xref: /linux/kernel/fork.c (revision d2eba640a4b96bc1bdc0f4a500b8b8d5e16725c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
129 
130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
131 
132 #ifdef CONFIG_PROVE_RCU
133 int lockdep_tasklist_lock_is_held(void)
134 {
135 	return lockdep_is_held(&tasklist_lock);
136 }
137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
138 #endif /* #ifdef CONFIG_PROVE_RCU */
139 
140 int nr_processes(void)
141 {
142 	int cpu;
143 	int total = 0;
144 
145 	for_each_possible_cpu(cpu)
146 		total += per_cpu(process_counts, cpu);
147 
148 	return total;
149 }
150 
151 void __weak arch_release_task_struct(struct task_struct *tsk)
152 {
153 }
154 
155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
156 static struct kmem_cache *task_struct_cachep;
157 
158 static inline struct task_struct *alloc_task_struct_node(int node)
159 {
160 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
161 }
162 
163 static inline void free_task_struct(struct task_struct *tsk)
164 {
165 	kmem_cache_free(task_struct_cachep, tsk);
166 }
167 #endif
168 
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
170 
171 /*
172  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173  * kmemcache based allocator.
174  */
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
176 
177 #ifdef CONFIG_VMAP_STACK
178 /*
179  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180  * flush.  Try to minimize the number of calls by caching stacks.
181  */
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
184 
185 static int free_vm_stack_cache(unsigned int cpu)
186 {
187 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 	int i;
189 
190 	for (i = 0; i < NR_CACHED_STACKS; i++) {
191 		struct vm_struct *vm_stack = cached_vm_stacks[i];
192 
193 		if (!vm_stack)
194 			continue;
195 
196 		vfree(vm_stack->addr);
197 		cached_vm_stacks[i] = NULL;
198 	}
199 
200 	return 0;
201 }
202 #endif
203 
204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
205 {
206 #ifdef CONFIG_VMAP_STACK
207 	void *stack;
208 	int i;
209 
210 	for (i = 0; i < NR_CACHED_STACKS; i++) {
211 		struct vm_struct *s;
212 
213 		s = this_cpu_xchg(cached_stacks[i], NULL);
214 
215 		if (!s)
216 			continue;
217 
218 		/* Clear stale pointers from reused stack. */
219 		memset(s->addr, 0, THREAD_SIZE);
220 
221 		tsk->stack_vm_area = s;
222 		tsk->stack = s->addr;
223 		return s->addr;
224 	}
225 
226 	/*
227 	 * Allocated stacks are cached and later reused by new threads,
228 	 * so memcg accounting is performed manually on assigning/releasing
229 	 * stacks to tasks. Drop __GFP_ACCOUNT.
230 	 */
231 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
232 				     VMALLOC_START, VMALLOC_END,
233 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
234 				     PAGE_KERNEL,
235 				     0, node, __builtin_return_address(0));
236 
237 	/*
238 	 * We can't call find_vm_area() in interrupt context, and
239 	 * free_thread_stack() can be called in interrupt context,
240 	 * so cache the vm_struct.
241 	 */
242 	if (stack) {
243 		tsk->stack_vm_area = find_vm_area(stack);
244 		tsk->stack = stack;
245 	}
246 	return stack;
247 #else
248 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
249 					     THREAD_SIZE_ORDER);
250 
251 	if (likely(page)) {
252 		tsk->stack = page_address(page);
253 		return tsk->stack;
254 	}
255 	return NULL;
256 #endif
257 }
258 
259 static inline void free_thread_stack(struct task_struct *tsk)
260 {
261 #ifdef CONFIG_VMAP_STACK
262 	struct vm_struct *vm = task_stack_vm_area(tsk);
263 
264 	if (vm) {
265 		int i;
266 
267 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
268 			mod_memcg_page_state(vm->pages[i],
269 					     MEMCG_KERNEL_STACK_KB,
270 					     -(int)(PAGE_SIZE / 1024));
271 
272 			memcg_kmem_uncharge(vm->pages[i], 0);
273 		}
274 
275 		for (i = 0; i < NR_CACHED_STACKS; i++) {
276 			if (this_cpu_cmpxchg(cached_stacks[i],
277 					NULL, tsk->stack_vm_area) != NULL)
278 				continue;
279 
280 			return;
281 		}
282 
283 		vfree_atomic(tsk->stack);
284 		return;
285 	}
286 #endif
287 
288 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
289 }
290 # else
291 static struct kmem_cache *thread_stack_cache;
292 
293 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
294 						  int node)
295 {
296 	unsigned long *stack;
297 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
298 	tsk->stack = stack;
299 	return stack;
300 }
301 
302 static void free_thread_stack(struct task_struct *tsk)
303 {
304 	kmem_cache_free(thread_stack_cache, tsk->stack);
305 }
306 
307 void thread_stack_cache_init(void)
308 {
309 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
310 					THREAD_SIZE, THREAD_SIZE, 0, 0,
311 					THREAD_SIZE, NULL);
312 	BUG_ON(thread_stack_cache == NULL);
313 }
314 # endif
315 #endif
316 
317 /* SLAB cache for signal_struct structures (tsk->signal) */
318 static struct kmem_cache *signal_cachep;
319 
320 /* SLAB cache for sighand_struct structures (tsk->sighand) */
321 struct kmem_cache *sighand_cachep;
322 
323 /* SLAB cache for files_struct structures (tsk->files) */
324 struct kmem_cache *files_cachep;
325 
326 /* SLAB cache for fs_struct structures (tsk->fs) */
327 struct kmem_cache *fs_cachep;
328 
329 /* SLAB cache for vm_area_struct structures */
330 static struct kmem_cache *vm_area_cachep;
331 
332 /* SLAB cache for mm_struct structures (tsk->mm) */
333 static struct kmem_cache *mm_cachep;
334 
335 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
336 {
337 	struct vm_area_struct *vma;
338 
339 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
340 	if (vma)
341 		vma_init(vma, mm);
342 	return vma;
343 }
344 
345 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
346 {
347 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
348 
349 	if (new) {
350 		*new = *orig;
351 		INIT_LIST_HEAD(&new->anon_vma_chain);
352 	}
353 	return new;
354 }
355 
356 void vm_area_free(struct vm_area_struct *vma)
357 {
358 	kmem_cache_free(vm_area_cachep, vma);
359 }
360 
361 static void account_kernel_stack(struct task_struct *tsk, int account)
362 {
363 	void *stack = task_stack_page(tsk);
364 	struct vm_struct *vm = task_stack_vm_area(tsk);
365 
366 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
367 
368 	if (vm) {
369 		int i;
370 
371 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
372 
373 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
374 			mod_zone_page_state(page_zone(vm->pages[i]),
375 					    NR_KERNEL_STACK_KB,
376 					    PAGE_SIZE / 1024 * account);
377 		}
378 	} else {
379 		/*
380 		 * All stack pages are in the same zone and belong to the
381 		 * same memcg.
382 		 */
383 		struct page *first_page = virt_to_page(stack);
384 
385 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
386 				    THREAD_SIZE / 1024 * account);
387 
388 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
389 				     account * (THREAD_SIZE / 1024));
390 	}
391 }
392 
393 static int memcg_charge_kernel_stack(struct task_struct *tsk)
394 {
395 #ifdef CONFIG_VMAP_STACK
396 	struct vm_struct *vm = task_stack_vm_area(tsk);
397 	int ret;
398 
399 	if (vm) {
400 		int i;
401 
402 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
403 			/*
404 			 * If memcg_kmem_charge() fails, page->mem_cgroup
405 			 * pointer is NULL, and both memcg_kmem_uncharge()
406 			 * and mod_memcg_page_state() in free_thread_stack()
407 			 * will ignore this page. So it's safe.
408 			 */
409 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
410 			if (ret)
411 				return ret;
412 
413 			mod_memcg_page_state(vm->pages[i],
414 					     MEMCG_KERNEL_STACK_KB,
415 					     PAGE_SIZE / 1024);
416 		}
417 	}
418 #endif
419 	return 0;
420 }
421 
422 static void release_task_stack(struct task_struct *tsk)
423 {
424 	if (WARN_ON(tsk->state != TASK_DEAD))
425 		return;  /* Better to leak the stack than to free prematurely */
426 
427 	account_kernel_stack(tsk, -1);
428 	free_thread_stack(tsk);
429 	tsk->stack = NULL;
430 #ifdef CONFIG_VMAP_STACK
431 	tsk->stack_vm_area = NULL;
432 #endif
433 }
434 
435 #ifdef CONFIG_THREAD_INFO_IN_TASK
436 void put_task_stack(struct task_struct *tsk)
437 {
438 	if (refcount_dec_and_test(&tsk->stack_refcount))
439 		release_task_stack(tsk);
440 }
441 #endif
442 
443 void free_task(struct task_struct *tsk)
444 {
445 #ifndef CONFIG_THREAD_INFO_IN_TASK
446 	/*
447 	 * The task is finally done with both the stack and thread_info,
448 	 * so free both.
449 	 */
450 	release_task_stack(tsk);
451 #else
452 	/*
453 	 * If the task had a separate stack allocation, it should be gone
454 	 * by now.
