xref: /linux/kernel/fork.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
76 
77 #include <trace/events/sched.h>
78 
79 /*
80  * Protected counters by write_lock_irq(&tasklist_lock)
81  */
82 unsigned long total_forks;	/* Handle normal Linux uptimes. */
83 int nr_threads; 		/* The idle threads do not count.. */
84 
85 int max_threads;		/* tunable limit on nr_threads */
86 
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
88 
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
90 
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
93 {
94 	return lockdep_is_held(&tasklist_lock);
95 }
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
98 
99 int nr_processes(void)
100 {
101 	int cpu;
102 	int total = 0;
103 
104 	for_each_possible_cpu(cpu)
105 		total += per_cpu(process_counts, cpu);
106 
107 	return total;
108 }
109 
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
112 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
113 static struct kmem_cache *task_struct_cachep;
114 #endif
115 
116 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
117 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
118 {
119 #ifdef CONFIG_DEBUG_STACK_USAGE
120 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
121 #else
122 	gfp_t mask = GFP_KERNEL;
123 #endif
124 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
125 }
126 
127 static inline void free_thread_info(struct thread_info *ti)
128 {
129 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
130 }
131 #endif
132 
133 /* SLAB cache for signal_struct structures (tsk->signal) */
134 static struct kmem_cache *signal_cachep;
135 
136 /* SLAB cache for sighand_struct structures (tsk->sighand) */
137 struct kmem_cache *sighand_cachep;
138 
139 /* SLAB cache for files_struct structures (tsk->files) */
140 struct kmem_cache *files_cachep;
141 
142 /* SLAB cache for fs_struct structures (tsk->fs) */
143 struct kmem_cache *fs_cachep;
144 
145 /* SLAB cache for vm_area_struct structures */
146 struct kmem_cache *vm_area_cachep;
147 
148 /* SLAB cache for mm_struct structures (tsk->mm) */
149 static struct kmem_cache *mm_cachep;
150 
151 static void account_kernel_stack(struct thread_info *ti, int account)
152 {
153 	struct zone *zone = page_zone(virt_to_page(ti));
154 
155 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
156 }
157 
158 void free_task(struct task_struct *tsk)
159 {
160 	prop_local_destroy_single(&tsk->dirties);
161 	account_kernel_stack(tsk->stack, -1);
162 	free_thread_info(tsk->stack);
163 	rt_mutex_debug_task_free(tsk);
164 	ftrace_graph_exit_task(tsk);
165 	free_task_struct(tsk);
166 }
167 EXPORT_SYMBOL(free_task);
168 
169 static inline void free_signal_struct(struct signal_struct *sig)
170 {
171 	taskstats_tgid_free(sig);
172 	kmem_cache_free(signal_cachep, sig);
173 }
174 
175 static inline void put_signal_struct(struct signal_struct *sig)
176 {
177 	if (atomic_dec_and_test(&sig->sigcnt))
178 		free_signal_struct(sig);
179 }
180 
181 void __put_task_struct(struct task_struct *tsk)
182 {
183 	WARN_ON(!tsk->exit_state);
184 	WARN_ON(atomic_read(&tsk->usage));
185 	WARN_ON(tsk == current);
186 
187 	exit_creds(tsk);
188 	delayacct_tsk_free(tsk);
189 	put_signal_struct(tsk->signal);
190 
191 	if (!profile_handoff_task(tsk))
192 		free_task(tsk);
193 }
194 
195 /*
196  * macro override instead of weak attribute alias, to workaround
197  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
198  */
199 #ifndef arch_task_cache_init
200 #define arch_task_cache_init()
201 #endif
202 
203 void __init fork_init(unsigned long mempages)
204 {
205 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
206 #ifndef ARCH_MIN_TASKALIGN
207 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
208 #endif
209 	/* create a slab on which task_structs can be allocated */
210 	task_struct_cachep =
211 		kmem_cache_create("task_struct", sizeof(struct task_struct),
212 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
213 #endif
214 
215 	/* do the arch specific task caches init */
216 	arch_task_cache_init();
217 
218 	/*
219 	 * The default maximum number of threads is set to a safe
220 	 * value: the thread structures can take up at most half
221 	 * of memory.
222 	 */
223 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
224 
225 	/*
226 	 * we need to allow at least 20 threads to boot a system
227 	 */
228 	if(max_threads < 20)
229 		max_threads = 20;
230 
231 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
232 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
233 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
234 		init_task.signal->rlim[RLIMIT_NPROC];
235 }
236 
237 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
238 					       struct task_struct *src)
239 {
240 	*dst = *src;
241 	return 0;
242 }
243 
244 static struct task_struct *dup_task_struct(struct task_struct *orig)
245 {
246 	struct task_struct *tsk;
247 	struct thread_info *ti;
248 	unsigned long *stackend;
249 
250 	int err;
251 
252 	prepare_to_copy(orig);
253 
254 	tsk = alloc_task_struct();
255 	if (!tsk)
256 		return NULL;
257 
258 	ti = alloc_thread_info(tsk);
259 	if (!ti) {
260 		free_task_struct(tsk);
261 		return NULL;
262 	}
263 
264  	err = arch_dup_task_struct(tsk, orig);
265 	if (err)
266 		goto out;
267 
268 	tsk->stack = ti;
269 
270 	err = prop_local_init_single(&tsk->dirties);
271 	if (err)
272 		goto out;
273 
274 	setup_thread_stack(tsk, orig);
275 	clear_user_return_notifier(tsk);
276 	stackend = end_of_stack(tsk);
277 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
278 
279 #ifdef CONFIG_CC_STACKPROTECTOR
280 	tsk->stack_canary = get_random_int();
281 #endif
282 
283 	/* One for us, one for whoever does the "release_task()" (usually parent) */
284 	atomic_set(&tsk->usage,2);
285 	atomic_set(&tsk->fs_excl, 0);
286 #ifdef CONFIG_BLK_DEV_IO_TRACE
287 	tsk->btrace_seq = 0;
288 #endif
289 	tsk->splice_pipe = NULL;
290 
291 	account_kernel_stack(ti, 1);
292 
293 	return tsk;
294 
295 out:
296 	free_thread_info(ti);
297 	free_task_struct(tsk);
298 	return NULL;
299 }
300 
301 #ifdef CONFIG_MMU
