xref: /linux/kernel/fork.c (revision d38c07afc356ddebaa3ed8ecb3f553340e05c969)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
129 
130 static const char * const resident_page_types[] = {
131 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136 
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138 
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
140 
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 	return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148 
149 int nr_processes(void)
150 {
151 	int cpu;
152 	int total = 0;
153 
154 	for_each_possible_cpu(cpu)
155 		total += per_cpu(process_counts, cpu);
156 
157 	return total;
158 }
159 
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163 
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166 
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171 
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 	kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177 
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179 
180 /*
181  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182  * kmemcache based allocator.
183  */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185 
186 #ifdef CONFIG_VMAP_STACK
187 /*
188  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189  * flush.  Try to minimize the number of calls by caching stacks.
190  */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193 
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 	int i;
198 
199 	for (i = 0; i < NR_CACHED_STACKS; i++) {
200 		struct vm_struct *vm_stack = cached_vm_stacks[i];
201 
202 		if (!vm_stack)
203 			continue;
204 
205 		vfree(vm_stack->addr);
206 		cached_vm_stacks[i] = NULL;
207 	}
208 
209 	return 0;
210 }
211 #endif
212 
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 	void *stack;
217 	int i;
218 
219 	for (i = 0; i < NR_CACHED_STACKS; i++) {
220 		struct vm_struct *s;
221 
222 		s = this_cpu_xchg(cached_stacks[i], NULL);
223 
224 		if (!s)
225 			continue;
226 
227 		/* Clear the KASAN shadow of the stack. */
228 		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229 
230 		/* Clear stale pointers from reused stack. */
231 		memset(s->addr, 0, THREAD_SIZE);
232 
233 		tsk->stack_vm_area = s;
234 		tsk->stack = s->addr;
235 		return s->addr;
236 	}
237 
238 	/*
239 	 * Allocated stacks are cached and later reused by new threads,
240 	 * so memcg accounting is performed manually on assigning/releasing
241 	 * stacks to tasks. Drop __GFP_ACCOUNT.
242 	 */
243 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
244 				     VMALLOC_START, VMALLOC_END,
245 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
246 				     PAGE_KERNEL,
247 				     0, node, __builtin_return_address(0));
248 
249 	/*
250 	 * We can't call find_vm_area() in interrupt context, and
251 	 * free_thread_stack() can be called in interrupt context,
252 	 * so cache the vm_struct.
253 	 */
254 	if (stack) {
255 		tsk->stack_vm_area = find_vm_area(stack);
256 		tsk->stack = stack;
257 	}
258 	return stack;
259 #else
260 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 					     THREAD_SIZE_ORDER);
262 
263 	if (likely(page)) {
264 		tsk->stack = page_address(page);
265 		return tsk->stack;
266 	}
267 	return NULL;
268 #endif
269 }
270 
271 static inline void free_thread_stack(struct task_struct *tsk)
272 {
273 #ifdef CONFIG_VMAP_STACK
274 	struct vm_struct *vm = task_stack_vm_area(tsk);
275 
276 	if (vm) {
277 		int i;
278 
279 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
280 			mod_memcg_page_state(vm->pages[i],
281 					     MEMCG_KERNEL_STACK_KB,
282 					     -(int)(PAGE_SIZE / 1024));
283 
284 			memcg_kmem_uncharge_page(vm->pages[i], 0);
285 		}
286 
287 		for (i = 0; i < NR_CACHED_STACKS; i++) {
288 			if (this_cpu_cmpxchg(cached_stacks[i],
289 					NULL, tsk->stack_vm_area) != NULL)
290 				continue;
291 
292 			return;
293 		}
294 
295 		vfree_atomic(tsk->stack);
296 		return;
297 	}
298 #endif
299 
300 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
301 }
302 # else
303 static struct kmem_cache *thread_stack_cache;
304 
305 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
306 						  int node)
307 {
308 	unsigned long *stack;
309 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
310 	tsk->stack = stack;
311 	return stack;
312 }
313 
314 static void free_thread_stack(struct task_struct *tsk)
315 {
316 	kmem_cache_free(thread_stack_cache, tsk->stack);
317 }
318 
319 void thread_stack_cache_init(void)
320 {
321 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
322 					THREAD_SIZE, THREAD_SIZE, 0, 0,
323 					THREAD_SIZE, NULL);
324 	BUG_ON(thread_stack_cache == NULL);
325 }
326 # endif
327 #endif
328 
329 /* SLAB cache for signal_struct structures (tsk->signal) */
330 static struct kmem_cache *signal_cachep;
331 
332 /* SLAB cache for sighand_struct structures (tsk->sighand) */
333 struct kmem_cache *sighand_cachep;
334 
335 /* SLAB cache for files_struct structures (tsk->files) */
336 struct kmem_cache *files_cachep;
337 
338 /* SLAB cache for fs_struct structures (tsk->fs) */
339 struct kmem_cache *fs_cachep;
340 
341 /* SLAB cache for vm_area_struct structures */
342 static struct kmem_cache *vm_area_cachep;
343 
344 /* SLAB cache for mm_struct structures (tsk->mm) */
345 static struct kmem_cache *mm_cachep;
346 
347 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
348 {
349 	struct vm_area_struct *vma;
350 
351 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
352 	if (vma)
353 		vma_init(vma, mm);
354 	return vma;
355 }
356 
357 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
358 {
359 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360 
361 	if (new) {
362 		*new = *orig;
363 		INIT_LIST_HEAD(&new->anon_vma_chain);
364 	}
365 	return new;
366 }
367 
368 void vm_area_free(struct vm_area_struct *vma)
369 {
370 	kmem_cache_free(vm_area_cachep, vma);
371 }
372 
373 static void account_kernel_stack(struct task_struct *tsk, int account)
374 {
375 	void *stack = task_stack_page(tsk);
376 	struct vm_struct *vm = task_stack_vm_area(tsk);
377 
378 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
379 
380 	if (vm) {
381 		int i;
382 
383 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
384 
385 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
386 			mod_zone_page_state(page_zone(vm->pages[i]),
387 					    NR_KERNEL_STACK_KB,
388 					    PAGE_SIZE / 1024 * account);
389 		}
390 	} else {
391 		/*
392 		 * All stack pages are in the same zone and belong to the
393 		 * same memcg.
394 		 */
395 		struct page *first_page = virt_to_page(stack);
396 
397 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
398 				    THREAD_SIZE / 1024 * account);
399 
400 		mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
401 				    account * (THREAD_SIZE / 1024));
402 	}
403 }
404 
405 static int memcg_charge_kernel_stack(struct task_struct *tsk)
406 {
407 #ifdef CONFIG_VMAP_STACK
408 	struct vm_struct *vm = task_stack_vm_area(tsk);
409 	int ret;
410 
411 	if (vm) {
412 		int i;
413 
414 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
415 			/*
416 			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
417 			 * pointer is NULL, and both memcg_kmem_uncharge_page()
418 			 * and mod_memcg_page_state() in free_thread_stack()
419 			 * will ignore this page. So it's safe.
420 			 */
421 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
422 						     0);
423 			if (ret)
424 				return ret;
425 
426 			mod_memcg_page_state(vm->pages[i],
427 					     MEMCG_KERNEL_STACK_KB,
428 					     PAGE_SIZE / 1024);
429 		}
430 	}
431 #endif
432 	return 0;
433 }
434 
435 static void release_task_stack(struct task_struct *tsk)
436 {
437 	if (WARN_ON(tsk->state != TASK_DEAD))
438 		return;  /* Better to leak the stack than to free prematurely */
439 
440 	account_kernel_stack(tsk, -1);
441 	free_thread_stack(tsk);
442 	tsk->stack = NULL;
443 #ifdef CONFIG_VMAP_STACK
444 	tsk->stack_vm_area = NULL;
445 #endif
446 }
447 
448 #ifdef CONFIG_THREAD_INFO_IN_TASK
449 void put_task_stack(struct task_struct *tsk)
450 {
451 	if (refcount_dec_and_test(&tsk->stack_refcount))
452 		release_task_stack(tsk);
453 }
454 #endif
455 
456 void free_task(struct task_struct *tsk)
457 {
458 #ifndef CONFIG_THREAD_INFO_IN_TASK
459 	/*
460 	 * The task is finally done with both the stack and thread_info,
461 	 * so free both.
462 	 */
463 	release_task_stack(tsk);
464 #else
465 	/*
466 	 * If the task had a separate stack allocation, it should be gone
467 	 * by now.
468 	 */
469 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
470 #endif
471 	rt_mutex_debug_task_free(tsk);
472 	ftrace_graph_exit_task(tsk);
473 	put_seccomp_filter(tsk);
474 	arch_release_task_struct(tsk);
475 	if (tsk->flags & PF_KTHREAD)
476 		free_kthread_struct(tsk);
477 	free_task_struct(tsk);
478 }
479 EXPORT_SYMBOL(free_task);
480 
481 #ifdef CONFIG_MMU
482 static __latent_entropy int dup_mmap(struct mm_struct *mm,
483 					struct mm_struct *oldmm)
484 {
485 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
486 	struct rb_node **rb_link, *rb_parent;
487 	int retval;
488 	unsigned long charge;
489 	LIST_HEAD(uf);
490 
491 	uprobe_start_dup_mmap();
492 	if (down_write_killable(&oldmm->mmap_sem)) {
493 		retval = -EINTR;
494 		goto fail_uprobe_end;
495 	}
496 	flush_cache_dup_mm(oldmm);
497 	uprobe_dup_mmap(oldmm, mm);
498 	/*
499 	 * Not linked in yet - no deadlock potential:
500 	 */
501 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
502 
503 	/* No ordering required: file already has been exposed. */
504 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
505 
506 	mm->total_vm = oldmm->total_vm;
507 	mm->data_vm = oldmm->data_vm;
508 	mm->exec_vm = oldmm->exec_vm;
509 	mm->stack_vm = oldmm->stack_vm;
510 
511 	rb_link = &mm->mm_rb.rb_node;
512 	rb_parent = NULL;
513 	pprev = &mm->mmap;
514 	retval = ksm_fork(mm, oldmm);
515 	if (retval)
516 		goto out;
517 	retval = khugepaged_fork(mm, oldmm);
518 	if (retval)
519 		goto out;
520 
521 	prev = NULL;
522 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
523 		struct file *file;
524 
525 		if (mpnt->vm_flags & VM_DONTCOPY) {
526 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
527 			continue;
528 		}
529 		charge = 0;
530 		/*
531 		 * Don't duplicate many vmas if we've been oom-killed (for
532 		 * example)
533 		 */
534 		if (fatal_signal_pending(current)) {
535 			retval = -EINTR;
536 			goto out;
537 		}
538 		if (mpnt->vm_flags & VM_ACCOUNT) {
539 			unsigned long len = vma_pages(mpnt);
540 
541 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
542 				goto fail_nomem;
543 			charge = len;
544 		}
545 		tmp = vm_area_dup(mpnt);
546 		if (!tmp)
547 			goto fail_nomem;
548 		retval = vma_dup_policy(mpnt, tmp);
549 		if (retval)
550 			goto fail_nomem_policy;
551 		tmp->vm_mm = mm;
552 		retval = dup_userfaultfd(tmp, &uf);
553 		if (retval)
554 			goto fail_nomem_anon_vma_fork;
555 		if (tmp->vm_flags & VM_WIPEONFORK) {
556 			/* VM_WIPEONFORK gets a clean slate in the child. */
557 			tmp->anon_vma = NULL;
558 			if (anon_vma_prepare(tmp))
559 				goto fail_nomem_anon_vma_fork;
560 		} else if (anon_vma_fork(tmp, mpnt))
561 			goto fail_nomem_anon_vma_fork;
562 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
563 		tmp->vm_next = tmp->vm_prev = NULL;
564 		file = tmp->vm_file;
565 		if (file) {
566 			struct inode *inode = file_inode(file);
567 			struct address_space *mapping = file->f_mapping;
568 
569 			get_file(file);
570 			if (tmp->vm_flags & VM_DENYWRITE)
571 				atomic_dec(&inode->i_writecount);
572 			i_mmap_lock_write(mapping);
573 			if (tmp->vm_flags & VM_SHARED)
574 				atomic_inc(&mapping->i_mmap_writable);
575 			flush_dcache_mmap_lock(mapping);
576 			/* insert tmp into the share list, just after mpnt */
577 			vma_interval_tree_insert_after(tmp, mpnt,
578 					&mapping->i_mmap);
579 			flush_dcache_mmap_unlock(mapping);
580 			i_mmap_unlock_write(mapping);
581 		}
582 
583 		/*
584 		 * Clear hugetlb-related page reserves for children. This only
585 		 * affects MAP_PRIVATE mappings. Faults generated by the child
586 		 * are not guaranteed to succeed, even if read-only
587 		 */
588 		if (is_vm_hugetlb_page(tmp))
589 			reset_vma_resv_huge_pages(tmp);
590 
591 		/*
592 		 * Link in the new vma and copy the page table entries.