455 	 */
456 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
457 #endif
458 	rt_mutex_debug_task_free(tsk);
459 	ftrace_graph_exit_task(tsk);
460 	put_seccomp_filter(tsk);
461 	arch_release_task_struct(tsk);
462 	if (tsk->flags & PF_KTHREAD)
463 		free_kthread_struct(tsk);
464 	free_task_struct(tsk);
465 }
466 EXPORT_SYMBOL(free_task);
467 
468 #ifdef CONFIG_MMU
469 static __latent_entropy int dup_mmap(struct mm_struct *mm,
470 					struct mm_struct *oldmm)
471 {
472 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
473 	struct rb_node **rb_link, *rb_parent;
474 	int retval;
475 	unsigned long charge;
476 	LIST_HEAD(uf);
477 
478 	uprobe_start_dup_mmap();
479 	if (down_write_killable(&oldmm->mmap_sem)) {
480 		retval = -EINTR;
481 		goto fail_uprobe_end;
482 	}
483 	flush_cache_dup_mm(oldmm);
484 	uprobe_dup_mmap(oldmm, mm);
485 	/*
486 	 * Not linked in yet - no deadlock potential:
487 	 */
488 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
489 
490 	/* No ordering required: file already has been exposed. */
491 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
492 
493 	mm->total_vm = oldmm->total_vm;
494 	mm->data_vm = oldmm->data_vm;
495 	mm->exec_vm = oldmm->exec_vm;
496 	mm->stack_vm = oldmm->stack_vm;
497 
498 	rb_link = &mm->mm_rb.rb_node;
499 	rb_parent = NULL;
500 	pprev = &mm->mmap;
501 	retval = ksm_fork(mm, oldmm);
502 	if (retval)
503 		goto out;
504 	retval = khugepaged_fork(mm, oldmm);
505 	if (retval)
506 		goto out;
507 
508 	prev = NULL;
509 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
510 		struct file *file;
511 
512 		if (mpnt->vm_flags & VM_DONTCOPY) {
513 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
514 			continue;
515 		}
516 		charge = 0;
517 		/*
518 		 * Don't duplicate many vmas if we've been oom-killed (for
519 		 * example)
520 		 */
521 		if (fatal_signal_pending(current)) {
522 			retval = -EINTR;
523 			goto out;
524 		}
525 		if (mpnt->vm_flags & VM_ACCOUNT) {
526 			unsigned long len = vma_pages(mpnt);
527 
528 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
529 				goto fail_nomem;
530 			charge = len;
531 		}
532 		tmp = vm_area_dup(mpnt);
533 		if (!tmp)
534 			goto fail_nomem;
535 		retval = vma_dup_policy(mpnt, tmp);
536 		if (retval)
537 			goto fail_nomem_policy;
538 		tmp->vm_mm = mm;
539 		retval = dup_userfaultfd(tmp, &uf);
540 		if (retval)
541 			goto fail_nomem_anon_vma_fork;
542 		if (tmp->vm_flags & VM_WIPEONFORK) {
543 			/* VM_WIPEONFORK gets a clean slate in the child. */
544 			tmp->anon_vma = NULL;
545 			if (anon_vma_prepare(tmp))
546 				goto fail_nomem_anon_vma_fork;
547 		} else if (anon_vma_fork(tmp, mpnt))
548 			goto fail_nomem_anon_vma_fork;
549 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
550 		tmp->vm_next = tmp->vm_prev = NULL;
551 		file = tmp->vm_file;
552 		if (file) {
553 			struct inode *inode = file_inode(file);
554 			struct address_space *mapping = file->f_mapping;
555 
556 			get_file(file);
557 			if (tmp->vm_flags & VM_DENYWRITE)
558 				atomic_dec(&inode->i_writecount);
559 			i_mmap_lock_write(mapping);
560 			if (tmp->vm_flags & VM_SHARED)
561 				atomic_inc(&mapping->i_mmap_writable);
562 			flush_dcache_mmap_lock(mapping);
563 			/* insert tmp into the share list, just after mpnt */
564 			vma_interval_tree_insert_after(tmp, mpnt,
565 					&mapping->i_mmap);
566 			flush_dcache_mmap_unlock(mapping);
567 			i_mmap_unlock_write(mapping);
568 		}
569 
570 		/*
571 		 * Clear hugetlb-related page reserves for children. This only
572 		 * affects MAP_PRIVATE mappings. Faults generated by the child
573 		 * are not guaranteed to succeed, even if read-only
574 		 */
575 		if (is_vm_hugetlb_page(tmp))
576 			reset_vma_resv_huge_pages(tmp);
577 
578 		/*
579 		 * Link in the new vma and copy the page table entries.
580 		 */
581 		*pprev = tmp;
582 		pprev = &tmp->vm_next;
583 		tmp->vm_prev = prev;
584 		prev = tmp;
585 
586 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
587 		rb_link = &tmp->vm_rb.rb_right;
588 		rb_parent = &tmp->vm_rb;
589 
590 		mm->map_count++;
591 		if (!(tmp->vm_flags & VM_WIPEONFORK))
592 			retval = copy_page_range(mm, oldmm, mpnt);
593 
594 		if (tmp->vm_ops && tmp->vm_ops->open)
595 			tmp->vm_ops->open(tmp);
596 
597 		if (retval)
598 			goto out;
599 	}
600 	/* a new mm has just been created */
601 	retval = arch_dup_mmap(oldmm, mm);
602 out:
603 	up_write(&mm->mmap_sem);
604 	flush_tlb_mm(oldmm);
605 	up_write(&oldmm->mmap_sem);
606 	dup_userfaultfd_complete(&uf);
607 fail_uprobe_end:
608 	uprobe_end_dup_mmap();
609 	return retval;
610 fail_nomem_anon_vma_fork:
611 	mpol_put(vma_policy(tmp));
612 fail_nomem_policy:
613 	vm_area_free(tmp);
614 fail_nomem:
615 	retval = -ENOMEM;
616 	vm_unacct_memory(charge);
617 	goto out;
618 }
619 
620 static inline int mm_alloc_pgd(struct mm_struct *mm)
621 {
622 	mm->pgd = pgd_alloc(mm);
623 	if (unlikely(!mm->pgd))
624 		return -ENOMEM;
625 	return 0;
626 }
627 
628 static inline void mm_free_pgd(struct mm_struct *mm)
629 {
630 	pgd_free(mm, mm->pgd);
631 }
632 #else
633 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
634 {
635 	down_write(&oldmm->mmap_sem);
636 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
637 	up_write(&oldmm->mmap_sem);
638 	return 0;
639 }
640 #define mm_alloc_pgd(mm)	(0)
641 #define mm_free_pgd(mm)
642 #endif /* CONFIG_MMU */
643 
644 static void check_mm(struct mm_struct *mm)
645 {
646 	int i;
647 
648 	for (i = 0; i < NR_MM_COUNTERS; i++) {
649 		long x = atomic_long_read(&mm->rss_stat.count[i]);
650 
651 		if (unlikely(x))
652 			printk(KERN_ALERT "BUG: Bad rss-counter state "
653 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
654 	}
655 
656 	if (mm_pgtables_bytes(mm))
657 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
658 				mm_pgtables_bytes(mm));
659 
660 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
661 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
662 #endif
663 }
664 
665 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
666 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
667 
668 /*
669  * Called when the last reference to the mm
670  * is dropped: either by a lazy thread or by
671  * mmput. Free the page directory and the mm.
672  */
673 void __mmdrop(struct mm_struct *mm)
674 {
675 	BUG_ON(mm == &init_mm);
676 	WARN_ON_ONCE(mm == current->mm);
677 	WARN_ON_ONCE(mm == current->active_mm);
678 	mm_free_pgd(mm);
679 	destroy_context(mm);
680 	mmu_notifier_mm_destroy(mm);
681 	check_mm(mm);
682 	put_user_ns(mm->user_ns);
683 	free_mm(mm);
684 }
685 EXPORT_SYMBOL_GPL(__mmdrop);
686 
687 static void mmdrop_async_fn(struct work_struct *work)
688 {
689 	struct mm_struct *mm;
690 
691 	mm = container_of(work, struct mm_struct, async_put_work);
692 	__mmdrop(mm);
693 }
694 
695 static void mmdrop_async(struct mm_struct *mm)
696 {
697 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
698 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
699 		schedule_work(&mm->async_put_work);
700 	}
701 }
702 
703 static inline void free_signal_struct(struct signal_struct *sig)
704 {
705 	taskstats_tgid_free(sig);
706 	sched_autogroup_exit(sig);
707 	/*
708 	 * __mmdrop is not safe to call from softirq context on x86 due to
709 	 * pgd_dtor so postpone it to the async context
710 	 */
711 	if (sig->oom_mm)
712 		mmdrop_async(sig->oom_mm);
713 	kmem_cache_free(signal_cachep, sig);
714 }
715 
716 static inline void put_signal_struct(struct signal_struct *sig)
717 {
718 	if (refcount_dec_and_test(&sig->sigcnt))
719 		free_signal_struct(sig);
720 }
721 
722 void __put_task_struct(struct task_struct *tsk)
723 {
724 	WARN_ON(!tsk->exit_state);
725 	WARN_ON(refcount_read(&tsk->usage));
726 	WARN_ON(tsk == current);
727 
728 	cgroup_free(tsk);
729 	task_numa_free(tsk);
730 	security_task_free(tsk);
731 	exit_creds(tsk);
732 	delayacct_tsk_free(tsk);
733 	put_signal_struct(tsk->signal);
734 
735 	if (!profile_handoff_task(tsk))
736 		free_task(tsk);
737 }
738 EXPORT_SYMBOL_GPL(__put_task_struct);
739 
740 void __init __weak arch_task_cache_init(void) { }
741 
742 /*
743  * set_max_threads
744  */
745 static void set_max_threads(unsigned int max_threads_suggested)
746 {
747 	u64 threads;
748 	unsigned long nr_pages = totalram_pages();
749 
750 	/*
751 	 * The number of threads shall be limited such that the thread
752 	 * structures may only consume a small part of the available memory.
753 	 */
754 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
755 		threads = MAX_THREADS;
756 	else
757 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
758 				    (u64) THREAD_SIZE * 8UL);
759 
760 	if (threads > max_threads_suggested)
761 		threads = max_threads_suggested;
762 
763 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
764 }
765 
766 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
767 /* Initialized by the architecture: */
768 int arch_task_struct_size __read_mostly;
769 #endif
770 
771 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
772 {
773 	/* Fetch thread_struct whitelist for the architecture. */
774 	arch_thread_struct_whitelist(offset, size);
775 
776 	/*
777 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
778 	 * adjust offset to position of thread_struct in task_struct.
779 	 */
780 	if (unlikely(*size == 0))
781 		*offset = 0;
782 	else
783 		*offset += offsetof(struct task_struct, thread);
784 }
785 
786 void __init fork_init(void)
787 {
788 	int i;
789 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
790 #ifndef ARCH_MIN_TASKALIGN
791 #define ARCH_MIN_TASKALIGN	0
792 #endif
793 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
794 	unsigned long useroffset, usersize;
795 
796 	/* create a slab on which task_structs can be allocated */
797 	task_struct_whitelist(&useroffset, &usersize);
798 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
799 			arch_task_struct_size, align,
800 			SLAB_PANIC|SLAB_ACCOUNT,
801 			useroffset, usersize, NULL);
802 #endif
803 
804 	/* do the arch specific task caches init */
805 	arch_task_cache_init();
806 
807 	set_max_threads(MAX_THREADS);
808 
809 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
810 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
811 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
812 		init_task.signal->rlim[RLIMIT_NPROC];
813 
814 	for (i = 0; i < UCOUNT_COUNTS; i++) {
815 		init_user_ns.ucount_max[i] = max_threads/2;
816 	}
817 
818 #ifdef CONFIG_VMAP_STACK
819 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
820 			  NULL, free_vm_stack_cache);
821 #endif
822 
823 	lockdep_init_task(&init_task);
824 	uprobes_init();
825 }
826 
827 int __weak arch_dup_task_struct(struct task_struct *dst,
828 					       struct task_struct *src)
829 {
830 	*dst = *src;
831 	return 0;
832 }
833 
834 void set_task_stack_end_magic(struct task_struct *tsk)
835 {
836 	unsigned long *stackend;
837 
838 	stackend = end_of_stack(tsk);
839 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
840 }
841 
842 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
843 {
844 	struct task_struct *tsk;
845 	unsigned long *stack;
846 	struct vm_struct *stack_vm_area __maybe_unused;
847 	int err;
848 
849 	if (node == NUMA_NO_NODE)
850 		node = tsk_fork_get_node(orig);
851 	tsk = alloc_task_struct_node(node);
852 	if (!tsk)
853 		return NULL;
854 
855 	stack = alloc_thread_stack_node(tsk, node);
856 	if (!stack)
857 		goto free_tsk;
858 
859 	if (memcg_charge_kernel_stack(tsk))
860 		goto free_stack;
861 
862 	stack_vm_area = task_stack_vm_area(tsk);
863 
864 	err = arch_dup_task_struct(tsk, orig);
865 
866 	/*
867 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
868 	 * sure they're properly initialized before using any stack-related
869 	 * functions again.
