xref: /linux/kernel/fork.c (revision ce7240e445303de3ca66e6d08f17a2ec278a5bf6)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80 
81 #include <trace/events/sched.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85 
86 /*
87  * Protected counters by write_lock_irq(&tasklist_lock)
88  */
89 unsigned long total_forks;	/* Handle normal Linux uptimes. */
90 int nr_threads;			/* The idle threads do not count.. */
91 
92 int max_threads;		/* tunable limit on nr_threads */
93 
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95 
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
97 
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 	return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105 
106 int nr_processes(void)
107 {
108 	int cpu;
109 	int total = 0;
110 
111 	for_each_possible_cpu(cpu)
112 		total += per_cpu(process_counts, cpu);
113 
114 	return total;
115 }
116 
117 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
118 static struct kmem_cache *task_struct_cachep;
119 
120 static inline struct task_struct *alloc_task_struct_node(int node)
121 {
122 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
123 }
124 
125 void __weak arch_release_task_struct(struct task_struct *tsk) { }
126 
127 static inline void free_task_struct(struct task_struct *tsk)
128 {
129 	arch_release_task_struct(tsk);
130 	kmem_cache_free(task_struct_cachep, tsk);
131 }
132 #endif
133 
134 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
135 void __weak arch_release_thread_info(struct thread_info *ti) { }
136 
137 /*
138  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
139  * kmemcache based allocator.
140  */
141 # if THREAD_SIZE >= PAGE_SIZE
142 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
143 						  int node)
144 {
145 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
146 					     THREAD_SIZE_ORDER);
147 
148 	return page ? page_address(page) : NULL;
149 }
150 
151 static inline void free_thread_info(struct thread_info *ti)
152 {
153 	arch_release_thread_info(ti);
154 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
155 }
156 # else
157 static struct kmem_cache *thread_info_cache;
158 
159 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
160 						  int node)
161 {
162 	return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
163 }
164 
165 static void free_thread_info(struct thread_info *ti)
166 {
167 	arch_release_thread_info(ti);
168 	kmem_cache_free(thread_info_cache, ti);
169 }
170 
171 void thread_info_cache_init(void)
172 {
173 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
174 					      THREAD_SIZE, 0, NULL);
175 	BUG_ON(thread_info_cache == NULL);
176 }
177 # endif
178 #endif
179 
180 /* SLAB cache for signal_struct structures (tsk->signal) */
181 static struct kmem_cache *signal_cachep;
182 
183 /* SLAB cache for sighand_struct structures (tsk->sighand) */
184 struct kmem_cache *sighand_cachep;
185 
186 /* SLAB cache for files_struct structures (tsk->files) */
187 struct kmem_cache *files_cachep;
188 
189 /* SLAB cache for fs_struct structures (tsk->fs) */
190 struct kmem_cache *fs_cachep;
191 
192 /* SLAB cache for vm_area_struct structures */
193 struct kmem_cache *vm_area_cachep;
194 
195 /* SLAB cache for mm_struct structures (tsk->mm) */
196 static struct kmem_cache *mm_cachep;
197 
198 static void account_kernel_stack(struct thread_info *ti, int account)
199 {
200 	struct zone *zone = page_zone(virt_to_page(ti));
201 
202 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
203 }
204 
205 void free_task(struct task_struct *tsk)
206 {
207 	account_kernel_stack(tsk->stack, -1);
208 	free_thread_info(tsk->stack);
209 	rt_mutex_debug_task_free(tsk);
210 	ftrace_graph_exit_task(tsk);
211 	put_seccomp_filter(tsk);
212 	free_task_struct(tsk);
213 }
214 EXPORT_SYMBOL(free_task);
215 
216 static inline void free_signal_struct(struct signal_struct *sig)
217 {
218 	taskstats_tgid_free(sig);
219 	sched_autogroup_exit(sig);
220 	kmem_cache_free(signal_cachep, sig);
221 }
222 
223 static inline void put_signal_struct(struct signal_struct *sig)
224 {
225 	if (atomic_dec_and_test(&sig->sigcnt))
226 		free_signal_struct(sig);
227 }
228 
229 void __put_task_struct(struct task_struct *tsk)
230 {
231 	WARN_ON(!tsk->exit_state);
232 	WARN_ON(atomic_read(&tsk->usage));
233 	WARN_ON(tsk == current);
234 
235 	security_task_free(tsk);
236 	exit_creds(tsk);
237 	delayacct_tsk_free(tsk);
238 	put_signal_struct(tsk->signal);
239 
240 	if (!profile_handoff_task(tsk))
241 		free_task(tsk);
242 }
243 EXPORT_SYMBOL_GPL(__put_task_struct);
244 
245 void __init __weak arch_task_cache_init(void) { }
246 
247 void __init fork_init(unsigned long mempages)
248 {
249 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
250 #ifndef ARCH_MIN_TASKALIGN
251 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
252 #endif
253 	/* create a slab on which task_structs can be allocated */
254 	task_struct_cachep =
255 		kmem_cache_create("task_struct", sizeof(struct task_struct),
256 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
257 #endif
258 
259 	/* do the arch specific task caches init */
260 	arch_task_cache_init();
261 
262 	/*
263 	 * The default maximum number of threads is set to a safe
264 	 * value: the thread structures can take up at most half
265 	 * of memory.
266 	 */
267 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
268 
269 	/*
270 	 * we need to allow at least 20 threads to boot a system
271 	 */
272 	if (max_threads < 20)
273 		max_threads = 20;
274 
275 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
276 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
277 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
278 		init_task.signal->rlim[RLIMIT_NPROC];
279 }
280 
281 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
282 					       struct task_struct *src)
283 {
284 	*dst = *src;
285 	return 0;
286 }
287 
288 static struct task_struct *dup_task_struct(struct task_struct *orig)
289 {
290 	struct task_struct *tsk;
291 	struct thread_info *ti;
292 	unsigned long *stackend;
293 	int node = tsk_fork_get_node(orig);
294 	int err;
295 
296 	tsk = alloc_task_struct_node(node);
297 	if (!tsk)
298 		return NULL;
299 
300 	ti = alloc_thread_info_node(tsk, node);
301 	if (!ti) {
302 		free_task_struct(tsk);
303 		return NULL;
304 	}
305 
306 	err = arch_dup_task_struct(tsk, orig);
307 
308 	/*
309 	 * We defer looking at err, because we will need this setup
310 	 * for the clean up path to work correctly.
