xref: /linux/kernel/fork.c (revision c9d23f9657cabfd2836a096bf6eddf8df2cf1434)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #  ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 struct vm_stack {
197 	struct rcu_head rcu;
198 	struct vm_struct *stack_vm_area;
199 };
200 
201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < NR_CACHED_STACKS; i++) {
206 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207 			continue;
208 		return true;
209 	}
210 	return false;
211 }
212 
213 static void thread_stack_free_rcu(struct rcu_head *rh)
214 {
215 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216 
217 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218 		return;
219 
220 	vfree(vm_stack);
221 }
222 
223 static void thread_stack_delayed_free(struct task_struct *tsk)
224 {
225 	struct vm_stack *vm_stack = tsk->stack;
226 
227 	vm_stack->stack_vm_area = tsk->stack_vm_area;
228 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229 }
230 
231 static int free_vm_stack_cache(unsigned int cpu)
232 {
233 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 	int i;
235 
236 	for (i = 0; i < NR_CACHED_STACKS; i++) {
237 		struct vm_struct *vm_stack = cached_vm_stacks[i];
238 
239 		if (!vm_stack)
240 			continue;
241 
242 		vfree(vm_stack->addr);
243 		cached_vm_stacks[i] = NULL;
244 	}
245 
246 	return 0;
247 }
248 
249 static int memcg_charge_kernel_stack(struct vm_struct *vm)
250 {
251 	int i;
252 	int ret;
253 
254 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256 
257 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259 		if (ret)
260 			goto err;
261 	}
262 	return 0;
263 err:
264 	/*
265 	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266 	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267 	 * ignore this page.
268 	 */
269 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270 		memcg_kmem_uncharge_page(vm->pages[i], 0);
271 	return ret;
272 }
273 
274 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
275 {
276 	struct vm_struct *vm;
277 	void *stack;
278 	int i;
279 
280 	for (i = 0; i < NR_CACHED_STACKS; i++) {
281 		struct vm_struct *s;
282 
283 		s = this_cpu_xchg(cached_stacks[i], NULL);
284 
285 		if (!s)
286 			continue;
287 
288 		/* Reset stack metadata. */
289 		kasan_unpoison_range(s->addr, THREAD_SIZE);
290 
291 		stack = kasan_reset_tag(s->addr);
292 
293 		/* Clear stale pointers from reused stack. */
294 		memset(stack, 0, THREAD_SIZE);
295 
296 		if (memcg_charge_kernel_stack(s)) {
297 			vfree(s->addr);
298 			return -ENOMEM;
299 		}
300 
301 		tsk->stack_vm_area = s;
302 		tsk->stack = stack;
303 		return 0;
304 	}
305 
306 	/*
307 	 * Allocated stacks are cached and later reused by new threads,
308 	 * so memcg accounting is performed manually on assigning/releasing
309 	 * stacks to tasks. Drop __GFP_ACCOUNT.
310 	 */
311 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
312 				     VMALLOC_START, VMALLOC_END,
313 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
314 				     PAGE_KERNEL,
315 				     0, node, __builtin_return_address(0));
316 	if (!stack)
317 		return -ENOMEM;
318 
319 	vm = find_vm_area(stack);
320 	if (memcg_charge_kernel_stack(vm)) {
321 		vfree(stack);
322 		return -ENOMEM;
323 	}
324 	/*
325 	 * We can't call find_vm_area() in interrupt context, and
326 	 * free_thread_stack() can be called in interrupt context,
327 	 * so cache the vm_struct.
328 	 */
329 	tsk->stack_vm_area = vm;
330 	stack = kasan_reset_tag(stack);
331 	tsk->stack = stack;
332 	return 0;
333 }
334 
335 static void free_thread_stack(struct task_struct *tsk)
336 {
337 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338 		thread_stack_delayed_free(tsk);
339 
340 	tsk->stack = NULL;
341 	tsk->stack_vm_area = NULL;
342 }
343 
344 #  else /* !CONFIG_VMAP_STACK */
345 
346 static void thread_stack_free_rcu(struct rcu_head *rh)
347 {
348 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349 }
350 
351 static void thread_stack_delayed_free(struct task_struct *tsk)
352 {
353 	struct rcu_head *rh = tsk->stack;
354 
355 	call_rcu(rh, thread_stack_free_rcu);
356 }
357 
358 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
359 {
360 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361 					     THREAD_SIZE_ORDER);
362 
363 	if (likely(page)) {
364 		tsk->stack = kasan_reset_tag(page_address(page));
365 		return 0;
366 	}
367 	return -ENOMEM;
368 }
369 
370 static void free_thread_stack(struct task_struct *tsk)
371 {
372 	thread_stack_delayed_free(tsk);
373 	tsk->stack = NULL;
374 }
375 
376 #  endif /* CONFIG_VMAP_STACK */
377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
378 
379 static struct kmem_cache *thread_stack_cache;
380 
381 static void thread_stack_free_rcu(struct rcu_head *rh)
382 {
383 	kmem_cache_free(thread_stack_cache, rh);
384 }
385 
386 static void thread_stack_delayed_free(struct task_struct *tsk)
387 {
388 	struct rcu_head *rh = tsk->stack;
389 
390 	call_rcu(rh, thread_stack_free_rcu);
391 }
392 
393 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
394 {
395 	unsigned long *stack;
396 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
397 	stack = kasan_reset_tag(stack);
398 	tsk->stack = stack;
399 	return stack ? 0 : -ENOMEM;
400 }
401 
402 static void free_thread_stack(struct task_struct *tsk)
403 {
404 	thread_stack_delayed_free(tsk);
405 	tsk->stack = NULL;
406 }
407 
408 void thread_stack_cache_init(void)
409 {
410 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411 					THREAD_SIZE, THREAD_SIZE, 0, 0,
412 					THREAD_SIZE, NULL);
413 	BUG_ON(thread_stack_cache == NULL);
414 }
415 
416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418 
419 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
420 {
421 	unsigned long *stack;
422 
423 	stack = arch_alloc_thread_stack_node(tsk, node);
424 	tsk->stack = stack;
425 	return stack ? 0 : -ENOMEM;
426 }
427 
428 static void free_thread_stack(struct task_struct *tsk)
429 {
430 	arch_free_thread_stack(tsk);
431 	tsk->stack = NULL;
432 }
433 
434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
435 
436 /* SLAB cache for signal_struct structures (tsk->signal) */
437 static struct kmem_cache *signal_cachep;
438 
439 /* SLAB cache for sighand_struct structures (tsk->sighand) */
440 struct kmem_cache *sighand_cachep;
441 
442 /* SLAB cache for files_struct structures (tsk->files) */
443 struct kmem_cache *files_cachep;
444 
445 /* SLAB cache for fs_struct structures (tsk->fs) */
446 struct kmem_cache *fs_cachep;
447 
448 /* SLAB cache for vm_area_struct structures */
449 static struct kmem_cache *vm_area_cachep;
450 
451 /* SLAB cache for mm_struct structures (tsk->mm) */
452 static struct kmem_cache *mm_cachep;
453 
454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
455 {
456 	struct vm_area_struct *vma;
457 
458 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459 	if (vma)
460 		vma_init(vma, mm);
461 	return vma;
462 }
463 
464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
465 {
466 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
467 
468 	if (new) {
469 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
471 		/*
472 		 * orig->shared.rb may be modified concurrently, but the clone
473 		 * will be reinitialized.
474 		 */
475 		data_race(memcpy(new, orig, sizeof(*new)));
476 		INIT_LIST_HEAD(&new->anon_vma_chain);
477 		dup_anon_vma_name(orig, new);
478 	}
479 	return new;
480 }
481 
482 void vm_area_free(struct vm_area_struct *vma)
483 {
484 	free_anon_vma_name(vma);
485 	kmem_cache_free(vm_area_cachep, vma);
486 }
487 
488 static void account_kernel_stack(struct task_struct *tsk, int account)
489 {
490 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491 		struct vm_struct *vm = task_stack_vm_area(tsk);
492 		int i;
493 
494 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496 					      account * (PAGE_SIZE / 1024));
497 	} else {
498 		void *stack = task_stack_page(tsk);
499 
500 		/* All stack pages are in the same node. */
501 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
502 				      account * (THREAD_SIZE / 1024));
503 	}
504 }
505 
506 void exit_task_stack_account(struct task_struct *tsk)
507 {
508 	account_kernel_stack(tsk, -1);
509 
510 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511 		struct vm_struct *vm;
512 		int i;
513 
514 		vm = task_stack_vm_area(tsk);
515 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516 			memcg_kmem_uncharge_page(vm->pages[i], 0);
517 	}
518 }
519 
520 static void release_task_stack(struct task_struct *tsk)
521 {
522 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
523 		return;  /* Better to leak the stack than to free prematurely */
524 
525 	free_thread_stack(tsk);
526 }
527 
528 #ifdef CONFIG_THREAD_INFO_IN_TASK
529 void put_task_stack(struct task_struct *tsk)
530 {
531 	if (refcount_dec_and_test(&tsk->stack_refcount))
532 		release_task_stack(tsk);
533 }
534 #endif
535 
536 void free_task(struct task_struct *tsk)
537 {
538 #ifdef CONFIG_SECCOMP
539 	WARN_ON_ONCE(tsk->seccomp.filter);
540 #endif
541 	release_user_cpus_ptr(tsk);
542 	scs_release(tsk);
543 
544 #ifndef CONFIG_THREAD_INFO_IN_TASK
545 	/*
546 	 * The task is finally done with both the stack and thread_info,
547 	 * so free both.
548 	 */
549 	release_task_stack(tsk);
550 #else
551 	/*
552 	 * If the task had a separate stack allocation, it should be gone
553 	 * by now.
554 	 */
555 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
556 #endif
557 	rt_mutex_debug_task_free(tsk);
558 	ftrace_graph_exit_task(tsk);
559 	arch_release_task_struct(tsk);
560 	if (tsk->flags & PF_KTHREAD)
561 		free_kthread_struct(tsk);
562 	free_task_struct(tsk);
563 }
564 EXPORT_SYMBOL(free_task);
565 
566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
567 {
568 	struct file *exe_file;
569 
570 	exe_file = get_mm_exe_file(oldmm);
571 	RCU_INIT_POINTER(mm->exe_file, exe_file);
572 	/*
573 	 * We depend on the oldmm having properly denied write access to the
574 	 * exe_file already.
575 	 */
576 	if (exe_file && deny_write_access(exe_file))
577 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
578 }
579 
580 #ifdef CONFIG_MMU
581 static __latent_entropy int dup_mmap(struct mm_struct *mm,
582 					struct mm_struct *oldmm)
583 {
584 	struct vm_area_struct *mpnt, *tmp;
585 	int retval;
586 	unsigned long charge = 0;
587 	LIST_HEAD(uf);
588 	VMA_ITERATOR(old_vmi, oldmm, 0);
589 	VMA_ITERATOR(vmi, mm, 0);
590 
591 	uprobe_start_dup_mmap();
592 	if (mmap_write_lock_killable(oldmm)) {
593 		retval = -EINTR;
594 		goto fail_uprobe_end;
595 	}
596 	flush_cache_dup_mm(oldmm);
597 	uprobe_dup_mmap(oldmm, mm);
598 	/*
599 	 * Not linked in yet - no deadlock potential:
600 	 */
601 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
602 
603 	/* No ordering required: file already has been exposed. */
604 	dup_mm_exe_file(mm, oldmm);
605 
606 	mm->total_vm = oldmm->total_vm;
607 	mm->data_vm = oldmm->data_vm;
608 	mm->exec_vm = oldmm->exec_vm;
609 	mm->stack_vm = oldmm->stack_vm;
610 
611 	retval = ksm_fork(mm, oldmm);
612 	if (retval)
613 		goto out;
614 	khugepaged_fork(mm, oldmm);
615 
616 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
617 	if (retval)
618 		goto out;
619 
620 	for_each_vma(old_vmi, mpnt) {
621 		struct file *file;
622 
623 		if (mpnt->vm_flags & VM_DONTCOPY) {
624 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
625 			continue;
626 		}
627 		charge = 0;
628 		/*
629 		 * Don't duplicate many vmas if we've been oom-killed (for
630 		 * example)
631 		 */
632 		if (fatal_signal_pending(current)) {
633 			retval = -EINTR;
634 			goto loop_out;
635 		}
636 		if (mpnt->vm_flags & VM_ACCOUNT) {
637 			unsigned long len = vma_pages(mpnt);
638 
639 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
640 				goto fail_nomem;
641 			charge = len;
642 		}
643 		tmp = vm_area_dup(mpnt);
644 		if (!tmp)
645 			goto fail_nomem;
646 		retval = vma_dup_policy(mpnt, tmp);
647 		if (retval)
648 			goto fail_nomem_policy;
649 		tmp->vm_mm = mm;
650 		retval = dup_userfaultfd(tmp, &uf);
651 		if (retval)
652 			goto fail_nomem_anon_vma_fork;
653 		if (tmp->vm_flags & VM_WIPEONFORK) {
654 			/*
655 			 * VM_WIPEONFORK gets a clean slate in the child.