870 	 */
871 	tsk->stack = stack;
872 #ifdef CONFIG_VMAP_STACK
873 	tsk->stack_vm_area = stack_vm_area;
874 #endif
875 #ifdef CONFIG_THREAD_INFO_IN_TASK
876 	refcount_set(&tsk->stack_refcount, 1);
877 #endif
878 
879 	if (err)
880 		goto free_stack;
881 
882 #ifdef CONFIG_SECCOMP
883 	/*
884 	 * We must handle setting up seccomp filters once we're under
885 	 * the sighand lock in case orig has changed between now and
886 	 * then. Until then, filter must be NULL to avoid messing up
887 	 * the usage counts on the error path calling free_task.
888 	 */
889 	tsk->seccomp.filter = NULL;
890 #endif
891 
892 	setup_thread_stack(tsk, orig);
893 	clear_user_return_notifier(tsk);
894 	clear_tsk_need_resched(tsk);
895 	set_task_stack_end_magic(tsk);
896 
897 #ifdef CONFIG_STACKPROTECTOR
898 	tsk->stack_canary = get_random_canary();
899 #endif
900 	if (orig->cpus_ptr == &orig->cpus_mask)
901 		tsk->cpus_ptr = &tsk->cpus_mask;
902 
903 	/*
904 	 * One for us, one for whoever does the "release_task()" (usually
905 	 * parent)
906 	 */
907 	refcount_set(&tsk->usage, 2);
908 #ifdef CONFIG_BLK_DEV_IO_TRACE
909 	tsk->btrace_seq = 0;
910 #endif
911 	tsk->splice_pipe = NULL;
912 	tsk->task_frag.page = NULL;
913 	tsk->wake_q.next = NULL;
914 
915 	account_kernel_stack(tsk, 1);
916 
917 	kcov_task_init(tsk);
918 
919 #ifdef CONFIG_FAULT_INJECTION
920 	tsk->fail_nth = 0;
921 #endif
922 
923 #ifdef CONFIG_BLK_CGROUP
924 	tsk->throttle_queue = NULL;
925 	tsk->use_memdelay = 0;
926 #endif
927 
928 #ifdef CONFIG_MEMCG
929 	tsk->active_memcg = NULL;
930 #endif
931 	return tsk;
932 
933 free_stack:
934 	free_thread_stack(tsk);
935 free_tsk:
936 	free_task_struct(tsk);
937 	return NULL;
938 }
939 
940 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
941 
942 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
943 
944 static int __init coredump_filter_setup(char *s)
945 {
946 	default_dump_filter =
947 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
948 		MMF_DUMP_FILTER_MASK;
949 	return 1;
950 }
951 
952 __setup("coredump_filter=", coredump_filter_setup);
953 
954 #include <linux/init_task.h>
955 
956 static void mm_init_aio(struct mm_struct *mm)
957 {
958 #ifdef CONFIG_AIO
959 	spin_lock_init(&mm->ioctx_lock);
960 	mm->ioctx_table = NULL;
961 #endif
962 }
963 
964 static __always_inline void mm_clear_owner(struct mm_struct *mm,
965 					   struct task_struct *p)
966 {
967 #ifdef CONFIG_MEMCG
968 	if (mm->owner == p)
969 		WRITE_ONCE(mm->owner, NULL);
970 #endif
971 }
972 
973 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
974 {
975 #ifdef CONFIG_MEMCG
976 	mm->owner = p;
977 #endif
978 }
979 
980 static void mm_init_uprobes_state(struct mm_struct *mm)
981 {
982 #ifdef CONFIG_UPROBES
983 	mm->uprobes_state.xol_area = NULL;
984 #endif
985 }
986 
987 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
988 	struct user_namespace *user_ns)
989 {
990 	mm->mmap = NULL;
991 	mm->mm_rb = RB_ROOT;
992 	mm->vmacache_seqnum = 0;
993 	atomic_set(&mm->mm_users, 1);
994 	atomic_set(&mm->mm_count, 1);
995 	init_rwsem(&mm->mmap_sem);
996 	INIT_LIST_HEAD(&mm->mmlist);
997 	mm->core_state = NULL;
998 	mm_pgtables_bytes_init(mm);
999 	mm->map_count = 0;
1000 	mm->locked_vm = 0;
1001 	atomic64_set(&mm->pinned_vm, 0);
1002 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1003 	spin_lock_init(&mm->page_table_lock);
1004 	spin_lock_init(&mm->arg_lock);
1005 	mm_init_cpumask(mm);
1006 	mm_init_aio(mm);
1007 	mm_init_owner(mm, p);
1008 	RCU_INIT_POINTER(mm->exe_file, NULL);
1009 	mmu_notifier_mm_init(mm);
1010 	hmm_mm_init(mm);
1011 	init_tlb_flush_pending(mm);
1012 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1013 	mm->pmd_huge_pte = NULL;
1014 #endif
1015 	mm_init_uprobes_state(mm);
1016 
1017 	if (current->mm) {
1018 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1019 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1020 	} else {
1021 		mm->flags = default_dump_filter;
1022 		mm->def_flags = 0;
1023 	}
1024 
1025 	if (mm_alloc_pgd(mm))
1026 		goto fail_nopgd;
1027 
1028 	if (init_new_context(p, mm))
1029 		goto fail_nocontext;
1030 
1031 	mm->user_ns = get_user_ns(user_ns);
1032 	return mm;
1033 
1034 fail_nocontext:
1035 	mm_free_pgd(mm);
1036 fail_nopgd:
1037 	free_mm(mm);
1038 	return NULL;
1039 }
1040 
1041 /*
1042  * Allocate and initialize an mm_struct.
1043  */
1044 struct mm_struct *mm_alloc(void)
1045 {
1046 	struct mm_struct *mm;
1047 
1048 	mm = allocate_mm();
1049 	if (!mm)
1050 		return NULL;
1051 
1052 	memset(mm, 0, sizeof(*mm));
1053 	return mm_init(mm, current, current_user_ns());
1054 }
1055 
1056 static inline void __mmput(struct mm_struct *mm)
1057 {
1058 	VM_BUG_ON(atomic_read(&mm->mm_users));
1059 
1060 	uprobe_clear_state(mm);
1061 	exit_aio(mm);
1062 	ksm_exit(mm);
1063 	khugepaged_exit(mm); /* must run before exit_mmap */
1064 	exit_mmap(mm);
1065 	mm_put_huge_zero_page(mm);
1066 	set_mm_exe_file(mm, NULL);
1067 	if (!list_empty(&mm->mmlist)) {
1068 		spin_lock(&mmlist_lock);
1069 		list_del(&mm->mmlist);
1070 		spin_unlock(&mmlist_lock);
1071 	}
1072 	if (mm->binfmt)
1073 		module_put(mm->binfmt->module);
1074 	mmdrop(mm);
1075 }
1076 
1077 /*
1078  * Decrement the use count and release all resources for an mm.
1079  */
1080 void mmput(struct mm_struct *mm)
1081 {
1082 	might_sleep();
1083 
1084 	if (atomic_dec_and_test(&mm->mm_users))
1085 		__mmput(mm);
1086 }
1087 EXPORT_SYMBOL_GPL(mmput);
1088 
1089 #ifdef CONFIG_MMU
1090 static void mmput_async_fn(struct work_struct *work)
1091 {
1092 	struct mm_struct *mm = container_of(work, struct mm_struct,
1093 					    async_put_work);
1094 
1095 	__mmput(mm);
1096 }
1097 
1098 void mmput_async(struct mm_struct *mm)
1099 {
1100 	if (atomic_dec_and_test(&mm->mm_users)) {
1101 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1102 		schedule_work(&mm->async_put_work);
1103 	}
1104 }
1105 #endif
1106 
1107 /**
1108  * set_mm_exe_file - change a reference to the mm's executable file
1109  *
1110  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1111  *
1112  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1113  * invocations: in mmput() nobody alive left, in execve task is single
1114  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1115  * mm->exe_file, but does so without using set_mm_exe_file() in order
1116  * to do avoid the need for any locks.
1117  */
1118 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1119 {
1120 	struct file *old_exe_file;
1121 
1122 	/*
1123 	 * It is safe to dereference the exe_file without RCU as
1124 	 * this function is only called if nobody else can access
1125 	 * this mm -- see comment above for justification.
1126 	 */
1127 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1128 
1129 	if (new_exe_file)
1130 		get_file(new_exe_file);
1131 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1132 	if (old_exe_file)
1133 		fput(old_exe_file);
1134 }
1135 
1136 /**
1137  * get_mm_exe_file - acquire a reference to the mm's executable file
1138  *
1139  * Returns %NULL if mm has no associated executable file.
1140  * User must release file via fput().
1141  */
1142 struct file *get_mm_exe_file(struct mm_struct *mm)
1143 {
1144 	struct file *exe_file;
1145 
1146 	rcu_read_lock();
1147 	exe_file = rcu_dereference(mm->exe_file);
1148 	if (exe_file && !get_file_rcu(exe_file))
1149 		exe_file = NULL;
1150 	rcu_read_unlock();
1151 	return exe_file;
1152 }
1153 EXPORT_SYMBOL(get_mm_exe_file);
1154 
1155 /**
1156  * get_task_exe_file - acquire a reference to the task's executable file
1157  *
1158  * Returns %NULL if task's mm (if any) has no associated executable file or
1159  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1160  * User must release file via fput().
1161  */
1162 struct file *get_task_exe_file(struct task_struct *task)
1163 {
1164 	struct file *exe_file = NULL;
1165 	struct mm_struct *mm;
1166 
1167 	task_lock(task);
1168 	mm = task->mm;
1169 	if (mm) {
1170 		if (!(task->flags & PF_KTHREAD))
1171 			exe_file = get_mm_exe_file(mm);
1172 	}
1173 	task_unlock(task);
1174 	return exe_file;
1175 }
1176 EXPORT_SYMBOL(get_task_exe_file);
1177 
1178 /**
1179  * get_task_mm - acquire a reference to the task's mm
1180  *
1181  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1182  * this kernel workthread has transiently adopted a user mm with use_mm,
1183  * to do its AIO) is not set and if so returns a reference to it, after
1184  * bumping up the use count.  User must release the mm via mmput()
1185  * after use.  Typically used by /proc and ptrace.
1186  */
1187 struct mm_struct *get_task_mm(struct task_struct *task)
1188 {
1189 	struct mm_struct *mm;
1190 
1191 	task_lock(task);
1192 	mm = task->mm;
1193 	if (mm) {
1194 		if (task->flags & PF_KTHREAD)
1195 			mm = NULL;
1196 		else
1197 			mmget(mm);
1198 	}
1199 	task_unlock(task);
1200 	return mm;
1201 }
1202 EXPORT_SYMBOL_GPL(get_task_mm);
1203 
1204 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1205 {
1206 	struct mm_struct *mm;
1207 	int err;
1208 
1209 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1210 	if (err)
1211 		return ERR_PTR(err);
1212 
1213 	mm = get_task_mm(task);
1214 	if (mm && mm != current->mm &&
1215 			!ptrace_may_access(task, mode)) {
1216 		mmput(mm);
1217 		mm = ERR_PTR(-EACCES);
1218 	}
1219 	mutex_unlock(&task->signal->cred_guard_mutex);
1220 
1221 	return mm;
1222 }
1223 
1224 static void complete_vfork_done(struct task_struct *tsk)
1225 {
1226 	struct completion *vfork;
1227 
1228 	task_lock(tsk);
1229 	vfork = tsk->vfork_done;
1230 	if (likely(vfork)) {
1231 		tsk->vfork_done = NULL;
1232 		complete(vfork);
1233 	}
1234 	task_unlock(tsk);
1235 }
1236 
1237 static int wait_for_vfork_done(struct task_struct *child,
1238 				struct completion *vfork)
1239 {
1240 	int killed;
1241 
1242 	freezer_do_not_count();
1243 	cgroup_enter_frozen();
1244 	killed = wait_for_completion_killable(vfork);
1245 	cgroup_leave_frozen(false);
1246 	freezer_count();
1247 
1248 	if (killed) {
1249 		task_lock(child);
1250 		child->vfork_done = NULL;
1251 		task_unlock(child);
1252 	}
1253 
1254 	put_task_struct(child);
1255 	return killed;
1256 }
1257 
1258 /* Please note the differences between mmput and mm_release.
