xref: /linux/kernel/fork.c (revision c54ea4918c2b7722d7242ea53271356501988a9b)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 #include <linux/khugepaged.h>
70 
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77 
78 #include <trace/events/sched.h>
79 
80 /*
81  * Protected counters by write_lock_irq(&tasklist_lock)
82  */
83 unsigned long total_forks;	/* Handle normal Linux uptimes. */
84 int nr_threads; 		/* The idle threads do not count.. */
85 
86 int max_threads;		/* tunable limit on nr_threads */
87 
88 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
89 
90 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
91 
92 #ifdef CONFIG_PROVE_RCU
93 int lockdep_tasklist_lock_is_held(void)
94 {
95 	return lockdep_is_held(&tasklist_lock);
96 }
97 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
98 #endif /* #ifdef CONFIG_PROVE_RCU */
99 
100 int nr_processes(void)
101 {
102 	int cpu;
103 	int total = 0;
104 
105 	for_each_possible_cpu(cpu)
106 		total += per_cpu(process_counts, cpu);
107 
108 	return total;
109 }
110 
111 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
112 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
113 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
114 static struct kmem_cache *task_struct_cachep;
115 #endif
116 
117 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
118 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
119 {
120 #ifdef CONFIG_DEBUG_STACK_USAGE
121 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
122 #else
123 	gfp_t mask = GFP_KERNEL;
124 #endif
125 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
126 }
127 
128 static inline void free_thread_info(struct thread_info *ti)
129 {
130 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
131 }
132 #endif
133 
134 /* SLAB cache for signal_struct structures (tsk->signal) */
135 static struct kmem_cache *signal_cachep;
136 
137 /* SLAB cache for sighand_struct structures (tsk->sighand) */
138 struct kmem_cache *sighand_cachep;
139 
140 /* SLAB cache for files_struct structures (tsk->files) */
141 struct kmem_cache *files_cachep;
142 
143 /* SLAB cache for fs_struct structures (tsk->fs) */
144 struct kmem_cache *fs_cachep;
145 
146 /* SLAB cache for vm_area_struct structures */
147 struct kmem_cache *vm_area_cachep;
148 
149 /* SLAB cache for mm_struct structures (tsk->mm) */
150 static struct kmem_cache *mm_cachep;
151 
152 static void account_kernel_stack(struct thread_info *ti, int account)
153 {
154 	struct zone *zone = page_zone(virt_to_page(ti));
155 
156 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
157 }
158 
159 void free_task(struct task_struct *tsk)
160 {
161 	prop_local_destroy_single(&tsk->dirties);
162 	account_kernel_stack(tsk->stack, -1);
163 	free_thread_info(tsk->stack);
164 	rt_mutex_debug_task_free(tsk);
165 	ftrace_graph_exit_task(tsk);
166 	free_task_struct(tsk);
167 }
168 EXPORT_SYMBOL(free_task);
169 
170 static inline void free_signal_struct(struct signal_struct *sig)
171 {
172 	taskstats_tgid_free(sig);
173 	sched_autogroup_exit(sig);
174 	kmem_cache_free(signal_cachep, sig);
175 }
176 
177 static inline void put_signal_struct(struct signal_struct *sig)
178 {
179 	if (atomic_dec_and_test(&sig->sigcnt))
180 		free_signal_struct(sig);
181 }
182 
183 void __put_task_struct(struct task_struct *tsk)
184 {
185 	WARN_ON(!tsk->exit_state);
186 	WARN_ON(atomic_read(&tsk->usage));
187 	WARN_ON(tsk == current);
188 
189 	exit_creds(tsk);
190 	delayacct_tsk_free(tsk);
191 	put_signal_struct(tsk->signal);
192 
193 	if (!profile_handoff_task(tsk))
194 		free_task(tsk);
195 }
196 EXPORT_SYMBOL_GPL(__put_task_struct);
197 
198 /*
199  * macro override instead of weak attribute alias, to workaround
200  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
201  */
202 #ifndef arch_task_cache_init
203 #define arch_task_cache_init()
204 #endif
205 
206 void __init fork_init(unsigned long mempages)
207 {
208 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
209 #ifndef ARCH_MIN_TASKALIGN
210 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
211 #endif
212 	/* create a slab on which task_structs can be allocated */
213 	task_struct_cachep =
214 		kmem_cache_create("task_struct", sizeof(struct task_struct),
215 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
216 #endif
217 
218 	/* do the arch specific task caches init */
219 	arch_task_cache_init();
220 
221 	/*
222 	 * The default maximum number of threads is set to a safe
223 	 * value: the thread structures can take up at most half
224 	 * of memory.
225 	 */
226 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
227 
228 	/*
229 	 * we need to allow at least 20 threads to boot a system
230 	 */
231 	if(max_threads < 20)
232 		max_threads = 20;
233 
234 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
235 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
236 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
237 		init_task.signal->rlim[RLIMIT_NPROC];
238 }
239 
240 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
241 					       struct task_struct *src)
242 {
243 	*dst = *src;
244 	return 0;
245 }
246 
247 static struct task_struct *dup_task_struct(struct task_struct *orig)
248 {
249 	struct task_struct *tsk;
250 	struct thread_info *ti;
251 	unsigned long *stackend;
252 
253 	int err;
254 
255 	prepare_to_copy(orig);
256 
257 	tsk = alloc_task_struct();
258 	if (!tsk)
259 		return NULL;
260 
261 	ti = alloc_thread_info(tsk);
262 	if (!ti) {
263 		free_task_struct(tsk);
264 		return NULL;
265 	}
266 
267  	err = arch_dup_task_struct(tsk, orig);
268 	if (err)
269 		goto out;
270 
271 	tsk->stack = ti;
272 
273 	err = prop_local_init_single(&tsk->dirties);
274 	if (err)
275 		goto out;
276 
277 	setup_thread_stack(tsk, orig);
278 	clear_user_return_notifier(tsk);
279 	clear_tsk_need_resched(tsk);
280 	stackend = end_of_stack(tsk);
281 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
282 
283 #ifdef CONFIG_CC_STACKPROTECTOR
284 	tsk->stack_canary = get_random_int();
285 #endif
286 
287 	/* One for us, one for whoever does the "release_task()" (usually parent) */
288 	atomic_set(&tsk->usage,2);