593 		 */
594 		*pprev = tmp;
595 		pprev = &tmp->vm_next;
596 		tmp->vm_prev = prev;
597 		prev = tmp;
598 
599 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
600 		rb_link = &tmp->vm_rb.rb_right;
601 		rb_parent = &tmp->vm_rb;
602 
603 		mm->map_count++;
604 		if (!(tmp->vm_flags & VM_WIPEONFORK))
605 			retval = copy_page_range(mm, oldmm, mpnt);
606 
607 		if (tmp->vm_ops && tmp->vm_ops->open)
608 			tmp->vm_ops->open(tmp);
609 
610 		if (retval)
611 			goto out;
612 	}
613 	/* a new mm has just been created */
614 	retval = arch_dup_mmap(oldmm, mm);
615 out:
616 	up_write(&mm->mmap_sem);
617 	flush_tlb_mm(oldmm);
618 	up_write(&oldmm->mmap_sem);
619 	dup_userfaultfd_complete(&uf);
620 fail_uprobe_end:
621 	uprobe_end_dup_mmap();
622 	return retval;
623 fail_nomem_anon_vma_fork:
624 	mpol_put(vma_policy(tmp));
625 fail_nomem_policy:
626 	vm_area_free(tmp);
627 fail_nomem:
628 	retval = -ENOMEM;
629 	vm_unacct_memory(charge);
630 	goto out;
631 }
632 
633 static inline int mm_alloc_pgd(struct mm_struct *mm)
634 {
635 	mm->pgd = pgd_alloc(mm);
636 	if (unlikely(!mm->pgd))
637 		return -ENOMEM;
638 	return 0;
639 }
640 
641 static inline void mm_free_pgd(struct mm_struct *mm)
642 {
643 	pgd_free(mm, mm->pgd);
644 }
645 #else
646 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
647 {
648 	down_write(&oldmm->mmap_sem);
649 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
650 	up_write(&oldmm->mmap_sem);
651 	return 0;
652 }
653 #define mm_alloc_pgd(mm)	(0)
654 #define mm_free_pgd(mm)
655 #endif /* CONFIG_MMU */
656 
657 static void check_mm(struct mm_struct *mm)
658 {
659 	int i;
660 
661 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
662 			 "Please make sure 'struct resident_page_types[]' is updated as well");
663 
664 	for (i = 0; i < NR_MM_COUNTERS; i++) {
665 		long x = atomic_long_read(&mm->rss_stat.count[i]);
666 
667 		if (unlikely(x))
668 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
669 				 mm, resident_page_types[i], x);
670 	}
671 
672 	if (mm_pgtables_bytes(mm))
673 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
674 				mm_pgtables_bytes(mm));
675 
676 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
677 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
678 #endif
679 }
680 
681 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
682 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
683 
684 /*
685  * Called when the last reference to the mm
686  * is dropped: either by a lazy thread or by
687  * mmput. Free the page directory and the mm.
688  */
689 void __mmdrop(struct mm_struct *mm)
690 {
691 	BUG_ON(mm == &init_mm);
692 	WARN_ON_ONCE(mm == current->mm);
693 	WARN_ON_ONCE(mm == current->active_mm);
694 	mm_free_pgd(mm);
695 	destroy_context(mm);
696 	mmu_notifier_subscriptions_destroy(mm);
697 	check_mm(mm);
698 	put_user_ns(mm->user_ns);
699 	free_mm(mm);
700 }
701 EXPORT_SYMBOL_GPL(__mmdrop);
702 
703 static void mmdrop_async_fn(struct work_struct *work)
704 {
705 	struct mm_struct *mm;
706 
707 	mm = container_of(work, struct mm_struct, async_put_work);
708 	__mmdrop(mm);
709 }
710 
711 static void mmdrop_async(struct mm_struct *mm)
712 {
713 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
714 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
715 		schedule_work(&mm->async_put_work);
716 	}
717 }
718 
719 static inline void free_signal_struct(struct signal_struct *sig)
720 {
721 	taskstats_tgid_free(sig);
722 	sched_autogroup_exit(sig);
723 	/*
724 	 * __mmdrop is not safe to call from softirq context on x86 due to
725 	 * pgd_dtor so postpone it to the async context
726 	 */
727 	if (sig->oom_mm)
728 		mmdrop_async(sig->oom_mm);
729 	kmem_cache_free(signal_cachep, sig);
730 }
731 
732 static inline void put_signal_struct(struct signal_struct *sig)
733 {
734 	if (refcount_dec_and_test(&sig->sigcnt))
735 		free_signal_struct(sig);
736 }
737 
738 void __put_task_struct(struct task_struct *tsk)
739 {
740 	WARN_ON(!tsk->exit_state);
741 	WARN_ON(refcount_read(&tsk->usage));
742 	WARN_ON(tsk == current);
743 
744 	cgroup_free(tsk);
745 	task_numa_free(tsk, true);
746 	security_task_free(tsk);
747 	exit_creds(tsk);
748 	delayacct_tsk_free(tsk);
749 	put_signal_struct(tsk->signal);
750 
751 	if (!profile_handoff_task(tsk))
752 		free_task(tsk);
753 }
754 EXPORT_SYMBOL_GPL(__put_task_struct);
755 
756 void __init __weak arch_task_cache_init(void) { }
757 
758 /*
759  * set_max_threads
760  */
761 static void set_max_threads(unsigned int max_threads_suggested)
762 {
763 	u64 threads;
764 	unsigned long nr_pages = totalram_pages();
765 
766 	/*
767 	 * The number of threads shall be limited such that the thread
768 	 * structures may only consume a small part of the available memory.
769 	 */
770 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
771 		threads = MAX_THREADS;
772 	else
773 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
774 				    (u64) THREAD_SIZE * 8UL);
775 
776 	if (threads > max_threads_suggested)
777 		threads = max_threads_suggested;
778 
779 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
780 }
781 
782 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
783 /* Initialized by the architecture: */
784 int arch_task_struct_size __read_mostly;
785 #endif
786 
787 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
788 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
789 {
790 	/* Fetch thread_struct whitelist for the architecture. */
791 	arch_thread_struct_whitelist(offset, size);
792 
793 	/*
794 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
795 	 * adjust offset to position of thread_struct in task_struct.
796 	 */
797 	if (unlikely(*size == 0))
798 		*offset = 0;
799 	else
800 		*offset += offsetof(struct task_struct, thread);
801 }
802 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
803 
804 void __init fork_init(void)
805 {
806 	int i;
807 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
808 #ifndef ARCH_MIN_TASKALIGN
809 #define ARCH_MIN_TASKALIGN	0
810 #endif
811 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
812 	unsigned long useroffset, usersize;
813 
814 	/* create a slab on which task_structs can be allocated */
815 	task_struct_whitelist(&useroffset, &usersize);
816 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
817 			arch_task_struct_size, align,
818 			SLAB_PANIC|SLAB_ACCOUNT,
819 			useroffset, usersize, NULL);
820 #endif
821 
822 	/* do the arch specific task caches init */
823 	arch_task_cache_init();
824 
825 	set_max_threads(MAX_THREADS);
826 
827 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
828 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
829 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
830 		init_task.signal->rlim[RLIMIT_NPROC];
831 
832 	for (i = 0; i < UCOUNT_COUNTS; i++) {
833 		init_user_ns.ucount_max[i] = max_threads/2;
834 	}
835 
836 #ifdef CONFIG_VMAP_STACK
837 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
838 			  NULL, free_vm_stack_cache);
839 #endif
840 
841 	lockdep_init_task(&init_task);
842 	uprobes_init();
843 }
844 
845 int __weak arch_dup_task_struct(struct task_struct *dst,
846 					       struct task_struct *src)
847 {
848 	*dst = *src;
849 	return 0;
850 }
851 
852 void set_task_stack_end_magic(struct task_struct *tsk)
853 {
854 	unsigned long *stackend;
855 
856 	stackend = end_of_stack(tsk);
857 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
858 }
859 
860 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
861 {
862 	struct task_struct *tsk;
863 	unsigned long *stack;
864 	struct vm_struct *stack_vm_area __maybe_unused;
865 	int err;
866 
867 	if (node == NUMA_NO_NODE)
868 		node = tsk_fork_get_node(orig);
869 	tsk = alloc_task_struct_node(node);
870 	if (!tsk)
871 		return NULL;
872 
873 	stack = alloc_thread_stack_node(tsk, node);
874 	if (!stack)
875 		goto free_tsk;
876 
877 	if (memcg_charge_kernel_stack(tsk))
878 		goto free_stack;
879 
880 	stack_vm_area = task_stack_vm_area(tsk);
881 
882 	err = arch_dup_task_struct(tsk, orig);
883 
884 	/*
885 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
886 	 * sure they're properly initialized before using any stack-related
887 	 * functions again.
888 	 */
889 	tsk->stack = stack;
890 #ifdef CONFIG_VMAP_STACK
891 	tsk->stack_vm_area = stack_vm_area;
892 #endif
893 #ifdef CONFIG_THREAD_INFO_IN_TASK
894 	refcount_set(&tsk->stack_refcount, 1);
895 #endif
896 
897 	if (err)
898 		goto free_stack;
899 
900 #ifdef CONFIG_SECCOMP
901 	/*
902 	 * We must handle setting up seccomp filters once we're under
903 	 * the sighand lock in case orig has changed between now and
904 	 * then. Until then, filter must be NULL to avoid messing up
905 	 * the usage counts on the error path calling free_task.
906 	 */
907 	tsk->seccomp.filter = NULL;
908 #endif
909 
910 	setup_thread_stack(tsk, orig);
911 	clear_user_return_notifier(tsk);
912 	clear_tsk_need_resched(tsk);
913 	set_task_stack_end_magic(tsk);
914 
915 #ifdef CONFIG_STACKPROTECTOR
916 	tsk->stack_canary = get_random_canary();
917 #endif
918 	if (orig->cpus_ptr == &orig->cpus_mask)
919 		tsk->cpus_ptr = &tsk->cpus_mask;
920 
921 	/*
922 	 * One for the user space visible state that goes away when reaped.
923 	 * One for the scheduler.