1259  * mmput is called whenever we stop holding onto a mm_struct,
1260  * error success whatever.
1261  *
1262  * mm_release is called after a mm_struct has been removed
1263  * from the current process.
1264  *
1265  * This difference is important for error handling, when we
1266  * only half set up a mm_struct for a new process and need to restore
1267  * the old one.  Because we mmput the new mm_struct before
1268  * restoring the old one. . .
1269  * Eric Biederman 10 January 1998
1270  */
1271 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1272 {
1273 	/* Get rid of any futexes when releasing the mm */
1274 #ifdef CONFIG_FUTEX
1275 	if (unlikely(tsk->robust_list)) {
1276 		exit_robust_list(tsk);
1277 		tsk->robust_list = NULL;
1278 	}
1279 #ifdef CONFIG_COMPAT
1280 	if (unlikely(tsk->compat_robust_list)) {
1281 		compat_exit_robust_list(tsk);
1282 		tsk->compat_robust_list = NULL;
1283 	}
1284 #endif
1285 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1286 		exit_pi_state_list(tsk);
1287 #endif
1288 
1289 	uprobe_free_utask(tsk);
1290 
1291 	/* Get rid of any cached register state */
1292 	deactivate_mm(tsk, mm);
1293 
1294 	/*
1295 	 * Signal userspace if we're not exiting with a core dump
1296 	 * because we want to leave the value intact for debugging
1297 	 * purposes.
1298 	 */
1299 	if (tsk->clear_child_tid) {
1300 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1301 		    atomic_read(&mm->mm_users) > 1) {
1302 			/*
1303 			 * We don't check the error code - if userspace has
1304 			 * not set up a proper pointer then tough luck.
1305 			 */
1306 			put_user(0, tsk->clear_child_tid);
1307 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1308 					1, NULL, NULL, 0, 0);
1309 		}
1310 		tsk->clear_child_tid = NULL;
1311 	}
1312 
1313 	/*
1314 	 * All done, finally we can wake up parent and return this mm to him.
1315 	 * Also kthread_stop() uses this completion for synchronization.
1316 	 */
1317 	if (tsk->vfork_done)
1318 		complete_vfork_done(tsk);
1319 }
1320 
1321 /**
1322  * dup_mm() - duplicates an existing mm structure
1323  * @tsk: the task_struct with which the new mm will be associated.
1324  * @oldmm: the mm to duplicate.
1325  *
1326  * Allocates a new mm structure and duplicates the provided @oldmm structure
1327  * content into it.
1328  *
1329  * Return: the duplicated mm or NULL on failure.
1330  */
1331 static struct mm_struct *dup_mm(struct task_struct *tsk,
1332 				struct mm_struct *oldmm)
1333 {
1334 	struct mm_struct *mm;
1335 	int err;
1336 
1337 	mm = allocate_mm();
1338 	if (!mm)
1339 		goto fail_nomem;
1340 
1341 	memcpy(mm, oldmm, sizeof(*mm));
1342 
1343 	if (!mm_init(mm, tsk, mm->user_ns))
1344 		goto fail_nomem;
1345 
1346 	err = dup_mmap(mm, oldmm);
1347 	if (err)
1348 		goto free_pt;
1349 
1350 	mm->hiwater_rss = get_mm_rss(mm);
1351 	mm->hiwater_vm = mm->total_vm;
1352 
1353 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1354 		goto free_pt;
1355 
1356 	return mm;
1357 
1358 free_pt:
1359 	/* don't put binfmt in mmput, we haven't got module yet */
1360 	mm->binfmt = NULL;
1361 	mm_init_owner(mm, NULL);
1362 	mmput(mm);
1363 
1364 fail_nomem:
1365 	return NULL;
1366 }
1367 
1368 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1369 {
1370 	struct mm_struct *mm, *oldmm;
1371 	int retval;
1372 
1373 	tsk->min_flt = tsk->maj_flt = 0;
1374 	tsk->nvcsw = tsk->nivcsw = 0;
1375 #ifdef CONFIG_DETECT_HUNG_TASK
1376 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1377 	tsk->last_switch_time = 0;
1378 #endif
1379 
1380 	tsk->mm = NULL;
1381 	tsk->active_mm = NULL;
1382 
1383 	/*
1384 	 * Are we cloning a kernel thread?
1385 	 *
1386 	 * We need to steal a active VM for that..
1387 	 */
1388 	oldmm = current->mm;
1389 	if (!oldmm)
1390 		return 0;
1391 
1392 	/* initialize the new vmacache entries */
1393 	vmacache_flush(tsk);
1394 
1395 	if (clone_flags & CLONE_VM) {
1396 		mmget(oldmm);
1397 		mm = oldmm;
1398 		goto good_mm;
1399 	}
1400 
1401 	retval = -ENOMEM;
1402 	mm = dup_mm(tsk, current->mm);
1403 	if (!mm)
1404 		goto fail_nomem;
1405 
1406 good_mm:
1407 	tsk->mm = mm;
1408 	tsk->active_mm = mm;
1409 	return 0;
1410 
1411 fail_nomem:
1412 	return retval;
1413 }
1414 
1415 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1416 {
1417 	struct fs_struct *fs = current->fs;
1418 	if (clone_flags & CLONE_FS) {
1419 		/* tsk->fs is already what we want */
1420 		spin_lock(&fs->lock);
1421 		if (fs->in_exec) {
1422 			spin_unlock(&fs->lock);
1423 			return -EAGAIN;
1424 		}
1425 		fs->users++;
1426 		spin_unlock(&fs->lock);
1427 		return 0;
1428 	}
1429 	tsk->fs = copy_fs_struct(fs);
1430 	if (!tsk->fs)
1431 		return -ENOMEM;
1432 	return 0;
1433 }
1434 
1435 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1436 {
1437 	struct files_struct *oldf, *newf;
1438 	int error = 0;
1439 
1440 	/*
1441 	 * A background process may not have any files ...
1442 	 */
1443 	oldf = current->files;
1444 	if (!oldf)
1445 		goto out;
1446 
1447 	if (clone_flags & CLONE_FILES) {
1448 		atomic_inc(&oldf->count);
1449 		goto out;
1450 	}
1451 
1452 	newf = dup_fd(oldf, &error);
1453 	if (!newf)
1454 		goto out;
1455 
1456 	tsk->files = newf;
1457 	error = 0;
1458 out:
1459 	return error;
1460 }
1461 
1462 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1463 {
1464 #ifdef CONFIG_BLOCK
1465 	struct io_context *ioc = current->io_context;
1466 	struct io_context *new_ioc;
1467 
1468 	if (!ioc)
1469 		return 0;
1470 	/*
1471 	 * Share io context with parent, if CLONE_IO is set
1472 	 */
1473 	if (clone_flags & CLONE_IO) {
1474 		ioc_task_link(ioc);
1475 		tsk->io_context = ioc;
1476 	} else if (ioprio_valid(ioc->ioprio)) {
1477 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1478 		if (unlikely(!new_ioc))
1479 			return -ENOMEM;
1480 
1481 		new_ioc->ioprio = ioc->ioprio;
1482 		put_io_context(new_ioc);
1483 	}
1484 #endif
1485 	return 0;
1486 }
1487 
1488 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1489 {
1490 	struct sighand_struct *sig;
1491 
1492 	if (clone_flags & CLONE_SIGHAND) {
1493 		refcount_inc(&current->sighand->count);
1494 		return 0;
1495 	}
1496 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1497 	rcu_assign_pointer(tsk->sighand, sig);
1498 	if (!sig)
1499 		return -ENOMEM;
1500 
1501 	refcount_set(&sig->count, 1);
1502 	spin_lock_irq(&current->sighand->siglock);
1503 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1504 	spin_unlock_irq(&current->sighand->siglock);
1505 	return 0;
1506 }
1507 
1508 void __cleanup_sighand(struct sighand_struct *sighand)
1509 {
1510 	if (refcount_dec_and_test(&sighand->count)) {
1511 		signalfd_cleanup(sighand);
1512 		/*
1513 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1514 		 * without an RCU grace period, see __lock_task_sighand().
1515 		 */
1516 		kmem_cache_free(sighand_cachep, sighand);
1517 	}
1518 }
1519 
1520 #ifdef CONFIG_POSIX_TIMERS
1521 /*
1522  * Initialize POSIX timer handling for a thread group.
1523  */
1524 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1525 {
1526 	unsigned long cpu_limit;
1527 
1528 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1529 	if (cpu_limit != RLIM_INFINITY) {
1530 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1531 		sig->cputimer.running = true;
1532 	}
1533 
1534 	/* The timer lists. */
1535 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1536 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1537 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1538 }
1539 #else
1540 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1541 #endif
1542 
1543 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1544 {
1545 	struct signal_struct *sig;
1546 
1547 	if (clone_flags & CLONE_THREAD)
1548 		return 0;
1549 
1550 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1551 	tsk->signal = sig;
1552 	if (!sig)
1553 		return -ENOMEM;
1554 
1555 	sig->nr_threads = 1;
1556 	atomic_set(&sig->live, 1);
1557 	refcount_set(&sig->sigcnt, 1);
1558 
1559 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1560 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1561 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1562 
1563 	init_waitqueue_head(&sig->wait_chldexit);
1564 	sig->curr_target = tsk;
1565 	init_sigpending(&sig->shared_pending);
1566 	INIT_HLIST_HEAD(&sig->multiprocess);
1567 	seqlock_init(&sig->stats_lock);
1568 	prev_cputime_init(&sig->prev_cputime);
1569 
1570 #ifdef CONFIG_POSIX_TIMERS
1571 	INIT_LIST_HEAD(&sig->posix_timers);
1572 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1573 	sig->real_timer.function = it_real_fn;
1574 #endif
1575 
1576 	task_lock(current->group_leader);
1577 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1578 	task_unlock(current->group_leader);
1579 
1580 	posix_cpu_timers_init_group(sig);
1581 
1582 	tty_audit_fork(sig);
1583 	sched_autogroup_fork(sig);
1584 
1585 	sig->oom_score_adj = current->signal->oom_score_adj;
1586 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1587 
1588 	mutex_init(&sig->cred_guard_mutex);
1589 
1590 	return 0;
1591 }
1592 
1593 static void copy_seccomp(struct task_struct *p)
1594 {
1595 #ifdef CONFIG_SECCOMP
1596 	/*
1597 	 * Must be called with sighand->lock held, which is common to
1598 	 * all threads in the group. Holding cred_guard_mutex is not
1599 	 * needed because this new task is not yet running and cannot
1600 	 * be racing exec.