302 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
303 {
304 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
305 	struct rb_node **rb_link, *rb_parent;
306 	int retval;
307 	unsigned long charge;
308 	struct mempolicy *pol;
309 
310 	down_write(&oldmm->mmap_sem);
311 	flush_cache_dup_mm(oldmm);
312 	/*
313 	 * Not linked in yet - no deadlock potential:
314 	 */
315 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
316 
317 	mm->locked_vm = 0;
318 	mm->mmap = NULL;
319 	mm->mmap_cache = NULL;
320 	mm->free_area_cache = oldmm->mmap_base;
321 	mm->cached_hole_size = ~0UL;
322 	mm->map_count = 0;
323 	cpumask_clear(mm_cpumask(mm));
324 	mm->mm_rb = RB_ROOT;
325 	rb_link = &mm->mm_rb.rb_node;
326 	rb_parent = NULL;
327 	pprev = &mm->mmap;
328 	retval = ksm_fork(mm, oldmm);
329 	if (retval)
330 		goto out;
331 
332 	prev = NULL;
333 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
334 		struct file *file;
335 
336 		if (mpnt->vm_flags & VM_DONTCOPY) {
337 			long pages = vma_pages(mpnt);
338 			mm->total_vm -= pages;
339 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
340 								-pages);
341 			continue;
342 		}
343 		charge = 0;
344 		if (mpnt->vm_flags & VM_ACCOUNT) {
345 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
346 			if (security_vm_enough_memory(len))
347 				goto fail_nomem;
348 			charge = len;
349 		}
350 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
351 		if (!tmp)
352 			goto fail_nomem;
353 		*tmp = *mpnt;
354 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
355 		pol = mpol_dup(vma_policy(mpnt));
356 		retval = PTR_ERR(pol);
357 		if (IS_ERR(pol))
358 			goto fail_nomem_policy;
359 		vma_set_policy(tmp, pol);
360 		tmp->vm_mm = mm;
361 		if (anon_vma_fork(tmp, mpnt))
362 			goto fail_nomem_anon_vma_fork;
363 		tmp->vm_flags &= ~VM_LOCKED;
364 		tmp->vm_next = tmp->vm_prev = NULL;
365 		file = tmp->vm_file;
366 		if (file) {
367 			struct inode *inode = file->f_path.dentry->d_inode;
368 			struct address_space *mapping = file->f_mapping;
369 
370 			get_file(file);
371 			if (tmp->vm_flags & VM_DENYWRITE)
372 				atomic_dec(&inode->i_writecount);
373 			spin_lock(&mapping->i_mmap_lock);
374 			if (tmp->vm_flags & VM_SHARED)
375 				mapping->i_mmap_writable++;
376 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
377 			flush_dcache_mmap_lock(mapping);
378 			/* insert tmp into the share list, just after mpnt */
379 			vma_prio_tree_add(tmp, mpnt);
380 			flush_dcache_mmap_unlock(mapping);
381 			spin_unlock(&mapping->i_mmap_lock);
382 		}
383 
384 		/*
385 		 * Clear hugetlb-related page reserves for children. This only
386 		 * affects MAP_PRIVATE mappings. Faults generated by the child
387 		 * are not guaranteed to succeed, even if read-only
388 		 */
389 		if (is_vm_hugetlb_page(tmp))
390 			reset_vma_resv_huge_pages(tmp);
391 
392 		/*
393 		 * Link in the new vma and copy the page table entries.
394 		 */
395 		*pprev = tmp;
396 		pprev = &tmp->vm_next;
397 		tmp->vm_prev = prev;
398 		prev = tmp;
399 
400 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
401 		rb_link = &tmp->vm_rb.rb_right;
402 		rb_parent = &tmp->vm_rb;
403 
404 		mm->map_count++;
405 		retval = copy_page_range(mm, oldmm, mpnt);
406 
407 		if (tmp->vm_ops && tmp->vm_ops->open)
408 			tmp->vm_ops->open(tmp);
409 
410 		if (retval)
411 			goto out;
412 	}
413 	/* a new mm has just been created */
414 	arch_dup_mmap(oldmm, mm);
415 	retval = 0;
416 out:
417 	up_write(&mm->mmap_sem);
418 	flush_tlb_mm(oldmm);
419 	up_write(&oldmm->mmap_sem);
420 	return retval;
421 fail_nomem_anon_vma_fork:
422 	mpol_put(pol);
423 fail_nomem_policy:
424 	kmem_cache_free(vm_area_cachep, tmp);
425 fail_nomem:
426 	retval = -ENOMEM;
427 	vm_unacct_memory(charge);
428 	goto out;
429 }
430 
431 static inline int mm_alloc_pgd(struct mm_struct * mm)
432 {
433 	mm->pgd = pgd_alloc(mm);
434 	if (unlikely(!mm->pgd))
435 		return -ENOMEM;
436 	return 0;
437 }
438 
439 static inline void mm_free_pgd(struct mm_struct * mm)
440 {
441 	pgd_free(mm, mm->pgd);
442 }
443 #else
444 #define dup_mmap(mm, oldmm)	(0)
445 #define mm_alloc_pgd(mm)	(0)
446 #define mm_free_pgd(mm)
447 #endif /* CONFIG_MMU */
448 
449 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
450 
451 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
452 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
453 
454 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
455 
456 static int __init coredump_filter_setup(char *s)
457 {
458 	default_dump_filter =
459 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
460 		MMF_DUMP_FILTER_MASK;
461 	return 1;
462 }
463 
464 __setup("coredump_filter=", coredump_filter_setup);
465 
466 #include <linux/init_task.h>
467 
468 static void mm_init_aio(struct mm_struct *mm)
469 {
470 #ifdef CONFIG_AIO
471 	spin_lock_init(&mm->ioctx_lock);
472 	INIT_HLIST_HEAD(&mm->ioctx_list);
473 #endif
474 }
475 
476 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
477 {
478 	atomic_set(&mm->mm_users, 1);
479 	atomic_set(&mm->mm_count, 1);
480 	init_rwsem(&mm->mmap_sem);
481 	INIT_LIST_HEAD(&mm->mmlist);
482 	mm->flags = (current->mm) ?
483 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
484 	mm->core_state = NULL;
485 	mm->nr_ptes = 0;
486 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
487 	spin_lock_init(&mm->page_table_lock);
488 	mm->free_area_cache = TASK_UNMAPPED_BASE;
489 	mm->cached_hole_size = ~0UL;
490 	mm_init_aio(mm);
491 	mm_init_owner(mm, p);
492 	atomic_set(&mm->oom_disable_count, 0);
493 
494 	if (likely(!mm_alloc_pgd(mm))) {
495 		mm->def_flags = 0;
496 		mmu_notifier_mm_init(mm);
497 		return mm;
498 	}
499 
500 	free_mm(mm);
501 	return NULL;
502 }
503 
504 /*
505  * Allocate and initialize an mm_struct.
506  */
507 struct mm_struct * mm_alloc(void)
508 {
509 	struct mm_struct * mm;
510 
511 	mm = allocate_mm();
512 	if (mm) {
513 		memset(mm, 0, sizeof(*mm));
514 		mm = mm_init(mm, current);
515 	}
516 	return mm;
517 }
518 
519 /*
520  * Called when the last reference to the mm
521  * is dropped: either by a lazy thread or by
522  * mmput. Free the page directory and the mm.