924 	 */
925 	refcount_set(&tsk->rcu_users, 2);
926 	/* One for the rcu users */
927 	refcount_set(&tsk->usage, 1);
928 #ifdef CONFIG_BLK_DEV_IO_TRACE
929 	tsk->btrace_seq = 0;
930 #endif
931 	tsk->splice_pipe = NULL;
932 	tsk->task_frag.page = NULL;
933 	tsk->wake_q.next = NULL;
934 
935 	account_kernel_stack(tsk, 1);
936 
937 	kcov_task_init(tsk);
938 
939 #ifdef CONFIG_FAULT_INJECTION
940 	tsk->fail_nth = 0;
941 #endif
942 
943 #ifdef CONFIG_BLK_CGROUP
944 	tsk->throttle_queue = NULL;
945 	tsk->use_memdelay = 0;
946 #endif
947 
948 #ifdef CONFIG_MEMCG
949 	tsk->active_memcg = NULL;
950 #endif
951 	return tsk;
952 
953 free_stack:
954 	free_thread_stack(tsk);
955 free_tsk:
956 	free_task_struct(tsk);
957 	return NULL;
958 }
959 
960 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
961 
962 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
963 
964 static int __init coredump_filter_setup(char *s)
965 {
966 	default_dump_filter =
967 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
968 		MMF_DUMP_FILTER_MASK;
969 	return 1;
970 }
971 
972 __setup("coredump_filter=", coredump_filter_setup);
973 
974 #include <linux/init_task.h>
975 
976 static void mm_init_aio(struct mm_struct *mm)
977 {
978 #ifdef CONFIG_AIO
979 	spin_lock_init(&mm->ioctx_lock);
980 	mm->ioctx_table = NULL;
981 #endif
982 }
983 
984 static __always_inline void mm_clear_owner(struct mm_struct *mm,
985 					   struct task_struct *p)
986 {
987 #ifdef CONFIG_MEMCG
988 	if (mm->owner == p)
989 		WRITE_ONCE(mm->owner, NULL);
990 #endif
991 }
992 
993 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
994 {
995 #ifdef CONFIG_MEMCG
996 	mm->owner = p;
997 #endif
998 }
999 
1000 static void mm_init_uprobes_state(struct mm_struct *mm)
1001 {
1002 #ifdef CONFIG_UPROBES
1003 	mm->uprobes_state.xol_area = NULL;
1004 #endif
1005 }
1006 
1007 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1008 	struct user_namespace *user_ns)
1009 {
1010 	mm->mmap = NULL;
1011 	mm->mm_rb = RB_ROOT;
1012 	mm->vmacache_seqnum = 0;
1013 	atomic_set(&mm->mm_users, 1);
1014 	atomic_set(&mm->mm_count, 1);
1015 	init_rwsem(&mm->mmap_sem);
1016 	INIT_LIST_HEAD(&mm->mmlist);
1017 	mm->core_state = NULL;
1018 	mm_pgtables_bytes_init(mm);
1019 	mm->map_count = 0;
1020 	mm->locked_vm = 0;
1021 	atomic64_set(&mm->pinned_vm, 0);
1022 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1023 	spin_lock_init(&mm->page_table_lock);
1024 	spin_lock_init(&mm->arg_lock);
1025 	mm_init_cpumask(mm);
1026 	mm_init_aio(mm);
1027 	mm_init_owner(mm, p);
1028 	RCU_INIT_POINTER(mm->exe_file, NULL);
1029 	mmu_notifier_subscriptions_init(mm);
1030 	init_tlb_flush_pending(mm);
1031 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1032 	mm->pmd_huge_pte = NULL;
1033 #endif
1034 	mm_init_uprobes_state(mm);
1035 
1036 	if (current->mm) {
1037 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1038 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1039 	} else {
1040 		mm->flags = default_dump_filter;
1041 		mm->def_flags = 0;
1042 	}
1043 
1044 	if (mm_alloc_pgd(mm))
1045 		goto fail_nopgd;
1046 
1047 	if (init_new_context(p, mm))
1048 		goto fail_nocontext;
1049 
1050 	mm->user_ns = get_user_ns(user_ns);
1051 	return mm;
1052 
1053 fail_nocontext:
1054 	mm_free_pgd(mm);
1055 fail_nopgd:
1056 	free_mm(mm);
1057 	return NULL;
1058 }
1059 
1060 /*
1061  * Allocate and initialize an mm_struct.
1062  */
1063 struct mm_struct *mm_alloc(void)
1064 {
1065 	struct mm_struct *mm;
1066 
1067 	mm = allocate_mm();
1068 	if (!mm)
1069 		return NULL;
1070 
1071 	memset(mm, 0, sizeof(*mm));
1072 	return mm_init(mm, current, current_user_ns());
1073 }
1074 
1075 static inline void __mmput(struct mm_struct *mm)
1076 {
1077 	VM_BUG_ON(atomic_read(&mm->mm_users));
1078 
1079 	uprobe_clear_state(mm);
1080 	exit_aio(mm);
1081 	ksm_exit(mm);
1082 	khugepaged_exit(mm); /* must run before exit_mmap */
1083 	exit_mmap(mm);
1084 	mm_put_huge_zero_page(mm);
1085 	set_mm_exe_file(mm, NULL);
1086 	if (!list_empty(&mm->mmlist)) {
1087 		spin_lock(&mmlist_lock);
1088 		list_del(&mm->mmlist);
1089 		spin_unlock(&mmlist_lock);
1090 	}
1091 	if (mm->binfmt)
1092 		module_put(mm->binfmt->module);
1093 	mmdrop(mm);
1094 }
1095 
1096 /*
1097  * Decrement the use count and release all resources for an mm.
1098  */
1099 void mmput(struct mm_struct *mm)
1100 {
1101 	might_sleep();
1102 
1103 	if (atomic_dec_and_test(&mm->mm_users))
1104 		__mmput(mm);
1105 }
1106 EXPORT_SYMBOL_GPL(mmput);
1107 
1108 #ifdef CONFIG_MMU
1109 static void mmput_async_fn(struct work_struct *work)
1110 {
1111 	struct mm_struct *mm = container_of(work, struct mm_struct,
1112 					    async_put_work);
1113 
1114 	__mmput(mm);
1115 }
1116 
1117 void mmput_async(struct mm_struct *mm)
1118 {
1119 	if (atomic_dec_and_test(&mm->mm_users)) {
1120 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1121 		schedule_work(&mm->async_put_work);
1122 	}
1123 }
1124 #endif
1125 
1126 /**
1127  * set_mm_exe_file - change a reference to the mm's executable file
1128  *
1129  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1130  *
1131  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1132  * invocations: in mmput() nobody alive left, in execve task is single
1133  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1134  * mm->exe_file, but does so without using set_mm_exe_file() in order
1135  * to do avoid the need for any locks.
1136  */
1137 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1138 {
1139 	struct file *old_exe_file;
1140 
1141 	/*
1142 	 * It is safe to dereference the exe_file without RCU as
1143 	 * this function is only called if nobody else can access
1144 	 * this mm -- see comment above for justification.
1145 	 */
1146 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1147 
1148 	if (new_exe_file)
1149 		get_file(new_exe_file);
1150 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1151 	if (old_exe_file)
1152 		fput(old_exe_file);
1153 }
1154 
1155 /**
1156  * get_mm_exe_file - acquire a reference to the mm's executable file
1157  *
1158  * Returns %NULL if mm has no associated executable file.
1159  * User must release file via fput().
1160  */
1161 struct file *get_mm_exe_file(struct mm_struct *mm)
1162 {
1163 	struct file *exe_file;
1164 
1165 	rcu_read_lock();
1166 	exe_file = rcu_dereference(mm->exe_file);
1167 	if (exe_file && !get_file_rcu(exe_file))
1168 		exe_file = NULL;
1169 	rcu_read_unlock();
1170 	return exe_file;
1171 }
1172 EXPORT_SYMBOL(get_mm_exe_file);
1173 
1174 /**
1175  * get_task_exe_file - acquire a reference to the task's executable file
1176  *
1177  * Returns %NULL if task's mm (if any) has no associated executable file or
1178  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1179  * User must release file via fput().
1180  */
1181 struct file *get_task_exe_file(struct task_struct *task)
1182 {
1183 	struct file *exe_file = NULL;
1184 	struct mm_struct *mm;
1185 
1186 	task_lock(task);
1187 	mm = task->mm;
1188 	if (mm) {
1189 		if (!(task->flags & PF_KTHREAD))
1190 			exe_file = get_mm_exe_file(mm);
1191 	}
1192 	task_unlock(task);
1193 	return exe_file;
1194 }
1195 EXPORT_SYMBOL(get_task_exe_file);
1196 
1197 /**
1198  * get_task_mm - acquire a reference to the task's mm
1199  *
1200  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1201  * this kernel workthread has transiently adopted a user mm with use_mm,
1202  * to do its AIO) is not set and if so returns a reference to it, after
1203  * bumping up the use count.  User must release the mm via mmput()
1204  * after use.  Typically used by /proc and ptrace.
1205  */
1206 struct mm_struct *get_task_mm(struct task_struct *task)
1207 {
1208 	struct mm_struct *mm;
1209 
1210 	task_lock(task);
1211 	mm = task->mm;
1212 	if (mm) {
1213 		if (task->flags & PF_KTHREAD)
1214 			mm = NULL;
1215 		else
1216 			mmget(mm);
1217 	}
1218 	task_unlock(task);
1219 	return mm;
1220 }
1221 EXPORT_SYMBOL_GPL(get_task_mm);
1222 
1223 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1224 {
1225 	struct mm_struct *mm;
1226 	int err;
1227 
1228 	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1229 	if (err)
1230 		return ERR_PTR(err);
1231 
1232 	mm = get_task_mm(task);
1233 	if (mm && mm != current->mm &&
1234 			!ptrace_may_access(task, mode)) {
1235 		mmput(mm);
1236 		mm = ERR_PTR(-EACCES);
1237 	}
1238 	mutex_unlock(&task->signal->exec_update_mutex);
1239 
1240 	return mm;
1241 }
1242 
1243 static void complete_vfork_done(struct task_struct *tsk)
1244 {
1245 	struct completion *vfork;
1246 
1247 	task_lock(tsk);
1248 	vfork = tsk->vfork_done;
1249 	if (likely(vfork)) {
1250 		tsk->vfork_done = NULL;
1251 		complete(vfork);
1252 	}
1253 	task_unlock(tsk);
1254 }
1255 
1256 static int wait_for_vfork_done(struct task_struct *child,
1257 				struct completion *vfork)
1258 {
1259 	int killed;
1260 
1261 	freezer_do_not_count();
1262 	cgroup_enter_frozen();
1263 	killed = wait_for_completion_killable(vfork);
1264 	cgroup_leave_frozen(false);
1265 	freezer_count();
1266 
1267 	if (killed) {
1268 		task_lock(child);
1269 		child->vfork_done = NULL;
1270 		task_unlock(child);
1271 	}
1272 
1273 	put_task_struct(child);
1274 	return killed;
1275 }
1276 
1277 /* Please note the differences between mmput and mm_release.
1278  * mmput is called whenever we stop holding onto a mm_struct,
1279  * error success whatever.
1280  *
1281  * mm_release is called after a mm_struct has been removed
1282  * from the current process.
1283  *
1284  * This difference is important for error handling, when we
1285  * only half set up a mm_struct for a new process and need to restore
1286  * the old one.  Because we mmput the new mm_struct before
1287  * restoring the old one. . .
1288  * Eric Biederman 10 January 1998
1289  */
1290 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1291 {
1292 	uprobe_free_utask(tsk);
1293 
1294 	/* Get rid of any cached register state */
1295 	deactivate_mm(tsk, mm);
1296 
1297 	/*
1298 	 * Signal userspace if we're not exiting with a core dump
1299 	 * because we want to leave the value intact for debugging
1300 	 * purposes.