311 	 */
312 	tsk->stack = ti;
313 	setup_thread_stack(tsk, orig);
314 
315 	if (err)
316 		goto out;
317 
318 	clear_user_return_notifier(tsk);
319 	clear_tsk_need_resched(tsk);
320 	stackend = end_of_stack(tsk);
321 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
322 
323 #ifdef CONFIG_CC_STACKPROTECTOR
324 	tsk->stack_canary = get_random_int();
325 #endif
326 
327 	/*
328 	 * One for us, one for whoever does the "release_task()" (usually
329 	 * parent)
330 	 */
331 	atomic_set(&tsk->usage, 2);
332 #ifdef CONFIG_BLK_DEV_IO_TRACE
333 	tsk->btrace_seq = 0;
334 #endif
335 	tsk->splice_pipe = NULL;
336 
337 	account_kernel_stack(ti, 1);
338 
339 	return tsk;
340 
341 out:
342 	free_thread_info(ti);
343 	free_task_struct(tsk);
344 	return NULL;
345 }
346 
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 	struct rb_node **rb_link, *rb_parent;
352 	int retval;
353 	unsigned long charge;
354 	struct mempolicy *pol;
355 
356 	down_write(&oldmm->mmap_sem);
357 	flush_cache_dup_mm(oldmm);
358 	/*
359 	 * Not linked in yet - no deadlock potential:
360 	 */
361 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
362 
363 	mm->locked_vm = 0;
364 	mm->mmap = NULL;
365 	mm->mmap_cache = NULL;
366 	mm->free_area_cache = oldmm->mmap_base;
367 	mm->cached_hole_size = ~0UL;
368 	mm->map_count = 0;
369 	cpumask_clear(mm_cpumask(mm));
370 	mm->mm_rb = RB_ROOT;
371 	rb_link = &mm->mm_rb.rb_node;
372 	rb_parent = NULL;
373 	pprev = &mm->mmap;
374 	retval = ksm_fork(mm, oldmm);
375 	if (retval)
376 		goto out;
377 	retval = khugepaged_fork(mm, oldmm);
378 	if (retval)
379 		goto out;
380 
381 	prev = NULL;
382 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
383 		struct file *file;
384 
385 		if (mpnt->vm_flags & VM_DONTCOPY) {
386 			long pages = vma_pages(mpnt);
387 			mm->total_vm -= pages;
388 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
389 								-pages);
390 			continue;
391 		}
392 		charge = 0;
393 		if (mpnt->vm_flags & VM_ACCOUNT) {
394 			unsigned long len;
395 			len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
396 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
397 				goto fail_nomem;
398 			charge = len;
399 		}
400 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
401 		if (!tmp)
402 			goto fail_nomem;
403 		*tmp = *mpnt;
404 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
405 		pol = mpol_dup(vma_policy(mpnt));
406 		retval = PTR_ERR(pol);
407 		if (IS_ERR(pol))
408 			goto fail_nomem_policy;
409 		vma_set_policy(tmp, pol);
410 		tmp->vm_mm = mm;
411 		if (anon_vma_fork(tmp, mpnt))
412 			goto fail_nomem_anon_vma_fork;
413 		tmp->vm_flags &= ~VM_LOCKED;
414 		tmp->vm_next = tmp->vm_prev = NULL;
415 		file = tmp->vm_file;
416 		if (file) {
417 			struct inode *inode = file->f_path.dentry->d_inode;
418 			struct address_space *mapping = file->f_mapping;
419 
420 			get_file(file);
421 			if (tmp->vm_flags & VM_DENYWRITE)
422 				atomic_dec(&inode->i_writecount);
423 			mutex_lock(&mapping->i_mmap_mutex);
424 			if (tmp->vm_flags & VM_SHARED)
425 				mapping->i_mmap_writable++;
426 			flush_dcache_mmap_lock(mapping);
427 			/* insert tmp into the share list, just after mpnt */
428 			vma_prio_tree_add(tmp, mpnt);
429 			flush_dcache_mmap_unlock(mapping);
430 			mutex_unlock(&mapping->i_mmap_mutex);
431 		}
432 
433 		/*
434 		 * Clear hugetlb-related page reserves for children. This only
435 		 * affects MAP_PRIVATE mappings. Faults generated by the child
436 		 * are not guaranteed to succeed, even if read-only
437 		 */
438 		if (is_vm_hugetlb_page(tmp))
439 			reset_vma_resv_huge_pages(tmp);
440 
441 		/*
442 		 * Link in the new vma and copy the page table entries.
443 		 */
444 		*pprev = tmp;
445 		pprev = &tmp->vm_next;
446 		tmp->vm_prev = prev;
447 		prev = tmp;
448 
449 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
450 		rb_link = &tmp->vm_rb.rb_right;
451 		rb_parent = &tmp->vm_rb;
452 
453 		mm->map_count++;
454 		retval = copy_page_range(mm, oldmm, mpnt);
455 
456 		if (tmp->vm_ops && tmp->vm_ops->open)
457 			tmp->vm_ops->open(tmp);
458 
459 		if (retval)
460 			goto out;
461 
462 		if (file && uprobe_mmap(tmp))
463 			goto out;
464 	}
465 	/* a new mm has just been created */
466 	arch_dup_mmap(oldmm, mm);
467 	retval = 0;
468 out:
469 	up_write(&mm->mmap_sem);
470 	flush_tlb_mm(oldmm);
471 	up_write(&oldmm->mmap_sem);
472 	return retval;
473 fail_nomem_anon_vma_fork:
474 	mpol_put(pol);
475 fail_nomem_policy:
476 	kmem_cache_free(vm_area_cachep, tmp);
477 fail_nomem:
478 	retval = -ENOMEM;
479 	vm_unacct_memory(charge);
480 	goto out;
481 }
482 
483 static inline int mm_alloc_pgd(struct mm_struct *mm)
484 {
485 	mm->pgd = pgd_alloc(mm);
486 	if (unlikely(!mm->pgd))
487 		return -ENOMEM;
488 	return 0;
489 }
490 
491 static inline void mm_free_pgd(struct mm_struct *mm)
492 {
493 	pgd_free(mm, mm->pgd);
494 }
495 #else
496 #define dup_mmap(mm, oldmm)	(0)
497 #define mm_alloc_pgd(mm)	(0)
498 #define mm_free_pgd(mm)
499 #endif /* CONFIG_MMU */
500 
501 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
502 
503 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
504 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
505 
506 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
507 
508 static int __init coredump_filter_setup(char *s)
509 {
510 	default_dump_filter =
511 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
512 		MMF_DUMP_FILTER_MASK;
513 	return 1;
514 }
515 
516 __setup("coredump_filter=", coredump_filter_setup);
517 
518 #include <linux/init_task.h>
519 
520 static void mm_init_aio(struct mm_struct *mm)
521 {
522 #ifdef CONFIG_AIO
523 	spin_lock_init(&mm->ioctx_lock);
524 	INIT_HLIST_HEAD(&mm->ioctx_list);
525 #endif
526 }
527 
528 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
529 {
530 	atomic_set(&mm->mm_users, 1);
531 	atomic_set(&mm->mm_count, 1);
532 	init_rwsem(&mm->mmap_sem);
533 	INIT_LIST_HEAD(&mm->mmlist);
534 	mm->flags = (current->mm) ?
535 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
536 	mm->core_state = NULL;
537 	mm->nr_ptes = 0;
538 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
539 	spin_lock_init(&mm->page_table_lock);
540 	mm->free_area_cache = TASK_UNMAPPED_BASE;
541 	mm->cached_hole_size = ~0UL;
542 	mm_init_aio(mm);
543 	mm_init_owner(mm, p);
544 
545 	if (likely(!mm_alloc_pgd(mm))) {
546 		mm->def_flags = 0;
547 		mmu_notifier_mm_init(mm);
548 		return mm;
549 	}
550 
551 	free_mm(mm);
552 	return NULL;
553 }
554 
555 static void check_mm(struct mm_struct *mm)
556 {
557 	int i;
558 
559 	for (i = 0; i < NR_MM_COUNTERS; i++) {
560 		long x = atomic_long_read(&mm->rss_stat.count[i]);
561 
562 		if (unlikely(x))
563 			printk(KERN_ALERT "BUG: Bad rss-counter state "
564 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
565 	}
566 
567 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
568 	VM_BUG_ON(mm->pmd_huge_pte);
569 #endif
570 }
571 
572 /*
573  * Allocate and initialize an mm_struct.
