1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 #ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 static int free_vm_stack_cache(unsigned int cpu) 197 { 198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 199 int i; 200 201 for (i = 0; i < NR_CACHED_STACKS; i++) { 202 struct vm_struct *vm_stack = cached_vm_stacks[i]; 203 204 if (!vm_stack) 205 continue; 206 207 vfree(vm_stack->addr); 208 cached_vm_stacks[i] = NULL; 209 } 210 211 return 0; 212 } 213 #endif 214 215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 216 { 217 #ifdef CONFIG_VMAP_STACK 218 void *stack; 219 int i; 220 221 for (i = 0; i < NR_CACHED_STACKS; i++) { 222 struct vm_struct *s; 223 224 s = this_cpu_xchg(cached_stacks[i], NULL); 225 226 if (!s) 227 continue; 228 229 /* Mark stack accessible for KASAN. */ 230 kasan_unpoison_range(s->addr, THREAD_SIZE); 231 232 /* Clear stale pointers from reused stack. */ 233 memset(s->addr, 0, THREAD_SIZE); 234 235 tsk->stack_vm_area = s; 236 tsk->stack = s->addr; 237 return s->addr; 238 } 239 240 /* 241 * Allocated stacks are cached and later reused by new threads, 242 * so memcg accounting is performed manually on assigning/releasing 243 * stacks to tasks. Drop __GFP_ACCOUNT. 244 */ 245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 246 VMALLOC_START, VMALLOC_END, 247 THREADINFO_GFP & ~__GFP_ACCOUNT, 248 PAGE_KERNEL, 249 0, node, __builtin_return_address(0)); 250 251 /* 252 * We can't call find_vm_area() in interrupt context, and 253 * free_thread_stack() can be called in interrupt context, 254 * so cache the vm_struct. 255 */ 256 if (stack) { 257 tsk->stack_vm_area = find_vm_area(stack); 258 tsk->stack = stack; 259 } 260 return stack; 261 #else 262 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 263 THREAD_SIZE_ORDER); 264 265 if (likely(page)) { 266 tsk->stack = kasan_reset_tag(page_address(page)); 267 return tsk->stack; 268 } 269 return NULL; 270 #endif 271 } 272 273 static inline void free_thread_stack(struct task_struct *tsk) 274 { 275 #ifdef CONFIG_VMAP_STACK 276 struct vm_struct *vm = task_stack_vm_area(tsk); 277 278 if (vm) { 279 int i; 280 281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 282 memcg_kmem_uncharge_page(vm->pages[i], 0); 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 stack = kasan_reset_tag(stack); 308 tsk->stack = stack; 309 return stack; 310 } 311 312 static void free_thread_stack(struct task_struct *tsk) 313 { 314 kmem_cache_free(thread_stack_cache, tsk->stack); 315 } 316 317 void thread_stack_cache_init(void) 318 { 319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 320 THREAD_SIZE, THREAD_SIZE, 0, 0, 321 THREAD_SIZE, NULL); 322 BUG_ON(thread_stack_cache == NULL); 323 } 324 # endif 325 #endif 326 327 /* SLAB cache for signal_struct structures (tsk->signal) */ 328 static struct kmem_cache *signal_cachep; 329 330 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 331 struct kmem_cache *sighand_cachep; 332 333 /* SLAB cache for files_struct structures (tsk->files) */ 334 struct kmem_cache *files_cachep; 335 336 /* SLAB cache for fs_struct structures (tsk->fs) */ 337 struct kmem_cache *fs_cachep; 338 339 /* SLAB cache for vm_area_struct structures */ 340 static struct kmem_cache *vm_area_cachep; 341 342 /* SLAB cache for mm_struct structures (tsk->mm) */ 343 static struct kmem_cache *mm_cachep; 344 345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 346 { 347 struct vm_area_struct *vma; 348 349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 350 if (vma) 351 vma_init(vma, mm); 352 return vma; 353 } 354 355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 356 { 357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 358 359 if (new) { 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 362 /* 363 * orig->shared.rb may be modified concurrently, but the clone 364 * will be reinitialized. 365 */ 366 *new = data_race(*orig); 367 INIT_LIST_HEAD(&new->anon_vma_chain); 368 new->vm_next = new->vm_prev = NULL; 369 } 370 return new; 371 } 372 373 void vm_area_free(struct vm_area_struct *vma) 374 { 375 kmem_cache_free(vm_area_cachep, vma); 376 } 377 378 static void account_kernel_stack(struct task_struct *tsk, int account) 379 { 380 void *stack = task_stack_page(tsk); 381 struct vm_struct *vm = task_stack_vm_area(tsk); 382 383 384 /* All stack pages are in the same node. */ 385 if (vm) 386 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB, 387 account * (THREAD_SIZE / 1024)); 388 else 389 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 390 account * (THREAD_SIZE / 1024)); 391 } 392 393 static int memcg_charge_kernel_stack(struct task_struct *tsk) 394 { 395 #ifdef CONFIG_VMAP_STACK 396 struct vm_struct *vm = task_stack_vm_area(tsk); 397 int ret; 398 399 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 400 401 if (vm) { 402 int i; 403 404 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 405 406 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 407 /* 408 * If memcg_kmem_charge_page() fails, page's 409 * memory cgroup pointer is NULL, and 410 * memcg_kmem_uncharge_page() in free_thread_stack() 411 * will ignore this page. 412 */ 413 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 414 0); 415 if (ret) 416 return ret; 417 } 418 } 419 #endif 420 return 0; 421 } 422 423 static void release_task_stack(struct task_struct *tsk) 424 { 425 if (WARN_ON(tsk->state != TASK_DEAD)) 426 return; /* Better to leak the stack than to free prematurely */ 427 428 account_kernel_stack(tsk, -1); 429 free_thread_stack(tsk); 430 tsk->stack = NULL; 431 #ifdef CONFIG_VMAP_STACK 432 tsk->stack_vm_area = NULL; 433 #endif 434 } 435 436 #ifdef CONFIG_THREAD_INFO_IN_TASK 437 void put_task_stack(struct task_struct *tsk) 438 { 439 if (refcount_dec_and_test(&tsk->stack_refcount)) 440 release_task_stack(tsk); 441 } 442 #endif 443 444 void free_task(struct task_struct *tsk) 445 { 446 scs_release(tsk); 447 448 #ifndef CONFIG_THREAD_INFO_IN_TASK 449 /* 450 * The task is finally done with both the stack and thread_info, 451 * so free both. 452 */ 453 release_task_stack(tsk); 454 #else 455 /* 456 * If the task had a separate stack allocation, it should be gone 457 * by now. 458 */ 459 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 460 #endif 461 rt_mutex_debug_task_free(tsk); 462 ftrace_graph_exit_task(tsk); 463 arch_release_task_struct(tsk); 464 if (tsk->flags & PF_KTHREAD) 465 free_kthread_struct(tsk); 466 free_task_struct(tsk); 467 } 468 EXPORT_SYMBOL(free_task); 469 470 #ifdef CONFIG_MMU 471 static __latent_entropy int dup_mmap(struct mm_struct *mm, 472 struct mm_struct *oldmm) 473 { 474 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 475 struct rb_node **rb_link, *rb_parent; 476 int retval; 477 unsigned long charge; 478 LIST_HEAD(uf); 479 480 uprobe_start_dup_mmap(); 481 if (mmap_write_lock_killable(oldmm)) { 482 retval = -EINTR; 483 goto fail_uprobe_end; 484 } 485 flush_cache_dup_mm(oldmm); 486 uprobe_dup_mmap(oldmm, mm); 487 /* 488 * Not linked in yet - no deadlock potential: 489 */ 490 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 491 492 /* No ordering required: file already has been exposed. */ 493 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 494 495 mm->total_vm = oldmm->total_vm; 496 mm->data_vm = oldmm->data_vm; 497 mm->exec_vm = oldmm->exec_vm; 498 mm->stack_vm = oldmm->stack_vm; 499 500 rb_link = &mm->mm_rb.rb_node; 501 rb_parent = NULL; 502 pprev = &mm->mmap; 503 retval = ksm_fork(mm, oldmm); 504 if (retval) 505 goto out; 506 retval = khugepaged_fork(mm, oldmm); 507 if (retval) 508 goto out; 509 510 prev = NULL; 511 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 512 struct file *file; 513 514 if (mpnt->vm_flags & VM_DONTCOPY) { 515 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 516 continue; 517 } 518 charge = 0; 519 /* 520 * Don't duplicate many vmas if we've been oom-killed (for 521 * example) 522 */ 523 if (fatal_signal_pending(current)) { 524 retval = -EINTR; 525 goto out; 526 } 527 if (mpnt->vm_flags & VM_ACCOUNT) { 528 unsigned long len = vma_pages(mpnt); 529 530 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 531 goto fail_nomem; 532 charge = len; 533 } 534 tmp = vm_area_dup(mpnt); 535 if (!tmp) 536 goto fail_nomem; 537 retval = vma_dup_policy(mpnt, tmp); 538 if (retval) 539 goto fail_nomem_policy; 540 tmp->vm_mm = mm; 541 retval = dup_userfaultfd(tmp, &uf); 542 if (retval) 543 goto fail_nomem_anon_vma_fork; 544 if (tmp->vm_flags & VM_WIPEONFORK) { 545 /* 546 * VM_WIPEONFORK gets a clean slate in the child. 547 * Don't prepare anon_vma until fault since we don't 548 * copy page for current vma. 549 */ 550 tmp->anon_vma = NULL; 551 } else if (anon_vma_fork(tmp, mpnt)) 552 goto fail_nomem_anon_vma_fork; 553 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 554 file = tmp->vm_file; 555 if (file) { 556 struct inode *inode = file_inode(file); 557 struct address_space *mapping = file->f_mapping; 558 559 get_file(file); 560 if (tmp->vm_flags & VM_DENYWRITE) 561 put_write_access(inode); 562 i_mmap_lock_write(mapping); 563 if (tmp->vm_flags & VM_SHARED) 564 mapping_allow_writable(mapping); 565 flush_dcache_mmap_lock(mapping); 566 /* insert tmp into the share list, just after mpnt */ 567 vma_interval_tree_insert_after(tmp, mpnt, 568 &mapping->i_mmap); 569 flush_dcache_mmap_unlock(mapping); 570 i_mmap_unlock_write(mapping); 571 } 572 573 /* 574 * Clear hugetlb-related page reserves for children. This only 575 * affects MAP_PRIVATE mappings. Faults generated by the child 576 * are not guaranteed to succeed, even if read-only 577 */ 578 if (is_vm_hugetlb_page(tmp)) 579 reset_vma_resv_huge_pages(tmp); 580 581 /* 582 * Link in the new vma and copy the page table entries. 583 */ 584 *pprev = tmp; 585 pprev = &tmp->vm_next; 586 tmp->vm_prev = prev; 587 prev = tmp; 588 589 __vma_link_rb(mm, tmp, rb_link, rb_parent); 590 rb_link = &tmp->vm_rb.rb_right; 591 rb_parent = &tmp->vm_rb; 592 593 mm->map_count++; 594 if (!