656 			 * Don't prepare anon_vma until fault since we don't
657 			 * copy page for current vma.
658 			 */
659 			tmp->anon_vma = NULL;
660 		} else if (anon_vma_fork(tmp, mpnt))
661 			goto fail_nomem_anon_vma_fork;
662 		vm_flags_clear(tmp, VM_LOCKED_MASK);
663 		file = tmp->vm_file;
664 		if (file) {
665 			struct address_space *mapping = file->f_mapping;
666 
667 			get_file(file);
668 			i_mmap_lock_write(mapping);
669 			if (tmp->vm_flags & VM_SHARED)
670 				mapping_allow_writable(mapping);
671 			flush_dcache_mmap_lock(mapping);
672 			/* insert tmp into the share list, just after mpnt */
673 			vma_interval_tree_insert_after(tmp, mpnt,
674 					&mapping->i_mmap);
675 			flush_dcache_mmap_unlock(mapping);
676 			i_mmap_unlock_write(mapping);
677 		}
678 
679 		/*
680 		 * Copy/update hugetlb private vma information.
681 		 */
682 		if (is_vm_hugetlb_page(tmp))
683 			hugetlb_dup_vma_private(tmp);
684 
685 		/* Link the vma into the MT */
686 		if (vma_iter_bulk_store(&vmi, tmp))
687 			goto fail_nomem_vmi_store;
688 
689 		mm->map_count++;
690 		if (!(tmp->vm_flags & VM_WIPEONFORK))
691 			retval = copy_page_range(tmp, mpnt);
692 
693 		if (tmp->vm_ops && tmp->vm_ops->open)
694 			tmp->vm_ops->open(tmp);
695 
696 		if (retval)
697 			goto loop_out;
698 	}
699 	/* a new mm has just been created */
700 	retval = arch_dup_mmap(oldmm, mm);
701 loop_out:
702 	vma_iter_free(&vmi);
703 out:
704 	mmap_write_unlock(mm);
705 	flush_tlb_mm(oldmm);
706 	mmap_write_unlock(oldmm);
707 	dup_userfaultfd_complete(&uf);
708 fail_uprobe_end:
709 	uprobe_end_dup_mmap();
710 	return retval;
711 
712 fail_nomem_vmi_store:
713 	unlink_anon_vmas(tmp);
714 fail_nomem_anon_vma_fork:
715 	mpol_put(vma_policy(tmp));
716 fail_nomem_policy:
717 	vm_area_free(tmp);
718 fail_nomem:
719 	retval = -ENOMEM;
720 	vm_unacct_memory(charge);
721 	goto loop_out;
722 }
723 
724 static inline int mm_alloc_pgd(struct mm_struct *mm)
725 {
726 	mm->pgd = pgd_alloc(mm);
727 	if (unlikely(!mm->pgd))
728 		return -ENOMEM;
729 	return 0;
730 }
731 
732 static inline void mm_free_pgd(struct mm_struct *mm)
733 {
734 	pgd_free(mm, mm->pgd);
735 }
736 #else
737 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
738 {
739 	mmap_write_lock(oldmm);
740 	dup_mm_exe_file(mm, oldmm);
741 	mmap_write_unlock(oldmm);
742 	return 0;
743 }
744 #define mm_alloc_pgd(mm)	(0)
745 #define mm_free_pgd(mm)
746 #endif /* CONFIG_MMU */
747 
748 static void check_mm(struct mm_struct *mm)
749 {
750 	int i;
751 
752 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
753 			 "Please make sure 'struct resident_page_types[]' is updated as well");
754 
755 	for (i = 0; i < NR_MM_COUNTERS; i++) {
756 		long x = percpu_counter_sum(&mm->rss_stat[i]);
757 
758 		if (likely(!x))
759 			continue;
760 
761 		/* Making sure this is not due to race with CPU offlining. */
762 		x = percpu_counter_sum_all(&mm->rss_stat[i]);
763 		if (unlikely(x))
764 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
765 				 mm, resident_page_types[i], x);
766 	}
767 
768 	if (mm_pgtables_bytes(mm))
769 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
770 				mm_pgtables_bytes(mm));
771 
772 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
773 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
774 #endif
775 }
776 
777 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
778 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
779 
780 /*
781  * Called when the last reference to the mm
782  * is dropped: either by a lazy thread or by
783  * mmput. Free the page directory and the mm.
784  */
785 void __mmdrop(struct mm_struct *mm)
786 {
787 	int i;
788 
789 	BUG_ON(mm == &init_mm);
790 	WARN_ON_ONCE(mm == current->mm);
791 	WARN_ON_ONCE(mm == current->active_mm);
792 	mm_free_pgd(mm);
793 	destroy_context(mm);
794 	mmu_notifier_subscriptions_destroy(mm);
795 	check_mm(mm);
796 	put_user_ns(mm->user_ns);
797 	mm_pasid_drop(mm);
798 
799 	for (i = 0; i < NR_MM_COUNTERS; i++)
800 		percpu_counter_destroy(&mm->rss_stat[i]);
801 	free_mm(mm);
802 }
803 EXPORT_SYMBOL_GPL(__mmdrop);
804 
805 static void mmdrop_async_fn(struct work_struct *work)
806 {
807 	struct mm_struct *mm;
808 
809 	mm = container_of(work, struct mm_struct, async_put_work);
810 	__mmdrop(mm);
811 }
812 
813 static void mmdrop_async(struct mm_struct *mm)
814 {
815 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
816 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
817 		schedule_work(&mm->async_put_work);
818 	}
819 }
820 
821 static inline void free_signal_struct(struct signal_struct *sig)
822 {
823 	taskstats_tgid_free(sig);
824 	sched_autogroup_exit(sig);
825 	/*
826 	 * __mmdrop is not safe to call from softirq context on x86 due to
827 	 * pgd_dtor so postpone it to the async context
828 	 */
829 	if (sig->oom_mm)
830 		mmdrop_async(sig->oom_mm);
831 	kmem_cache_free(signal_cachep, sig);
832 }
833 
834 static inline void put_signal_struct(struct signal_struct *sig)
835 {
836 	if (refcount_dec_and_test(&sig->sigcnt))
837 		free_signal_struct(sig);
838 }
839 
840 void __put_task_struct(struct task_struct *tsk)
841 {
842 	WARN_ON(!tsk->exit_state);
843 	WARN_ON(refcount_read(&tsk->usage));
844 	WARN_ON(tsk == current);
845 
846 	io_uring_free(tsk);
847 	cgroup_free(tsk);
848 	task_numa_free(tsk, true);
849 	security_task_free(tsk);
850 	bpf_task_storage_free(tsk);
851 	exit_creds(tsk);
852 	delayacct_tsk_free(tsk);
853 	put_signal_struct(tsk->signal);
854 	sched_core_free(tsk);
855 	free_task(tsk);
856 }
857 EXPORT_SYMBOL_GPL(__put_task_struct);
858 
859 void __init __weak arch_task_cache_init(void) { }
860 
861 /*
862  * set_max_threads
863  */
864 static void set_max_threads(unsigned int max_threads_suggested)
865 {
866 	u64 threads;
867 	unsigned long nr_pages = totalram_pages();
868 
869 	/*
870 	 * The number of threads shall be limited such that the thread
871 	 * structures may only consume a small part of the available memory.
872 	 */
873 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
874 		threads = MAX_THREADS;
875 	else
876 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
877 				    (u64) THREAD_SIZE * 8UL);
878 
879 	if (threads > max_threads_suggested)
880 		threads = max_threads_suggested;
881 
882 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
883 }
884 
885 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
886 /* Initialized by the architecture: */
887 int arch_task_struct_size __read_mostly;
888 #endif
889 
890 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
891 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
892 {
893 	/* Fetch thread_struct whitelist for the architecture. */
894 	arch_thread_struct_whitelist(offset, size);
895 
896 	/*
897 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
898 	 * adjust offset to position of thread_struct in task_struct.
899 	 */
900 	if (unlikely(*size == 0))
901 		*offset = 0;
902 	else
903 		*offset += offsetof(struct task_struct, thread);
904 }
905 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
906 
907 void __init fork_init(void)
908 {
909 	int i;
910 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
911 #ifndef ARCH_MIN_TASKALIGN
912 #define ARCH_MIN_TASKALIGN	0
913 #endif
914 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
915 	unsigned long useroffset, usersize;
916 
917 	/* create a slab on which task_structs can be allocated */
918 	task_struct_whitelist(&useroffset, &usersize);
919 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
920 			arch_task_struct_size, align,
921 			SLAB_PANIC|SLAB_ACCOUNT,
922 			useroffset, usersize, NULL);
923 #endif
924 
925 	/* do the arch specific task caches init */
926 	arch_task_cache_init();
927 
928 	set_max_threads(MAX_THREADS);
929 
930 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
931 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
932 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
933 		init_task.signal->rlim[RLIMIT_NPROC];
934 
935 	for (i = 0; i < UCOUNT_COUNTS; i++)
936 		init_user_ns.ucount_max[i] = max_threads/2;
937 
938 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
939 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
940 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
941 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
942 
943 #ifdef CONFIG_VMAP_STACK
944 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
945 			  NULL, free_vm_stack_cache);
946 #endif
947 
948 	scs_init();
949 
950 	lockdep_init_task(&init_task);
951 	uprobes_init();
952 }
953 
954 int __weak arch_dup_task_struct(struct task_struct *dst,
955 					       struct task_struct *src)
956 {
957 	*dst = *src;
958 	return 0;
959 }
960 
961 void set_task_stack_end_magic(struct task_struct *tsk)
962 {
963 	unsigned long *stackend;
964 
965 	stackend = end_of_stack(tsk);
966 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
967 }
968 
969 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
970 {
971 	struct task_struct *tsk;
972 	int err;
973 
974 	if (node == NUMA_NO_NODE)
975 		node = tsk_fork_get_node(orig);
976 	tsk = alloc_task_struct_node(node);
977 	if (!tsk)
978 		return NULL;
979 
980 	err = arch_dup_task_struct(tsk, orig);
981 	if (err)
982 		goto free_tsk;
983 
984 	err = alloc_thread_stack_node(tsk, node);
985 	if (err)
986 		goto free_tsk;
987 
988 #ifdef CONFIG_THREAD_INFO_IN_TASK
989 	refcount_set(&tsk->stack_refcount, 1);
990 #endif
991 	account_kernel_stack(tsk, 1);
992 
993 	err = scs_prepare(tsk, node);
994 	if (err)
995 		goto free_stack;
996 
997 #ifdef CONFIG_SECCOMP
998 	/*
999 	 * We must handle setting up seccomp filters once we're under
1000 	 * the sighand lock in case orig has changed between now and
1001 	 * then. Until then, filter must be NULL to avoid messing up
1002 	 * the usage counts on the error path calling free_task.
1003 	 */
1004 	tsk->seccomp.filter = NULL;
1005 #endif
1006 
1007 	setup_thread_stack(tsk, orig);
1008 	clear_user_return_notifier(tsk);
1009 	clear_tsk_need_resched(tsk);
1010 	set_task_stack_end_magic(tsk);
1011 	clear_syscall_work_syscall_user_dispatch(tsk);
1012 
1013 #ifdef CONFIG_STACKPROTECTOR
1014 	tsk->stack_canary = get_random_canary();
1015 #endif
1016 	if (orig->cpus_ptr == &orig->cpus_mask)
1017 		tsk->cpus_ptr = &tsk->cpus_mask;
1018 	dup_user_cpus_ptr(tsk, orig, node);
1019 
1020 	/*
1021 	 * One for the user space visible state that goes away when reaped.
1022 	 * One for the scheduler.