1301 	 */
1302 	if (tsk->clear_child_tid) {
1303 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1304 		    atomic_read(&mm->mm_users) > 1) {
1305 			/*
1306 			 * We don't check the error code - if userspace has
1307 			 * not set up a proper pointer then tough luck.
1308 			 */
1309 			put_user(0, tsk->clear_child_tid);
1310 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1311 					1, NULL, NULL, 0, 0);
1312 		}
1313 		tsk->clear_child_tid = NULL;
1314 	}
1315 
1316 	/*
1317 	 * All done, finally we can wake up parent and return this mm to him.
1318 	 * Also kthread_stop() uses this completion for synchronization.
1319 	 */
1320 	if (tsk->vfork_done)
1321 		complete_vfork_done(tsk);
1322 }
1323 
1324 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1325 {
1326 	futex_exit_release(tsk);
1327 	mm_release(tsk, mm);
1328 }
1329 
1330 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1331 {
1332 	futex_exec_release(tsk);
1333 	mm_release(tsk, mm);
1334 }
1335 
1336 /**
1337  * dup_mm() - duplicates an existing mm structure
1338  * @tsk: the task_struct with which the new mm will be associated.
1339  * @oldmm: the mm to duplicate.
1340  *
1341  * Allocates a new mm structure and duplicates the provided @oldmm structure
1342  * content into it.
1343  *
1344  * Return: the duplicated mm or NULL on failure.
1345  */
1346 static struct mm_struct *dup_mm(struct task_struct *tsk,
1347 				struct mm_struct *oldmm)
1348 {
1349 	struct mm_struct *mm;
1350 	int err;
1351 
1352 	mm = allocate_mm();
1353 	if (!mm)
1354 		goto fail_nomem;
1355 
1356 	memcpy(mm, oldmm, sizeof(*mm));
1357 
1358 	if (!mm_init(mm, tsk, mm->user_ns))
1359 		goto fail_nomem;
1360 
1361 	err = dup_mmap(mm, oldmm);
1362 	if (err)
1363 		goto free_pt;
1364 
1365 	mm->hiwater_rss = get_mm_rss(mm);
1366 	mm->hiwater_vm = mm->total_vm;
1367 
1368 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1369 		goto free_pt;
1370 
1371 	return mm;
1372 
1373 free_pt:
1374 	/* don't put binfmt in mmput, we haven't got module yet */
1375 	mm->binfmt = NULL;
1376 	mm_init_owner(mm, NULL);
1377 	mmput(mm);
1378 
1379 fail_nomem:
1380 	return NULL;
1381 }
1382 
1383 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1384 {
1385 	struct mm_struct *mm, *oldmm;
1386 	int retval;
1387 
1388 	tsk->min_flt = tsk->maj_flt = 0;
1389 	tsk->nvcsw = tsk->nivcsw = 0;
1390 #ifdef CONFIG_DETECT_HUNG_TASK
1391 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1392 	tsk->last_switch_time = 0;
1393 #endif
1394 
1395 	tsk->mm = NULL;
1396 	tsk->active_mm = NULL;
1397 
1398 	/*
1399 	 * Are we cloning a kernel thread?
1400 	 *
1401 	 * We need to steal a active VM for that..
1402 	 */
1403 	oldmm = current->mm;
1404 	if (!oldmm)
1405 		return 0;
1406 
1407 	/* initialize the new vmacache entries */
1408 	vmacache_flush(tsk);
1409 
1410 	if (clone_flags & CLONE_VM) {
1411 		mmget(oldmm);
1412 		mm = oldmm;
1413 		goto good_mm;
1414 	}
1415 
1416 	retval = -ENOMEM;
1417 	mm = dup_mm(tsk, current->mm);
1418 	if (!mm)
1419 		goto fail_nomem;
1420 
1421 good_mm:
1422 	tsk->mm = mm;
1423 	tsk->active_mm = mm;
1424 	return 0;
1425 
1426 fail_nomem:
1427 	return retval;
1428 }
1429 
1430 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1431 {
1432 	struct fs_struct *fs = current->fs;
1433 	if (clone_flags & CLONE_FS) {
1434 		/* tsk->fs is already what we want */
1435 		spin_lock(&fs->lock);
1436 		if (fs->in_exec) {
1437 			spin_unlock(&fs->lock);
1438 			return -EAGAIN;
1439 		}
1440 		fs->users++;
1441 		spin_unlock(&fs->lock);
1442 		return 0;
1443 	}
1444 	tsk->fs = copy_fs_struct(fs);
1445 	if (!tsk->fs)
1446 		return -ENOMEM;
1447 	return 0;
1448 }
1449 
1450 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1451 {
1452 	struct files_struct *oldf, *newf;
1453 	int error = 0;
1454 
1455 	/*
1456 	 * A background process may not have any files ...
1457 	 */
1458 	oldf = current->files;
1459 	if (!oldf)
1460 		goto out;
1461 
1462 	if (clone_flags & CLONE_FILES) {
1463 		atomic_inc(&oldf->count);
1464 		goto out;
1465 	}
1466 
1467 	newf = dup_fd(oldf, &error);
1468 	if (!newf)
1469 		goto out;
1470 
1471 	tsk->files = newf;
1472 	error = 0;
1473 out:
1474 	return error;
1475 }
1476 
1477 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1478 {
1479 #ifdef CONFIG_BLOCK
1480 	struct io_context *ioc = current->io_context;
1481 	struct io_context *new_ioc;
1482 
1483 	if (!ioc)
1484 		return 0;
1485 	/*
1486 	 * Share io context with parent, if CLONE_IO is set
1487 	 */
1488 	if (clone_flags & CLONE_IO) {
1489 		ioc_task_link(ioc);
1490 		tsk->io_context = ioc;
1491 	} else if (ioprio_valid(ioc->ioprio)) {
1492 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1493 		if (unlikely(!new_ioc))
1494 			return -ENOMEM;
1495 
1496 		new_ioc->ioprio = ioc->ioprio;
1497 		put_io_context(new_ioc);
1498 	}
1499 #endif
1500 	return 0;
1501 }
1502 
1503 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1504 {
1505 	struct sighand_struct *sig;
1506 
1507 	if (clone_flags & CLONE_SIGHAND) {
1508 		refcount_inc(&current->sighand->count);
1509 		return 0;
1510 	}
1511 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1512 	RCU_INIT_POINTER(tsk->sighand, sig);
1513 	if (!sig)
1514 		return -ENOMEM;
1515 
1516 	refcount_set(&sig->count, 1);
1517 	spin_lock_irq(&current->sighand->siglock);
1518 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1519 	spin_unlock_irq(&current->sighand->siglock);
1520 
1521 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1522 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1523 		flush_signal_handlers(tsk, 0);
1524 
1525 	return 0;
1526 }
1527 
1528 void __cleanup_sighand(struct sighand_struct *sighand)
1529 {
1530 	if (refcount_dec_and_test(&sighand->count)) {
1531 		signalfd_cleanup(sighand);
1532 		/*
1533 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1534 		 * without an RCU grace period, see __lock_task_sighand().
1535 		 */
1536 		kmem_cache_free(sighand_cachep, sighand);
1537 	}
1538 }
1539 
1540 /*
1541  * Initialize POSIX timer handling for a thread group.
1542  */
1543 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1544 {
1545 	struct posix_cputimers *pct = &sig->posix_cputimers;
1546 	unsigned long cpu_limit;
1547 
1548 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1549 	posix_cputimers_group_init(pct, cpu_limit);
1550 }
1551 
1552 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1553 {
1554 	struct signal_struct *sig;
1555 
1556 	if (clone_flags & CLONE_THREAD)
1557 		return 0;
1558 
1559 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1560 	tsk->signal = sig;
1561 	if (!sig)
1562 		return -ENOMEM;
1563 
1564 	sig->nr_threads = 1;
1565 	atomic_set(&sig->live, 1);
1566 	refcount_set(&sig->sigcnt, 1);
1567 
1568 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1569 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1570 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1571 
1572 	init_waitqueue_head(&sig->wait_chldexit);
1573 	sig->curr_target = tsk;
1574 	init_sigpending(&sig->shared_pending);
1575 	INIT_HLIST_HEAD(&sig->multiprocess);
1576 	seqlock_init(&sig->stats_lock);
1577 	prev_cputime_init(&sig->prev_cputime);
1578 
1579 #ifdef CONFIG_POSIX_TIMERS
1580 	INIT_LIST_HEAD(&sig->posix_timers);
1581 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1582 	sig->real_timer.function = it_real_fn;
1583 #endif
1584 
1585 	task_lock(current->group_leader);
1586 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1587 	task_unlock(current->group_leader);
1588 
1589 	posix_cpu_timers_init_group(sig);
1590 
1591 	tty_audit_fork(sig);
1592 	sched_autogroup_fork(sig);
1593 
1594 	sig->oom_score_adj = current->signal->oom_score_adj;
1595 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1596 
1597 	mutex_init(&sig->cred_guard_mutex);
1598 	mutex_init(&sig->exec_update_mutex);
1599 
1600 	return 0;
1601 }
1602 
1603 static void copy_seccomp(struct task_struct *p)
1604 {
1605 #ifdef CONFIG_SECCOMP
1606 	/*
1607 	 * Must be called with sighand->lock held, which is common to
1608 	 * all threads in the group. Holding cred_guard_mutex is not
1609 	 * needed because this new task is not yet running and cannot
1610 	 * be racing exec.
1611 	 */
1612 	assert_spin_locked(&current->sighand->siglock);
1613 
1614 	/* Ref-count the new filter user, and assign it. */
1615 	get_seccomp_filter(current);
1616 	p->seccomp = current->seccomp;
1617 
1618 	/*
1619 	 * Explicitly enable no_new_privs here in case it got set
1620 	 * between the task_struct being duplicated and holding the
1621 	 * sighand lock. The seccomp state and nnp must be in sync.
1622 	 */
1623 	if (task_no_new_privs(current))
1624 		task_set_no_new_privs(p);
1625 
1626 	/*
1627 	 * If the parent gained a seccomp mode after copying thread
1628 	 * flags and between before we held the sighand lock, we have
1629 	 * to manually enable the seccomp thread flag here.
1630 	 */
1631 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1632 		set_tsk_thread_flag(p, TIF_SECCOMP);
1633 #endif
1634 }
1635 
1636 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1637 {
1638 	current->clear_child_tid = tidptr;
1639 
1640 	return task_pid_vnr(current);
1641 }
1642 
1643 static void rt_mutex_init_task(struct task_struct *p)
1644 {
1645 	raw_spin_lock_init(&p->pi_lock);
1646 #ifdef CONFIG_RT_MUTEXES
1647 	p->pi_waiters = RB_ROOT_CACHED;
1648 	p->pi_top_task = NULL;
1649 	p->pi_blocked_on = NULL;
1650 #endif
1651 }
1652 
1653 static inline void init_task_pid_links(struct task_struct *task)
1654 {
1655 	enum pid_type type;
1656 
1657 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1658 		INIT_HLIST_NODE(&task->pid_links[type]);
1659 	}
1660 }
1661 
1662 static inline void
1663 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1664 {
1665 	if (type == PIDTYPE_PID)
1666 		task->thread_pid = pid;
1667 	else
1668 		task->signal->pids[type] = pid;
1669 }
1670 
1671 static inline void rcu_copy_process(struct task_struct *p)
1672 {
1673 #ifdef CONFIG_PREEMPT_RCU
1674 	p->rcu_read_lock_nesting = 0;
1675 	p->rcu_read_unlock_special.s = 0;
1676 	p->rcu_blocked_node = NULL;
1677 	INIT_LIST_HEAD(&p->rcu_node_entry);
1678 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1679 #ifdef CONFIG_TASKS_RCU
1680 	p->rcu_tasks_holdout = false;
1681 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1682 	p->rcu_tasks_idle_cpu = -1;
1683 #endif /* #ifdef CONFIG_TASKS_RCU */
1684 }
1685 
1686 struct pid *pidfd_pid(const struct file *file)
1687 {
1688 	if (file->f_op == &pidfd_fops)
1689 		return file->private_data;
1690 
1691 	return ERR_PTR(-EBADF);
1692 }
1693 
1694 static int pidfd_release(struct inode *inode, struct file *file)
1695 {
1696 	struct pid *pid = file->private_data;
1697 
1698 	file->private_data = NULL;
1699 	put_pid(pid);
1700 	return 0;
1701 }
1702 
1703 #ifdef CONFIG_PROC_FS
1704 /**
1705  * pidfd_show_fdinfo - print information about a pidfd
1706  * @m: proc fdinfo file
1707  * @f: file referencing a pidfd
1708  *
1709  * Pid:
1710  * This function will print the pid that a given pidfd refers to in the
1711  * pid namespace of the procfs instance.