574  */
575 struct mm_struct *mm_alloc(void)
576 {
577 	struct mm_struct *mm;
578 
579 	mm = allocate_mm();
580 	if (!mm)
581 		return NULL;
582 
583 	memset(mm, 0, sizeof(*mm));
584 	mm_init_cpumask(mm);
585 	return mm_init(mm, current);
586 }
587 
588 /*
589  * Called when the last reference to the mm
590  * is dropped: either by a lazy thread or by
591  * mmput. Free the page directory and the mm.
592  */
593 void __mmdrop(struct mm_struct *mm)
594 {
595 	BUG_ON(mm == &init_mm);
596 	mm_free_pgd(mm);
597 	destroy_context(mm);
598 	mmu_notifier_mm_destroy(mm);
599 	check_mm(mm);
600 	free_mm(mm);
601 }
602 EXPORT_SYMBOL_GPL(__mmdrop);
603 
604 /*
605  * Decrement the use count and release all resources for an mm.
606  */
607 void mmput(struct mm_struct *mm)
608 {
609 	might_sleep();
610 
611 	if (atomic_dec_and_test(&mm->mm_users)) {
612 		uprobe_clear_state(mm);
613 		exit_aio(mm);
614 		ksm_exit(mm);
615 		khugepaged_exit(mm); /* must run before exit_mmap */
616 		exit_mmap(mm);
617 		set_mm_exe_file(mm, NULL);
618 		if (!list_empty(&mm->mmlist)) {
619 			spin_lock(&mmlist_lock);
620 			list_del(&mm->mmlist);
621 			spin_unlock(&mmlist_lock);
622 		}
623 		if (mm->binfmt)
624 			module_put(mm->binfmt->module);
625 		mmdrop(mm);
626 	}
627 }
628 EXPORT_SYMBOL_GPL(mmput);
629 
630 /*
631  * We added or removed a vma mapping the executable. The vmas are only mapped
632  * during exec and are not mapped with the mmap system call.
633  * Callers must hold down_write() on the mm's mmap_sem for these
634  */
635 void added_exe_file_vma(struct mm_struct *mm)
636 {
637 	mm->num_exe_file_vmas++;
638 }
639 
640 void removed_exe_file_vma(struct mm_struct *mm)
641 {
642 	mm->num_exe_file_vmas--;
643 	if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
644 		fput(mm->exe_file);
645 		mm->exe_file = NULL;
646 	}
647 
648 }
649 
650 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
651 {
652 	if (new_exe_file)
653 		get_file(new_exe_file);
654 	if (mm->exe_file)
655 		fput(mm->exe_file);
656 	mm->exe_file = new_exe_file;
657 	mm->num_exe_file_vmas = 0;
658 }
659 
660 struct file *get_mm_exe_file(struct mm_struct *mm)
661 {
662 	struct file *exe_file;
663 
664 	/* We need mmap_sem to protect against races with removal of
665 	 * VM_EXECUTABLE vmas */
666 	down_read(&mm->mmap_sem);
667 	exe_file = mm->exe_file;
668 	if (exe_file)
669 		get_file(exe_file);
670 	up_read(&mm->mmap_sem);
671 	return exe_file;
672 }
673 
674 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
675 {
676 	/* It's safe to write the exe_file pointer without exe_file_lock because
677 	 * this is called during fork when the task is not yet in /proc */
678 	newmm->exe_file = get_mm_exe_file(oldmm);
679 }
680 
681 /**
682  * get_task_mm - acquire a reference to the task's mm
683  *
684  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
685  * this kernel workthread has transiently adopted a user mm with use_mm,
686  * to do its AIO) is not set and if so returns a reference to it, after
687  * bumping up the use count.  User must release the mm via mmput()
688  * after use.  Typically used by /proc and ptrace.
689  */
690 struct mm_struct *get_task_mm(struct task_struct *task)
691 {
692 	struct mm_struct *mm;
693 
694 	task_lock(task);
695 	mm = task->mm;
696 	if (mm) {
697 		if (task->flags & PF_KTHREAD)
698 			mm = NULL;
699 		else
700 			atomic_inc(&mm->mm_users);
701 	}
702 	task_unlock(task);
703 	return mm;
704 }
705 EXPORT_SYMBOL_GPL(get_task_mm);
706 
707 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
708 {
709 	struct mm_struct *mm;
710 	int err;
711 
712 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
713 	if (err)
714 		return ERR_PTR(err);
715 
716 	mm = get_task_mm(task);
717 	if (mm && mm != current->mm &&
718 			!ptrace_may_access(task, mode)) {
719 		mmput(mm);
720 		mm = ERR_PTR(-EACCES);
721 	}
722 	mutex_unlock(&task->signal->cred_guard_mutex);
723 
724 	return mm;
725 }
726 
727 static void complete_vfork_done(struct task_struct *tsk)
728 {
729 	struct completion *vfork;
730 
731 	task_lock(tsk);
732 	vfork = tsk->vfork_done;
733 	if (likely(vfork)) {
734 		tsk->vfork_done = NULL;
735 		complete(vfork);
736 	}
737 	task_unlock(tsk);
738 }
739 
740 static int wait_for_vfork_done(struct task_struct *child,
741 				struct completion *vfork)
742 {
743 	int killed;
744 
745 	freezer_do_not_count();
746 	killed = wait_for_completion_killable(vfork);
747 	freezer_count();
748 
749 	if (killed) {
750 		task_lock(child);
751 		child->vfork_done = NULL;
752 		task_unlock(child);
753 	}
754 
755 	put_task_struct(child);
756 	return killed;
757 }
758 
759 /* Please note the differences between mmput and mm_release.
760  * mmput is called whenever we stop holding onto a mm_struct,
761  * error success whatever.
762  *
763  * mm_release is called after a mm_struct has been removed
764  * from the current process.
765  *
766  * This difference is important for error handling, when we
767  * only half set up a mm_struct for a new process and need to restore
768  * the old one.  Because we mmput the new mm_struct before
769  * restoring the old one. . .
770  * Eric Biederman 10 January 1998
771  */
772 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
773 {
774 	/* Get rid of any futexes when releasing the mm */
775 #ifdef CONFIG_FUTEX
776 	if (unlikely(tsk->robust_list)) {
777 		exit_robust_list(tsk);
778 		tsk->robust_list = NULL;
779 	}
780 #ifdef CONFIG_COMPAT
781 	if (unlikely(tsk->compat_robust_list)) {
782 		compat_exit_robust_list(tsk);
783 		tsk->compat_robust_list = NULL;
784 	}
785 #endif
786 	if (unlikely(!list_empty(&tsk->pi_state_list)))
787 		exit_pi_state_list(tsk);
788 #endif
789 
790 	uprobe_free_utask(tsk);
791 
792 	/* Get rid of any cached register state */
793 	deactivate_mm(tsk, mm);
794 
795 	/*
796 	 * If we're exiting normally, clear a user-space tid field if
797 	 * requested.  We leave this alone when dying by signal, to leave
798 	 * the value intact in a core dump, and to save the unnecessary
799 	 * trouble, say, a killed vfork parent shouldn't touch this mm.