1023 	 */
1024 	refcount_set(&tsk->rcu_users, 2);
1025 	/* One for the rcu users */
1026 	refcount_set(&tsk->usage, 1);
1027 #ifdef CONFIG_BLK_DEV_IO_TRACE
1028 	tsk->btrace_seq = 0;
1029 #endif
1030 	tsk->splice_pipe = NULL;
1031 	tsk->task_frag.page = NULL;
1032 	tsk->wake_q.next = NULL;
1033 	tsk->worker_private = NULL;
1034 
1035 	kcov_task_init(tsk);
1036 	kmsan_task_create(tsk);
1037 	kmap_local_fork(tsk);
1038 
1039 #ifdef CONFIG_FAULT_INJECTION
1040 	tsk->fail_nth = 0;
1041 #endif
1042 
1043 #ifdef CONFIG_BLK_CGROUP
1044 	tsk->throttle_disk = NULL;
1045 	tsk->use_memdelay = 0;
1046 #endif
1047 
1048 #ifdef CONFIG_IOMMU_SVA
1049 	tsk->pasid_activated = 0;
1050 #endif
1051 
1052 #ifdef CONFIG_MEMCG
1053 	tsk->active_memcg = NULL;
1054 #endif
1055 
1056 #ifdef CONFIG_CPU_SUP_INTEL
1057 	tsk->reported_split_lock = 0;
1058 #endif
1059 
1060 #ifdef CONFIG_SCHED_MM_CID
1061 	tsk->mm_cid = -1;
1062 	tsk->mm_cid_active = 0;
1063 #endif
1064 	return tsk;
1065 
1066 free_stack:
1067 	exit_task_stack_account(tsk);
1068 	free_thread_stack(tsk);
1069 free_tsk:
1070 	free_task_struct(tsk);
1071 	return NULL;
1072 }
1073 
1074 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1075 
1076 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1077 
1078 static int __init coredump_filter_setup(char *s)
1079 {
1080 	default_dump_filter =
1081 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1082 		MMF_DUMP_FILTER_MASK;
1083 	return 1;
1084 }
1085 
1086 __setup("coredump_filter=", coredump_filter_setup);
1087 
1088 #include <linux/init_task.h>
1089 
1090 static void mm_init_aio(struct mm_struct *mm)
1091 {
1092 #ifdef CONFIG_AIO
1093 	spin_lock_init(&mm->ioctx_lock);
1094 	mm->ioctx_table = NULL;
1095 #endif
1096 }
1097 
1098 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1099 					   struct task_struct *p)
1100 {
1101 #ifdef CONFIG_MEMCG
1102 	if (mm->owner == p)
1103 		WRITE_ONCE(mm->owner, NULL);
1104 #endif
1105 }
1106 
1107 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1108 {
1109 #ifdef CONFIG_MEMCG
1110 	mm->owner = p;
1111 #endif
1112 }
1113 
1114 static void mm_init_uprobes_state(struct mm_struct *mm)
1115 {
1116 #ifdef CONFIG_UPROBES
1117 	mm->uprobes_state.xol_area = NULL;
1118 #endif
1119 }
1120 
1121 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1122 	struct user_namespace *user_ns)
1123 {
1124 	int i;
1125 
1126 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1127 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1128 	atomic_set(&mm->mm_users, 1);
1129 	atomic_set(&mm->mm_count, 1);
1130 	seqcount_init(&mm->write_protect_seq);
1131 	mmap_init_lock(mm);
1132 	INIT_LIST_HEAD(&mm->mmlist);
1133 	mm_pgtables_bytes_init(mm);
1134 	mm->map_count = 0;
1135 	mm->locked_vm = 0;
1136 	atomic64_set(&mm->pinned_vm, 0);
1137 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1138 	spin_lock_init(&mm->page_table_lock);
1139 	spin_lock_init(&mm->arg_lock);
1140 	mm_init_cpumask(mm);
1141 	mm_init_aio(mm);
1142 	mm_init_owner(mm, p);
1143 	mm_pasid_init(mm);
1144 	RCU_INIT_POINTER(mm->exe_file, NULL);
1145 	mmu_notifier_subscriptions_init(mm);
1146 	init_tlb_flush_pending(mm);
1147 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1148 	mm->pmd_huge_pte = NULL;
1149 #endif
1150 	mm_init_uprobes_state(mm);
1151 	hugetlb_count_init(mm);
1152 
1153 	if (current->mm) {
1154 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1155 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1156 	} else {
1157 		mm->flags = default_dump_filter;
1158 		mm->def_flags = 0;
1159 	}
1160 
1161 	if (mm_alloc_pgd(mm))
1162 		goto fail_nopgd;
1163 
1164 	if (init_new_context(p, mm))
1165 		goto fail_nocontext;
1166 
1167 	for (i = 0; i < NR_MM_COUNTERS; i++)
1168 		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1169 			goto fail_pcpu;
1170 
1171 	mm->user_ns = get_user_ns(user_ns);
1172 	lru_gen_init_mm(mm);
1173 	mm_init_cid(mm);
1174 	return mm;
1175 
1176 fail_pcpu:
1177 	while (i > 0)
1178 		percpu_counter_destroy(&mm->rss_stat[--i]);
1179 fail_nocontext:
1180 	mm_free_pgd(mm);
1181 fail_nopgd:
1182 	free_mm(mm);
1183 	return NULL;
1184 }
1185 
1186 /*
1187  * Allocate and initialize an mm_struct.
1188  */
1189 struct mm_struct *mm_alloc(void)
1190 {
1191 	struct mm_struct *mm;
1192 
1193 	mm = allocate_mm();
1194 	if (!mm)
1195 		return NULL;
1196 
1197 	memset(mm, 0, sizeof(*mm));
1198 	return mm_init(mm, current, current_user_ns());
1199 }
1200 
1201 static inline void __mmput(struct mm_struct *mm)
1202 {
1203 	VM_BUG_ON(atomic_read(&mm->mm_users));
1204 
1205 	uprobe_clear_state(mm);
1206 	exit_aio(mm);
1207 	ksm_exit(mm);
1208 	khugepaged_exit(mm); /* must run before exit_mmap */
1209 	exit_mmap(mm);
1210 	mm_put_huge_zero_page(mm);
1211 	set_mm_exe_file(mm, NULL);
1212 	if (!list_empty(&mm->mmlist)) {
1213 		spin_lock(&mmlist_lock);
1214 		list_del(&mm->mmlist);
1215 		spin_unlock(&mmlist_lock);
1216 	}
1217 	if (mm->binfmt)
1218 		module_put(mm->binfmt->module);
1219 	lru_gen_del_mm(mm);
1220 	mmdrop(mm);
1221 }
1222 
1223 /*
1224  * Decrement the use count and release all resources for an mm.
1225  */
1226 void mmput(struct mm_struct *mm)
1227 {
1228 	might_sleep();
1229 
1230 	if (atomic_dec_and_test(&mm->mm_users))
1231 		__mmput(mm);
1232 }
1233 EXPORT_SYMBOL_GPL(mmput);
1234 
1235 #ifdef CONFIG_MMU
1236 static void mmput_async_fn(struct work_struct *work)
1237 {
1238 	struct mm_struct *mm = container_of(work, struct mm_struct,
1239 					    async_put_work);
1240 
1241 	__mmput(mm);
1242 }
1243 
1244 void mmput_async(struct mm_struct *mm)
1245 {
1246 	if (atomic_dec_and_test(&mm->mm_users)) {
1247 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1248 		schedule_work(&mm->async_put_work);
1249 	}
1250 }
1251 EXPORT_SYMBOL_GPL(mmput_async);
1252 #endif
1253 
1254 /**
1255  * set_mm_exe_file - change a reference to the mm's executable file
1256  *
1257  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1258  *
1259  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1260  * invocations: in mmput() nobody alive left, in execve task is single
1261  * threaded.
1262  *
1263  * Can only fail if new_exe_file != NULL.
1264  */
1265 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1266 {
1267 	struct file *old_exe_file;
1268 
1269 	/*
1270 	 * It is safe to dereference the exe_file without RCU as
1271 	 * this function is only called if nobody else can access
1272 	 * this mm -- see comment above for justification.
1273 	 */
1274 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1275 
1276 	if (new_exe_file) {
1277 		/*
1278 		 * We expect the caller (i.e., sys_execve) to already denied
1279 		 * write access, so this is unlikely to fail.
1280 		 */
1281 		if (unlikely(deny_write_access(new_exe_file)))
1282 			return -EACCES;
1283 		get_file(new_exe_file);
1284 	}
1285 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1286 	if (old_exe_file) {
1287 		allow_write_access(old_exe_file);
1288 		fput(old_exe_file);
1289 	}
1290 	return 0;
1291 }
1292 
1293 /**
1294  * replace_mm_exe_file - replace a reference to the mm's executable file
1295  *
1296  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1297  * dealing with concurrent invocation and without grabbing the mmap lock in
1298  * write mode.
1299  *
1300  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1301  */
1302 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1303 {
1304 	struct vm_area_struct *vma;
1305 	struct file *old_exe_file;
1306 	int ret = 0;
1307 
1308 	/* Forbid mm->exe_file change if old file still mapped. */
1309 	old_exe_file = get_mm_exe_file(mm);
1310 	if (old_exe_file) {
1311 		VMA_ITERATOR(vmi, mm, 0);
1312 		mmap_read_lock(mm);
1313 		for_each_vma(vmi, vma) {
1314 			if (!vma->vm_file)
1315 				continue;
1316 			if (path_equal(&vma->vm_file->f_path,
1317 				       &old_exe_file->f_path)) {
1318 				ret = -EBUSY;
1319 				break;
1320 			}
1321 		}
1322 		mmap_read_unlock(mm);
1323 		fput(old_exe_file);
1324 		if (ret)
1325 			return ret;
1326 	}
1327 
1328 	/* set the new file, lockless */
1329 	ret = deny_write_access(new_exe_file);
1330 	if (ret)
1331 		return -EACCES;
1332 	get_file(new_exe_file);
1333 
1334 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1335 	if (old_exe_file) {
1336 		/*
1337 		 * Don't race with dup_mmap() getting the file and disallowing
1338 		 * write access while someone might open the file writable.
1339 		 */
1340 		mmap_read_lock(mm);
1341 		allow_write_access(old_exe_file);
1342 		fput(old_exe_file);
1343 		mmap_read_unlock(mm);
1344 	}
1345 	return 0;
1346 }
1347 
1348 /**
1349  * get_mm_exe_file - acquire a reference to the mm's executable file
1350  *
1351  * Returns %NULL if mm has no associated executable file.
1352  * User must release file via fput().
1353  */
1354 struct file *get_mm_exe_file(struct mm_struct *mm)
1355 {
1356 	struct file *exe_file;
1357 
1358 	rcu_read_lock();
1359 	exe_file = rcu_dereference(mm->exe_file);
1360 	if (exe_file && !get_file_rcu(exe_file))
1361 		exe_file = NULL;
1362 	rcu_read_unlock();
1363 	return exe_file;
1364 }
1365 
1366 /**
1367  * get_task_exe_file - acquire a reference to the task's executable file
1368  *
1369  * Returns %NULL if task's mm (if any) has no associated executable file or
1370  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1371  * User must release file via fput().
1372  */
1373 struct file *get_task_exe_file(struct task_struct *task)
1374 {
1375 	struct file *exe_file = NULL;
1376 	struct mm_struct *mm;
1377 
1378 	task_lock(task);
1379 	mm = task->mm;
1380 	if (mm) {
1381 		if (!(task->flags & PF_KTHREAD))
1382 			exe_file = get_mm_exe_file(mm);
1383 	}
1384 	task_unlock(task);
1385 	return exe_file;
1386 }
1387 
1388 /**
1389  * get_task_mm - acquire a reference to the task's mm
1390  *
1391  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1392  * this kernel workthread has transiently adopted a user mm with use_mm,
1393  * to do its AIO) is not set and if so returns a reference to it, after
1394  * bumping up the use count.  User must release the mm via mmput()
1395  * after use.  Typically used by /proc and ptrace.
