1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 109 #include <asm/pgalloc.h> 110 #include <linux/uaccess.h> 111 #include <asm/mmu_context.h> 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 115 #include <trace/events/sched.h> 116 117 #define CREATE_TRACE_POINTS 118 #include <trace/events/task.h> 119 120 #include <kunit/visibility.h> 121 122 /* 123 * Minimum number of threads to boot the kernel 124 */ 125 #define MIN_THREADS 20 126 127 /* 128 * Maximum number of threads 129 */ 130 #define MAX_THREADS FUTEX_TID_MASK 131 132 /* 133 * Protected counters by write_lock_irq(&tasklist_lock) 134 */ 135 unsigned long total_forks; /* Handle normal Linux uptimes. */ 136 int nr_threads; /* The idle threads do not count.. */ 137 138 static int max_threads; /* tunable limit on nr_threads */ 139 140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 141 142 static const char * const resident_page_types[] = { 143 NAMED_ARRAY_INDEX(MM_FILEPAGES), 144 NAMED_ARRAY_INDEX(MM_ANONPAGES), 145 NAMED_ARRAY_INDEX(MM_SWAPENTS), 146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 147 }; 148 149 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 150 151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 152 153 #ifdef CONFIG_PROVE_RCU 154 int lockdep_tasklist_lock_is_held(void) 155 { 156 return lockdep_is_held(&tasklist_lock); 157 } 158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 159 #endif /* #ifdef CONFIG_PROVE_RCU */ 160 161 int nr_processes(void) 162 { 163 int cpu; 164 int total = 0; 165 166 for_each_possible_cpu(cpu) 167 total += per_cpu(process_counts, cpu); 168 169 return total; 170 } 171 172 void __weak arch_release_task_struct(struct task_struct *tsk) 173 { 174 } 175 176 static struct kmem_cache *task_struct_cachep; 177 178 static inline struct task_struct *alloc_task_struct_node(int node) 179 { 180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 181 } 182 183 static inline void free_task_struct(struct task_struct *tsk) 184 { 185 kmem_cache_free(task_struct_cachep, tsk); 186 } 187 188 /* 189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 190 * kmemcache based allocator. 191 */ 192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 193 194 # ifdef CONFIG_VMAP_STACK 195 /* 196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 197 * flush. Try to minimize the number of calls by caching stacks. 198 */ 199 #define NR_CACHED_STACKS 2 200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 201 202 struct vm_stack { 203 struct rcu_head rcu; 204 struct vm_struct *stack_vm_area; 205 }; 206 207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 208 { 209 unsigned int i; 210 211 for (i = 0; i < NR_CACHED_STACKS; i++) { 212 struct vm_struct *tmp = NULL; 213 214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 215 return true; 216 } 217 return false; 218 } 219 220 static void thread_stack_free_rcu(struct rcu_head *rh) 221 { 222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 223 224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 225 return; 226 227 vfree(vm_stack); 228 } 229 230 static void thread_stack_delayed_free(struct task_struct *tsk) 231 { 232 struct vm_stack *vm_stack = tsk->stack; 233 234 vm_stack->stack_vm_area = tsk->stack_vm_area; 235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 236 } 237 238 static int free_vm_stack_cache(unsigned int cpu) 239 { 240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 241 int i; 242 243 for (i = 0; i < NR_CACHED_STACKS; i++) { 244 struct vm_struct *vm_stack = cached_vm_stacks[i]; 245 246 if (!vm_stack) 247 continue; 248 249 vfree(vm_stack->addr); 250 cached_vm_stacks[i] = NULL; 251 } 252 253 return 0; 254 } 255 256 static int memcg_charge_kernel_stack(struct vm_struct *vm) 257 { 258 int i; 259 int ret; 260 int nr_charged = 0; 261 262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 263 264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 266 if (ret) 267 goto err; 268 nr_charged++; 269 } 270 return 0; 271 err: 272 for (i = 0; i < nr_charged; i++) 273 memcg_kmem_uncharge_page(vm->pages[i], 0); 274 return ret; 275 } 276 277 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 278 { 279 struct vm_struct *vm; 280 void *stack; 281 int i; 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 struct vm_struct *s; 285 286 s = this_cpu_xchg(cached_stacks[i], NULL); 287 288 if (!s) 289 continue; 290 291 /* Reset stack metadata. */ 292 kasan_unpoison_range(s->addr, THREAD_SIZE); 293 294 stack = kasan_reset_tag(s->addr); 295 296 /* Clear stale pointers from reused stack. */ 297 memset(stack, 0, THREAD_SIZE); 298 299 if (memcg_charge_kernel_stack(s)) { 300 vfree(s->addr); 301 return -ENOMEM; 302 } 303 304 tsk->stack_vm_area = s; 305 tsk->stack = stack; 306 return 0; 307 } 308 309 /* 310 * Allocated stacks are cached and later reused by new threads, 311 * so memcg accounting is performed manually on assigning/releasing 312 * stacks to tasks. Drop __GFP_ACCOUNT. 313 */ 314 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 315 VMALLOC_START, VMALLOC_END, 316 THREADINFO_GFP & ~__GFP_ACCOUNT, 317 PAGE_KERNEL, 318 0, node, __builtin_return_address(0)); 319 if (!stack) 320 return -ENOMEM; 321 322 vm = find_vm_area(stack); 323 if (memcg_charge_kernel_stack(vm)) { 324 vfree(stack); 325 return -ENOMEM; 326 } 327 /* 328 * We can't call find_vm_area() in interrupt context, and 329 * free_thread_stack() can be called in interrupt context, 330 * so cache the vm_struct. 331 */ 332 tsk->stack_vm_area = vm; 333 stack = kasan_reset_tag(stack); 334 tsk->stack = stack; 335 return 0; 336 } 337 338 static void free_thread_stack(struct task_struct *tsk) 339 { 340 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 341 thread_stack_delayed_free(tsk); 342 343 tsk->stack = NULL; 344 tsk->stack_vm_area = NULL; 345 } 346 347 # else /* !CONFIG_VMAP_STACK */ 348 349 static void thread_stack_free_rcu(struct rcu_head *rh) 350 { 351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 352 } 353 354 static void thread_stack_delayed_free(struct task_struct *tsk) 355 { 356 struct rcu_head *rh = tsk->stack; 357 358 call_rcu(rh, thread_stack_free_rcu); 359 } 360 361 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 362 { 363 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 364 THREAD_SIZE_ORDER); 365 366 if (likely(page)) { 367 tsk->stack = kasan_reset_tag(page_address(page)); 368 return 0; 369 } 370 return -ENOMEM; 371 } 372 373 static void free_thread_stack(struct task_struct *tsk) 374 { 375 thread_stack_delayed_free(tsk); 376 tsk->stack = NULL; 377 } 378 379 # endif /* CONFIG_VMAP_STACK */ 380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 381 382 static struct kmem_cache *thread_stack_cache; 383 384 static void thread_stack_free_rcu(struct rcu_head *rh) 385 { 386 kmem_cache_free(thread_stack_cache, rh); 387 } 388 389 static void thread_stack_delayed_free(struct task_struct *tsk) 390 { 391 struct rcu_head *rh = tsk->stack; 392 393 call_rcu(rh, thread_stack_free_rcu); 394 } 395 396 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 397 { 398 unsigned long *stack; 399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 400 stack = kasan_reset_tag(stack); 401 tsk->stack = stack; 402 return stack ? 