 struct file *old_exe_file; 1271 1272 /* 1273 * It is safe to dereference the exe_file without RCU as 1274 * this function is only called if nobody else can access 1275 * this mm -- see comment above for justification. 1276 */ 1277 old_exe_file = rcu_dereference_raw(mm->exe_file); 1278 1279 if (new_exe_file) { 1280 /* 1281 * We expect the caller (i.e., sys_execve) to already denied 1282 * write access, so this is unlikely to fail. 1283 */ 1284 if (unlikely(deny_write_access(new_exe_file))) 1285 return -EACCES; 1286 get_file(new_exe_file); 1287 } 1288 rcu_assign_pointer(mm->exe_file, new_exe_file); 1289 if (old_exe_file) { 1290 allow_write_access(old_exe_file); 1291 fput(old_exe_file); 1292 } 1293 return 0; 1294 } 1295 1296 /** 1297 * replace_mm_exe_file - replace a reference to the mm's executable file 1298 * 1299 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1300 * dealing with concurrent invocation and without grabbing the mmap lock in 1301 * write mode. 1302 * 1303 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1304 */ 1305 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1306 { 1307 struct vm_area_struct *vma; 1308 struct file *old_exe_file; 1309 int ret = 0; 1310 1311 /* Forbid mm->exe_file change if old file still mapped. */ 1312 old_exe_file = get_mm_exe_file(mm); 1313 if (old_exe_file) { 1314 VMA_ITERATOR(vmi, mm, 0); 1315 mmap_read_lock(mm); 1316 for_each_vma(vmi, vma) { 1317 if (!vma->vm_file) 1318 continue; 1319 if (path_equal(&vma->vm_file->f_path, 1320 &old_exe_file->f_path)) { 1321 ret = -EBUSY; 1322 break; 1323 } 1324 } 1325 mmap_read_unlock(mm); 1326 fput(old_exe_file); 1327 if (ret) 1328 return ret; 1329 } 1330 1331 /* set the new file, lockless */ 1332 ret = deny_write_access(new_exe_file); 1333 if (ret) 1334 return -EACCES; 1335 get_file(new_exe_file); 1336 1337 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1338 if (old_exe_file) { 1339 /* 1340 * Don't race with dup_mmap() getting the file and disallowing 1341 * write access while someone might open the file writable. 1342 */ 1343 mmap_read_lock(mm); 1344 allow_write_access(old_exe_file); 1345 fput(old_exe_file); 1346 mmap_read_unlock(mm); 1347 } 1348 return 0; 1349 } 1350 1351 /** 1352 * get_mm_exe_file - acquire a reference to the mm's executable file 1353 * 1354 * Returns %NULL if mm has no associated executable file. 1355 * User must release file via fput(). 1356 */ 1357 struct file *get_mm_exe_file(struct mm_struct *mm) 1358 { 1359 struct file *exe_file; 1360 1361 rcu_read_lock(); 1362 exe_file = rcu_dereference(mm->exe_file); 1363 if (exe_file && !get_file_rcu(exe_file)) 1364 exe_file = NULL; 1365 rcu_read_unlock(); 1366 return exe_file; 1367 } 1368 1369 /** 1370 * get_task_exe_file - acquire a reference to the task's executable file 1371 * 1372 * Returns %NULL if task's mm (if any) has no associated executable file or 1373 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1374 * User must release file via fput(). 1375 */ 1376 struct file *get_task_exe_file(struct task_struct *task) 1377 { 1378 struct file *exe_file = NULL; 1379 struct mm_struct *mm; 1380 1381 task_lock(task); 1382 mm = task->mm; 1383 if (mm) { 1384 if (!(task->flags & PF_KTHREAD)) 1385 exe_file = get_mm_exe_file(mm); 1386 } 1387 task_unlock(task); 1388 return exe_file; 1389 } 1390 1391 /** 1392 * get_task_mm - acquire a reference to the task's mm 1393 * 1394 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1395 * this kernel workthread has transiently adopted a user mm with use_mm, 1396 * to do its AIO) is not set and if so returns a reference to it, after 1397 * bumping up the use count. User must release the mm via mmput() 1398 * after use. Typically used by /proc and ptrace. 1399 */ 1400 struct mm_struct *get_task_mm(struct task_struct *task) 1401 { 1402 struct mm_struct *mm; 1403 1404 task_lock(task); 1405 mm = task->mm; 1406 if (mm) { 1407 if (task->flags & PF_KTHREAD) 1408 mm = NULL; 1409 else 1410 mmget(mm); 1411 } 1412 task_unlock(task); 1413 return mm; 1414 } 1415 EXPORT_SYMBOL_GPL(get_task_mm); 1416 1417 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1418 { 1419 struct mm_struct *mm; 1420 int err; 1421 1422 err = down_read_killable(&task->signal->exec_update_lock); 1423 if (err) 1424 return ERR_PTR(err); 1425 1426 mm = get_task_mm(task); 1427 if (mm && mm != current->mm && 1428 !ptrace_may_access(task, mode)) { 1429 mmput(mm); 1430 mm = ERR_PTR(-EACCES); 1431 } 1432 up_read(&task->signal->exec_update_lock); 1433 1434 return mm; 1435 } 1436 1437 static void complete_vfork_done(struct task_struct *tsk) 1438 { 1439 struct completion *vfork; 1440 1441 task_lock(tsk); 1442 vfork = tsk->vfork_done; 1443 if (likely(vfork)) { 1444 tsk->vfork_done = NULL; 1445 complete(vfork); 1446 } 1447 task_unlock(tsk); 1448 } 1449 1450 static int wait_for_vfork_done(struct task_struct *child, 1451 struct completion *vfork) 1452 { 1453 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1454 int killed; 1455 1456 cgroup_enter_frozen(); 1457 killed = wait_for_completion_state(vfork, state); 1458 cgroup_leave_frozen(false); 1459 1460 if (killed) { 1461 task_lock(child); 1462 child->vfork_done = NULL; 1463 task_unlock(child); 1464 } 1465 1466 put_task_struct(child); 1467 return killed; 1468 } 1469 1470 /* Please note the differences between mmput and mm_release. 1471 * mmput is called whenever we stop holding onto a mm_struct, 1472 * error success whatever. 1473 * 1474 * mm_release is called after a mm_struct has been removed 1475 * from the current process. 1476 * 1477 * This difference is important for error handling, when we 1478 * only half set up a mm_struct for a new process and need to restore 1479 * the old one. Because we mmput the new mm_struct before 1480 * restoring the old one. . . 1481 * Eric Biederman 10 January 1998 1482 */ 1483 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1484 { 1485 uprobe_free_utask(tsk); 1486 1487 /* Get rid of any cached register state */ 1488 deactivate_mm(tsk, mm); 1489 1490 /* 1491 * Signal userspace if we're not exiting with a core dump 1492 * because we want to leave the value intact for debugging 1493 * purposes. 1494 */ 1495 if (tsk->clear_child_tid) { 1496 if (atomic_read(&mm->mm_users) > 1) { 1497 /* 1498 * We don't check the error code - if userspace has 1499 * not set up a proper pointer then tough luck. 1500 */ 1501 put_user(0, tsk->clear_child_tid); 1502 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1503 1, NULL, NULL, 0, 0); 1504 } 1505 tsk->clear_child_tid = NULL; 1506 } 1507 1508 /* 1509 * All done, finally we can wake up parent and return this mm to him. 1510 * Also kthread_stop() uses this completion for synchronization. 1511 */ 1512 if (tsk->vfork_done) 1513 complete_vfork_done(tsk); 1514 } 1515 1516 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1517 { 1518 futex_exit_release(tsk); 1519 mm_release(tsk, mm); 1520 } 1521 1522 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1523 { 1524 futex_exec_release(tsk); 1525 mm_release(tsk, mm); 1526 } 1527 1528 /** 1529 * dup_mm() - duplicates an existing mm structure 1530 * @tsk: the task_struct with which the new mm will be associated. 1531 * @oldmm: the mm to duplicate. 1532 * 1533 * Allocates a new mm structure and duplicates the provided @oldmm structure 1534 * content into it. 1535 * 1536 * Return: the duplicated mm or NULL on failure. 