1396  */
1397 struct mm_struct *get_task_mm(struct task_struct *task)
1398 {
1399 	struct mm_struct *mm;
1400 
1401 	task_lock(task);
1402 	mm = task->mm;
1403 	if (mm) {
1404 		if (task->flags & PF_KTHREAD)
1405 			mm = NULL;
1406 		else
1407 			mmget(mm);
1408 	}
1409 	task_unlock(task);
1410 	return mm;
1411 }
1412 EXPORT_SYMBOL_GPL(get_task_mm);
1413 
1414 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1415 {
1416 	struct mm_struct *mm;
1417 	int err;
1418 
1419 	err =  down_read_killable(&task->signal->exec_update_lock);
1420 	if (err)
1421 		return ERR_PTR(err);
1422 
1423 	mm = get_task_mm(task);
1424 	if (mm && mm != current->mm &&
1425 			!ptrace_may_access(task, mode)) {
1426 		mmput(mm);
1427 		mm = ERR_PTR(-EACCES);
1428 	}
1429 	up_read(&task->signal->exec_update_lock);
1430 
1431 	return mm;
1432 }
1433 
1434 static void complete_vfork_done(struct task_struct *tsk)
1435 {
1436 	struct completion *vfork;
1437 
1438 	task_lock(tsk);
1439 	vfork = tsk->vfork_done;
1440 	if (likely(vfork)) {
1441 		tsk->vfork_done = NULL;
1442 		complete(vfork);
1443 	}
1444 	task_unlock(tsk);
1445 }
1446 
1447 static int wait_for_vfork_done(struct task_struct *child,
1448 				struct completion *vfork)
1449 {
1450 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1451 	int killed;
1452 
1453 	cgroup_enter_frozen();
1454 	killed = wait_for_completion_state(vfork, state);
1455 	cgroup_leave_frozen(false);
1456 
1457 	if (killed) {
1458 		task_lock(child);
1459 		child->vfork_done = NULL;
1460 		task_unlock(child);
1461 	}
1462 
1463 	put_task_struct(child);
1464 	return killed;
1465 }
1466 
1467 /* Please note the differences between mmput and mm_release.
1468  * mmput is called whenever we stop holding onto a mm_struct,
1469  * error success whatever.
1470  *
1471  * mm_release is called after a mm_struct has been removed
1472  * from the current process.
1473  *
1474  * This difference is important for error handling, when we
1475  * only half set up a mm_struct for a new process and need to restore
1476  * the old one.  Because we mmput the new mm_struct before
1477  * restoring the old one. . .
1478  * Eric Biederman 10 January 1998
1479  */
1480 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1481 {
1482 	uprobe_free_utask(tsk);
1483 
1484 	/* Get rid of any cached register state */
1485 	deactivate_mm(tsk, mm);
1486 
1487 	/*
1488 	 * Signal userspace if we're not exiting with a core dump
1489 	 * because we want to leave the value intact for debugging
1490 	 * purposes.
1491 	 */
1492 	if (tsk->clear_child_tid) {
1493 		if (atomic_read(&mm->mm_users) > 1) {
1494 			/*
1495 			 * We don't check the error code - if userspace has
1496 			 * not set up a proper pointer then tough luck.
1497 			 */
1498 			put_user(0, tsk->clear_child_tid);
1499 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1500 					1, NULL, NULL, 0, 0);
1501 		}
1502 		tsk->clear_child_tid = NULL;
1503 	}
1504 
1505 	/*
1506 	 * All done, finally we can wake up parent and return this mm to him.
1507 	 * Also kthread_stop() uses this completion for synchronization.
1508 	 */
1509 	if (tsk->vfork_done)
1510 		complete_vfork_done(tsk);
1511 }
1512 
1513 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1514 {
1515 	futex_exit_release(tsk);
1516 	mm_release(tsk, mm);
1517 }
1518 
1519 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1520 {
1521 	futex_exec_release(tsk);
1522 	mm_release(tsk, mm);
1523 }
1524 
1525 /**
1526  * dup_mm() - duplicates an existing mm structure
1527  * @tsk: the task_struct with which the new mm will be associated.
1528  * @oldmm: the mm to duplicate.
1529  *
1530  * Allocates a new mm structure and duplicates the provided @oldmm structure
1531  * content into it.
1532  *
1533  * Return: the duplicated mm or NULL on failure.
1534  */
1535 static struct mm_struct *dup_mm(struct task_struct *tsk,
1536 				struct mm_struct *oldmm)
1537 {
1538 	struct mm_struct *mm;
1539 	int err;
1540 
1541 	mm = allocate_mm();
1542 	if (!mm)
1543 		goto fail_nomem;
1544 
1545 	memcpy(mm, oldmm, sizeof(*mm));
1546 
1547 	if (!mm_init(mm, tsk, mm->user_ns))
1548 		goto fail_nomem;
1549 
1550 	err = dup_mmap(mm, oldmm);
1551 	if (err)
1552 		goto free_pt;
1553 
1554 	mm->hiwater_rss = get_mm_rss(mm);
1555 	mm->hiwater_vm = mm->total_vm;
1556 
1557 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1558 		goto free_pt;
1559 
1560 	return mm;
1561 
1562 free_pt:
1563 	/* don't put binfmt in mmput, we haven't got module yet */
1564 	mm->binfmt = NULL;
1565 	mm_init_owner(mm, NULL);
1566 	mmput(mm);
1567 
1568 fail_nomem:
1569 	return NULL;
1570 }
1571 
1572 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1573 {
1574 	struct mm_struct *mm, *oldmm;
1575 
1576 	tsk->min_flt = tsk->maj_flt = 0;
1577 	tsk->nvcsw = tsk->nivcsw = 0;
1578 #ifdef CONFIG_DETECT_HUNG_TASK
1579 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1580 	tsk->last_switch_time = 0;
1581 #endif
1582 
1583 	tsk->mm = NULL;
1584 	tsk->active_mm = NULL;
1585 
1586 	/*
1587 	 * Are we cloning a kernel thread?
1588 	 *
1589 	 * We need to steal a active VM for that..
1590 	 */
1591 	oldmm = current->mm;
1592 	if (!oldmm)
1593 		return 0;
1594 
1595 	if (clone_flags & CLONE_VM) {
1596 		mmget(oldmm);
1597 		mm = oldmm;
1598 	} else {
1599 		mm = dup_mm(tsk, current->mm);
1600 		if (!mm)
1601 			return -ENOMEM;
1602 	}
1603 
1604 	tsk->mm = mm;
1605 	tsk->active_mm = mm;
1606 	sched_mm_cid_fork(tsk);
1607 	return 0;
1608 }
1609 
1610 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1611 {
1612 	struct fs_struct *fs = current->fs;
1613 	if (clone_flags & CLONE_FS) {
1614 		/* tsk->fs is already what we want */
1615 		spin_lock(&fs->lock);
1616 		if (fs->in_exec) {
1617 			spin_unlock(&fs->lock);
1618 			return -EAGAIN;
1619 		}
1620 		fs->users++;
1621 		spin_unlock(&fs->lock);
1622 		return 0;
1623 	}
1624 	tsk->fs = copy_fs_struct(fs);
1625 	if (!tsk->fs)
1626 		return -ENOMEM;
1627 	return 0;
1628 }
1629 
1630 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1631 {
1632 	struct files_struct *oldf, *newf;
1633 	int error = 0;
1634 
1635 	/*
1636 	 * A background process may not have any files ...
1637 	 */
1638 	oldf = current->files;
1639 	if (!oldf)
1640 		goto out;
1641 
1642 	if (clone_flags & CLONE_FILES) {
1643 		atomic_inc(&oldf->count);
1644 		goto out;
1645 	}
1646 
1647 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1648 	if (!newf)
1649 		goto out;
1650 
1651 	tsk->files = newf;
1652 	error = 0;
1653 out:
1654 	return error;
1655 }
1656 
1657 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1658 {
1659 	struct sighand_struct *sig;
1660 
1661 	if (clone_flags & CLONE_SIGHAND) {
1662 		refcount_inc(&current->sighand->count);
1663 		return 0;
1664 	}
1665 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1666 	RCU_INIT_POINTER(tsk->sighand, sig);
1667 	if (!sig)
1668 		return -ENOMEM;
1669 
1670 	refcount_set(&sig->count, 1);
1671 	spin_lock_irq(&current->sighand->siglock);
1672 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1673 	spin_unlock_irq(&current->sighand->siglock);
1674 
1675 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1676 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1677 		flush_signal_handlers(tsk, 0);
1678 
1679 	return 0;
1680 }
1681 
1682 void __cleanup_sighand(struct sighand_struct *sighand)
1683 {
1684 	if (refcount_dec_and_test(&sighand->count)) {
1685 		signalfd_cleanup(sighand);
1686 		/*
1687 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1688 		 * without an RCU grace period, see __lock_task_sighand().
1689 		 */
1690 		kmem_cache_free(sighand_cachep, sighand);
1691 	}
1692 }
1693 
1694 /*
1695  * Initialize POSIX timer handling for a thread group.
1696  */
1697 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1698 {
1699 	struct posix_cputimers *pct = &sig->posix_cputimers;
1700 	unsigned long cpu_limit;
1701 
1702 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1703 	posix_cputimers_group_init(pct, cpu_limit);
1704 }
1705 
1706 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1707 {
1708 	struct signal_struct *sig;
1709 
1710 	if (clone_flags & CLONE_THREAD)
1711 		return 0;
1712 
1713 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1714 	tsk->signal = sig;
1715 	if (!sig)
1716 		return -ENOMEM;
1717 
1718 	sig->nr_threads = 1;
1719 	sig->quick_threads = 1;
1720 	atomic_set(&sig->live, 1);
1721 	refcount_set(&sig->sigcnt, 1);
1722 
1723 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1724 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1725 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1726 
1727 	init_waitqueue_head(&sig->wait_chldexit);
1728 	sig->curr_target = tsk;
1729 	init_sigpending(&sig->shared_pending);
1730 	INIT_HLIST_HEAD(&sig->multiprocess);
1731 	seqlock_init(&sig->stats_lock);
1732 	prev_cputime_init(&sig->prev_cputime);
1733 
1734 #ifdef CONFIG_POSIX_TIMERS
1735 	INIT_LIST_HEAD(&sig->posix_timers);
1736 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1737 	sig->real_timer.function = it_real_fn;
1738 #endif
1739 
1740 	task_lock(current->group_leader);
1741 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1742 	task_unlock(current->group_leader);
1743 
1744 	posix_cpu_timers_init_group(sig);
1745 
1746 	tty_audit_fork(sig);
1747 	sched_autogroup_fork(sig);
1748 
1749 	sig->oom_score_adj = current->signal->oom_score_adj;
1750 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1751 
1752 	mutex_init(&sig->cred_guard_mutex);
1753 	init_rwsem(&sig->exec_update_lock);
1754 
1755 	return 0;
1756 }
1757 
1758 static void copy_seccomp(struct task_struct *p)
1759 {
1760 #ifdef CONFIG_SECCOMP
1761 	/*
1762 	 * Must be called with sighand->lock held, which is common to
1763 	 * all threads in the group. Holding cred_guard_mutex is not
1764 	 * needed because this new task is not yet running and cannot
1765 	 * be racing exec.
1766 	 */
1767 	assert_spin_locked(&current->sighand->siglock);
1768 
1769 	/* Ref-count the new filter user, and assign it. */
1770 	get_seccomp_filter(current);
1771 	p->seccomp = current->seccomp;
1772 
1773 	/*
1774 	 * Explicitly enable no_new_privs here in case it got set
1775 	 * between the task_struct being duplicated and holding the
1776 	 * sighand lock. The seccomp state and nnp must be in sync.
1777 	 */
1778 	if (task_no_new_privs(current))
1779 		task_set_no_new_privs(p);
1780 
1781 	/*
1782 	 * If the parent gained a seccomp mode after copying thread
1783 	 * flags and between before we held the sighand lock, we have
1784 	 * to manually enable the seccomp thread flag here.