1601 	 */
1602 	assert_spin_locked(&current->sighand->siglock);
1603 
1604 	/* Ref-count the new filter user, and assign it. */
1605 	get_seccomp_filter(current);
1606 	p->seccomp = current->seccomp;
1607 
1608 	/*
1609 	 * Explicitly enable no_new_privs here in case it got set
1610 	 * between the task_struct being duplicated and holding the
1611 	 * sighand lock. The seccomp state and nnp must be in sync.
1612 	 */
1613 	if (task_no_new_privs(current))
1614 		task_set_no_new_privs(p);
1615 
1616 	/*
1617 	 * If the parent gained a seccomp mode after copying thread
1618 	 * flags and between before we held the sighand lock, we have
1619 	 * to manually enable the seccomp thread flag here.
1620 	 */
1621 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1622 		set_tsk_thread_flag(p, TIF_SECCOMP);
1623 #endif
1624 }
1625 
1626 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1627 {
1628 	current->clear_child_tid = tidptr;
1629 
1630 	return task_pid_vnr(current);
1631 }
1632 
1633 static void rt_mutex_init_task(struct task_struct *p)
1634 {
1635 	raw_spin_lock_init(&p->pi_lock);
1636 #ifdef CONFIG_RT_MUTEXES
1637 	p->pi_waiters = RB_ROOT_CACHED;
1638 	p->pi_top_task = NULL;
1639 	p->pi_blocked_on = NULL;
1640 #endif
1641 }
1642 
1643 #ifdef CONFIG_POSIX_TIMERS
1644 /*
1645  * Initialize POSIX timer handling for a single task.
1646  */
1647 static void posix_cpu_timers_init(struct task_struct *tsk)
1648 {
1649 	tsk->cputime_expires.prof_exp = 0;
1650 	tsk->cputime_expires.virt_exp = 0;
1651 	tsk->cputime_expires.sched_exp = 0;
1652 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1653 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1654 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1655 }
1656 #else
1657 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1658 #endif
1659 
1660 static inline void init_task_pid_links(struct task_struct *task)
1661 {
1662 	enum pid_type type;
1663 
1664 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1665 		INIT_HLIST_NODE(&task->pid_links[type]);
1666 	}
1667 }
1668 
1669 static inline void
1670 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1671 {
1672 	if (type == PIDTYPE_PID)
1673 		task->thread_pid = pid;
1674 	else
1675 		task->signal->pids[type] = pid;
1676 }
1677 
1678 static inline void rcu_copy_process(struct task_struct *p)
1679 {
1680 #ifdef CONFIG_PREEMPT_RCU
1681 	p->rcu_read_lock_nesting = 0;
1682 	p->rcu_read_unlock_special.s = 0;
1683 	p->rcu_blocked_node = NULL;
1684 	INIT_LIST_HEAD(&p->rcu_node_entry);
1685 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1686 #ifdef CONFIG_TASKS_RCU
1687 	p->rcu_tasks_holdout = false;
1688 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1689 	p->rcu_tasks_idle_cpu = -1;
1690 #endif /* #ifdef CONFIG_TASKS_RCU */
1691 }
1692 
1693 static int pidfd_release(struct inode *inode, struct file *file)
1694 {
1695 	struct pid *pid = file->private_data;
1696 
1697 	file->private_data = NULL;
1698 	put_pid(pid);
1699 	return 0;
1700 }
1701 
1702 #ifdef CONFIG_PROC_FS
1703 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1704 {
1705 	struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1706 	struct pid *pid = f->private_data;
1707 
1708 	seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1709 	seq_putc(m, '\n');
1710 }
1711 #endif
1712 
1713 /*
1714  * Poll support for process exit notification.
1715  */
1716 static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts)
1717 {
1718 	struct task_struct *task;
1719 	struct pid *pid = file->private_data;
1720 	int poll_flags = 0;
1721 
1722 	poll_wait(file, &pid->wait_pidfd, pts);
1723 
1724 	rcu_read_lock();
1725 	task = pid_task(pid, PIDTYPE_PID);
1726 	/*
1727 	 * Inform pollers only when the whole thread group exits.
1728 	 * If the thread group leader exits before all other threads in the
1729 	 * group, then poll(2) should block, similar to the wait(2) family.
1730 	 */
1731 	if (!task || (task->exit_state && thread_group_empty(task)))
1732 		poll_flags = POLLIN | POLLRDNORM;
1733 	rcu_read_unlock();
1734 
1735 	return poll_flags;
1736 }
1737 
1738 const struct file_operations pidfd_fops = {
1739 	.release = pidfd_release,
1740 	.poll = pidfd_poll,
1741 #ifdef CONFIG_PROC_FS
1742 	.show_fdinfo = pidfd_show_fdinfo,
1743 #endif
1744 };
1745 
1746 static void __delayed_free_task(struct rcu_head *rhp)
1747 {
1748 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1749 
1750 	free_task(tsk);
1751 }
1752 
1753 static __always_inline void delayed_free_task(struct task_struct *tsk)
1754 {
1755 	if (IS_ENABLED(CONFIG_MEMCG))
1756 		call_rcu(&tsk->rcu, __delayed_free_task);
1757 	else
1758 		free_task(tsk);
1759 }
1760 
1761 /*
1762  * This creates a new process as a copy of the old one,
1763  * but does not actually start it yet.
1764  *
1765  * It copies the registers, and all the appropriate
1766  * parts of the process environment (as per the clone
1767  * flags). The actual kick-off is left to the caller.
1768  */
1769 static __latent_entropy struct task_struct *copy_process(
1770 					struct pid *pid,
1771 					int trace,
1772 					int node,
1773 					struct kernel_clone_args *args)
1774 {
1775 	int pidfd = -1, retval;
1776 	struct task_struct *p;
1777 	struct multiprocess_signals delayed;
1778 	struct file *pidfile = NULL;
1779 	u64 clone_flags = args->flags;
1780 
1781 	/*
1782 	 * Don't allow sharing the root directory with processes in a different
1783 	 * namespace
1784 	 */
1785 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1786 		return ERR_PTR(-EINVAL);
1787 
1788 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1789 		return ERR_PTR(-EINVAL);
1790 
1791 	/*
1792 	 * Thread groups must share signals as well, and detached threads
1793 	 * can only be started up within the thread group.
1794 	 */
1795 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1796 		return ERR_PTR(-EINVAL);
1797 
1798 	/*
1799 	 * Shared signal handlers imply shared VM. By way of the above,
1800 	 * thread groups also imply shared VM. Blocking this case allows
1801 	 * for various simplifications in other code.
1802 	 */
1803 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1804 		return ERR_PTR(-EINVAL);
1805 
1806 	/*
1807 	 * Siblings of global init remain as zombies on exit since they are
1808 	 * not reaped by their parent (swapper). To solve this and to avoid
1809 	 * multi-rooted process trees, prevent global and container-inits
1810 	 * from creating siblings.
1811 	 */
1812 	if ((clone_flags & CLONE_PARENT) &&
1813 				current->signal->flags & SIGNAL_UNKILLABLE)
1814 		return ERR_PTR(-EINVAL);
1815 
1816 	/*
1817 	 * If the new process will be in a different pid or user namespace
1818 	 * do not allow it to share a thread group with the forking task.
1819 	 */
1820 	if (clone_flags & CLONE_THREAD) {
1821 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1822 		    (task_active_pid_ns(current) !=
1823 				current->nsproxy->pid_ns_for_children))
1824 			return ERR_PTR(-EINVAL);
1825 	}
1826 
1827 	if (clone_flags & CLONE_PIDFD) {
1828 		/*
1829 		 * - CLONE_DETACHED is blocked so that we can potentially
1830 		 *   reuse it later for CLONE_PIDFD.
1831 		 * - CLONE_THREAD is blocked until someone really needs it.
1832 		 */
1833 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1834 			return ERR_PTR(-EINVAL);
1835 	}
1836 
1837 	/*
1838 	 * Force any signals received before this point to be delivered
1839 	 * before the fork happens.  Collect up signals sent to multiple
1840 	 * processes that happen during the fork and delay them so that
1841 	 * they appear to happen after the fork.
1842 	 */
1843 	sigemptyset(&delayed.signal);
1844 	INIT_HLIST_NODE(&delayed.node);
1845 
1846 	spin_lock_irq(&current->sighand->siglock);
1847 	if (!(clone_flags & CLONE_THREAD))
1848 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1849 	recalc_sigpending();
1850 	spin_unlock_irq(&current->sighand->siglock);
1851 	retval = -ERESTARTNOINTR;
1852 	if (signal_pending(current))
1853 		goto fork_out;
1854 
1855 	retval = -ENOMEM;
1856 	p = dup_task_struct(current, node);
1857 	if (!p)
1858 		goto fork_out;
1859 
1860 	/*
1861 	 * This _must_ happen before we call free_task(), i.e. before we jump
1862 	 * to any of the bad_fork_* labels. This is to avoid freeing
1863 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1864 	 * kernel threads (PF_KTHREAD).
1865 	 */
1866 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1867 	/*
1868 	 * Clear TID on mm_release()?
1869 	 */
1870 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1871 
1872 	ftrace_graph_init_task(p);
1873 
1874 	rt_mutex_init_task(p);
1875 
1876 #ifdef CONFIG_PROVE_LOCKING
1877 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1878 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1879 #endif
1880 	retval = -EAGAIN;
1881 	if (atomic_read(&p->real_cred->user->processes) >=
1882 			task_rlimit(p, RLIMIT_NPROC)) {
1883 		if (p->real_cred->user != INIT_USER &&
1884 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1885 			goto bad_fork_free;
1886 	}
1887 	current->flags &= ~PF_NPROC_EXCEEDED;
1888 
1889 	retval = copy_creds(p, clone_flags);
1890 	if (retval < 0)
1891 		goto bad_fork_free;
1892 
1893 	/*
1894 	 * If multiple threads are within copy_process(), then this check
1895 	 * triggers too late. This doesn't hurt, the check is only there
1896 	 * to stop root fork bombs.