289 	atomic_set(&tsk->fs_excl, 0);
290 #ifdef CONFIG_BLK_DEV_IO_TRACE
291 	tsk->btrace_seq = 0;
292 #endif
293 	tsk->splice_pipe = NULL;
294 
295 	account_kernel_stack(ti, 1);
296 
297 	return tsk;
298 
299 out:
300 	free_thread_info(ti);
301 	free_task_struct(tsk);
302 	return NULL;
303 }
304 
305 #ifdef CONFIG_MMU
306 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
307 {
308 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
309 	struct rb_node **rb_link, *rb_parent;
310 	int retval;
311 	unsigned long charge;
312 	struct mempolicy *pol;
313 
314 	down_write(&oldmm->mmap_sem);
315 	flush_cache_dup_mm(oldmm);
316 	/*
317 	 * Not linked in yet - no deadlock potential:
318 	 */
319 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
320 
321 	mm->locked_vm = 0;
322 	mm->mmap = NULL;
323 	mm->mmap_cache = NULL;
324 	mm->free_area_cache = oldmm->mmap_base;
325 	mm->cached_hole_size = ~0UL;
326 	mm->map_count = 0;
327 	cpumask_clear(mm_cpumask(mm));
328 	mm->mm_rb = RB_ROOT;
329 	rb_link = &mm->mm_rb.rb_node;
330 	rb_parent = NULL;
331 	pprev = &mm->mmap;
332 	retval = ksm_fork(mm, oldmm);
333 	if (retval)
334 		goto out;
335 	retval = khugepaged_fork(mm, oldmm);
336 	if (retval)
337 		goto out;
338 
339 	prev = NULL;
340 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
341 		struct file *file;
342 
343 		if (mpnt->vm_flags & VM_DONTCOPY) {
344 			long pages = vma_pages(mpnt);
345 			mm->total_vm -= pages;
346 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
347 								-pages);
348 			continue;
349 		}
350 		charge = 0;
351 		if (mpnt->vm_flags & VM_ACCOUNT) {
352 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
353 			if (security_vm_enough_memory(len))
354 				goto fail_nomem;
355 			charge = len;
356 		}
357 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
358 		if (!tmp)
359 			goto fail_nomem;
360 		*tmp = *mpnt;
361 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
362 		pol = mpol_dup(vma_policy(mpnt));
363 		retval = PTR_ERR(pol);
364 		if (IS_ERR(pol))
365 			goto fail_nomem_policy;
366 		vma_set_policy(tmp, pol);
367 		tmp->vm_mm = mm;
368 		if (anon_vma_fork(tmp, mpnt))
369 			goto fail_nomem_anon_vma_fork;
370 		tmp->vm_flags &= ~VM_LOCKED;
371 		tmp->vm_next = tmp->vm_prev = NULL;
372 		file = tmp->vm_file;
373 		if (file) {
374 			struct inode *inode = file->f_path.dentry->d_inode;
375 			struct address_space *mapping = file->f_mapping;
376 
377 			get_file(file);
378 			if (tmp->vm_flags & VM_DENYWRITE)
379 				atomic_dec(&inode->i_writecount);
380 			spin_lock(&mapping->i_mmap_lock);
381 			if (tmp->vm_flags & VM_SHARED)
382 				mapping->i_mmap_writable++;
383 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
384 			flush_dcache_mmap_lock(mapping);
385 			/* insert tmp into the share list, just after mpnt */
386 			vma_prio_tree_add(tmp, mpnt);
387 			flush_dcache_mmap_unlock(mapping);
388 			spin_unlock(&mapping->i_mmap_lock);
389 		}
390 
391 		/*
392 		 * Clear hugetlb-related page reserves for children. This only
393 		 * affects MAP_PRIVATE mappings. Faults generated by the child
394 		 * are not guaranteed to succeed, even if read-only
395 		 */
396 		if (is_vm_hugetlb_page(tmp))
397 			reset_vma_resv_huge_pages(tmp);
398 
399 		/*
400 		 * Link in the new vma and copy the page table entries.
401 		 */
402 		*pprev = tmp;
403 		pprev = &tmp->vm_next;
404 		tmp->vm_prev = prev;
405 		prev = tmp;
406 
407 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
408 		rb_link = &tmp->vm_rb.rb_right;
409 		rb_parent = &tmp->vm_rb;
410 
411 		mm->map_count++;
412 		retval = copy_page_range(mm, oldmm, mpnt);
413 
414 		if (tmp->vm_ops && tmp->vm_ops->open)
415 			tmp->vm_ops->open(tmp);
416 
417 		if (retval)
418 			goto out;
419 	}
420 	/* a new mm has just been created */
421 	arch_dup_mmap(oldmm, mm);
422 	retval = 0;
423 out:
424 	up_write(&mm->mmap_sem);
425 	flush_tlb_mm(oldmm);
426 	up_write(&oldmm->mmap_sem);
427 	return retval;
428 fail_nomem_anon_vma_fork:
429 	mpol_put(pol);
430 fail_nomem_policy:
431 	kmem_cache_free(vm_area_cachep, tmp);
432 fail_nomem:
433 	retval = -ENOMEM;
434 	vm_unacct_memory(charge);
435 	goto out;
436 }
437 
438 static inline int mm_alloc_pgd(struct mm_struct * mm)
439 {
440 	mm->pgd = pgd_alloc(mm);
441 	if (unlikely(!mm->pgd))
442 		return -ENOMEM;
443 	return 0;
444 }
445 
446 static inline void mm_free_pgd(struct mm_struct * mm)
447 {
448 	pgd_free(mm, mm->pgd);
449 }
450 #else
451 #define dup_mmap(mm, oldmm)	(0)
452 #define mm_alloc_pgd(mm)	(0)
453 #define mm_free_pgd(mm)
454 #endif /* CONFIG_MMU */
455 
456 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
457 
458 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
459 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
460 
461 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
462 
463 static int __init coredump_filter_setup(char *s)
464 {
465 	default_dump_filter =
466 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
467 		MMF_DUMP_FILTER_MASK;
468 	return 1;
469 }
470 
471 __setup("coredump_filter=", coredump_filter_setup);
472 
473 #include <linux/init_task.h>
474 
475 static void mm_init_aio(struct mm_struct *mm)
476 {
477 #ifdef CONFIG_AIO
478 	spin_lock_init(&mm->ioctx_lock);
479 	INIT_HLIST_HEAD(&mm->ioctx_list);
480 #endif
481 }
482 
483 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
484 {
485 	atomic_set(&mm->mm_users, 1);
486 	atomic_set(&mm->mm_count, 1);
487 	init_rwsem(&mm->mmap_sem);
488 	INIT_LIST_HEAD(&mm->mmlist);
489 	mm->flags = (current->mm) ?
490 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
491 	mm->core_state = NULL;
492 	mm->nr_ptes = 0;
493 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
494 	spin_lock_init(&mm->page_table_lock);
495 	mm->free_area_cache = TASK_UNMAPPED_BASE;
496 	mm->cached_hole_size = ~0UL;
497 	mm_init_aio(mm);
498 	mm_init_owner(mm, p);
499 	atomic_set(&mm->oom_disable_count, 0);
500 
501 	if (likely(!mm_alloc_pgd(mm))) {
502 		mm->def_flags = 0;
503 		mmu_notifier_mm_init(mm);
504 		return mm;
505 	}
506 
507 	free_mm(mm);
508 	return NULL;
509 }
510 
511 /*
512  * Allocate and initialize an mm_struct.