1537 */ 1538 static struct mm_struct *dup_mm(struct task_struct *tsk, 1539 struct mm_struct *oldmm) 1540 { 1541 struct mm_struct *mm; 1542 int err; 1543 1544 mm = allocate_mm(); 1545 if (!mm) 1546 goto fail_nomem; 1547 1548 memcpy(mm, oldmm, sizeof(*mm)); 1549 1550 if (!mm_init(mm, tsk, mm->user_ns)) 1551 goto fail_nomem; 1552 1553 err = dup_mmap(mm, oldmm); 1554 if (err) 1555 goto free_pt; 1556 1557 mm->hiwater_rss = get_mm_rss(mm); 1558 mm->hiwater_vm = mm->total_vm; 1559 1560 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1561 goto free_pt; 1562 1563 return mm; 1564 1565 free_pt: 1566 /* don't put binfmt in mmput, we haven't got module yet */ 1567 mm->binfmt = NULL; 1568 mm_init_owner(mm, NULL); 1569 mmput(mm); 1570 1571 fail_nomem: 1572 return NULL; 1573 } 1574 1575 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1576 { 1577 struct mm_struct *mm, *oldmm; 1578 1579 tsk->min_flt = tsk->maj_flt = 0; 1580 tsk->nvcsw = tsk->nivcsw = 0; 1581 #ifdef CONFIG_DETECT_HUNG_TASK 1582 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1583 tsk->last_switch_time = 0; 1584 #endif 1585 1586 tsk->mm = NULL; 1587 tsk->active_mm = NULL; 1588 1589 /* 1590 * Are we cloning a kernel thread? 1591 * 1592 * We need to steal a active VM for that.. 1593 */ 1594 oldmm = current->mm; 1595 if (!oldmm) 1596 return 0; 1597 1598 if (clone_flags & CLONE_VM) { 1599 mmget(oldmm); 1600 mm = oldmm; 1601 } else { 1602 mm = dup_mm(tsk, current->mm); 1603 if (!mm) 1604 return -ENOMEM; 1605 } 1606 1607 tsk->mm = mm; 1608 tsk->active_mm = mm; 1609 sched_mm_cid_fork(tsk); 1610 return 0; 1611 } 1612 1613 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1614 { 1615 struct fs_struct *fs = current->fs; 1616 if (clone_flags & CLONE_FS) { 1617 /* tsk->fs is already what we want */ 1618 spin_lock(&fs->lock); 1619 if (fs->in_exec) { 1620 spin_unlock(&fs->lock); 1621 return -EAGAIN; 1622 } 1623 fs->users++; 1624 spin_unlock(&fs->lock); 1625 return 0; 1626 } 1627 tsk->fs = copy_fs_struct(fs); 1628 if (!tsk->fs) 1629 return -ENOMEM; 1630 return 0; 1631 } 1632 1633 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1634 { 1635 struct files_struct *oldf, *newf; 1636 int error = 0; 1637 1638 /* 1639 * A background process may not have any files ... 1640 */ 1641 oldf = current->files; 1642 if (!oldf) 1643 goto out; 1644 1645 if (clone_flags & CLONE_FILES) { 1646 atomic_inc(&oldf->count); 1647 goto out; 1648 } 1649 1650 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1651 if (!newf) 1652 goto out; 1653 1654 tsk->files = newf; 1655 error = 0; 1656 out: 1657 return error; 1658 } 1659 1660 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1661 { 1662 struct sighand_struct *sig; 1663 1664 if (clone_flags & CLONE_SIGHAND) { 1665 refcount_inc(¤t->sighand->count); 1666 return 0; 1667 } 1668 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1669 RCU_INIT_POINTER(tsk->sighand, sig); 1670 if (!sig) 1671 return -ENOMEM; 1672 1673 refcount_set(&sig->count, 1); 1674 spin_lock_irq(¤t->sighand->siglock); 1675 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1676 spin_unlock_irq(¤t->sighand->siglock); 1677 1678 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1679 if (clone_flags & CLONE_CLEAR_SIGHAND) 1680 flush_signal_handlers(tsk, 0); 1681 1682 return 0; 1683 } 1684 1685 void __cleanup_sighand(struct sighand_struct *sighand) 1686 { 1687 if (refcount_dec_and_test(&sighand->count)) { 1688 signalfd_cleanup(sighand); 1689 /* 1690 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1691 * without an RCU grace period, see __lock_task_sighand(). 1692 */ 1693 kmem_cache_free(sighand_cachep, sighand); 1694 } 1695 } 1696 1697 /* 1698 * Initialize POSIX timer handling for a thread group. 1699 */ 1700 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1701 { 1702 struct posix_cputimers *pct = &sig->posix_cputimers; 1703 unsigned long cpu_limit; 1704 1705 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1706 posix_cputimers_group_init(pct, cpu_limit); 1707 } 1708 1709 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1710 { 1711 struct signal_struct *sig; 1712 1713 if (clone_flags & CLONE_THREAD) 1714 return 0; 1715 1716 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1717 tsk->signal = sig; 1718 if (!sig) 1719 return -ENOMEM; 1720 1721 sig->nr_threads = 1; 1722 sig->quick_threads = 1; 1723 atomic_set(&sig->live, 1); 1724 refcount_set(&sig->sigcnt, 1); 1725 1726 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1727 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1728 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1729 1730 init_waitqueue_head(&sig->wait_chldexit); 1731 sig->curr_target = tsk; 1732 init_sigpending(&sig->shared_pending); 1733 INIT_HLIST_HEAD(&sig->multiprocess); 1734 seqlock_init(&sig->stats_lock); 1735 prev_cputime_init(&sig->prev_cputime); 1736 1737 #ifdef CONFIG_POSIX_TIMERS 1738 INIT_LIST_HEAD(&sig->posix_timers); 1739 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1740 sig->real_timer.function = it_real_fn; 1741 #endif 1742 1743 task_lock(current->group_leader); 1744 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1745 task_unlock(current->group_leader); 1746 1747 posix_cpu_timers_init_group(sig); 1748 1749 tty_audit_fork(sig); 1750 sched_autogroup_fork(sig); 1751 1752 sig->oom_score_adj = current->signal->oom_score_adj; 1753 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1754 1755 mutex_init(&sig->cred_guard_mutex); 1756 init_rwsem(&sig->exec_update_lock); 1757 1758 return 0; 1759 } 1760 1761 static void copy_seccomp(struct task_struct *p) 1762 { 1763 #ifdef CONFIG_SECCOMP 1764 /* 1765 * Must be called with sighand->lock held, which is common to 1766 * all threads in the group. Holding cred_guard_mutex is not 1767 * needed because this new task is not yet running and cannot 1768 * be racing exec. 1769 */ 1770 assert_spin_locked(¤t->sighand->siglock); 1771 1772 /* Ref-count the new filter user, and assign it. */ 1773 get_seccomp_filter(current); 1774 p->seccomp = current->seccomp; 1775 1776 /* 1777 * Explicitly enable no_new_privs here in case it got set 1778 * between the task_struct being duplicated and holding the 1779 * sighand lock. The seccomp state and nnp must be in sync. 1780 */ 1781 if (task_no_new_privs(current)) 1782 task_set_no_new_privs(p); 1783 1784 /* 1785 * If the parent gained a seccomp mode after copying thread 1786 * flags and between before we held the sighand lock, we have 1787 * to manually enable the seccomp thread flag here. 1788 */ 1789 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1790 set_task_syscall_work(p, SECCOMP); 1791 #endif 1792 } 1793 1794 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1795 { 1796 current->clear_child_tid = tidptr; 1797 1798 return task_pid_vnr(current); 1799 } 1800 1801 static void rt_mutex_init_task(struct task_struct *p) 1802 { 1803 raw_spin_lock_init(&p->pi_lock); 1804 #ifdef CONFIG_RT_MUTEXES 1805 p->pi_waiters = RB_ROOT_CACHED; 1806 p->pi_top_task = NULL; 1807 p->pi_blocked_on = NULL; 1808 #endif 1809 } 1810 1811 static inline void init_task_pid_links(struct task_struct *task) 1812 { 1813 enum pid_type type; 1814 1815 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1816 INIT_HLIST_NODE(&task->pid_links[type]); 