xref: /linux/kernel/fork.c (revision c80544dc0b87bb65038355e7aafdc30be16b26ab)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 #include <linux/tty.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/cacheflush.h>
59 #include <asm/tlbflush.h>
60 
61 /*
62  * Protected counters by write_lock_irq(&tasklist_lock)
63  */
64 unsigned long total_forks;	/* Handle normal Linux uptimes. */
65 int nr_threads; 		/* The idle threads do not count.. */
66 
67 int max_threads;		/* tunable limit on nr_threads */
68 
69 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
70 
71 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
72 
73 int nr_processes(void)
74 {
75 	int cpu;
76 	int total = 0;
77 
78 	for_each_online_cpu(cpu)
79 		total += per_cpu(process_counts, cpu);
80 
81 	return total;
82 }
83 
84 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
85 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
86 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
87 static struct kmem_cache *task_struct_cachep;
88 #endif
89 
90 /* SLAB cache for signal_struct structures (tsk->signal) */
91 static struct kmem_cache *signal_cachep;
92 
93 /* SLAB cache for sighand_struct structures (tsk->sighand) */
94 struct kmem_cache *sighand_cachep;
95 
96 /* SLAB cache for files_struct structures (tsk->files) */
97 struct kmem_cache *files_cachep;
98 
99 /* SLAB cache for fs_struct structures (tsk->fs) */
100 struct kmem_cache *fs_cachep;
101 
102 /* SLAB cache for vm_area_struct structures */
103 struct kmem_cache *vm_area_cachep;
104 
105 /* SLAB cache for mm_struct structures (tsk->mm) */
106 static struct kmem_cache *mm_cachep;
107 
108 void free_task(struct task_struct *tsk)
109 {
110 	prop_local_destroy_single(&tsk->dirties);
111 	free_thread_info(tsk->stack);
112 	rt_mutex_debug_task_free(tsk);
113 	free_task_struct(tsk);
114 }
115 EXPORT_SYMBOL(free_task);
116 
117 void __put_task_struct(struct task_struct *tsk)
118 {
119 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
120 	WARN_ON(atomic_read(&tsk->usage));
121 	WARN_ON(tsk == current);
122 
123 	security_task_free(tsk);
124 	free_uid(tsk->user);
125 	put_group_info(tsk->group_info);
126 	delayacct_tsk_free(tsk);
127 
128 	if (!profile_handoff_task(tsk))
129 		free_task(tsk);
130 }
131 
132 void __init fork_init(unsigned long mempages)
133 {
134 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
135 #ifndef ARCH_MIN_TASKALIGN
136 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
137 #endif
138 	/* create a slab on which task_structs can be allocated */
139 	task_struct_cachep =
140 		kmem_cache_create("task_struct", sizeof(struct task_struct),
141 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
142 #endif
143 
144 	/*
145 	 * The default maximum number of threads is set to a safe
146 	 * value: the thread structures can take up at most half
147 	 * of memory.
148 	 */
149 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
150 
151 	/*
152 	 * we need to allow at least 20 threads to boot a system
153 	 */
154 	if(max_threads < 20)
155 		max_threads = 20;
156 
157 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
158 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
159 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
160 		init_task.signal->rlim[RLIMIT_NPROC];
161 }
162 
163 static struct task_struct *dup_task_struct(struct task_struct *orig)
164 {
165 	struct task_struct *tsk;
166 	struct thread_info *ti;
167 	int err;
168 
169 	prepare_to_copy(orig);
170 
171 	tsk = alloc_task_struct();
172 	if (!tsk)
173 		return NULL;
174 
175 	ti = alloc_thread_info(tsk);
176 	if (!ti) {
177 		free_task_struct(tsk);
178 		return NULL;
179 	}
180 
181 	*tsk = *orig;
182 	tsk->stack = ti;
183 
184 	err = prop_local_init_single(&tsk->dirties);
185 	if (err) {
186 		free_thread_info(ti);
187 		free_task_struct(tsk);
188 		return NULL;
189 	}
190 
191 	setup_thread_stack(tsk, orig);
192 
193 #ifdef CONFIG_CC_STACKPROTECTOR
194 	tsk->stack_canary = get_random_int();
195 #endif
196 
197 	/* One for us, one for whoever does the "release_task()" (usually parent) */
198 	atomic_set(&tsk->usage,2);
199 	atomic_set(&tsk->fs_excl, 0);
200 #ifdef CONFIG_BLK_DEV_IO_TRACE
201 	tsk->btrace_seq = 0;
202 #endif
203 	tsk->splice_pipe = NULL;
204 	return tsk;
205 }
206 
207 #ifdef CONFIG_MMU
208 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
209 {
210 	struct vm_area_struct *mpnt, *tmp, **pprev;
211 	struct rb_node **rb_link, *rb_parent;
212 	int retval;
213 	unsigned long charge;
214 	struct mempolicy *pol;
215 
216 	down_write(&oldmm->mmap_sem);
217 	flush_cache_dup_mm(oldmm);
218 	/*
219 	 * Not linked in yet - no deadlock potential:
220 	 */
221 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
222 
223 	mm->locked_vm = 0;
224 	mm->mmap = NULL;
225 	mm->mmap_cache = NULL;
226 	mm->free_area_cache = oldmm->mmap_base;
227 	mm->cached_hole_size = ~0UL;
228 	mm->map_count = 0;
229 	cpus_clear(mm->cpu_vm_mask);
230 	mm->mm_rb = RB_ROOT;
231 	rb_link = &mm->mm_rb.rb_node;
232 	rb_parent = NULL;
233 	pprev = &mm->mmap;
234 
235 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
236 		struct file *file;
237 
238 		if (mpnt->vm_flags & VM_DONTCOPY) {
239 			long pages = vma_pages(mpnt);
240 			mm->total_vm -= pages;
241 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
242 								-pages);
243 			continue;
244 		}
245 		charge = 0;
246 		if (mpnt->vm_flags & VM_ACCOUNT) {
247 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
248 			if (security_vm_enough_memory(len))
249 				goto fail_nomem;
250 			charge = len;
251 		}
252 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
253 		if (!tmp)
254 			goto fail_nomem;
255 		*tmp = *mpnt;
256 		pol = mpol_copy(vma_policy(mpnt));
257 		retval = PTR_ERR(pol);
258 		if (IS_ERR(pol))
259 			goto fail_nomem_policy;
260 		vma_set_policy(tmp, pol);
261 		tmp->vm_flags &= ~VM_LOCKED;
262 		tmp->vm_mm = mm;
263 		tmp->vm_next = NULL;
264 		anon_vma_link(tmp);
265 		file = tmp->vm_file;
266 		if (file) {
267 			struct inode *inode = file->f_path.dentry->d_inode;
268 			get_file(file);
269 			if (tmp->vm_flags & VM_DENYWRITE)
270 				atomic_dec(&inode->i_writecount);
271 
272 			/* insert tmp into the share list, just after mpnt */
273 			spin_lock(&file->f_mapping->i_mmap_lock);
274 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
275 			flush_dcache_mmap_lock(file->f_mapping);
276 			vma_prio_tree_add(tmp, mpnt);
277 			flush_dcache_mmap_unlock(file->f_mapping);
278 			spin_unlock(&file->f_mapping->i_mmap_lock);
279 		}
280 
281 		/*
282 		 * Link in the new vma and copy the page table entries.