0 : -ENOMEM; 403 } 404 405 static void free_thread_stack(struct task_struct *tsk) 406 { 407 thread_stack_delayed_free(tsk); 408 tsk->stack = NULL; 409 } 410 411 void thread_stack_cache_init(void) 412 { 413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 414 THREAD_SIZE, THREAD_SIZE, 0, 0, 415 THREAD_SIZE, NULL); 416 BUG_ON(thread_stack_cache == NULL); 417 } 418 419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 420 421 /* SLAB cache for signal_struct structures (tsk->signal) */ 422 static struct kmem_cache *signal_cachep; 423 424 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 425 struct kmem_cache *sighand_cachep; 426 427 /* SLAB cache for files_struct structures (tsk->files) */ 428 struct kmem_cache *files_cachep; 429 430 /* SLAB cache for fs_struct structures (tsk->fs) */ 431 struct kmem_cache *fs_cachep; 432 433 /* SLAB cache for vm_area_struct structures */ 434 static struct kmem_cache *vm_area_cachep; 435 436 /* SLAB cache for mm_struct structures (tsk->mm) */ 437 static struct kmem_cache *mm_cachep; 438 439 #ifdef CONFIG_PER_VMA_LOCK 440 441 /* SLAB cache for vm_area_struct.lock */ 442 static struct kmem_cache *vma_lock_cachep; 443 444 static bool vma_lock_alloc(struct vm_area_struct *vma) 445 { 446 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 447 if (!vma->vm_lock) 448 return false; 449 450 init_rwsem(&vma->vm_lock->lock); 451 vma->vm_lock_seq = UINT_MAX; 452 453 return true; 454 } 455 456 static inline void vma_lock_free(struct vm_area_struct *vma) 457 { 458 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 459 } 460 461 #else /* CONFIG_PER_VMA_LOCK */ 462 463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 464 static inline void vma_lock_free(struct vm_area_struct *vma) {} 465 466 #endif /* CONFIG_PER_VMA_LOCK */ 467 468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 469 { 470 struct vm_area_struct *vma; 471 472 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 473 if (!vma) 474 return NULL; 475 476 vma_init(vma, mm); 477 if (!vma_lock_alloc(vma)) { 478 kmem_cache_free(vm_area_cachep, vma); 479 return NULL; 480 } 481 482 return vma; 483 } 484 485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 486 { 487 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 488 489 if (!new) 490 return NULL; 491 492 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 493 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 494 /* 495 * orig->shared.rb may be modified concurrently, but the clone 496 * will be reinitialized. 497 */ 498 data_race(memcpy(new, orig, sizeof(*new))); 499 if (!vma_lock_alloc(new)) { 500 kmem_cache_free(vm_area_cachep, new); 501 return NULL; 502 } 503 INIT_LIST_HEAD(&new->anon_vma_chain); 504 vma_numab_state_init(new); 505 dup_anon_vma_name(orig, new); 506 507 return new; 508 } 509 510 void __vm_area_free(struct vm_area_struct *vma) 511 { 512 vma_numab_state_free(vma); 513 free_anon_vma_name(vma); 514 vma_lock_free(vma); 515 kmem_cache_free(vm_area_cachep, vma); 516 } 517 518 #ifdef CONFIG_PER_VMA_LOCK 519 static void vm_area_free_rcu_cb(struct rcu_head *head) 520 { 521 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 522 vm_rcu); 523 524 /* The vma should not be locked while being destroyed. */ 525 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 526 __vm_area_free(vma); 527 } 528 #endif 529 530 void vm_area_free(struct vm_area_struct *vma) 531 { 532 #ifdef CONFIG_PER_VMA_LOCK 533 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 534 #else 535 __vm_area_free(vma); 536 #endif 537 } 538 539 static void account_kernel_stack(struct task_struct *tsk, int account) 540 { 541 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 542 struct vm_struct *vm = task_stack_vm_area(tsk); 543 int i; 544 545 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 546 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 547 account * (PAGE_SIZE / 1024)); 548 } else { 549 void *stack = task_stack_page(tsk); 550 551 /* All stack pages are in the same node. */ 552 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 553 account * (THREAD_SIZE / 1024)); 554 } 555 } 556 557 void exit_task_stack_account(struct task_struct *tsk) 558 { 559 account_kernel_stack(tsk, -1); 560 561 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 562 struct vm_struct *vm; 563 int i; 564 565 vm = task_stack_vm_area(tsk); 566 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 567 memcg_kmem_uncharge_page(vm->pages[i], 0); 568 } 569 } 570 571 static void release_task_stack(struct task_struct *tsk) 572 { 573 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 574 return; /* Better to leak the stack than to free prematurely */ 575 576 free_thread_stack(tsk); 577 } 578 579 #ifdef CONFIG_THREAD_INFO_IN_TASK 580 void put_task_stack(struct task_struct *tsk) 581 { 582 if (refcount_dec_and_test(&tsk->stack_refcount)) 583 release_task_stack(tsk); 584 } 585 #endif 586 587 void free_task(struct task_struct *tsk) 588 { 589 #ifdef CONFIG_SECCOMP 590 WARN_ON_ONCE(tsk->seccomp.filter); 591 #endif 592 release_user_cpus_ptr(tsk); 593 scs_release(tsk); 594 595 #ifndef CONFIG_THREAD_INFO_IN_TASK 596 /* 597 * The task is finally done with both the stack and thread_info, 598 * so free both. 599 */ 600 release_task_stack(tsk); 601 #else 602 /* 603 * If the task had a separate stack allocation, it should be gone 604 * by now. 605 */ 606 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 607 #endif 608 rt_mutex_debug_task_free(tsk); 609 ftrace_graph_exit_task(tsk); 610 arch_release_task_struct(tsk); 611 if (tsk->flags & PF_KTHREAD) 612 free_kthread_struct(tsk); 613 bpf_task_storage_free(tsk); 614 free_task_struct(tsk); 615 } 616 EXPORT_SYMBOL(free_task); 617 618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 619 { 620 struct file *exe_file; 621 622 exe_file = get_mm_exe_file(oldmm); 623 RCU_INIT_POINTER(mm->exe_file, exe_file); 624 /* 625 * We depend on the oldmm having properly denied write access to the 626 * exe_file already. 627 */ 628 if (exe_file && exe_file_deny_write_access(exe_file)) 629 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); 630 } 631 632 #ifdef CONFIG_MMU 633 static __latent_entropy int dup_mmap(struct mm_struct *mm, 634 struct mm_struct *oldmm) 635 { 636 struct vm_area_struct *mpnt, *tmp; 637 int retval; 638 unsigned long charge = 0; 639 LIST_HEAD(uf); 640 VMA_ITERATOR(vmi, mm, 0); 641 642 if (mmap_write_lock_killable(oldmm)) 643 return -EINTR; 644 flush_cache_dup_mm(oldmm); 645 uprobe_dup_mmap(oldmm, mm); 646 /* 647 * Not linked in yet - no deadlock potential: 648 */ 649 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 650 651 /* No ordering required: file already has been exposed. */ 652 dup_mm_exe_file(mm, oldmm); 653 654 mm->total_vm = oldmm->total_vm; 655 mm->data_vm = oldmm->data_vm; 656 mm->exec_vm = oldmm->exec_vm; 657 mm->stack_vm = oldmm->stack_vm; 658 659 /* Use __mt_dup() to efficiently build an identical maple tree. */ 660 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 661 if (unlikely(retval)) 662 goto out; 663 664 mt_clear_in_rcu(vmi.mas.tree); 665 for_each_vma(vmi, mpnt) { 666 struct file *file; 667 668 vma_start_write(mpnt); 669 if (mpnt->vm_flags & VM_DONTCOPY) { 670 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 671 mpnt->vm_end, GFP_KERNEL); 672 if (retval) 673 goto loop_out; 674 675 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 676 continue; 677 } 678 charge = 0; 679 /* 680 * Don't duplicate many vmas if we've been oom-killed (for 681 * example) 682 */ 683 if (fatal_signal_pending(current)) { 684 retval = -EINTR; 685 goto loop_out; 686 } 687 if (mpnt->vm_flags & VM_ACCOUNT) { 688 unsigned long len = vma_pages(mpnt); 689 690 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 691 goto fail_nomem; 692 charge = len; 693 } 694 tmp = vm_area_dup(mpnt); 695 if (!tmp) 696 goto fail_nomem; 697 retval = vma_dup_policy(mpnt, tmp); 698 if (retval) 699 goto fail_nomem_policy; 700 tmp->vm_mm = mm; 701 retval = dup_userfaultfd(tmp, &uf); 702 if (retval) 703 goto fail_nomem_anon_vma_fork; 704 if (tmp->vm_flags & VM_WIPEONFORK) { 705 /* 706 * VM_WIPEONFORK gets a clean slate in the child. 