(tmp->vm_flags & VM_WIPEONFORK)) 595 retval = copy_page_range(tmp, mpnt); 596 597 if (tmp->vm_ops && tmp->vm_ops->open) 598 tmp->vm_ops->open(tmp); 599 600 if (retval) 601 goto out; 602 } 603 /* a new mm has just been created */ 604 retval = arch_dup_mmap(oldmm, mm); 605 out: 606 mmap_write_unlock(mm); 607 flush_tlb_mm(oldmm); 608 mmap_write_unlock(oldmm); 609 dup_userfaultfd_complete(&uf); 610 fail_uprobe_end: 611 uprobe_end_dup_mmap(); 612 return retval; 613 fail_nomem_anon_vma_fork: 614 mpol_put(vma_policy(tmp)); 615 fail_nomem_policy: 616 vm_area_free(tmp); 617 fail_nomem: 618 retval = -ENOMEM; 619 vm_unacct_memory(charge); 620 goto out; 621 } 622 623 static inline int mm_alloc_pgd(struct mm_struct *mm) 624 { 625 mm->pgd = pgd_alloc(mm); 626 if (unlikely(!mm->pgd)) 627 return -ENOMEM; 628 return 0; 629 } 630 631 static inline void mm_free_pgd(struct mm_struct *mm) 632 { 633 pgd_free(mm, mm->pgd); 634 } 635 #else 636 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 637 { 638 mmap_write_lock(oldmm); 639 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 640 mmap_write_unlock(oldmm); 641 return 0; 642 } 643 #define mm_alloc_pgd(mm) (0) 644 #define mm_free_pgd(mm) 645 #endif /* CONFIG_MMU */ 646 647 static void check_mm(struct mm_struct *mm) 648 { 649 int i; 650 651 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 652 "Please make sure 'struct resident_page_types[]' is updated as well"); 653 654 for (i = 0; i < NR_MM_COUNTERS; i++) { 655 long x = atomic_long_read(&mm->rss_stat.count[i]); 656 657 if (unlikely(x)) 658 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 659 mm, resident_page_types[i], x); 660 } 661 662 if (mm_pgtables_bytes(mm)) 663 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 664 mm_pgtables_bytes(mm)); 665 666 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 667 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 668 #endif 669 } 670 671 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 672 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 673 674 /* 675 * Called when the last reference to the mm 676 * is dropped: either by a lazy thread or by 677 * mmput. Free the page directory and the mm. 678 */ 679 void __mmdrop(struct mm_struct *mm) 680 { 681 BUG_ON(mm == &init_mm); 682 WARN_ON_ONCE(mm == current->mm); 683 WARN_ON_ONCE(mm == current->active_mm); 684 mm_free_pgd(mm); 685 destroy_context(mm); 686 mmu_notifier_subscriptions_destroy(mm); 687 check_mm(mm); 688 put_user_ns(mm->user_ns); 689 free_mm(mm); 690 } 691 EXPORT_SYMBOL_GPL(__mmdrop); 692 693 static void mmdrop_async_fn(struct work_struct *work) 694 { 695 struct mm_struct *mm; 696 697 mm = container_of(work, struct mm_struct, async_put_work); 698 __mmdrop(mm); 699 } 700 701 static void mmdrop_async(struct mm_struct *mm) 702 { 703 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 704 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 705 schedule_work(&mm->async_put_work); 706 } 707 } 708 709 static inline void free_signal_struct(struct signal_struct *sig) 710 { 711 taskstats_tgid_free(sig); 712 sched_autogroup_exit(sig); 713 /* 714 * __mmdrop is not safe to call from softirq context on x86 due to 715 * pgd_dtor so postpone it to the async context 716 */ 717 if (sig->oom_mm) 718 mmdrop_async(sig->oom_mm); 719 kmem_cache_free(signal_cachep, sig); 720 } 721 722 static inline void put_signal_struct(struct signal_struct *sig) 723 { 724 if (refcount_dec_and_test(&sig->sigcnt)) 725 free_signal_struct(sig); 726 } 727 728 void __put_task_struct(struct task_struct *tsk) 729 { 730 WARN_ON(!tsk->exit_state); 731 WARN_ON(refcount_read(&tsk->usage)); 732 WARN_ON(tsk == current); 733 734 io_uring_free(tsk); 735 cgroup_free(tsk); 736 task_numa_free(tsk, true); 737 security_task_free(tsk); 738 bpf_task_storage_free(tsk); 739 exit_creds(tsk); 740 delayacct_tsk_free(tsk); 741 put_signal_struct(tsk->signal); 742 743 if (!profile_handoff_task(tsk)) 744 free_task(tsk); 745 } 746 EXPORT_SYMBOL_GPL(__put_task_struct); 747 748 void __init __weak arch_task_cache_init(void) { } 749 750 /* 751 * set_max_threads 752 */ 753 static void set_max_threads(unsigned int max_threads_suggested) 754 { 755 u64 threads; 756 unsigned long nr_pages = totalram_pages(); 757 758 /* 759 * The number of threads shall be limited such that the thread 760 * structures may only consume a small part of the available memory. 761 */ 762 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 763 threads = MAX_THREADS; 764 else 765 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 766 (u64) THREAD_SIZE * 8UL); 767 768 if (threads > max_threads_suggested) 769 threads = max_threads_suggested; 770 771 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 772 } 773 774 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 775 /* Initialized by the architecture: */ 776 int arch_task_struct_size __read_mostly; 777 #endif 778 779 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 780 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 781 { 782 /* Fetch thread_struct whitelist for the architecture. */ 783 arch_thread_struct_whitelist(offset, size); 784 785 /* 786 * Handle zero-sized whitelist or empty thread_struct, otherwise 787 * adjust offset to position of thread_struct in task_struct. 788 */ 789 if (unlikely(*size == 0)) 790 *offset = 0; 791 else 792 *offset += offsetof(struct task_struct, thread); 793 } 794 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 795 796 void __init fork_init(void) 797 { 798 int i; 799 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 800 #ifndef ARCH_MIN_TASKALIGN 801 #define ARCH_MIN_TASKALIGN 0 802 #endif 803 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 804 unsigned long useroffset, usersize; 805 806 /* create a slab on which task_structs can be allocated */ 807 task_struct_whitelist(&useroffset, &usersize); 808 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 809 arch_task_struct_size, align, 810 SLAB_PANIC|SLAB_ACCOUNT, 811 useroffset, usersize, NULL); 812 #endif 813 814 /* do the arch specific task caches init */ 815 arch_task_cache_init(); 816 817 set_max_threads(MAX_THREADS); 818 819 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 820 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 821 init_task.signal->rlim[RLIMIT_SIGPENDING] = 822 init_task.signal->rlim[RLIMIT_NPROC]; 823 824 for (i = 0; i < UCOUNT_COUNTS; i++) 825 init_user_ns.ucount_max[i] = max_threads/2; 826 827 #ifdef CONFIG_VMAP_STACK 828 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 829 NULL, free_vm_stack_cache); 830 #endif 831 832 scs_init(); 833 834 lockdep_init_task(&init_task); 835 uprobes_init(); 836 } 837 838 int __weak arch_dup_task_struct(struct task_struct *dst, 839 struct task_struct *src) 840 { 841 *dst = *src; 842 return 0; 843 } 844 845 void set_task_stack_end_magic(struct task_struct *tsk) 846 { 847 unsigned long *stackend; 848 849 stackend = end_of_stack(tsk); 850 *stackend = STACK_END_MAGIC; /* for overflow detection */ 851 } 852 853 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 854 { 855 struct task_struct *tsk; 856 unsigned long *stack; 857 struct vm_struct *stack_vm_area __maybe_unused; 858 int err; 859 860 if (node == NUMA_NO_NODE) 861 node = tsk_fork_get_node(orig); 862 tsk = alloc_task_struct_node(node); 863 if (!tsk) 864 return NULL; 865 866 stack = alloc_thread_stack_node(tsk, node); 867 if (!stack) 868 goto free_tsk; 869 870 if (memcg_charge_kernel_stack(tsk)) 871 goto free_stack; 872 873 stack_vm_area = task_stack_vm_area(tsk); 874 875 err = arch_dup_task_struct(tsk, orig); 876 877 /* 878 * arch_dup_task_struct() clobbers the stack-related fields. Make 879 * sure they're properly initialized before using any stack-related 880 * functions again. 881 */ 882 tsk->stack = stack; 883 #ifdef CONFIG_VMAP_STACK 884 tsk->stack_vm_area = stack_vm_area; 885 #endif 886 #ifdef CONFIG_THREAD_INFO_IN_TASK 887 refcount_set(&tsk->stack_refcount, 1); 888 #endif 889 890 if (err) 891 goto free_stack; 892 893 err = scs_prepare(tsk, node); 894 if (err) 895 goto free_stack; 896 897 #ifdef CONFIG_SECCOMP 898 /* 899 * We must handle setting up seccomp filters once we're under 900 * the sighand lock in case orig has changed between now and 901 * then. Until then, filter must be NULL to avoid messing up 902 * the usage counts on the error path calling free_task. 903 */ 904 tsk->seccomp.filter = NULL; 905 #endif 906 907 setup_thread_stack(tsk, orig); 908 clear_user_return_notifier(tsk); 909 clear_tsk_need_resched(tsk); 910 set_task_stack_end_magic(tsk); 911 clear_syscall_work_syscall_user_dispatch(tsk); 912 913 #ifdef CONFIG_STACKPROTECTOR 914 tsk->stack_canary = get_random_canary(); 915 #endif 916 if (orig->cpus_ptr == &orig->cpus_mask) 917 tsk->cpus_ptr = &tsk->cpus_mask; 918 919 /* 920 * One for the user space visible state that goes away when reaped. 921 * One for the scheduler. 