513  */
514 struct mm_struct * mm_alloc(void)
515 {
516 	struct mm_struct * mm;
517 
518 	mm = allocate_mm();
519 	if (mm) {
520 		memset(mm, 0, sizeof(*mm));
521 		mm = mm_init(mm, current);
522 	}
523 	return mm;
524 }
525 
526 /*
527  * Called when the last reference to the mm
528  * is dropped: either by a lazy thread or by
529  * mmput. Free the page directory and the mm.
530  */
531 void __mmdrop(struct mm_struct *mm)
532 {
533 	BUG_ON(mm == &init_mm);
534 	mm_free_pgd(mm);
535 	destroy_context(mm);
536 	mmu_notifier_mm_destroy(mm);
537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
538 	VM_BUG_ON(mm->pmd_huge_pte);
539 #endif
540 	free_mm(mm);
541 }
542 EXPORT_SYMBOL_GPL(__mmdrop);
543 
544 /*
545  * Decrement the use count and release all resources for an mm.
546  */
547 void mmput(struct mm_struct *mm)
548 {
549 	might_sleep();
550 
551 	if (atomic_dec_and_test(&mm->mm_users)) {
552 		exit_aio(mm);
553 		ksm_exit(mm);
554 		khugepaged_exit(mm); /* must run before exit_mmap */
555 		exit_mmap(mm);
556 		set_mm_exe_file(mm, NULL);
557 		if (!list_empty(&mm->mmlist)) {
558 			spin_lock(&mmlist_lock);
559 			list_del(&mm->mmlist);
560 			spin_unlock(&mmlist_lock);
561 		}
562 		put_swap_token(mm);
563 		if (mm->binfmt)
564 			module_put(mm->binfmt->module);
565 		mmdrop(mm);
566 	}
567 }
568 EXPORT_SYMBOL_GPL(mmput);
569 
570 /**
571  * get_task_mm - acquire a reference to the task's mm
572  *
573  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
574  * this kernel workthread has transiently adopted a user mm with use_mm,
575  * to do its AIO) is not set and if so returns a reference to it, after
576  * bumping up the use count.  User must release the mm via mmput()
577  * after use.  Typically used by /proc and ptrace.
578  */
579 struct mm_struct *get_task_mm(struct task_struct *task)
580 {
581 	struct mm_struct *mm;
582 
583 	task_lock(task);
584 	mm = task->mm;
585 	if (mm) {
586 		if (task->flags & PF_KTHREAD)
587 			mm = NULL;
588 		else
589 			atomic_inc(&mm->mm_users);
590 	}
591 	task_unlock(task);
592 	return mm;
593 }
594 EXPORT_SYMBOL_GPL(get_task_mm);
595 
596 /* Please note the differences between mmput and mm_release.
597  * mmput is called whenever we stop holding onto a mm_struct,
598  * error success whatever.
599  *
600  * mm_release is called after a mm_struct has been removed
601  * from the current process.
602  *
603  * This difference is important for error handling, when we
604  * only half set up a mm_struct for a new process and need to restore
605  * the old one.  Because we mmput the new mm_struct before
606  * restoring the old one. . .
607  * Eric Biederman 10 January 1998
608  */
609 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
610 {
611 	struct completion *vfork_done = tsk->vfork_done;
612 
613 	/* Get rid of any futexes when releasing the mm */
614 #ifdef CONFIG_FUTEX
615 	if (unlikely(tsk->robust_list)) {
616 		exit_robust_list(tsk);
617 		tsk->robust_list = NULL;
618 	}
619 #ifdef CONFIG_COMPAT
620 	if (unlikely(tsk->compat_robust_list)) {
621 		compat_exit_robust_list(tsk);
622 		tsk->compat_robust_list = NULL;
623 	}
624 #endif
625 	if (unlikely(!list_empty(&tsk->pi_state_list)))
626 		exit_pi_state_list(tsk);
627 #endif
628 
629 	/* Get rid of any cached register state */
630 	deactivate_mm(tsk, mm);
631 
632 	/* notify parent sleeping on vfork() */
633 	if (vfork_done) {
634 		tsk->vfork_done = NULL;
635 		complete(vfork_done);
636 	}
637 
638 	/*
639 	 * If we're exiting normally, clear a user-space tid field if
640 	 * requested.  We leave this alone when dying by signal, to leave
641 	 * the value intact in a core dump, and to save the unnecessary
642 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
643 	 */
644 	if (tsk->clear_child_tid) {
645 		if (!(tsk->flags & PF_SIGNALED) &&
646 		    atomic_read(&mm->mm_users) > 1) {
647 			/*
648 			 * We don't check the error code - if userspace has
649 			 * not set up a proper pointer then tough luck.
650 			 */
651 			put_user(0, tsk->clear_child_tid);
652 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
653 					1, NULL, NULL, 0);
654 		}
655 		tsk->clear_child_tid = NULL;
656 	}
657 }
658 
659 /*
660  * Allocate a new mm structure and copy contents from the
661  * mm structure of the passed in task structure.
662  */
663 struct mm_struct *dup_mm(struct task_struct *tsk)
664 {
665 	struct mm_struct *mm, *oldmm = current->mm;
666 	int err;
667 
668 	if (!oldmm)
669 		return NULL;
670 
671 	mm = allocate_mm();
672 	if (!mm)
673 		goto fail_nomem;
674 
675 	memcpy(mm, oldmm, sizeof(*mm));
676 
677 	/* Initializing for Swap token stuff */
678 	mm->token_priority = 0;
679 	mm->last_interval = 0;
680 
681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
682 	mm->pmd_huge_pte = NULL;
683 #endif
684 
685 	if (!mm_init(mm, tsk))
686 		goto fail_nomem;
687 
688 	if (init_new_context(tsk, mm))
689 		goto fail_nocontext;
690 
691 	dup_mm_exe_file(oldmm, mm);
692 
693 	err = dup_mmap(mm, oldmm);
694 	if (err)
695 		goto free_pt;
696 
697 	mm->hiwater_rss = get_mm_rss(mm);
698 	mm->hiwater_vm = mm->total_vm;
699 
700 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
701 		goto free_pt;
702 
703 	return mm;
704 
705 free_pt:
706 	/* don't put binfmt in mmput, we haven't got module yet */
707 	mm->binfmt = NULL;
708 	mmput(mm);
709 
710 fail_nomem:
711 	return NULL;
712 
713 fail_nocontext:
714 	/*
715 	 * If init_new_context() failed, we cannot use mmput() to free the mm
716 	 * because it calls destroy_context()
717 	 */
718 	mm_free_pgd(mm);
719 	free_mm(mm);
720 	return NULL;
721 }
722 
723 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
724 {
725 	struct mm_struct * mm, *oldmm;
726 	int retval;
727 
728 	tsk->min_flt = tsk->maj_flt = 0;
729 	tsk->nvcsw = tsk->nivcsw = 0;
730 #ifdef CONFIG_DETECT_HUNG_TASK
731 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
732 #endif
733 
734 	tsk->mm = NULL;
735 	tsk->active_mm = NULL;
736 
737 	/*
738 	 * Are we cloning a kernel thread?