1897 	 */
1898 	retval = -EAGAIN;
1899 	if (nr_threads >= max_threads)
1900 		goto bad_fork_cleanup_count;
1901 
1902 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1903 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1904 	p->flags |= PF_FORKNOEXEC;
1905 	INIT_LIST_HEAD(&p->children);
1906 	INIT_LIST_HEAD(&p->sibling);
1907 	rcu_copy_process(p);
1908 	p->vfork_done = NULL;
1909 	spin_lock_init(&p->alloc_lock);
1910 
1911 	init_sigpending(&p->pending);
1912 
1913 	p->utime = p->stime = p->gtime = 0;
1914 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1915 	p->utimescaled = p->stimescaled = 0;
1916 #endif
1917 	prev_cputime_init(&p->prev_cputime);
1918 
1919 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1920 	seqcount_init(&p->vtime.seqcount);
1921 	p->vtime.starttime = 0;
1922 	p->vtime.state = VTIME_INACTIVE;
1923 #endif
1924 
1925 #if defined(SPLIT_RSS_COUNTING)
1926 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1927 #endif
1928 
1929 	p->default_timer_slack_ns = current->timer_slack_ns;
1930 
1931 #ifdef CONFIG_PSI
1932 	p->psi_flags = 0;
1933 #endif
1934 
1935 	task_io_accounting_init(&p->ioac);
1936 	acct_clear_integrals(p);
1937 
1938 	posix_cpu_timers_init(p);
1939 
1940 	p->io_context = NULL;
1941 	audit_set_context(p, NULL);
1942 	cgroup_fork(p);
1943 #ifdef CONFIG_NUMA
1944 	p->mempolicy = mpol_dup(p->mempolicy);
1945 	if (IS_ERR(p->mempolicy)) {
1946 		retval = PTR_ERR(p->mempolicy);
1947 		p->mempolicy = NULL;
1948 		goto bad_fork_cleanup_threadgroup_lock;
1949 	}
1950 #endif
1951 #ifdef CONFIG_CPUSETS
1952 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1953 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1954 	seqcount_init(&p->mems_allowed_seq);
1955 #endif
1956 #ifdef CONFIG_TRACE_IRQFLAGS
1957 	p->irq_events = 0;
1958 	p->hardirqs_enabled = 0;
1959 	p->hardirq_enable_ip = 0;
1960 	p->hardirq_enable_event = 0;
1961 	p->hardirq_disable_ip = _THIS_IP_;
1962 	p->hardirq_disable_event = 0;
1963 	p->softirqs_enabled = 1;
1964 	p->softirq_enable_ip = _THIS_IP_;
1965 	p->softirq_enable_event = 0;
1966 	p->softirq_disable_ip = 0;
1967 	p->softirq_disable_event = 0;
1968 	p->hardirq_context = 0;
1969 	p->softirq_context = 0;
1970 #endif
1971 
1972 	p->pagefault_disabled = 0;
1973 
1974 #ifdef CONFIG_LOCKDEP
1975 	lockdep_init_task(p);
1976 #endif
1977 
1978 #ifdef CONFIG_DEBUG_MUTEXES
1979 	p->blocked_on = NULL; /* not blocked yet */
1980 #endif
1981 #ifdef CONFIG_BCACHE
1982 	p->sequential_io	= 0;
1983 	p->sequential_io_avg	= 0;
1984 #endif
1985 
1986 	/* Perform scheduler related setup. Assign this task to a CPU. */
1987 	retval = sched_fork(clone_flags, p);
1988 	if (retval)
1989 		goto bad_fork_cleanup_policy;
1990 
1991 	retval = perf_event_init_task(p);
1992 	if (retval)
1993 		goto bad_fork_cleanup_policy;
1994 	retval = audit_alloc(p);
1995 	if (retval)
1996 		goto bad_fork_cleanup_perf;
1997 	/* copy all the process information */
1998 	shm_init_task(p);
1999 	retval = security_task_alloc(p, clone_flags);
2000 	if (retval)
2001 		goto bad_fork_cleanup_audit;
2002 	retval = copy_semundo(clone_flags, p);
2003 	if (retval)
2004 		goto bad_fork_cleanup_security;
2005 	retval = copy_files(clone_flags, p);
2006 	if (retval)
2007 		goto bad_fork_cleanup_semundo;
2008 	retval = copy_fs(clone_flags, p);
2009 	if (retval)
2010 		goto bad_fork_cleanup_files;
2011 	retval = copy_sighand(clone_flags, p);
2012 	if (retval)
2013 		goto bad_fork_cleanup_fs;
2014 	retval = copy_signal(clone_flags, p);
2015 	if (retval)
2016 		goto bad_fork_cleanup_sighand;
2017 	retval = copy_mm(clone_flags, p);
2018 	if (retval)
2019 		goto bad_fork_cleanup_signal;
2020 	retval = copy_namespaces(clone_flags, p);
2021 	if (retval)
2022 		goto bad_fork_cleanup_mm;
2023 	retval = copy_io(clone_flags, p);
2024 	if (retval)
2025 		goto bad_fork_cleanup_namespaces;
2026 	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2027 				 args->tls);
2028 	if (retval)
2029 		goto bad_fork_cleanup_io;
2030 
2031 	stackleak_task_init(p);
2032 
2033 	if (pid != &init_struct_pid) {
2034 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2035 		if (IS_ERR(pid)) {
2036 			retval = PTR_ERR(pid);
2037 			goto bad_fork_cleanup_thread;
2038 		}
2039 	}
2040 
2041 	/*
2042 	 * This has to happen after we've potentially unshared the file
2043 	 * descriptor table (so that the pidfd doesn't leak into the child
2044 	 * if the fd table isn't shared).
2045 	 */
2046 	if (clone_flags & CLONE_PIDFD) {
2047 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2048 		if (retval < 0)
2049 			goto bad_fork_free_pid;
2050 
2051 		pidfd = retval;
2052 
2053 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2054 					      O_RDWR | O_CLOEXEC);
2055 		if (IS_ERR(pidfile)) {
2056 			put_unused_fd(pidfd);
2057 			retval = PTR_ERR(pidfile);
2058 			goto bad_fork_free_pid;
2059 		}
2060 		get_pid(pid);	/* held by pidfile now */
2061 
2062 		retval = put_user(pidfd, args->pidfd);
2063 		if (retval)
2064 			goto bad_fork_put_pidfd;
2065 	}
2066 
2067 #ifdef CONFIG_BLOCK
2068 	p->plug = NULL;
2069 #endif
2070 #ifdef CONFIG_FUTEX
2071 	p->robust_list = NULL;
2072 #ifdef CONFIG_COMPAT
2073 	p->compat_robust_list = NULL;
2074 #endif
2075 	INIT_LIST_HEAD(&p->pi_state_list);
2076 	p->pi_state_cache = NULL;
2077 #endif
2078 	/*
2079 	 * sigaltstack should be cleared when sharing the same VM
2080 	 */
2081 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2082 		sas_ss_reset(p);
2083 
2084 	/*
2085 	 * Syscall tracing and stepping should be turned off in the
2086 	 * child regardless of CLONE_PTRACE.
2087 	 */
2088 	user_disable_single_step(p);
2089 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2090 #ifdef TIF_SYSCALL_EMU
2091 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2092 #endif
2093 	clear_tsk_latency_tracing(p);
2094 
2095 	/* ok, now we should be set up.. */
2096 	p->pid = pid_nr(pid);
2097 	if (clone_flags & CLONE_THREAD) {
2098 		p->exit_signal = -1;
2099 		p->group_leader = current->group_leader;
2100 		p->tgid = current->tgid;
2101 	} else {
2102 		if (clone_flags & CLONE_PARENT)
2103 			p->exit_signal = current->group_leader->exit_signal;
2104 		else
2105 			p->exit_signal = args->exit_signal;
2106 		p->group_leader = p;
2107 		p->tgid = p->pid;
2108 	}
2109 
2110 	p->nr_dirtied = 0;
2111 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2112 	p->dirty_paused_when = 0;
2113 
2114 	p->pdeath_signal = 0;
2115 	INIT_LIST_HEAD(&p->thread_group);
2116 	p->task_works = NULL;
2117 
2118 	cgroup_threadgroup_change_begin(current);
2119 	/*
2120 	 * Ensure that the cgroup subsystem policies allow the new process to be
2121 	 * forked. It should be noted the the new process's css_set can be changed
2122 	 * between here and cgroup_post_fork() if an organisation operation is in
2123 	 * progress.
2124 	 */
2125 	retval = cgroup_can_fork(p);
2126 	if (retval)
2127 		goto bad_fork_cgroup_threadgroup_change_end;
2128 
2129 	/*
2130 	 * From this point on we must avoid any synchronous user-space
2131 	 * communication until we take the tasklist-lock. In particular, we do
2132 	 * not want user-space to be able to predict the process start-time by
2133 	 * stalling fork(2) after we recorded the start_time but before it is
2134 	 * visible to the system.
2135 	 */
2136 
2137 	p->start_time = ktime_get_ns();
2138 	p->real_start_time = ktime_get_boottime_ns();
2139 
2140 	/*
2141 	 * Make it visible to the rest of the system, but dont wake it up yet.
2142 	 * Need tasklist lock for parent etc handling!
2143 	 */
2144 	write_lock_irq(&tasklist_lock);
2145 
2146 	/* CLONE_PARENT re-uses the old parent */
2147 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2148 		p->real_parent = current->real_parent;
2149 		p->parent_exec_id = current->parent_exec_id;
2150 	} else {
2151 		p->real_parent = current;
2152 		p->parent_exec_id = current->self_exec_id;
2153 	}
2154 
2155 	klp_copy_process(p);
2156 
2157 	spin_lock(&current->sighand->siglock);
2158 
2159 	/*
2160 	 * Copy seccomp details explicitly here, in case they were changed
2161 	 * before holding sighand lock.
2162 	 */
2163 	copy_seccomp(p);
2164 
2165 	rseq_fork(p, clone_flags);
2166 
2167 	/* Don't start children in a dying pid namespace */
2168 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2169 		retval = -ENOMEM;
2170 		goto bad_fork_cancel_cgroup;
2171 	}
2172 
2173 	/* Let kill terminate clone/fork in the middle */
2174 	if (fatal_signal_pending(current)) {
2175 		retval = -EINTR;
2176 		goto bad_fork_cancel_cgroup;
2177 	}
2178 
2179 	/* past the last point of failure */
2180 	if (pidfile)
2181 		fd_install(pidfd, pidfile);
2182 
2183 	init_task_pid_links(p);
2184 	if (likely(p->pid)) {
2185 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2186 
2187 		init_task_pid(p, PIDTYPE_PID, pid);
2188 		if (thread_group_leader(p)) {
2189 			init_task_pid(p, PIDTYPE_TGID, pid);
2190 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2191 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2192 
2193 			if (is_child_reaper(pid)) {
2194 				ns_of_pid(pid)->child_reaper = p;
2195 				p->signal->flags |= SIGNAL_UNKILLABLE;
2196 			}
2197 			p->signal->shared_pending.signal = delayed.signal;
2198 			p->signal->tty = tty_kref_get(current->signal->tty);
2199 			/*
2200 			 * Inherit has_child_subreaper flag under the same
2201 			 * tasklist_lock with adding child to the process tree
2202 			 * for propagate_has_child_subreaper optimization.