922 */ 923 refcount_set(&tsk->rcu_users, 2); 924 /* One for the rcu users */ 925 refcount_set(&tsk->usage, 1); 926 #ifdef CONFIG_BLK_DEV_IO_TRACE 927 tsk->btrace_seq = 0; 928 #endif 929 tsk->splice_pipe = NULL; 930 tsk->task_frag.page = NULL; 931 tsk->wake_q.next = NULL; 932 tsk->pf_io_worker = NULL; 933 934 account_kernel_stack(tsk, 1); 935 936 kcov_task_init(tsk); 937 kmap_local_fork(tsk); 938 939 #ifdef CONFIG_FAULT_INJECTION 940 tsk->fail_nth = 0; 941 #endif 942 943 #ifdef CONFIG_BLK_CGROUP 944 tsk->throttle_queue = NULL; 945 tsk->use_memdelay = 0; 946 #endif 947 948 #ifdef CONFIG_MEMCG 949 tsk->active_memcg = NULL; 950 #endif 951 return tsk; 952 953 free_stack: 954 free_thread_stack(tsk); 955 free_tsk: 956 free_task_struct(tsk); 957 return NULL; 958 } 959 960 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 961 962 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 963 964 static int __init coredump_filter_setup(char *s) 965 { 966 default_dump_filter = 967 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 968 MMF_DUMP_FILTER_MASK; 969 return 1; 970 } 971 972 __setup("coredump_filter=", coredump_filter_setup); 973 974 #include <linux/init_task.h> 975 976 static void mm_init_aio(struct mm_struct *mm) 977 { 978 #ifdef CONFIG_AIO 979 spin_lock_init(&mm->ioctx_lock); 980 mm->ioctx_table = NULL; 981 #endif 982 } 983 984 static __always_inline void mm_clear_owner(struct mm_struct *mm, 985 struct task_struct *p) 986 { 987 #ifdef CONFIG_MEMCG 988 if (mm->owner == p) 989 WRITE_ONCE(mm->owner, NULL); 990 #endif 991 } 992 993 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 994 { 995 #ifdef CONFIG_MEMCG 996 mm->owner = p; 997 #endif 998 } 999 1000 static void mm_init_pasid(struct mm_struct *mm) 1001 { 1002 #ifdef CONFIG_IOMMU_SUPPORT 1003 mm->pasid = INIT_PASID; 1004 #endif 1005 } 1006 1007 static void mm_init_uprobes_state(struct mm_struct *mm) 1008 { 1009 #ifdef CONFIG_UPROBES 1010 mm->uprobes_state.xol_area = NULL; 1011 #endif 1012 } 1013 1014 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1015 struct user_namespace *user_ns) 1016 { 1017 mm->mmap = NULL; 1018 mm->mm_rb = RB_ROOT; 1019 mm->vmacache_seqnum = 0; 1020 atomic_set(&mm->mm_users, 1); 1021 atomic_set(&mm->mm_count, 1); 1022 seqcount_init(&mm->write_protect_seq); 1023 mmap_init_lock(mm); 1024 INIT_LIST_HEAD(&mm->mmlist); 1025 mm->core_state = NULL; 1026 mm_pgtables_bytes_init(mm); 1027 mm->map_count = 0; 1028 mm->locked_vm = 0; 1029 atomic_set(&mm->has_pinned, 0); 1030 atomic64_set(&mm->pinned_vm, 0); 1031 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1032 spin_lock_init(&mm->page_table_lock); 1033 spin_lock_init(&mm->arg_lock); 1034 mm_init_cpumask(mm); 1035 mm_init_aio(mm); 1036 mm_init_owner(mm, p); 1037 mm_init_pasid(mm); 1038 RCU_INIT_POINTER(mm->exe_file, NULL); 1039 mmu_notifier_subscriptions_init(mm); 1040 init_tlb_flush_pending(mm); 1041 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1042 mm->pmd_huge_pte = NULL; 1043 #endif 1044 mm_init_uprobes_state(mm); 1045 1046 if (current->mm) { 1047 mm->flags = current->mm->flags & MMF_INIT_MASK; 1048 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1049 } else { 1050 mm->flags = default_dump_filter; 1051 mm->def_flags = 0; 1052 } 1053 1054 if (mm_alloc_pgd(mm)) 1055 goto fail_nopgd; 1056 1057 if (init_new_context(p, mm)) 1058 goto fail_nocontext; 1059 1060 mm->user_ns = get_user_ns(user_ns); 1061 return mm; 1062 1063 fail_nocontext: 1064 mm_free_pgd(mm); 1065 fail_nopgd: 1066 free_mm(mm); 1067 return NULL; 1068 } 1069 1070 /* 1071 * Allocate and initialize an mm_struct. 1072 */ 1073 struct mm_struct *mm_alloc(void) 1074 { 1075 struct mm_struct *mm; 1076 1077 mm = allocate_mm(); 1078 if (!mm) 1079 return NULL; 1080 1081 memset(mm, 0, sizeof(*mm)); 1082 return mm_init(mm, current, current_user_ns()); 1083 } 1084 1085 static inline void __mmput(struct mm_struct *mm) 1086 { 1087 VM_BUG_ON(atomic_read(&mm->mm_users)); 1088 1089 uprobe_clear_state(mm); 1090 exit_aio(mm); 1091 ksm_exit(mm); 1092 khugepaged_exit(mm); /* must run before exit_mmap */ 1093 exit_mmap(mm); 1094 mm_put_huge_zero_page(mm); 1095 set_mm_exe_file(mm, NULL); 1096 if (!list_empty(&mm->mmlist)) { 1097 spin_lock(&mmlist_lock); 1098 list_del(&mm->mmlist); 1099 spin_unlock(&mmlist_lock); 1100 } 1101 if (mm->binfmt) 1102 module_put(mm->binfmt->module); 1103 mmdrop(mm); 1104 } 1105 1106 /* 1107 * Decrement the use count and release all resources for an mm. 1108 */ 1109 void mmput(struct mm_struct *mm) 1110 { 1111 might_sleep(); 1112 1113 if (atomic_dec_and_test(&mm->mm_users)) 1114 __mmput(mm); 1115 } 1116 EXPORT_SYMBOL_GPL(mmput); 1117 1118 #ifdef CONFIG_MMU 1119 static void mmput_async_fn(struct work_struct *work) 1120 { 1121 struct mm_struct *mm = container_of(work, struct mm_struct, 1122 async_put_work); 1123 1124 __mmput(mm); 1125 } 1126 1127 void mmput_async(struct mm_struct *mm) 1128 { 1129 if (atomic_dec_and_test(&mm->mm_users)) { 1130 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1131 schedule_work(&mm->async_put_work); 1132 } 1133 } 1134 #endif 1135 1136 /** 1137 * set_mm_exe_file - change a reference to the mm's executable file 1138 * 1139 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1140 * 1141 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1142 * invocations: in mmput() nobody alive left, in execve task is single 1143 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1144 * mm->exe_file, but does so without using set_mm_exe_file() in order 1145 * to do avoid the need for any locks. 1146 */ 1147 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1148 { 1149 struct file *old_exe_file; 1150 1151 /* 1152 * It is safe to dereference the exe_file without RCU as 1153 * this function is only called if nobody else can access 1154 * this mm -- see comment above for justification. 1155 */ 1156 old_exe_file = rcu_dereference_raw(mm->exe_file); 1157 1158 if (new_exe_file) 1159 get_file(new_exe_file); 1160 rcu_assign_pointer(mm->exe_file, new_exe_file); 1161 if (old_exe_file) 1162 fput(old_exe_file); 1163 } 1164 1165 /** 1166 * get_mm_exe_file - acquire a reference to the mm's executable file 1167 * 1168 * Returns %NULL if mm has no associated executable file. 1169 * User must release file via fput(). 1170 */ 1171 struct file *get_mm_exe_file(struct mm_struct *mm) 1172 { 1173 struct file *exe_file; 1174 1175 rcu_read_lock(); 1176 exe_file = rcu_dereference(mm->exe_file); 1177 if (exe_file && !get_file_rcu(exe_file)) 1178 exe_file = NULL; 1179 rcu_read_unlock(); 1180 return exe_file; 1181 } 1182 EXPORT_SYMBOL(get_mm_exe_file); 1183 1184 /** 1185 * get_task_exe_file - acquire a reference to the task's executable file 1186 * 1187 * Returns %NULL if task's mm (if any) has no associated executable file or 1188 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1189 * User must release file via fput(). 1190 */ 1191 struct file *get_task_exe_file(struct task_struct *task) 1192 { 1193 struct file *exe_file = NULL; 1194 struct mm_struct *mm; 1195 1196 task_lock(task); 1197 mm = task->mm; 1198 if (mm) { 1199 if (!(task->flags & PF_KTHREAD)) 1200 exe_file = get_mm_exe_file(mm); 1201 } 1202 task_unlock(task); 1203 return exe_file; 1204 } 1205 EXPORT_SYMBOL(get_task_exe_file); 1206 1207 /** 1208 * get_task_mm - acquire a reference to the task's mm 1209 * 1210 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1211 * this kernel workthread has transiently adopted a user mm with use_mm, 1212 * to do its AIO) is not set and if so returns a reference to it, after 1213 * bumping up the use count. User must release the mm via mmput() 1214 * after use. Typically used by /proc and ptrace. 1215 */ 1216 struct mm_struct *get_task_mm(struct task_struct *task) 1217 { 1218 struct mm_struct *mm; 1219 1220 task_lock(task); 1221 mm = task->mm; 1222 if (mm) { 1223 if (task->flags & PF_KTHREAD) 1224 mm = NULL; 1225 else 1226 mmget(mm); 1227 } 1228 task_unlock(task); 1229 return mm; 1230 } 1231 EXPORT_SYMBOL_GPL(get_task_mm); 1232 1233 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1234 { 1235 struct mm_struct *mm; 1236 int err; 1237 1238 err = down_read_killable(&task->signal->exec_update_lock); 1239 if (err) 1240 return ERR_PTR(err); 1241 1242 mm = get_task_mm(task); 1243 if (mm && mm != current->mm && 1244 !ptrace_may_access(task, mode)) { 1245 mmput(mm); 1246 mm = ERR_PTR(-EACCES); 1247 } 1248 up_read(&task->signal->exec_update_lock); 1249 1250 return mm; 1251 } 1252 1253 static void complete_vfork_done(struct task_struct *tsk) 1254 { 1255 struct completion *vfork; 1256 1257 task_lock(tsk); 1258 vfork = tsk->vfork_done; 1259 if (likely(vfork)) { 1260 tsk->vfork_done = NULL; 1261 complete(vfork); 1262 } 1263 task_unlock(tsk); 1264 } 1265 1266 static int wait_for_vfork_done(struct task_struct *child, 1267 struct completion *vfork) 1268 { 1269 int killed; 1270 1271 freezer_do_not_count(); 1272 cgroup_enter_frozen(); 1273 killed = wait_for_completion_killable(vfork); 1274 cgroup_leave_frozen(false); 1275 freezer_count(); 1276 1277 if (killed) { 1278 task_lock(child); 1279 child->vfork_done = NULL; 1280 task_unlock(child); 1281 } 1282 1283 put_task_struct(child); 1284 return killed; 1285 } 1286 1287 /* Please note the differences between mmput and mm_release. 1288 * mmput is called whenever we stop holding onto a mm_struct, 1289 * error success whatever. 1290 * 1291 * mm_release is called after a mm_struct has been removed 1292 * from the current process. 1293 * 1294 * This difference is important for error handling, when we 1295 * only half set up a mm_struct for a new process and need to restore 1296 * the old one. Because we mmput the new mm_struct before 1297 * restoring the old one. . . 1298 * Eric Biederman 10 January 1998 1299 */ 1300 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1301 { 1302 uprobe_free_utask(tsk); 1303 1304 /* Get rid of any cached register state */ 1305 deactivate_mm(tsk, mm); 1306 1307 /* 1308 * Signal userspace if we're not exiting with a core dump 1309 * because we want to leave the value intact for debugging 1310 * purposes. 1311 */ 1312 if (tsk->clear_child_tid) { 1313 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1314 atomic_read(&mm->mm_users) > 1) { 1315 /* 1316 * We don't check the error code - if userspace has 1317 * not set up a proper pointer then tough luck. 1318 */ 1319 put_user(0, tsk->clear_child_tid); 1320 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1321 1, NULL, NULL, 0, 0); 1322 } 1323 tsk->clear_child_tid = NULL; 1324 } 1325 1326 /* 1327 * All done, finally we can wake up parent and return this mm to him. 1328 * Also kthread_stop() uses this completion for synchronization. 1329 */ 1330 if (tsk->vfork_done) 1331 complete_vfork_done(tsk); 1332 } 1333 1334 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1335 { 1336 futex_exit_release(tsk); 1337 mm_release(tsk, mm); 1338 } 1339 1340 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1341 { 1342 futex_exec_release(tsk); 1343 mm_release(tsk, mm); 1344 } 1345 1346 /** 1347 * dup_mm() - duplicates an existing mm structure 1348 * @tsk: the task_struct with which the new mm will be associated. 1349 * @oldmm: the mm to duplicate. 1350 * 1351 * Allocates a new mm structure and duplicates the provided @oldmm structure 1352 * content into it. 1353 * 1354 * Return: the duplicated mm or NULL on failure. 