739 	 *
740 	 * We need to steal a active VM for that..
741 	 */
742 	oldmm = current->mm;
743 	if (!oldmm)
744 		return 0;
745 
746 	if (clone_flags & CLONE_VM) {
747 		atomic_inc(&oldmm->mm_users);
748 		mm = oldmm;
749 		goto good_mm;
750 	}
751 
752 	retval = -ENOMEM;
753 	mm = dup_mm(tsk);
754 	if (!mm)
755 		goto fail_nomem;
756 
757 good_mm:
758 	/* Initializing for Swap token stuff */
759 	mm->token_priority = 0;
760 	mm->last_interval = 0;
761 	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
762 		atomic_inc(&mm->oom_disable_count);
763 
764 	tsk->mm = mm;
765 	tsk->active_mm = mm;
766 	return 0;
767 
768 fail_nomem:
769 	return retval;
770 }
771 
772 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
773 {
774 	struct fs_struct *fs = current->fs;
775 	if (clone_flags & CLONE_FS) {
776 		/* tsk->fs is already what we want */
777 		spin_lock(&fs->lock);
778 		if (fs->in_exec) {
779 			spin_unlock(&fs->lock);
780 			return -EAGAIN;
781 		}
782 		fs->users++;
783 		spin_unlock(&fs->lock);
784 		return 0;
785 	}
786 	tsk->fs = copy_fs_struct(fs);
787 	if (!tsk->fs)
788 		return -ENOMEM;
789 	return 0;
790 }
791 
792 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
793 {
794 	struct files_struct *oldf, *newf;
795 	int error = 0;
796 
797 	/*
798 	 * A background process may not have any files ...
799 	 */
800 	oldf = current->files;
801 	if (!oldf)
802 		goto out;
803 
804 	if (clone_flags & CLONE_FILES) {
805 		atomic_inc(&oldf->count);
806 		goto out;
807 	}
808 
809 	newf = dup_fd(oldf, &error);
810 	if (!newf)
811 		goto out;
812 
813 	tsk->files = newf;
814 	error = 0;
815 out:
816 	return error;
817 }
818 
819 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
820 {
821 #ifdef CONFIG_BLOCK
822 	struct io_context *ioc = current->io_context;
823 
824 	if (!ioc)
825 		return 0;
826 	/*
827 	 * Share io context with parent, if CLONE_IO is set
828 	 */
829 	if (clone_flags & CLONE_IO) {
830 		tsk->io_context = ioc_task_link(ioc);
831 		if (unlikely(!tsk->io_context))
832 			return -ENOMEM;
833 	} else if (ioprio_valid(ioc->ioprio)) {
834 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
835 		if (unlikely(!tsk->io_context))
836 			return -ENOMEM;
837 
838 		tsk->io_context->ioprio = ioc->ioprio;
839 	}
840 #endif
841 	return 0;
842 }
843 
844 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
845 {
846 	struct sighand_struct *sig;
847 
848 	if (clone_flags & CLONE_SIGHAND) {
849 		atomic_inc(&current->sighand->count);
850 		return 0;
851 	}
852 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
853 	rcu_assign_pointer(tsk->sighand, sig);
854 	if (!sig)
855 		return -ENOMEM;
856 	atomic_set(&sig->count, 1);
857 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
858 	return 0;
859 }
860 
861 void __cleanup_sighand(struct sighand_struct *sighand)
862 {
863 	if (atomic_dec_and_test(&sighand->count))
864 		kmem_cache_free(sighand_cachep, sighand);
865 }
866 
867 
868 /*
869  * Initialize POSIX timer handling for a thread group.
870  */
871 static void posix_cpu_timers_init_group(struct signal_struct *sig)
872 {
873 	unsigned long cpu_limit;
874 
875 	/* Thread group counters. */
876 	thread_group_cputime_init(sig);
877 
878 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
879 	if (cpu_limit != RLIM_INFINITY) {
880 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
881 		sig->cputimer.running = 1;
882 	}
883 
884 	/* The timer lists. */
885 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
886 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
887 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
888 }
889 
890 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
891 {
892 	struct signal_struct *sig;
893 
894 	if (clone_flags & CLONE_THREAD)
895 		return 0;
896 
897 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
898 	tsk->signal = sig;
899 	if (!sig)
900 		return -ENOMEM;
901 
902 	sig->nr_threads = 1;
903 	atomic_set(&sig->live, 1);
904 	atomic_set(&sig->sigcnt, 1);
905 	init_waitqueue_head(&sig->wait_chldexit);
906 	if (clone_flags & CLONE_NEWPID)
907 		sig->flags |= SIGNAL_UNKILLABLE;
908 	sig->curr_target = tsk;
909 	init_sigpending(&sig->shared_pending);
910 	INIT_LIST_HEAD(&sig->posix_timers);
911 
912 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
913 	sig->real_timer.function = it_real_fn;
914 
915 	task_lock(current->group_leader);
916 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
917 	task_unlock(current->group_leader);
918 
919 	posix_cpu_timers_init_group(sig);
920 
921 	tty_audit_fork(sig);
922 	sched_autogroup_fork(sig);
923 
924 	sig->oom_adj = current->signal->oom_adj;
925 	sig->oom_score_adj = current->signal->oom_score_adj;
926 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
927 
928 	mutex_init(&sig->cred_guard_mutex);
929 
930 	return 0;
931 }
932 
933 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
934 {
935 	unsigned long new_flags = p->flags;
936 
937 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
938 	new_flags |= PF_FORKNOEXEC;
939 	new_flags |= PF_STARTING;
940 	p->flags = new_flags;
941 	clear_freeze_flag(p);
942 }
943 
944 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
945 {
946 	current->clear_child_tid = tidptr;
947 
948 	return task_pid_vnr(current);
949 }
950 
951 static void rt_mutex_init_task(struct task_struct *p)
952 {
953 	raw_spin_lock_init(&p->pi_lock);
954 #ifdef CONFIG_RT_MUTEXES
955 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
956 	p->pi_blocked_on = NULL;
957 #endif
958 }
959 
960 #ifdef CONFIG_MM_OWNER
961 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
962 {
963 	mm->owner = p;
964 }
965 #endif /* CONFIG_MM_OWNER */
966 
967 /*
968  * Initialize POSIX timer handling for a single task.