283 		 */
284 		*pprev = tmp;
285 		pprev = &tmp->vm_next;
286 
287 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
288 		rb_link = &tmp->vm_rb.rb_right;
289 		rb_parent = &tmp->vm_rb;
290 
291 		mm->map_count++;
292 		retval = copy_page_range(mm, oldmm, mpnt);
293 
294 		if (tmp->vm_ops && tmp->vm_ops->open)
295 			tmp->vm_ops->open(tmp);
296 
297 		if (retval)
298 			goto out;
299 	}
300 	/* a new mm has just been created */
301 	arch_dup_mmap(oldmm, mm);
302 	retval = 0;
303 out:
304 	up_write(&mm->mmap_sem);
305 	flush_tlb_mm(oldmm);
306 	up_write(&oldmm->mmap_sem);
307 	return retval;
308 fail_nomem_policy:
309 	kmem_cache_free(vm_area_cachep, tmp);
310 fail_nomem:
311 	retval = -ENOMEM;
312 	vm_unacct_memory(charge);
313 	goto out;
314 }
315 
316 static inline int mm_alloc_pgd(struct mm_struct * mm)
317 {
318 	mm->pgd = pgd_alloc(mm);
319 	if (unlikely(!mm->pgd))
320 		return -ENOMEM;
321 	return 0;
322 }
323 
324 static inline void mm_free_pgd(struct mm_struct * mm)
325 {
326 	pgd_free(mm->pgd);
327 }
328 #else
329 #define dup_mmap(mm, oldmm)	(0)
330 #define mm_alloc_pgd(mm)	(0)
331 #define mm_free_pgd(mm)
332 #endif /* CONFIG_MMU */
333 
334 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
335 
336 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
337 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
338 
339 #include <linux/init_task.h>
340 
341 static struct mm_struct * mm_init(struct mm_struct * mm)
342 {
343 	atomic_set(&mm->mm_users, 1);
344 	atomic_set(&mm->mm_count, 1);
345 	init_rwsem(&mm->mmap_sem);
346 	INIT_LIST_HEAD(&mm->mmlist);
347 	mm->flags = (current->mm) ? current->mm->flags
348 				  : MMF_DUMP_FILTER_DEFAULT;
349 	mm->core_waiters = 0;
350 	mm->nr_ptes = 0;
351 	set_mm_counter(mm, file_rss, 0);
352 	set_mm_counter(mm, anon_rss, 0);
353 	spin_lock_init(&mm->page_table_lock);
354 	rwlock_init(&mm->ioctx_list_lock);
355 	mm->ioctx_list = NULL;
356 	mm->free_area_cache = TASK_UNMAPPED_BASE;
357 	mm->cached_hole_size = ~0UL;
358 
359 	if (likely(!mm_alloc_pgd(mm))) {
360 		mm->def_flags = 0;
361 		return mm;
362 	}
363 	free_mm(mm);
364 	return NULL;
365 }
366 
367 /*
368  * Allocate and initialize an mm_struct.
369  */
370 struct mm_struct * mm_alloc(void)
371 {
372 	struct mm_struct * mm;
373 
374 	mm = allocate_mm();
375 	if (mm) {
376 		memset(mm, 0, sizeof(*mm));
377 		mm = mm_init(mm);
378 	}
379 	return mm;
380 }
381 
382 /*
383  * Called when the last reference to the mm
384  * is dropped: either by a lazy thread or by
385  * mmput. Free the page directory and the mm.
386  */
387 void fastcall __mmdrop(struct mm_struct *mm)
388 {
389 	BUG_ON(mm == &init_mm);
390 	mm_free_pgd(mm);
391 	destroy_context(mm);
392 	free_mm(mm);
393 }
394 
395 /*
396  * Decrement the use count and release all resources for an mm.
397  */
398 void mmput(struct mm_struct *mm)
399 {
400 	might_sleep();
401 
402 	if (atomic_dec_and_test(&mm->mm_users)) {
403 		exit_aio(mm);
404 		exit_mmap(mm);
405 		if (!list_empty(&mm->mmlist)) {
406 			spin_lock(&mmlist_lock);
407 			list_del(&mm->mmlist);
408 			spin_unlock(&mmlist_lock);
409 		}
410 		put_swap_token(mm);
411 		mmdrop(mm);
412 	}
413 }
414 EXPORT_SYMBOL_GPL(mmput);
415 
416 /**
417  * get_task_mm - acquire a reference to the task's mm
418  *
419  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
420  * this kernel workthread has transiently adopted a user mm with use_mm,
421  * to do its AIO) is not set and if so returns a reference to it, after
422  * bumping up the use count.  User must release the mm via mmput()
423  * after use.  Typically used by /proc and ptrace.
424  */
425 struct mm_struct *get_task_mm(struct task_struct *task)
426 {
427 	struct mm_struct *mm;
428 
429 	task_lock(task);
430 	mm = task->mm;
431 	if (mm) {
432 		if (task->flags & PF_BORROWED_MM)
433 			mm = NULL;
434 		else
435 			atomic_inc(&mm->mm_users);
436 	}
437 	task_unlock(task);
438 	return mm;
439 }
440 EXPORT_SYMBOL_GPL(get_task_mm);
441 
442 /* Please note the differences between mmput and mm_release.
443  * mmput is called whenever we stop holding onto a mm_struct,
444  * error success whatever.
445  *
446  * mm_release is called after a mm_struct has been removed
447  * from the current process.
448  *
449  * This difference is important for error handling, when we
450  * only half set up a mm_struct for a new process and need to restore
451  * the old one.  Because we mmput the new mm_struct before
452  * restoring the old one. . .
453  * Eric Biederman 10 January 1998
454  */
455 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
456 {
457 	struct completion *vfork_done = tsk->vfork_done;
458 
459 	/* Get rid of any cached register state */
460 	deactivate_mm(tsk, mm);
461 
462 	/* notify parent sleeping on vfork() */
463 	if (vfork_done) {
464 		tsk->vfork_done = NULL;
465 		complete(vfork_done);
466 	}
467 
468 	/*
469 	 * If we're exiting normally, clear a user-space tid field if
470 	 * requested.  We leave this alone when dying by signal, to leave
471 	 * the value intact in a core dump, and to save the unnecessary
472 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
473 	 */
474 	if (tsk->clear_child_tid
475 	    && !(tsk->flags & PF_SIGNALED)
476 	    && atomic_read(&mm->mm_users) > 1) {
477 		u32 __user * tidptr = tsk->clear_child_tid;
478 		tsk->clear_child_tid = NULL;
479 
480 		/*
481 		 * We don't check the error code - if userspace has
482 		 * not set up a proper pointer then tough luck.