1785 	 */
1786 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1787 		set_task_syscall_work(p, SECCOMP);
1788 #endif
1789 }
1790 
1791 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1792 {
1793 	current->clear_child_tid = tidptr;
1794 
1795 	return task_pid_vnr(current);
1796 }
1797 
1798 static void rt_mutex_init_task(struct task_struct *p)
1799 {
1800 	raw_spin_lock_init(&p->pi_lock);
1801 #ifdef CONFIG_RT_MUTEXES
1802 	p->pi_waiters = RB_ROOT_CACHED;
1803 	p->pi_top_task = NULL;
1804 	p->pi_blocked_on = NULL;
1805 #endif
1806 }
1807 
1808 static inline void init_task_pid_links(struct task_struct *task)
1809 {
1810 	enum pid_type type;
1811 
1812 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1813 		INIT_HLIST_NODE(&task->pid_links[type]);
1814 }
1815 
1816 static inline void
1817 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1818 {
1819 	if (type == PIDTYPE_PID)
1820 		task->thread_pid = pid;
1821 	else
1822 		task->signal->pids[type] = pid;
1823 }
1824 
1825 static inline void rcu_copy_process(struct task_struct *p)
1826 {
1827 #ifdef CONFIG_PREEMPT_RCU
1828 	p->rcu_read_lock_nesting = 0;
1829 	p->rcu_read_unlock_special.s = 0;
1830 	p->rcu_blocked_node = NULL;
1831 	INIT_LIST_HEAD(&p->rcu_node_entry);
1832 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1833 #ifdef CONFIG_TASKS_RCU
1834 	p->rcu_tasks_holdout = false;
1835 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1836 	p->rcu_tasks_idle_cpu = -1;
1837 #endif /* #ifdef CONFIG_TASKS_RCU */
1838 #ifdef CONFIG_TASKS_TRACE_RCU
1839 	p->trc_reader_nesting = 0;
1840 	p->trc_reader_special.s = 0;
1841 	INIT_LIST_HEAD(&p->trc_holdout_list);
1842 	INIT_LIST_HEAD(&p->trc_blkd_node);
1843 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1844 }
1845 
1846 struct pid *pidfd_pid(const struct file *file)
1847 {
1848 	if (file->f_op == &pidfd_fops)
1849 		return file->private_data;
1850 
1851 	return ERR_PTR(-EBADF);
1852 }
1853 
1854 static int pidfd_release(struct inode *inode, struct file *file)
1855 {
1856 	struct pid *pid = file->private_data;
1857 
1858 	file->private_data = NULL;
1859 	put_pid(pid);
1860 	return 0;
1861 }
1862 
1863 #ifdef CONFIG_PROC_FS
1864 /**
1865  * pidfd_show_fdinfo - print information about a pidfd
1866  * @m: proc fdinfo file
1867  * @f: file referencing a pidfd
1868  *
1869  * Pid:
1870  * This function will print the pid that a given pidfd refers to in the
1871  * pid namespace of the procfs instance.
1872  * If the pid namespace of the process is not a descendant of the pid
1873  * namespace of the procfs instance 0 will be shown as its pid. This is
1874  * similar to calling getppid() on a process whose parent is outside of
1875  * its pid namespace.
1876  *
1877  * NSpid:
1878  * If pid namespaces are supported then this function will also print
1879  * the pid of a given pidfd refers to for all descendant pid namespaces
1880  * starting from the current pid namespace of the instance, i.e. the
1881  * Pid field and the first entry in the NSpid field will be identical.
1882  * If the pid namespace of the process is not a descendant of the pid
1883  * namespace of the procfs instance 0 will be shown as its first NSpid
1884  * entry and no others will be shown.
1885  * Note that this differs from the Pid and NSpid fields in
1886  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1887  * the  pid namespace of the procfs instance. The difference becomes
1888  * obvious when sending around a pidfd between pid namespaces from a
1889  * different branch of the tree, i.e. where no ancestral relation is
1890  * present between the pid namespaces:
1891  * - create two new pid namespaces ns1 and ns2 in the initial pid
1892  *   namespace (also take care to create new mount namespaces in the
1893  *   new pid namespace and mount procfs)
1894  * - create a process with a pidfd in ns1
1895  * - send pidfd from ns1 to ns2
1896  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1897  *   have exactly one entry, which is 0
1898  */
1899 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1900 {
1901 	struct pid *pid = f->private_data;
1902 	struct pid_namespace *ns;
1903 	pid_t nr = -1;
1904 
1905 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1906 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1907 		nr = pid_nr_ns(pid, ns);
1908 	}
1909 
1910 	seq_put_decimal_ll(m, "Pid:\t", nr);
1911 
1912 #ifdef CONFIG_PID_NS
1913 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1914 	if (nr > 0) {
1915 		int i;
1916 
1917 		/* If nr is non-zero it means that 'pid' is valid and that
1918 		 * ns, i.e. the pid namespace associated with the procfs
1919 		 * instance, is in the pid namespace hierarchy of pid.
1920 		 * Start at one below the already printed level.
1921 		 */
1922 		for (i = ns->level + 1; i <= pid->level; i++)
1923 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1924 	}
1925 #endif
1926 	seq_putc(m, '\n');
1927 }
1928 #endif
1929 
1930 /*
1931  * Poll support for process exit notification.
1932  */
1933 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1934 {
1935 	struct pid *pid = file->private_data;
1936 	__poll_t poll_flags = 0;
1937 
1938 	poll_wait(file, &pid->wait_pidfd, pts);
1939 
1940 	/*
1941 	 * Inform pollers only when the whole thread group exits.
1942 	 * If the thread group leader exits before all other threads in the
1943 	 * group, then poll(2) should block, similar to the wait(2) family.
1944 	 */
1945 	if (thread_group_exited(pid))
1946 		poll_flags = EPOLLIN | EPOLLRDNORM;
1947 
1948 	return poll_flags;
1949 }
1950 
1951 const struct file_operations pidfd_fops = {
1952 	.release = pidfd_release,
1953 	.poll = pidfd_poll,
1954 #ifdef CONFIG_PROC_FS
1955 	.show_fdinfo = pidfd_show_fdinfo,
1956 #endif
1957 };
1958 
1959 static void __delayed_free_task(struct rcu_head *rhp)
1960 {
1961 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1962 
1963 	free_task(tsk);
1964 }
1965 
1966 static __always_inline void delayed_free_task(struct task_struct *tsk)
1967 {
1968 	if (IS_ENABLED(CONFIG_MEMCG))
1969 		call_rcu(&tsk->rcu, __delayed_free_task);
1970 	else
1971 		free_task(tsk);
1972 }
1973 
1974 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1975 {
1976 	/* Skip if kernel thread */
1977 	if (!tsk->mm)
1978 		return;
1979 
1980 	/* Skip if spawning a thread or using vfork */
1981 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1982 		return;
1983 
1984 	/* We need to synchronize with __set_oom_adj */
1985 	mutex_lock(&oom_adj_mutex);
1986 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1987 	/* Update the values in case they were changed after copy_signal */
1988 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1989 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1990 	mutex_unlock(&oom_adj_mutex);
1991 }
1992 
1993 #ifdef CONFIG_RV
1994 static void rv_task_fork(struct task_struct *p)
1995 {
1996 	int i;
1997 
1998 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1999 		p->rv[i].da_mon.monitoring = false;
2000 }
2001 #else
2002 #define rv_task_fork(p) do {} while (0)
2003 #endif
2004 
2005 /*
2006  * This creates a new process as a copy of the old one,
2007  * but does not actually start it yet.
2008  *
2009  * It copies the registers, and all the appropriate
2010  * parts of the process environment (as per the clone
2011  * flags). The actual kick-off is left to the caller.
2012  */
2013 static __latent_entropy struct task_struct *copy_process(
2014 					struct pid *pid,
2015 					int trace,
2016 					int node,
2017 					struct kernel_clone_args *args)
2018 {
2019 	int pidfd = -1, retval;
2020 	struct task_struct *p;
2021 	struct multiprocess_signals delayed;
2022 	struct file *pidfile = NULL;
2023 	const u64 clone_flags = args->flags;
2024 	struct nsproxy *nsp = current->nsproxy;
2025 
2026 	/*
2027 	 * Don't allow sharing the root directory with processes in a different
2028 	 * namespace
2029 	 */
2030 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2031 		return ERR_PTR(-EINVAL);
2032 
2033 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2034 		return ERR_PTR(-EINVAL);
2035 
2036 	/*
2037 	 * Thread groups must share signals as well, and detached threads
2038 	 * can only be started up within the thread group.
2039 	 */
2040 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2041 		return ERR_PTR(-EINVAL);
2042 
2043 	/*
2044 	 * Shared signal handlers imply shared VM. By way of the above,
2045 	 * thread groups also imply shared VM. Blocking this case allows
2046 	 * for various simplifications in other code.
2047 	 */
2048 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2049 		return ERR_PTR(-EINVAL);
2050 
2051 	/*
2052 	 * Siblings of global init remain as zombies on exit since they are
2053 	 * not reaped by their parent (swapper). To solve this and to avoid
2054 	 * multi-rooted process trees, prevent global and container-inits
2055 	 * from creating siblings.
2056 	 */
2057 	if ((clone_flags & CLONE_PARENT) &&
2058 				current->signal->flags & SIGNAL_UNKILLABLE)
2059 		return ERR_PTR(-EINVAL);
2060 
2061 	/*
2062 	 * If the new process will be in a different pid or user namespace
2063 	 * do not allow it to share a thread group with the forking task.
2064 	 */
2065 	if (clone_flags & CLONE_THREAD) {
2066 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2067 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2068 			return ERR_PTR(-EINVAL);
2069 	}
2070 
2071 	if (clone_flags & CLONE_PIDFD) {
2072 		/*
2073 		 * - CLONE_DETACHED is blocked so that we can potentially
2074 		 *   reuse it later for CLONE_PIDFD.
2075 		 * - CLONE_THREAD is blocked until someone really needs it.
2076 		 */
2077 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2078 			return ERR_PTR(-EINVAL);
2079 	}
2080 
2081 	/*
2082 	 * Force any signals received before this point to be delivered
2083 	 * before the fork happens.  Collect up signals sent to multiple
2084 	 * processes that happen during the fork and delay them so that
2085 	 * they appear to happen after the fork.
2086 	 */
2087 	sigemptyset(&delayed.signal);
2088 	INIT_HLIST_NODE(&delayed.node);
2089 
2090 	spin_lock_irq(&current->sighand->siglock);
2091 	if (!(clone_flags & CLONE_THREAD))
2092 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2093 	recalc_sigpending();
2094 	spin_unlock_irq(&current->sighand->siglock);
2095 	retval = -ERESTARTNOINTR;
2096 	if (task_sigpending(current))
2097 		goto fork_out;
2098 
2099 	retval = -ENOMEM;
2100 	p = dup_task_struct(current, node);
2101 	if (!p)
2102 		goto fork_out;
2103 	p->flags &= ~PF_KTHREAD;
2104 	if (args->kthread)
2105 		p->flags |= PF_KTHREAD;
2106 	if (args->io_thread) {
2107 		/*
2108 		 * Mark us an IO worker, and block any signal that isn't
2109 		 * fatal or STOP
2110 		 */
2111 		p->flags |= PF_IO_WORKER;
2112 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2113 	}
2114 
2115 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2116 	/*
2117 	 * Clear TID on mm_release()?
2118 	 */
2119 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2120 
2121 	ftrace_graph_init_task(p);
2122 
2123 	rt_mutex_init_task(p);
2124 
2125 	lockdep_assert_irqs_enabled();
2126 #ifdef CONFIG_PROVE_LOCKING
2127 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2128 #endif
2129 	retval = copy_creds(p, clone_flags);
2130 	if (retval < 0)
2131 		goto bad_fork_free;
2132 
2133 	retval = -EAGAIN;
2134 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2135 		if (p->real_cred->user != INIT_USER &&
2136 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2137 			goto bad_fork_cleanup_count;
2138 	}
2139 	current->flags &= ~PF_NPROC_EXCEEDED;
2140 
2141 	/*
2142 	 * If multiple threads are within copy_process(), then this check
2143 	 * triggers too late. This doesn't hurt, the check is only there
2144 	 * to stop root fork bombs.