2203 			 */
2204 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2205 							 p->real_parent->signal->is_child_subreaper;
2206 			list_add_tail(&p->sibling, &p->real_parent->children);
2207 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2208 			attach_pid(p, PIDTYPE_TGID);
2209 			attach_pid(p, PIDTYPE_PGID);
2210 			attach_pid(p, PIDTYPE_SID);
2211 			__this_cpu_inc(process_counts);
2212 		} else {
2213 			current->signal->nr_threads++;
2214 			atomic_inc(&current->signal->live);
2215 			refcount_inc(&current->signal->sigcnt);
2216 			task_join_group_stop(p);
2217 			list_add_tail_rcu(&p->thread_group,
2218 					  &p->group_leader->thread_group);
2219 			list_add_tail_rcu(&p->thread_node,
2220 					  &p->signal->thread_head);
2221 		}
2222 		attach_pid(p, PIDTYPE_PID);
2223 		nr_threads++;
2224 	}
2225 	total_forks++;
2226 	hlist_del_init(&delayed.node);
2227 	spin_unlock(&current->sighand->siglock);
2228 	syscall_tracepoint_update(p);
2229 	write_unlock_irq(&tasklist_lock);
2230 
2231 	proc_fork_connector(p);
2232 	cgroup_post_fork(p);
2233 	cgroup_threadgroup_change_end(current);
2234 	perf_event_fork(p);
2235 
2236 	trace_task_newtask(p, clone_flags);
2237 	uprobe_copy_process(p, clone_flags);
2238 
2239 	return p;
2240 
2241 bad_fork_cancel_cgroup:
2242 	spin_unlock(&current->sighand->siglock);
2243 	write_unlock_irq(&tasklist_lock);
2244 	cgroup_cancel_fork(p);
2245 bad_fork_cgroup_threadgroup_change_end:
2246 	cgroup_threadgroup_change_end(current);
2247 bad_fork_put_pidfd:
2248 	if (clone_flags & CLONE_PIDFD) {
2249 		fput(pidfile);
2250 		put_unused_fd(pidfd);
2251 	}
2252 bad_fork_free_pid:
2253 	if (pid != &init_struct_pid)
2254 		free_pid(pid);
2255 bad_fork_cleanup_thread:
2256 	exit_thread(p);
2257 bad_fork_cleanup_io:
2258 	if (p->io_context)
2259 		exit_io_context(p);
2260 bad_fork_cleanup_namespaces:
2261 	exit_task_namespaces(p);
2262 bad_fork_cleanup_mm:
2263 	if (p->mm) {
2264 		mm_clear_owner(p->mm, p);
2265 		mmput(p->mm);
2266 	}
2267 bad_fork_cleanup_signal:
2268 	if (!(clone_flags & CLONE_THREAD))
2269 		free_signal_struct(p->signal);
2270 bad_fork_cleanup_sighand:
2271 	__cleanup_sighand(p->sighand);
2272 bad_fork_cleanup_fs:
2273 	exit_fs(p); /* blocking */
2274 bad_fork_cleanup_files:
2275 	exit_files(p); /* blocking */
2276 bad_fork_cleanup_semundo:
2277 	exit_sem(p);
2278 bad_fork_cleanup_security:
2279 	security_task_free(p);
2280 bad_fork_cleanup_audit:
2281 	audit_free(p);
2282 bad_fork_cleanup_perf:
2283 	perf_event_free_task(p);
2284 bad_fork_cleanup_policy:
2285 	lockdep_free_task(p);
2286 #ifdef CONFIG_NUMA
2287 	mpol_put(p->mempolicy);
2288 bad_fork_cleanup_threadgroup_lock:
2289 #endif
2290 	delayacct_tsk_free(p);
2291 bad_fork_cleanup_count:
2292 	atomic_dec(&p->cred->user->processes);
2293 	exit_creds(p);
2294 bad_fork_free:
2295 	p->state = TASK_DEAD;
2296 	put_task_stack(p);
2297 	delayed_free_task(p);
2298 fork_out:
2299 	spin_lock_irq(&current->sighand->siglock);
2300 	hlist_del_init(&delayed.node);
2301 	spin_unlock_irq(&current->sighand->siglock);
2302 	return ERR_PTR(retval);
2303 }
2304 
2305 static inline void init_idle_pids(struct task_struct *idle)
2306 {
2307 	enum pid_type type;
2308 
2309 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2310 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2311 		init_task_pid(idle, type, &init_struct_pid);
2312 	}
2313 }
2314 
2315 struct task_struct *fork_idle(int cpu)
2316 {
2317 	struct task_struct *task;
2318 	struct kernel_clone_args args = {
2319 		.flags = CLONE_VM,
2320 	};
2321 
2322 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2323 	if (!IS_ERR(task)) {
2324 		init_idle_pids(task);
2325 		init_idle(task, cpu);
2326 	}
2327 
2328 	return task;
2329 }
2330 
2331 struct mm_struct *copy_init_mm(void)
2332 {
2333 	return dup_mm(NULL, &init_mm);
2334 }
2335 
2336 /*
2337  *  Ok, this is the main fork-routine.
2338  *
2339  * It copies the process, and if successful kick-starts
2340  * it and waits for it to finish using the VM if required.
2341  */
2342 long _do_fork(struct kernel_clone_args *args)
2343 {
2344 	u64 clone_flags = args->flags;
2345 	struct completion vfork;
2346 	struct pid *pid;
2347 	struct task_struct *p;
2348 	int trace = 0;
2349 	long nr;
2350 
2351 	/*
2352 	 * Determine whether and which event to report to ptracer.  When
2353 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2354 	 * requested, no event is reported; otherwise, report if the event
2355 	 * for the type of forking is enabled.
2356 	 */
2357 	if (!(clone_flags & CLONE_UNTRACED)) {
2358 		if (clone_flags & CLONE_VFORK)
2359 			trace = PTRACE_EVENT_VFORK;
2360 		else if (args->exit_signal != SIGCHLD)
2361 			trace = PTRACE_EVENT_CLONE;
2362 		else
2363 			trace = PTRACE_EVENT_FORK;
2364 
2365 		if (likely(!ptrace_event_enabled(current, trace)))
2366 			trace = 0;
2367 	}
2368 
2369 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2370 	add_latent_entropy();
2371 
2372 	if (IS_ERR(p))
2373 		return PTR_ERR(p);
2374 
2375 	/*
2376 	 * Do this prior waking up the new thread - the thread pointer
2377 	 * might get invalid after that point, if the thread exits quickly.
2378 	 */
2379 	trace_sched_process_fork(current, p);
2380 
2381 	pid = get_task_pid(p, PIDTYPE_PID);
2382 	nr = pid_vnr(pid);
2383 
2384 	if (clone_flags & CLONE_PARENT_SETTID)
2385 		put_user(nr, args->parent_tid);
2386 
2387 	if (clone_flags & CLONE_VFORK) {
2388 		p->vfork_done = &vfork;
2389 		init_completion(&vfork);
2390 		get_task_struct(p);
2391 	}
2392 
2393 	wake_up_new_task(p);
2394 
2395 	/* forking complete and child started to run, tell ptracer */
2396 	if (unlikely(trace))
2397 		ptrace_event_pid(trace, pid);
2398 
2399 	if (clone_flags & CLONE_VFORK) {
2400 		if (!wait_for_vfork_done(p, &vfork))
2401 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2402 	}
2403 
2404 	put_pid(pid);
2405 	return nr;
2406 }
2407 
2408 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2409 {
2410 	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2411 	if ((kargs->flags & CLONE_PIDFD) &&
2412 	    (kargs->flags & CLONE_PARENT_SETTID))
2413 		return false;
2414 
2415 	return true;
2416 }
2417 
2418 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2419 /* For compatibility with architectures that call do_fork directly rather than
2420  * using the syscall entry points below. */
2421 long do_fork(unsigned long clone_flags,
2422 	      unsigned long stack_start,
2423 	      unsigned long stack_size,
2424 	      int __user *parent_tidptr,
2425 	      int __user *child_tidptr)
2426 {
2427 	struct kernel_clone_args args = {
2428 		.flags		= (clone_flags & ~CSIGNAL),
2429 		.pidfd		= parent_tidptr,
2430 		.child_tid	= child_tidptr,
2431 		.parent_tid	= parent_tidptr,
2432 		.exit_signal	= (clone_flags & CSIGNAL),
2433 		.stack		= stack_start,
2434 		.stack_size	= stack_size,
2435 	};
2436 
2437 	if (!legacy_clone_args_valid(&args))
2438 		return -EINVAL;
2439 
2440 	return _do_fork(&args);
2441 }
2442 #endif
2443 
2444 /*
2445  * Create a kernel thread.
2446  */
2447 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2448 {
2449 	struct kernel_clone_args args = {
2450 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2451 		.exit_signal	= (flags & CSIGNAL),
2452 		.stack		= (unsigned long)fn,
2453 		.stack_size	= (unsigned long)arg,
2454 	};
2455 
2456 	return _do_fork(&args);
2457 }
2458 
2459 #ifdef __ARCH_WANT_SYS_FORK
2460 SYSCALL_DEFINE0(fork)
2461 {
2462 #ifdef CONFIG_MMU
2463 	struct kernel_clone_args args = {
2464 		.exit_signal = SIGCHLD,
2465 	};
2466 
2467 	return _do_fork(&args);
2468 #else
2469 	/* can not support in nommu mode */
2470 	return -EINVAL;
2471 #endif
2472 }
2473 #endif
2474 
2475 #ifdef __ARCH_WANT_SYS_VFORK
2476 SYSCALL_DEFINE0(vfork)
2477 {
2478 	struct kernel_clone_args args = {
2479 		.flags		= CLONE_VFORK | CLONE_VM,
2480 		.exit_signal	= SIGCHLD,
2481 	};
2482 
2483 	return _do_fork(&args);
2484 }
2485 #endif
2486 
2487 #ifdef __ARCH_WANT_SYS_CLONE
2488 #ifdef CONFIG_CLONE_BACKWARDS
2489 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2490 		 int __user *, parent_tidptr,
2491 		 unsigned long, tls,
2492 		 int __user *, child_tidptr)
2493 #elif defined(CONFIG_CLONE_BACKWARDS2)
2494 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2495 		 int __user *, parent_tidptr,
2496 		 int __user *, child_tidptr,
2497 		 unsigned long, tls)
2498 #elif defined(CONFIG_CLONE_BACKWARDS3)
2499 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2500 		int, stack_size,
2501 		int __user *, parent_tidptr,
2502 		int __user *, child_tidptr,
2503 		unsigned long, tls)
2504 #else
2505 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2506 		 int __user *, parent_tidptr,
2507 		 int __user *, child_tidptr,
2508 		 unsigned long, tls)
2509 #endif
2510 {
2511 	struct kernel_clone_args args = {
2512 		.flags		= (clone_flags & ~CSIGNAL),
2513 		.pidfd		= parent_tidptr,
2514 		.child_tid	= child_tidptr,
2515 		.parent_tid	= parent_tidptr,
2516 		.exit_signal	= (clone_flags & CSIGNAL),
2517 		.stack		= newsp,
2518 		.tls		= tls,
2519 	};
2520 
2521 	if (!legacy_clone_args_valid(&args))
2522 		return -EINVAL;
2523 
2524 	return _do_fork(&args);
2525 }
2526 #endif
2527 
2528 #ifdef __ARCH_WANT_SYS_CLONE3
2529 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2530 					      struct clone_args __user *uargs,
2531 					      size_t size)
2532 {
2533 	struct clone_args args;
2534 
2535 	if (unlikely(size > PAGE_SIZE))
2536 		return -E2BIG;
2537 
2538 	if (unlikely(size < sizeof(struct clone_args)))
2539 		return -EINVAL;
2540 
2541 	if (unlikely(!access_ok(uargs, size)))
2542 		return -EFAULT;
2543 
2544 	if (size > sizeof(struct clone_args)) {
2545 		unsigned char __user *addr;
2546 		unsigned char __user *end;
2547 		unsigned char val;
2548 
2549 		addr = (void __user *)uargs + sizeof(struct clone_args);
2550 		end = (void __user *)uargs + size;
2551 
2552 		for (; addr < end; addr++) {
2553 			if (get_user(val, addr))
2554 				return -EFAULT;
2555 			if (val)
2556 				return -E2BIG;
2557 		}
2558 
2559 		size = sizeof(struct clone_args);
2560 	}
2561 
2562 	if (copy_from_user(&args, uargs, size))
2563 		return -EFAULT;
2564 
2565 	*kargs = (struct kernel_clone_args){
2566 		.flags		= args.flags,
2567 		.pidfd		= u64_to_user_ptr(args.pidfd),
2568 		.child_tid	= u64_to_user_ptr(args.child_tid),
2569 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2570 		.exit_signal	= args.exit_signal,
2571 		.stack		= args.stack,
2572 		.stack_size	= args.stack_size,
2573 		.tls		= args.tls,
2574 	};
2575 
2576 	return 0;
2577 }
2578 
2579 static bool clone3_args_valid(const struct kernel_clone_args *kargs)
2580 {
2581 	/*
2582 	 * All lower bits of the flag word are taken.