483 		 */
484 		put_user(0, tidptr);
485 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
486 	}
487 }
488 
489 /*
490  * Allocate a new mm structure and copy contents from the
491  * mm structure of the passed in task structure.
492  */
493 static struct mm_struct *dup_mm(struct task_struct *tsk)
494 {
495 	struct mm_struct *mm, *oldmm = current->mm;
496 	int err;
497 
498 	if (!oldmm)
499 		return NULL;
500 
501 	mm = allocate_mm();
502 	if (!mm)
503 		goto fail_nomem;
504 
505 	memcpy(mm, oldmm, sizeof(*mm));
506 
507 	/* Initializing for Swap token stuff */
508 	mm->token_priority = 0;
509 	mm->last_interval = 0;
510 
511 	if (!mm_init(mm))
512 		goto fail_nomem;
513 
514 	if (init_new_context(tsk, mm))
515 		goto fail_nocontext;
516 
517 	err = dup_mmap(mm, oldmm);
518 	if (err)
519 		goto free_pt;
520 
521 	mm->hiwater_rss = get_mm_rss(mm);
522 	mm->hiwater_vm = mm->total_vm;
523 
524 	return mm;
525 
526 free_pt:
527 	mmput(mm);
528 
529 fail_nomem:
530 	return NULL;
531 
532 fail_nocontext:
533 	/*
534 	 * If init_new_context() failed, we cannot use mmput() to free the mm
535 	 * because it calls destroy_context()
536 	 */
537 	mm_free_pgd(mm);
538 	free_mm(mm);
539 	return NULL;
540 }
541 
542 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
543 {
544 	struct mm_struct * mm, *oldmm;
545 	int retval;
546 
547 	tsk->min_flt = tsk->maj_flt = 0;
548 	tsk->nvcsw = tsk->nivcsw = 0;
549 
550 	tsk->mm = NULL;
551 	tsk->active_mm = NULL;
552 
553 	/*
554 	 * Are we cloning a kernel thread?
555 	 *
556 	 * We need to steal a active VM for that..
557 	 */
558 	oldmm = current->mm;
559 	if (!oldmm)
560 		return 0;
561 
562 	if (clone_flags & CLONE_VM) {
563 		atomic_inc(&oldmm->mm_users);
564 		mm = oldmm;
565 		goto good_mm;
566 	}
567 
568 	retval = -ENOMEM;
569 	mm = dup_mm(tsk);
570 	if (!mm)
571 		goto fail_nomem;
572 
573 good_mm:
574 	/* Initializing for Swap token stuff */
575 	mm->token_priority = 0;
576 	mm->last_interval = 0;
577 
578 	tsk->mm = mm;
579 	tsk->active_mm = mm;
580 	return 0;
581 
582 fail_nomem:
583 	return retval;
584 }
585 
586 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
587 {
588 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
589 	/* We don't need to lock fs - think why ;-) */
590 	if (fs) {
591 		atomic_set(&fs->count, 1);
592 		rwlock_init(&fs->lock);
593 		fs->umask = old->umask;
594 		read_lock(&old->lock);
595 		fs->rootmnt = mntget(old->rootmnt);
596 		fs->root = dget(old->root);
597 		fs->pwdmnt = mntget(old->pwdmnt);
598 		fs->pwd = dget(old->pwd);
599 		if (old->altroot) {
600 			fs->altrootmnt = mntget(old->altrootmnt);
601 			fs->altroot = dget(old->altroot);
602 		} else {
603 			fs->altrootmnt = NULL;
604 			fs->altroot = NULL;
605 		}
606 		read_unlock(&old->lock);
607 	}
608 	return fs;
609 }
610 
611 struct fs_struct *copy_fs_struct(struct fs_struct *old)
612 {
613 	return __copy_fs_struct(old);
614 }
615 
616 EXPORT_SYMBOL_GPL(copy_fs_struct);
617 
618 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
619 {
620 	if (clone_flags & CLONE_FS) {
621 		atomic_inc(&current->fs->count);
622 		return 0;
623 	}
624 	tsk->fs = __copy_fs_struct(current->fs);
625 	if (!tsk->fs)
626 		return -ENOMEM;
627 	return 0;
628 }
629 
630 static int count_open_files(struct fdtable *fdt)
631 {
632 	int size = fdt->max_fds;
633 	int i;
634 
635 	/* Find the last open fd */
636 	for (i = size/(8*sizeof(long)); i > 0; ) {
637 		if (fdt->open_fds->fds_bits[--i])
638 			break;
639 	}
640 	i = (i+1) * 8 * sizeof(long);
641 	return i;
642 }
643 
644 static struct files_struct *alloc_files(void)
645 {
646 	struct files_struct *newf;
647 	struct fdtable *fdt;
648 
649 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
650 	if (!newf)
651 		goto out;
652 
653 	atomic_set(&newf->count, 1);
654 
655 	spin_lock_init(&newf->file_lock);
656 	newf->next_fd = 0;
657 	fdt = &newf->fdtab;
658 	fdt->max_fds = NR_OPEN_DEFAULT;
659 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
660 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
661 	fdt->fd = &newf->fd_array[0];
662 	INIT_RCU_HEAD(&fdt->rcu);
663 	fdt->next = NULL;
664 	rcu_assign_pointer(newf->fdt, fdt);
665 out:
666 	return newf;
667 }
668 
669 /*
670  * Allocate a new files structure and copy contents from the
671  * passed in files structure.
672  * errorp will be valid only when the returned files_struct is NULL.
673  */
674 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
675 {
676 	struct files_struct *newf;
677 	struct file **old_fds, **new_fds;
678 	int open_files, size, i;
679 	struct fdtable *old_fdt, *new_fdt;
680 
681 	*errorp = -ENOMEM;
682 	newf = alloc_files();
683 	if (!newf)
684 		goto out;
685 
686 	spin_lock(&oldf->file_lock);
687 	old_fdt = files_fdtable(oldf);
688 	new_fdt = files_fdtable(newf);
689 	open_files = count_open_files(old_fdt);
690 
691 	/*
692 	 * Check whether we need to allocate a larger fd array and fd set.
693 	 * Note: we're not a clone task, so the open count won't change.