800 	 * Userland only wants this done for a sys_exit.
801 	 */
802 	if (tsk->clear_child_tid) {
803 		if (!(tsk->flags & PF_SIGNALED) &&
804 		    atomic_read(&mm->mm_users) > 1) {
805 			/*
806 			 * We don't check the error code - if userspace has
807 			 * not set up a proper pointer then tough luck.
808 			 */
809 			put_user(0, tsk->clear_child_tid);
810 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
811 					1, NULL, NULL, 0);
812 		}
813 		tsk->clear_child_tid = NULL;
814 	}
815 
816 	/*
817 	 * All done, finally we can wake up parent and return this mm to him.
818 	 * Also kthread_stop() uses this completion for synchronization.
819 	 */
820 	if (tsk->vfork_done)
821 		complete_vfork_done(tsk);
822 }
823 
824 /*
825  * Allocate a new mm structure and copy contents from the
826  * mm structure of the passed in task structure.
827  */
828 struct mm_struct *dup_mm(struct task_struct *tsk)
829 {
830 	struct mm_struct *mm, *oldmm = current->mm;
831 	int err;
832 
833 	if (!oldmm)
834 		return NULL;
835 
836 	mm = allocate_mm();
837 	if (!mm)
838 		goto fail_nomem;
839 
840 	memcpy(mm, oldmm, sizeof(*mm));
841 	mm_init_cpumask(mm);
842 
843 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
844 	mm->pmd_huge_pte = NULL;
845 #endif
846 	uprobe_reset_state(mm);
847 
848 	if (!mm_init(mm, tsk))
849 		goto fail_nomem;
850 
851 	if (init_new_context(tsk, mm))
852 		goto fail_nocontext;
853 
854 	dup_mm_exe_file(oldmm, mm);
855 
856 	err = dup_mmap(mm, oldmm);
857 	if (err)
858 		goto free_pt;
859 
860 	mm->hiwater_rss = get_mm_rss(mm);
861 	mm->hiwater_vm = mm->total_vm;
862 
863 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
864 		goto free_pt;
865 
866 	return mm;
867 
868 free_pt:
869 	/* don't put binfmt in mmput, we haven't got module yet */
870 	mm->binfmt = NULL;
871 	mmput(mm);
872 
873 fail_nomem:
874 	return NULL;
875 
876 fail_nocontext:
877 	/*
878 	 * If init_new_context() failed, we cannot use mmput() to free the mm
879 	 * because it calls destroy_context()
880 	 */
881 	mm_free_pgd(mm);
882 	free_mm(mm);
883 	return NULL;
884 }
885 
886 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
887 {
888 	struct mm_struct *mm, *oldmm;
889 	int retval;
890 
891 	tsk->min_flt = tsk->maj_flt = 0;
892 	tsk->nvcsw = tsk->nivcsw = 0;
893 #ifdef CONFIG_DETECT_HUNG_TASK
894 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
895 #endif
896 
897 	tsk->mm = NULL;
898 	tsk->active_mm = NULL;
899 
900 	/*
901 	 * Are we cloning a kernel thread?
902 	 *
903 	 * We need to steal a active VM for that..
904 	 */
905 	oldmm = current->mm;
906 	if (!oldmm)
907 		return 0;
908 
909 	if (clone_flags & CLONE_VM) {
910 		atomic_inc(&oldmm->mm_users);
911 		mm = oldmm;
912 		goto good_mm;
913 	}
914 
915 	retval = -ENOMEM;
916 	mm = dup_mm(tsk);
917 	if (!mm)
918 		goto fail_nomem;
919 
920 good_mm:
921 	tsk->mm = mm;
922 	tsk->active_mm = mm;
923 	return 0;
924 
925 fail_nomem:
926 	return retval;
927 }
928 
929 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
930 {
931 	struct fs_struct *fs = current->fs;
932 	if (clone_flags & CLONE_FS) {
933 		/* tsk->fs is already what we want */
934 		spin_lock(&fs->lock);
935 		if (fs->in_exec) {
936 			spin_unlock(&fs->lock);
937 			return -EAGAIN;
938 		}
939 		fs->users++;
940 		spin_unlock(&fs->lock);
941 		return 0;
942 	}
943 	tsk->fs = copy_fs_struct(fs);
944 	if (!tsk->fs)
945 		return -ENOMEM;
946 	return 0;
947 }
948 
949 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
950 {
951 	struct files_struct *oldf, *newf;
952 	int error = 0;
953 
954 	/*
955 	 * A background process may not have any files ...
956 	 */
957 	oldf = current->files;
958 	if (!oldf)
959 		goto out;
960 
961 	if (clone_flags & CLONE_FILES) {
962 		atomic_inc(&oldf->count);
963 		goto out;
964 	}
965 
966 	newf = dup_fd(oldf, &error);
967 	if (!newf)
968 		goto out;
969 
970 	tsk->files = newf;
971 	error = 0;
972 out:
973 	return error;
974 }
975 
976 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
977 {
978 #ifdef CONFIG_BLOCK
979 	struct io_context *ioc = current->io_context;
980 	struct io_context *new_ioc;
981 
982 	if (!ioc)
983 		return 0;
984 	/*
985 	 * Share io context with parent, if CLONE_IO is set
986 	 */
987 	if (clone_flags & CLONE_IO) {
988 		ioc_task_link(ioc);
989 		tsk->io_context = ioc;
990 	} else if (ioprio_valid(ioc->ioprio)) {
991 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
992 		if (unlikely(!new_ioc))
993 			return -ENOMEM;
994 
995 		new_ioc->ioprio = ioc->ioprio;
996 		put_io_context(new_ioc);
997 	}
998 #endif
999 	return 0;
1000 }
1001 
1002 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1003 {
1004 	struct sighand_struct *sig;
1005 
1006 	if (clone_flags & CLONE_SIGHAND) {
1007 		atomic_inc(&current->sighand->count);
1008 		return 0;
1009 	}
1010 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1011 	rcu_assign_pointer(tsk->sighand, sig);
1012 	if (!sig)
1013 		return -ENOMEM;
1014 	atomic_set(&sig->count, 1);
1015 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1016 	return 0;
1017 }
1018 
1019 void __cleanup_sighand(struct sighand_struct *sighand)
1020 {
1021 	if (atomic_dec_and_test(&sighand->count)) {
1022 		signalfd_cleanup(sighand);
1023 		kmem_cache_free(sighand_cachep, sighand);
1024 	}
1025 }
1026 
1027 
1028 /*
1029  * Initialize POSIX timer handling for a thread group.