1817 } 1818 1819 static inline void 1820 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1821 { 1822 if (type == PIDTYPE_PID) 1823 task->thread_pid = pid; 1824 else 1825 task->signal->pids[type] = pid; 1826 } 1827 1828 static inline void rcu_copy_process(struct task_struct *p) 1829 { 1830 #ifdef CONFIG_PREEMPT_RCU 1831 p->rcu_read_lock_nesting = 0; 1832 p->rcu_read_unlock_special.s = 0; 1833 p->rcu_blocked_node = NULL; 1834 INIT_LIST_HEAD(&p->rcu_node_entry); 1835 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1836 #ifdef CONFIG_TASKS_RCU 1837 p->rcu_tasks_holdout = false; 1838 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1839 p->rcu_tasks_idle_cpu = -1; 1840 #endif /* #ifdef CONFIG_TASKS_RCU */ 1841 #ifdef CONFIG_TASKS_TRACE_RCU 1842 p->trc_reader_nesting = 0; 1843 p->trc_reader_special.s = 0; 1844 INIT_LIST_HEAD(&p->trc_holdout_list); 1845 INIT_LIST_HEAD(&p->trc_blkd_node); 1846 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1847 } 1848 1849 struct pid *pidfd_pid(const struct file *file) 1850 { 1851 if (file->f_op == &pidfd_fops) 1852 return file->private_data; 1853 1854 return ERR_PTR(-EBADF); 1855 } 1856 1857 static int pidfd_release(struct inode *inode, struct file *file) 1858 { 1859 struct pid *pid = file->private_data; 1860 1861 file->private_data = NULL; 1862 put_pid(pid); 1863 return 0; 1864 } 1865 1866 #ifdef CONFIG_PROC_FS 1867 /** 1868 * pidfd_show_fdinfo - print information about a pidfd 1869 * @m: proc fdinfo file 1870 * @f: file referencing a pidfd 1871 * 1872 * Pid: 1873 * This function will print the pid that a given pidfd refers to in the 1874 * pid namespace of the procfs instance. 1875 * If the pid namespace of the process is not a descendant of the pid 1876 * namespace of the procfs instance 0 will be shown as its pid. This is 1877 * similar to calling getppid() on a process whose parent is outside of 1878 * its pid namespace. 1879 * 1880 * NSpid: 1881 * If pid namespaces are supported then this function will also print 1882 * the pid of a given pidfd refers to for all descendant pid namespaces 1883 * starting from the current pid namespace of the instance, i.e. the 1884 * Pid field and the first entry in the NSpid field will be identical. 1885 * If the pid namespace of the process is not a descendant of the pid 1886 * namespace of the procfs instance 0 will be shown as its first NSpid 1887 * entry and no others will be shown. 1888 * Note that this differs from the Pid and NSpid fields in 1889 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1890 * the pid namespace of the procfs instance. The difference becomes 1891 * obvious when sending around a pidfd between pid namespaces from a 1892 * different branch of the tree, i.e. where no ancestral relation is 1893 * present between the pid namespaces: 1894 * - create two new pid namespaces ns1 and ns2 in the initial pid 1895 * namespace (also take care to create new mount namespaces in the 1896 * new pid namespace and mount procfs) 1897 * - create a process with a pidfd in ns1 1898 * - send pidfd from ns1 to ns2 1899 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1900 * have exactly one entry, which is 0 1901 */ 1902 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1903 { 1904 struct pid *pid = f->private_data; 1905 struct pid_namespace *ns; 1906 pid_t nr = -1; 1907 1908 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1909 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1910 nr = pid_nr_ns(pid, ns); 1911 } 1912 1913 seq_put_decimal_ll(m, "Pid:\t", nr); 1914 1915 #ifdef CONFIG_PID_NS 1916 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1917 if (nr > 0) { 1918 int i; 1919 1920 /* If nr is non-zero it means that 'pid' is valid and that 1921 * ns, i.e. the pid namespace associated with the procfs 1922 * instance, is in the pid namespace hierarchy of pid. 1923 * Start at one below the already printed level. 1924 */ 1925 for (i = ns->level + 1; i <= pid->level; i++) 1926 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1927 } 1928 #endif 1929 seq_putc(m, '\n'); 1930 } 1931 #endif 1932 1933 /* 1934 * Poll support for process exit notification. 1935 */ 1936 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1937 { 1938 struct pid *pid = file->private_data; 1939 __poll_t poll_flags = 0; 1940 1941 poll_wait(file, &pid->wait_pidfd, pts); 1942 1943 /* 1944 * Inform pollers only when the whole thread group exits. 1945 * If the thread group leader exits before all other threads in the 1946 * group, then poll(2) should block, similar to the wait(2) family. 1947 */ 1948 if (thread_group_exited(pid)) 1949 poll_flags = EPOLLIN | EPOLLRDNORM; 1950 1951 return poll_flags; 1952 } 1953 1954 const struct file_operations pidfd_fops = { 1955 .release = pidfd_release, 1956 .poll = pidfd_poll, 1957 #ifdef CONFIG_PROC_FS 1958 .show_fdinfo = pidfd_show_fdinfo, 1959 #endif 1960 }; 1961 1962 static void __delayed_free_task(struct rcu_head *rhp) 1963 { 1964 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1965 1966 free_task(tsk); 1967 } 1968 1969 static __always_inline void delayed_free_task(struct task_struct *tsk) 1970 { 1971 if (IS_ENABLED(CONFIG_MEMCG)) 1972 call_rcu(&tsk->rcu, __delayed_free_task); 1973 else 1974 free_task(tsk); 1975 } 1976 1977 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1978 { 1979 /* Skip if kernel thread */ 1980 if (!tsk->mm) 1981 return; 1982 1983 /* Skip if spawning a thread or using vfork */ 1984 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1985 return; 1986 1987 /* We need to synchronize with __set_oom_adj */ 1988 mutex_lock(&oom_adj_mutex); 1989 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1990 /* Update the values in case they were changed after copy_signal */ 1991 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1992 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1993 mutex_unlock(&oom_adj_mutex); 1994 } 1995 1996 #ifdef CONFIG_RV 1997 static void rv_task_fork(struct task_struct *p) 1998 { 1999 int i; 2000 2001 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2002 p->rv[i].da_mon.monitoring = false; 2003 } 2004 #else 2005 #define rv_task_fork(p) do {} while (0) 2006 #endif 2007 2008 /* 2009 * This creates a new process as a copy of the old one, 2010 * but does not actually start it yet. 2011 * 2012 * It copies the registers, and all the appropriate 2013 * parts of the process environment (as per the clone 2014 * flags). The actual kick-off is left to the caller. 2015 */ 2016 static __latent_entropy struct task_struct *copy_process( 2017 struct pid *pid, 2018 int trace, 2019 int node, 2020 struct kernel_clone_args *args) 2021 { 2022 int pidfd = -1, retval; 2023 struct task_struct *p; 2024 struct multiprocess_signals delayed; 2025 struct file *pidfile = NULL; 2026 const u64 clone_flags = args->flags; 2027 struct nsproxy *nsp = current->nsproxy; 2028 2029 /* 2030 * Don't allow sharing the root directory with processes in a different 2031 * namespace 2032 */ 2033 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2034 return ERR_PTR(-EINVAL); 2035 2036 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2037 return ERR_PTR(-EINVAL); 2038 2039 /* 2040 * Thread groups must share signals as well, and detached threads 2041 * can only be started up within the thread group. 