694 	 */
695 	if (open_files > new_fdt->max_fds) {
696 		new_fdt->max_fds = 0;
697 		spin_unlock(&oldf->file_lock);
698 		spin_lock(&newf->file_lock);
699 		*errorp = expand_files(newf, open_files-1);
700 		spin_unlock(&newf->file_lock);
701 		if (*errorp < 0)
702 			goto out_release;
703 		new_fdt = files_fdtable(newf);
704 		/*
705 		 * Reacquire the oldf lock and a pointer to its fd table
706 		 * who knows it may have a new bigger fd table. We need
707 		 * the latest pointer.
708 		 */
709 		spin_lock(&oldf->file_lock);
710 		old_fdt = files_fdtable(oldf);
711 	}
712 
713 	old_fds = old_fdt->fd;
714 	new_fds = new_fdt->fd;
715 
716 	memcpy(new_fdt->open_fds->fds_bits,
717 		old_fdt->open_fds->fds_bits, open_files/8);
718 	memcpy(new_fdt->close_on_exec->fds_bits,
719 		old_fdt->close_on_exec->fds_bits, open_files/8);
720 
721 	for (i = open_files; i != 0; i--) {
722 		struct file *f = *old_fds++;
723 		if (f) {
724 			get_file(f);
725 		} else {
726 			/*
727 			 * The fd may be claimed in the fd bitmap but not yet
728 			 * instantiated in the files array if a sibling thread
729 			 * is partway through open().  So make sure that this
730 			 * fd is available to the new process.
731 			 */
732 			FD_CLR(open_files - i, new_fdt->open_fds);
733 		}
734 		rcu_assign_pointer(*new_fds++, f);
735 	}
736 	spin_unlock(&oldf->file_lock);
737 
738 	/* compute the remainder to be cleared */
739 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
740 
741 	/* This is long word aligned thus could use a optimized version */
742 	memset(new_fds, 0, size);
743 
744 	if (new_fdt->max_fds > open_files) {
745 		int left = (new_fdt->max_fds-open_files)/8;
746 		int start = open_files / (8 * sizeof(unsigned long));
747 
748 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
749 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
750 	}
751 
752 	return newf;
753 
754 out_release:
755 	kmem_cache_free(files_cachep, newf);
756 out:
757 	return NULL;
758 }
759 
760 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
761 {
762 	struct files_struct *oldf, *newf;
763 	int error = 0;
764 
765 	/*
766 	 * A background process may not have any files ...
767 	 */
768 	oldf = current->files;
769 	if (!oldf)
770 		goto out;
771 
772 	if (clone_flags & CLONE_FILES) {
773 		atomic_inc(&oldf->count);
774 		goto out;
775 	}
776 
777 	/*
778 	 * Note: we may be using current for both targets (See exec.c)
779 	 * This works because we cache current->files (old) as oldf. Don't
780 	 * break this.
781 	 */
782 	tsk->files = NULL;
783 	newf = dup_fd(oldf, &error);
784 	if (!newf)
785 		goto out;
786 
787 	tsk->files = newf;
788 	error = 0;
789 out:
790 	return error;
791 }
792 
793 /*
794  *	Helper to unshare the files of the current task.
795  *	We don't want to expose copy_files internals to
796  *	the exec layer of the kernel.
797  */
798 
799 int unshare_files(void)
800 {
801 	struct files_struct *files  = current->files;
802 	int rc;
803 
804 	BUG_ON(!files);
805 
806 	/* This can race but the race causes us to copy when we don't
807 	   need to and drop the copy */
808 	if(atomic_read(&files->count) == 1)
809 	{
810 		atomic_inc(&files->count);
811 		return 0;
812 	}
813 	rc = copy_files(0, current);
814 	if(rc)
815 		current->files = files;
816 	return rc;
817 }
818 
819 EXPORT_SYMBOL(unshare_files);
820 
821 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
822 {
823 	struct sighand_struct *sig;
824 
825 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
826 		atomic_inc(&current->sighand->count);
827 		return 0;
828 	}
829 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
830 	rcu_assign_pointer(tsk->sighand, sig);
831 	if (!sig)
832 		return -ENOMEM;
833 	atomic_set(&sig->count, 1);
834 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
835 	return 0;
836 }
837 
838 void __cleanup_sighand(struct sighand_struct *sighand)
839 {
840 	if (atomic_dec_and_test(&sighand->count))
841 		kmem_cache_free(sighand_cachep, sighand);
842 }
843 
844 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
845 {
846 	struct signal_struct *sig;
847 	int ret;
848 
849 	if (clone_flags & CLONE_THREAD) {
850 		atomic_inc(&current->signal->count);
851 		atomic_inc(&current->signal->live);
852 		return 0;
853 	}
854 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
855 	tsk->signal = sig;
856 	if (!sig)
857 		return -ENOMEM;
858 
859 	ret = copy_thread_group_keys(tsk);
860 	if (ret < 0) {
861 		kmem_cache_free(signal_cachep, sig);
862 		return ret;
863 	}
864 
865 	atomic_set(&sig->count, 1);
866 	atomic_set(&sig->live, 1);
867 	init_waitqueue_head(&sig->wait_chldexit);
868 	sig->flags = 0;
869 	sig->group_exit_code = 0;
870 	sig->group_exit_task = NULL;
871 	sig->group_stop_count = 0;
872 	sig->curr_target = NULL;
873 	init_sigpending(&sig->shared_pending);
874 	INIT_LIST_HEAD(&sig->posix_timers);
875 
876 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
877 	sig->it_real_incr.tv64 = 0;
878 	sig->real_timer.function = it_real_fn;
879 	sig->tsk = tsk;
880 
881 	sig->it_virt_expires = cputime_zero;
882 	sig->it_virt_incr = cputime_zero;
883 	sig->it_prof_expires = cputime_zero;
884 	sig->it_prof_incr = cputime_zero;
885 
886 	sig->leader = 0;	/* session leadership doesn't inherit */
887 	sig->tty_old_pgrp = NULL;
888 
889 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
890 	sig->gtime = cputime_zero;
891 	sig->cgtime = cputime_zero;
892 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
893 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
894 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
895 	sig->sum_sched_runtime = 0;
896 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
897 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
898 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
899 	taskstats_tgid_init(sig);
900 
901 	task_lock(current->group_leader);
902 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
903 	task_unlock(current->group_leader);
904 
905 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
906 		/*
907 		 * New sole thread in the process gets an expiry time
908 		 * of the whole CPU time limit.