707 * Don't prepare anon_vma until fault since we don't 708 * copy page for current vma. 709 */ 710 tmp->anon_vma = NULL; 711 } else if (anon_vma_fork(tmp, mpnt)) 712 goto fail_nomem_anon_vma_fork; 713 vm_flags_clear(tmp, VM_LOCKED_MASK); 714 /* 715 * Copy/update hugetlb private vma information. 716 */ 717 if (is_vm_hugetlb_page(tmp)) 718 hugetlb_dup_vma_private(tmp); 719 720 /* 721 * Link the vma into the MT. After using __mt_dup(), memory 722 * allocation is not necessary here, so it cannot fail. 723 */ 724 vma_iter_bulk_store(&vmi, tmp); 725 726 mm->map_count++; 727 728 if (tmp->vm_ops && tmp->vm_ops->open) 729 tmp->vm_ops->open(tmp); 730 731 file = tmp->vm_file; 732 if (file) { 733 struct address_space *mapping = file->f_mapping; 734 735 get_file(file); 736 i_mmap_lock_write(mapping); 737 if (vma_is_shared_maywrite(tmp)) 738 mapping_allow_writable(mapping); 739 flush_dcache_mmap_lock(mapping); 740 /* insert tmp into the share list, just after mpnt */ 741 vma_interval_tree_insert_after(tmp, mpnt, 742 &mapping->i_mmap); 743 flush_dcache_mmap_unlock(mapping); 744 i_mmap_unlock_write(mapping); 745 } 746 747 if (!(tmp->vm_flags & VM_WIPEONFORK)) 748 retval = copy_page_range(tmp, mpnt); 749 750 if (retval) { 751 mpnt = vma_next(&vmi); 752 goto loop_out; 753 } 754 } 755 /* a new mm has just been created */ 756 retval = arch_dup_mmap(oldmm, mm); 757 loop_out: 758 vma_iter_free(&vmi); 759 if (!retval) { 760 mt_set_in_rcu(vmi.mas.tree); 761 ksm_fork(mm, oldmm); 762 khugepaged_fork(mm, oldmm); 763 } else { 764 765 /* 766 * The entire maple tree has already been duplicated. If the 767 * mmap duplication fails, mark the failure point with 768 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 769 * stop releasing VMAs that have not been duplicated after this 770 * point. 771 */ 772 if (mpnt) { 773 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 774 mas_store(&vmi.mas, XA_ZERO_ENTRY); 775 /* Avoid OOM iterating a broken tree */ 776 set_bit(MMF_OOM_SKIP, &mm->flags); 777 } 778 /* 779 * The mm_struct is going to exit, but the locks will be dropped 780 * first. Set the mm_struct as unstable is advisable as it is 781 * not fully initialised. 782 */ 783 set_bit(MMF_UNSTABLE, &mm->flags); 784 } 785 out: 786 mmap_write_unlock(mm); 787 flush_tlb_mm(oldmm); 788 mmap_write_unlock(oldmm); 789 if (!retval) 790 dup_userfaultfd_complete(&uf); 791 else 792 dup_userfaultfd_fail(&uf); 793 return retval; 794 795 fail_nomem_anon_vma_fork: 796 mpol_put(vma_policy(tmp)); 797 fail_nomem_policy: 798 vm_area_free(tmp); 799 fail_nomem: 800 retval = -ENOMEM; 801 vm_unacct_memory(charge); 802 goto loop_out; 803 } 804 805 static inline int mm_alloc_pgd(struct mm_struct *mm) 806 { 807 mm->pgd = pgd_alloc(mm); 808 if (unlikely(!mm->pgd)) 809 return -ENOMEM; 810 return 0; 811 } 812 813 static inline void mm_free_pgd(struct mm_struct *mm) 814 { 815 pgd_free(mm, mm->pgd); 816 } 817 #else 818 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 819 { 820 mmap_write_lock(oldmm); 821 dup_mm_exe_file(mm, oldmm); 822 mmap_write_unlock(oldmm); 823 return 0; 824 } 825 #define mm_alloc_pgd(mm) (0) 826 #define mm_free_pgd(mm) 827 #endif /* CONFIG_MMU */ 828 829 static void check_mm(struct mm_struct *mm) 830 { 831 int i; 832 833 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 834 "Please make sure 'struct resident_page_types[]' is updated as well"); 835 836 for (i = 0; i < NR_MM_COUNTERS; i++) { 837 long x = percpu_counter_sum(&mm->rss_stat[i]); 838 839 if (unlikely(x)) 840 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 841 mm, resident_page_types[i], x); 842 } 843 844 if (mm_pgtables_bytes(mm)) 845 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 846 mm_pgtables_bytes(mm)); 847 848 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 849 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 850 #endif 851 } 852 853 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 854 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 855 856 static void do_check_lazy_tlb(void *arg) 857 { 858 struct mm_struct *mm = arg; 859 860 WARN_ON_ONCE(current->active_mm == mm); 861 } 862 863 static void do_shoot_lazy_tlb(void *arg) 864 { 865 struct mm_struct *mm = arg; 866 867 if (current->active_mm == mm) { 868 WARN_ON_ONCE(current->mm); 869 current->active_mm = &init_mm; 870 switch_mm(mm, &init_mm, current); 871 } 872 } 873 874 static void cleanup_lazy_tlbs(struct mm_struct *mm) 875 { 876 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 877 /* 878 * In this case, lazy tlb mms are refounted and would not reach 879 * __mmdrop until all CPUs have switched away and mmdrop()ed. 880 */ 881 return; 882 } 883 884 /* 885 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 886 * requires lazy mm users to switch to another mm when the refcount 887 * drops to zero, before the mm is freed. This requires IPIs here to 888 * switch kernel threads to init_mm. 889 * 890 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 891 * switch with the final userspace teardown TLB flush which leaves the 892 * mm lazy on this CPU but no others, reducing the need for additional 893 * IPIs here. There are cases where a final IPI is still required here, 894 * such as the final mmdrop being performed on a different CPU than the 895 * one exiting, or kernel threads using the mm when userspace exits. 896 * 897 * IPI overheads have not found to be expensive, but they could be 898 * reduced in a number of possible ways, for example (roughly 899 * increasing order of complexity): 900 * - The last lazy reference created by exit_mm() could instead switch 901 * to init_mm, however it's probable this will run on the same CPU 902 * immediately afterwards, so this may not reduce IPIs much. 903 * - A batch of mms requiring IPIs could be gathered and freed at once. 904 * - CPUs store active_mm where it can be remotely checked without a 905 * lock, to filter out false-positives in the cpumask. 906 * - After mm_users or mm_count reaches zero, switching away from the 907 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 908 * with some batching or delaying of the final IPIs. 909 * - A delayed freeing and RCU-like quiescing sequence based on mm 910 * switching to avoid IPIs completely. 