2042 */ 2043 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2044 return ERR_PTR(-EINVAL); 2045 2046 /* 2047 * Shared signal handlers imply shared VM. By way of the above, 2048 * thread groups also imply shared VM. Blocking this case allows 2049 * for various simplifications in other code. 2050 */ 2051 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2052 return ERR_PTR(-EINVAL); 2053 2054 /* 2055 * Siblings of global init remain as zombies on exit since they are 2056 * not reaped by their parent (swapper). To solve this and to avoid 2057 * multi-rooted process trees, prevent global and container-inits 2058 * from creating siblings. 2059 */ 2060 if ((clone_flags & CLONE_PARENT) && 2061 current->signal->flags & SIGNAL_UNKILLABLE) 2062 return ERR_PTR(-EINVAL); 2063 2064 /* 2065 * If the new process will be in a different pid or user namespace 2066 * do not allow it to share a thread group with the forking task. 2067 */ 2068 if (clone_flags & CLONE_THREAD) { 2069 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2070 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2071 return ERR_PTR(-EINVAL); 2072 } 2073 2074 if (clone_flags & CLONE_PIDFD) { 2075 /* 2076 * - CLONE_DETACHED is blocked so that we can potentially 2077 * reuse it later for CLONE_PIDFD. 2078 * - CLONE_THREAD is blocked until someone really needs it. 2079 */ 2080 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2081 return ERR_PTR(-EINVAL); 2082 } 2083 2084 /* 2085 * Force any signals received before this point to be delivered 2086 * before the fork happens. Collect up signals sent to multiple 2087 * processes that happen during the fork and delay them so that 2088 * they appear to happen after the fork. 2089 */ 2090 sigemptyset(&delayed.signal); 2091 INIT_HLIST_NODE(&delayed.node); 2092 2093 spin_lock_irq(¤t->sighand->siglock); 2094 if (!(clone_flags & CLONE_THREAD)) 2095 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2096 recalc_sigpending(); 2097 spin_unlock_irq(¤t->sighand->siglock); 2098 retval = -ERESTARTNOINTR; 2099 if (task_sigpending(current)) 2100 goto fork_out; 2101 2102 retval = -ENOMEM; 2103 p = dup_task_struct(current, node); 2104 if (!p) 2105 goto fork_out; 2106 p->flags &= ~PF_KTHREAD; 2107 if (args->kthread) 2108 p->flags |= PF_KTHREAD; 2109 if (args->io_thread) { 2110 /* 2111 * Mark us an IO worker, and block any signal that isn't 2112 * fatal or STOP 2113 */ 2114 p->flags |= PF_IO_WORKER; 2115 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2116 } 2117 2118 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2119 /* 2120 * Clear TID on mm_release()? 2121 */ 2122 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2123 2124 ftrace_graph_init_task(p); 2125 2126 rt_mutex_init_task(p); 2127 2128 lockdep_assert_irqs_enabled(); 2129 #ifdef CONFIG_PROVE_LOCKING 2130 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2131 #endif 2132 retval = copy_creds(p, clone_flags); 2133 if (retval < 0) 2134 goto bad_fork_free; 2135 2136 retval = -EAGAIN; 2137 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2138 if (p->real_cred->user != INIT_USER && 2139 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2140 goto bad_fork_cleanup_count; 2141 } 2142 current->flags &= ~PF_NPROC_EXCEEDED; 2143 2144 /* 2145 * If multiple threads are within copy_process(), then this check 2146 * triggers too late. This doesn't hurt, the check is only there 2147 * to stop root fork bombs. 2148 */ 2149 retval = -EAGAIN; 2150 if (data_race(nr_threads >= max_threads)) 2151 goto bad_fork_cleanup_count; 2152 2153 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2154 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2155 p->flags |= PF_FORKNOEXEC; 2156 INIT_LIST_HEAD(&p->children); 2157 INIT_LIST_HEAD(&p->sibling); 2158 rcu_copy_process(p); 2159 p->vfork_done = NULL; 2160 spin_lock_init(&p->alloc_lock); 2161 2162 init_sigpending(&p->pending); 2163 2164 p->utime = p->stime = p->gtime = 0; 2165 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2166 p->utimescaled = p->stimescaled = 0; 2167 #endif 2168 prev_cputime_init(&p->prev_cputime); 2169 2170 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2171 seqcount_init(&p->vtime.seqcount); 2172 p->vtime.starttime = 0; 2173 p->vtime.state = VTIME_INACTIVE; 2174 #endif 2175 2176 #ifdef CONFIG_IO_URING 2177 p->io_uring = NULL; 2178 #endif 2179 2180 #if defined(SPLIT_RSS_COUNTING) 2181 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2182 #endif 2183 2184 p->default_timer_slack_ns = current->timer_slack_ns; 2185 2186 #ifdef CONFIG_PSI 2187 p->psi_flags = 0; 2188 #endif 2189 2190 task_io_accounting_init(&p->ioac); 2191 acct_clear_integrals(p); 2192 2193 posix_cputimers_init(&p->posix_cputimers); 2194 2195 p->io_context = NULL; 2196 audit_set_context(p, NULL); 2197 cgroup_fork(p); 2198 if (args->kthread) { 2199 if (!set_kthread_struct(p)) 2200 goto bad_fork_cleanup_delayacct; 2201 } 2202 #ifdef CONFIG_NUMA 2203 p->mempolicy = mpol_dup(p->mempolicy); 2204 if (IS_ERR(p->mempolicy)) { 2205 retval = PTR_ERR(p->mempolicy); 2206 p->mempolicy = NULL; 2207 goto bad_fork_cleanup_delayacct; 2208 } 2209 #endif 2210 #ifdef CONFIG_CPUSETS 2211 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2212 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2213 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2214 #endif 2215 #ifdef CONFIG_TRACE_IRQFLAGS 2216 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2217 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2218 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2219 p->softirqs_enabled = 1; 2220 p->softirq_context = 0; 2221 #endif 2222 2223 p->pagefault_disabled = 0; 2224 2225 #ifdef CONFIG_LOCKDEP 2226 lockdep_init_task(p); 2227 #endif 2228 2229 #ifdef CONFIG_DEBUG_MUTEXES 2230 p->blocked_on = NULL; /* not blocked yet */ 2231 #endif 2232 #ifdef CONFIG_BCACHE 2233 p->sequential_io = 0; 2234 p->sequential_io_avg = 0; 2235 #endif 2236 #ifdef CONFIG_BPF_SYSCALL 2237 RCU_INIT_POINTER(p->bpf_storage, NULL); 2238 p->bpf_ctx = NULL; 2239 #endif 2240 2241 /* Perform scheduler related setup. Assign this task to a CPU. */ 2242 retval = sched_fork(clone_flags, p); 2243 if (retval) 2244 goto bad_fork_cleanup_policy; 2245 2246 retval = perf_event_init_task(p, clone_flags); 2247 if (retval) 2248 goto bad_fork_cleanup_policy; 2249 retval = audit_alloc(p); 2250 if (retval) 2251 goto bad_fork_cleanup_perf; 2252 /* copy all the process information */ 2253 shm_init_task(p); 2254 retval = security_task_alloc(p, clone_flags); 2255 if (retval) 2256 goto bad_fork_cleanup_audit; 2257 retval = copy_semundo(clone_flags, p); 2258 if (retval) 2259 goto bad_fork_cleanup_security; 2260 retval = copy_files(clone_flags, p); 2261 if (retval) 2262 goto bad_fork_cleanup_semundo; 2263 retval = copy_fs(clone_flags, p); 2264 if (retval) 2265 goto bad_fork_cleanup_files; 2266 retval = copy_sighand(clone_flags, p); 2267 if (retval) 2268 goto bad_fork_cleanup_fs; 2269 retval = copy_signal(clone_flags, p); 2270 if (retval) 2271 goto bad_fork_cleanup_sighand; 2272 retval = copy_mm(clone_flags, p); 2273 if (retval) 2274 goto bad_fork_cleanup_signal; 2275 retval = copy_namespaces(clone_flags, p); 2276 if (retval) 2277 goto bad_fork_cleanup_mm; 2278 retval = copy_io(clone_flags, p); 2279 if (retval) 2280 goto bad_fork_cleanup_namespaces; 2281 retval = copy_thread(p, args); 2282 if (retval) 2283 goto bad_fork_cleanup_io; 2284 2285 stackleak_task_init(p); 2286 2287 if (pid != &init_struct_pid) { 2288 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2289 args->set_tid_size); 2290 if (IS_ERR(pid)) { 2291 retval = PTR_ERR(pid); 2292 goto bad_fork_cleanup_thread; 2293 } 2294 } 2295 2296 /* 2297 * This has to happen after we've potentially unshared the file 2298 * descriptor table (so that the pidfd doesn't leak into the child 2299 * if the fd table isn't shared). 