909 		 */
910 		tsk->it_prof_expires =
911 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
912 	}
913 	acct_init_pacct(&sig->pacct);
914 
915 	tty_audit_fork(sig);
916 
917 	return 0;
918 }
919 
920 void __cleanup_signal(struct signal_struct *sig)
921 {
922 	exit_thread_group_keys(sig);
923 	kmem_cache_free(signal_cachep, sig);
924 }
925 
926 static inline void cleanup_signal(struct task_struct *tsk)
927 {
928 	struct signal_struct *sig = tsk->signal;
929 
930 	atomic_dec(&sig->live);
931 
932 	if (atomic_dec_and_test(&sig->count))
933 		__cleanup_signal(sig);
934 }
935 
936 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
937 {
938 	unsigned long new_flags = p->flags;
939 
940 	new_flags &= ~PF_SUPERPRIV;
941 	new_flags |= PF_FORKNOEXEC;
942 	if (!(clone_flags & CLONE_PTRACE))
943 		p->ptrace = 0;
944 	p->flags = new_flags;
945 	clear_freeze_flag(p);
946 }
947 
948 asmlinkage long sys_set_tid_address(int __user *tidptr)
949 {
950 	current->clear_child_tid = tidptr;
951 
952 	return current->pid;
953 }
954 
955 static inline void rt_mutex_init_task(struct task_struct *p)
956 {
957 	spin_lock_init(&p->pi_lock);
958 #ifdef CONFIG_RT_MUTEXES
959 	plist_head_init(&p->pi_waiters, &p->pi_lock);
960 	p->pi_blocked_on = NULL;
961 #endif
962 }
963 
964 /*
965  * This creates a new process as a copy of the old one,
966  * but does not actually start it yet.
967  *
968  * It copies the registers, and all the appropriate
969  * parts of the process environment (as per the clone
970  * flags). The actual kick-off is left to the caller.
971  */
972 static struct task_struct *copy_process(unsigned long clone_flags,
973 					unsigned long stack_start,
974 					struct pt_regs *regs,
975 					unsigned long stack_size,
976 					int __user *parent_tidptr,
977 					int __user *child_tidptr,
978 					struct pid *pid)
979 {
980 	int retval;
981 	struct task_struct *p = NULL;
982 
983 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
984 		return ERR_PTR(-EINVAL);
985 
986 	/*
987 	 * Thread groups must share signals as well, and detached threads
988 	 * can only be started up within the thread group.
989 	 */
990 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
991 		return ERR_PTR(-EINVAL);
992 
993 	/*
994 	 * Shared signal handlers imply shared VM. By way of the above,
995 	 * thread groups also imply shared VM. Blocking this case allows
996 	 * for various simplifications in other code.
997 	 */
998 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
999 		return ERR_PTR(-EINVAL);
1000 
1001 	retval = security_task_create(clone_flags);
1002 	if (retval)
1003 		goto fork_out;
1004 
1005 	retval = -ENOMEM;
1006 	p = dup_task_struct(current);
1007 	if (!p)
1008 		goto fork_out;
1009 
1010 	rt_mutex_init_task(p);
1011 
1012 #ifdef CONFIG_TRACE_IRQFLAGS
1013 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1014 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1015 #endif
1016 	retval = -EAGAIN;
1017 	if (atomic_read(&p->user->processes) >=
1018 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1019 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1020 		    p->user != current->nsproxy->user_ns->root_user)
1021 			goto bad_fork_free;
1022 	}
1023 
1024 	atomic_inc(&p->user->__count);
1025 	atomic_inc(&p->user->processes);
1026 	get_group_info(p->group_info);
1027 
1028 	/*
1029 	 * If multiple threads are within copy_process(), then this check
1030 	 * triggers too late. This doesn't hurt, the check is only there
1031 	 * to stop root fork bombs.
1032 	 */
1033 	if (nr_threads >= max_threads)
1034 		goto bad_fork_cleanup_count;
1035 
1036 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1037 		goto bad_fork_cleanup_count;
1038 
1039 	if (p->binfmt && !try_module_get(p->binfmt->module))
1040 		goto bad_fork_cleanup_put_domain;
1041 
1042 	p->did_exec = 0;
1043 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1044 	copy_flags(clone_flags, p);
1045 	p->pid = pid_nr(pid);
1046 	retval = -EFAULT;
1047 	if (clone_flags & CLONE_PARENT_SETTID)
1048 		if (put_user(p->pid, parent_tidptr))
1049 			goto bad_fork_cleanup_delays_binfmt;
1050 
1051 	INIT_LIST_HEAD(&p->children);
1052 	INIT_LIST_HEAD(&p->sibling);
1053 	p->vfork_done = NULL;
1054 	spin_lock_init(&p->alloc_lock);
1055 
1056 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1057 	init_sigpending(&p->pending);
1058 
1059 	p->utime = cputime_zero;
1060 	p->stime = cputime_zero;
1061 	p->gtime = cputime_zero;
1062 	p->utimescaled = cputime_zero;
1063 	p->stimescaled = cputime_zero;
1064 
1065 #ifdef CONFIG_TASK_XACCT
1066 	p->rchar = 0;		/* I/O counter: bytes read */
1067 	p->wchar = 0;		/* I/O counter: bytes written */
1068 	p->syscr = 0;		/* I/O counter: read syscalls */
1069 	p->syscw = 0;		/* I/O counter: write syscalls */
1070 #endif
1071 	task_io_accounting_init(p);
1072 	acct_clear_integrals(p);
1073 
1074 	p->it_virt_expires = cputime_zero;
1075 	p->it_prof_expires = cputime_zero;
1076 	p->it_sched_expires = 0;
1077 	INIT_LIST_HEAD(&p->cpu_timers[0]);
1078 	INIT_LIST_HEAD(&p->cpu_timers[1]);
1079 	INIT_LIST_HEAD(&p->cpu_timers[2]);
1080 
1081 	p->lock_depth = -1;		/* -1 = no lock */
1082 	do_posix_clock_monotonic_gettime(&p->start_time);
1083 	p->real_start_time = p->start_time;
1084 	monotonic_to_bootbased(&p->real_start_time);
1085 #ifdef CONFIG_SECURITY
1086 	p->security = NULL;
1087 #endif
1088 	p->io_context = NULL;
1089 	p->audit_context = NULL;
1090 	cpuset_fork(p);
1091 #ifdef CONFIG_NUMA
1092  	p->mempolicy = mpol_copy(p->mempolicy);
1093  	if (IS_ERR(p->mempolicy)) {
1094  		retval = PTR_ERR(p->mempolicy);
1095  		p->mempolicy = NULL;
1096  		goto bad_fork_cleanup_cpuset;
1097  	}
1098 	mpol_fix_fork_child_flag(p);
1099 #endif
1100 #ifdef CONFIG_TRACE_IRQFLAGS
1101 	p->irq_events = 0;