1712  * If the pid namespace of the process is not a descendant of the pid
1713  * namespace of the procfs instance 0 will be shown as its pid. This is
1714  * similar to calling getppid() on a process whose parent is outside of
1715  * its pid namespace.
1716  *
1717  * NSpid:
1718  * If pid namespaces are supported then this function will also print
1719  * the pid of a given pidfd refers to for all descendant pid namespaces
1720  * starting from the current pid namespace of the instance, i.e. the
1721  * Pid field and the first entry in the NSpid field will be identical.
1722  * If the pid namespace of the process is not a descendant of the pid
1723  * namespace of the procfs instance 0 will be shown as its first NSpid
1724  * entry and no others will be shown.
1725  * Note that this differs from the Pid and NSpid fields in
1726  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1727  * the  pid namespace of the procfs instance. The difference becomes
1728  * obvious when sending around a pidfd between pid namespaces from a
1729  * different branch of the tree, i.e. where no ancestoral relation is
1730  * present between the pid namespaces:
1731  * - create two new pid namespaces ns1 and ns2 in the initial pid
1732  *   namespace (also take care to create new mount namespaces in the
1733  *   new pid namespace and mount procfs)
1734  * - create a process with a pidfd in ns1
1735  * - send pidfd from ns1 to ns2
1736  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1737  *   have exactly one entry, which is 0
1738  */
1739 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1740 {
1741 	struct pid *pid = f->private_data;
1742 	struct pid_namespace *ns;
1743 	pid_t nr = -1;
1744 
1745 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1746 		ns = proc_pid_ns(file_inode(m->file));
1747 		nr = pid_nr_ns(pid, ns);
1748 	}
1749 
1750 	seq_put_decimal_ll(m, "Pid:\t", nr);
1751 
1752 #ifdef CONFIG_PID_NS
1753 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1754 	if (nr > 0) {
1755 		int i;
1756 
1757 		/* If nr is non-zero it means that 'pid' is valid and that
1758 		 * ns, i.e. the pid namespace associated with the procfs
1759 		 * instance, is in the pid namespace hierarchy of pid.
1760 		 * Start at one below the already printed level.
1761 		 */
1762 		for (i = ns->level + 1; i <= pid->level; i++)
1763 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1764 	}
1765 #endif
1766 	seq_putc(m, '\n');
1767 }
1768 #endif
1769 
1770 /*
1771  * Poll support for process exit notification.
1772  */
1773 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1774 {
1775 	struct task_struct *task;
1776 	struct pid *pid = file->private_data;
1777 	__poll_t poll_flags = 0;
1778 
1779 	poll_wait(file, &pid->wait_pidfd, pts);
1780 
1781 	rcu_read_lock();
1782 	task = pid_task(pid, PIDTYPE_PID);
1783 	/*
1784 	 * Inform pollers only when the whole thread group exits.
1785 	 * If the thread group leader exits before all other threads in the
1786 	 * group, then poll(2) should block, similar to the wait(2) family.
1787 	 */
1788 	if (!task || (task->exit_state && thread_group_empty(task)))
1789 		poll_flags = EPOLLIN | EPOLLRDNORM;
1790 	rcu_read_unlock();
1791 
1792 	return poll_flags;
1793 }
1794 
1795 const struct file_operations pidfd_fops = {
1796 	.release = pidfd_release,
1797 	.poll = pidfd_poll,
1798 #ifdef CONFIG_PROC_FS
1799 	.show_fdinfo = pidfd_show_fdinfo,
1800 #endif
1801 };
1802 
1803 static void __delayed_free_task(struct rcu_head *rhp)
1804 {
1805 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1806 
1807 	free_task(tsk);
1808 }
1809 
1810 static __always_inline void delayed_free_task(struct task_struct *tsk)
1811 {
1812 	if (IS_ENABLED(CONFIG_MEMCG))
1813 		call_rcu(&tsk->rcu, __delayed_free_task);
1814 	else
1815 		free_task(tsk);
1816 }
1817 
1818 /*
1819  * This creates a new process as a copy of the old one,
1820  * but does not actually start it yet.
1821  *
1822  * It copies the registers, and all the appropriate
1823  * parts of the process environment (as per the clone
1824  * flags). The actual kick-off is left to the caller.
1825  */
1826 static __latent_entropy struct task_struct *copy_process(
1827 					struct pid *pid,
1828 					int trace,
1829 					int node,
1830 					struct kernel_clone_args *args)
1831 {
1832 	int pidfd = -1, retval;
1833 	struct task_struct *p;
1834 	struct multiprocess_signals delayed;
1835 	struct file *pidfile = NULL;
1836 	u64 clone_flags = args->flags;
1837 	struct nsproxy *nsp = current->nsproxy;
1838 
1839 	/*
1840 	 * Don't allow sharing the root directory with processes in a different
1841 	 * namespace
1842 	 */
1843 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1844 		return ERR_PTR(-EINVAL);
1845 
1846 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1847 		return ERR_PTR(-EINVAL);
1848 
1849 	/*
1850 	 * Thread groups must share signals as well, and detached threads
1851 	 * can only be started up within the thread group.
1852 	 */
1853 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1854 		return ERR_PTR(-EINVAL);
1855 
1856 	/*
1857 	 * Shared signal handlers imply shared VM. By way of the above,
1858 	 * thread groups also imply shared VM. Blocking this case allows
1859 	 * for various simplifications in other code.
1860 	 */
1861 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1862 		return ERR_PTR(-EINVAL);
1863 
1864 	/*
1865 	 * Siblings of global init remain as zombies on exit since they are
1866 	 * not reaped by their parent (swapper). To solve this and to avoid
1867 	 * multi-rooted process trees, prevent global and container-inits
1868 	 * from creating siblings.
1869 	 */
1870 	if ((clone_flags & CLONE_PARENT) &&
1871 				current->signal->flags & SIGNAL_UNKILLABLE)
1872 		return ERR_PTR(-EINVAL);
1873 
1874 	/*
1875 	 * If the new process will be in a different pid or user namespace
1876 	 * do not allow it to share a thread group with the forking task.
1877 	 */
1878 	if (clone_flags & CLONE_THREAD) {
1879 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1880 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1881 			return ERR_PTR(-EINVAL);
1882 	}
1883 
1884 	/*
1885 	 * If the new process will be in a different time namespace
1886 	 * do not allow it to share VM or a thread group with the forking task.
1887 	 */
1888 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1889 		if (nsp->time_ns != nsp->time_ns_for_children)
1890 			return ERR_PTR(-EINVAL);
1891 	}
1892 
1893 	if (clone_flags & CLONE_PIDFD) {
1894 		/*
1895 		 * - CLONE_DETACHED is blocked so that we can potentially
1896 		 *   reuse it later for CLONE_PIDFD.
1897 		 * - CLONE_THREAD is blocked until someone really needs it.
1898 		 */
1899 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1900 			return ERR_PTR(-EINVAL);
1901 	}
1902 
1903 	/*
1904 	 * Force any signals received before this point to be delivered
1905 	 * before the fork happens.  Collect up signals sent to multiple
1906 	 * processes that happen during the fork and delay them so that
1907 	 * they appear to happen after the fork.
1908 	 */
1909 	sigemptyset(&delayed.signal);
1910 	INIT_HLIST_NODE(&delayed.node);
1911 
1912 	spin_lock_irq(&current->sighand->siglock);
1913 	if (!(clone_flags & CLONE_THREAD))
1914 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1915 	recalc_sigpending();
1916 	spin_unlock_irq(&current->sighand->siglock);
1917 	retval = -ERESTARTNOINTR;
1918 	if (signal_pending(current))
1919 		goto fork_out;
1920 
1921 	retval = -ENOMEM;
1922 	p = dup_task_struct(current, node);
1923 	if (!p)
1924 		goto fork_out;
1925 
1926 	/*
1927 	 * This _must_ happen before we call free_task(), i.e. before we jump
1928 	 * to any of the bad_fork_* labels. This is to avoid freeing
1929 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1930 	 * kernel threads (PF_KTHREAD).
1931 	 */
1932 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1933 	/*
1934 	 * Clear TID on mm_release()?
1935 	 */
1936 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1937 
1938 	ftrace_graph_init_task(p);
1939 
1940 	rt_mutex_init_task(p);
1941 
1942 #ifdef CONFIG_PROVE_LOCKING
1943 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1944 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1945 #endif
1946 	retval = -EAGAIN;
1947 	if (atomic_read(&p->real_cred->user->processes) >=
1948 			task_rlimit(p, RLIMIT_NPROC)) {
1949 		if (p->real_cred->user != INIT_USER &&
1950 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1951 			goto bad_fork_free;
1952 	}
1953 	current->flags &= ~PF_NPROC_EXCEEDED;
1954 
1955 	retval = copy_creds(p, clone_flags);
1956 	if (retval < 0)
1957 		goto bad_fork_free;
1958 
1959 	/*
1960 	 * If multiple threads are within copy_process(), then this check
1961 	 * triggers too late. This doesn't hurt, the check is only there
1962 	 * to stop root fork bombs.