1355 */ 1356 static struct mm_struct *dup_mm(struct task_struct *tsk, 1357 struct mm_struct *oldmm) 1358 { 1359 struct mm_struct *mm; 1360 int err; 1361 1362 mm = allocate_mm(); 1363 if (!mm) 1364 goto fail_nomem; 1365 1366 memcpy(mm, oldmm, sizeof(*mm)); 1367 1368 if (!mm_init(mm, tsk, mm->user_ns)) 1369 goto fail_nomem; 1370 1371 err = dup_mmap(mm, oldmm); 1372 if (err) 1373 goto free_pt; 1374 1375 mm->hiwater_rss = get_mm_rss(mm); 1376 mm->hiwater_vm = mm->total_vm; 1377 1378 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1379 goto free_pt; 1380 1381 return mm; 1382 1383 free_pt: 1384 /* don't put binfmt in mmput, we haven't got module yet */ 1385 mm->binfmt = NULL; 1386 mm_init_owner(mm, NULL); 1387 mmput(mm); 1388 1389 fail_nomem: 1390 return NULL; 1391 } 1392 1393 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1394 { 1395 struct mm_struct *mm, *oldmm; 1396 int retval; 1397 1398 tsk->min_flt = tsk->maj_flt = 0; 1399 tsk->nvcsw = tsk->nivcsw = 0; 1400 #ifdef CONFIG_DETECT_HUNG_TASK 1401 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1402 tsk->last_switch_time = 0; 1403 #endif 1404 1405 tsk->mm = NULL; 1406 tsk->active_mm = NULL; 1407 1408 /* 1409 * Are we cloning a kernel thread? 1410 * 1411 * We need to steal a active VM for that.. 1412 */ 1413 oldmm = current->mm; 1414 if (!oldmm) 1415 return 0; 1416 1417 /* initialize the new vmacache entries */ 1418 vmacache_flush(tsk); 1419 1420 if (clone_flags & CLONE_VM) { 1421 mmget(oldmm); 1422 mm = oldmm; 1423 goto good_mm; 1424 } 1425 1426 retval = -ENOMEM; 1427 mm = dup_mm(tsk, current->mm); 1428 if (!mm) 1429 goto fail_nomem; 1430 1431 good_mm: 1432 tsk->mm = mm; 1433 tsk->active_mm = mm; 1434 return 0; 1435 1436 fail_nomem: 1437 return retval; 1438 } 1439 1440 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1441 { 1442 struct fs_struct *fs = current->fs; 1443 if (clone_flags & CLONE_FS) { 1444 /* tsk->fs is already what we want */ 1445 spin_lock(&fs->lock); 1446 if (fs->in_exec) { 1447 spin_unlock(&fs->lock); 1448 return -EAGAIN; 1449 } 1450 fs->users++; 1451 spin_unlock(&fs->lock); 1452 return 0; 1453 } 1454 tsk->fs = copy_fs_struct(fs); 1455 if (!tsk->fs) 1456 return -ENOMEM; 1457 return 0; 1458 } 1459 1460 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1461 { 1462 struct files_struct *oldf, *newf; 1463 int error = 0; 1464 1465 /* 1466 * A background process may not have any files ... 1467 */ 1468 oldf = current->files; 1469 if (!oldf) 1470 goto out; 1471 1472 if (clone_flags & CLONE_FILES) { 1473 atomic_inc(&oldf->count); 1474 goto out; 1475 } 1476 1477 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1478 if (!newf) 1479 goto out; 1480 1481 tsk->files = newf; 1482 error = 0; 1483 out: 1484 return error; 1485 } 1486 1487 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1488 { 1489 #ifdef CONFIG_BLOCK 1490 struct io_context *ioc = current->io_context; 1491 struct io_context *new_ioc; 1492 1493 if (!ioc) 1494 return 0; 1495 /* 1496 * Share io context with parent, if CLONE_IO is set 1497 */ 1498 if (clone_flags & CLONE_IO) { 1499 ioc_task_link(ioc); 1500 tsk->io_context = ioc; 1501 } else if (ioprio_valid(ioc->ioprio)) { 1502 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1503 if (unlikely(!new_ioc)) 1504 return -ENOMEM; 1505 1506 new_ioc->ioprio = ioc->ioprio; 1507 put_io_context(new_ioc); 1508 } 1509 #endif 1510 return 0; 1511 } 1512 1513 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1514 { 1515 struct sighand_struct *sig; 1516 1517 if (clone_flags & CLONE_SIGHAND) { 1518 refcount_inc(¤t->sighand->count); 1519 return 0; 1520 } 1521 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1522 RCU_INIT_POINTER(tsk->sighand, sig); 1523 if (!sig) 1524 return -ENOMEM; 1525 1526 refcount_set(&sig->count, 1); 1527 spin_lock_irq(¤t->sighand->siglock); 1528 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1529 spin_unlock_irq(¤t->sighand->siglock); 1530 1531 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1532 if (clone_flags & CLONE_CLEAR_SIGHAND) 1533 flush_signal_handlers(tsk, 0); 1534 1535 return 0; 1536 } 1537 1538 void __cleanup_sighand(struct sighand_struct *sighand) 1539 { 1540 if (refcount_dec_and_test(&sighand->count)) { 1541 signalfd_cleanup(sighand); 1542 /* 1543 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1544 * without an RCU grace period, see __lock_task_sighand(). 1545 */ 1546 kmem_cache_free(sighand_cachep, sighand); 1547 } 1548 } 1549 1550 /* 1551 * Initialize POSIX timer handling for a thread group. 1552 */ 1553 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1554 { 1555 struct posix_cputimers *pct = &sig->posix_cputimers; 1556 unsigned long cpu_limit; 1557 1558 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1559 posix_cputimers_group_init(pct, cpu_limit); 1560 } 1561 1562 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1563 { 1564 struct signal_struct *sig; 1565 1566 if (clone_flags & CLONE_THREAD) 1567 return 0; 1568 1569 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1570 tsk->signal = sig; 1571 if (!sig) 1572 return -ENOMEM; 1573 1574 sig->nr_threads = 1; 1575 atomic_set(&sig->live, 1); 1576 refcount_set(&sig->sigcnt, 1); 1577 1578 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1579 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1580 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1581 1582 init_waitqueue_head(&sig->wait_chldexit); 1583 sig->curr_target = tsk; 1584 init_sigpending(&sig->shared_pending); 1585 INIT_HLIST_HEAD(&sig->multiprocess); 1586 seqlock_init(&sig->stats_lock); 1587 prev_cputime_init(&sig->prev_cputime); 1588 1589 #ifdef CONFIG_POSIX_TIMERS 1590 INIT_LIST_HEAD(&sig->posix_timers); 1591 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1592 sig->real_timer.function = it_real_fn; 1593 #endif 1594 1595 task_lock(current->group_leader); 1596 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1597 task_unlock(current->group_leader); 1598 1599 posix_cpu_timers_init_group(sig); 1600 1601 tty_audit_fork(sig); 1602 sched_autogroup_fork(sig); 1603 1604 sig->oom_score_adj = current->signal->oom_score_adj; 1605 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1606 1607 mutex_init(&sig->cred_guard_mutex); 1608 init_rwsem(&sig->exec_update_lock); 1609 1610 return 0; 1611 } 1612 1613 static void copy_seccomp(struct task_struct *p) 1614 { 1615 #ifdef CONFIG_SECCOMP 1616 /* 1617 * Must be called with sighand->lock held, which is common to 1618 * all threads in the group. Holding cred_guard_mutex is not 1619 * needed because this new task is not yet running and cannot 1620 * be racing exec. 1621 */ 1622 assert_spin_locked(¤t->sighand->siglock); 1623 1624 /* Ref-count the new filter user, and assign it. */ 1625 get_seccomp_filter(current); 1626 p->seccomp = current->seccomp; 1627 1628 /* 1629 * Explicitly enable no_new_privs here in case it got set 1630 * between the task_struct being duplicated and holding the 1631 * sighand lock. The seccomp state and nnp must be in sync. 1632 */ 1633 if (task_no_new_privs(current)) 1634 task_set_no_new_privs(p); 1635 1636 /* 1637 * If the parent gained a seccomp mode after copying thread 1638 * flags and between before we held the sighand lock, we have 1639 * to manually enable the seccomp thread flag here. 1640 */ 1641 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1642 set_task_syscall_work(p, SECCOMP); 1643 #endif 1644 } 1645 1646 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1647 { 1648 current->clear_child_tid = tidptr; 1649 1650 return task_pid_vnr(current); 1651 } 1652 1653 static void rt_mutex_init_task(struct task_struct *p) 1654 { 1655 raw_spin_lock_init(&p->pi_lock); 1656 #ifdef CONFIG_RT_MUTEXES 1657 p->pi_waiters = RB_ROOT_CACHED; 1658 p->pi_top_task = NULL; 1659 p->pi_blocked_on = NULL; 1660 #endif 1661 } 1662 1663 static inline void init_task_pid_links(struct task_struct *task) 1664 { 1665 enum pid_type type; 1666 1667 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1668 INIT_HLIST_NODE(&task->pid_links[type]); 1669 } 1670 1671 static inline void 1672 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1673 { 1674 if (type == PIDTYPE_PID) 1675 task->thread_pid = pid; 1676 else 1677 task->signal->pids[type] = pid; 1678 } 1679 1680 static inline void rcu_copy_process(struct task_struct *p) 1681 { 1682 #ifdef CONFIG_PREEMPT_RCU 1683 p->rcu_read_lock_nesting = 0; 1684 p->rcu_read_unlock_special.s = 0; 1685 p->rcu_blocked_node = NULL; 1686 INIT_LIST_HEAD(&p->rcu_node_entry); 1687 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1688 #ifdef CONFIG_TASKS_RCU 1689 p->rcu_tasks_holdout = false; 1690 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1691 p->rcu_tasks_idle_cpu = -1; 1692 #endif /* #ifdef CONFIG_TASKS_RCU */ 1693 #ifdef CONFIG_TASKS_TRACE_RCU 1694 p->trc_reader_nesting = 0; 1695 p->trc_reader_special.s = 0; 1696 INIT_LIST_HEAD(&p->trc_holdout_list); 1697 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1698 } 1699 1700 struct pid *pidfd_pid(const struct file *file) 1701 { 1702 if (file->f_op == &pidfd_fops) 1703 return file->private_data; 1704 1705 return ERR_PTR(-EBADF); 1706 } 1707 1708 static int pidfd_release(struct inode *inode, struct file *file) 1709 { 1710 struct pid *pid = file->private_data; 1711 1712 file->private_data = NULL; 1713 put_pid(pid); 1714 return 0; 1715 } 1716 1717 #ifdef CONFIG_PROC_FS 1718 /** 1719 * pidfd_show_fdinfo - print information about a pidfd 1720 * @m: proc fdinfo file 1721 * @f: file referencing a pidfd 1722 * 1723 * Pid: 1724 * This function will print the pid that a given pidfd refers to in the 1725 * pid namespace of the procfs instance. 1726 * If the pid namespace of the process is not a descendant of the pid 1727 * namespace of the procfs instance 0 will be shown as its pid. This is 1728 * similar to calling getppid() on a process whose parent is outside of 1729 * its pid namespace. 1730 * 1731 * NSpid: 1732 * If pid namespaces are supported then this function will also print 1733 * the pid of a given pidfd refers to for all descendant pid namespaces 1734 * starting from the current pid namespace of the instance, i.e. the 1735 * Pid field and the first entry in the NSpid field will be identical. 