1102 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1103 	p->hardirqs_enabled = 1;
1104 #else
1105 	p->hardirqs_enabled = 0;
1106 #endif
1107 	p->hardirq_enable_ip = 0;
1108 	p->hardirq_enable_event = 0;
1109 	p->hardirq_disable_ip = _THIS_IP_;
1110 	p->hardirq_disable_event = 0;
1111 	p->softirqs_enabled = 1;
1112 	p->softirq_enable_ip = _THIS_IP_;
1113 	p->softirq_enable_event = 0;
1114 	p->softirq_disable_ip = 0;
1115 	p->softirq_disable_event = 0;
1116 	p->hardirq_context = 0;
1117 	p->softirq_context = 0;
1118 #endif
1119 #ifdef CONFIG_LOCKDEP
1120 	p->lockdep_depth = 0; /* no locks held yet */
1121 	p->curr_chain_key = 0;
1122 	p->lockdep_recursion = 0;
1123 #endif
1124 
1125 #ifdef CONFIG_DEBUG_MUTEXES
1126 	p->blocked_on = NULL; /* not blocked yet */
1127 #endif
1128 
1129 	p->tgid = p->pid;
1130 	if (clone_flags & CLONE_THREAD)
1131 		p->tgid = current->tgid;
1132 
1133 	if ((retval = security_task_alloc(p)))
1134 		goto bad_fork_cleanup_policy;
1135 	if ((retval = audit_alloc(p)))
1136 		goto bad_fork_cleanup_security;
1137 	/* copy all the process information */
1138 	if ((retval = copy_semundo(clone_flags, p)))
1139 		goto bad_fork_cleanup_audit;
1140 	if ((retval = copy_files(clone_flags, p)))
1141 		goto bad_fork_cleanup_semundo;
1142 	if ((retval = copy_fs(clone_flags, p)))
1143 		goto bad_fork_cleanup_files;
1144 	if ((retval = copy_sighand(clone_flags, p)))
1145 		goto bad_fork_cleanup_fs;
1146 	if ((retval = copy_signal(clone_flags, p)))
1147 		goto bad_fork_cleanup_sighand;
1148 	if ((retval = copy_mm(clone_flags, p)))
1149 		goto bad_fork_cleanup_signal;
1150 	if ((retval = copy_keys(clone_flags, p)))
1151 		goto bad_fork_cleanup_mm;
1152 	if ((retval = copy_namespaces(clone_flags, p)))
1153 		goto bad_fork_cleanup_keys;
1154 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1155 	if (retval)
1156 		goto bad_fork_cleanup_namespaces;
1157 
1158 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1159 	/*
1160 	 * Clear TID on mm_release()?
1161 	 */
1162 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1163 #ifdef CONFIG_FUTEX
1164 	p->robust_list = NULL;
1165 #ifdef CONFIG_COMPAT
1166 	p->compat_robust_list = NULL;
1167 #endif
1168 	INIT_LIST_HEAD(&p->pi_state_list);
1169 	p->pi_state_cache = NULL;
1170 #endif
1171 	/*
1172 	 * sigaltstack should be cleared when sharing the same VM
1173 	 */
1174 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1175 		p->sas_ss_sp = p->sas_ss_size = 0;
1176 
1177 	/*
1178 	 * Syscall tracing should be turned off in the child regardless
1179 	 * of CLONE_PTRACE.
1180 	 */
1181 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1182 #ifdef TIF_SYSCALL_EMU
1183 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1184 #endif
1185 
1186 	/* Our parent execution domain becomes current domain
1187 	   These must match for thread signalling to apply */
1188 	p->parent_exec_id = p->self_exec_id;
1189 
1190 	/* ok, now we should be set up.. */
1191 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1192 	p->pdeath_signal = 0;
1193 	p->exit_state = 0;
1194 
1195 	/*
1196 	 * Ok, make it visible to the rest of the system.
1197 	 * We dont wake it up yet.
1198 	 */
1199 	p->group_leader = p;
1200 	INIT_LIST_HEAD(&p->thread_group);
1201 	INIT_LIST_HEAD(&p->ptrace_children);
1202 	INIT_LIST_HEAD(&p->ptrace_list);
1203 
1204 	/* Perform scheduler related setup. Assign this task to a CPU. */
1205 	sched_fork(p, clone_flags);
1206 
1207 	/* Need tasklist lock for parent etc handling! */
1208 	write_lock_irq(&tasklist_lock);
1209 
1210 	/* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1211 	p->ioprio = current->ioprio;
1212 
1213 	/*
1214 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1215 	 * not be changed, nor will its assigned CPU.
1216 	 *
1217 	 * The cpus_allowed mask of the parent may have changed after it was
1218 	 * copied first time - so re-copy it here, then check the child's CPU
1219 	 * to ensure it is on a valid CPU (and if not, just force it back to
1220 	 * parent's CPU). This avoids alot of nasty races.
1221 	 */
1222 	p->cpus_allowed = current->cpus_allowed;
1223 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1224 			!cpu_online(task_cpu(p))))
1225 		set_task_cpu(p, smp_processor_id());
1226 
1227 	/* CLONE_PARENT re-uses the old parent */
1228 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1229 		p->real_parent = current->real_parent;
1230 	else
1231 		p->real_parent = current;
1232 	p->parent = p->real_parent;
1233 
1234 	spin_lock(&current->sighand->siglock);
1235 
1236 	/*
1237 	 * Process group and session signals need to be delivered to just the
1238 	 * parent before the fork or both the parent and the child after the
1239 	 * fork. Restart if a signal comes in before we add the new process to
1240 	 * it's process group.
1241 	 * A fatal signal pending means that current will exit, so the new
1242 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1243  	 */
1244 	recalc_sigpending();
1245 	if (signal_pending(current)) {
1246 		spin_unlock(&current->sighand->siglock);
1247 		write_unlock_irq(&tasklist_lock);
1248 		retval = -ERESTARTNOINTR;
1249 		goto bad_fork_cleanup_namespaces;
1250 	}
1251 
1252 	if (clone_flags & CLONE_THREAD) {
1253 		p->group_leader = current->group_leader;
1254 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1255 
1256 		if (!cputime_eq(current->signal->it_virt_expires,
1257 				cputime_zero) ||
1258 		    !cputime_eq(current->signal->it_prof_expires,
1259 				cputime_zero) ||
1260 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1261 		    !list_empty(&current->signal->cpu_timers[0]) ||
1262 		    !list_empty(&current->signal->cpu_timers[1]) ||
1263 		    !list_empty(&current->signal->cpu_timers[2])) {
1264 			/*
1265 			 * Have child wake up on its first tick to check
1266 			 * for process CPU timers.