1030  */
1031 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1032 {
1033 	unsigned long cpu_limit;
1034 
1035 	/* Thread group counters. */
1036 	thread_group_cputime_init(sig);
1037 
1038 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1039 	if (cpu_limit != RLIM_INFINITY) {
1040 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1041 		sig->cputimer.running = 1;
1042 	}
1043 
1044 	/* The timer lists. */
1045 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1046 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1047 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1048 }
1049 
1050 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1051 {
1052 	struct signal_struct *sig;
1053 
1054 	if (clone_flags & CLONE_THREAD)
1055 		return 0;
1056 
1057 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1058 	tsk->signal = sig;
1059 	if (!sig)
1060 		return -ENOMEM;
1061 
1062 	sig->nr_threads = 1;
1063 	atomic_set(&sig->live, 1);
1064 	atomic_set(&sig->sigcnt, 1);
1065 	init_waitqueue_head(&sig->wait_chldexit);
1066 	if (clone_flags & CLONE_NEWPID)
1067 		sig->flags |= SIGNAL_UNKILLABLE;
1068 	sig->curr_target = tsk;
1069 	init_sigpending(&sig->shared_pending);
1070 	INIT_LIST_HEAD(&sig->posix_timers);
1071 
1072 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1073 	sig->real_timer.function = it_real_fn;
1074 
1075 	task_lock(current->group_leader);
1076 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1077 	task_unlock(current->group_leader);
1078 
1079 	posix_cpu_timers_init_group(sig);
1080 
1081 	tty_audit_fork(sig);
1082 	sched_autogroup_fork(sig);
1083 
1084 #ifdef CONFIG_CGROUPS
1085 	init_rwsem(&sig->group_rwsem);
1086 #endif
1087 
1088 	sig->oom_adj = current->signal->oom_adj;
1089 	sig->oom_score_adj = current->signal->oom_score_adj;
1090 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1091 
1092 	sig->has_child_subreaper = current->signal->has_child_subreaper ||
1093 				   current->signal->is_child_subreaper;
1094 
1095 	mutex_init(&sig->cred_guard_mutex);
1096 
1097 	return 0;
1098 }
1099 
1100 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1101 {
1102 	unsigned long new_flags = p->flags;
1103 
1104 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1105 	new_flags |= PF_FORKNOEXEC;
1106 	p->flags = new_flags;
1107 }
1108 
1109 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1110 {
1111 	current->clear_child_tid = tidptr;
1112 
1113 	return task_pid_vnr(current);
1114 }
1115 
1116 static void rt_mutex_init_task(struct task_struct *p)
1117 {
1118 	raw_spin_lock_init(&p->pi_lock);
1119 #ifdef CONFIG_RT_MUTEXES
1120 	plist_head_init(&p->pi_waiters);
1121 	p->pi_blocked_on = NULL;
1122 #endif
1123 }
1124 
1125 #ifdef CONFIG_MM_OWNER
1126 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1127 {
1128 	mm->owner = p;
1129 }
1130 #endif /* CONFIG_MM_OWNER */
1131 
1132 /*
1133  * Initialize POSIX timer handling for a single task.
1134  */
1135 static void posix_cpu_timers_init(struct task_struct *tsk)
1136 {
1137 	tsk->cputime_expires.prof_exp = 0;
1138 	tsk->cputime_expires.virt_exp = 0;
1139 	tsk->cputime_expires.sched_exp = 0;
1140 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1141 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1142 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1143 }
1144 
1145 /*
1146  * This creates a new process as a copy of the old one,
1147  * but does not actually start it yet.
1148  *
1149  * It copies the registers, and all the appropriate
1150  * parts of the process environment (as per the clone
1151  * flags). The actual kick-off is left to the caller.
1152  */
1153 static struct task_struct *copy_process(unsigned long clone_flags,
1154 					unsigned long stack_start,
1155 					struct pt_regs *regs,
1156 					unsigned long stack_size,
1157 					int __user *child_tidptr,
1158 					struct pid *pid,
1159 					int trace)
1160 {
1161 	int retval;
1162 	struct task_struct *p;
1163 	int cgroup_callbacks_done = 0;
1164 
1165 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1166 		return ERR_PTR(-EINVAL);
1167 
1168 	/*
1169 	 * Thread groups must share signals as well, and detached threads
1170 	 * can only be started up within the thread group.
1171 	 */
1172 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1173 		return ERR_PTR(-EINVAL);
1174 
1175 	/*
1176 	 * Shared signal handlers imply shared VM. By way of the above,
1177 	 * thread groups also imply shared VM. Blocking this case allows
1178 	 * for various simplifications in other code.
1179 	 */
1180 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1181 		return ERR_PTR(-EINVAL);
1182 
1183 	/*
1184 	 * Siblings of global init remain as zombies on exit since they are
1185 	 * not reaped by their parent (swapper). To solve this and to avoid
1186 	 * multi-rooted process trees, prevent global and container-inits
1187 	 * from creating siblings.
1188 	 */
1189 	if ((clone_flags & CLONE_PARENT) &&
1190 				current->signal->flags & SIGNAL_UNKILLABLE)
1191 		return ERR_PTR(-EINVAL);
1192 
1193 	retval = security_task_create(clone_flags);
1194 	if (retval)
1195 		goto fork_out;
1196 
1197 	retval = -ENOMEM;
1198 	p = dup_task_struct(current);
1199 	if (!p)
1200 		goto fork_out;
1201 
1202 	ftrace_graph_init_task(p);
1203 	get_seccomp_filter(p);
1204 
1205 	rt_mutex_init_task(p);
1206 
1207 #ifdef CONFIG_PROVE_LOCKING
1208 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1209 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1210 #endif
1211 	retval = -EAGAIN;
1212 	if (atomic_read(&p->real_cred->user->processes) >=
1213 			task_rlimit(p, RLIMIT_NPROC)) {
1214 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1215 		    p->real_cred->user != INIT_USER)
1216 			goto bad_fork_free;
1217 	}
1218 	current->flags &= ~PF_NPROC_EXCEEDED;
1219 
1220 	retval = copy_creds(p, clone_flags);
1221 	if (retval < 0)
1222 		goto bad_fork_free;
1223 
1224 	/*
1225 	 * If multiple threads are within copy_process(), then this check
1226 	 * triggers too late. This doesn't hurt, the check is only there
1227 	 * to stop root fork bombs.