1963 	 */
1964 	retval = -EAGAIN;
1965 	if (nr_threads >= max_threads)
1966 		goto bad_fork_cleanup_count;
1967 
1968 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1969 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1970 	p->flags |= PF_FORKNOEXEC;
1971 	INIT_LIST_HEAD(&p->children);
1972 	INIT_LIST_HEAD(&p->sibling);
1973 	rcu_copy_process(p);
1974 	p->vfork_done = NULL;
1975 	spin_lock_init(&p->alloc_lock);
1976 
1977 	init_sigpending(&p->pending);
1978 
1979 	p->utime = p->stime = p->gtime = 0;
1980 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1981 	p->utimescaled = p->stimescaled = 0;
1982 #endif
1983 	prev_cputime_init(&p->prev_cputime);
1984 
1985 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1986 	seqcount_init(&p->vtime.seqcount);
1987 	p->vtime.starttime = 0;
1988 	p->vtime.state = VTIME_INACTIVE;
1989 #endif
1990 
1991 #if defined(SPLIT_RSS_COUNTING)
1992 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1993 #endif
1994 
1995 	p->default_timer_slack_ns = current->timer_slack_ns;
1996 
1997 #ifdef CONFIG_PSI
1998 	p->psi_flags = 0;
1999 #endif
2000 
2001 	task_io_accounting_init(&p->ioac);
2002 	acct_clear_integrals(p);
2003 
2004 	posix_cputimers_init(&p->posix_cputimers);
2005 
2006 	p->io_context = NULL;
2007 	audit_set_context(p, NULL);
2008 	cgroup_fork(p);
2009 #ifdef CONFIG_NUMA
2010 	p->mempolicy = mpol_dup(p->mempolicy);
2011 	if (IS_ERR(p->mempolicy)) {
2012 		retval = PTR_ERR(p->mempolicy);
2013 		p->mempolicy = NULL;
2014 		goto bad_fork_cleanup_threadgroup_lock;
2015 	}
2016 #endif
2017 #ifdef CONFIG_CPUSETS
2018 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2019 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2020 	seqcount_init(&p->mems_allowed_seq);
2021 #endif
2022 #ifdef CONFIG_TRACE_IRQFLAGS
2023 	p->irq_events = 0;
2024 	p->hardirqs_enabled = 0;
2025 	p->hardirq_enable_ip = 0;
2026 	p->hardirq_enable_event = 0;
2027 	p->hardirq_disable_ip = _THIS_IP_;
2028 	p->hardirq_disable_event = 0;
2029 	p->softirqs_enabled = 1;
2030 	p->softirq_enable_ip = _THIS_IP_;
2031 	p->softirq_enable_event = 0;
2032 	p->softirq_disable_ip = 0;
2033 	p->softirq_disable_event = 0;
2034 	p->hardirq_context = 0;
2035 	p->softirq_context = 0;
2036 #endif
2037 
2038 	p->pagefault_disabled = 0;
2039 
2040 #ifdef CONFIG_LOCKDEP
2041 	lockdep_init_task(p);
2042 #endif
2043 
2044 #ifdef CONFIG_DEBUG_MUTEXES
2045 	p->blocked_on = NULL; /* not blocked yet */
2046 #endif
2047 #ifdef CONFIG_BCACHE
2048 	p->sequential_io	= 0;
2049 	p->sequential_io_avg	= 0;
2050 #endif
2051 
2052 	/* Perform scheduler related setup. Assign this task to a CPU. */
2053 	retval = sched_fork(clone_flags, p);
2054 	if (retval)
2055 		goto bad_fork_cleanup_policy;
2056 
2057 	retval = perf_event_init_task(p);
2058 	if (retval)
2059 		goto bad_fork_cleanup_policy;
2060 	retval = audit_alloc(p);
2061 	if (retval)
2062 		goto bad_fork_cleanup_perf;
2063 	/* copy all the process information */
2064 	shm_init_task(p);
2065 	retval = security_task_alloc(p, clone_flags);
2066 	if (retval)
2067 		goto bad_fork_cleanup_audit;
2068 	retval = copy_semundo(clone_flags, p);
2069 	if (retval)
2070 		goto bad_fork_cleanup_security;
2071 	retval = copy_files(clone_flags, p);
2072 	if (retval)
2073 		goto bad_fork_cleanup_semundo;
2074 	retval = copy_fs(clone_flags, p);
2075 	if (retval)
2076 		goto bad_fork_cleanup_files;
2077 	retval = copy_sighand(clone_flags, p);
2078 	if (retval)
2079 		goto bad_fork_cleanup_fs;
2080 	retval = copy_signal(clone_flags, p);
2081 	if (retval)
2082 		goto bad_fork_cleanup_sighand;
2083 	retval = copy_mm(clone_flags, p);
2084 	if (retval)
2085 		goto bad_fork_cleanup_signal;
2086 	retval = copy_namespaces(clone_flags, p);
2087 	if (retval)
2088 		goto bad_fork_cleanup_mm;
2089 	retval = copy_io(clone_flags, p);
2090 	if (retval)
2091 		goto bad_fork_cleanup_namespaces;
2092 	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2093 				 args->tls);
2094 	if (retval)
2095 		goto bad_fork_cleanup_io;
2096 
2097 	stackleak_task_init(p);
2098 
2099 	if (pid != &init_struct_pid) {
2100 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2101 				args->set_tid_size);
2102 		if (IS_ERR(pid)) {
2103 			retval = PTR_ERR(pid);
2104 			goto bad_fork_cleanup_thread;
2105 		}
2106 	}
2107 
2108 	/*
2109 	 * This has to happen after we've potentially unshared the file
2110 	 * descriptor table (so that the pidfd doesn't leak into the child
2111 	 * if the fd table isn't shared).
2112 	 */
2113 	if (clone_flags & CLONE_PIDFD) {
2114 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2115 		if (retval < 0)
2116 			goto bad_fork_free_pid;
2117 
2118 		pidfd = retval;
2119 
2120 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2121 					      O_RDWR | O_CLOEXEC);
2122 		if (IS_ERR(pidfile)) {
2123 			put_unused_fd(pidfd);
2124 			retval = PTR_ERR(pidfile);
2125 			goto bad_fork_free_pid;
2126 		}
2127 		get_pid(pid);	/* held by pidfile now */
2128 
2129 		retval = put_user(pidfd, args->pidfd);
2130 		if (retval)
2131 			goto bad_fork_put_pidfd;
2132 	}
2133 
2134 #ifdef CONFIG_BLOCK
2135 	p->plug = NULL;
2136 #endif
2137 	futex_init_task(p);
2138 
2139 	/*
2140 	 * sigaltstack should be cleared when sharing the same VM
2141 	 */
2142 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2143 		sas_ss_reset(p);
2144 
2145 	/*
2146 	 * Syscall tracing and stepping should be turned off in the
2147 	 * child regardless of CLONE_PTRACE.
2148 	 */
2149 	user_disable_single_step(p);
2150 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2151 #ifdef TIF_SYSCALL_EMU
2152 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2153 #endif
2154 	clear_tsk_latency_tracing(p);
2155 
2156 	/* ok, now we should be set up.. */
2157 	p->pid = pid_nr(pid);
2158 	if (clone_flags & CLONE_THREAD) {
2159 		p->exit_signal = -1;
2160 		p->group_leader = current->group_leader;
2161 		p->tgid = current->tgid;
2162 	} else {
2163 		if (clone_flags & CLONE_PARENT)
2164 			p->exit_signal = current->group_leader->exit_signal;
2165 		else
2166 			p->exit_signal = args->exit_signal;
2167 		p->group_leader = p;
2168 		p->tgid = p->pid;
2169 	}
2170 
2171 	p->nr_dirtied = 0;
2172 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2173 	p->dirty_paused_when = 0;
2174 
2175 	p->pdeath_signal = 0;
2176 	INIT_LIST_HEAD(&p->thread_group);
2177 	p->task_works = NULL;
2178 
2179 	/*
2180 	 * Ensure that the cgroup subsystem policies allow the new process to be
2181 	 * forked. It should be noted the the new process's css_set can be changed
2182 	 * between here and cgroup_post_fork() if an organisation operation is in
2183 	 * progress.
2184 	 */
2185 	retval = cgroup_can_fork(p, args);
2186 	if (retval)
2187 		goto bad_fork_put_pidfd;
2188 
2189 	/*
2190 	 * From this point on we must avoid any synchronous user-space
2191 	 * communication until we take the tasklist-lock. In particular, we do
2192 	 * not want user-space to be able to predict the process start-time by
2193 	 * stalling fork(2) after we recorded the start_time but before it is
2194 	 * visible to the system.
2195 	 */
2196 
2197 	p->start_time = ktime_get_ns();
2198 	p->start_boottime = ktime_get_boottime_ns();
2199 
2200 	/*
2201 	 * Make it visible to the rest of the system, but dont wake it up yet.
2202 	 * Need tasklist lock for parent etc handling!
2203 	 */
2204 	write_lock_irq(&tasklist_lock);
2205 
2206 	/* CLONE_PARENT re-uses the old parent */
2207 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2208 		p->real_parent = current->real_parent;
2209 		p->parent_exec_id = current->parent_exec_id;
2210 	} else {
2211 		p->real_parent = current;
2212 		p->parent_exec_id = current->self_exec_id;
2213 	}
2214 
2215 	klp_copy_process(p);
2216 
2217 	spin_lock(&current->sighand->siglock);
2218 
2219 	/*
2220 	 * Copy seccomp details explicitly here, in case they were changed
2221 	 * before holding sighand lock.
2222 	 */
2223 	copy_seccomp(p);
2224 
2225 	rseq_fork(p, clone_flags);
2226 
2227 	/* Don't start children in a dying pid namespace */
2228 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2229 		retval = -ENOMEM;
2230 		goto bad_fork_cancel_cgroup;
2231 	}
2232 
2233 	/* Let kill terminate clone/fork in the middle */
2234 	if (fatal_signal_pending(current)) {
2235 		retval = -EINTR;
2236 		goto bad_fork_cancel_cgroup;
2237 	}
2238 
2239 	/* past the last point of failure */
2240 	if (pidfile)
2241 		fd_install(pidfd, pidfile);
2242 
2243 	init_task_pid_links(p);
2244 	if (likely(p->pid)) {
2245 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2246 
2247 		init_task_pid(p, PIDTYPE_PID, pid);
2248 		if (thread_group_leader(p)) {
2249 			init_task_pid(p, PIDTYPE_TGID, pid);
2250 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2251 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2252 
2253 			if (is_child_reaper(pid)) {
2254 				ns_of_pid(pid)->child_reaper = p;
2255 				p->signal->flags |= SIGNAL_UNKILLABLE;
2256 			}
2257 			p->signal->shared_pending.signal = delayed.signal;
2258 			p->signal->tty = tty_kref_get(current->signal->tty);
2259 			/*
2260 			 * Inherit has_child_subreaper flag under the same
2261 			 * tasklist_lock with adding child to the process tree
2262 			 * for propagate_has_child_subreaper optimization.