1736 * If the pid namespace of the process is not a descendant of the pid 1737 * namespace of the procfs instance 0 will be shown as its first NSpid 1738 * entry and no others will be shown. 1739 * Note that this differs from the Pid and NSpid fields in 1740 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1741 * the pid namespace of the procfs instance. The difference becomes 1742 * obvious when sending around a pidfd between pid namespaces from a 1743 * different branch of the tree, i.e. where no ancestoral relation is 1744 * present between the pid namespaces: 1745 * - create two new pid namespaces ns1 and ns2 in the initial pid 1746 * namespace (also take care to create new mount namespaces in the 1747 * new pid namespace and mount procfs) 1748 * - create a process with a pidfd in ns1 1749 * - send pidfd from ns1 to ns2 1750 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1751 * have exactly one entry, which is 0 1752 */ 1753 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1754 { 1755 struct pid *pid = f->private_data; 1756 struct pid_namespace *ns; 1757 pid_t nr = -1; 1758 1759 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1760 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1761 nr = pid_nr_ns(pid, ns); 1762 } 1763 1764 seq_put_decimal_ll(m, "Pid:\t", nr); 1765 1766 #ifdef CONFIG_PID_NS 1767 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1768 if (nr > 0) { 1769 int i; 1770 1771 /* If nr is non-zero it means that 'pid' is valid and that 1772 * ns, i.e. the pid namespace associated with the procfs 1773 * instance, is in the pid namespace hierarchy of pid. 1774 * Start at one below the already printed level. 1775 */ 1776 for (i = ns->level + 1; i <= pid->level; i++) 1777 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1778 } 1779 #endif 1780 seq_putc(m, '\n'); 1781 } 1782 #endif 1783 1784 /* 1785 * Poll support for process exit notification. 1786 */ 1787 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1788 { 1789 struct pid *pid = file->private_data; 1790 __poll_t poll_flags = 0; 1791 1792 poll_wait(file, &pid->wait_pidfd, pts); 1793 1794 /* 1795 * Inform pollers only when the whole thread group exits. 1796 * If the thread group leader exits before all other threads in the 1797 * group, then poll(2) should block, similar to the wait(2) family. 1798 */ 1799 if (thread_group_exited(pid)) 1800 poll_flags = EPOLLIN | EPOLLRDNORM; 1801 1802 return poll_flags; 1803 } 1804 1805 const struct file_operations pidfd_fops = { 1806 .release = pidfd_release, 1807 .poll = pidfd_poll, 1808 #ifdef CONFIG_PROC_FS 1809 .show_fdinfo = pidfd_show_fdinfo, 1810 #endif 1811 }; 1812 1813 static void __delayed_free_task(struct rcu_head *rhp) 1814 { 1815 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1816 1817 free_task(tsk); 1818 } 1819 1820 static __always_inline void delayed_free_task(struct task_struct *tsk) 1821 { 1822 if (IS_ENABLED(CONFIG_MEMCG)) 1823 call_rcu(&tsk->rcu, __delayed_free_task); 1824 else 1825 free_task(tsk); 1826 } 1827 1828 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1829 { 1830 /* Skip if kernel thread */ 1831 if (!tsk->mm) 1832 return; 1833 1834 /* Skip if spawning a thread or using vfork */ 1835 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1836 return; 1837 1838 /* We need to synchronize with __set_oom_adj */ 1839 mutex_lock(&oom_adj_mutex); 1840 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1841 /* Update the values in case they were changed after copy_signal */ 1842 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1843 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1844 mutex_unlock(&oom_adj_mutex); 1845 } 1846 1847 /* 1848 * This creates a new process as a copy of the old one, 1849 * but does not actually start it yet. 1850 * 1851 * It copies the registers, and all the appropriate 1852 * parts of the process environment (as per the clone 1853 * flags). The actual kick-off is left to the caller. 1854 */ 1855 static __latent_entropy struct task_struct *copy_process( 1856 struct pid *pid, 1857 int trace, 1858 int node, 1859 struct kernel_clone_args *args) 1860 { 1861 int pidfd = -1, retval; 1862 struct task_struct *p; 1863 struct multiprocess_signals delayed; 1864 struct file *pidfile = NULL; 1865 u64 clone_flags = args->flags; 1866 struct nsproxy *nsp = current->nsproxy; 1867 1868 /* 1869 * Don't allow sharing the root directory with processes in a different 1870 * namespace 1871 */ 1872 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1873 return ERR_PTR(-EINVAL); 1874 1875 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1876 return ERR_PTR(-EINVAL); 1877 1878 /* 1879 * Thread groups must share signals as well, and detached threads 1880 * can only be started up within the thread group. 1881 */ 1882 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1883 return ERR_PTR(-EINVAL); 1884 1885 /* 1886 * Shared signal handlers imply shared VM. By way of the above, 1887 * thread groups also imply shared VM. Blocking this case allows 1888 * for various simplifications in other code. 1889 */ 1890 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1891 return ERR_PTR(-EINVAL); 1892 1893 /* 1894 * Siblings of global init remain as zombies on exit since they are 1895 * not reaped by their parent (swapper). To solve this and to avoid 1896 * multi-rooted process trees, prevent global and container-inits 1897 * from creating siblings. 1898 */ 1899 if ((clone_flags & CLONE_PARENT) && 1900 current->signal->flags & SIGNAL_UNKILLABLE) 1901 return ERR_PTR(-EINVAL); 1902 1903 /* 1904 * If the new process will be in a different pid or user namespace 1905 * do not allow it to share a thread group with the forking task. 1906 */ 1907 if (clone_flags & CLONE_THREAD) { 1908 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1909 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1910 return ERR_PTR(-EINVAL); 1911 } 1912 1913 /* 1914 * If the new process will be in a different time namespace 1915 * do not allow it to share VM or a thread group with the forking task. 1916 */ 1917 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1918 if (nsp->time_ns != nsp->time_ns_for_children) 1919 return ERR_PTR(-EINVAL); 1920 } 1921 1922 if (clone_flags & CLONE_PIDFD) { 1923 /* 1924 * - CLONE_DETACHED is blocked so that we can potentially 1925 * reuse it later for CLONE_PIDFD. 1926 * - CLONE_THREAD is blocked until someone really needs it. 1927 */ 1928 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1929 return ERR_PTR(-EINVAL); 1930 } 1931 1932 /* 1933 * Force any signals received before this point to be delivered 1934 * before the fork happens. Collect up signals sent to multiple 1935 * processes that happen during the fork and delay them so that 1936 * they appear to happen after the fork. 1937 */ 1938 sigemptyset(&delayed.signal); 1939 INIT_HLIST_NODE(&delayed.node); 1940 1941 spin_lock_irq(¤t->sighand->siglock); 1942 if (!(clone_flags & CLONE_THREAD)) 1943 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1944 recalc_sigpending(); 1945 spin_unlock_irq(¤t->sighand->siglock); 1946 retval = -ERESTARTNOINTR; 1947 if (task_sigpending(current)) 1948 goto fork_out; 1949 1950 retval = -ENOMEM; 1951 p = dup_task_struct(current, node); 1952 if (!p) 1953 goto fork_out; 1954 if (args->io_thread) { 1955 /* 1956 * Mark us an IO worker, and block any signal that isn't 1957 * fatal or STOP 1958 */ 1959 p->flags |= PF_IO_WORKER; 1960 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 1961 } 1962 1963 /* 1964 * This _must_ happen before we call free_task(), i.e. before we jump 1965 * to any of the bad_fork_* labels. This is to avoid freeing 1966 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1967 * kernel threads (PF_KTHREAD). 1968 */ 1969 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1970 /* 1971 * Clear TID on mm_release()? 1972 */ 1973 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1974 1975 ftrace_graph_init_task(p); 1976 1977 rt_mutex_init_task(p); 1978 1979 lockdep_assert_irqs_enabled(); 1980 #ifdef CONFIG_PROVE_LOCKING 1981 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1982 #endif 1983 retval = -EAGAIN; 1984 if (atomic_read(&p->real_cred->user->processes) >= 1985 task_rlimit(p, RLIMIT_NPROC)) { 1986 if (p->real_cred->user != INIT_USER && 1987 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1988 goto bad_fork_free; 1989 } 1990 current->flags &= ~PF_NPROC_EXCEEDED; 1991 1992 retval = copy_creds(p, clone_flags); 1993 if (retval < 0) 1994 goto bad_fork_free; 1995 1996 /* 1997 * If multiple threads are within copy_process(), then this check 1998 * triggers too late. This doesn't hurt, the check is only there 1999 * to stop root fork bombs. 