969  */
970 static void posix_cpu_timers_init(struct task_struct *tsk)
971 {
972 	tsk->cputime_expires.prof_exp = cputime_zero;
973 	tsk->cputime_expires.virt_exp = cputime_zero;
974 	tsk->cputime_expires.sched_exp = 0;
975 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
976 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
977 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
978 }
979 
980 /*
981  * This creates a new process as a copy of the old one,
982  * but does not actually start it yet.
983  *
984  * It copies the registers, and all the appropriate
985  * parts of the process environment (as per the clone
986  * flags). The actual kick-off is left to the caller.
987  */
988 static struct task_struct *copy_process(unsigned long clone_flags,
989 					unsigned long stack_start,
990 					struct pt_regs *regs,
991 					unsigned long stack_size,
992 					int __user *child_tidptr,
993 					struct pid *pid,
994 					int trace)
995 {
996 	int retval;
997 	struct task_struct *p;
998 	int cgroup_callbacks_done = 0;
999 
1000 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1001 		return ERR_PTR(-EINVAL);
1002 
1003 	/*
1004 	 * Thread groups must share signals as well, and detached threads
1005 	 * can only be started up within the thread group.
1006 	 */
1007 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1008 		return ERR_PTR(-EINVAL);
1009 
1010 	/*
1011 	 * Shared signal handlers imply shared VM. By way of the above,
1012 	 * thread groups also imply shared VM. Blocking this case allows
1013 	 * for various simplifications in other code.
1014 	 */
1015 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1016 		return ERR_PTR(-EINVAL);
1017 
1018 	/*
1019 	 * Siblings of global init remain as zombies on exit since they are
1020 	 * not reaped by their parent (swapper). To solve this and to avoid
1021 	 * multi-rooted process trees, prevent global and container-inits
1022 	 * from creating siblings.
1023 	 */
1024 	if ((clone_flags & CLONE_PARENT) &&
1025 				current->signal->flags & SIGNAL_UNKILLABLE)
1026 		return ERR_PTR(-EINVAL);
1027 
1028 	retval = security_task_create(clone_flags);
1029 	if (retval)
1030 		goto fork_out;
1031 
1032 	retval = -ENOMEM;
1033 	p = dup_task_struct(current);
1034 	if (!p)
1035 		goto fork_out;
1036 
1037 	ftrace_graph_init_task(p);
1038 
1039 	rt_mutex_init_task(p);
1040 
1041 #ifdef CONFIG_PROVE_LOCKING
1042 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1043 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1044 #endif
1045 	retval = -EAGAIN;
1046 	if (atomic_read(&p->real_cred->user->processes) >=
1047 			task_rlimit(p, RLIMIT_NPROC)) {
1048 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1049 		    p->real_cred->user != INIT_USER)
1050 			goto bad_fork_free;
1051 	}
1052 
1053 	retval = copy_creds(p, clone_flags);
1054 	if (retval < 0)
1055 		goto bad_fork_free;
1056 
1057 	/*
1058 	 * If multiple threads are within copy_process(), then this check
1059 	 * triggers too late. This doesn't hurt, the check is only there
1060 	 * to stop root fork bombs.
1061 	 */
1062 	retval = -EAGAIN;
1063 	if (nr_threads >= max_threads)
1064 		goto bad_fork_cleanup_count;
1065 
1066 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1067 		goto bad_fork_cleanup_count;
1068 
1069 	p->did_exec = 0;
1070 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1071 	copy_flags(clone_flags, p);
1072 	INIT_LIST_HEAD(&p->children);
1073 	INIT_LIST_HEAD(&p->sibling);
1074 	rcu_copy_process(p);
1075 	p->vfork_done = NULL;
1076 	spin_lock_init(&p->alloc_lock);
1077 
1078 	init_sigpending(&p->pending);
1079 
1080 	p->utime = cputime_zero;
1081 	p->stime = cputime_zero;
1082 	p->gtime = cputime_zero;
1083 	p->utimescaled = cputime_zero;
1084 	p->stimescaled = cputime_zero;
1085 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1086 	p->prev_utime = cputime_zero;
1087 	p->prev_stime = cputime_zero;
1088 #endif
1089 #if defined(SPLIT_RSS_COUNTING)
1090 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1091 #endif
1092 
1093 	p->default_timer_slack_ns = current->timer_slack_ns;
1094 
1095 	task_io_accounting_init(&p->ioac);
1096 	acct_clear_integrals(p);
1097 
1098 	posix_cpu_timers_init(p);
1099 
1100 	p->lock_depth = -1;		/* -1 = no lock */
1101 	do_posix_clock_monotonic_gettime(&p->start_time);
1102 	p->real_start_time = p->start_time;
1103 	monotonic_to_bootbased(&p->real_start_time);
1104 	p->io_context = NULL;
1105 	p->audit_context = NULL;
1106 	cgroup_fork(p);
1107 #ifdef CONFIG_NUMA
1108 	p->mempolicy = mpol_dup(p->mempolicy);
1109  	if (IS_ERR(p->mempolicy)) {
1110  		retval = PTR_ERR(p->mempolicy);
1111  		p->mempolicy = NULL;
1112  		goto bad_fork_cleanup_cgroup;
1113  	}
1114 	mpol_fix_fork_child_flag(p);
1115 #endif
1116 #ifdef CONFIG_TRACE_IRQFLAGS
1117 	p->irq_events = 0;
1118 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1119 	p->hardirqs_enabled = 1;
1120 #else
1121 	p->hardirqs_enabled = 0;
1122 #endif
1123 	p->hardirq_enable_ip = 0;
1124 	p->hardirq_enable_event = 0;
1125 	p->hardirq_disable_ip = _THIS_IP_;
1126 	p->hardirq_disable_event = 0;
1127 	p->softirqs_enabled = 1;
1128 	p->softirq_enable_ip = _THIS_IP_;
1129 	p->softirq_enable_event = 0;
1130 	p->softirq_disable_ip = 0;
1131 	p->softirq_disable_event = 0;
1132 	p->hardirq_context = 0;
1133 	p->softirq_context = 0;
1134 #endif
1135 #ifdef CONFIG_LOCKDEP
1136 	p->lockdep_depth = 0; /* no locks held yet */
1137 	p->curr_chain_key = 0;
1138 	p->lockdep_recursion = 0;
1139 #endif
1140 
1141 #ifdef CONFIG_DEBUG_MUTEXES
1142 	p->blocked_on = NULL; /* not blocked yet */
1143 #endif
1144 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1145 	p->memcg_batch.do_batch = 0;
1146 	p->memcg_batch.memcg = NULL;
1147 #endif
1148 
1149 	/* Perform scheduler related setup. Assign this task to a CPU. */
1150 	sched_fork(p, clone_flags);
1151 
1152 	retval = perf_event_init_task(p);