2145 	 */
2146 	retval = -EAGAIN;
2147 	if (data_race(nr_threads >= max_threads))
2148 		goto bad_fork_cleanup_count;
2149 
2150 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2151 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2152 	p->flags |= PF_FORKNOEXEC;
2153 	INIT_LIST_HEAD(&p->children);
2154 	INIT_LIST_HEAD(&p->sibling);
2155 	rcu_copy_process(p);
2156 	p->vfork_done = NULL;
2157 	spin_lock_init(&p->alloc_lock);
2158 
2159 	init_sigpending(&p->pending);
2160 
2161 	p->utime = p->stime = p->gtime = 0;
2162 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2163 	p->utimescaled = p->stimescaled = 0;
2164 #endif
2165 	prev_cputime_init(&p->prev_cputime);
2166 
2167 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2168 	seqcount_init(&p->vtime.seqcount);
2169 	p->vtime.starttime = 0;
2170 	p->vtime.state = VTIME_INACTIVE;
2171 #endif
2172 
2173 #ifdef CONFIG_IO_URING
2174 	p->io_uring = NULL;
2175 #endif
2176 
2177 #if defined(SPLIT_RSS_COUNTING)
2178 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2179 #endif
2180 
2181 	p->default_timer_slack_ns = current->timer_slack_ns;
2182 
2183 #ifdef CONFIG_PSI
2184 	p->psi_flags = 0;
2185 #endif
2186 
2187 	task_io_accounting_init(&p->ioac);
2188 	acct_clear_integrals(p);
2189 
2190 	posix_cputimers_init(&p->posix_cputimers);
2191 
2192 	p->io_context = NULL;
2193 	audit_set_context(p, NULL);
2194 	cgroup_fork(p);
2195 	if (args->kthread) {
2196 		if (!set_kthread_struct(p))
2197 			goto bad_fork_cleanup_delayacct;
2198 	}
2199 #ifdef CONFIG_NUMA
2200 	p->mempolicy = mpol_dup(p->mempolicy);
2201 	if (IS_ERR(p->mempolicy)) {
2202 		retval = PTR_ERR(p->mempolicy);
2203 		p->mempolicy = NULL;
2204 		goto bad_fork_cleanup_delayacct;
2205 	}
2206 #endif
2207 #ifdef CONFIG_CPUSETS
2208 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2209 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2210 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2211 #endif
2212 #ifdef CONFIG_TRACE_IRQFLAGS
2213 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2214 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2215 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2216 	p->softirqs_enabled		= 1;
2217 	p->softirq_context		= 0;
2218 #endif
2219 
2220 	p->pagefault_disabled = 0;
2221 
2222 #ifdef CONFIG_LOCKDEP
2223 	lockdep_init_task(p);
2224 #endif
2225 
2226 #ifdef CONFIG_DEBUG_MUTEXES
2227 	p->blocked_on = NULL; /* not blocked yet */
2228 #endif
2229 #ifdef CONFIG_BCACHE
2230 	p->sequential_io	= 0;
2231 	p->sequential_io_avg	= 0;
2232 #endif
2233 #ifdef CONFIG_BPF_SYSCALL
2234 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2235 	p->bpf_ctx = NULL;
2236 #endif
2237 
2238 	/* Perform scheduler related setup. Assign this task to a CPU. */
2239 	retval = sched_fork(clone_flags, p);
2240 	if (retval)
2241 		goto bad_fork_cleanup_policy;
2242 
2243 	retval = perf_event_init_task(p, clone_flags);
2244 	if (retval)
2245 		goto bad_fork_cleanup_policy;
2246 	retval = audit_alloc(p);
2247 	if (retval)
2248 		goto bad_fork_cleanup_perf;
2249 	/* copy all the process information */
2250 	shm_init_task(p);
2251 	retval = security_task_alloc(p, clone_flags);
2252 	if (retval)
2253 		goto bad_fork_cleanup_audit;
2254 	retval = copy_semundo(clone_flags, p);
2255 	if (retval)
2256 		goto bad_fork_cleanup_security;
2257 	retval = copy_files(clone_flags, p);
2258 	if (retval)
2259 		goto bad_fork_cleanup_semundo;
2260 	retval = copy_fs(clone_flags, p);
2261 	if (retval)
2262 		goto bad_fork_cleanup_files;
2263 	retval = copy_sighand(clone_flags, p);
2264 	if (retval)
2265 		goto bad_fork_cleanup_fs;
2266 	retval = copy_signal(clone_flags, p);
2267 	if (retval)
2268 		goto bad_fork_cleanup_sighand;
2269 	retval = copy_mm(clone_flags, p);
2270 	if (retval)
2271 		goto bad_fork_cleanup_signal;
2272 	retval = copy_namespaces(clone_flags, p);
2273 	if (retval)
2274 		goto bad_fork_cleanup_mm;
2275 	retval = copy_io(clone_flags, p);
2276 	if (retval)
2277 		goto bad_fork_cleanup_namespaces;
2278 	retval = copy_thread(p, args);
2279 	if (retval)
2280 		goto bad_fork_cleanup_io;
2281 
2282 	stackleak_task_init(p);
2283 
2284 	if (pid != &init_struct_pid) {
2285 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2286 				args->set_tid_size);
2287 		if (IS_ERR(pid)) {
2288 			retval = PTR_ERR(pid);
2289 			goto bad_fork_cleanup_thread;
2290 		}
2291 	}
2292 
2293 	/*
2294 	 * This has to happen after we've potentially unshared the file
2295 	 * descriptor table (so that the pidfd doesn't leak into the child
2296 	 * if the fd table isn't shared).
2297 	 */
2298 	if (clone_flags & CLONE_PIDFD) {
2299 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2300 		if (retval < 0)
2301 			goto bad_fork_free_pid;
2302 
2303 		pidfd = retval;
2304 
2305 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2306 					      O_RDWR | O_CLOEXEC);
2307 		if (IS_ERR(pidfile)) {
2308 			put_unused_fd(pidfd);
2309 			retval = PTR_ERR(pidfile);
2310 			goto bad_fork_free_pid;
2311 		}
2312 		get_pid(pid);	/* held by pidfile now */
2313 
2314 		retval = put_user(pidfd, args->pidfd);
2315 		if (retval)
2316 			goto bad_fork_put_pidfd;
2317 	}
2318 
2319 #ifdef CONFIG_BLOCK
2320 	p->plug = NULL;
2321 #endif
2322 	futex_init_task(p);
2323 
2324 	/*
2325 	 * sigaltstack should be cleared when sharing the same VM
2326 	 */
2327 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2328 		sas_ss_reset(p);
2329 
2330 	/*
2331 	 * Syscall tracing and stepping should be turned off in the
2332 	 * child regardless of CLONE_PTRACE.
2333 	 */
2334 	user_disable_single_step(p);
2335 	clear_task_syscall_work(p, SYSCALL_TRACE);
2336 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2337 	clear_task_syscall_work(p, SYSCALL_EMU);
2338 #endif
2339 	clear_tsk_latency_tracing(p);
2340 
2341 	/* ok, now we should be set up.. */
2342 	p->pid = pid_nr(pid);
2343 	if (clone_flags & CLONE_THREAD) {
2344 		p->group_leader = current->group_leader;
2345 		p->tgid = current->tgid;
2346 	} else {
2347 		p->group_leader = p;
2348 		p->tgid = p->pid;
2349 	}
2350 
2351 	p->nr_dirtied = 0;
2352 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2353 	p->dirty_paused_when = 0;
2354 
2355 	p->pdeath_signal = 0;
2356 	INIT_LIST_HEAD(&p->thread_group);
2357 	p->task_works = NULL;
2358 	clear_posix_cputimers_work(p);
2359 
2360 #ifdef CONFIG_KRETPROBES
2361 	p->kretprobe_instances.first = NULL;
2362 #endif
2363 #ifdef CONFIG_RETHOOK
2364 	p->rethooks.first = NULL;
2365 #endif
2366 
2367 	/*
2368 	 * Ensure that the cgroup subsystem policies allow the new process to be
2369 	 * forked. It should be noted that the new process's css_set can be changed
2370 	 * between here and cgroup_post_fork() if an organisation operation is in
2371 	 * progress.
2372 	 */
2373 	retval = cgroup_can_fork(p, args);
2374 	if (retval)
2375 		goto bad_fork_put_pidfd;
2376 
2377 	/*
2378 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2379 	 * the new task on the correct runqueue. All this *before* the task
2380 	 * becomes visible.
2381 	 *
2382 	 * This isn't part of ->can_fork() because while the re-cloning is
2383 	 * cgroup specific, it unconditionally needs to place the task on a
2384 	 * runqueue.
2385 	 */
2386 	sched_cgroup_fork(p, args);
2387 
2388 	/*
2389 	 * From this point on we must avoid any synchronous user-space
2390 	 * communication until we take the tasklist-lock. In particular, we do
2391 	 * not want user-space to be able to predict the process start-time by
2392 	 * stalling fork(2) after we recorded the start_time but before it is
2393 	 * visible to the system.
2394 	 */
2395 
2396 	p->start_time = ktime_get_ns();
2397 	p->start_boottime = ktime_get_boottime_ns();
2398 
2399 	/*
2400 	 * Make it visible to the rest of the system, but dont wake it up yet.
2401 	 * Need tasklist lock for parent etc handling!
2402 	 */
2403 	write_lock_irq(&tasklist_lock);
2404 
2405 	/* CLONE_PARENT re-uses the old parent */
2406 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2407 		p->real_parent = current->real_parent;
2408 		p->parent_exec_id = current->parent_exec_id;
2409 		if (clone_flags & CLONE_THREAD)
2410 			p->exit_signal = -1;
2411 		else
2412 			p->exit_signal = current->group_leader->exit_signal;
2413 	} else {
2414 		p->real_parent = current;
2415 		p->parent_exec_id = current->self_exec_id;
2416 		p->exit_signal = args->exit_signal;
2417 	}
2418 
2419 	klp_copy_process(p);
2420 
2421 	sched_core_fork(p);
2422 
2423 	spin_lock(&current->sighand->siglock);
2424 
2425 	rv_task_fork(p);
2426 
2427 	rseq_fork(p, clone_flags);
2428 
2429 	/* Don't start children in a dying pid namespace */
2430 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2431 		retval = -ENOMEM;
2432 		goto bad_fork_cancel_cgroup;
2433 	}
2434 
2435 	/* Let kill terminate clone/fork in the middle */
2436 	if (fatal_signal_pending(current)) {
2437 		retval = -EINTR;
2438 		goto bad_fork_cancel_cgroup;
2439 	}
2440 
2441 	/* No more failure paths after this point. */
2442 
2443 	/*
2444 	 * Copy seccomp details explicitly here, in case they were changed
2445 	 * before holding sighand lock.
2446 	 */
2447 	copy_seccomp(p);
2448 
2449 	init_task_pid_links(p);
2450 	if (likely(p->pid)) {
2451 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2452 
2453 		init_task_pid(p, PIDTYPE_PID, pid);
2454 		if (thread_group_leader(p)) {
2455 			init_task_pid(p, PIDTYPE_TGID, pid);
2456 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2457 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2458 
2459 			if (is_child_reaper(pid)) {
2460 				ns_of_pid(pid)->child_reaper = p;
2461 				p->signal->flags |= SIGNAL_UNKILLABLE;
2462 			}
2463 			p->signal->shared_pending.signal = delayed.signal;
2464 			p->signal->tty = tty_kref_get(current->signal->tty);
2465 			/*
2466 			 * Inherit has_child_subreaper flag under the same
2467 			 * tasklist_lock with adding child to the process tree
2468 			 * for propagate_has_child_subreaper optimization.