523  */
524 void __mmdrop(struct mm_struct *mm)
525 {
526 	BUG_ON(mm == &init_mm);
527 	mm_free_pgd(mm);
528 	destroy_context(mm);
529 	mmu_notifier_mm_destroy(mm);
530 	free_mm(mm);
531 }
532 EXPORT_SYMBOL_GPL(__mmdrop);
533 
534 /*
535  * Decrement the use count and release all resources for an mm.
536  */
537 void mmput(struct mm_struct *mm)
538 {
539 	might_sleep();
540 
541 	if (atomic_dec_and_test(&mm->mm_users)) {
542 		exit_aio(mm);
543 		ksm_exit(mm);
544 		exit_mmap(mm);
545 		set_mm_exe_file(mm, NULL);
546 		if (!list_empty(&mm->mmlist)) {
547 			spin_lock(&mmlist_lock);
548 			list_del(&mm->mmlist);
549 			spin_unlock(&mmlist_lock);
550 		}
551 		put_swap_token(mm);
552 		if (mm->binfmt)
553 			module_put(mm->binfmt->module);
554 		mmdrop(mm);
555 	}
556 }
557 EXPORT_SYMBOL_GPL(mmput);
558 
559 /**
560  * get_task_mm - acquire a reference to the task's mm
561  *
562  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
563  * this kernel workthread has transiently adopted a user mm with use_mm,
564  * to do its AIO) is not set and if so returns a reference to it, after
565  * bumping up the use count.  User must release the mm via mmput()
566  * after use.  Typically used by /proc and ptrace.
567  */
568 struct mm_struct *get_task_mm(struct task_struct *task)
569 {
570 	struct mm_struct *mm;
571 
572 	task_lock(task);
573 	mm = task->mm;
574 	if (mm) {
575 		if (task->flags & PF_KTHREAD)
576 			mm = NULL;
577 		else
578 			atomic_inc(&mm->mm_users);
579 	}
580 	task_unlock(task);
581 	return mm;
582 }
583 EXPORT_SYMBOL_GPL(get_task_mm);
584 
585 /* Please note the differences between mmput and mm_release.
586  * mmput is called whenever we stop holding onto a mm_struct,
587  * error success whatever.
588  *
589  * mm_release is called after a mm_struct has been removed
590  * from the current process.
591  *
592  * This difference is important for error handling, when we
593  * only half set up a mm_struct for a new process and need to restore
594  * the old one.  Because we mmput the new mm_struct before
595  * restoring the old one. . .
596  * Eric Biederman 10 January 1998
597  */
598 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
599 {
600 	struct completion *vfork_done = tsk->vfork_done;
601 
602 	/* Get rid of any futexes when releasing the mm */
603 #ifdef CONFIG_FUTEX
604 	if (unlikely(tsk->robust_list)) {
605 		exit_robust_list(tsk);
606 		tsk->robust_list = NULL;
607 	}
608 #ifdef CONFIG_COMPAT
609 	if (unlikely(tsk->compat_robust_list)) {
610 		compat_exit_robust_list(tsk);
611 		tsk->compat_robust_list = NULL;
612 	}
613 #endif
614 	if (unlikely(!list_empty(&tsk->pi_state_list)))
615 		exit_pi_state_list(tsk);
616 #endif
617 
618 	/* Get rid of any cached register state */
619 	deactivate_mm(tsk, mm);
620 
621 	/* notify parent sleeping on vfork() */
622 	if (vfork_done) {
623 		tsk->vfork_done = NULL;
624 		complete(vfork_done);
625 	}
626 
627 	/*
628 	 * If we're exiting normally, clear a user-space tid field if
629 	 * requested.  We leave this alone when dying by signal, to leave
630 	 * the value intact in a core dump, and to save the unnecessary
631 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
632 	 */
633 	if (tsk->clear_child_tid) {
634 		if (!(tsk->flags & PF_SIGNALED) &&
635 		    atomic_read(&mm->mm_users) > 1) {
636 			/*
637 			 * We don't check the error code - if userspace has
638 			 * not set up a proper pointer then tough luck.
639 			 */
640 			put_user(0, tsk->clear_child_tid);
641 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
642 					1, NULL, NULL, 0);
643 		}
644 		tsk->clear_child_tid = NULL;
645 	}
646 }
647 
648 /*
649  * Allocate a new mm structure and copy contents from the
650  * mm structure of the passed in task structure.
651  */
652 struct mm_struct *dup_mm(struct task_struct *tsk)
653 {
654 	struct mm_struct *mm, *oldmm = current->mm;
655 	int err;
656 
657 	if (!oldmm)
658 		return NULL;
659 
660 	mm = allocate_mm();
661 	if (!mm)
662 		goto fail_nomem;
663 
664 	memcpy(mm, oldmm, sizeof(*mm));
665 
666 	/* Initializing for Swap token stuff */
667 	mm->token_priority = 0;
668 	mm->last_interval = 0;
669 
670 	if (!mm_init(mm, tsk))
671 		goto fail_nomem;
672 
673 	if (init_new_context(tsk, mm))
674 		goto fail_nocontext;
675 
676 	dup_mm_exe_file(oldmm, mm);
677 
678 	err = dup_mmap(mm, oldmm);
679 	if (err)
680 		goto free_pt;
681 
682 	mm->hiwater_rss = get_mm_rss(mm);
683 	mm->hiwater_vm = mm->total_vm;
684 
685 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
686 		goto free_pt;
687 
688 	return mm;
689 
690 free_pt:
691 	/* don't put binfmt in mmput, we haven't got module yet */
692 	mm->binfmt = NULL;
693 	mmput(mm);
694 
695 fail_nomem:
696 	return NULL;
697 
698 fail_nocontext:
699 	/*
700 	 * If init_new_context() failed, we cannot use mmput() to free the mm
701 	 * because it calls destroy_context()
702 	 */
703 	mm_free_pgd(mm);
704 	free_mm(mm);
705 	return NULL;
706 }
707 
708 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
709 {
710 	struct mm_struct * mm, *oldmm;
711 	int retval;
712 
713 	tsk->min_flt = tsk->maj_flt = 0;
714 	tsk->nvcsw = tsk->nivcsw = 0;
715 #ifdef CONFIG_DETECT_HUNG_TASK
716 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
717 #endif
718 
719 	tsk->mm = NULL;
720 	tsk->active_mm = NULL;
721 
722 	/*
723 	 * Are we cloning a kernel thread?
724 	 *
725 	 * We need to steal a active VM for that..