1153 	if (retval)
1154 		goto bad_fork_cleanup_policy;
1155 
1156 	if ((retval = audit_alloc(p)))
1157 		goto bad_fork_cleanup_policy;
1158 	/* copy all the process information */
1159 	if ((retval = copy_semundo(clone_flags, p)))
1160 		goto bad_fork_cleanup_audit;
1161 	if ((retval = copy_files(clone_flags, p)))
1162 		goto bad_fork_cleanup_semundo;
1163 	if ((retval = copy_fs(clone_flags, p)))
1164 		goto bad_fork_cleanup_files;
1165 	if ((retval = copy_sighand(clone_flags, p)))
1166 		goto bad_fork_cleanup_fs;
1167 	if ((retval = copy_signal(clone_flags, p)))
1168 		goto bad_fork_cleanup_sighand;
1169 	if ((retval = copy_mm(clone_flags, p)))
1170 		goto bad_fork_cleanup_signal;
1171 	if ((retval = copy_namespaces(clone_flags, p)))
1172 		goto bad_fork_cleanup_mm;
1173 	if ((retval = copy_io(clone_flags, p)))
1174 		goto bad_fork_cleanup_namespaces;
1175 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1176 	if (retval)
1177 		goto bad_fork_cleanup_io;
1178 
1179 	if (pid != &init_struct_pid) {
1180 		retval = -ENOMEM;
1181 		pid = alloc_pid(p->nsproxy->pid_ns);
1182 		if (!pid)
1183 			goto bad_fork_cleanup_io;
1184 
1185 		if (clone_flags & CLONE_NEWPID) {
1186 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1187 			if (retval < 0)
1188 				goto bad_fork_free_pid;
1189 		}
1190 	}
1191 
1192 	p->pid = pid_nr(pid);
1193 	p->tgid = p->pid;
1194 	if (clone_flags & CLONE_THREAD)
1195 		p->tgid = current->tgid;
1196 
1197 	if (current->nsproxy != p->nsproxy) {
1198 		retval = ns_cgroup_clone(p, pid);
1199 		if (retval)
1200 			goto bad_fork_free_pid;
1201 	}
1202 
1203 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1204 	/*
1205 	 * Clear TID on mm_release()?
1206 	 */
1207 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1208 #ifdef CONFIG_FUTEX
1209 	p->robust_list = NULL;
1210 #ifdef CONFIG_COMPAT
1211 	p->compat_robust_list = NULL;
1212 #endif
1213 	INIT_LIST_HEAD(&p->pi_state_list);
1214 	p->pi_state_cache = NULL;
1215 #endif
1216 	/*
1217 	 * sigaltstack should be cleared when sharing the same VM
1218 	 */
1219 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1220 		p->sas_ss_sp = p->sas_ss_size = 0;
1221 
1222 	/*
1223 	 * Syscall tracing and stepping should be turned off in the
1224 	 * child regardless of CLONE_PTRACE.
1225 	 */
1226 	user_disable_single_step(p);
1227 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1228 #ifdef TIF_SYSCALL_EMU
1229 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1230 #endif
1231 	clear_all_latency_tracing(p);
1232 
1233 	/* ok, now we should be set up.. */
1234 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1235 	p->pdeath_signal = 0;
1236 	p->exit_state = 0;
1237 
1238 	/*
1239 	 * Ok, make it visible to the rest of the system.
1240 	 * We dont wake it up yet.
1241 	 */
1242 	p->group_leader = p;
1243 	INIT_LIST_HEAD(&p->thread_group);
1244 
1245 	/* Now that the task is set up, run cgroup callbacks if
1246 	 * necessary. We need to run them before the task is visible
1247 	 * on the tasklist. */
1248 	cgroup_fork_callbacks(p);
1249 	cgroup_callbacks_done = 1;
1250 
1251 	/* Need tasklist lock for parent etc handling! */
1252 	write_lock_irq(&tasklist_lock);
1253 
1254 	/* CLONE_PARENT re-uses the old parent */
1255 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1256 		p->real_parent = current->real_parent;
1257 		p->parent_exec_id = current->parent_exec_id;
1258 	} else {
1259 		p->real_parent = current;
1260 		p->parent_exec_id = current->self_exec_id;
1261 	}
1262 
1263 	spin_lock(&current->sighand->siglock);
1264 
1265 	/*
1266 	 * Process group and session signals need to be delivered to just the
1267 	 * parent before the fork or both the parent and the child after the
1268 	 * fork. Restart if a signal comes in before we add the new process to
1269 	 * it's process group.
1270 	 * A fatal signal pending means that current will exit, so the new
1271 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1272  	 */
1273 	recalc_sigpending();
1274 	if (signal_pending(current)) {
1275 		spin_unlock(&current->sighand->siglock);
1276 		write_unlock_irq(&tasklist_lock);
1277 		retval = -ERESTARTNOINTR;
1278 		goto bad_fork_free_pid;
1279 	}
1280 
1281 	if (clone_flags & CLONE_THREAD) {
1282 		current->signal->nr_threads++;
1283 		atomic_inc(&current->signal->live);
1284 		atomic_inc(&current->signal->sigcnt);
1285 		p->group_leader = current->group_leader;
1286 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1287 	}
1288 
1289 	if (likely(p->pid)) {
1290 		tracehook_finish_clone(p, clone_flags, trace);
1291 
1292 		if (thread_group_leader(p)) {
1293 			if (clone_flags & CLONE_NEWPID)
1294 				p->nsproxy->pid_ns->child_reaper = p;
1295 
1296 			p->signal->leader_pid = pid;
1297 			p->signal->tty = tty_kref_get(current->signal->tty);
1298 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1299 			attach_pid(p, PIDTYPE_SID, task_session(current));
1300 			list_add_tail(&p->sibling, &p->real_parent->children);
1301 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1302 			__this_cpu_inc(process_counts);
1303 		}
1304 		attach_pid(p, PIDTYPE_PID, pid);
1305 		nr_threads++;
1306 	}
1307 
1308 	total_forks++;
1309 	spin_unlock(&current->sighand->siglock);
1310 	write_unlock_irq(&tasklist_lock);
1311 	proc_fork_connector(p);
1312 	cgroup_post_fork(p);
1313 	perf_event_fork(p);
1314 	return p;
1315 
1316 bad_fork_free_pid:
1317 	if (pid != &init_struct_pid)
1318 		free_pid(pid);
1319 bad_fork_cleanup_io:
1320 	if (p->io_context)
1321 		exit_io_context(p);
1322 bad_fork_cleanup_namespaces:
1323 	exit_task_namespaces(p);
1324 bad_fork_cleanup_mm:
1325 	if (p->mm) {
1326 		task_lock(p);
1327 		if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1328 			atomic_dec(&p->mm->oom_disable_count);
1329 		task_unlock(p);
1330 		mmput(p->mm);
1331 	}
1332 bad_fork_cleanup_signal:
1333 	if (!(clone_flags & CLONE_THREAD))