1267 			 */
1268 			p->it_prof_expires = jiffies_to_cputime(1);
1269 		}
1270 	}
1271 
1272 	if (likely(p->pid)) {
1273 		add_parent(p);
1274 		if (unlikely(p->ptrace & PT_PTRACED))
1275 			__ptrace_link(p, current->parent);
1276 
1277 		if (thread_group_leader(p)) {
1278 			p->signal->tty = current->signal->tty;
1279 			p->signal->pgrp = process_group(current);
1280 			set_signal_session(p->signal, process_session(current));
1281 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1282 			attach_pid(p, PIDTYPE_SID, task_session(current));
1283 
1284 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1285 			__get_cpu_var(process_counts)++;
1286 		}
1287 		attach_pid(p, PIDTYPE_PID, pid);
1288 		nr_threads++;
1289 	}
1290 
1291 	total_forks++;
1292 	spin_unlock(&current->sighand->siglock);
1293 	write_unlock_irq(&tasklist_lock);
1294 	proc_fork_connector(p);
1295 	return p;
1296 
1297 bad_fork_cleanup_namespaces:
1298 	exit_task_namespaces(p);
1299 bad_fork_cleanup_keys:
1300 	exit_keys(p);
1301 bad_fork_cleanup_mm:
1302 	if (p->mm)
1303 		mmput(p->mm);
1304 bad_fork_cleanup_signal:
1305 	cleanup_signal(p);
1306 bad_fork_cleanup_sighand:
1307 	__cleanup_sighand(p->sighand);
1308 bad_fork_cleanup_fs:
1309 	exit_fs(p); /* blocking */
1310 bad_fork_cleanup_files:
1311 	exit_files(p); /* blocking */
1312 bad_fork_cleanup_semundo:
1313 	exit_sem(p);
1314 bad_fork_cleanup_audit:
1315 	audit_free(p);
1316 bad_fork_cleanup_security:
1317 	security_task_free(p);
1318 bad_fork_cleanup_policy:
1319 #ifdef CONFIG_NUMA
1320 	mpol_free(p->mempolicy);
1321 bad_fork_cleanup_cpuset:
1322 #endif
1323 	cpuset_exit(p);
1324 bad_fork_cleanup_delays_binfmt:
1325 	delayacct_tsk_free(p);
1326 	if (p->binfmt)
1327 		module_put(p->binfmt->module);
1328 bad_fork_cleanup_put_domain:
1329 	module_put(task_thread_info(p)->exec_domain->module);
1330 bad_fork_cleanup_count:
1331 	put_group_info(p->group_info);
1332 	atomic_dec(&p->user->processes);
1333 	free_uid(p->user);
1334 bad_fork_free:
1335 	free_task(p);
1336 fork_out:
1337 	return ERR_PTR(retval);
1338 }
1339 
1340 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1341 {
1342 	memset(regs, 0, sizeof(struct pt_regs));
1343 	return regs;
1344 }
1345 
1346 struct task_struct * __cpuinit fork_idle(int cpu)
1347 {
1348 	struct task_struct *task;
1349 	struct pt_regs regs;
1350 
1351 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
1352 				&init_struct_pid);
1353 	if (!IS_ERR(task))
1354 		init_idle(task, cpu);
1355 
1356 	return task;
1357 }
1358 
1359 static inline int fork_traceflag (unsigned clone_flags)
1360 {
1361 	if (clone_flags & CLONE_UNTRACED)
1362 		return 0;
1363 	else if (clone_flags & CLONE_VFORK) {
1364 		if (current->ptrace & PT_TRACE_VFORK)
1365 			return PTRACE_EVENT_VFORK;
1366 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1367 		if (current->ptrace & PT_TRACE_CLONE)
1368 			return PTRACE_EVENT_CLONE;
1369 	} else if (current->ptrace & PT_TRACE_FORK)
1370 		return PTRACE_EVENT_FORK;
1371 
1372 	return 0;
1373 }
1374 
1375 /*
1376  *  Ok, this is the main fork-routine.
1377  *
1378  * It copies the process, and if successful kick-starts
1379  * it and waits for it to finish using the VM if required.
1380  */
1381 long do_fork(unsigned long clone_flags,
1382 	      unsigned long stack_start,
1383 	      struct pt_regs *regs,
1384 	      unsigned long stack_size,
1385 	      int __user *parent_tidptr,
1386 	      int __user *child_tidptr)
1387 {
1388 	struct task_struct *p;
1389 	int trace = 0;
1390 	struct pid *pid = alloc_pid();
1391 	long nr;
1392 
1393 	if (!pid)
1394 		return -EAGAIN;
1395 	nr = pid->nr;
1396 	if (unlikely(current->ptrace)) {
1397 		trace = fork_traceflag (clone_flags);
1398 		if (trace)
1399 			clone_flags |= CLONE_PTRACE;
1400 	}
1401 
1402 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1403 	/*
1404 	 * Do this prior waking up the new thread - the thread pointer
1405 	 * might get invalid after that point, if the thread exits quickly.
1406 	 */
1407 	if (!IS_ERR(p)) {
1408 		struct completion vfork;
1409 
1410 		if (clone_flags & CLONE_VFORK) {
1411 			p->vfork_done = &vfork;
1412 			init_completion(&vfork);
1413 		}
1414 
1415 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1416 			/*
1417 			 * We'll start up with an immediate SIGSTOP.
1418 			 */
1419 			sigaddset(&p->pending.signal, SIGSTOP);
1420 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1421 		}
1422 
1423 		if (!(clone_flags & CLONE_STOPPED))
1424 			wake_up_new_task(p, clone_flags);
1425 		else
1426 			p->state = TASK_STOPPED;
1427 
1428 		if (unlikely (trace)) {
1429 			current->ptrace_message = nr;
1430 			ptrace_notify ((trace << 8) | SIGTRAP);
1431 		}
1432 
1433 		if (clone_flags & CLONE_VFORK) {
1434 			freezer_do_not_count();
1435 			wait_for_completion(&vfork);
1436 			freezer_count();
1437 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1438 				current->ptrace_message = nr;
1439 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1440 			}
1441 		}
1442 	} else {
1443 		free_pid(pid);
1444 		nr = PTR_ERR(p);
1445 	}
1446 	return nr;
1447 }
1448 
1449 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1450 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1451 #endif
1452 
1453 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1454 {
1455 	struct sighand_struct *sighand = data;
1456 
1457 	spin_lock_init(&sighand->siglock);
1458 	init_waitqueue_head(&sighand->signalfd_wqh);
1459 }
1460 
1461 void __init proc_caches_init(void)
1462 {
1463 	sighand_cachep = kmem_cache_create("sighand_cache",
1464 			sizeof(struct sighand_struct), 0,
1465 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1466 			sighand_ctor);
1467 	signal_cachep = kmem_cache_create("signal_cache",
1468 			sizeof(struct signal_struct), 0,
1469 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1470 	files_cachep = kmem_cache_create("files_cache",
1471 			sizeof(struct files_struct), 0,
1472 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1473 	fs_cachep = kmem_cache_create("fs_cache",
1474 			sizeof(struct fs_struct), 0,
1475 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1476 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1477 			sizeof(struct vm_area_struct), 0,
1478 			SLAB_PANIC, NULL);
1479 	mm_cachep = kmem_cache_create("mm_struct",
1480 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1481 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1482 }
1483 
1484 /*
1485  * Check constraints on flags passed to the unshare system call and
1486  * force unsharing of additional process context as appropriate.