726 	 */
727 	oldmm = current->mm;
728 	if (!oldmm)
729 		return 0;
730 
731 	if (clone_flags & CLONE_VM) {
732 		atomic_inc(&oldmm->mm_users);
733 		mm = oldmm;
734 		goto good_mm;
735 	}
736 
737 	retval = -ENOMEM;
738 	mm = dup_mm(tsk);
739 	if (!mm)
740 		goto fail_nomem;
741 
742 good_mm:
743 	/* Initializing for Swap token stuff */
744 	mm->token_priority = 0;
745 	mm->last_interval = 0;
746 	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
747 		atomic_inc(&mm->oom_disable_count);
748 
749 	tsk->mm = mm;
750 	tsk->active_mm = mm;
751 	return 0;
752 
753 fail_nomem:
754 	return retval;
755 }
756 
757 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
758 {
759 	struct fs_struct *fs = current->fs;
760 	if (clone_flags & CLONE_FS) {
761 		/* tsk->fs is already what we want */
762 		spin_lock(&fs->lock);
763 		if (fs->in_exec) {
764 			spin_unlock(&fs->lock);
765 			return -EAGAIN;
766 		}
767 		fs->users++;
768 		spin_unlock(&fs->lock);
769 		return 0;
770 	}
771 	tsk->fs = copy_fs_struct(fs);
772 	if (!tsk->fs)
773 		return -ENOMEM;
774 	return 0;
775 }
776 
777 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
778 {
779 	struct files_struct *oldf, *newf;
780 	int error = 0;
781 
782 	/*
783 	 * A background process may not have any files ...
784 	 */
785 	oldf = current->files;
786 	if (!oldf)
787 		goto out;
788 
789 	if (clone_flags & CLONE_FILES) {
790 		atomic_inc(&oldf->count);
791 		goto out;
792 	}
793 
794 	newf = dup_fd(oldf, &error);
795 	if (!newf)
796 		goto out;
797 
798 	tsk->files = newf;
799 	error = 0;
800 out:
801 	return error;
802 }
803 
804 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
805 {
806 #ifdef CONFIG_BLOCK
807 	struct io_context *ioc = current->io_context;
808 
809 	if (!ioc)
810 		return 0;
811 	/*
812 	 * Share io context with parent, if CLONE_IO is set
813 	 */
814 	if (clone_flags & CLONE_IO) {
815 		tsk->io_context = ioc_task_link(ioc);
816 		if (unlikely(!tsk->io_context))
817 			return -ENOMEM;
818 	} else if (ioprio_valid(ioc->ioprio)) {
819 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
820 		if (unlikely(!tsk->io_context))
821 			return -ENOMEM;
822 
823 		tsk->io_context->ioprio = ioc->ioprio;
824 	}
825 #endif
826 	return 0;
827 }
828 
829 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
830 {
831 	struct sighand_struct *sig;
832 
833 	if (clone_flags & CLONE_SIGHAND) {
834 		atomic_inc(&current->sighand->count);
835 		return 0;
836 	}
837 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
838 	rcu_assign_pointer(tsk->sighand, sig);
839 	if (!sig)
840 		return -ENOMEM;
841 	atomic_set(&sig->count, 1);
842 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
843 	return 0;
844 }
845 
846 void __cleanup_sighand(struct sighand_struct *sighand)
847 {
848 	if (atomic_dec_and_test(&sighand->count))
849 		kmem_cache_free(sighand_cachep, sighand);
850 }
851 
852 
853 /*
854  * Initialize POSIX timer handling for a thread group.
855  */
856 static void posix_cpu_timers_init_group(struct signal_struct *sig)
857 {
858 	unsigned long cpu_limit;
859 
860 	/* Thread group counters. */
861 	thread_group_cputime_init(sig);
862 
863 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
864 	if (cpu_limit != RLIM_INFINITY) {
865 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
866 		sig->cputimer.running = 1;
867 	}
868 
869 	/* The timer lists. */
870 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
871 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
872 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
873 }
874 
875 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
876 {
877 	struct signal_struct *sig;
878 
879 	if (clone_flags & CLONE_THREAD)
880 		return 0;
881 
882 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
883 	tsk->signal = sig;
884 	if (!sig)
885 		return -ENOMEM;
886 
887 	sig->nr_threads = 1;
888 	atomic_set(&sig->live, 1);
889 	atomic_set(&sig->sigcnt, 1);
890 	init_waitqueue_head(&sig->wait_chldexit);
891 	if (clone_flags & CLONE_NEWPID)
892 		sig->flags |= SIGNAL_UNKILLABLE;
893 	sig->curr_target = tsk;
894 	init_sigpending(&sig->shared_pending);
895 	INIT_LIST_HEAD(&sig->posix_timers);
896 
897 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
898 	sig->real_timer.function = it_real_fn;
899 
900 	task_lock(current->group_leader);
901 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
902 	task_unlock(current->group_leader);
903 
904 	posix_cpu_timers_init_group(sig);
905 
906 	tty_audit_fork(sig);
907 
908 	sig->oom_adj = current->signal->oom_adj;
909 	sig->oom_score_adj = current->signal->oom_score_adj;
910 
911 	mutex_init(&sig->cred_guard_mutex);
912 
913 	return 0;
914 }
915 
916 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
917 {
918 	unsigned long new_flags = p->flags;
919 
920 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
921 	new_flags |= PF_FORKNOEXEC;
922 	new_flags |= PF_STARTING;
923 	p->flags = new_flags;
924 	clear_freeze_flag(p);
925 }
926 
927 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
928 {
929 	current->clear_child_tid = tidptr;
930 
931 	return task_pid_vnr(current);
932 }
933 
934 static void rt_mutex_init_task(struct task_struct *p)
935 {
936 	raw_spin_lock_init(&p->pi_lock);
937 #ifdef CONFIG_RT_MUTEXES
938 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
939 	p->pi_blocked_on = NULL;
940 #endif
941 }
942 
943 #ifdef CONFIG_MM_OWNER
944 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
945 {
946 	mm->owner = p;
947 }
948 #endif /* CONFIG_MM_OWNER */
949 
950 /*
951  * Initialize POSIX timer handling for a single task.
952  */
953 static void posix_cpu_timers_init(struct task_struct *tsk)
954 {
955 	tsk->cputime_expires.prof_exp = cputime_zero;
956 	tsk->cputime_expires.virt_exp = cputime_zero;
957 	tsk->cputime_expires.sched_exp = 0;
958 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
959 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
960 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
961 }
962 
963 /*
964  * This creates a new process as a copy of the old one,
965  * but does not actually start it yet.
966  *
967  * It copies the registers, and all the appropriate
968  * parts of the process environment (as per the clone
969  * flags). The actual kick-off is left to the caller.