2000 */ 2001 retval = -EAGAIN; 2002 if (data_race(nr_threads >= max_threads)) 2003 goto bad_fork_cleanup_count; 2004 2005 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2006 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 2007 p->flags |= PF_FORKNOEXEC; 2008 INIT_LIST_HEAD(&p->children); 2009 INIT_LIST_HEAD(&p->sibling); 2010 rcu_copy_process(p); 2011 p->vfork_done = NULL; 2012 spin_lock_init(&p->alloc_lock); 2013 2014 init_sigpending(&p->pending); 2015 p->sigqueue_cache = NULL; 2016 2017 p->utime = p->stime = p->gtime = 0; 2018 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2019 p->utimescaled = p->stimescaled = 0; 2020 #endif 2021 prev_cputime_init(&p->prev_cputime); 2022 2023 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2024 seqcount_init(&p->vtime.seqcount); 2025 p->vtime.starttime = 0; 2026 p->vtime.state = VTIME_INACTIVE; 2027 #endif 2028 2029 #ifdef CONFIG_IO_URING 2030 p->io_uring = NULL; 2031 #endif 2032 2033 #if defined(SPLIT_RSS_COUNTING) 2034 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2035 #endif 2036 2037 p->default_timer_slack_ns = current->timer_slack_ns; 2038 2039 #ifdef CONFIG_PSI 2040 p->psi_flags = 0; 2041 #endif 2042 2043 task_io_accounting_init(&p->ioac); 2044 acct_clear_integrals(p); 2045 2046 posix_cputimers_init(&p->posix_cputimers); 2047 2048 p->io_context = NULL; 2049 audit_set_context(p, NULL); 2050 cgroup_fork(p); 2051 #ifdef CONFIG_NUMA 2052 p->mempolicy = mpol_dup(p->mempolicy); 2053 if (IS_ERR(p->mempolicy)) { 2054 retval = PTR_ERR(p->mempolicy); 2055 p->mempolicy = NULL; 2056 goto bad_fork_cleanup_threadgroup_lock; 2057 } 2058 #endif 2059 #ifdef CONFIG_CPUSETS 2060 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2061 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2062 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2063 #endif 2064 #ifdef CONFIG_TRACE_IRQFLAGS 2065 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2066 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2067 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2068 p->softirqs_enabled = 1; 2069 p->softirq_context = 0; 2070 #endif 2071 2072 p->pagefault_disabled = 0; 2073 2074 #ifdef CONFIG_LOCKDEP 2075 lockdep_init_task(p); 2076 #endif 2077 2078 #ifdef CONFIG_DEBUG_MUTEXES 2079 p->blocked_on = NULL; /* not blocked yet */ 2080 #endif 2081 #ifdef CONFIG_BCACHE 2082 p->sequential_io = 0; 2083 p->sequential_io_avg = 0; 2084 #endif 2085 #ifdef CONFIG_BPF_SYSCALL 2086 RCU_INIT_POINTER(p->bpf_storage, NULL); 2087 #endif 2088 2089 /* Perform scheduler related setup. Assign this task to a CPU. */ 2090 retval = sched_fork(clone_flags, p); 2091 if (retval) 2092 goto bad_fork_cleanup_policy; 2093 2094 retval = perf_event_init_task(p, clone_flags); 2095 if (retval) 2096 goto bad_fork_cleanup_policy; 2097 retval = audit_alloc(p); 2098 if (retval) 2099 goto bad_fork_cleanup_perf; 2100 /* copy all the process information */ 2101 shm_init_task(p); 2102 retval = security_task_alloc(p, clone_flags); 2103 if (retval) 2104 goto bad_fork_cleanup_audit; 2105 retval = copy_semundo(clone_flags, p); 2106 if (retval) 2107 goto bad_fork_cleanup_security; 2108 retval = copy_files(clone_flags, p); 2109 if (retval) 2110 goto bad_fork_cleanup_semundo; 2111 retval = copy_fs(clone_flags, p); 2112 if (retval) 2113 goto bad_fork_cleanup_files; 2114 retval = copy_sighand(clone_flags, p); 2115 if (retval) 2116 goto bad_fork_cleanup_fs; 2117 retval = copy_signal(clone_flags, p); 2118 if (retval) 2119 goto bad_fork_cleanup_sighand; 2120 retval = copy_mm(clone_flags, p); 2121 if (retval) 2122 goto bad_fork_cleanup_signal; 2123 retval = copy_namespaces(clone_flags, p); 2124 if (retval) 2125 goto bad_fork_cleanup_mm; 2126 retval = copy_io(clone_flags, p); 2127 if (retval) 2128 goto bad_fork_cleanup_namespaces; 2129 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2130 if (retval) 2131 goto bad_fork_cleanup_io; 2132 2133 stackleak_task_init(p); 2134 2135 if (pid != &init_struct_pid) { 2136 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2137 args->set_tid_size); 2138 if (IS_ERR(pid)) { 2139 retval = PTR_ERR(pid); 2140 goto bad_fork_cleanup_thread; 2141 } 2142 } 2143 2144 /* 2145 * This has to happen after we've potentially unshared the file 2146 * descriptor table (so that the pidfd doesn't leak into the child 2147 * if the fd table isn't shared). 2148 */ 2149 if (clone_flags & CLONE_PIDFD) { 2150 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2151 if (retval < 0) 2152 goto bad_fork_free_pid; 2153 2154 pidfd = retval; 2155 2156 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2157 O_RDWR | O_CLOEXEC); 2158 if (IS_ERR(pidfile)) { 2159 put_unused_fd(pidfd); 2160 retval = PTR_ERR(pidfile); 2161 goto bad_fork_free_pid; 2162 } 2163 get_pid(pid); /* held by pidfile now */ 2164 2165 retval = put_user(pidfd, args->pidfd); 2166 if (retval) 2167 goto bad_fork_put_pidfd; 2168 } 2169 2170 #ifdef CONFIG_BLOCK 2171 p->plug = NULL; 2172 #endif 2173 futex_init_task(p); 2174 2175 /* 2176 * sigaltstack should be cleared when sharing the same VM 2177 */ 2178 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2179 sas_ss_reset(p); 2180 2181 /* 2182 * Syscall tracing and stepping should be turned off in the 2183 * child regardless of CLONE_PTRACE. 2184 */ 2185 user_disable_single_step(p); 2186 clear_task_syscall_work(p, SYSCALL_TRACE); 2187 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2188 clear_task_syscall_work(p, SYSCALL_EMU); 2189 #endif 2190 clear_tsk_latency_tracing(p); 2191 2192 /* ok, now we should be set up.. */ 2193 p->pid = pid_nr(pid); 2194 if (clone_flags & CLONE_THREAD) { 2195 p->group_leader = current->group_leader; 2196 p->tgid = current->tgid; 2197 } else { 2198 p->group_leader = p; 2199 p->tgid = p->pid; 2200 } 2201 2202 p->nr_dirtied = 0; 2203 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2204 p->dirty_paused_when = 0; 2205 2206 p->pdeath_signal = 0; 2207 INIT_LIST_HEAD(&p->thread_group); 2208 p->task_works = NULL; 2209 2210 #ifdef CONFIG_KRETPROBES 2211 p->kretprobe_instances.first = NULL; 2212 #endif 2213 2214 /* 2215 * Ensure that the cgroup subsystem policies allow the new process to be 2216 * forked. It should be noted that the new process's css_set can be changed 2217 * between here and cgroup_post_fork() if an organisation operation is in 2218 * progress. 2219 */ 2220 retval = cgroup_can_fork(p, args); 2221 if (retval) 2222 goto bad_fork_put_pidfd; 2223 2224 /* 2225 * From this point on we must avoid any synchronous user-space 2226 * communication until we take the tasklist-lock. In particular, we do 2227 * not want user-space to be able to predict the process start-time by 2228 * stalling fork(2) after we recorded the start_time but before it is 2229 * visible to the system. 2230 */ 2231 2232 p->start_time = ktime_get_ns(); 2233 p->start_boottime = ktime_get_boottime_ns(); 2234 2235 /* 2236 * Make it visible to the rest of the system, but dont wake it up yet. 2237 * Need tasklist lock for parent etc handling! 2238 */ 2239 write_lock_irq(&tasklist_lock); 2240 2241 /* CLONE_PARENT re-uses the old parent */ 2242 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2243 p->real_parent = current->real_parent; 2244 p->parent_exec_id = current->parent_exec_id; 2245 if (clone_flags & CLONE_THREAD) 2246 p->exit_signal = -1; 2247 else 2248 p->exit_signal = current->group_leader->exit_signal; 2249 } else { 2250 p->real_parent = current; 2251 p->parent_exec_id = current->self_exec_id; 2252 p->exit_signal = args->exit_signal; 2253 } 2254 2255 klp_copy_process(p); 2256 2257 spin_lock(¤t->sighand->siglock); 2258 2259 /* 2260 * Copy seccomp details explicitly here, in case they were changed 2261 * before holding sighand lock. 2262 */ 2263 copy_seccomp(p); 2264 2265 rseq_fork(p, clone_flags); 2266 2267 /* Don't start children in a dying pid namespace */ 2268 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2269 retval = -ENOMEM; 2270 goto bad_fork_cancel_cgroup; 2271 } 2272 2273 /* Let kill terminate clone/fork in the middle */ 2274 if (fatal_signal_pending(current)) { 2275 retval = -EINTR; 2276 goto bad_fork_cancel_cgroup; 2277 } 2278 2279 /* past the last point of failure */ 2280 if (pidfile) 2281 fd_install(pidfd, pidfile); 2282 2283 init_task_pid_links(p); 2284 if (likely(p->pid)) { 2285 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2286 2287 init_task_pid(p, PIDTYPE_PID, pid); 2288 if (thread_group_leader(p)) { 2289 init_task_pid(p, PIDTYPE_TGID, pid); 2290 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2291 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2292 2293 if (is_child_reaper(pid)) { 2294 ns_of_pid(pid)->child_reaper = p; 2295 p->signal->flags |= SIGNAL_UNKILLABLE; 2296 } 2297 p->signal->shared_pending.signal = delayed.signal; 2298 p->signal->tty = tty_kref_get(current->signal->tty); 2299 /* 2300 * Inherit has_child_subreaper flag under the same 2301 * tasklist_lock with adding child to the process tree 2302 * for propagate_has_child_subreaper optimization. 2303 */ 2304 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2305 p->real_parent->signal->is_child_subreaper; 2306 list_add_tail(&p->sibling, &p->real_parent->children); 2307 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2308 attach_pid(p, PIDTYPE_TGID); 2309 attach_pid(p, PIDTYPE_PGID); 2310 attach_pid(p, PIDTYPE_SID); 2311 __this_cpu_inc(process_counts); 2312 } else { 2313 current->signal->nr_threads++; 2314 atomic_inc(¤t->signal->live); 2315 refcount_inc(¤t->signal->sigcnt); 2316 task_join_group_stop(p); 2317 list_add_tail_rcu(&p->thread_group, 2318 &p->group_leader->thread_group); 2319 list_add_tail_rcu(&p->thread_node, 2320 &p->signal->thread_head); 2321 } 2322 attach_pid(p, PIDTYPE_PID); 2323 nr_threads++; 2324 } 2325 total_forks++; 2326 hlist_del_init(&delayed.node); 2327 spin_unlock(¤t->sighand->siglock); 2328 syscall_tracepoint_update(p); 2329 write_unlock_irq(&tasklist_lock); 2330 2331 proc_fork_connector(p); 2332 sched_post_fork(p); 2333 cgroup_post_fork(p, args); 2334 perf_event_fork(p); 2335 2336 trace_task_newtask(p, clone_flags); 2337 uprobe_copy_process(p, clone_flags); 2338 2339 copy_oom_score_adj(clone_flags, p); 2340 2341 return p; 2342 2343 bad_fork_cancel_cgroup: 2344 spin_unlock(¤t->sighand->siglock); 2345 write_unlock_irq(&tasklist_lock); 2346 cgroup_cancel_fork(p, args); 2347 bad_fork_put_pidfd: 2348 if (clone_flags & CLONE_PIDFD) { 2349 fput(pidfile); 2350 put_unused_fd(pidfd); 2351 } 2352 bad_fork_free_pid: 2353 if (pid != &init_struct_pid) 2354 free_pid(pid); 2355 bad_fork_cleanup_thread: 2356 exit_thread(p); 2357 bad_fork_cleanup_io: 2358 if (p->io_context) 2359 exit_io_context(p); 2360 bad_fork_cleanup_namespaces: 2361 exit_task_namespaces(p); 2362 bad_fork_cleanup_mm: 2363 if (p->mm) { 2364 mm_clear_owner(p->mm, p); 2365 mmput(p->mm); 2366 } 2367 bad_fork_cleanup_signal: 2368 if (!