1334 		free_signal_struct(p->signal);
1335 bad_fork_cleanup_sighand:
1336 	__cleanup_sighand(p->sighand);
1337 bad_fork_cleanup_fs:
1338 	exit_fs(p); /* blocking */
1339 bad_fork_cleanup_files:
1340 	exit_files(p); /* blocking */
1341 bad_fork_cleanup_semundo:
1342 	exit_sem(p);
1343 bad_fork_cleanup_audit:
1344 	audit_free(p);
1345 bad_fork_cleanup_policy:
1346 	perf_event_free_task(p);
1347 #ifdef CONFIG_NUMA
1348 	mpol_put(p->mempolicy);
1349 bad_fork_cleanup_cgroup:
1350 #endif
1351 	cgroup_exit(p, cgroup_callbacks_done);
1352 	delayacct_tsk_free(p);
1353 	module_put(task_thread_info(p)->exec_domain->module);
1354 bad_fork_cleanup_count:
1355 	atomic_dec(&p->cred->user->processes);
1356 	exit_creds(p);
1357 bad_fork_free:
1358 	free_task(p);
1359 fork_out:
1360 	return ERR_PTR(retval);
1361 }
1362 
1363 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1364 {
1365 	memset(regs, 0, sizeof(struct pt_regs));
1366 	return regs;
1367 }
1368 
1369 static inline void init_idle_pids(struct pid_link *links)
1370 {
1371 	enum pid_type type;
1372 
1373 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1374 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1375 		links[type].pid = &init_struct_pid;
1376 	}
1377 }
1378 
1379 struct task_struct * __cpuinit fork_idle(int cpu)
1380 {
1381 	struct task_struct *task;
1382 	struct pt_regs regs;
1383 
1384 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1385 			    &init_struct_pid, 0);
1386 	if (!IS_ERR(task)) {
1387 		init_idle_pids(task->pids);
1388 		init_idle(task, cpu);
1389 	}
1390 
1391 	return task;
1392 }
1393 
1394 /*
1395  *  Ok, this is the main fork-routine.
1396  *
1397  * It copies the process, and if successful kick-starts
1398  * it and waits for it to finish using the VM if required.
1399  */
1400 long do_fork(unsigned long clone_flags,
1401 	      unsigned long stack_start,
1402 	      struct pt_regs *regs,
1403 	      unsigned long stack_size,
1404 	      int __user *parent_tidptr,
1405 	      int __user *child_tidptr)
1406 {
1407 	struct task_struct *p;
1408 	int trace = 0;
1409 	long nr;
1410 
1411 	/*
1412 	 * Do some preliminary argument and permissions checking before we
1413 	 * actually start allocating stuff
1414 	 */
1415 	if (clone_flags & CLONE_NEWUSER) {
1416 		if (clone_flags & CLONE_THREAD)
1417 			return -EINVAL;
1418 		/* hopefully this check will go away when userns support is
1419 		 * complete
1420 		 */
1421 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1422 				!capable(CAP_SETGID))
1423 			return -EPERM;
1424 	}
1425 
1426 	/*
1427 	 * When called from kernel_thread, don't do user tracing stuff.
1428 	 */
1429 	if (likely(user_mode(regs)))
1430 		trace = tracehook_prepare_clone(clone_flags);
1431 
1432 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1433 			 child_tidptr, NULL, trace);
1434 	/*
1435 	 * Do this prior waking up the new thread - the thread pointer
1436 	 * might get invalid after that point, if the thread exits quickly.
1437 	 */
1438 	if (!IS_ERR(p)) {
1439 		struct completion vfork;
1440 
1441 		trace_sched_process_fork(current, p);
1442 
1443 		nr = task_pid_vnr(p);
1444 
1445 		if (clone_flags & CLONE_PARENT_SETTID)
1446 			put_user(nr, parent_tidptr);
1447 
1448 		if (clone_flags & CLONE_VFORK) {
1449 			p->vfork_done = &vfork;
1450 			init_completion(&vfork);
1451 		}
1452 
1453 		audit_finish_fork(p);
1454 		tracehook_report_clone(regs, clone_flags, nr, p);
1455 
1456 		/*
1457 		 * We set PF_STARTING at creation in case tracing wants to
1458 		 * use this to distinguish a fully live task from one that
1459 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1460 		 * clear it and set the child going.
1461 		 */
1462 		p->flags &= ~PF_STARTING;
1463 
1464 		wake_up_new_task(p, clone_flags);
1465 
1466 		tracehook_report_clone_complete(trace, regs,
1467 						clone_flags, nr, p);
1468 
1469 		if (clone_flags & CLONE_VFORK) {
1470 			freezer_do_not_count();
1471 			wait_for_completion(&vfork);
1472 			freezer_count();
1473 			tracehook_report_vfork_done(p, nr);
1474 		}
1475 	} else {
1476 		nr = PTR_ERR(p);
1477 	}
1478 	return nr;
1479 }
1480 
1481 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1482 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1483 #endif
1484 
1485 static void sighand_ctor(void *data)
1486 {
1487 	struct sighand_struct *sighand = data;
1488 
1489 	spin_lock_init(&sighand->siglock);
1490 	init_waitqueue_head(&sighand->signalfd_wqh);
1491 }
1492 
1493 void __init proc_caches_init(void)
1494 {
1495 	sighand_cachep = kmem_cache_create("sighand_cache",
1496 			sizeof(struct sighand_struct), 0,
1497 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1498 			SLAB_NOTRACK, sighand_ctor);
1499 	signal_cachep = kmem_cache_create("signal_cache",
1500 			sizeof(struct signal_struct), 0,
1501 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1502 	files_cachep = kmem_cache_create("files_cache",
1503 			sizeof(struct files_struct), 0,
1504 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1505 	fs_cachep = kmem_cache_create("fs_cache",
1506 			sizeof(struct fs_struct), 0,
1507 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1508 	mm_cachep = kmem_cache_create("mm_struct",
1509 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1510 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1511 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1512 	mmap_init();
1513 }
1514 
1515 /*
1516  * Check constraints on flags passed to the unshare system call and
1517  * force unsharing of additional process context as appropriate.
1518  */
1519 static void check_unshare_flags(unsigned long *flags_ptr)
1520 {
1521 	/*
1522 	 * If unsharing a thread from a thread group, must also
1523 	 * unshare vm.
1524 	 */
1525 	if (*flags_ptr & CLONE_THREAD)
1526 		*flags_ptr |= CLONE_VM;
1527 
1528 	/*
1529 	 * If unsharing vm, must also unshare signal handlers.