970  */
971 static struct task_struct *copy_process(unsigned long clone_flags,
972 					unsigned long stack_start,
973 					struct pt_regs *regs,
974 					unsigned long stack_size,
975 					int __user *child_tidptr,
976 					struct pid *pid,
977 					int trace)
978 {
979 	int retval;
980 	struct task_struct *p;
981 	int cgroup_callbacks_done = 0;
982 
983 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
984 		return ERR_PTR(-EINVAL);
985 
986 	/*
987 	 * Thread groups must share signals as well, and detached threads
988 	 * can only be started up within the thread group.
989 	 */
990 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
991 		return ERR_PTR(-EINVAL);
992 
993 	/*
994 	 * Shared signal handlers imply shared VM. By way of the above,
995 	 * thread groups also imply shared VM. Blocking this case allows
996 	 * for various simplifications in other code.
997 	 */
998 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
999 		return ERR_PTR(-EINVAL);
1000 
1001 	/*
1002 	 * Siblings of global init remain as zombies on exit since they are
1003 	 * not reaped by their parent (swapper). To solve this and to avoid
1004 	 * multi-rooted process trees, prevent global and container-inits
1005 	 * from creating siblings.
1006 	 */
1007 	if ((clone_flags & CLONE_PARENT) &&
1008 				current->signal->flags & SIGNAL_UNKILLABLE)
1009 		return ERR_PTR(-EINVAL);
1010 
1011 	retval = security_task_create(clone_flags);
1012 	if (retval)
1013 		goto fork_out;
1014 
1015 	retval = -ENOMEM;
1016 	p = dup_task_struct(current);
1017 	if (!p)
1018 		goto fork_out;
1019 
1020 	ftrace_graph_init_task(p);
1021 
1022 	rt_mutex_init_task(p);
1023 
1024 #ifdef CONFIG_PROVE_LOCKING
1025 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1026 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1027 #endif
1028 	retval = -EAGAIN;
1029 	if (atomic_read(&p->real_cred->user->processes) >=
1030 			task_rlimit(p, RLIMIT_NPROC)) {
1031 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1032 		    p->real_cred->user != INIT_USER)
1033 			goto bad_fork_free;
1034 	}
1035 
1036 	retval = copy_creds(p, clone_flags);
1037 	if (retval < 0)
1038 		goto bad_fork_free;
1039 
1040 	/*
1041 	 * If multiple threads are within copy_process(), then this check
1042 	 * triggers too late. This doesn't hurt, the check is only there
1043 	 * to stop root fork bombs.
1044 	 */
1045 	retval = -EAGAIN;
1046 	if (nr_threads >= max_threads)
1047 		goto bad_fork_cleanup_count;
1048 
1049 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1050 		goto bad_fork_cleanup_count;
1051 
1052 	p->did_exec = 0;
1053 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1054 	copy_flags(clone_flags, p);
1055 	INIT_LIST_HEAD(&p->children);
1056 	INIT_LIST_HEAD(&p->sibling);
1057 	rcu_copy_process(p);
1058 	p->vfork_done = NULL;
1059 	spin_lock_init(&p->alloc_lock);
1060 
1061 	init_sigpending(&p->pending);
1062 
1063 	p->utime = cputime_zero;
1064 	p->stime = cputime_zero;
1065 	p->gtime = cputime_zero;
1066 	p->utimescaled = cputime_zero;
1067 	p->stimescaled = cputime_zero;
1068 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1069 	p->prev_utime = cputime_zero;
1070 	p->prev_stime = cputime_zero;
1071 #endif
1072 #if defined(SPLIT_RSS_COUNTING)
1073 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1074 #endif
1075 
1076 	p->default_timer_slack_ns = current->timer_slack_ns;
1077 
1078 	task_io_accounting_init(&p->ioac);
1079 	acct_clear_integrals(p);
1080 
1081 	posix_cpu_timers_init(p);
1082 
1083 	p->lock_depth = -1;		/* -1 = no lock */
1084 	do_posix_clock_monotonic_gettime(&p->start_time);
1085 	p->real_start_time = p->start_time;
1086 	monotonic_to_bootbased(&p->real_start_time);
1087 	p->io_context = NULL;
1088 	p->audit_context = NULL;
1089 	cgroup_fork(p);
1090 #ifdef CONFIG_NUMA
1091 	p->mempolicy = mpol_dup(p->mempolicy);
1092  	if (IS_ERR(p->mempolicy)) {
1093  		retval = PTR_ERR(p->mempolicy);
1094  		p->mempolicy = NULL;
1095  		goto bad_fork_cleanup_cgroup;
1096  	}
1097 	mpol_fix_fork_child_flag(p);
1098 #endif
1099 #ifdef CONFIG_TRACE_IRQFLAGS
1100 	p->irq_events = 0;
1101 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1102 	p->hardirqs_enabled = 1;
1103 #else
1104 	p->hardirqs_enabled = 0;
1105 #endif
1106 	p->hardirq_enable_ip = 0;
1107 	p->hardirq_enable_event = 0;
1108 	p->hardirq_disable_ip = _THIS_IP_;
1109 	p->hardirq_disable_event = 0;
1110 	p->softirqs_enabled = 1;
1111 	p->softirq_enable_ip = _THIS_IP_;
1112 	p->softirq_enable_event = 0;
1113 	p->softirq_disable_ip = 0;
1114 	p->softirq_disable_event = 0;
1115 	p->hardirq_context = 0;
1116 	p->softirq_context = 0;
1117 #endif
1118 #ifdef CONFIG_LOCKDEP
1119 	p->lockdep_depth = 0; /* no locks held yet */
1120 	p->curr_chain_key = 0;
1121 	p->lockdep_recursion = 0;
1122 #endif
1123 
1124 #ifdef CONFIG_DEBUG_MUTEXES
1125 	p->blocked_on = NULL; /* not blocked yet */
1126 #endif
1127 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1128 	p->memcg_batch.do_batch = 0;
1129 	p->memcg_batch.memcg = NULL;
1130 #endif
1131 
1132 	/* Perform scheduler related setup. Assign this task to a CPU. */
1133 	sched_fork(p, clone_flags);
1134 
1135 	retval = perf_event_init_task(p);
1136 	if (retval)
1137 		goto bad_fork_cleanup_policy;
1138 
1139 	if ((retval = audit_alloc(p)))
1140 		goto bad_fork_cleanup_policy;
1141 	/* copy all the process information */
1142 	if ((retval = copy_semundo(clone_flags, p)))
1143 		goto bad_fork_cleanup_audit;
1144 	if ((retval = copy_files(clone_flags, p)))
1145 		goto bad_fork_cleanup_semundo;
1146 	if ((retval = copy_fs(clone_flags, p)))
1147 		goto bad_fork_cleanup_files;
1148 	if ((retval = copy_sighand(clone_flags, p)))
1149 		goto bad_fork_cleanup_fs;
1150 	if ((retval = copy_signal(clone_flags, p)))
1151 		goto bad_fork_cleanup_sighand;
1152 	if ((retval = copy_mm(clone_flags, p)))
1153 		goto bad_fork_cleanup_signal;
1154 	if ((retval = copy_namespaces(clone_flags, p)))
1155 		goto bad_fork_cleanup_mm;
1156 	if ((retval = copy_io(clone_flags, p)))
1157 		goto bad_fork_cleanup_namespaces;
1158 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1159 	if (retval)
1160 		goto bad_fork_cleanup_io;
1161 
1162 	if (pid != &init_struct_pid) {
1163 		retval = -ENOMEM;
1164 		pid = alloc_pid(p->nsproxy->pid_ns);
1165 		if (!pid)
1166 			goto bad_fork_cleanup_io;
1167 
1168 		if (clone_flags & CLONE_NEWPID) {
1169 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1170 			if (retval < 0)
1171 				goto bad_fork_free_pid;
1172 		}
1173 	}
1174 
1175 	p->pid = pid_nr(pid);
1176 	p->tgid = p->pid;
1177 	if (clone_flags & CLONE_THREAD)
1178 		p->tgid = current->tgid;
1179 
1180 	if (current->nsproxy != p->nsproxy) {
1181 		retval = ns_cgroup_clone(p, pid);
1182 		if (retval)
1183 			goto bad_fork_free_pid;
1184 	}
1185 
1186 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1187 	/*
1188 	 * Clear TID on mm_release()?