911 */ 912 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 913 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 914 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 915 } 916 917 /* 918 * Called when the last reference to the mm 919 * is dropped: either by a lazy thread or by 920 * mmput. Free the page directory and the mm. 921 */ 922 void __mmdrop(struct mm_struct *mm) 923 { 924 BUG_ON(mm == &init_mm); 925 WARN_ON_ONCE(mm == current->mm); 926 927 /* Ensure no CPUs are using this as their lazy tlb mm */ 928 cleanup_lazy_tlbs(mm); 929 930 WARN_ON_ONCE(mm == current->active_mm); 931 mm_free_pgd(mm); 932 destroy_context(mm); 933 mmu_notifier_subscriptions_destroy(mm); 934 check_mm(mm); 935 put_user_ns(mm->user_ns); 936 mm_pasid_drop(mm); 937 mm_destroy_cid(mm); 938 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 939 940 free_mm(mm); 941 } 942 EXPORT_SYMBOL_GPL(__mmdrop); 943 944 static void mmdrop_async_fn(struct work_struct *work) 945 { 946 struct mm_struct *mm; 947 948 mm = container_of(work, struct mm_struct, async_put_work); 949 __mmdrop(mm); 950 } 951 952 static void mmdrop_async(struct mm_struct *mm) 953 { 954 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 955 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 956 schedule_work(&mm->async_put_work); 957 } 958 } 959 960 static inline void free_signal_struct(struct signal_struct *sig) 961 { 962 taskstats_tgid_free(sig); 963 sched_autogroup_exit(sig); 964 /* 965 * __mmdrop is not safe to call from softirq context on x86 due to 966 * pgd_dtor so postpone it to the async context 967 */ 968 if (sig->oom_mm) 969 mmdrop_async(sig->oom_mm); 970 kmem_cache_free(signal_cachep, sig); 971 } 972 973 static inline void put_signal_struct(struct signal_struct *sig) 974 { 975 if (refcount_dec_and_test(&sig->sigcnt)) 976 free_signal_struct(sig); 977 } 978 979 void __put_task_struct(struct task_struct *tsk) 980 { 981 WARN_ON(!tsk->exit_state); 982 WARN_ON(refcount_read(&tsk->usage)); 983 WARN_ON(tsk == current); 984 985 sched_ext_free(tsk); 986 io_uring_free(tsk); 987 cgroup_free(tsk); 988 task_numa_free(tsk, true); 989 security_task_free(tsk); 990 exit_creds(tsk); 991 delayacct_tsk_free(tsk); 992 put_signal_struct(tsk->signal); 993 sched_core_free(tsk); 994 free_task(tsk); 995 } 996 EXPORT_SYMBOL_GPL(__put_task_struct); 997 998 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 999 { 1000 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 1001 1002 __put_task_struct(task); 1003 } 1004 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 1005 1006 void __init __weak arch_task_cache_init(void) { } 1007 1008 /* 1009 * set_max_threads 1010 */ 1011 static void __init set_max_threads(unsigned int max_threads_suggested) 1012 { 1013 u64 threads; 1014 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 1015 1016 /* 1017 * The number of threads shall be limited such that the thread 1018 * structures may only consume a small part of the available memory. 1019 */ 1020 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1021 threads = MAX_THREADS; 1022 else 1023 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1024 (u64) THREAD_SIZE * 8UL); 1025 1026 if (threads > max_threads_suggested) 1027 threads = max_threads_suggested; 1028 1029 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1030 } 1031 1032 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1033 /* Initialized by the architecture: */ 1034 int arch_task_struct_size __read_mostly; 1035 #endif 1036 1037 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 1038 { 1039 /* Fetch thread_struct whitelist for the architecture. */ 1040 arch_thread_struct_whitelist(offset, size); 1041 1042 /* 1043 * Handle zero-sized whitelist or empty thread_struct, otherwise 1044 * adjust offset to position of thread_struct in task_struct. 1045 */ 1046 if (unlikely(*size == 0)) 1047 *offset = 0; 1048 else 1049 *offset += offsetof(struct task_struct, thread); 1050 } 1051 1052 void __init fork_init(void) 1053 { 1054 int i; 1055 #ifndef ARCH_MIN_TASKALIGN 1056 #define ARCH_MIN_TASKALIGN 0 1057 #endif 1058 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1059 unsigned long useroffset, usersize; 1060 1061 /* create a slab on which task_structs can be allocated */ 1062 task_struct_whitelist(&useroffset, &usersize); 1063 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1064 arch_task_struct_size, align, 1065 SLAB_PANIC|SLAB_ACCOUNT, 1066 useroffset, usersize, NULL); 1067 1068 /* do the arch specific task caches init */ 1069 arch_task_cache_init(); 1070 1071 set_max_threads(MAX_THREADS); 1072 1073 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1074 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1075 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1076 init_task.signal->rlim[RLIMIT_NPROC]; 1077 1078 for (i = 0; i < UCOUNT_COUNTS; i++) 1079 init_user_ns.ucount_max[i] = max_threads/2; 1080 1081 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1082 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1083 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1084 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1085 1086 #ifdef CONFIG_VMAP_STACK 1087 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1088 NULL, free_vm_stack_cache); 1089 #endif 1090 1091 scs_init(); 1092 1093 lockdep_init_task(&init_task); 1094 uprobes_init(); 1095 } 1096 1097 int __weak arch_dup_task_struct(struct task_struct *dst, 1098 struct task_struct *src) 1099 { 1100 *dst = *src; 1101 return 0; 1102 } 1103 1104 void set_task_stack_end_magic(struct task_struct *tsk) 1105 { 1106 unsigned long *stackend; 1107 1108 stackend = end_of_stack(tsk); 1109 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1110 } 1111 1112 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1113 { 1114 struct task_struct *tsk; 1115 int err; 1116 1117 if (node == NUMA_NO_NODE) 1118 node = tsk_fork_get_node(orig); 1119 tsk = alloc_task_struct_node(node); 1120 if (!tsk) 1121 return NULL; 1122 1123 err = arch_dup_task_struct(tsk, orig); 1124 if (err) 1125 goto free_tsk; 1126 1127 err = alloc_thread_stack_node(tsk, node); 1128 if (err) 1129 goto free_tsk; 1130 1131 #ifdef CONFIG_THREAD_INFO_IN_TASK 1132 refcount_set(&tsk->stack_refcount, 1); 1133 #endif 1134 account_kernel_stack(tsk, 1); 1135 1136 err = scs_prepare(tsk, node); 1137 if (err) 1138 goto free_stack; 1139 1140 #ifdef CONFIG_SECCOMP 1141 /* 1142 * We must handle setting up seccomp filters once we're under 1143 * the sighand lock in case orig has changed between now and 1144 * then. Until then, filter must be NULL to avoid messing up 1145 * the usage counts on the error path calling free_task. 1146 */ 1147 tsk->seccomp.filter = NULL; 1148 #endif 1149 1150 setup_thread_stack(tsk, orig); 1151 clear_user_return_notifier(tsk); 1152 clear_tsk_need_resched(tsk); 1153 set_task_stack_end_magic(tsk); 1154 clear_syscall_work_syscall_user_dispatch(tsk); 1155 1156 #ifdef CONFIG_STACKPROTECTOR 1157 tsk->stack_canary = get_random_canary(); 1158 #endif 1159 if (orig->cpus_ptr == &orig->cpus_mask) 1160 tsk->cpus_ptr = &tsk->cpus_mask; 1161 dup_user_cpus_ptr(tsk, orig, node); 1162 1163 /* 1164 * One for the user space visible state that goes away when reaped. 1165 * One for the scheduler. 