2263 			 */
2264 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2265 							 p->real_parent->signal->is_child_subreaper;
2266 			list_add_tail(&p->sibling, &p->real_parent->children);
2267 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2268 			attach_pid(p, PIDTYPE_TGID);
2269 			attach_pid(p, PIDTYPE_PGID);
2270 			attach_pid(p, PIDTYPE_SID);
2271 			__this_cpu_inc(process_counts);
2272 		} else {
2273 			current->signal->nr_threads++;
2274 			atomic_inc(&current->signal->live);
2275 			refcount_inc(&current->signal->sigcnt);
2276 			task_join_group_stop(p);
2277 			list_add_tail_rcu(&p->thread_group,
2278 					  &p->group_leader->thread_group);
2279 			list_add_tail_rcu(&p->thread_node,
2280 					  &p->signal->thread_head);
2281 		}
2282 		attach_pid(p, PIDTYPE_PID);
2283 		nr_threads++;
2284 	}
2285 	total_forks++;
2286 	hlist_del_init(&delayed.node);
2287 	spin_unlock(&current->sighand->siglock);
2288 	syscall_tracepoint_update(p);
2289 	write_unlock_irq(&tasklist_lock);
2290 
2291 	proc_fork_connector(p);
2292 	cgroup_post_fork(p, args);
2293 	perf_event_fork(p);
2294 
2295 	trace_task_newtask(p, clone_flags);
2296 	uprobe_copy_process(p, clone_flags);
2297 
2298 	return p;
2299 
2300 bad_fork_cancel_cgroup:
2301 	spin_unlock(&current->sighand->siglock);
2302 	write_unlock_irq(&tasklist_lock);
2303 	cgroup_cancel_fork(p, args);
2304 bad_fork_put_pidfd:
2305 	if (clone_flags & CLONE_PIDFD) {
2306 		fput(pidfile);
2307 		put_unused_fd(pidfd);
2308 	}
2309 bad_fork_free_pid:
2310 	if (pid != &init_struct_pid)
2311 		free_pid(pid);
2312 bad_fork_cleanup_thread:
2313 	exit_thread(p);
2314 bad_fork_cleanup_io:
2315 	if (p->io_context)
2316 		exit_io_context(p);
2317 bad_fork_cleanup_namespaces:
2318 	exit_task_namespaces(p);
2319 bad_fork_cleanup_mm:
2320 	if (p->mm) {
2321 		mm_clear_owner(p->mm, p);
2322 		mmput(p->mm);
2323 	}
2324 bad_fork_cleanup_signal:
2325 	if (!(clone_flags & CLONE_THREAD))
2326 		free_signal_struct(p->signal);
2327 bad_fork_cleanup_sighand:
2328 	__cleanup_sighand(p->sighand);
2329 bad_fork_cleanup_fs:
2330 	exit_fs(p); /* blocking */
2331 bad_fork_cleanup_files:
2332 	exit_files(p); /* blocking */
2333 bad_fork_cleanup_semundo:
2334 	exit_sem(p);
2335 bad_fork_cleanup_security:
2336 	security_task_free(p);
2337 bad_fork_cleanup_audit:
2338 	audit_free(p);
2339 bad_fork_cleanup_perf:
2340 	perf_event_free_task(p);
2341 bad_fork_cleanup_policy:
2342 	lockdep_free_task(p);
2343 #ifdef CONFIG_NUMA
2344 	mpol_put(p->mempolicy);
2345 bad_fork_cleanup_threadgroup_lock:
2346 #endif
2347 	delayacct_tsk_free(p);
2348 bad_fork_cleanup_count:
2349 	atomic_dec(&p->cred->user->processes);
2350 	exit_creds(p);
2351 bad_fork_free:
2352 	p->state = TASK_DEAD;
2353 	put_task_stack(p);
2354 	delayed_free_task(p);
2355 fork_out:
2356 	spin_lock_irq(&current->sighand->siglock);
2357 	hlist_del_init(&delayed.node);
2358 	spin_unlock_irq(&current->sighand->siglock);
2359 	return ERR_PTR(retval);
2360 }
2361 
2362 static inline void init_idle_pids(struct task_struct *idle)
2363 {
2364 	enum pid_type type;
2365 
2366 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2367 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2368 		init_task_pid(idle, type, &init_struct_pid);
2369 	}
2370 }
2371 
2372 struct task_struct *fork_idle(int cpu)
2373 {
2374 	struct task_struct *task;
2375 	struct kernel_clone_args args = {
2376 		.flags = CLONE_VM,
2377 	};
2378 
2379 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2380 	if (!IS_ERR(task)) {
2381 		init_idle_pids(task);
2382 		init_idle(task, cpu);
2383 	}
2384 
2385 	return task;
2386 }
2387 
2388 struct mm_struct *copy_init_mm(void)
2389 {
2390 	return dup_mm(NULL, &init_mm);
2391 }
2392 
2393 /*
2394  *  Ok, this is the main fork-routine.
2395  *
2396  * It copies the process, and if successful kick-starts
2397  * it and waits for it to finish using the VM if required.
2398  *
2399  * args->exit_signal is expected to be checked for sanity by the caller.
2400  */
2401 long _do_fork(struct kernel_clone_args *args)
2402 {
2403 	u64 clone_flags = args->flags;
2404 	struct completion vfork;
2405 	struct pid *pid;
2406 	struct task_struct *p;
2407 	int trace = 0;
2408 	long nr;
2409 
2410 	/*
2411 	 * Determine whether and which event to report to ptracer.  When
2412 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2413 	 * requested, no event is reported; otherwise, report if the event
2414 	 * for the type of forking is enabled.
2415 	 */
2416 	if (!(clone_flags & CLONE_UNTRACED)) {
2417 		if (clone_flags & CLONE_VFORK)
2418 			trace = PTRACE_EVENT_VFORK;
2419 		else if (args->exit_signal != SIGCHLD)
2420 			trace = PTRACE_EVENT_CLONE;
2421 		else
2422 			trace = PTRACE_EVENT_FORK;
2423 
2424 		if (likely(!ptrace_event_enabled(current, trace)))
2425 			trace = 0;
2426 	}
2427 
2428 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2429 	add_latent_entropy();
2430 
2431 	if (IS_ERR(p))
2432 		return PTR_ERR(p);
2433 
2434 	/*
2435 	 * Do this prior waking up the new thread - the thread pointer
2436 	 * might get invalid after that point, if the thread exits quickly.
2437 	 */
2438 	trace_sched_process_fork(current, p);
2439 
2440 	pid = get_task_pid(p, PIDTYPE_PID);
2441 	nr = pid_vnr(pid);
2442 
2443 	if (clone_flags & CLONE_PARENT_SETTID)
2444 		put_user(nr, args->parent_tid);
2445 
2446 	if (clone_flags & CLONE_VFORK) {
2447 		p->vfork_done = &vfork;
2448 		init_completion(&vfork);
2449 		get_task_struct(p);
2450 	}
2451 
2452 	wake_up_new_task(p);
2453 
2454 	/* forking complete and child started to run, tell ptracer */
2455 	if (unlikely(trace))
2456 		ptrace_event_pid(trace, pid);
2457 
2458 	if (clone_flags & CLONE_VFORK) {
2459 		if (!wait_for_vfork_done(p, &vfork))
2460 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2461 	}
2462 
2463 	put_pid(pid);
2464 	return nr;
2465 }
2466 
2467 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2468 {
2469 	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2470 	if ((kargs->flags & CLONE_PIDFD) &&
2471 	    (kargs->flags & CLONE_PARENT_SETTID))
2472 		return false;
2473 
2474 	return true;
2475 }
2476 
2477 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2478 /* For compatibility with architectures that call do_fork directly rather than
2479  * using the syscall entry points below. */
2480 long do_fork(unsigned long clone_flags,
2481 	      unsigned long stack_start,
2482 	      unsigned long stack_size,
2483 	      int __user *parent_tidptr,
2484 	      int __user *child_tidptr)
2485 {
2486 	struct kernel_clone_args args = {
2487 		.flags		= (clone_flags & ~CSIGNAL),
2488 		.pidfd		= parent_tidptr,
2489 		.child_tid	= child_tidptr,
2490 		.parent_tid	= parent_tidptr,
2491 		.exit_signal	= (clone_flags & CSIGNAL),
2492 		.stack		= stack_start,
2493 		.stack_size	= stack_size,
2494 	};
2495 
2496 	if (!legacy_clone_args_valid(&args))
2497 		return -EINVAL;
2498 
2499 	return _do_fork(&args);
2500 }
2501 #endif
2502 
2503 /*
2504  * Create a kernel thread.
2505  */
2506 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2507 {
2508 	struct kernel_clone_args args = {
2509 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2510 		.exit_signal	= (flags & CSIGNAL),
2511 		.stack		= (unsigned long)fn,
2512 		.stack_size	= (unsigned long)arg,
2513 	};
2514 
2515 	return _do_fork(&args);
2516 }
2517 
2518 #ifdef __ARCH_WANT_SYS_FORK
2519 SYSCALL_DEFINE0(fork)
2520 {
2521 #ifdef CONFIG_MMU
2522 	struct kernel_clone_args args = {
2523 		.exit_signal = SIGCHLD,
2524 	};
2525 
2526 	return _do_fork(&args);
2527 #else
2528 	/* can not support in nommu mode */
2529 	return -EINVAL;
2530 #endif
2531 }
2532 #endif
2533 
2534 #ifdef __ARCH_WANT_SYS_VFORK
2535 SYSCALL_DEFINE0(vfork)
2536 {
2537 	struct kernel_clone_args args = {
2538 		.flags		= CLONE_VFORK | CLONE_VM,
2539 		.exit_signal	= SIGCHLD,
2540 	};
2541 
2542 	return _do_fork(&args);
2543 }
2544 #endif
2545 
2546 #ifdef __ARCH_WANT_SYS_CLONE
2547 #ifdef CONFIG_CLONE_BACKWARDS
2548 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2549 		 int __user *, parent_tidptr,
2550 		 unsigned long, tls,
2551 		 int __user *, child_tidptr)
2552 #elif defined(CONFIG_CLONE_BACKWARDS2)
2553 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2554 		 int __user *, parent_tidptr,
2555 		 int __user *, child_tidptr,
2556 		 unsigned long, tls)
2557 #elif defined(CONFIG_CLONE_BACKWARDS3)
2558 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2559 		int, stack_size,
2560 		int __user *, parent_tidptr,
2561 		int __user *, child_tidptr,
2562 		unsigned long, tls)
2563 #else
2564 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2565 		 int __user *, parent_tidptr,
2566 		 int __user *, child_tidptr,
2567 		 unsigned long, tls)
2568 #endif
2569 {
2570 	struct kernel_clone_args args = {
2571 		.flags		= (clone_flags & ~CSIGNAL),
2572 		.pidfd		= parent_tidptr,
2573 		.child_tid	= child_tidptr,
2574 		.parent_tid	= parent_tidptr,
2575 		.exit_signal	= (clone_flags & CSIGNAL),
2576 		.stack		= newsp,
2577 		.tls		= tls,
2578 	};
2579 
2580 	if (!legacy_clone_args_valid(&args))
2581 		return -EINVAL;
2582 
2583 	return _do_fork(&args);
2584 }
2585 #endif
2586 
2587 #ifdef __ARCH_WANT_SYS_CLONE3
2588 
2589 /*
2590  * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2591  * the registers containing the syscall arguments for clone. This doesn't work
2592  * with clone3 since the TLS value is passed in clone_args instead.
2593  */
2594 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2595 #error clone3 requires copy_thread_tls support in arch
2596 #endif
2597 
2598 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2599 					      struct clone_args __user *uargs,
2600 					      size_t usize)
2601 {
2602 	int err;
2603 	struct clone_args args;
2604 	pid_t *kset_tid = kargs->set_tid;
2605 
2606 	if (unlikely(usize > PAGE_SIZE))
2607 		return -E2BIG;
2608 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2609 		return -EINVAL;
2610 
2611 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2612 	if (err)
2613 		return err;
2614 
2615 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2616 		return -EINVAL;
2617 
2618 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2619 		return -EINVAL;
2620 
2621 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2622 		return -EINVAL;
2623 
2624 	/*
2625 	 * Verify that higher 32bits of exit_signal are unset and that
2626 	 * it is a valid signal
2627 	 */
2628 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2629 		     !valid_signal(args.exit_signal)))
2630 		return -EINVAL;
2631 
2632 	if ((args.flags & CLONE_INTO_CGROUP) && args.cgroup < 0)
2633 		return -EINVAL;
2634 
2635 	*kargs = (struct kernel_clone_args){
2636 		.flags		= args.flags,
2637 		.pidfd		= u64_to_user_ptr(args.pidfd),
2638 		.child_tid	= u64_to_user_ptr(args.child_tid),
2639 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2640 		.exit_signal	= args.exit_signal,
2641 		.stack		= args.stack,
2642 		.stack_size	= args.stack_size,
2643 		.tls		= args.tls,
2644 		.set_tid_size	= args.set_tid_size,
2645 		.cgroup		= args.cgroup,
2646 	};
2647 
2648 	if (args.set_tid &&
2649 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2650 			(kargs->set_tid_size * sizeof(pid_t))))
2651 		return -EFAULT;
2652 
2653 	kargs->set_tid = kset_tid;
2654 
2655 	return 0;
2656 }
2657 
2658 /**
2659  * clone3_stack_valid - check and prepare stack
2660  * @kargs: kernel clone args
2661  *
2662  * Verify that the stack arguments userspace gave us are sane.
2663  * In addition, set the stack direction for userspace since it's easy for us to
2664  * determine.