2300 */ 2301 if (clone_flags & CLONE_PIDFD) { 2302 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2303 if (retval < 0) 2304 goto bad_fork_free_pid; 2305 2306 pidfd = retval; 2307 2308 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2309 O_RDWR | O_CLOEXEC); 2310 if (IS_ERR(pidfile)) { 2311 put_unused_fd(pidfd); 2312 retval = PTR_ERR(pidfile); 2313 goto bad_fork_free_pid; 2314 } 2315 get_pid(pid); /* held by pidfile now */ 2316 2317 retval = put_user(pidfd, args->pidfd); 2318 if (retval) 2319 goto bad_fork_put_pidfd; 2320 } 2321 2322 #ifdef CONFIG_BLOCK 2323 p->plug = NULL; 2324 #endif 2325 futex_init_task(p); 2326 2327 /* 2328 * sigaltstack should be cleared when sharing the same VM 2329 */ 2330 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2331 sas_ss_reset(p); 2332 2333 /* 2334 * Syscall tracing and stepping should be turned off in the 2335 * child regardless of CLONE_PTRACE. 2336 */ 2337 user_disable_single_step(p); 2338 clear_task_syscall_work(p, SYSCALL_TRACE); 2339 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2340 clear_task_syscall_work(p, SYSCALL_EMU); 2341 #endif 2342 clear_tsk_latency_tracing(p); 2343 2344 /* ok, now we should be set up.. */ 2345 p->pid = pid_nr(pid); 2346 if (clone_flags & CLONE_THREAD) { 2347 p->group_leader = current->group_leader; 2348 p->tgid = current->tgid; 2349 } else { 2350 p->group_leader = p; 2351 p->tgid = p->pid; 2352 } 2353 2354 p->nr_dirtied = 0; 2355 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2356 p->dirty_paused_when = 0; 2357 2358 p->pdeath_signal = 0; 2359 INIT_LIST_HEAD(&p->thread_group); 2360 p->task_works = NULL; 2361 clear_posix_cputimers_work(p); 2362 2363 #ifdef CONFIG_KRETPROBES 2364 p->kretprobe_instances.first = NULL; 2365 #endif 2366 #ifdef CONFIG_RETHOOK 2367 p->rethooks.first = NULL; 2368 #endif 2369 2370 /* 2371 * Ensure that the cgroup subsystem policies allow the new process to be 2372 * forked. It should be noted that the new process's css_set can be changed 2373 * between here and cgroup_post_fork() if an organisation operation is in 2374 * progress. 2375 */ 2376 retval = cgroup_can_fork(p, args); 2377 if (retval) 2378 goto bad_fork_put_pidfd; 2379 2380 /* 2381 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2382 * the new task on the correct runqueue. All this *before* the task 2383 * becomes visible. 2384 * 2385 * This isn't part of ->can_fork() because while the re-cloning is 2386 * cgroup specific, it unconditionally needs to place the task on a 2387 * runqueue. 2388 */ 2389 sched_cgroup_fork(p, args); 2390 2391 /* 2392 * From this point on we must avoid any synchronous user-space 2393 * communication until we take the tasklist-lock. In particular, we do 2394 * not want user-space to be able to predict the process start-time by 2395 * stalling fork(2) after we recorded the start_time but before it is 2396 * visible to the system. 2397 */ 2398 2399 p->start_time = ktime_get_ns(); 2400 p->start_boottime = ktime_get_boottime_ns(); 2401 2402 /* 2403 * Make it visible to the rest of the system, but dont wake it up yet. 2404 * Need tasklist lock for parent etc handling! 2405 */ 2406 write_lock_irq(&tasklist_lock); 2407 2408 /* CLONE_PARENT re-uses the old parent */ 2409 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2410 p->real_parent = current->real_parent; 2411 p->parent_exec_id = current->parent_exec_id; 2412 if (clone_flags & CLONE_THREAD) 2413 p->exit_signal = -1; 2414 else 2415 p->exit_signal = current->group_leader->exit_signal; 2416 } else { 2417 p->real_parent = current; 2418 p->parent_exec_id = current->self_exec_id; 2419 p->exit_signal = args->exit_signal; 2420 } 2421 2422 klp_copy_process(p); 2423 2424 sched_core_fork(p); 2425 2426 spin_lock(¤t->sighand->siglock); 2427 2428 rv_task_fork(p); 2429 2430 rseq_fork(p, clone_flags); 2431 2432 /* Don't start children in a dying pid namespace */ 2433 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2434 retval = -ENOMEM; 2435 goto bad_fork_cancel_cgroup; 2436 } 2437 2438 /* Let kill terminate clone/fork in the middle */ 2439 if (fatal_signal_pending(current)) { 2440 retval = -EINTR; 2441 goto bad_fork_cancel_cgroup; 2442 } 2443 2444 /* No more failure paths after this point. */ 2445 2446 /* 2447 * Copy seccomp details explicitly here, in case they were changed 2448 * before holding sighand lock. 2449 */ 2450 copy_seccomp(p); 2451 2452 init_task_pid_links(p); 2453 if (likely(p->pid)) { 2454 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2455 2456 init_task_pid(p, PIDTYPE_PID, pid); 2457 if (thread_group_leader(p)) { 2458 init_task_pid(p, PIDTYPE_TGID, pid); 2459 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2460 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2461 2462 if (is_child_reaper(pid)) { 2463 ns_of_pid(pid)->child_reaper = p; 2464 p->signal->flags |= SIGNAL_UNKILLABLE; 2465 } 2466 p->signal->shared_pending.signal = delayed.signal; 2467 p->signal->tty = tty_kref_get(current->signal->tty); 2468 /* 2469 * Inherit has_child_subreaper flag under the same 2470 * tasklist_lock with adding child to the process tree 2471 * for propagate_has_child_subreaper optimization. 2472 */ 2473 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2474 p->real_parent->signal->is_child_subreaper; 2475 list_add_tail(&p->sibling, &p->real_parent->children); 2476 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2477 attach_pid(p, PIDTYPE_TGID); 2478 attach_pid(p, PIDTYPE_PGID); 2479 attach_pid(p, PIDTYPE_SID); 2480 __this_cpu_inc(process_counts); 2481 } else { 2482 current->signal->nr_threads++; 2483 current->signal->quick_threads++; 2484 atomic_inc(¤t->signal->live); 2485 refcount_inc(¤t->signal->sigcnt); 2486 task_join_group_stop(p); 2487 list_add_tail_rcu(&p->thread_group, 2488 &p->group_leader->thread_group); 2489 list_add_tail_rcu(&p->thread_node, 2490 &p->signal->thread_head); 2491 } 2492 attach_pid(p, PIDTYPE_PID); 2493 nr_threads++; 2494 } 2495 total_forks++; 2496 hlist_del_init(&delayed.node); 2497 spin_unlock(¤t->sighand->siglock); 2498 syscall_tracepoint_update(p); 2499 write_unlock_irq(&tasklist_lock); 2500 2501 if (pidfile) 2502 fd_install(pidfd, pidfile); 2503 2504 proc_fork_connector(p); 2505 sched_post_fork(p); 2506 cgroup_post_fork(p, args); 2507 perf_event_fork(p); 2508 2509 trace_task_newtask(p, clone_flags); 2510 uprobe_copy_process(p, clone_flags); 2511 2512 copy_oom_score_adj(clone_flags, p); 2513 2514 return p; 2515 2516 bad_fork_cancel_cgroup: 2517 sched_core_free(p); 2518 spin_unlock(¤t->sighand->siglock); 2519 write_unlock_irq(&tasklist_lock); 2520 cgroup_cancel_fork(p, args); 2521 bad_fork_put_pidfd: 2522 if (clone_flags & CLONE_PIDFD) { 2523 fput(pidfile); 2524 put_unused_fd(pidfd); 2525 } 2526 bad_fork_free_pid: 2527 if (pid != &init_struct_pid) 2528 free_pid(pid); 2529 bad_fork_cleanup_thread: 2530 exit_thread(p); 2531 bad_fork_cleanup_io: 2532 if (p->io_context) 2533 exit_io_context(p); 2534 bad_fork_cleanup_namespaces: 2535 exit_task_namespaces(p); 2536 bad_fork_cleanup_mm: 2537 if (p->mm) { 2538 mm_clear_owner(p->mm, p); 2539 mmput(p->mm); 2540 } 2541 bad_fork_cleanup_signal: 2542 if (!