2469 			 */
2470 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2471 							 p->real_parent->signal->is_child_subreaper;
2472 			list_add_tail(&p->sibling, &p->real_parent->children);
2473 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2474 			attach_pid(p, PIDTYPE_TGID);
2475 			attach_pid(p, PIDTYPE_PGID);
2476 			attach_pid(p, PIDTYPE_SID);
2477 			__this_cpu_inc(process_counts);
2478 		} else {
2479 			current->signal->nr_threads++;
2480 			current->signal->quick_threads++;
2481 			atomic_inc(&current->signal->live);
2482 			refcount_inc(&current->signal->sigcnt);
2483 			task_join_group_stop(p);
2484 			list_add_tail_rcu(&p->thread_group,
2485 					  &p->group_leader->thread_group);
2486 			list_add_tail_rcu(&p->thread_node,
2487 					  &p->signal->thread_head);
2488 		}
2489 		attach_pid(p, PIDTYPE_PID);
2490 		nr_threads++;
2491 	}
2492 	total_forks++;
2493 	hlist_del_init(&delayed.node);
2494 	spin_unlock(&current->sighand->siglock);
2495 	syscall_tracepoint_update(p);
2496 	write_unlock_irq(&tasklist_lock);
2497 
2498 	if (pidfile)
2499 		fd_install(pidfd, pidfile);
2500 
2501 	proc_fork_connector(p);
2502 	sched_post_fork(p);
2503 	cgroup_post_fork(p, args);
2504 	perf_event_fork(p);
2505 
2506 	trace_task_newtask(p, clone_flags);
2507 	uprobe_copy_process(p, clone_flags);
2508 
2509 	copy_oom_score_adj(clone_flags, p);
2510 
2511 	return p;
2512 
2513 bad_fork_cancel_cgroup:
2514 	sched_core_free(p);
2515 	spin_unlock(&current->sighand->siglock);
2516 	write_unlock_irq(&tasklist_lock);
2517 	cgroup_cancel_fork(p, args);
2518 bad_fork_put_pidfd:
2519 	if (clone_flags & CLONE_PIDFD) {
2520 		fput(pidfile);
2521 		put_unused_fd(pidfd);
2522 	}
2523 bad_fork_free_pid:
2524 	if (pid != &init_struct_pid)
2525 		free_pid(pid);
2526 bad_fork_cleanup_thread:
2527 	exit_thread(p);
2528 bad_fork_cleanup_io:
2529 	if (p->io_context)
2530 		exit_io_context(p);
2531 bad_fork_cleanup_namespaces:
2532 	exit_task_namespaces(p);
2533 bad_fork_cleanup_mm:
2534 	if (p->mm) {
2535 		mm_clear_owner(p->mm, p);
2536 		mmput(p->mm);
2537 	}
2538 bad_fork_cleanup_signal:
2539 	if (!(clone_flags & CLONE_THREAD))
2540 		free_signal_struct(p->signal);
2541 bad_fork_cleanup_sighand:
2542 	__cleanup_sighand(p->sighand);
2543 bad_fork_cleanup_fs:
2544 	exit_fs(p); /* blocking */
2545 bad_fork_cleanup_files:
2546 	exit_files(p); /* blocking */
2547 bad_fork_cleanup_semundo:
2548 	exit_sem(p);
2549 bad_fork_cleanup_security:
2550 	security_task_free(p);
2551 bad_fork_cleanup_audit:
2552 	audit_free(p);
2553 bad_fork_cleanup_perf:
2554 	perf_event_free_task(p);
2555 bad_fork_cleanup_policy:
2556 	lockdep_free_task(p);
2557 #ifdef CONFIG_NUMA
2558 	mpol_put(p->mempolicy);
2559 #endif
2560 bad_fork_cleanup_delayacct:
2561 	delayacct_tsk_free(p);
2562 bad_fork_cleanup_count:
2563 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2564 	exit_creds(p);
2565 bad_fork_free:
2566 	WRITE_ONCE(p->__state, TASK_DEAD);
2567 	exit_task_stack_account(p);
2568 	put_task_stack(p);
2569 	delayed_free_task(p);
2570 fork_out:
2571 	spin_lock_irq(&current->sighand->siglock);
2572 	hlist_del_init(&delayed.node);
2573 	spin_unlock_irq(&current->sighand->siglock);
2574 	return ERR_PTR(retval);
2575 }
2576 
2577 static inline void init_idle_pids(struct task_struct *idle)
2578 {
2579 	enum pid_type type;
2580 
2581 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2582 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2583 		init_task_pid(idle, type, &init_struct_pid);
2584 	}
2585 }
2586 
2587 static int idle_dummy(void *dummy)
2588 {
2589 	/* This function is never called */
2590 	return 0;
2591 }
2592 
2593 struct task_struct * __init fork_idle(int cpu)
2594 {
2595 	struct task_struct *task;
2596 	struct kernel_clone_args args = {
2597 		.flags		= CLONE_VM,
2598 		.fn		= &idle_dummy,
2599 		.fn_arg		= NULL,
2600 		.kthread	= 1,
2601 		.idle		= 1,
2602 	};
2603 
2604 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2605 	if (!IS_ERR(task)) {
2606 		init_idle_pids(task);
2607 		init_idle(task, cpu);
2608 	}
2609 
2610 	return task;
2611 }
2612 
2613 /*
2614  * This is like kernel_clone(), but shaved down and tailored to just
2615  * creating io_uring workers. It returns a created task, or an error pointer.
2616  * The returned task is inactive, and the caller must fire it up through
2617  * wake_up_new_task(p). All signals are blocked in the created task.
2618  */
2619 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2620 {
2621 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2622 				CLONE_IO;
2623 	struct kernel_clone_args args = {
2624 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2625 				    CLONE_UNTRACED) & ~CSIGNAL),
2626 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2627 		.fn		= fn,
2628 		.fn_arg		= arg,
2629 		.io_thread	= 1,
2630 	};
2631 
2632 	return copy_process(NULL, 0, node, &args);
2633 }
2634 
2635 /*
2636  *  Ok, this is the main fork-routine.
2637  *
2638  * It copies the process, and if successful kick-starts
2639  * it and waits for it to finish using the VM if required.
2640  *
2641  * args->exit_signal is expected to be checked for sanity by the caller.
2642  */
2643 pid_t kernel_clone(struct kernel_clone_args *args)
2644 {
2645 	u64 clone_flags = args->flags;
2646 	struct completion vfork;
2647 	struct pid *pid;
2648 	struct task_struct *p;
2649 	int trace = 0;
2650 	pid_t nr;
2651 
2652 	/*
2653 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2654 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2655 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2656 	 * field in struct clone_args and it still doesn't make sense to have
2657 	 * them both point at the same memory location. Performing this check
2658 	 * here has the advantage that we don't need to have a separate helper
2659 	 * to check for legacy clone().
2660 	 */
2661 	if ((args->flags & CLONE_PIDFD) &&
2662 	    (args->flags & CLONE_PARENT_SETTID) &&
2663 	    (args->pidfd == args->parent_tid))
2664 		return -EINVAL;
2665 
2666 	/*
2667 	 * Determine whether and which event to report to ptracer.  When
2668 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2669 	 * requested, no event is reported; otherwise, report if the event
2670 	 * for the type of forking is enabled.
2671 	 */
2672 	if (!(clone_flags & CLONE_UNTRACED)) {
2673 		if (clone_flags & CLONE_VFORK)
2674 			trace = PTRACE_EVENT_VFORK;
2675 		else if (args->exit_signal != SIGCHLD)
2676 			trace = PTRACE_EVENT_CLONE;
2677 		else
2678 			trace = PTRACE_EVENT_FORK;
2679 
2680 		if (likely(!ptrace_event_enabled(current, trace)))
2681 			trace = 0;
2682 	}
2683 
2684 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2685 	add_latent_entropy();
2686 
2687 	if (IS_ERR(p))
2688 		return PTR_ERR(p);
2689 
2690 	/*
2691 	 * Do this prior waking up the new thread - the thread pointer
2692 	 * might get invalid after that point, if the thread exits quickly.
2693 	 */
2694 	trace_sched_process_fork(current, p);
2695 
2696 	pid = get_task_pid(p, PIDTYPE_PID);
2697 	nr = pid_vnr(pid);
2698 
2699 	if (clone_flags & CLONE_PARENT_SETTID)
2700 		put_user(nr, args->parent_tid);
2701 
2702 	if (clone_flags & CLONE_VFORK) {
2703 		p->vfork_done = &vfork;
2704 		init_completion(&vfork);
2705 		get_task_struct(p);
2706 	}
2707 
2708 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2709 		/* lock the task to synchronize with memcg migration */
2710 		task_lock(p);
2711 		lru_gen_add_mm(p->mm);
2712 		task_unlock(p);
2713 	}
2714 
2715 	wake_up_new_task(p);
2716 
2717 	/* forking complete and child started to run, tell ptracer */
2718 	if (unlikely(trace))
2719 		ptrace_event_pid(trace, pid);
2720 
2721 	if (clone_flags & CLONE_VFORK) {
2722 		if (!wait_for_vfork_done(p, &vfork))
2723 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2724 	}
2725 
2726 	put_pid(pid);
2727 	return nr;
2728 }
2729 
2730 /*
2731  * Create a kernel thread.
2732  */
2733 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2734 {
2735 	struct kernel_clone_args args = {
2736 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2737 				    CLONE_UNTRACED) & ~CSIGNAL),
2738 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2739 		.fn		= fn,
2740 		.fn_arg		= arg,
2741 		.kthread	= 1,
2742 	};
2743 
2744 	return kernel_clone(&args);
2745 }
2746 
2747 /*
2748  * Create a user mode thread.
2749  */
2750 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2751 {
2752 	struct kernel_clone_args args = {
2753 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2754 				    CLONE_UNTRACED) & ~CSIGNAL),
2755 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2756 		.fn		= fn,
2757 		.fn_arg		= arg,
2758 	};
2759 
2760 	return kernel_clone(&args);
2761 }
2762 
2763 #ifdef __ARCH_WANT_SYS_FORK
2764 SYSCALL_DEFINE0(fork)
2765 {
2766 #ifdef CONFIG_MMU
2767 	struct kernel_clone_args args = {
2768 		.exit_signal = SIGCHLD,
2769 	};
2770 
2771 	return kernel_clone(&args);
2772 #else
2773 	/* can not support in nommu mode */
2774 	return -EINVAL;
2775 #endif
2776 }
2777 #endif
2778 
2779 #ifdef __ARCH_WANT_SYS_VFORK
2780 SYSCALL_DEFINE0(vfork)
2781 {
2782 	struct kernel_clone_args args = {
2783 		.flags		= CLONE_VFORK | CLONE_VM,
2784 		.exit_signal	= SIGCHLD,
2785 	};
2786 
2787 	return kernel_clone(&args);
2788 }
2789 #endif
2790 
2791 #ifdef __ARCH_WANT_SYS_CLONE
2792 #ifdef CONFIG_CLONE_BACKWARDS
2793 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2794 		 int __user *, parent_tidptr,
2795 		 unsigned long, tls,
2796 		 int __user *, child_tidptr)
2797 #elif defined(CONFIG_CLONE_BACKWARDS2)
2798 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2799 		 int __user *, parent_tidptr,
2800 		 int __user *, child_tidptr,
2801 		 unsigned long, tls)
2802 #elif defined(CONFIG_CLONE_BACKWARDS3)
2803 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2804 		int, stack_size,
2805 		int __user *, parent_tidptr,
2806 		int __user *, child_tidptr,
2807 		unsigned long, tls)
2808 #else
2809 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2810 		 int __user *, parent_tidptr,
2811 		 int __user *, child_tidptr,
2812 		 unsigned long, tls)
2813 #endif
2814 {
2815 	struct kernel_clone_args args = {
2816 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2817 		.pidfd		= parent_tidptr,
2818 		.child_tid	= child_tidptr,
2819 		.parent_tid	= parent_tidptr,
2820 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2821 		.stack		= newsp,
2822 		.tls		= tls,
2823 	};
2824 
2825 	return kernel_clone(&args);
2826 }
2827 #endif
2828 
2829 #ifdef __ARCH_WANT_SYS_CLONE3
2830 
2831 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2832 					      struct clone_args __user *uargs,
2833 					      size_t usize)
2834 {
2835 	int err;
2836 	struct clone_args args;
2837 	pid_t *kset_tid = kargs->set_tid;
2838 
2839 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2840 		     CLONE_ARGS_SIZE_VER0);
2841 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2842 		     CLONE_ARGS_SIZE_VER1);
2843 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2844 		     CLONE_ARGS_SIZE_VER2);
2845 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2846 
2847 	if (unlikely(usize > PAGE_SIZE))
2848 		return -E2BIG;
2849 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2850 		return -EINVAL;
2851 
2852 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2853 	if (err)
2854 		return err;
2855 
2856 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2857 		return -EINVAL;
2858 
2859 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2860 		return -EINVAL;
2861 
2862 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2863 		return -EINVAL;
2864 
2865 	/*
2866 	 * Verify that higher 32bits of exit_signal are unset and that
2867 	 * it is a valid signal
2868 	 */
2869 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2870 		     !valid_signal(args.exit_signal)))
2871 		return -EINVAL;
2872 
2873 	if ((args.flags & CLONE_INTO_CGROUP) &&
2874 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2875 		return -EINVAL;
2876 
2877 	*kargs = (struct kernel_clone_args){
2878 		.flags		= args.flags,
2879 		.pidfd		= u64_to_user_ptr(args.pidfd),
2880 		.child_tid	= u64_to_user_ptr(args.child_tid),
2881 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2882 		.exit_signal	= args.exit_signal,
2883 		.stack		= args.stack,
2884 		.stack_size	= args.stack_size,
2885 		.tls		= args.tls,
2886 		.set_tid_size	= args.set_tid_size,
2887 		.cgroup		= args.cgroup,
2888 	};
2889 
2890 	if (args.set_tid &&
2891 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2892 			(kargs->set_tid_size * sizeof(pid_t))))
2893 		return -EFAULT;
2894 
2895 	kargs->set_tid = kset_tid;
2896 
2897 	return 0;
2898 }
2899 
2900 /**
2901  * clone3_stack_valid - check and prepare stack
2902  * @kargs: kernel clone args
2903  *
2904  * Verify that the stack arguments userspace gave us are sane.