1487  */
1488 static inline void check_unshare_flags(unsigned long *flags_ptr)
1489 {
1490 	/*
1491 	 * If unsharing a thread from a thread group, must also
1492 	 * unshare vm.
1493 	 */
1494 	if (*flags_ptr & CLONE_THREAD)
1495 		*flags_ptr |= CLONE_VM;
1496 
1497 	/*
1498 	 * If unsharing vm, must also unshare signal handlers.
1499 	 */
1500 	if (*flags_ptr & CLONE_VM)
1501 		*flags_ptr |= CLONE_SIGHAND;
1502 
1503 	/*
1504 	 * If unsharing signal handlers and the task was created
1505 	 * using CLONE_THREAD, then must unshare the thread
1506 	 */
1507 	if ((*flags_ptr & CLONE_SIGHAND) &&
1508 	    (atomic_read(&current->signal->count) > 1))
1509 		*flags_ptr |= CLONE_THREAD;
1510 
1511 	/*
1512 	 * If unsharing namespace, must also unshare filesystem information.
1513 	 */
1514 	if (*flags_ptr & CLONE_NEWNS)
1515 		*flags_ptr |= CLONE_FS;
1516 }
1517 
1518 /*
1519  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1520  */
1521 static int unshare_thread(unsigned long unshare_flags)
1522 {
1523 	if (unshare_flags & CLONE_THREAD)
1524 		return -EINVAL;
1525 
1526 	return 0;
1527 }
1528 
1529 /*
1530  * Unshare the filesystem structure if it is being shared
1531  */
1532 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1533 {
1534 	struct fs_struct *fs = current->fs;
1535 
1536 	if ((unshare_flags & CLONE_FS) &&
1537 	    (fs && atomic_read(&fs->count) > 1)) {
1538 		*new_fsp = __copy_fs_struct(current->fs);
1539 		if (!*new_fsp)
1540 			return -ENOMEM;
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 /*
1547  * Unsharing of sighand is not supported yet
1548  */
1549 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1550 {
1551 	struct sighand_struct *sigh = current->sighand;
1552 
1553 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1554 		return -EINVAL;
1555 	else
1556 		return 0;
1557 }
1558 
1559 /*
1560  * Unshare vm if it is being shared
1561  */
1562 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1563 {
1564 	struct mm_struct *mm = current->mm;
1565 
1566 	if ((unshare_flags & CLONE_VM) &&
1567 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1568 		return -EINVAL;
1569 	}
1570 
1571 	return 0;
1572 }
1573 
1574 /*
1575  * Unshare file descriptor table if it is being shared
1576  */
1577 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1578 {
1579 	struct files_struct *fd = current->files;
1580 	int error = 0;
1581 
1582 	if ((unshare_flags & CLONE_FILES) &&
1583 	    (fd && atomic_read(&fd->count) > 1)) {
1584 		*new_fdp = dup_fd(fd, &error);
1585 		if (!*new_fdp)
1586 			return error;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 /*
1593  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1594  * supported yet
1595  */
1596 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1597 {
1598 	if (unshare_flags & CLONE_SYSVSEM)
1599 		return -EINVAL;
1600 
1601 	return 0;
1602 }
1603 
1604 /*
1605  * unshare allows a process to 'unshare' part of the process
1606  * context which was originally shared using clone.  copy_*
1607  * functions used by do_fork() cannot be used here directly
1608  * because they modify an inactive task_struct that is being
1609  * constructed. Here we are modifying the current, active,
1610  * task_struct.
1611  */
1612 asmlinkage long sys_unshare(unsigned long unshare_flags)
1613 {
1614 	int err = 0;
1615 	struct fs_struct *fs, *new_fs = NULL;
1616 	struct sighand_struct *new_sigh = NULL;
1617 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1618 	struct files_struct *fd, *new_fd = NULL;
1619 	struct sem_undo_list *new_ulist = NULL;
1620 	struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1621 
1622 	check_unshare_flags(&unshare_flags);
1623 
1624 	/* Return -EINVAL for all unsupported flags */
1625 	err = -EINVAL;
1626 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1627 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1628 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1629 				CLONE_NEWNET))
1630 		goto bad_unshare_out;
1631 
1632 	if ((err = unshare_thread(unshare_flags)))
1633 		goto bad_unshare_out;
1634 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1635 		goto bad_unshare_cleanup_thread;
1636 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1637 		goto bad_unshare_cleanup_fs;
1638 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1639 		goto bad_unshare_cleanup_sigh;
1640 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1641 		goto bad_unshare_cleanup_vm;
1642 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1643 		goto bad_unshare_cleanup_fd;
1644 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1645 			new_fs)))
1646 		goto bad_unshare_cleanup_semundo;
1647 
1648 	if (new_fs ||  new_mm || new_fd || new_ulist || new_nsproxy) {
1649 
1650 		task_lock(current);
1651 
1652 		if (new_nsproxy) {
1653 			old_nsproxy = current->nsproxy;
1654 			current->nsproxy = new_nsproxy;
1655 			new_nsproxy = old_nsproxy;
1656 		}
1657 
1658 		if (new_fs) {
1659 			fs = current->fs;
1660 			current->fs = new_fs;
1661 			new_fs = fs;
1662 		}
1663 
1664 		if (new_mm) {
1665 			mm = current->mm;
1666 			active_mm = current->active_mm;
1667 			current->mm = new_mm;
1668 			current->active_mm = new_mm;
1669 			activate_mm(active_mm, new_mm);
1670 			new_mm = mm;
1671 		}
1672 
1673 		if (new_fd) {
1674 			fd = current->files;
1675 			current->files = new_fd;
1676 			new_fd = fd;
1677 		}
1678 
1679 		task_unlock(current);
1680 	}
1681 
1682 	if (new_nsproxy)
1683 		put_nsproxy(new_nsproxy);
1684 
1685 bad_unshare_cleanup_semundo:
1686 bad_unshare_cleanup_fd:
1687 	if (new_fd)
1688 		put_files_struct(new_fd);
1689 
1690 bad_unshare_cleanup_vm:
1691 	if (new_mm)
1692 		mmput(new_mm);
1693 
1694 bad_unshare_cleanup_sigh:
1695 	if (new_sigh)
1696 		if (atomic_dec_and_test(&new_sigh->count))
1697 			kmem_cache_free(sighand_cachep, new_sigh);
1698 
1699 bad_unshare_cleanup_fs:
1700 	if (new_fs)
1701 		put_fs_struct(new_fs);
1702 
1703 bad_unshare_cleanup_thread:
1704 bad_unshare_out:
1705 	return err;
1706 }
1707