2583 	 * Verify that no other unknown flags are passed along.
2584 	 */
2585 	if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2586 		return false;
2587 
2588 	/*
2589 	 * - make the CLONE_DETACHED bit reuseable for clone3
2590 	 * - make the CSIGNAL bits reuseable for clone3
2591 	 */
2592 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2593 		return false;
2594 
2595 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2596 	    kargs->exit_signal)
2597 		return false;
2598 
2599 	return true;
2600 }
2601 
2602 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2603 {
2604 	int err;
2605 
2606 	struct kernel_clone_args kargs;
2607 
2608 	err = copy_clone_args_from_user(&kargs, uargs, size);
2609 	if (err)
2610 		return err;
2611 
2612 	if (!clone3_args_valid(&kargs))
2613 		return -EINVAL;
2614 
2615 	return _do_fork(&kargs);
2616 }
2617 #endif
2618 
2619 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2620 {
2621 	struct task_struct *leader, *parent, *child;
2622 	int res;
2623 
2624 	read_lock(&tasklist_lock);
2625 	leader = top = top->group_leader;
2626 down:
2627 	for_each_thread(leader, parent) {
2628 		list_for_each_entry(child, &parent->children, sibling) {
2629 			res = visitor(child, data);
2630 			if (res) {
2631 				if (res < 0)
2632 					goto out;
2633 				leader = child;
2634 				goto down;
2635 			}
2636 up:
2637 			;
2638 		}
2639 	}
2640 
2641 	if (leader != top) {
2642 		child = leader;
2643 		parent = child->real_parent;
2644 		leader = parent->group_leader;
2645 		goto up;
2646 	}
2647 out:
2648 	read_unlock(&tasklist_lock);
2649 }
2650 
2651 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2652 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2653 #endif
2654 
2655 static void sighand_ctor(void *data)
2656 {
2657 	struct sighand_struct *sighand = data;
2658 
2659 	spin_lock_init(&sighand->siglock);
2660 	init_waitqueue_head(&sighand->signalfd_wqh);
2661 }
2662 
2663 void __init proc_caches_init(void)
2664 {
2665 	unsigned int mm_size;
2666 
2667 	sighand_cachep = kmem_cache_create("sighand_cache",
2668 			sizeof(struct sighand_struct), 0,
2669 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2670 			SLAB_ACCOUNT, sighand_ctor);
2671 	signal_cachep = kmem_cache_create("signal_cache",
2672 			sizeof(struct signal_struct), 0,
2673 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2674 			NULL);
2675 	files_cachep = kmem_cache_create("files_cache",
2676 			sizeof(struct files_struct), 0,
2677 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2678 			NULL);
2679 	fs_cachep = kmem_cache_create("fs_cache",
2680 			sizeof(struct fs_struct), 0,
2681 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2682 			NULL);
2683 
2684 	/*
2685 	 * The mm_cpumask is located at the end of mm_struct, and is
2686 	 * dynamically sized based on the maximum CPU number this system
2687 	 * can have, taking hotplug into account (nr_cpu_ids).
2688 	 */
2689 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2690 
2691 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2692 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2693 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2694 			offsetof(struct mm_struct, saved_auxv),
2695 			sizeof_field(struct mm_struct, saved_auxv),
2696 			NULL);
2697 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2698 	mmap_init();
2699 	nsproxy_cache_init();
2700 }
2701 
2702 /*
2703  * Check constraints on flags passed to the unshare system call.
2704  */
2705 static int check_unshare_flags(unsigned long unshare_flags)
2706 {
2707 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2708 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2709 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2710 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2711 		return -EINVAL;
2712 	/*
2713 	 * Not implemented, but pretend it works if there is nothing
2714 	 * to unshare.  Note that unsharing the address space or the
2715 	 * signal handlers also need to unshare the signal queues (aka
2716 	 * CLONE_THREAD).
2717 	 */
2718 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2719 		if (!thread_group_empty(current))
2720 			return -EINVAL;
2721 	}
2722 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2723 		if (refcount_read(&current->sighand->count) > 1)
2724 			return -EINVAL;
2725 	}
2726 	if (unshare_flags & CLONE_VM) {
2727 		if (!current_is_single_threaded())
2728 			return -EINVAL;
2729 	}
2730 
2731 	return 0;
2732 }
2733 
2734 /*
2735  * Unshare the filesystem structure if it is being shared
2736  */
2737 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2738 {
2739 	struct fs_struct *fs = current->fs;
2740 
2741 	if (!(unshare_flags & CLONE_FS) || !fs)
2742 		return 0;
2743 
2744 	/* don't need lock here; in the worst case we'll do useless copy */
2745 	if (fs->users == 1)
2746 		return 0;
2747 
2748 	*new_fsp = copy_fs_struct(fs);
2749 	if (!*new_fsp)
2750 		return -ENOMEM;
2751 
2752 	return 0;
2753 }
2754 
2755 /*
2756  * Unshare file descriptor table if it is being shared
2757  */
2758 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2759 {
2760 	struct files_struct *fd = current->files;
2761 	int error = 0;
2762 
2763 	if ((unshare_flags & CLONE_FILES) &&
2764 	    (fd && atomic_read(&fd->count) > 1)) {
2765 		*new_fdp = dup_fd(fd, &error);
2766 		if (!*new_fdp)
2767 			return error;
2768 	}
2769 
2770 	return 0;
2771 }
2772 
2773 /*
2774  * unshare allows a process to 'unshare' part of the process
2775  * context which was originally shared using clone.  copy_*
2776  * functions used by do_fork() cannot be used here directly
2777  * because they modify an inactive task_struct that is being
2778  * constructed. Here we are modifying the current, active,
2779  * task_struct.
2780  */
2781 int ksys_unshare(unsigned long unshare_flags)
2782 {
2783 	struct fs_struct *fs, *new_fs = NULL;
2784 	struct files_struct *fd, *new_fd = NULL;
2785 	struct cred *new_cred = NULL;
2786 	struct nsproxy *new_nsproxy = NULL;
2787 	int do_sysvsem = 0;
2788 	int err;
2789 
2790 	/*
2791 	 * If unsharing a user namespace must also unshare the thread group
2792 	 * and unshare the filesystem root and working directories.
2793 	 */
2794 	if (unshare_flags & CLONE_NEWUSER)
2795 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2796 	/*
2797 	 * If unsharing vm, must also unshare signal handlers.
2798 	 */
2799 	if (unshare_flags & CLONE_VM)
2800 		unshare_flags |= CLONE_SIGHAND;
2801 	/*
2802 	 * If unsharing a signal handlers, must also unshare the signal queues.
2803 	 */
2804 	if (unshare_flags & CLONE_SIGHAND)
2805 		unshare_flags |= CLONE_THREAD;
2806 	/*
2807 	 * If unsharing namespace, must also unshare filesystem information.
2808 	 */
2809 	if (unshare_flags & CLONE_NEWNS)
2810 		unshare_flags |= CLONE_FS;
2811 
2812 	err = check_unshare_flags(unshare_flags);
2813 	if (err)
2814 		goto bad_unshare_out;
2815 	/*
2816 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2817 	 * to a new ipc namespace, the semaphore arrays from the old
2818 	 * namespace are unreachable.
2819 	 */
2820 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2821 		do_sysvsem = 1;
2822 	err = unshare_fs(unshare_flags, &new_fs);
2823 	if (err)
2824 		goto bad_unshare_out;
2825 	err = unshare_fd(unshare_flags, &new_fd);
2826 	if (err)
2827 		goto bad_unshare_cleanup_fs;
2828 	err = unshare_userns(unshare_flags, &new_cred);
2829 	if (err)
2830 		goto bad_unshare_cleanup_fd;
2831 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2832 					 new_cred, new_fs);
2833 	if (err)
2834 		goto bad_unshare_cleanup_cred;
2835 
2836 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2837 		if (do_sysvsem) {
2838 			/*
2839 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2840 			 */
2841 			exit_sem(current);
2842 		}
2843 		if (unshare_flags & CLONE_NEWIPC) {
2844 			/* Orphan segments in old ns (see sem above). */
2845 			exit_shm(current);
2846 			shm_init_task(current);
2847 		}
2848 
2849 		if (new_nsproxy)
2850 			switch_task_namespaces(current, new_nsproxy);
2851 
2852 		task_lock(current);
2853 
2854 		if (new_fs) {
2855 			fs = current->fs;
2856 			spin_lock(&fs->lock);
2857 			current->fs = new_fs;
2858 			if (--fs->users)
2859 				new_fs = NULL;
2860 			else
2861 				new_fs = fs;
2862 			spin_unlock(&fs->lock);
2863 		}
2864 
2865 		if (new_fd) {
2866 			fd = current->files;
2867 			current->files = new_fd;
2868 			new_fd = fd;
2869 		}
2870 
2871 		task_unlock(current);
2872 
2873 		if (new_cred) {
2874 			/* Install the new user namespace */
2875 			commit_creds(new_cred);
2876 			new_cred = NULL;
2877 		}
2878 	}
2879 
2880 	perf_event_namespaces(current);
2881 
2882 bad_unshare_cleanup_cred:
2883 	if (new_cred)
2884 		put_cred(new_cred);
2885 bad_unshare_cleanup_fd:
2886 	if (new_fd)
2887 		put_files_struct(new_fd);
2888 
2889 bad_unshare_cleanup_fs:
2890 	if (new_fs)
2891 		free_fs_struct(new_fs);
2892 
2893 bad_unshare_out:
2894 	return err;
2895 }
2896 
2897 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2898 {
2899 	return ksys_unshare(unshare_flags);
2900 }
2901 
2902 /*
2903  *	Helper to unshare the files of the current task.
2904  *	We don't want to expose copy_files internals to
2905  *	the exec layer of the kernel.
2906  */
2907 
2908 int unshare_files(struct files_struct **displaced)
2909 {
2910 	struct task_struct *task = current;
2911 	struct files_struct *copy = NULL;
2912 	int error;
2913 
2914 	error = unshare_fd(CLONE_FILES, &copy);
2915 	if (error || !copy) {
2916 		*displaced = NULL;
2917 		return error;
2918 	}
2919 	*displaced = task->files;
2920 	task_lock(task);
2921 	task->files = copy;
2922 	task_unlock(task);
2923 	return 0;
2924 }
2925 
2926 int sysctl_max_threads(struct ctl_table *table, int write,
2927 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2928 {
2929 	struct ctl_table t;
2930 	int ret;
2931 	int threads = max_threads;
2932 	int min = MIN_THREADS;
2933 	int max = MAX_THREADS;
2934 
2935 	t = *table;
2936 	t.data = &threads;
2937 	t.extra1 = &min;
2938 	t.extra2 = &max;
2939 
2940 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2941 	if (ret || !write)
2942 		return ret;
2943 
2944 	set_max_threads(threads);
2945 
2946 	return 0;
2947 }
2948