(clone_flags & CLONE_THREAD)) 2543 free_signal_struct(p->signal); 2544 bad_fork_cleanup_sighand: 2545 __cleanup_sighand(p->sighand); 2546 bad_fork_cleanup_fs: 2547 exit_fs(p); /* blocking */ 2548 bad_fork_cleanup_files: 2549 exit_files(p); /* blocking */ 2550 bad_fork_cleanup_semundo: 2551 exit_sem(p); 2552 bad_fork_cleanup_security: 2553 security_task_free(p); 2554 bad_fork_cleanup_audit: 2555 audit_free(p); 2556 bad_fork_cleanup_perf: 2557 perf_event_free_task(p); 2558 bad_fork_cleanup_policy: 2559 lockdep_free_task(p); 2560 #ifdef CONFIG_NUMA 2561 mpol_put(p->mempolicy); 2562 #endif 2563 bad_fork_cleanup_delayacct: 2564 delayacct_tsk_free(p); 2565 bad_fork_cleanup_count: 2566 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2567 exit_creds(p); 2568 bad_fork_free: 2569 WRITE_ONCE(p->__state, TASK_DEAD); 2570 exit_task_stack_account(p); 2571 put_task_stack(p); 2572 delayed_free_task(p); 2573 fork_out: 2574 spin_lock_irq(¤t->sighand->siglock); 2575 hlist_del_init(&delayed.node); 2576 spin_unlock_irq(¤t->sighand->siglock); 2577 return ERR_PTR(retval); 2578 } 2579 2580 static inline void init_idle_pids(struct task_struct *idle) 2581 { 2582 enum pid_type type; 2583 2584 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2585 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2586 init_task_pid(idle, type, &init_struct_pid); 2587 } 2588 } 2589 2590 static int idle_dummy(void *dummy) 2591 { 2592 /* This function is never called */ 2593 return 0; 2594 } 2595 2596 struct task_struct * __init fork_idle(int cpu) 2597 { 2598 struct task_struct *task; 2599 struct kernel_clone_args args = { 2600 .flags = CLONE_VM, 2601 .fn = &idle_dummy, 2602 .fn_arg = NULL, 2603 .kthread = 1, 2604 .idle = 1, 2605 }; 2606 2607 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2608 if (!IS_ERR(task)) { 2609 init_idle_pids(task); 2610 init_idle(task, cpu); 2611 } 2612 2613 return task; 2614 } 2615 2616 /* 2617 * This is like kernel_clone(), but shaved down and tailored to just 2618 * creating io_uring workers. It returns a created task, or an error pointer. 2619 * The returned task is inactive, and the caller must fire it up through 2620 * wake_up_new_task(p). All signals are blocked in the created task. 2621 */ 2622 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2623 { 2624 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2625 CLONE_IO; 2626 struct kernel_clone_args args = { 2627 .flags = ((lower_32_bits(flags) | CLONE_VM | 2628 CLONE_UNTRACED) & ~CSIGNAL), 2629 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2630 .fn = fn, 2631 .fn_arg = arg, 2632 .io_thread = 1, 2633 }; 2634 2635 return copy_process(NULL, 0, node, &args); 2636 } 2637 2638 /* 2639 * Ok, this is the main fork-routine. 2640 * 2641 * It copies the process, and if successful kick-starts 2642 * it and waits for it to finish using the VM if required. 2643 * 2644 * args->exit_signal is expected to be checked for sanity by the caller. 2645 */ 2646 pid_t kernel_clone(struct kernel_clone_args *args) 2647 { 2648 u64 clone_flags = args->flags; 2649 struct completion vfork; 2650 struct pid *pid; 2651 struct task_struct *p; 2652 int trace = 0; 2653 pid_t nr; 2654 2655 /* 2656 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2657 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2658 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2659 * field in struct clone_args and it still doesn't make sense to have 2660 * them both point at the same memory location. Performing this check 2661 * here has the advantage that we don't need to have a separate helper 2662 * to check for legacy clone(). 2663 */ 2664 if ((args->flags & CLONE_PIDFD) && 2665 (args->flags & CLONE_PARENT_SETTID) && 2666 (args->pidfd == args->parent_tid)) 2667 return -EINVAL; 2668 2669 /* 2670 * Determine whether and which event to report to ptracer. When 2671 * called from kernel_thread or CLONE_UNTRACED is explicitly 2672 * requested, no event is reported; otherwise, report if the event 2673 * for the type of forking is enabled. 2674 */ 2675 if (!(clone_flags & CLONE_UNTRACED)) { 2676 if (clone_flags & CLONE_VFORK) 2677 trace = PTRACE_EVENT_VFORK; 2678 else if (args->exit_signal != SIGCHLD) 2679 trace = PTRACE_EVENT_CLONE; 2680 else 2681 trace = PTRACE_EVENT_FORK; 2682 2683 if (likely(!ptrace_event_enabled(current, trace))) 2684 trace = 0; 2685 } 2686 2687 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2688 add_latent_entropy(); 2689 2690 if (IS_ERR(p)) 2691 return PTR_ERR(p); 2692 2693 /* 2694 * Do this prior waking up the new thread - the thread pointer 2695 * might get invalid after that point, if the thread exits quickly. 2696 */ 2697 trace_sched_process_fork(current, p); 2698 2699 pid = get_task_pid(p, PIDTYPE_PID); 2700 nr = pid_vnr(pid); 2701 2702 if (clone_flags & CLONE_PARENT_SETTID) 2703 put_user(nr, args->parent_tid); 2704 2705 if (clone_flags & CLONE_VFORK) { 2706 p->vfork_done = &vfork; 2707 init_completion(&vfork); 2708 get_task_struct(p); 2709 } 2710 2711 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2712 /* lock the task to synchronize with memcg migration */ 2713 task_lock(p); 2714 lru_gen_add_mm(p->mm); 2715 task_unlock(p); 2716 } 2717 2718 wake_up_new_task(p); 2719 2720 /* forking complete and child started to run, tell ptracer */ 2721 if (unlikely(trace)) 2722 ptrace_event_pid(trace, pid); 2723 2724 if (clone_flags & CLONE_VFORK) { 2725 if (!wait_for_vfork_done(p, &vfork)) 2726 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2727 } 2728 2729 put_pid(pid); 2730 return nr; 2731 } 2732 2733 /* 2734 * Create a kernel thread. 2735 */ 2736 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2737 { 2738 struct kernel_clone_args args = { 2739 .flags = ((lower_32_bits(flags) | CLONE_VM | 2740 CLONE_UNTRACED) & ~CSIGNAL), 2741 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2742 .fn = fn, 2743 .fn_arg = arg, 2744 .kthread = 1, 2745 }; 2746 2747 return kernel_clone(&args); 2748 } 2749 2750 /* 2751 * Create a user mode thread. 