1189 	 */
1190 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1191 #ifdef CONFIG_FUTEX
1192 	p->robust_list = NULL;
1193 #ifdef CONFIG_COMPAT
1194 	p->compat_robust_list = NULL;
1195 #endif
1196 	INIT_LIST_HEAD(&p->pi_state_list);
1197 	p->pi_state_cache = NULL;
1198 #endif
1199 	/*
1200 	 * sigaltstack should be cleared when sharing the same VM
1201 	 */
1202 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1203 		p->sas_ss_sp = p->sas_ss_size = 0;
1204 
1205 	/*
1206 	 * Syscall tracing and stepping should be turned off in the
1207 	 * child regardless of CLONE_PTRACE.
1208 	 */
1209 	user_disable_single_step(p);
1210 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1211 #ifdef TIF_SYSCALL_EMU
1212 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1213 #endif
1214 	clear_all_latency_tracing(p);
1215 
1216 	/* ok, now we should be set up.. */
1217 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1218 	p->pdeath_signal = 0;
1219 	p->exit_state = 0;
1220 
1221 	/*
1222 	 * Ok, make it visible to the rest of the system.
1223 	 * We dont wake it up yet.
1224 	 */
1225 	p->group_leader = p;
1226 	INIT_LIST_HEAD(&p->thread_group);
1227 
1228 	/* Now that the task is set up, run cgroup callbacks if
1229 	 * necessary. We need to run them before the task is visible
1230 	 * on the tasklist. */
1231 	cgroup_fork_callbacks(p);
1232 	cgroup_callbacks_done = 1;
1233 
1234 	/* Need tasklist lock for parent etc handling! */
1235 	write_lock_irq(&tasklist_lock);
1236 
1237 	/* CLONE_PARENT re-uses the old parent */
1238 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1239 		p->real_parent = current->real_parent;
1240 		p->parent_exec_id = current->parent_exec_id;
1241 	} else {
1242 		p->real_parent = current;
1243 		p->parent_exec_id = current->self_exec_id;
1244 	}
1245 
1246 	spin_lock(&current->sighand->siglock);
1247 
1248 	/*
1249 	 * Process group and session signals need to be delivered to just the
1250 	 * parent before the fork or both the parent and the child after the
1251 	 * fork. Restart if a signal comes in before we add the new process to
1252 	 * it's process group.
1253 	 * A fatal signal pending means that current will exit, so the new
1254 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1255  	 */
1256 	recalc_sigpending();
1257 	if (signal_pending(current)) {
1258 		spin_unlock(&current->sighand->siglock);
1259 		write_unlock_irq(&tasklist_lock);
1260 		retval = -ERESTARTNOINTR;
1261 		goto bad_fork_free_pid;
1262 	}
1263 
1264 	if (clone_flags & CLONE_THREAD) {
1265 		current->signal->nr_threads++;
1266 		atomic_inc(&current->signal->live);
1267 		atomic_inc(&current->signal->sigcnt);
1268 		p->group_leader = current->group_leader;
1269 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1270 	}
1271 
1272 	if (likely(p->pid)) {
1273 		tracehook_finish_clone(p, clone_flags, trace);
1274 
1275 		if (thread_group_leader(p)) {
1276 			if (clone_flags & CLONE_NEWPID)
1277 				p->nsproxy->pid_ns->child_reaper = p;
1278 
1279 			p->signal->leader_pid = pid;
1280 			p->signal->tty = tty_kref_get(current->signal->tty);
1281 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1282 			attach_pid(p, PIDTYPE_SID, task_session(current));
1283 			list_add_tail(&p->sibling, &p->real_parent->children);
1284 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1285 			__get_cpu_var(process_counts)++;
1286 		}
1287 		attach_pid(p, PIDTYPE_PID, pid);
1288 		nr_threads++;
1289 	}
1290 
1291 	total_forks++;
1292 	spin_unlock(&current->sighand->siglock);
1293 	write_unlock_irq(&tasklist_lock);
1294 	proc_fork_connector(p);
1295 	cgroup_post_fork(p);
1296 	perf_event_fork(p);
1297 	return p;
1298 
1299 bad_fork_free_pid:
1300 	if (pid != &init_struct_pid)
1301 		free_pid(pid);
1302 bad_fork_cleanup_io:
1303 	if (p->io_context)
1304 		exit_io_context(p);
1305 bad_fork_cleanup_namespaces:
1306 	exit_task_namespaces(p);
1307 bad_fork_cleanup_mm:
1308 	if (p->mm) {
1309 		task_lock(p);
1310 		if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1311 			atomic_dec(&p->mm->oom_disable_count);
1312 		task_unlock(p);
1313 		mmput(p->mm);
1314 	}
1315 bad_fork_cleanup_signal:
1316 	if (!(clone_flags & CLONE_THREAD))
1317 		free_signal_struct(p->signal);
1318 bad_fork_cleanup_sighand:
1319 	__cleanup_sighand(p->sighand);
1320 bad_fork_cleanup_fs:
1321 	exit_fs(p); /* blocking */
1322 bad_fork_cleanup_files:
1323 	exit_files(p); /* blocking */
1324 bad_fork_cleanup_semundo:
1325 	exit_sem(p);
1326 bad_fork_cleanup_audit:
1327 	audit_free(p);
1328 bad_fork_cleanup_policy:
1329 	perf_event_free_task(p);
1330 #ifdef CONFIG_NUMA
1331 	mpol_put(p->mempolicy);
1332 bad_fork_cleanup_cgroup:
1333 #endif
1334 	cgroup_exit(p, cgroup_callbacks_done);
1335 	delayacct_tsk_free(p);
1336 	module_put(task_thread_info(p)->exec_domain->module);
1337 bad_fork_cleanup_count:
1338 	atomic_dec(&p->cred->user->processes);
1339 	exit_creds(p);
1340 bad_fork_free:
1341 	free_task(p);
1342 fork_out:
1343 	return ERR_PTR(retval);
1344 }
1345 
1346 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1347 {
1348 	memset(regs, 0, sizeof(struct pt_regs));
1349 	return regs;
1350 }
1351 
1352 static inline void init_idle_pids(struct pid_link *links)
1353 {
1354 	enum pid_type type;
1355 
1356 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1357 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1358 		links[type].pid = &init_struct_pid;
1359 	}
1360 }
1361 
1362 struct task_struct * __cpuinit fork_idle(int cpu)
1363 {
1364 	struct task_struct *task;
1365 	struct pt_regs regs;
1366 
1367 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1368 			    &init_struct_pid, 0);
1369 	if (!IS_ERR(task)) {
1370 		init_idle_pids(task->pids);
1371 		init_idle(task, cpu);
1372 	}
1373 
1374 	return task;
1375 }
1376 
1377 /*
1378  *  Ok, this is the main fork-routine.