2905  * In addition, set the stack direction for userspace since it's easy for us to
2906  * determine.
2907  */
2908 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2909 {
2910 	if (kargs->stack == 0) {
2911 		if (kargs->stack_size > 0)
2912 			return false;
2913 	} else {
2914 		if (kargs->stack_size == 0)
2915 			return false;
2916 
2917 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2918 			return false;
2919 
2920 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2921 		kargs->stack += kargs->stack_size;
2922 #endif
2923 	}
2924 
2925 	return true;
2926 }
2927 
2928 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2929 {
2930 	/* Verify that no unknown flags are passed along. */
2931 	if (kargs->flags &
2932 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2933 		return false;
2934 
2935 	/*
2936 	 * - make the CLONE_DETACHED bit reusable for clone3
2937 	 * - make the CSIGNAL bits reusable for clone3
2938 	 */
2939 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2940 		return false;
2941 
2942 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2943 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2944 		return false;
2945 
2946 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2947 	    kargs->exit_signal)
2948 		return false;
2949 
2950 	if (!clone3_stack_valid(kargs))
2951 		return false;
2952 
2953 	return true;
2954 }
2955 
2956 /**
2957  * clone3 - create a new process with specific properties
2958  * @uargs: argument structure
2959  * @size:  size of @uargs
2960  *
2961  * clone3() is the extensible successor to clone()/clone2().
2962  * It takes a struct as argument that is versioned by its size.
2963  *
2964  * Return: On success, a positive PID for the child process.
2965  *         On error, a negative errno number.
2966  */
2967 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2968 {
2969 	int err;
2970 
2971 	struct kernel_clone_args kargs;
2972 	pid_t set_tid[MAX_PID_NS_LEVEL];
2973 
2974 	kargs.set_tid = set_tid;
2975 
2976 	err = copy_clone_args_from_user(&kargs, uargs, size);
2977 	if (err)
2978 		return err;
2979 
2980 	if (!clone3_args_valid(&kargs))
2981 		return -EINVAL;
2982 
2983 	return kernel_clone(&kargs);
2984 }
2985 #endif
2986 
2987 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2988 {
2989 	struct task_struct *leader, *parent, *child;
2990 	int res;
2991 
2992 	read_lock(&tasklist_lock);
2993 	leader = top = top->group_leader;
2994 down:
2995 	for_each_thread(leader, parent) {
2996 		list_for_each_entry(child, &parent->children, sibling) {
2997 			res = visitor(child, data);
2998 			if (res) {
2999 				if (res < 0)
3000 					goto out;
3001 				leader = child;
3002 				goto down;
3003 			}
3004 up:
3005 			;
3006 		}
3007 	}
3008 
3009 	if (leader != top) {
3010 		child = leader;
3011 		parent = child->real_parent;
3012 		leader = parent->group_leader;
3013 		goto up;
3014 	}
3015 out:
3016 	read_unlock(&tasklist_lock);
3017 }
3018 
3019 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3020 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3021 #endif
3022 
3023 static void sighand_ctor(void *data)
3024 {
3025 	struct sighand_struct *sighand = data;
3026 
3027 	spin_lock_init(&sighand->siglock);
3028 	init_waitqueue_head(&sighand->signalfd_wqh);
3029 }
3030 
3031 void __init mm_cache_init(void)
3032 {
3033 	unsigned int mm_size;
3034 
3035 	/*
3036 	 * The mm_cpumask is located at the end of mm_struct, and is
3037 	 * dynamically sized based on the maximum CPU number this system
3038 	 * can have, taking hotplug into account (nr_cpu_ids).
3039 	 */
3040 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3041 
3042 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3043 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3044 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3045 			offsetof(struct mm_struct, saved_auxv),
3046 			sizeof_field(struct mm_struct, saved_auxv),
3047 			NULL);
3048 }
3049 
3050 void __init proc_caches_init(void)
3051 {
3052 	sighand_cachep = kmem_cache_create("sighand_cache",
3053 			sizeof(struct sighand_struct), 0,
3054 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3055 			SLAB_ACCOUNT, sighand_ctor);
3056 	signal_cachep = kmem_cache_create("signal_cache",
3057 			sizeof(struct signal_struct), 0,
3058 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3059 			NULL);
3060 	files_cachep = kmem_cache_create("files_cache",
3061 			sizeof(struct files_struct), 0,
3062 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3063 			NULL);
3064 	fs_cachep = kmem_cache_create("fs_cache",
3065 			sizeof(struct fs_struct), 0,
3066 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3067 			NULL);
3068 
3069 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3070 	mmap_init();
3071 	nsproxy_cache_init();
3072 }
3073 
3074 /*
3075  * Check constraints on flags passed to the unshare system call.
3076  */
3077 static int check_unshare_flags(unsigned long unshare_flags)
3078 {
3079 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3080 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3081 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3082 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3083 				CLONE_NEWTIME))
3084 		return -EINVAL;
3085 	/*
3086 	 * Not implemented, but pretend it works if there is nothing
3087 	 * to unshare.  Note that unsharing the address space or the
3088 	 * signal handlers also need to unshare the signal queues (aka
3089 	 * CLONE_THREAD).
3090 	 */
3091 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3092 		if (!thread_group_empty(current))
3093 			return -EINVAL;
3094 	}
3095 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3096 		if (refcount_read(&current->sighand->count) > 1)
3097 			return -EINVAL;
3098 	}
3099 	if (unshare_flags & CLONE_VM) {
3100 		if (!current_is_single_threaded())
3101 			return -EINVAL;
3102 	}
3103 
3104 	return 0;
3105 }
3106 
3107 /*
3108  * Unshare the filesystem structure if it is being shared
3109  */
3110 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3111 {
3112 	struct fs_struct *fs = current->fs;
3113 
3114 	if (!(unshare_flags & CLONE_FS) || !fs)
3115 		return 0;
3116 
3117 	/* don't need lock here; in the worst case we'll do useless copy */
3118 	if (fs->users == 1)
3119 		return 0;
3120 
3121 	*new_fsp = copy_fs_struct(fs);
3122 	if (!*new_fsp)
3123 		return -ENOMEM;
3124 
3125 	return 0;
3126 }
3127 
3128 /*
3129  * Unshare file descriptor table if it is being shared
3130  */
3131 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3132 	       struct files_struct **new_fdp)
3133 {
3134 	struct files_struct *fd = current->files;
3135 	int error = 0;
3136 
3137 	if ((unshare_flags & CLONE_FILES) &&
3138 	    (fd && atomic_read(&fd->count) > 1)) {
3139 		*new_fdp = dup_fd(fd, max_fds, &error);
3140 		if (!*new_fdp)
3141 			return error;
3142 	}
3143 
3144 	return 0;
3145 }
3146 
3147 /*
3148  * unshare allows a process to 'unshare' part of the process
3149  * context which was originally shared using clone.  copy_*
3150  * functions used by kernel_clone() cannot be used here directly
3151  * because they modify an inactive task_struct that is being
3152  * constructed. Here we are modifying the current, active,
3153  * task_struct.
3154  */
3155 int ksys_unshare(unsigned long unshare_flags)
3156 {
3157 	struct fs_struct *fs, *new_fs = NULL;
3158 	struct files_struct *new_fd = NULL;
3159 	struct cred *new_cred = NULL;
3160 	struct nsproxy *new_nsproxy = NULL;
3161 	int do_sysvsem = 0;
3162 	int err;
3163 
3164 	/*
3165 	 * If unsharing a user namespace must also unshare the thread group
3166 	 * and unshare the filesystem root and working directories.
3167 	 */
3168 	if (unshare_flags & CLONE_NEWUSER)
3169 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3170 	/*
3171 	 * If unsharing vm, must also unshare signal handlers.
3172 	 */
3173 	if (unshare_flags & CLONE_VM)
3174 		unshare_flags |= CLONE_SIGHAND;
3175 	/*
3176 	 * If unsharing a signal handlers, must also unshare the signal queues.
3177 	 */
3178 	if (unshare_flags & CLONE_SIGHAND)
3179 		unshare_flags |= CLONE_THREAD;
3180 	/*
3181 	 * If unsharing namespace, must also unshare filesystem information.
3182 	 */
3183 	if (unshare_flags & CLONE_NEWNS)
3184 		unshare_flags |= CLONE_FS;
3185 
3186 	err = check_unshare_flags(unshare_flags);
3187 	if (err)
3188 		goto bad_unshare_out;
3189 	/*
3190 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3191 	 * to a new ipc namespace, the semaphore arrays from the old
3192 	 * namespace are unreachable.
3193 	 */
3194 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3195 		do_sysvsem = 1;
3196 	err = unshare_fs(unshare_flags, &new_fs);
3197 	if (err)
3198 		goto bad_unshare_out;
3199 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3200 	if (err)
3201 		goto bad_unshare_cleanup_fs;
3202 	err = unshare_userns(unshare_flags, &new_cred);
3203 	if (err)
3204 		goto bad_unshare_cleanup_fd;
3205 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3206 					 new_cred, new_fs);
3207 	if (err)
3208 		goto bad_unshare_cleanup_cred;
3209 
3210 	if (new_cred) {
3211 		err = set_cred_ucounts(new_cred);
3212 		if (err)
3213 			goto bad_unshare_cleanup_cred;
3214 	}
3215 
3216 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3217 		if (do_sysvsem) {
3218 			/*
3219 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3220 			 */
3221 			exit_sem(current);
3222 		}
3223 		if (unshare_flags & CLONE_NEWIPC) {
3224 			/* Orphan segments in old ns (see sem above). */
3225 			exit_shm(current);
3226 			shm_init_task(current);
3227 		}
3228 
3229 		if (new_nsproxy)
3230 			switch_task_namespaces(current, new_nsproxy);
3231 
3232 		task_lock(current);
3233 
3234 		if (new_fs) {
3235 			fs = current->fs;
3236 			spin_lock(&fs->lock);
3237 			current->fs = new_fs;
3238 			if (--fs->users)
3239 				new_fs = NULL;
3240 			else
3241 				new_fs = fs;
3242 			spin_unlock(&fs->lock);
3243 		}
3244 
3245 		if (new_fd)
3246 			swap(current->files, new_fd);
3247 
3248 		task_unlock(current);
3249 
3250 		if (new_cred) {
3251 			/* Install the new user namespace */
3252 			commit_creds(new_cred);
3253 			new_cred = NULL;
3254 		}
3255 	}
3256 
3257 	perf_event_namespaces(current);
3258 
3259 bad_unshare_cleanup_cred:
3260 	if (new_cred)
3261 		put_cred(new_cred);
3262 bad_unshare_cleanup_fd:
3263 	if (new_fd)
3264 		put_files_struct(new_fd);
3265 
3266 bad_unshare_cleanup_fs:
3267 	if (new_fs)
3268 		free_fs_struct(new_fs);
3269 
3270 bad_unshare_out:
3271 	return err;
3272 }
3273 
3274 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3275 {
3276 	return ksys_unshare(unshare_flags);
3277 }
3278 
3279 /*
3280  *	Helper to unshare the files of the current task.
3281  *	We don't want to expose copy_files internals to
3282  *	the exec layer of the kernel.
3283  */
3284 
3285 int unshare_files(void)
3286 {
3287 	struct task_struct *task = current;
3288 	struct files_struct *old, *copy = NULL;
3289 	int error;
3290 
3291 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3292 	if (error || !copy)
3293 		return error;
3294 
3295 	old = task->files;
3296 	task_lock(task);
3297 	task->files = copy;
3298 	task_unlock(task);
3299 	put_files_struct(old);
3300 	return 0;
3301 }
3302 
3303 int sysctl_max_threads(struct ctl_table *table, int write,
3304 		       void *buffer, size_t *lenp, loff_t *ppos)
3305 {
3306 	struct ctl_table t;
3307 	int ret;
3308 	int threads = max_threads;
3309 	int min = 1;
3310 	int max = MAX_THREADS;
3311 
3312 	t = *table;
3313 	t.data = &threads;
3314 	t.extra1 = &min;
3315 	t.extra2 = &max;
3316 
3317 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3318 	if (ret || !write)
3319 		return ret;
3320 
3321 	max_threads = threads;
3322 
3323 	return 0;
3324 }
3325