2665  */
2666 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2667 {
2668 	if (kargs->stack == 0) {
2669 		if (kargs->stack_size > 0)
2670 			return false;
2671 	} else {
2672 		if (kargs->stack_size == 0)
2673 			return false;
2674 
2675 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2676 			return false;
2677 
2678 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2679 		kargs->stack += kargs->stack_size;
2680 #endif
2681 	}
2682 
2683 	return true;
2684 }
2685 
2686 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2687 {
2688 	/* Verify that no unknown flags are passed along. */
2689 	if (kargs->flags &
2690 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2691 		return false;
2692 
2693 	/*
2694 	 * - make the CLONE_DETACHED bit reuseable for clone3
2695 	 * - make the CSIGNAL bits reuseable for clone3
2696 	 */
2697 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2698 		return false;
2699 
2700 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2701 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2702 		return false;
2703 
2704 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2705 	    kargs->exit_signal)
2706 		return false;
2707 
2708 	if (!clone3_stack_valid(kargs))
2709 		return false;
2710 
2711 	return true;
2712 }
2713 
2714 /**
2715  * clone3 - create a new process with specific properties
2716  * @uargs: argument structure
2717  * @size:  size of @uargs
2718  *
2719  * clone3() is the extensible successor to clone()/clone2().
2720  * It takes a struct as argument that is versioned by its size.
2721  *
2722  * Return: On success, a positive PID for the child process.
2723  *         On error, a negative errno number.
2724  */
2725 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2726 {
2727 	int err;
2728 
2729 	struct kernel_clone_args kargs;
2730 	pid_t set_tid[MAX_PID_NS_LEVEL];
2731 
2732 	kargs.set_tid = set_tid;
2733 
2734 	err = copy_clone_args_from_user(&kargs, uargs, size);
2735 	if (err)
2736 		return err;
2737 
2738 	if (!clone3_args_valid(&kargs))
2739 		return -EINVAL;
2740 
2741 	return _do_fork(&kargs);
2742 }
2743 #endif
2744 
2745 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2746 {
2747 	struct task_struct *leader, *parent, *child;
2748 	int res;
2749 
2750 	read_lock(&tasklist_lock);
2751 	leader = top = top->group_leader;
2752 down:
2753 	for_each_thread(leader, parent) {
2754 		list_for_each_entry(child, &parent->children, sibling) {
2755 			res = visitor(child, data);
2756 			if (res) {
2757 				if (res < 0)
2758 					goto out;
2759 				leader = child;
2760 				goto down;
2761 			}
2762 up:
2763 			;
2764 		}
2765 	}
2766 
2767 	if (leader != top) {
2768 		child = leader;
2769 		parent = child->real_parent;
2770 		leader = parent->group_leader;
2771 		goto up;
2772 	}
2773 out:
2774 	read_unlock(&tasklist_lock);
2775 }
2776 
2777 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2778 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2779 #endif
2780 
2781 static void sighand_ctor(void *data)
2782 {
2783 	struct sighand_struct *sighand = data;
2784 
2785 	spin_lock_init(&sighand->siglock);
2786 	init_waitqueue_head(&sighand->signalfd_wqh);
2787 }
2788 
2789 void __init proc_caches_init(void)
2790 {
2791 	unsigned int mm_size;
2792 
2793 	sighand_cachep = kmem_cache_create("sighand_cache",
2794 			sizeof(struct sighand_struct), 0,
2795 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2796 			SLAB_ACCOUNT, sighand_ctor);
2797 	signal_cachep = kmem_cache_create("signal_cache",
2798 			sizeof(struct signal_struct), 0,
2799 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2800 			NULL);
2801 	files_cachep = kmem_cache_create("files_cache",
2802 			sizeof(struct files_struct), 0,
2803 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2804 			NULL);
2805 	fs_cachep = kmem_cache_create("fs_cache",
2806 			sizeof(struct fs_struct), 0,
2807 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2808 			NULL);
2809 
2810 	/*
2811 	 * The mm_cpumask is located at the end of mm_struct, and is
2812 	 * dynamically sized based on the maximum CPU number this system
2813 	 * can have, taking hotplug into account (nr_cpu_ids).
2814 	 */
2815 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2816 
2817 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2818 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2819 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2820 			offsetof(struct mm_struct, saved_auxv),
2821 			sizeof_field(struct mm_struct, saved_auxv),
2822 			NULL);
2823 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2824 	mmap_init();
2825 	nsproxy_cache_init();
2826 }
2827 
2828 /*
2829  * Check constraints on flags passed to the unshare system call.
2830  */
2831 static int check_unshare_flags(unsigned long unshare_flags)
2832 {
2833 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2834 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2835 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2836 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2837 				CLONE_NEWTIME))
2838 		return -EINVAL;
2839 	/*
2840 	 * Not implemented, but pretend it works if there is nothing
2841 	 * to unshare.  Note that unsharing the address space or the
2842 	 * signal handlers also need to unshare the signal queues (aka
2843 	 * CLONE_THREAD).
2844 	 */
2845 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2846 		if (!thread_group_empty(current))
2847 			return -EINVAL;
2848 	}
2849 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2850 		if (refcount_read(&current->sighand->count) > 1)
2851 			return -EINVAL;
2852 	}
2853 	if (unshare_flags & CLONE_VM) {
2854 		if (!current_is_single_threaded())
2855 			return -EINVAL;
2856 	}
2857 
2858 	return 0;
2859 }
2860 
2861 /*
2862  * Unshare the filesystem structure if it is being shared
2863  */
2864 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2865 {
2866 	struct fs_struct *fs = current->fs;
2867 
2868 	if (!(unshare_flags & CLONE_FS) || !fs)
2869 		return 0;
2870 
2871 	/* don't need lock here; in the worst case we'll do useless copy */
2872 	if (fs->users == 1)
2873 		return 0;
2874 
2875 	*new_fsp = copy_fs_struct(fs);
2876 	if (!*new_fsp)
2877 		return -ENOMEM;
2878 
2879 	return 0;
2880 }
2881 
2882 /*
2883  * Unshare file descriptor table if it is being shared
2884  */
2885 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2886 {
2887 	struct files_struct *fd = current->files;
2888 	int error = 0;
2889 
2890 	if ((unshare_flags & CLONE_FILES) &&
2891 	    (fd && atomic_read(&fd->count) > 1)) {
2892 		*new_fdp = dup_fd(fd, &error);
2893 		if (!*new_fdp)
2894 			return error;
2895 	}
2896 
2897 	return 0;
2898 }
2899 
2900 /*
2901  * unshare allows a process to 'unshare' part of the process
2902  * context which was originally shared using clone.  copy_*
2903  * functions used by do_fork() cannot be used here directly
2904  * because they modify an inactive task_struct that is being
2905  * constructed. Here we are modifying the current, active,
2906  * task_struct.
2907  */
2908 int ksys_unshare(unsigned long unshare_flags)
2909 {
2910 	struct fs_struct *fs, *new_fs = NULL;
2911 	struct files_struct *fd, *new_fd = NULL;
2912 	struct cred *new_cred = NULL;
2913 	struct nsproxy *new_nsproxy = NULL;
2914 	int do_sysvsem = 0;
2915 	int err;
2916 
2917 	/*
2918 	 * If unsharing a user namespace must also unshare the thread group
2919 	 * and unshare the filesystem root and working directories.
2920 	 */
2921 	if (unshare_flags & CLONE_NEWUSER)
2922 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2923 	/*
2924 	 * If unsharing vm, must also unshare signal handlers.
2925 	 */
2926 	if (unshare_flags & CLONE_VM)
2927 		unshare_flags |= CLONE_SIGHAND;
2928 	/*
2929 	 * If unsharing a signal handlers, must also unshare the signal queues.
2930 	 */
2931 	if (unshare_flags & CLONE_SIGHAND)
2932 		unshare_flags |= CLONE_THREAD;
2933 	/*
2934 	 * If unsharing namespace, must also unshare filesystem information.
2935 	 */
2936 	if (unshare_flags & CLONE_NEWNS)
2937 		unshare_flags |= CLONE_FS;
2938 
2939 	err = check_unshare_flags(unshare_flags);
2940 	if (err)
2941 		goto bad_unshare_out;
2942 	/*
2943 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2944 	 * to a new ipc namespace, the semaphore arrays from the old
2945 	 * namespace are unreachable.
2946 	 */
2947 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2948 		do_sysvsem = 1;
2949 	err = unshare_fs(unshare_flags, &new_fs);
2950 	if (err)
2951 		goto bad_unshare_out;
2952 	err = unshare_fd(unshare_flags, &new_fd);
2953 	if (err)
2954 		goto bad_unshare_cleanup_fs;
2955 	err = unshare_userns(unshare_flags, &new_cred);
2956 	if (err)
2957 		goto bad_unshare_cleanup_fd;
2958 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2959 					 new_cred, new_fs);
2960 	if (err)
2961 		goto bad_unshare_cleanup_cred;
2962 
2963 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2964 		if (do_sysvsem) {
2965 			/*
2966 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2967 			 */
2968 			exit_sem(current);
2969 		}
2970 		if (unshare_flags & CLONE_NEWIPC) {
2971 			/* Orphan segments in old ns (see sem above). */
2972 			exit_shm(current);
2973 			shm_init_task(current);
2974 		}
2975 
2976 		if (new_nsproxy)
2977 			switch_task_namespaces(current, new_nsproxy);
2978 
2979 		task_lock(current);
2980 
2981 		if (new_fs) {
2982 			fs = current->fs;
2983 			spin_lock(&fs->lock);
2984 			current->fs = new_fs;
2985 			if (--fs->users)
2986 				new_fs = NULL;
2987 			else
2988 				new_fs = fs;
2989 			spin_unlock(&fs->lock);
2990 		}
2991 
2992 		if (new_fd) {
2993 			fd = current->files;
2994 			current->files = new_fd;
2995 			new_fd = fd;
2996 		}
2997 
2998 		task_unlock(current);
2999 
3000 		if (new_cred) {
3001 			/* Install the new user namespace */
3002 			commit_creds(new_cred);
3003 			new_cred = NULL;
3004 		}
3005 	}
3006 
3007 	perf_event_namespaces(current);
3008 
3009 bad_unshare_cleanup_cred:
3010 	if (new_cred)
3011 		put_cred(new_cred);
3012 bad_unshare_cleanup_fd:
3013 	if (new_fd)
3014 		put_files_struct(new_fd);
3015 
3016 bad_unshare_cleanup_fs:
3017 	if (new_fs)
3018 		free_fs_struct(new_fs);
3019 
3020 bad_unshare_out:
3021 	return err;
3022 }
3023 
3024 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3025 {
3026 	return ksys_unshare(unshare_flags);
3027 }
3028 
3029 /*
3030  *	Helper to unshare the files of the current task.
3031  *	We don't want to expose copy_files internals to
3032  *	the exec layer of the kernel.
3033  */
3034 
3035 int unshare_files(struct files_struct **displaced)
3036 {
3037 	struct task_struct *task = current;
3038 	struct files_struct *copy = NULL;
3039 	int error;
3040 
3041 	error = unshare_fd(CLONE_FILES, &copy);
3042 	if (error || !copy) {
3043 		*displaced = NULL;
3044 		return error;
3045 	}
3046 	*displaced = task->files;
3047 	task_lock(task);
3048 	task->files = copy;
3049 	task_unlock(task);
3050 	return 0;
3051 }
3052 
3053 int sysctl_max_threads(struct ctl_table *table, int write,
3054 		       void __user *buffer, size_t *lenp, loff_t *ppos)
3055 {
3056 	struct ctl_table t;
3057 	int ret;
3058 	int threads = max_threads;
3059 	int min = 1;
3060 	int max = MAX_THREADS;
3061 
3062 	t = *table;
3063 	t.data = &threads;
3064 	t.extra1 = &min;
3065 	t.extra2 = &max;
3066 
3067 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3068 	if (ret || !write)
3069 		return ret;
3070 
3071 	max_threads = threads;
3072 
3073 	return 0;
3074 }
3075