1166 */ 1167 refcount_set(&tsk->rcu_users, 2); 1168 /* One for the rcu users */ 1169 refcount_set(&tsk->usage, 1); 1170 #ifdef CONFIG_BLK_DEV_IO_TRACE 1171 tsk->btrace_seq = 0; 1172 #endif 1173 tsk->splice_pipe = NULL; 1174 tsk->task_frag.page = NULL; 1175 tsk->wake_q.next = NULL; 1176 tsk->worker_private = NULL; 1177 1178 kcov_task_init(tsk); 1179 kmsan_task_create(tsk); 1180 kmap_local_fork(tsk); 1181 1182 #ifdef CONFIG_FAULT_INJECTION 1183 tsk->fail_nth = 0; 1184 #endif 1185 1186 #ifdef CONFIG_BLK_CGROUP 1187 tsk->throttle_disk = NULL; 1188 tsk->use_memdelay = 0; 1189 #endif 1190 1191 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1192 tsk->pasid_activated = 0; 1193 #endif 1194 1195 #ifdef CONFIG_MEMCG 1196 tsk->active_memcg = NULL; 1197 #endif 1198 1199 #ifdef CONFIG_X86_BUS_LOCK_DETECT 1200 tsk->reported_split_lock = 0; 1201 #endif 1202 1203 #ifdef CONFIG_SCHED_MM_CID 1204 tsk->mm_cid = -1; 1205 tsk->last_mm_cid = -1; 1206 tsk->mm_cid_active = 0; 1207 tsk->migrate_from_cpu = -1; 1208 #endif 1209 return tsk; 1210 1211 free_stack: 1212 exit_task_stack_account(tsk); 1213 free_thread_stack(tsk); 1214 free_tsk: 1215 free_task_struct(tsk); 1216 return NULL; 1217 } 1218 1219 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1220 1221 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1222 1223 static int __init coredump_filter_setup(char *s) 1224 { 1225 default_dump_filter = 1226 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1227 MMF_DUMP_FILTER_MASK; 1228 return 1; 1229 } 1230 1231 __setup("coredump_filter=", coredump_filter_setup); 1232 1233 #include <linux/init_task.h> 1234 1235 static void mm_init_aio(struct mm_struct *mm) 1236 { 1237 #ifdef CONFIG_AIO 1238 spin_lock_init(&mm->ioctx_lock); 1239 mm->ioctx_table = NULL; 1240 #endif 1241 } 1242 1243 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1244 struct task_struct *p) 1245 { 1246 #ifdef CONFIG_MEMCG 1247 if (mm->owner == p) 1248 WRITE_ONCE(mm->owner, NULL); 1249 #endif 1250 } 1251 1252 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1253 { 1254 #ifdef CONFIG_MEMCG 1255 mm->owner = p; 1256 #endif 1257 } 1258 1259 static void mm_init_uprobes_state(struct mm_struct *mm) 1260 { 1261 #ifdef CONFIG_UPROBES 1262 mm->uprobes_state.xol_area = NULL; 1263 #endif 1264 } 1265 1266 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1267 struct user_namespace *user_ns) 1268 { 1269 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1270 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1271 atomic_set(&mm->mm_users, 1); 1272 atomic_set(&mm->mm_count, 1); 1273 seqcount_init(&mm->write_protect_seq); 1274 mmap_init_lock(mm); 1275 INIT_LIST_HEAD(&mm->mmlist); 1276 mm_pgtables_bytes_init(mm); 1277 mm->map_count = 0; 1278 mm->locked_vm = 0; 1279 atomic64_set(&mm->pinned_vm, 0); 1280 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1281 spin_lock_init(&mm->page_table_lock); 1282 spin_lock_init(&mm->arg_lock); 1283 mm_init_cpumask(mm); 1284 mm_init_aio(mm); 1285 mm_init_owner(mm, p); 1286 mm_pasid_init(mm); 1287 RCU_INIT_POINTER(mm->exe_file, NULL); 1288 mmu_notifier_subscriptions_init(mm); 1289 init_tlb_flush_pending(mm); 1290 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1291 mm->pmd_huge_pte = NULL; 1292 #endif 1293 mm_init_uprobes_state(mm); 1294 hugetlb_count_init(mm); 1295 1296 if (current->mm) { 1297 mm->flags = mmf_init_flags(current->mm->flags); 1298 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1299 } else { 1300 mm->flags = default_dump_filter; 1301 mm->def_flags = 0; 1302 } 1303 1304 if (mm_alloc_pgd(mm)) 1305 goto fail_nopgd; 1306 1307 if (init_new_context(p, mm)) 1308 goto fail_nocontext; 1309 1310 if (mm_alloc_cid(mm, p)) 1311 goto fail_cid; 1312 1313 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1314 NR_MM_COUNTERS)) 1315 goto fail_pcpu; 1316 1317 mm->user_ns = get_user_ns(user_ns); 1318 lru_gen_init_mm(mm); 1319 return mm; 1320 1321 fail_pcpu: 1322 mm_destroy_cid(mm); 1323 fail_cid: 1324 destroy_context(mm); 1325 fail_nocontext: 1326 mm_free_pgd(mm); 1327 fail_nopgd: 1328 free_mm(mm); 1329 return NULL; 1330 } 1331 1332 /* 1333 * Allocate and initialize an mm_struct. 1334 */ 1335 struct mm_struct *mm_alloc(void) 1336 { 1337 struct mm_struct *mm; 1338 1339 mm = allocate_mm(); 1340 if (!mm) 1341 return NULL; 1342 1343 memset(mm, 0, sizeof(*mm)); 1344 return mm_init(mm, current, current_user_ns()); 1345 } 1346 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1347 1348 static inline void __mmput(struct mm_struct *mm) 1349 { 1350 VM_BUG_ON(atomic_read(&mm->mm_users)); 1351 1352 uprobe_clear_state(mm); 1353 exit_aio(mm); 1354 ksm_exit(mm); 1355 khugepaged_exit(mm); /* must run before exit_mmap */ 1356 exit_mmap(mm); 1357 mm_put_huge_zero_folio(mm); 1358 set_mm_exe_file(mm, NULL); 1359 if (!list_empty(&mm->mmlist)) { 1360 spin_lock(&mmlist_lock); 1361 list_del(&mm->mmlist); 1362 spin_unlock(&mmlist_lock); 1363 } 1364 if (mm->binfmt) 1365 module_put(mm->binfmt->module); 1366 lru_gen_del_mm(mm); 1367 mmdrop(mm); 1368 } 1369 1370 /* 1371 * Decrement the use count and release all resources for an mm. 1372 */ 1373 void mmput(struct mm_struct *mm) 1374 { 1375 might_sleep(); 1376 1377 if (atomic_dec_and_test(&mm->mm_users)) 1378 __mmput(mm); 1379 } 1380 EXPORT_SYMBOL_GPL(mmput); 1381 1382 #ifdef CONFIG_MMU 1383 static void mmput_async_fn(struct work_struct *work) 1384 { 1385 struct mm_struct *mm = container_of(work, struct mm_struct, 1386 async_put_work); 1387 1388 __mmput(mm); 1389 } 1390 1391 void mmput_async(struct mm_struct *mm) 1392 { 1393 if (atomic_dec_and_test(&mm->mm_users)) { 1394 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1395 schedule_work(&mm->async_put_work); 1396 } 1397 } 1398 EXPORT_SYMBOL_GPL(mmput_async); 1399 #endif 1400 1401 /** 1402 * set_mm_exe_file - change a reference to the mm's executable file 1403 * @mm: The mm to change. 1404 * @new_exe_file: The new file to use. 1405 * 1406 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1407 * 1408 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1409 * invocations: in mmput() nobody alive left, in execve it happens before 1410 * the new mm is made visible to anyone. 1411 * 1412 * Can only fail if new_exe_file != NULL. 1413 */ 1414 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1415 { 1416 struct file *old_exe_file; 1417 1418 /* 1419 * It is safe to dereference the exe_file without RCU as 1420 * this function is only called if nobody else can access 1421 * this mm -- see comment above for justification. 1422 */ 1423 old_exe_file = rcu_dereference_raw(mm->exe_file); 1424 1425 if (new_exe_file) { 1426 /* 1427 * We expect the caller (i.e., sys_execve) to already denied 1428 * write access, so this is unlikely to fail. 1429 */ 1430 if (unlikely(exe_file_deny_write_access(new_exe_file))) 1431 return -EACCES; 1432 get_file(new_exe_file); 1433 } 1434 rcu_assign_pointer(mm->exe_file, new_exe_file); 1435 if (old_exe_file) { 1436 exe_file_allow_write_access(old_exe_file); 1437 fput(old_exe_file); 1438 } 1439 return 0; 1440 } 1441 1442 /** 1443 * replace_mm_exe_file - replace a reference to the mm's executable file 1444 * @mm: The mm to change. 1445 * @new_exe_file: The new file to use. 1446 * 1447 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1448 * 1449 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1450 */ 1451 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1452 { 1453 struct vm_area_struct *vma; 1454 struct file *old_exe_file; 1455 int ret = 0; 1456 1457 /* Forbid mm->exe_file change if old file still mapped. */ 1458 old_exe_file = get_mm_exe_file(mm); 1459 if (old_exe_file) { 1460 VMA_ITERATOR(vmi, mm, 0); 1461 mmap_read_lock(mm); 1462 for_each_vma(vmi, vma) { 1463 if (!vma->vm_file) 1464 continue; 1465 if (path_equal(&vma->vm_file->f_path, 1466 &old_exe_file->f_path)) { 1467 ret = -EBUSY; 1468 break; 1469 } 1470 } 1471 mmap_read_unlock(mm); 1472 fput(old_exe_file); 1473 if (ret) 1474 return ret; 1475 } 1476 1477 ret = exe_file_deny_write_access(new_exe_file); 1478 if (ret) 1479 return -EACCES; 1480 get_file(new_exe_file); 1481 1482 /* set the new file */ 1483 mmap_write_lock(mm); 1484 old_exe_file = rcu_dereference_raw(mm->exe_file); 1485 rcu_assign_pointer(mm->exe_file, new_exe_file); 1486 mmap_write_unlock(mm); 1487 1488 if (old_exe_file) { 1489 exe_file_allow_write_access(old_exe_file); 1490 fput(old_exe_file); 1491 } 1492 return 0; 1493 } 1494 1495 /** 1496 * get_mm_exe_file - acquire a reference to the mm's executable file 1497 * @mm: The mm of interest. 