1228 	 */
1229 	retval = -EAGAIN;
1230 	if (nr_threads >= max_threads)
1231 		goto bad_fork_cleanup_count;
1232 
1233 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1234 		goto bad_fork_cleanup_count;
1235 
1236 	p->did_exec = 0;
1237 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1238 	copy_flags(clone_flags, p);
1239 	INIT_LIST_HEAD(&p->children);
1240 	INIT_LIST_HEAD(&p->sibling);
1241 	rcu_copy_process(p);
1242 	p->vfork_done = NULL;
1243 	spin_lock_init(&p->alloc_lock);
1244 
1245 	init_sigpending(&p->pending);
1246 
1247 	p->utime = p->stime = p->gtime = 0;
1248 	p->utimescaled = p->stimescaled = 0;
1249 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1250 	p->prev_utime = p->prev_stime = 0;
1251 #endif
1252 #if defined(SPLIT_RSS_COUNTING)
1253 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1254 #endif
1255 
1256 	p->default_timer_slack_ns = current->timer_slack_ns;
1257 
1258 	task_io_accounting_init(&p->ioac);
1259 	acct_clear_integrals(p);
1260 
1261 	posix_cpu_timers_init(p);
1262 
1263 	do_posix_clock_monotonic_gettime(&p->start_time);
1264 	p->real_start_time = p->start_time;
1265 	monotonic_to_bootbased(&p->real_start_time);
1266 	p->io_context = NULL;
1267 	p->audit_context = NULL;
1268 	if (clone_flags & CLONE_THREAD)
1269 		threadgroup_change_begin(current);
1270 	cgroup_fork(p);
1271 #ifdef CONFIG_NUMA
1272 	p->mempolicy = mpol_dup(p->mempolicy);
1273 	if (IS_ERR(p->mempolicy)) {
1274 		retval = PTR_ERR(p->mempolicy);
1275 		p->mempolicy = NULL;
1276 		goto bad_fork_cleanup_cgroup;
1277 	}
1278 	mpol_fix_fork_child_flag(p);
1279 #endif
1280 #ifdef CONFIG_CPUSETS
1281 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1282 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1283 	seqcount_init(&p->mems_allowed_seq);
1284 #endif
1285 #ifdef CONFIG_TRACE_IRQFLAGS
1286 	p->irq_events = 0;
1287 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1288 	p->hardirqs_enabled = 1;
1289 #else
1290 	p->hardirqs_enabled = 0;
1291 #endif
1292 	p->hardirq_enable_ip = 0;
1293 	p->hardirq_enable_event = 0;
1294 	p->hardirq_disable_ip = _THIS_IP_;
1295 	p->hardirq_disable_event = 0;
1296 	p->softirqs_enabled = 1;
1297 	p->softirq_enable_ip = _THIS_IP_;
1298 	p->softirq_enable_event = 0;
1299 	p->softirq_disable_ip = 0;
1300 	p->softirq_disable_event = 0;
1301 	p->hardirq_context = 0;
1302 	p->softirq_context = 0;
1303 #endif
1304 #ifdef CONFIG_LOCKDEP
1305 	p->lockdep_depth = 0; /* no locks held yet */
1306 	p->curr_chain_key = 0;
1307 	p->lockdep_recursion = 0;
1308 #endif
1309 
1310 #ifdef CONFIG_DEBUG_MUTEXES
1311 	p->blocked_on = NULL; /* not blocked yet */
1312 #endif
1313 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1314 	p->memcg_batch.do_batch = 0;
1315 	p->memcg_batch.memcg = NULL;
1316 #endif
1317 
1318 	/* Perform scheduler related setup. Assign this task to a CPU. */
1319 	sched_fork(p);
1320 
1321 	retval = perf_event_init_task(p);
1322 	if (retval)
1323 		goto bad_fork_cleanup_policy;
1324 	retval = audit_alloc(p);
1325 	if (retval)
1326 		goto bad_fork_cleanup_policy;
1327 	/* copy all the process information */
1328 	retval = copy_semundo(clone_flags, p);
1329 	if (retval)
1330 		goto bad_fork_cleanup_audit;
1331 	retval = copy_files(clone_flags, p);
1332 	if (retval)
1333 		goto bad_fork_cleanup_semundo;
1334 	retval = copy_fs(clone_flags, p);
1335 	if (retval)
1336 		goto bad_fork_cleanup_files;
1337 	retval = copy_sighand(clone_flags, p);
1338 	if (retval)
1339 		goto bad_fork_cleanup_fs;
1340 	retval = copy_signal(clone_flags, p);
1341 	if (retval)
1342 		goto bad_fork_cleanup_sighand;
1343 	retval = copy_mm(clone_flags, p);
1344 	if (retval)
1345 		goto bad_fork_cleanup_signal;
1346 	retval = copy_namespaces(clone_flags, p);
1347 	if (retval)
1348 		goto bad_fork_cleanup_mm;
1349 	retval = copy_io(clone_flags, p);
1350 	if (retval)
1351 		goto bad_fork_cleanup_namespaces;
1352 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1353 	if (retval)
1354 		goto bad_fork_cleanup_io;
1355 
1356 	if (pid != &init_struct_pid) {
1357 		retval = -ENOMEM;
1358 		pid = alloc_pid(p->nsproxy->pid_ns);
1359 		if (!pid)
1360 			goto bad_fork_cleanup_io;
1361 	}
1362 
1363 	p->pid = pid_nr(pid);
1364 	p->tgid = p->pid;
1365 	if (clone_flags & CLONE_THREAD)
1366 		p->tgid = current->tgid;
1367 
1368 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1369 	/*
1370 	 * Clear TID on mm_release()?
1371 	 */
1372 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1373 #ifdef CONFIG_BLOCK
1374 	p->plug = NULL;
1375 #endif
1376 #ifdef CONFIG_FUTEX
1377 	p->robust_list = NULL;
1378 #ifdef CONFIG_COMPAT
1379 	p->compat_robust_list = NULL;
1380 #endif
1381 	INIT_LIST_HEAD(&p->pi_state_list);
1382 	p->pi_state_cache = NULL;
1383 #endif
1384 	uprobe_copy_process(p);
1385 	/*
1386 	 * sigaltstack should be cleared when sharing the same VM
1387 	 */
1388 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1389 		p->sas_ss_sp = p->sas_ss_size = 0;
1390 
1391 	/*
1392 	 * Syscall tracing and stepping should be turned off in the
1393 	 * child regardless of CLONE_PTRACE.
1394 	 */
1395 	user_disable_single_step(p);
1396 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1397 #ifdef TIF_SYSCALL_EMU
1398 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1399 #endif
1400 	clear_all_latency_tracing(p);
1401 
1402 	/* ok, now we should be set up.. */
1403 	if (clone_flags & CLONE_THREAD)
1404 		p->exit_signal = -1;
1405 	else if (clone_flags & CLONE_PARENT)
1406 		p->exit_signal = current->group_leader->exit_signal;
1407 	else
1408 		p->exit_signal = (clone_flags & CSIGNAL);
1409 
1410 	p->pdeath_signal = 0;
1411 	p->exit_state = 0;
1412 
1413 	p->nr_dirtied = 0;
1414 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1415 	p->dirty_paused_when = 0;
1416 
1417 	/*
1418 	 * Ok, make it visible to the rest of the system.
1419 	 * We dont wake it up yet.
1420 	 */
1421 	p->group_leader = p;
1422 	INIT_LIST_HEAD(&p->thread_group);
1423 	INIT_HLIST_HEAD(&p->task_works);
1424 
1425 	/* Now that the task is set up, run cgroup callbacks if
1426 	 * necessary. We need to run them before the task is visible
1427 	 * on the tasklist. */
1428 	cgroup_fork_callbacks(p);
1429 	cgroup_callbacks_done = 1;
1430 
1431 	/* Need tasklist lock for parent etc handling! */
1432 	write_lock_irq(&tasklist_lock);
1433 
1434 	/* CLONE_PARENT re-uses the old parent */
1435 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1436 		p->real_parent = current->real_parent;
1437 		p->parent_exec_id = current->parent_exec_id;
1438 	} else {
1439 		p->real_parent = current;
1440 		p->parent_exec_id = current->self_exec_id;
1441 	}
1442 
1443 	spin_lock(&current->sighand->siglock);
1444 
1445 	/*
1446 	 * Process group and session signals need to be delivered to just the
1447 	 * parent before the fork or both the parent and the child after the
1448 	 * fork. Restart if a signal comes in before we add the new process to
1449 	 * it's process group.