(clone_flags & CLONE_THREAD)) 2369 free_signal_struct(p->signal); 2370 bad_fork_cleanup_sighand: 2371 __cleanup_sighand(p->sighand); 2372 bad_fork_cleanup_fs: 2373 exit_fs(p); /* blocking */ 2374 bad_fork_cleanup_files: 2375 exit_files(p); /* blocking */ 2376 bad_fork_cleanup_semundo: 2377 exit_sem(p); 2378 bad_fork_cleanup_security: 2379 security_task_free(p); 2380 bad_fork_cleanup_audit: 2381 audit_free(p); 2382 bad_fork_cleanup_perf: 2383 perf_event_free_task(p); 2384 bad_fork_cleanup_policy: 2385 lockdep_free_task(p); 2386 #ifdef CONFIG_NUMA 2387 mpol_put(p->mempolicy); 2388 bad_fork_cleanup_threadgroup_lock: 2389 #endif 2390 delayacct_tsk_free(p); 2391 bad_fork_cleanup_count: 2392 atomic_dec(&p->cred->user->processes); 2393 exit_creds(p); 2394 bad_fork_free: 2395 p->state = TASK_DEAD; 2396 put_task_stack(p); 2397 delayed_free_task(p); 2398 fork_out: 2399 spin_lock_irq(¤t->sighand->siglock); 2400 hlist_del_init(&delayed.node); 2401 spin_unlock_irq(¤t->sighand->siglock); 2402 return ERR_PTR(retval); 2403 } 2404 2405 static inline void init_idle_pids(struct task_struct *idle) 2406 { 2407 enum pid_type type; 2408 2409 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2410 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2411 init_task_pid(idle, type, &init_struct_pid); 2412 } 2413 } 2414 2415 struct task_struct *fork_idle(int cpu) 2416 { 2417 struct task_struct *task; 2418 struct kernel_clone_args args = { 2419 .flags = CLONE_VM, 2420 }; 2421 2422 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2423 if (!IS_ERR(task)) { 2424 init_idle_pids(task); 2425 init_idle(task, cpu); 2426 } 2427 2428 return task; 2429 } 2430 2431 struct mm_struct *copy_init_mm(void) 2432 { 2433 return dup_mm(NULL, &init_mm); 2434 } 2435 2436 /* 2437 * This is like kernel_clone(), but shaved down and tailored to just 2438 * creating io_uring workers. It returns a created task, or an error pointer. 2439 * The returned task is inactive, and the caller must fire it up through 2440 * wake_up_new_task(p). All signals are blocked in the created task. 2441 */ 2442 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2443 { 2444 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2445 CLONE_IO; 2446 struct kernel_clone_args args = { 2447 .flags = ((lower_32_bits(flags) | CLONE_VM | 2448 CLONE_UNTRACED) & ~CSIGNAL), 2449 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2450 .stack = (unsigned long)fn, 2451 .stack_size = (unsigned long)arg, 2452 .io_thread = 1, 2453 }; 2454 2455 return copy_process(NULL, 0, node, &args); 2456 } 2457 2458 /* 2459 * Ok, this is the main fork-routine. 2460 * 2461 * It copies the process, and if successful kick-starts 2462 * it and waits for it to finish using the VM if required. 2463 * 2464 * args->exit_signal is expected to be checked for sanity by the caller. 2465 */ 2466 pid_t kernel_clone(struct kernel_clone_args *args) 2467 { 2468 u64 clone_flags = args->flags; 2469 struct completion vfork; 2470 struct pid *pid; 2471 struct task_struct *p; 2472 int trace = 0; 2473 pid_t nr; 2474 2475 /* 2476 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2477 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2478 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2479 * field in struct clone_args and it still doesn't make sense to have 2480 * them both point at the same memory location. Performing this check 2481 * here has the advantage that we don't need to have a separate helper 2482 * to check for legacy clone(). 2483 */ 2484 if ((args->flags & CLONE_PIDFD) && 2485 (args->flags & CLONE_PARENT_SETTID) && 2486 (args->pidfd == args->parent_tid)) 2487 return -EINVAL; 2488 2489 /* 2490 * Determine whether and which event to report to ptracer. When 2491 * called from kernel_thread or CLONE_UNTRACED is explicitly 2492 * requested, no event is reported; otherwise, report if the event 2493 * for the type of forking is enabled. 2494 */ 2495 if (!(clone_flags & CLONE_UNTRACED)) { 2496 if (clone_flags & CLONE_VFORK) 2497 trace = PTRACE_EVENT_VFORK; 2498 else if (args->exit_signal != SIGCHLD) 2499 trace = PTRACE_EVENT_CLONE; 2500 else 2501 trace = PTRACE_EVENT_FORK; 2502 2503 if (likely(!ptrace_event_enabled(current, trace))) 2504 trace = 0; 2505 } 2506 2507 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2508 add_latent_entropy(); 2509 2510 if (IS_ERR(p)) 2511 return PTR_ERR(p); 2512 2513 /* 2514 * Do this prior waking up the new thread - the thread pointer 2515 * might get invalid after that point, if the thread exits quickly. 2516 */ 2517 trace_sched_process_fork(current, p); 2518 2519 pid = get_task_pid(p, PIDTYPE_PID); 2520 nr = pid_vnr(pid); 2521 2522 if (clone_flags & CLONE_PARENT_SETTID) 2523 put_user(nr, args->parent_tid); 2524 2525 if (clone_flags & CLONE_VFORK) { 2526 p->vfork_done = &vfork; 2527 init_completion(&vfork); 2528 get_task_struct(p); 2529 } 2530 2531 wake_up_new_task(p); 2532 2533 /* forking complete and child started to run, tell ptracer */ 2534 if (unlikely(trace)) 2535 ptrace_event_pid(trace, pid); 2536 2537 if (clone_flags & CLONE_VFORK) { 2538 if (!wait_for_vfork_done(p, &vfork)) 2539 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2540 } 2541 2542 put_pid(pid); 2543 return nr; 2544 } 2545 2546 /* 2547 * Create a kernel thread. 2548 */ 2549 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2550 { 2551 struct kernel_clone_args args = { 2552 .flags = ((lower_32_bits(flags) | CLONE_VM | 2553 CLONE_UNTRACED) & ~CSIGNAL), 2554 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2555 .stack = (unsigned long)fn, 2556 .stack_size = (unsigned long)arg, 2557 }; 2558 2559 return kernel_clone(&args); 2560 } 2561 2562 #ifdef __ARCH_WANT_SYS_FORK 2563 SYSCALL_DEFINE0(fork) 2564 { 2565 #ifdef CONFIG_MMU 2566 struct kernel_clone_args args = { 2567 .exit_signal = SIGCHLD, 2568 }; 2569 2570 return kernel_clone(&args); 2571 #else 2572 /* can not support in nommu mode */ 2573 return -EINVAL; 2574 #endif 2575 } 2576 #endif 2577 2578 #ifdef __ARCH_WANT_SYS_VFORK 2579 SYSCALL_DEFINE0(vfork) 2580 { 2581 struct kernel_clone_args args = { 2582 .flags = CLONE_VFORK | CLONE_VM, 2583 .exit_signal = SIGCHLD, 2584 }; 2585 2586 return kernel_clone(&args); 2587 } 2588 #endif 2589 2590 #ifdef __ARCH_WANT_SYS_CLONE 2591 #ifdef CONFIG_CLONE_BACKWARDS 2592 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2593 int __user *, parent_tidptr, 2594 unsigned long, tls, 2595 int __user *, child_tidptr) 2596 #elif defined(CONFIG_CLONE_BACKWARDS2) 2597 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2598 int __user *, parent_tidptr, 2599 int __user *, child_tidptr, 2600 unsigned long, tls) 2601 #elif defined(CONFIG_CLONE_BACKWARDS3) 2602 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2603 int, stack_size, 2604 int __user *, parent_tidptr, 2605 int __user *, child_tidptr, 2606 unsigned long, tls) 2607 #else 2608 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2609 int __user *, parent_tidptr, 2610 int __user *, child_tidptr, 2611 unsigned long, tls) 2612 #endif 2613 { 2614 struct kernel_clone_args args = { 2615 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2616 .pidfd = parent_tidptr, 2617 .child_tid = child_tidptr, 2618 .parent_tid = parent_tidptr, 2619 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2620 .stack = newsp, 2621 .tls = tls, 2622 }; 2623 2624 return kernel_clone(&args); 2625 } 2626 #endif 2627 2628 #ifdef __ARCH_WANT_SYS_CLONE3 2629 2630 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2631 struct clone_args __user *uargs, 2632 size_t usize) 2633 { 2634 int err; 2635 struct clone_args args; 2636 pid_t *kset_tid = kargs->set_tid; 2637 2638 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2639 CLONE_ARGS_SIZE_VER0); 2640 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2641 CLONE_ARGS_SIZE_VER1); 2642 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2643 CLONE_ARGS_SIZE_VER2); 2644 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2645 2646 if (unlikely(usize > PAGE_SIZE)) 2647 return -E2BIG; 2648 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2649 return -EINVAL; 2650 2651 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2652 if (err) 2653 return err; 2654 2655 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2656 return -EINVAL; 2657 2658 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2659 return -EINVAL; 2660 2661 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2662 return -EINVAL; 2663 2664 /* 2665 * Verify that higher 32bits of exit_signal are unset and that 2666 * it is a valid signal 2667 */ 2668 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2669 !valid_signal(args.exit_signal))) 2670 return -EINVAL; 2671 2672 if ((args.flags & CLONE_INTO_CGROUP) && 2673 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2674 return -EINVAL; 2675 2676 *kargs = (struct kernel_clone_args){ 2677 .flags = args.flags, 2678 .pidfd = u64_to_user_ptr(args.pidfd), 2679 .child_tid = u64_to_user_ptr(args.child_tid), 2680 .parent_tid = u64_to_user_ptr(args.parent_tid), 2681 .exit_signal = args.exit_signal, 2682 .stack = args.stack, 2683 .stack_size = args.stack_size, 2684 .tls = args.tls, 2685 .set_tid_size = args.set_tid_size, 2686 .cgroup = args.cgroup, 2687 }; 2688 2689 if (args.set_tid && 2690 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2691 (kargs->set_tid_size * sizeof(pid_t)))) 2692 return -EFAULT; 2693 2694 kargs->set_tid = kset_tid; 2695 2696 return 0; 2697 } 2698 2699 /** 2700 * clone3_stack_valid - check and prepare stack 2701 * @kargs: kernel clone args 2702 * 2703 * Verify that the stack arguments userspace gave us are sane. 2704 * In addition, set the stack direction for userspace since it's easy for us to 2705 * determine. 2706 */ 2707 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2708 { 2709 if (kargs->stack == 0) { 2710 if (kargs->stack_size > 0) 2711 return false; 2712 } else { 2713 if (kargs->stack_size == 0) 2714 return false; 2715 2716 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2717 return false; 2718 2719 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2720 kargs->stack += kargs->stack_size; 2721 #endif 2722 } 2723 2724 return true; 2725 } 2726 2727 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2728 { 2729 /* Verify that no unknown flags are passed along. */ 2730 if (kargs->flags & 2731 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2732 return false; 2733 2734 /* 2735 * - make the CLONE_DETACHED bit reuseable for clone3 2736 * - make the CSIGNAL bits reuseable for clone3 2737 */ 2738 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2739 return false; 2740 2741 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2742 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2743 return false; 2744 2745 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2746 kargs->exit_signal) 2747 return false; 2748 2749 if (!clone3_stack_valid(kargs)) 2750 return false; 2751 2752 return true; 2753 } 2754 2755 /** 2756 * clone3 - create a new process with specific properties 2757 * @uargs: argument structure 2758 * @size: size of @uargs 2759 * 2760 * clone3() is the extensible successor to clone()/clone2(). 