1498 * 1499 * Returns %NULL if mm has no associated executable file. 1500 * User must release file via fput(). 1501 */ 1502 struct file *get_mm_exe_file(struct mm_struct *mm) 1503 { 1504 struct file *exe_file; 1505 1506 rcu_read_lock(); 1507 exe_file = get_file_rcu(&mm->exe_file); 1508 rcu_read_unlock(); 1509 return exe_file; 1510 } 1511 1512 /** 1513 * get_task_exe_file - acquire a reference to the task's executable file 1514 * @task: The task. 1515 * 1516 * Returns %NULL if task's mm (if any) has no associated executable file or 1517 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1518 * User must release file via fput(). 1519 */ 1520 struct file *get_task_exe_file(struct task_struct *task) 1521 { 1522 struct file *exe_file = NULL; 1523 struct mm_struct *mm; 1524 1525 if (task->flags & PF_KTHREAD) 1526 return NULL; 1527 1528 task_lock(task); 1529 mm = task->mm; 1530 if (mm) 1531 exe_file = get_mm_exe_file(mm); 1532 task_unlock(task); 1533 return exe_file; 1534 } 1535 1536 /** 1537 * get_task_mm - acquire a reference to the task's mm 1538 * @task: The task. 1539 * 1540 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1541 * this kernel workthread has transiently adopted a user mm with use_mm, 1542 * to do its AIO) is not set and if so returns a reference to it, after 1543 * bumping up the use count. User must release the mm via mmput() 1544 * after use. Typically used by /proc and ptrace. 1545 */ 1546 struct mm_struct *get_task_mm(struct task_struct *task) 1547 { 1548 struct mm_struct *mm; 1549 1550 if (task->flags & PF_KTHREAD) 1551 return NULL; 1552 1553 task_lock(task); 1554 mm = task->mm; 1555 if (mm) 1556 mmget(mm); 1557 task_unlock(task); 1558 return mm; 1559 } 1560 EXPORT_SYMBOL_GPL(get_task_mm); 1561 1562 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1563 { 1564 struct mm_struct *mm; 1565 int err; 1566 1567 err = down_read_killable(&task->signal->exec_update_lock); 1568 if (err) 1569 return ERR_PTR(err); 1570 1571 mm = get_task_mm(task); 1572 if (!mm) { 1573 mm = ERR_PTR(-ESRCH); 1574 } else if (mm != current->mm && !ptrace_may_access(task, mode)) { 1575 mmput(mm); 1576 mm = ERR_PTR(-EACCES); 1577 } 1578 up_read(&task->signal->exec_update_lock); 1579 1580 return mm; 1581 } 1582 1583 static void complete_vfork_done(struct task_struct *tsk) 1584 { 1585 struct completion *vfork; 1586 1587 task_lock(tsk); 1588 vfork = tsk->vfork_done; 1589 if (likely(vfork)) { 1590 tsk->vfork_done = NULL; 1591 complete(vfork); 1592 } 1593 task_unlock(tsk); 1594 } 1595 1596 static int wait_for_vfork_done(struct task_struct *child, 1597 struct completion *vfork) 1598 { 1599 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1600 int killed; 1601 1602 cgroup_enter_frozen(); 1603 killed = wait_for_completion_state(vfork, state); 1604 cgroup_leave_frozen(false); 1605 1606 if (killed) { 1607 task_lock(child); 1608 child->vfork_done = NULL; 1609 task_unlock(child); 1610 } 1611 1612 put_task_struct(child); 1613 return killed; 1614 } 1615 1616 /* Please note the differences between mmput and mm_release. 1617 * mmput is called whenever we stop holding onto a mm_struct, 1618 * error success whatever. 1619 * 1620 * mm_release is called after a mm_struct has been removed 1621 * from the current process. 1622 * 1623 * This difference is important for error handling, when we 1624 * only half set up a mm_struct for a new process and need to restore 1625 * the old one. Because we mmput the new mm_struct before 1626 * restoring the old one. . . 1627 * Eric Biederman 10 January 1998 1628 */ 1629 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1630 { 1631 uprobe_free_utask(tsk); 1632 1633 /* Get rid of any cached register state */ 1634 deactivate_mm(tsk, mm); 1635 1636 /* 1637 * Signal userspace if we're not exiting with a core dump 1638 * because we want to leave the value intact for debugging 1639 * purposes. 1640 */ 1641 if (tsk->clear_child_tid) { 1642 if (atomic_read(&mm->mm_users) > 1) { 1643 /* 1644 * We don't check the error code - if userspace has 1645 * not set up a proper pointer then tough luck. 1646 */ 1647 put_user(0, tsk->clear_child_tid); 1648 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1649 1, NULL, NULL, 0, 0); 1650 } 1651 tsk->clear_child_tid = NULL; 1652 } 1653 1654 /* 1655 * All done, finally we can wake up parent and return this mm to him. 1656 * Also kthread_stop() uses this completion for synchronization. 1657 */ 1658 if (tsk->vfork_done) 1659 complete_vfork_done(tsk); 1660 } 1661 1662 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1663 { 1664 futex_exit_release(tsk); 1665 mm_release(tsk, mm); 1666 } 1667 1668 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1669 { 1670 futex_exec_release(tsk); 1671 mm_release(tsk, mm); 1672 } 1673 1674 /** 1675 * dup_mm() - duplicates an existing mm structure 1676 * @tsk: the task_struct with which the new mm will be associated. 1677 * @oldmm: the mm to duplicate. 1678 * 1679 * Allocates a new mm structure and duplicates the provided @oldmm structure 1680 * content into it. 1681 * 1682 * Return: the duplicated mm or NULL on failure. 1683 */ 1684 static struct mm_struct *dup_mm(struct task_struct *tsk, 1685 struct mm_struct *oldmm) 1686 { 1687 struct mm_struct *mm; 1688 int err; 1689 1690 mm = allocate_mm(); 1691 if (!mm) 1692 goto fail_nomem; 1693 1694 memcpy(mm, oldmm, sizeof(*mm)); 1695 1696 if (!mm_init(mm, tsk, mm->user_ns)) 1697 goto fail_nomem; 1698 1699 uprobe_start_dup_mmap(); 1700 err = dup_mmap(mm, oldmm); 1701 if (err) 1702 goto free_pt; 1703 uprobe_end_dup_mmap(); 1704 1705 mm->hiwater_rss = get_mm_rss(mm); 1706 mm->hiwater_vm = mm->total_vm; 1707 1708 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1709 goto free_pt; 1710 1711 return mm; 1712 1713 free_pt: 1714 /* don't put binfmt in mmput, we haven't got module yet */ 1715 mm->binfmt = NULL; 1716 mm_init_owner(mm, NULL); 1717 mmput(mm); 1718 if (err) 1719 uprobe_end_dup_mmap(); 1720 1721 fail_nomem: 1722 return NULL; 1723 } 1724 1725 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1726 { 1727 struct mm_struct *mm, *oldmm; 1728 1729 tsk->min_flt = tsk->maj_flt = 0; 1730 tsk->nvcsw = tsk->nivcsw = 0; 1731 #ifdef CONFIG_DETECT_HUNG_TASK 1732 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1733 tsk->last_switch_time = 0; 1734 #endif 1735 1736 tsk->mm = NULL; 1737 tsk->active_mm = NULL; 1738 1739 /* 1740 * Are we cloning a kernel thread? 1741 * 1742 * We need to steal a active VM for that.. 1743 */ 1744 oldmm = current->mm; 1745 if (!oldmm) 1746 return 0; 1747 1748 if (clone_flags & CLONE_VM) { 1749 mmget(oldmm); 1750 mm = oldmm; 1751 } else { 1752 mm = dup_mm(tsk, current->mm); 1753 if (!mm) 1754 return -ENOMEM; 1755 } 1756 1757 tsk->mm = mm; 1758 tsk->active_mm = mm; 1759 sched_mm_cid_fork(tsk); 1760 return 0; 1761 } 1762 1763 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1764 { 1765 struct fs_struct *fs = current->fs; 1766 if (clone_flags & CLONE_FS) { 1767 /* tsk->fs is already what we want */ 1768 spin_lock(&fs->lock); 1769 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1770 if (fs->in_exec) { 1771 spin_unlock(&fs->lock); 1772 return -EAGAIN; 1773 } 1774 fs->users++; 1775 spin_unlock(&fs->lock); 1776 return 0; 1777 } 1778 tsk->fs = copy_fs_struct(fs); 1779 if (!tsk->fs) 1780 return -ENOMEM; 1781 return 0; 1782 } 1783 1784 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1785 int no_files) 1786 { 1787 struct files_struct *oldf, *newf; 1788 1789 /* 1790 * A background process may not have any files ... 