1530 	 */
1531 	if (*flags_ptr & CLONE_VM)
1532 		*flags_ptr |= CLONE_SIGHAND;
1533 
1534 	/*
1535 	 * If unsharing namespace, must also unshare filesystem information.
1536 	 */
1537 	if (*flags_ptr & CLONE_NEWNS)
1538 		*flags_ptr |= CLONE_FS;
1539 }
1540 
1541 /*
1542  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1543  */
1544 static int unshare_thread(unsigned long unshare_flags)
1545 {
1546 	if (unshare_flags & CLONE_THREAD)
1547 		return -EINVAL;
1548 
1549 	return 0;
1550 }
1551 
1552 /*
1553  * Unshare the filesystem structure if it is being shared
1554  */
1555 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1556 {
1557 	struct fs_struct *fs = current->fs;
1558 
1559 	if (!(unshare_flags & CLONE_FS) || !fs)
1560 		return 0;
1561 
1562 	/* don't need lock here; in the worst case we'll do useless copy */
1563 	if (fs->users == 1)
1564 		return 0;
1565 
1566 	*new_fsp = copy_fs_struct(fs);
1567 	if (!*new_fsp)
1568 		return -ENOMEM;
1569 
1570 	return 0;
1571 }
1572 
1573 /*
1574  * Unsharing of sighand is not supported yet
1575  */
1576 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1577 {
1578 	struct sighand_struct *sigh = current->sighand;
1579 
1580 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1581 		return -EINVAL;
1582 	else
1583 		return 0;
1584 }
1585 
1586 /*
1587  * Unshare vm if it is being shared
1588  */
1589 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1590 {
1591 	struct mm_struct *mm = current->mm;
1592 
1593 	if ((unshare_flags & CLONE_VM) &&
1594 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1595 		return -EINVAL;
1596 	}
1597 
1598 	return 0;
1599 }
1600 
1601 /*
1602  * Unshare file descriptor table if it is being shared
1603  */
1604 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1605 {
1606 	struct files_struct *fd = current->files;
1607 	int error = 0;
1608 
1609 	if ((unshare_flags & CLONE_FILES) &&
1610 	    (fd && atomic_read(&fd->count) > 1)) {
1611 		*new_fdp = dup_fd(fd, &error);
1612 		if (!*new_fdp)
1613 			return error;
1614 	}
1615 
1616 	return 0;
1617 }
1618 
1619 /*
1620  * unshare allows a process to 'unshare' part of the process
1621  * context which was originally shared using clone.  copy_*
1622  * functions used by do_fork() cannot be used here directly
1623  * because they modify an inactive task_struct that is being
1624  * constructed. Here we are modifying the current, active,
1625  * task_struct.
1626  */
1627 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1628 {
1629 	int err = 0;
1630 	struct fs_struct *fs, *new_fs = NULL;
1631 	struct sighand_struct *new_sigh = NULL;
1632 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1633 	struct files_struct *fd, *new_fd = NULL;
1634 	struct nsproxy *new_nsproxy = NULL;
1635 	int do_sysvsem = 0;
1636 
1637 	check_unshare_flags(&unshare_flags);
1638 
1639 	/* Return -EINVAL for all unsupported flags */
1640 	err = -EINVAL;
1641 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1642 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1643 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1644 		goto bad_unshare_out;
1645 
1646 	/*
1647 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1648 	 * to a new ipc namespace, the semaphore arrays from the old
1649 	 * namespace are unreachable.
1650 	 */
1651 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1652 		do_sysvsem = 1;
1653 	if ((err = unshare_thread(unshare_flags)))
1654 		goto bad_unshare_out;
1655 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1656 		goto bad_unshare_cleanup_thread;
1657 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1658 		goto bad_unshare_cleanup_fs;
1659 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1660 		goto bad_unshare_cleanup_sigh;
1661 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1662 		goto bad_unshare_cleanup_vm;
1663 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1664 			new_fs)))
1665 		goto bad_unshare_cleanup_fd;
1666 
1667 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1668 		if (do_sysvsem) {
1669 			/*
1670 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1671 			 */
1672 			exit_sem(current);
1673 		}
1674 
1675 		if (new_nsproxy) {
1676 			switch_task_namespaces(current, new_nsproxy);
1677 			new_nsproxy = NULL;
1678 		}
1679 
1680 		task_lock(current);
1681 
1682 		if (new_fs) {
1683 			fs = current->fs;
1684 			spin_lock(&fs->lock);
1685 			current->fs = new_fs;
1686 			if (--fs->users)
1687 				new_fs = NULL;
1688 			else
1689 				new_fs = fs;
1690 			spin_unlock(&fs->lock);
1691 		}
1692 
1693 		if (new_mm) {
1694 			mm = current->mm;
1695 			active_mm = current->active_mm;
1696 			current->mm = new_mm;
1697 			current->active_mm = new_mm;
1698 			if (current->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
1699 				atomic_dec(&mm->oom_disable_count);
1700 				atomic_inc(&new_mm->oom_disable_count);
1701 			}
1702 			activate_mm(active_mm, new_mm);
1703 			new_mm = mm;
1704 		}
1705 
1706 		if (new_fd) {
1707 			fd = current->files;
1708 			current->files = new_fd;
1709 			new_fd = fd;
1710 		}
1711 
1712 		task_unlock(current);
1713 	}
1714 
1715 	if (new_nsproxy)
1716 		put_nsproxy(new_nsproxy);
1717 
1718 bad_unshare_cleanup_fd:
1719 	if (new_fd)
1720 		put_files_struct(new_fd);
1721 
1722 bad_unshare_cleanup_vm:
1723 	if (new_mm)
1724 		mmput(new_mm);
1725 
1726 bad_unshare_cleanup_sigh:
1727 	if (new_sigh)
1728 		if (atomic_dec_and_test(&new_sigh->count))
1729 			kmem_cache_free(sighand_cachep, new_sigh);
1730 
1731 bad_unshare_cleanup_fs:
1732 	if (new_fs)
1733 		free_fs_struct(new_fs);
1734 
1735 bad_unshare_cleanup_thread:
1736 bad_unshare_out:
1737 	return err;
1738 }
1739 
1740 /*
1741  *	Helper to unshare the files of the current task.
1742  *	We don't want to expose copy_files internals to
1743  *	the exec layer of the kernel.
1744  */
1745 
1746 int unshare_files(struct files_struct **displaced)
1747 {
1748 	struct task_struct *task = current;
1749 	struct files_struct *copy = NULL;
1750 	int error;
1751 
1752 	error = unshare_fd(CLONE_FILES, &copy);
1753 	if (error || !copy) {
1754 		*displaced = NULL;
1755 		return error;
1756 	}
1757 	*displaced = task->files;
1758 	task_lock(task);
1759 	task->files = copy;
1760 	task_unlock(task);
1761 	return 0;
1762 }
1763