2752 */ 2753 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2754 { 2755 struct kernel_clone_args args = { 2756 .flags = ((lower_32_bits(flags) | CLONE_VM | 2757 CLONE_UNTRACED) & ~CSIGNAL), 2758 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2759 .fn = fn, 2760 .fn_arg = arg, 2761 }; 2762 2763 return kernel_clone(&args); 2764 } 2765 2766 #ifdef __ARCH_WANT_SYS_FORK 2767 SYSCALL_DEFINE0(fork) 2768 { 2769 #ifdef CONFIG_MMU 2770 struct kernel_clone_args args = { 2771 .exit_signal = SIGCHLD, 2772 }; 2773 2774 return kernel_clone(&args); 2775 #else 2776 /* can not support in nommu mode */ 2777 return -EINVAL; 2778 #endif 2779 } 2780 #endif 2781 2782 #ifdef __ARCH_WANT_SYS_VFORK 2783 SYSCALL_DEFINE0(vfork) 2784 { 2785 struct kernel_clone_args args = { 2786 .flags = CLONE_VFORK | CLONE_VM, 2787 .exit_signal = SIGCHLD, 2788 }; 2789 2790 return kernel_clone(&args); 2791 } 2792 #endif 2793 2794 #ifdef __ARCH_WANT_SYS_CLONE 2795 #ifdef CONFIG_CLONE_BACKWARDS 2796 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2797 int __user *, parent_tidptr, 2798 unsigned long, tls, 2799 int __user *, child_tidptr) 2800 #elif defined(CONFIG_CLONE_BACKWARDS2) 2801 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2802 int __user *, parent_tidptr, 2803 int __user *, child_tidptr, 2804 unsigned long, tls) 2805 #elif defined(CONFIG_CLONE_BACKWARDS3) 2806 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2807 int, stack_size, 2808 int __user *, parent_tidptr, 2809 int __user *, child_tidptr, 2810 unsigned long, tls) 2811 #else 2812 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2813 int __user *, parent_tidptr, 2814 int __user *, child_tidptr, 2815 unsigned long, tls) 2816 #endif 2817 { 2818 struct kernel_clone_args args = { 2819 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2820 .pidfd = parent_tidptr, 2821 .child_tid = child_tidptr, 2822 .parent_tid = parent_tidptr, 2823 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2824 .stack = newsp, 2825 .tls = tls, 2826 }; 2827 2828 return kernel_clone(&args); 2829 } 2830 #endif 2831 2832 #ifdef __ARCH_WANT_SYS_CLONE3 2833 2834 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2835 struct clone_args __user *uargs, 2836 size_t usize) 2837 { 2838 int err; 2839 struct clone_args args; 2840 pid_t *kset_tid = kargs->set_tid; 2841 2842 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2843 CLONE_ARGS_SIZE_VER0); 2844 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2845 CLONE_ARGS_SIZE_VER1); 2846 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2847 CLONE_ARGS_SIZE_VER2); 2848 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2849 2850 if (unlikely(usize > PAGE_SIZE)) 2851 return -E2BIG; 2852 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2853 return -EINVAL; 2854 2855 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2856 if (err) 2857 return err; 2858 2859 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2860 return -EINVAL; 2861 2862 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2863 return -EINVAL; 2864 2865 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2866 return -EINVAL; 2867 2868 /* 2869 * Verify that higher 32bits of exit_signal are unset and that 2870 * it is a valid signal 2871 */ 2872 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2873 !valid_signal(args.exit_signal))) 2874 return -EINVAL; 2875 2876 if ((args.flags & CLONE_INTO_CGROUP) && 2877 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2878 return -EINVAL; 2879 2880 *kargs = (struct kernel_clone_args){ 2881 .flags = args.flags, 2882 .pidfd = u64_to_user_ptr(args.pidfd), 2883 .child_tid = u64_to_user_ptr(args.child_tid), 2884 .parent_tid = u64_to_user_ptr(args.parent_tid), 2885 .exit_signal = args.exit_signal, 2886 .stack = args.stack, 2887 .stack_size = args.stack_size, 2888 .tls = args.tls, 2889 .set_tid_size = args.set_tid_size, 2890 .cgroup = args.cgroup, 2891 }; 2892 2893 if (args.set_tid && 2894 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2895 (kargs->set_tid_size * sizeof(pid_t)))) 2896 return -EFAULT; 2897 2898 kargs->set_tid = kset_tid; 2899 2900 return 0; 2901 } 2902 2903 /** 2904 * clone3_stack_valid - check and prepare stack 2905 * @kargs: kernel clone args 2906 * 2907 * Verify that the stack arguments userspace gave us are sane. 2908 * In addition, set the stack direction for userspace since it's easy for us to 2909 * determine. 2910 */ 2911 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2912 { 2913 if (kargs->stack == 0) { 2914 if (kargs->stack_size > 0) 2915 return false; 2916 } else { 2917 if (kargs->stack_size == 0) 2918 return false; 2919 2920 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2921 return false; 2922 2923 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2924 kargs->stack += kargs->stack_size; 2925 #endif 2926 } 2927 2928 return true; 2929 } 2930 2931 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2932 { 2933 /* Verify that no unknown flags are passed along. */ 2934 if (kargs->flags & 2935 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2936 return false; 2937 2938 /* 2939 * - make the CLONE_DETACHED bit reusable for clone3 2940 * - make the CSIGNAL bits reusable for clone3 2941 */ 2942 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2943 return false; 2944 2945 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2946 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2947 return false; 2948 2949 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2950 kargs->exit_signal) 2951 return false; 2952 2953 if (!clone3_stack_valid(kargs)) 2954 return false; 2955 2956 return true; 2957 } 2958 2959 /** 2960 * clone3 - create a new process with specific properties 2961 * @uargs: argument structure 2962 * @size: size of @uargs 2963 * 2964 * clone3() is the extensible successor to clone()/clone2(). 2965 * It takes a struct as argument that is versioned by its size. 2966 * 2967 * Return: On success, a positive PID for the child process. 2968 * On error, a negative errno number. 2969 */ 2970 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2971 { 2972 int err; 2973 2974 struct kernel_clone_args kargs; 2975 pid_t set_tid[MAX_PID_NS_LEVEL]; 2976 2977 kargs.set_tid = set_tid; 2978 2979 err = copy_clone_args_from_user(&kargs, uargs, size); 2980 if (err) 2981 return err; 2982 2983 if (!clone3_args_valid(&kargs)) 2984 return -EINVAL; 2985 2986 return kernel_clone(&kargs); 2987 } 2988 #endif 2989 2990 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2991 { 2992 struct task_struct *leader, *parent, *child; 2993 int res; 2994 2995 read_lock(&tasklist_lock); 2996 leader = top = top->group_leader; 2997 down: 2998 for_each_thread(leader, parent) { 2999 list_for_each_entry(child, &parent->children, sibling) { 3000 res = visitor(child, data); 3001 if (res) { 3002 if (res < 0) 3003 goto out; 3004 leader = child; 3005 goto down; 3006 } 3007 up: 3008 ; 3009 } 3010 } 3011 3012 if (leader != top) { 3013 child = leader; 3014 parent = child->real_parent; 3015 leader = parent->group_leader; 3016 goto up; 3017 } 3018 out: 3019 read_unlock(&tasklist_lock); 3020 } 3021 3022 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3023 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3024 #endif 3025 3026 static void sighand_ctor(void *data) 3027 { 3028 struct sighand_struct *sighand = data; 3029 3030 spin_lock_init(&sighand->siglock); 3031 init_waitqueue_head(&sighand->signalfd_wqh); 3032 } 3033 3034 void __init mm_cache_init(void) 3035 { 3036 unsigned int mm_size; 3037 3038 /* 3039 * The mm_cpumask is located at the end of mm_struct, and is 3040 * dynamically sized based on the maximum CPU number this system 3041 * can have, taking hotplug into account (nr_cpu_ids). 