1791 */ 1792 oldf = current->files; 1793 if (!oldf) 1794 return 0; 1795 1796 if (no_files) { 1797 tsk->files = NULL; 1798 return 0; 1799 } 1800 1801 if (clone_flags & CLONE_FILES) { 1802 atomic_inc(&oldf->count); 1803 return 0; 1804 } 1805 1806 newf = dup_fd(oldf, NULL); 1807 if (IS_ERR(newf)) 1808 return PTR_ERR(newf); 1809 1810 tsk->files = newf; 1811 return 0; 1812 } 1813 1814 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1815 { 1816 struct sighand_struct *sig; 1817 1818 if (clone_flags & CLONE_SIGHAND) { 1819 refcount_inc(¤t->sighand->count); 1820 return 0; 1821 } 1822 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1823 RCU_INIT_POINTER(tsk->sighand, sig); 1824 if (!sig) 1825 return -ENOMEM; 1826 1827 refcount_set(&sig->count, 1); 1828 spin_lock_irq(¤t->sighand->siglock); 1829 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1830 spin_unlock_irq(¤t->sighand->siglock); 1831 1832 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1833 if (clone_flags & CLONE_CLEAR_SIGHAND) 1834 flush_signal_handlers(tsk, 0); 1835 1836 return 0; 1837 } 1838 1839 void __cleanup_sighand(struct sighand_struct *sighand) 1840 { 1841 if (refcount_dec_and_test(&sighand->count)) { 1842 signalfd_cleanup(sighand); 1843 /* 1844 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1845 * without an RCU grace period, see __lock_task_sighand(). 1846 */ 1847 kmem_cache_free(sighand_cachep, sighand); 1848 } 1849 } 1850 1851 /* 1852 * Initialize POSIX timer handling for a thread group. 1853 */ 1854 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1855 { 1856 struct posix_cputimers *pct = &sig->posix_cputimers; 1857 unsigned long cpu_limit; 1858 1859 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1860 posix_cputimers_group_init(pct, cpu_limit); 1861 } 1862 1863 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1864 { 1865 struct signal_struct *sig; 1866 1867 if (clone_flags & CLONE_THREAD) 1868 return 0; 1869 1870 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1871 tsk->signal = sig; 1872 if (!sig) 1873 return -ENOMEM; 1874 1875 sig->nr_threads = 1; 1876 sig->quick_threads = 1; 1877 atomic_set(&sig->live, 1); 1878 refcount_set(&sig->sigcnt, 1); 1879 1880 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1881 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1882 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1883 1884 init_waitqueue_head(&sig->wait_chldexit); 1885 sig->curr_target = tsk; 1886 init_sigpending(&sig->shared_pending); 1887 INIT_HLIST_HEAD(&sig->multiprocess); 1888 seqlock_init(&sig->stats_lock); 1889 prev_cputime_init(&sig->prev_cputime); 1890 1891 #ifdef CONFIG_POSIX_TIMERS 1892 INIT_HLIST_HEAD(&sig->posix_timers); 1893 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1894 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1895 sig->real_timer.function = it_real_fn; 1896 #endif 1897 1898 task_lock(current->group_leader); 1899 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1900 task_unlock(current->group_leader); 1901 1902 posix_cpu_timers_init_group(sig); 1903 1904 tty_audit_fork(sig); 1905 sched_autogroup_fork(sig); 1906 1907 sig->oom_score_adj = current->signal->oom_score_adj; 1908 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1909 1910 mutex_init(&sig->cred_guard_mutex); 1911 init_rwsem(&sig->exec_update_lock); 1912 1913 return 0; 1914 } 1915 1916 static void copy_seccomp(struct task_struct *p) 1917 { 1918 #ifdef CONFIG_SECCOMP 1919 /* 1920 * Must be called with sighand->lock held, which is common to 1921 * all threads in the group. Holding cred_guard_mutex is not 1922 * needed because this new task is not yet running and cannot 1923 * be racing exec. 1924 */ 1925 assert_spin_locked(¤t->sighand->siglock); 1926 1927 /* Ref-count the new filter user, and assign it. */ 1928 get_seccomp_filter(current); 1929 p->seccomp = current->seccomp; 1930 1931 /* 1932 * Explicitly enable no_new_privs here in case it got set 1933 * between the task_struct being duplicated and holding the 1934 * sighand lock. The seccomp state and nnp must be in sync. 1935 */ 1936 if (task_no_new_privs(current)) 1937 task_set_no_new_privs(p); 1938 1939 /* 1940 * If the parent gained a seccomp mode after copying thread 1941 * flags and between before we held the sighand lock, we have 1942 * to manually enable the seccomp thread flag here. 1943 */ 1944 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1945 set_task_syscall_work(p, SECCOMP); 1946 #endif 1947 } 1948 1949 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1950 { 1951 current->clear_child_tid = tidptr; 1952 1953 return task_pid_vnr(current); 1954 } 1955 1956 static void rt_mutex_init_task(struct task_struct *p) 1957 { 1958 raw_spin_lock_init(&p->pi_lock); 1959 #ifdef CONFIG_RT_MUTEXES 1960 p->pi_waiters = RB_ROOT_CACHED; 1961 p->pi_top_task = NULL; 1962 p->pi_blocked_on = NULL; 1963 #endif 1964 } 1965 1966 static inline void init_task_pid_links(struct task_struct *task) 1967 { 1968 enum pid_type type; 1969 1970 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1971 INIT_HLIST_NODE(&task->pid_links[type]); 1972 } 1973 1974 static inline void 1975 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1976 { 1977 if (type == PIDTYPE_PID) 1978 task->thread_pid = pid; 1979 else 1980 task->signal->pids[type] = pid; 1981 } 1982 1983 static inline void rcu_copy_process(struct task_struct *p) 1984 { 1985 #ifdef CONFIG_PREEMPT_RCU 1986 p->rcu_read_lock_nesting = 0; 1987 p->rcu_read_unlock_special.s = 0; 1988 p->rcu_blocked_node = NULL; 1989 INIT_LIST_HEAD(&p->rcu_node_entry); 1990 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1991 #ifdef CONFIG_TASKS_RCU 1992 p->rcu_tasks_holdout = false; 1993 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1994 p->rcu_tasks_idle_cpu = -1; 1995 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1996 #endif /* #ifdef CONFIG_TASKS_RCU */ 1997 #ifdef CONFIG_TASKS_TRACE_RCU 1998 p->trc_reader_nesting = 0; 1999 p->trc_reader_special.s = 0; 2000 INIT_LIST_HEAD(&p->trc_holdout_list); 2001 INIT_LIST_HEAD(&p->trc_blkd_node); 2002 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 2003 } 2004 2005 /** 2006 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2007 * @pid: the struct pid for which to create a pidfd 2008 * @flags: flags of the new @pidfd 2009 * @ret: Where to return the file for the pidfd. 2010 * 2011 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2012 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2013 * 2014 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2015 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2016 * pidfd file are prepared. 2017 * 2018 * If this function returns successfully the caller is responsible to either 2019 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2020 * order to install the pidfd into its file descriptor table or they must use 2021 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2022 * respectively. 2023 * 2024 * This function is useful when a pidfd must already be reserved but there 2025 * might still be points of failure afterwards and the caller wants to ensure 2026 * that no pidfd is leaked into its file descriptor table. 