1379  *
1380  * It copies the process, and if successful kick-starts
1381  * it and waits for it to finish using the VM if required.
1382  */
1383 long do_fork(unsigned long clone_flags,
1384 	      unsigned long stack_start,
1385 	      struct pt_regs *regs,
1386 	      unsigned long stack_size,
1387 	      int __user *parent_tidptr,
1388 	      int __user *child_tidptr)
1389 {
1390 	struct task_struct *p;
1391 	int trace = 0;
1392 	long nr;
1393 
1394 	/*
1395 	 * Do some preliminary argument and permissions checking before we
1396 	 * actually start allocating stuff
1397 	 */
1398 	if (clone_flags & CLONE_NEWUSER) {
1399 		if (clone_flags & CLONE_THREAD)
1400 			return -EINVAL;
1401 		/* hopefully this check will go away when userns support is
1402 		 * complete
1403 		 */
1404 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1405 				!capable(CAP_SETGID))
1406 			return -EPERM;
1407 	}
1408 
1409 	/*
1410 	 * We hope to recycle these flags after 2.6.26
1411 	 */
1412 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1413 		static int __read_mostly count = 100;
1414 
1415 		if (count > 0 && printk_ratelimit()) {
1416 			char comm[TASK_COMM_LEN];
1417 
1418 			count--;
1419 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1420 					"clone flags 0x%lx\n",
1421 				get_task_comm(comm, current),
1422 				clone_flags & CLONE_STOPPED);
1423 		}
1424 	}
1425 
1426 	/*
1427 	 * When called from kernel_thread, don't do user tracing stuff.
1428 	 */
1429 	if (likely(user_mode(regs)))
1430 		trace = tracehook_prepare_clone(clone_flags);
1431 
1432 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1433 			 child_tidptr, NULL, trace);
1434 	/*
1435 	 * Do this prior waking up the new thread - the thread pointer
1436 	 * might get invalid after that point, if the thread exits quickly.
1437 	 */
1438 	if (!IS_ERR(p)) {
1439 		struct completion vfork;
1440 
1441 		trace_sched_process_fork(current, p);
1442 
1443 		nr = task_pid_vnr(p);
1444 
1445 		if (clone_flags & CLONE_PARENT_SETTID)
1446 			put_user(nr, parent_tidptr);
1447 
1448 		if (clone_flags & CLONE_VFORK) {
1449 			p->vfork_done = &vfork;
1450 			init_completion(&vfork);
1451 		}
1452 
1453 		audit_finish_fork(p);
1454 		tracehook_report_clone(regs, clone_flags, nr, p);
1455 
1456 		/*
1457 		 * We set PF_STARTING at creation in case tracing wants to
1458 		 * use this to distinguish a fully live task from one that
1459 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1460 		 * clear it and set the child going.
1461 		 */
1462 		p->flags &= ~PF_STARTING;
1463 
1464 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1465 			/*
1466 			 * We'll start up with an immediate SIGSTOP.
1467 			 */
1468 			sigaddset(&p->pending.signal, SIGSTOP);
1469 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1470 			__set_task_state(p, TASK_STOPPED);
1471 		} else {
1472 			wake_up_new_task(p, clone_flags);
1473 		}
1474 
1475 		tracehook_report_clone_complete(trace, regs,
1476 						clone_flags, nr, p);
1477 
1478 		if (clone_flags & CLONE_VFORK) {
1479 			freezer_do_not_count();
1480 			wait_for_completion(&vfork);
1481 			freezer_count();
1482 			tracehook_report_vfork_done(p, nr);
1483 		}
1484 	} else {
1485 		nr = PTR_ERR(p);
1486 	}
1487 	return nr;
1488 }
1489 
1490 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1491 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1492 #endif
1493 
1494 static void sighand_ctor(void *data)
1495 {
1496 	struct sighand_struct *sighand = data;
1497 
1498 	spin_lock_init(&sighand->siglock);
1499 	init_waitqueue_head(&sighand->signalfd_wqh);
1500 }
1501 
1502 void __init proc_caches_init(void)
1503 {
1504 	sighand_cachep = kmem_cache_create("sighand_cache",
1505 			sizeof(struct sighand_struct), 0,
1506 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1507 			SLAB_NOTRACK, sighand_ctor);
1508 	signal_cachep = kmem_cache_create("signal_cache",
1509 			sizeof(struct signal_struct), 0,
1510 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1511 	files_cachep = kmem_cache_create("files_cache",
1512 			sizeof(struct files_struct), 0,
1513 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1514 	fs_cachep = kmem_cache_create("fs_cache",
1515 			sizeof(struct fs_struct), 0,
1516 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1517 	mm_cachep = kmem_cache_create("mm_struct",
1518 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1519 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1520 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1521 	mmap_init();
1522 }
1523 
1524 /*
1525  * Check constraints on flags passed to the unshare system call and
1526  * force unsharing of additional process context as appropriate.
1527  */
1528 static void check_unshare_flags(unsigned long *flags_ptr)
1529 {
1530 	/*
1531 	 * If unsharing a thread from a thread group, must also
1532 	 * unshare vm.
1533 	 */
1534 	if (*flags_ptr & CLONE_THREAD)
1535 		*flags_ptr |= CLONE_VM;
1536 
1537 	/*
1538 	 * If unsharing vm, must also unshare signal handlers.