1450 	 * A fatal signal pending means that current will exit, so the new
1451 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1452 	*/
1453 	recalc_sigpending();
1454 	if (signal_pending(current)) {
1455 		spin_unlock(&current->sighand->siglock);
1456 		write_unlock_irq(&tasklist_lock);
1457 		retval = -ERESTARTNOINTR;
1458 		goto bad_fork_free_pid;
1459 	}
1460 
1461 	if (clone_flags & CLONE_THREAD) {
1462 		current->signal->nr_threads++;
1463 		atomic_inc(&current->signal->live);
1464 		atomic_inc(&current->signal->sigcnt);
1465 		p->group_leader = current->group_leader;
1466 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1467 	}
1468 
1469 	if (likely(p->pid)) {
1470 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1471 
1472 		if (thread_group_leader(p)) {
1473 			if (is_child_reaper(pid))
1474 				p->nsproxy->pid_ns->child_reaper = p;
1475 
1476 			p->signal->leader_pid = pid;
1477 			p->signal->tty = tty_kref_get(current->signal->tty);
1478 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1479 			attach_pid(p, PIDTYPE_SID, task_session(current));
1480 			list_add_tail(&p->sibling, &p->real_parent->children);
1481 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1482 			__this_cpu_inc(process_counts);
1483 		}
1484 		attach_pid(p, PIDTYPE_PID, pid);
1485 		nr_threads++;
1486 	}
1487 
1488 	total_forks++;
1489 	spin_unlock(&current->sighand->siglock);
1490 	write_unlock_irq(&tasklist_lock);
1491 	proc_fork_connector(p);
1492 	cgroup_post_fork(p);
1493 	if (clone_flags & CLONE_THREAD)
1494 		threadgroup_change_end(current);
1495 	perf_event_fork(p);
1496 
1497 	trace_task_newtask(p, clone_flags);
1498 
1499 	return p;
1500 
1501 bad_fork_free_pid:
1502 	if (pid != &init_struct_pid)
1503 		free_pid(pid);
1504 bad_fork_cleanup_io:
1505 	if (p->io_context)
1506 		exit_io_context(p);
1507 bad_fork_cleanup_namespaces:
1508 	if (unlikely(clone_flags & CLONE_NEWPID))
1509 		pid_ns_release_proc(p->nsproxy->pid_ns);
1510 	exit_task_namespaces(p);
1511 bad_fork_cleanup_mm:
1512 	if (p->mm)
1513 		mmput(p->mm);
1514 bad_fork_cleanup_signal:
1515 	if (!(clone_flags & CLONE_THREAD))
1516 		free_signal_struct(p->signal);
1517 bad_fork_cleanup_sighand:
1518 	__cleanup_sighand(p->sighand);
1519 bad_fork_cleanup_fs:
1520 	exit_fs(p); /* blocking */
1521 bad_fork_cleanup_files:
1522 	exit_files(p); /* blocking */
1523 bad_fork_cleanup_semundo:
1524 	exit_sem(p);
1525 bad_fork_cleanup_audit:
1526 	audit_free(p);
1527 bad_fork_cleanup_policy:
1528 	perf_event_free_task(p);
1529 #ifdef CONFIG_NUMA
1530 	mpol_put(p->mempolicy);
1531 bad_fork_cleanup_cgroup:
1532 #endif
1533 	if (clone_flags & CLONE_THREAD)
1534 		threadgroup_change_end(current);
1535 	cgroup_exit(p, cgroup_callbacks_done);
1536 	delayacct_tsk_free(p);
1537 	module_put(task_thread_info(p)->exec_domain->module);
1538 bad_fork_cleanup_count:
1539 	atomic_dec(&p->cred->user->processes);
1540 	exit_creds(p);
1541 bad_fork_free:
1542 	free_task(p);
1543 fork_out:
1544 	return ERR_PTR(retval);
1545 }
1546 
1547 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1548 {
1549 	memset(regs, 0, sizeof(struct pt_regs));
1550 	return regs;
1551 }
1552 
1553 static inline void init_idle_pids(struct pid_link *links)
1554 {
1555 	enum pid_type type;
1556 
1557 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1558 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1559 		links[type].pid = &init_struct_pid;
1560 	}
1561 }
1562 
1563 struct task_struct * __cpuinit fork_idle(int cpu)
1564 {
1565 	struct task_struct *task;
1566 	struct pt_regs regs;
1567 
1568 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1569 			    &init_struct_pid, 0);
1570 	if (!IS_ERR(task)) {
1571 		init_idle_pids(task->pids);
1572 		init_idle(task, cpu);
1573 	}
1574 
1575 	return task;
1576 }
1577 
1578 /*
1579  *  Ok, this is the main fork-routine.
1580  *
1581  * It copies the process, and if successful kick-starts
1582  * it and waits for it to finish using the VM if required.
1583  */
1584 long do_fork(unsigned long clone_flags,
1585 	      unsigned long stack_start,
1586 	      struct pt_regs *regs,
1587 	      unsigned long stack_size,
1588 	      int __user *parent_tidptr,
1589 	      int __user *child_tidptr)
1590 {
1591 	struct task_struct *p;
1592 	int trace = 0;
1593 	long nr;
1594 
1595 	/*
1596 	 * Do some preliminary argument and permissions checking before we
1597 	 * actually start allocating stuff
1598 	 */
1599 	if (clone_flags & CLONE_NEWUSER) {
1600 		if (clone_flags & CLONE_THREAD)
1601 			return -EINVAL;
1602 		/* hopefully this check will go away when userns support is
1603 		 * complete
1604 		 */
1605 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1606 				!capable(CAP_SETGID))
1607 			return -EPERM;
1608 	}
1609 
1610 	/*
1611 	 * Determine whether and which event to report to ptracer.  When
1612 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
1613 	 * requested, no event is reported; otherwise, report if the event
1614 	 * for the type of forking is enabled.
1615 	 */
1616 	if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1617 		if (clone_flags & CLONE_VFORK)
1618 			trace = PTRACE_EVENT_VFORK;
1619 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
1620 			trace = PTRACE_EVENT_CLONE;
1621 		else
1622 			trace = PTRACE_EVENT_FORK;
1623 
1624 		if (likely(!ptrace_event_enabled(current, trace)))
1625 			trace = 0;
1626 	}
1627 
1628 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1629 			 child_tidptr, NULL, trace);
1630 	/*
1631 	 * Do this prior waking up the new thread - the thread pointer
1632 	 * might get invalid after that point, if the thread exits quickly.