2761 * It takes a struct as argument that is versioned by its size. 2762 * 2763 * Return: On success, a positive PID for the child process. 2764 * On error, a negative errno number. 2765 */ 2766 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2767 { 2768 int err; 2769 2770 struct kernel_clone_args kargs; 2771 pid_t set_tid[MAX_PID_NS_LEVEL]; 2772 2773 kargs.set_tid = set_tid; 2774 2775 err = copy_clone_args_from_user(&kargs, uargs, size); 2776 if (err) 2777 return err; 2778 2779 if (!clone3_args_valid(&kargs)) 2780 return -EINVAL; 2781 2782 return kernel_clone(&kargs); 2783 } 2784 #endif 2785 2786 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2787 { 2788 struct task_struct *leader, *parent, *child; 2789 int res; 2790 2791 read_lock(&tasklist_lock); 2792 leader = top = top->group_leader; 2793 down: 2794 for_each_thread(leader, parent) { 2795 list_for_each_entry(child, &parent->children, sibling) { 2796 res = visitor(child, data); 2797 if (res) { 2798 if (res < 0) 2799 goto out; 2800 leader = child; 2801 goto down; 2802 } 2803 up: 2804 ; 2805 } 2806 } 2807 2808 if (leader != top) { 2809 child = leader; 2810 parent = child->real_parent; 2811 leader = parent->group_leader; 2812 goto up; 2813 } 2814 out: 2815 read_unlock(&tasklist_lock); 2816 } 2817 2818 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2819 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2820 #endif 2821 2822 static void sighand_ctor(void *data) 2823 { 2824 struct sighand_struct *sighand = data; 2825 2826 spin_lock_init(&sighand->siglock); 2827 init_waitqueue_head(&sighand->signalfd_wqh); 2828 } 2829 2830 void __init proc_caches_init(void) 2831 { 2832 unsigned int mm_size; 2833 2834 sighand_cachep = kmem_cache_create("sighand_cache", 2835 sizeof(struct sighand_struct), 0, 2836 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2837 SLAB_ACCOUNT, sighand_ctor); 2838 signal_cachep = kmem_cache_create("signal_cache", 2839 sizeof(struct signal_struct), 0, 2840 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2841 NULL); 2842 files_cachep = kmem_cache_create("files_cache", 2843 sizeof(struct files_struct), 0, 2844 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2845 NULL); 2846 fs_cachep = kmem_cache_create("fs_cache", 2847 sizeof(struct fs_struct), 0, 2848 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2849 NULL); 2850 2851 /* 2852 * The mm_cpumask is located at the end of mm_struct, and is 2853 * dynamically sized based on the maximum CPU number this system 2854 * can have, taking hotplug into account (nr_cpu_ids). 2855 */ 2856 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2857 2858 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2859 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2860 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2861 offsetof(struct mm_struct, saved_auxv), 2862 sizeof_field(struct mm_struct, saved_auxv), 2863 NULL); 2864 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2865 mmap_init(); 2866 nsproxy_cache_init(); 2867 } 2868 2869 /* 2870 * Check constraints on flags passed to the unshare system call. 2871 */ 2872 static int check_unshare_flags(unsigned long unshare_flags) 2873 { 2874 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2875 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2876 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2877 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2878 CLONE_NEWTIME)) 2879 return -EINVAL; 2880 /* 2881 * Not implemented, but pretend it works if there is nothing 2882 * to unshare. Note that unsharing the address space or the 2883 * signal handlers also need to unshare the signal queues (aka 2884 * CLONE_THREAD). 2885 */ 2886 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2887 if (!thread_group_empty(current)) 2888 return -EINVAL; 2889 } 2890 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2891 if (refcount_read(¤t->sighand->count) > 1) 2892 return -EINVAL; 2893 } 2894 if (unshare_flags & CLONE_VM) { 2895 if (!current_is_single_threaded()) 2896 return -EINVAL; 2897 } 2898 2899 return 0; 2900 } 2901 2902 /* 2903 * Unshare the filesystem structure if it is being shared 2904 */ 2905 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2906 { 2907 struct fs_struct *fs = current->fs; 2908 2909 if (!(unshare_flags & CLONE_FS) || !fs) 2910 return 0; 2911 2912 /* don't need lock here; in the worst case we'll do useless copy */ 2913 if (fs->users == 1) 2914 return 0; 2915 2916 *new_fsp = copy_fs_struct(fs); 2917 if (!*new_fsp) 2918 return -ENOMEM; 2919 2920 return 0; 2921 } 2922 2923 /* 2924 * Unshare file descriptor table if it is being shared 2925 */ 2926 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2927 struct files_struct **new_fdp) 2928 { 2929 struct files_struct *fd = current->files; 2930 int error = 0; 2931 2932 if ((unshare_flags & CLONE_FILES) && 2933 (fd && atomic_read(&fd->count) > 1)) { 2934 *new_fdp = dup_fd(fd, max_fds, &error); 2935 if (!*new_fdp) 2936 return error; 2937 } 2938 2939 return 0; 2940 } 2941 2942 /* 2943 * unshare allows a process to 'unshare' part of the process 2944 * context which was originally shared using clone. copy_* 2945 * functions used by kernel_clone() cannot be used here directly 2946 * because they modify an inactive task_struct that is being 2947 * constructed. Here we are modifying the current, active, 2948 * task_struct. 2949 */ 2950 int ksys_unshare(unsigned long unshare_flags) 2951 { 2952 struct fs_struct *fs, *new_fs = NULL; 2953 struct files_struct *fd, *new_fd = NULL; 2954 struct cred *new_cred = NULL; 2955 struct nsproxy *new_nsproxy = NULL; 2956 int do_sysvsem = 0; 2957 int err; 2958 2959 /* 2960 * If unsharing a user namespace must also unshare the thread group 2961 * and unshare the filesystem root and working directories. 2962 */ 2963 if (unshare_flags & CLONE_NEWUSER) 2964 unshare_flags |= CLONE_THREAD | CLONE_FS; 2965 /* 2966 * If unsharing vm, must also unshare signal handlers. 2967 */ 2968 if (unshare_flags & CLONE_VM) 2969 unshare_flags |= CLONE_SIGHAND; 2970 /* 2971 * If unsharing a signal handlers, must also unshare the signal queues. 2972 */ 2973 if (unshare_flags & CLONE_SIGHAND) 2974 unshare_flags |= CLONE_THREAD; 2975 /* 2976 * If unsharing namespace, must also unshare filesystem information. 2977 */ 2978 if (unshare_flags & CLONE_NEWNS) 2979 unshare_flags |= CLONE_FS; 2980 2981 err = check_unshare_flags(unshare_flags); 2982 if (err) 2983 goto bad_unshare_out; 2984 /* 2985 * CLONE_NEWIPC must also detach from the undolist: after switching 2986 * to a new ipc namespace, the semaphore arrays from the old 2987 * namespace are unreachable. 2988 */ 2989 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2990 do_sysvsem = 1; 2991 err = unshare_fs(unshare_flags, &new_fs); 2992 if (err) 2993 goto bad_unshare_out; 2994 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2995 if (err) 2996 goto bad_unshare_cleanup_fs; 2997 err = unshare_userns(unshare_flags, &new_cred); 2998 if (err) 2999 goto bad_unshare_cleanup_fd; 3000 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3001 new_cred, new_fs); 3002 if (err) 3003 goto bad_unshare_cleanup_cred; 3004 3005 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3006 if (do_sysvsem) { 3007 /* 3008 * CLONE_SYSVSEM is equivalent to sys_exit(). 3009 */ 3010 exit_sem(current); 3011 } 3012 if (unshare_flags & CLONE_NEWIPC) { 3013 /* Orphan segments in old ns (see sem above). */ 3014 exit_shm(current); 3015 shm_init_task(current); 3016 } 3017 3018 if (new_nsproxy) 3019 switch_task_namespaces(current, new_nsproxy); 3020 3021 task_lock(current); 3022 3023 if (new_fs) { 3024 fs = current->fs; 3025 spin_lock(&fs->lock); 3026 current->fs = new_fs; 3027 if (--fs->users) 3028 new_fs = NULL; 3029 else 3030 new_fs = fs; 3031 spin_unlock(&fs->lock); 3032 } 3033 3034 if (new_fd) { 3035 fd = current->files; 3036 current->files = new_fd; 3037 new_fd = fd; 3038 } 3039 3040 task_unlock(current); 3041 3042 if (new_cred) { 3043 /* Install the new user namespace */ 3044 commit_creds(new_cred); 3045 new_cred = NULL; 3046 } 3047 } 3048 3049 perf_event_namespaces(current); 3050 3051 bad_unshare_cleanup_cred: 3052 if (new_cred) 3053 put_cred(new_cred); 3054 bad_unshare_cleanup_fd: 3055 if (new_fd) 3056 put_files_struct(new_fd); 3057 3058 bad_unshare_cleanup_fs: 3059 if (new_fs) 3060 free_fs_struct(new_fs); 3061 3062 bad_unshare_out: 3063 return err; 3064 } 3065 3066 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3067 { 3068 return ksys_unshare(unshare_flags); 3069 } 3070 3071 /* 3072 * Helper to unshare the files of the current task. 3073 * We don't want to expose copy_files internals to 3074 * the exec layer of the kernel. 3075 */ 3076 3077 int unshare_files(void) 3078 { 3079 struct task_struct *task = current; 3080 struct files_struct *old, *copy = NULL; 3081 int error; 3082 3083 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3084 if (error || !copy) 3085 return error; 3086 3087 old = task->files; 3088 task_lock(task); 3089 task->files = copy; 3090 task_unlock(task); 3091 put_files_struct(old); 3092 return 0; 3093 } 3094 3095 int sysctl_max_threads(struct ctl_table *table, int write, 3096 void *buffer, size_t *lenp, loff_t *ppos) 3097 { 3098 struct ctl_table t; 3099 int ret; 3100 int threads = max_threads; 3101 int min = 1; 3102 int max = MAX_THREADS; 3103 3104 t = *table; 3105 t.data = &threads; 3106 t.extra1 = &min; 3107 t.extra2 = &max; 3108 3109 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3110 if (ret || !write) 3111 return ret; 3112 3113 max_threads = threads; 3114 3115 return 0; 3116 } 3117