3042 */ 3043 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3044 3045 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3046 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3047 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3048 offsetof(struct mm_struct, saved_auxv), 3049 sizeof_field(struct mm_struct, saved_auxv), 3050 NULL); 3051 } 3052 3053 void __init proc_caches_init(void) 3054 { 3055 sighand_cachep = kmem_cache_create("sighand_cache", 3056 sizeof(struct sighand_struct), 0, 3057 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3058 SLAB_ACCOUNT, sighand_ctor); 3059 signal_cachep = kmem_cache_create("signal_cache", 3060 sizeof(struct signal_struct), 0, 3061 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3062 NULL); 3063 files_cachep = kmem_cache_create("files_cache", 3064 sizeof(struct files_struct), 0, 3065 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3066 NULL); 3067 fs_cachep = kmem_cache_create("fs_cache", 3068 sizeof(struct fs_struct), 0, 3069 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3070 NULL); 3071 3072 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3073 mmap_init(); 3074 nsproxy_cache_init(); 3075 } 3076 3077 /* 3078 * Check constraints on flags passed to the unshare system call. 3079 */ 3080 static int check_unshare_flags(unsigned long unshare_flags) 3081 { 3082 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3083 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3084 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3085 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3086 CLONE_NEWTIME)) 3087 return -EINVAL; 3088 /* 3089 * Not implemented, but pretend it works if there is nothing 3090 * to unshare. Note that unsharing the address space or the 3091 * signal handlers also need to unshare the signal queues (aka 3092 * CLONE_THREAD). 3093 */ 3094 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3095 if (!thread_group_empty(current)) 3096 return -EINVAL; 3097 } 3098 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3099 if (refcount_read(¤t->sighand->count) > 1) 3100 return -EINVAL; 3101 } 3102 if (unshare_flags & CLONE_VM) { 3103 if (!current_is_single_threaded()) 3104 return -EINVAL; 3105 } 3106 3107 return 0; 3108 } 3109 3110 /* 3111 * Unshare the filesystem structure if it is being shared 3112 */ 3113 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3114 { 3115 struct fs_struct *fs = current->fs; 3116 3117 if (!(unshare_flags & CLONE_FS) || !fs) 3118 return 0; 3119 3120 /* don't need lock here; in the worst case we'll do useless copy */ 3121 if (fs->users == 1) 3122 return 0; 3123 3124 *new_fsp = copy_fs_struct(fs); 3125 if (!*new_fsp) 3126 return -ENOMEM; 3127 3128 return 0; 3129 } 3130 3131 /* 3132 * Unshare file descriptor table if it is being shared 3133 */ 3134 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3135 struct files_struct **new_fdp) 3136 { 3137 struct files_struct *fd = current->files; 3138 int error = 0; 3139 3140 if ((unshare_flags & CLONE_FILES) && 3141 (fd && atomic_read(&fd->count) > 1)) { 3142 *new_fdp = dup_fd(fd, max_fds, &error); 3143 if (!*new_fdp) 3144 return error; 3145 } 3146 3147 return 0; 3148 } 3149 3150 /* 3151 * unshare allows a process to 'unshare' part of the process 3152 * context which was originally shared using clone. copy_* 3153 * functions used by kernel_clone() cannot be used here directly 3154 * because they modify an inactive task_struct that is being 3155 * constructed. Here we are modifying the current, active, 3156 * task_struct. 3157 */ 3158 int ksys_unshare(unsigned long unshare_flags) 3159 { 3160 struct fs_struct *fs, *new_fs = NULL; 3161 struct files_struct *new_fd = NULL; 3162 struct cred *new_cred = NULL; 3163 struct nsproxy *new_nsproxy = NULL; 3164 int do_sysvsem = 0; 3165 int err; 3166 3167 /* 3168 * If unsharing a user namespace must also unshare the thread group 3169 * and unshare the filesystem root and working directories. 3170 */ 3171 if (unshare_flags & CLONE_NEWUSER) 3172 unshare_flags |= CLONE_THREAD | CLONE_FS; 3173 /* 3174 * If unsharing vm, must also unshare signal handlers. 3175 */ 3176 if (unshare_flags & CLONE_VM) 3177 unshare_flags |= CLONE_SIGHAND; 3178 /* 3179 * If unsharing a signal handlers, must also unshare the signal queues. 3180 */ 3181 if (unshare_flags & CLONE_SIGHAND) 3182 unshare_flags |= CLONE_THREAD; 3183 /* 3184 * If unsharing namespace, must also unshare filesystem information. 3185 */ 3186 if (unshare_flags & CLONE_NEWNS) 3187 unshare_flags |= CLONE_FS; 3188 3189 err = check_unshare_flags(unshare_flags); 3190 if (err) 3191 goto bad_unshare_out; 3192 /* 3193 * CLONE_NEWIPC must also detach from the undolist: after switching 3194 * to a new ipc namespace, the semaphore arrays from the old 3195 * namespace are unreachable. 3196 */ 3197 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3198 do_sysvsem = 1; 3199 err = unshare_fs(unshare_flags, &new_fs); 3200 if (err) 3201 goto bad_unshare_out; 3202 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3203 if (err) 3204 goto bad_unshare_cleanup_fs; 3205 err = unshare_userns(unshare_flags, &new_cred); 3206 if (err) 3207 goto bad_unshare_cleanup_fd; 3208 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3209 new_cred, new_fs); 3210 if (err) 3211 goto bad_unshare_cleanup_cred; 3212 3213 if (new_cred) { 3214 err = set_cred_ucounts(new_cred); 3215 if (err) 3216 goto bad_unshare_cleanup_cred; 3217 } 3218 3219 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3220 if (do_sysvsem) { 3221 /* 3222 * CLONE_SYSVSEM is equivalent to sys_exit(). 3223 */ 3224 exit_sem(current); 3225 } 3226 if (unshare_flags & CLONE_NEWIPC) { 3227 /* Orphan segments in old ns (see sem above). */ 3228 exit_shm(current); 3229 shm_init_task(current); 3230 } 3231 3232 if (new_nsproxy) 3233 switch_task_namespaces(current, new_nsproxy); 3234 3235 task_lock(current); 3236 3237 if (new_fs) { 3238 fs = current->fs; 3239 spin_lock(&fs->lock); 3240 current->fs = new_fs; 3241 if (--fs->users) 3242 new_fs = NULL; 3243 else 3244 new_fs = fs; 3245 spin_unlock(&fs->lock); 3246 } 3247 3248 if (new_fd) 3249 swap(current->files, new_fd); 3250 3251 task_unlock(current); 3252 3253 if (new_cred) { 3254 /* Install the new user namespace */ 3255 commit_creds(new_cred); 3256 new_cred = NULL; 3257 } 3258 } 3259 3260 perf_event_namespaces(current); 3261 3262 bad_unshare_cleanup_cred: 3263 if (new_cred) 3264 put_cred(new_cred); 3265 bad_unshare_cleanup_fd: 3266 if (new_fd) 3267 put_files_struct(new_fd); 3268 3269 bad_unshare_cleanup_fs: 3270 if (new_fs) 3271 free_fs_struct(new_fs); 3272 3273 bad_unshare_out: 3274 return err; 3275 } 3276 3277 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3278 { 3279 return ksys_unshare(unshare_flags); 3280 } 3281 3282 /* 3283 * Helper to unshare the files of the current task. 3284 * We don't want to expose copy_files internals to 3285 * the exec layer of the kernel. 3286 */ 3287 3288 int unshare_files(void) 3289 { 3290 struct task_struct *task = current; 3291 struct files_struct *old, *copy = NULL; 3292 int error; 3293 3294 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3295 if (error || !copy) 3296 return error; 3297 3298 old = task->files; 3299 task_lock(task); 3300 task->files = copy; 3301 task_unlock(task); 3302 put_files_struct(old); 3303 return 0; 3304 } 3305 3306 int sysctl_max_threads(struct ctl_table *table, int write, 3307 void *buffer, size_t *lenp, loff_t *ppos) 3308 { 3309 struct ctl_table t; 3310 int ret; 3311 int threads = max_threads; 3312 int min = 1; 3313 int max = MAX_THREADS; 3314 3315 t = *table; 3316 t.data = &threads; 3317 t.extra1 = &min; 3318 t.extra2 = &max; 3319 3320 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3321 if (ret || !write) 3322 return ret; 3323 3324 max_threads = threads; 3325 3326 return 0; 3327 } 3328