1633 	 */
1634 	if (!IS_ERR(p)) {
1635 		struct completion vfork;
1636 
1637 		trace_sched_process_fork(current, p);
1638 
1639 		nr = task_pid_vnr(p);
1640 
1641 		if (clone_flags & CLONE_PARENT_SETTID)
1642 			put_user(nr, parent_tidptr);
1643 
1644 		if (clone_flags & CLONE_VFORK) {
1645 			p->vfork_done = &vfork;
1646 			init_completion(&vfork);
1647 			get_task_struct(p);
1648 		}
1649 
1650 		wake_up_new_task(p);
1651 
1652 		/* forking complete and child started to run, tell ptracer */
1653 		if (unlikely(trace))
1654 			ptrace_event(trace, nr);
1655 
1656 		if (clone_flags & CLONE_VFORK) {
1657 			if (!wait_for_vfork_done(p, &vfork))
1658 				ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1659 		}
1660 	} else {
1661 		nr = PTR_ERR(p);
1662 	}
1663 	return nr;
1664 }
1665 
1666 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1667 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1668 #endif
1669 
1670 static void sighand_ctor(void *data)
1671 {
1672 	struct sighand_struct *sighand = data;
1673 
1674 	spin_lock_init(&sighand->siglock);
1675 	init_waitqueue_head(&sighand->signalfd_wqh);
1676 }
1677 
1678 void __init proc_caches_init(void)
1679 {
1680 	sighand_cachep = kmem_cache_create("sighand_cache",
1681 			sizeof(struct sighand_struct), 0,
1682 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1683 			SLAB_NOTRACK, sighand_ctor);
1684 	signal_cachep = kmem_cache_create("signal_cache",
1685 			sizeof(struct signal_struct), 0,
1686 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1687 	files_cachep = kmem_cache_create("files_cache",
1688 			sizeof(struct files_struct), 0,
1689 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1690 	fs_cachep = kmem_cache_create("fs_cache",
1691 			sizeof(struct fs_struct), 0,
1692 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1693 	/*
1694 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1695 	 * whole struct cpumask for the OFFSTACK case. We could change
1696 	 * this to *only* allocate as much of it as required by the
1697 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
1698 	 * is at the end of the structure, exactly for that reason.
1699 	 */
1700 	mm_cachep = kmem_cache_create("mm_struct",
1701 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1702 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1703 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1704 	mmap_init();
1705 	nsproxy_cache_init();
1706 }
1707 
1708 /*
1709  * Check constraints on flags passed to the unshare system call.
1710  */
1711 static int check_unshare_flags(unsigned long unshare_flags)
1712 {
1713 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1714 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1715 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1716 		return -EINVAL;
1717 	/*
1718 	 * Not implemented, but pretend it works if there is nothing to
1719 	 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1720 	 * needs to unshare vm.
1721 	 */
1722 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1723 		/* FIXME: get_task_mm() increments ->mm_users */
1724 		if (atomic_read(&current->mm->mm_users) > 1)
1725 			return -EINVAL;
1726 	}
1727 
1728 	return 0;
1729 }
1730 
1731 /*
1732  * Unshare the filesystem structure if it is being shared
1733  */
1734 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1735 {
1736 	struct fs_struct *fs = current->fs;
1737 
1738 	if (!(unshare_flags & CLONE_FS) || !fs)
1739 		return 0;
1740 
1741 	/* don't need lock here; in the worst case we'll do useless copy */
1742 	if (fs->users == 1)
1743 		return 0;
1744 
1745 	*new_fsp = copy_fs_struct(fs);
1746 	if (!*new_fsp)
1747 		return -ENOMEM;
1748 
1749 	return 0;
1750 }
1751 
1752 /*
1753  * Unshare file descriptor table if it is being shared
1754  */
1755 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1756 {
1757 	struct files_struct *fd = current->files;
1758 	int error = 0;
1759 
1760 	if ((unshare_flags & CLONE_FILES) &&
1761 	    (fd && atomic_read(&fd->count) > 1)) {
1762 		*new_fdp = dup_fd(fd, &error);
1763 		if (!*new_fdp)
1764 			return error;
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 /*
1771  * unshare allows a process to 'unshare' part of the process
1772  * context which was originally shared using clone.  copy_*
1773  * functions used by do_fork() cannot be used here directly
1774  * because they modify an inactive task_struct that is being
1775  * constructed. Here we are modifying the current, active,
1776  * task_struct.
1777  */
1778 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1779 {
1780 	struct fs_struct *fs, *new_fs = NULL;
1781 	struct files_struct *fd, *new_fd = NULL;
1782 	struct nsproxy *new_nsproxy = NULL;
1783 	int do_sysvsem = 0;
1784 	int err;
1785 
1786 	err = check_unshare_flags(unshare_flags);
1787 	if (err)
1788 		goto bad_unshare_out;
1789 
1790 	/*
1791 	 * If unsharing namespace, must also unshare filesystem information.
1792 	 */
1793 	if (unshare_flags & CLONE_NEWNS)
1794 		unshare_flags |= CLONE_FS;
1795 	/*
1796 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1797 	 * to a new ipc namespace, the semaphore arrays from the old
1798 	 * namespace are unreachable.
1799 	 */
1800 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1801 		do_sysvsem = 1;
1802 	err = unshare_fs(unshare_flags, &new_fs);
1803 	if (err)
1804 		goto bad_unshare_out;
1805 	err = unshare_fd(unshare_flags, &new_fd);
1806 	if (err)
1807 		goto bad_unshare_cleanup_fs;
1808 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1809 	if (err)
1810 		goto bad_unshare_cleanup_fd;
1811 
1812 	if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1813 		if (do_sysvsem) {
1814 			/*
1815 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1816 			 */
1817 			exit_sem(current);
1818 		}
1819 
1820 		if (new_nsproxy) {
1821 			switch_task_namespaces(current, new_nsproxy);
1822 			new_nsproxy = NULL;
1823 		}
1824 
1825 		task_lock(current);
1826 
1827 		if (new_fs) {
1828 			fs = current->fs;
1829 			spin_lock(&fs->lock);
1830 			current->fs = new_fs;
1831 			if (--fs->users)
1832 				new_fs = NULL;
1833 			else
1834 				new_fs = fs;
1835 			spin_unlock(&fs->lock);
1836 		}
1837 
1838 		if (new_fd) {
1839 			fd = current->files;
1840 			current->files = new_fd;
1841 			new_fd = fd;
1842 		}
1843 
1844 		task_unlock(current);
1845 	}
1846 
1847 	if (new_nsproxy)
1848 		put_nsproxy(new_nsproxy);
1849 
1850 bad_unshare_cleanup_fd:
1851 	if (new_fd)
1852 		put_files_struct(new_fd);
1853 
1854 bad_unshare_cleanup_fs:
1855 	if (new_fs)
1856 		free_fs_struct(new_fs);
1857 
1858 bad_unshare_out:
1859 	return err;
1860 }
1861 
1862 /*
1863  *	Helper to unshare the files of the current task.
1864  *	We don't want to expose copy_files internals to
1865  *	the exec layer of the kernel.
1866  */
1867 
1868 int unshare_files(struct files_struct **displaced)
1869 {
1870 	struct task_struct *task = current;
1871 	struct files_struct *copy = NULL;
1872 	int error;
1873 
1874 	error = unshare_fd(CLONE_FILES, &copy);
1875 	if (error || !copy) {
1876 		*displaced = NULL;
1877 		return error;
1878 	}
1879 	*displaced = task->files;
1880 	task_lock(task);
1881 	task->files = copy;
1882 	task_unlock(task);
1883 	return 0;
1884 }
1885