1539 	 */
1540 	if (*flags_ptr & CLONE_VM)
1541 		*flags_ptr |= CLONE_SIGHAND;
1542 
1543 	/*
1544 	 * If unsharing namespace, must also unshare filesystem information.
1545 	 */
1546 	if (*flags_ptr & CLONE_NEWNS)
1547 		*flags_ptr |= CLONE_FS;
1548 }
1549 
1550 /*
1551  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1552  */
1553 static int unshare_thread(unsigned long unshare_flags)
1554 {
1555 	if (unshare_flags & CLONE_THREAD)
1556 		return -EINVAL;
1557 
1558 	return 0;
1559 }
1560 
1561 /*
1562  * Unshare the filesystem structure if it is being shared
1563  */
1564 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1565 {
1566 	struct fs_struct *fs = current->fs;
1567 
1568 	if (!(unshare_flags & CLONE_FS) || !fs)
1569 		return 0;
1570 
1571 	/* don't need lock here; in the worst case we'll do useless copy */
1572 	if (fs->users == 1)
1573 		return 0;
1574 
1575 	*new_fsp = copy_fs_struct(fs);
1576 	if (!*new_fsp)
1577 		return -ENOMEM;
1578 
1579 	return 0;
1580 }
1581 
1582 /*
1583  * Unsharing of sighand is not supported yet
1584  */
1585 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1586 {
1587 	struct sighand_struct *sigh = current->sighand;
1588 
1589 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1590 		return -EINVAL;
1591 	else
1592 		return 0;
1593 }
1594 
1595 /*
1596  * Unshare vm if it is being shared
1597  */
1598 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1599 {
1600 	struct mm_struct *mm = current->mm;
1601 
1602 	if ((unshare_flags & CLONE_VM) &&
1603 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1604 		return -EINVAL;
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 /*
1611  * Unshare file descriptor table if it is being shared
1612  */
1613 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1614 {
1615 	struct files_struct *fd = current->files;
1616 	int error = 0;
1617 
1618 	if ((unshare_flags & CLONE_FILES) &&
1619 	    (fd && atomic_read(&fd->count) > 1)) {
1620 		*new_fdp = dup_fd(fd, &error);
1621 		if (!*new_fdp)
1622 			return error;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 /*
1629  * unshare allows a process to 'unshare' part of the process
1630  * context which was originally shared using clone.  copy_*
1631  * functions used by do_fork() cannot be used here directly
1632  * because they modify an inactive task_struct that is being
1633  * constructed. Here we are modifying the current, active,
1634  * task_struct.
1635  */
1636 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1637 {
1638 	int err = 0;
1639 	struct fs_struct *fs, *new_fs = NULL;
1640 	struct sighand_struct *new_sigh = NULL;
1641 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1642 	struct files_struct *fd, *new_fd = NULL;
1643 	struct nsproxy *new_nsproxy = NULL;
1644 	int do_sysvsem = 0;
1645 
1646 	check_unshare_flags(&unshare_flags);
1647 
1648 	/* Return -EINVAL for all unsupported flags */
1649 	err = -EINVAL;
1650 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1651 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1652 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1653 		goto bad_unshare_out;
1654 
1655 	/*
1656 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1657 	 * to a new ipc namespace, the semaphore arrays from the old
1658 	 * namespace are unreachable.
1659 	 */
1660 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1661 		do_sysvsem = 1;
1662 	if ((err = unshare_thread(unshare_flags)))
1663 		goto bad_unshare_out;
1664 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1665 		goto bad_unshare_cleanup_thread;
1666 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1667 		goto bad_unshare_cleanup_fs;
1668 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1669 		goto bad_unshare_cleanup_sigh;
1670 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1671 		goto bad_unshare_cleanup_vm;
1672 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1673 			new_fs)))
1674 		goto bad_unshare_cleanup_fd;
1675 
1676 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1677 		if (do_sysvsem) {
1678 			/*
1679 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1680 			 */
1681 			exit_sem(current);
1682 		}
1683 
1684 		if (new_nsproxy) {
1685 			switch_task_namespaces(current, new_nsproxy);
1686 			new_nsproxy = NULL;
1687 		}
1688 
1689 		task_lock(current);
1690 
1691 		if (new_fs) {
1692 			fs = current->fs;
1693 			spin_lock(&fs->lock);
1694 			current->fs = new_fs;
1695 			if (--fs->users)
1696 				new_fs = NULL;
1697 			else
1698 				new_fs = fs;
1699 			spin_unlock(&fs->lock);
1700 		}
1701 
1702 		if (new_mm) {
1703 			mm = current->mm;
1704 			active_mm = current->active_mm;
1705 			current->mm = new_mm;
1706 			current->active_mm = new_mm;
1707 			if (current->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
1708 				atomic_dec(&mm->oom_disable_count);
1709 				atomic_inc(&new_mm->oom_disable_count);
1710 			}
1711 			activate_mm(active_mm, new_mm);
1712 			new_mm = mm;
1713 		}
1714 
1715 		if (new_fd) {
1716 			fd = current->files;
1717 			current->files = new_fd;
1718 			new_fd = fd;
1719 		}
1720 
1721 		task_unlock(current);
1722 	}
1723 
1724 	if (new_nsproxy)
1725 		put_nsproxy(new_nsproxy);
1726 
1727 bad_unshare_cleanup_fd:
1728 	if (new_fd)
1729 		put_files_struct(new_fd);
1730 
1731 bad_unshare_cleanup_vm:
1732 	if (new_mm)
1733 		mmput(new_mm);
1734 
1735 bad_unshare_cleanup_sigh:
1736 	if (new_sigh)
1737 		if (atomic_dec_and_test(&new_sigh->count))
1738 			kmem_cache_free(sighand_cachep, new_sigh);
1739 
1740 bad_unshare_cleanup_fs:
1741 	if (new_fs)
1742 		free_fs_struct(new_fs);
1743 
1744 bad_unshare_cleanup_thread:
1745 bad_unshare_out:
1746 	return err;
1747 }
1748 
1749 /*
1750  *	Helper to unshare the files of the current task.
1751  *	We don't want to expose copy_files internals to
1752  *	the exec layer of the kernel.
1753  */
1754 
1755 int unshare_files(struct files_struct **displaced)
1756 {
1757 	struct task_struct *task = current;
1758 	struct files_struct *copy = NULL;
1759 	int error;
1760 
1761 	error = unshare_fd(CLONE_FILES, &copy);
1762 	if (error || !copy) {
1763 		*displaced = NULL;
1764 		return error;
1765 	}
1766 	*displaced = task->files;
1767 	task_lock(task);
1768 	task->files = copy;
1769 	task_unlock(task);
1770 	return 0;
1771 }
1772