2027 * 2028 * Return: On success, a reserved pidfd is returned from the function and a new 2029 * pidfd file is returned in the last argument to the function. On 2030 * error, a negative error code is returned from the function and the 2031 * last argument remains unchanged. 2032 */ 2033 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2034 { 2035 int pidfd; 2036 struct file *pidfd_file; 2037 2038 pidfd = get_unused_fd_flags(O_CLOEXEC); 2039 if (pidfd < 0) 2040 return pidfd; 2041 2042 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2043 if (IS_ERR(pidfd_file)) { 2044 put_unused_fd(pidfd); 2045 return PTR_ERR(pidfd_file); 2046 } 2047 /* 2048 * anon_inode_getfile() ignores everything outside of the 2049 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2050 */ 2051 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2052 *ret = pidfd_file; 2053 return pidfd; 2054 } 2055 2056 /** 2057 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2058 * @pid: the struct pid for which to create a pidfd 2059 * @flags: flags of the new @pidfd 2060 * @ret: Where to return the pidfd. 2061 * 2062 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2063 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2064 * 2065 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2066 * task identified by @pid must be a thread-group leader. 2067 * 2068 * If this function returns successfully the caller is responsible to either 2069 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2070 * order to install the pidfd into its file descriptor table or they must use 2071 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2072 * respectively. 2073 * 2074 * This function is useful when a pidfd must already be reserved but there 2075 * might still be points of failure afterwards and the caller wants to ensure 2076 * that no pidfd is leaked into its file descriptor table. 2077 * 2078 * Return: On success, a reserved pidfd is returned from the function and a new 2079 * pidfd file is returned in the last argument to the function. On 2080 * error, a negative error code is returned from the function and the 2081 * last argument remains unchanged. 2082 */ 2083 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2084 { 2085 bool thread = flags & PIDFD_THREAD; 2086 2087 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2088 return -EINVAL; 2089 2090 return __pidfd_prepare(pid, flags, ret); 2091 } 2092 2093 static void __delayed_free_task(struct rcu_head *rhp) 2094 { 2095 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2096 2097 free_task(tsk); 2098 } 2099 2100 static __always_inline void delayed_free_task(struct task_struct *tsk) 2101 { 2102 if (IS_ENABLED(CONFIG_MEMCG)) 2103 call_rcu(&tsk->rcu, __delayed_free_task); 2104 else 2105 free_task(tsk); 2106 } 2107 2108 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2109 { 2110 /* Skip if kernel thread */ 2111 if (!tsk->mm) 2112 return; 2113 2114 /* Skip if spawning a thread or using vfork */ 2115 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2116 return; 2117 2118 /* We need to synchronize with __set_oom_adj */ 2119 mutex_lock(&oom_adj_mutex); 2120 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2121 /* Update the values in case they were changed after copy_signal */ 2122 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2123 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2124 mutex_unlock(&oom_adj_mutex); 2125 } 2126 2127 #ifdef CONFIG_RV 2128 static void rv_task_fork(struct task_struct *p) 2129 { 2130 int i; 2131 2132 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2133 p->rv[i].da_mon.monitoring = false; 2134 } 2135 #else 2136 #define rv_task_fork(p) do {} while (0) 2137 #endif 2138 2139 /* 2140 * This creates a new process as a copy of the old one, 2141 * but does not actually start it yet. 2142 * 2143 * It copies the registers, and all the appropriate 2144 * parts of the process environment (as per the clone 2145 * flags). The actual kick-off is left to the caller. 2146 */ 2147 __latent_entropy struct task_struct *copy_process( 2148 struct pid *pid, 2149 int trace, 2150 int node, 2151 struct kernel_clone_args *args) 2152 { 2153 int pidfd = -1, retval; 2154 struct task_struct *p; 2155 struct multiprocess_signals delayed; 2156 struct file *pidfile = NULL; 2157 const u64 clone_flags = args->flags; 2158 struct nsproxy *nsp = current->nsproxy; 2159 2160 /* 2161 * Don't allow sharing the root directory with processes in a different 2162 * namespace 2163 */ 2164 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2165 return ERR_PTR(-EINVAL); 2166 2167 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2168 return ERR_PTR(-EINVAL); 2169 2170 /* 2171 * Thread groups must share signals as well, and detached threads 2172 * can only be started up within the thread group. 2173 */ 2174 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2175 return ERR_PTR(-EINVAL); 2176 2177 /* 2178 * Shared signal handlers imply shared VM. By way of the above, 2179 * thread groups also imply shared VM. Blocking this case allows 2180 * for various simplifications in other code. 2181 */ 2182 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2183 return ERR_PTR(-EINVAL); 2184 2185 /* 2186 * Siblings of global init remain as zombies on exit since they are 2187 * not reaped by their parent (swapper). To solve this and to avoid 2188 * multi-rooted process trees, prevent global and container-inits 2189 * from creating siblings. 2190 */ 2191 if ((clone_flags & CLONE_PARENT) && 2192 current->signal->flags & SIGNAL_UNKILLABLE) 2193 return ERR_PTR(-EINVAL); 2194 2195 /* 2196 * If the new process will be in a different pid or user namespace 2197 * do not allow it to share a thread group with the forking task. 2198 */ 2199 if (clone_flags & CLONE_THREAD) { 2200 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2201 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2202 return ERR_PTR(-EINVAL); 2203 } 2204 2205 if (clone_flags & CLONE_PIDFD) { 2206 /* 2207 * - CLONE_DETACHED is blocked so that we can potentially 2208 * reuse it later for CLONE_PIDFD. 2209 */ 2210 if (clone_flags & CLONE_DETACHED) 2211 return ERR_PTR(-EINVAL); 2212 } 2213 2214 /* 2215 * Force any signals received before this point to be delivered 2216 * before the fork happens. Collect up signals sent to multiple 2217 * processes that happen during the fork and delay them so that 2218 * they appear to happen after the fork. 2219 */ 2220 sigemptyset(&delayed.signal); 2221 INIT_HLIST_NODE(&delayed.node); 2222 2223 spin_lock_irq(¤t->sighand->siglock); 2224 if (!(clone_flags & CLONE_THREAD)) 2225 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2226 recalc_sigpending(); 2227 spin_unlock_irq(¤t->sighand->siglock); 2228 retval = -ERESTARTNOINTR; 2229 if (task_sigpending(current)) 2230 goto fork_out; 2231 2232 retval = -ENOMEM; 2233 p = dup_task_struct(current, node); 2234 if (!p) 2235 goto fork_out; 2236 p->flags &= ~PF_KTHREAD; 2237 if (args->kthread) 2238 p->flags |= PF_KTHREAD; 2239 if (args->user_worker) { 2240 /* 2241 * Mark us a user worker, and block any signal that isn't 2242 * fatal or STOP 2243 */ 2244 p->flags |= PF_USER_WORKER; 2245 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2246 } 2247 if (args->io_thread) 2248 p->flags |= PF_IO_WORKER; 2249 2250 if (args->name) 2251 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2252 2253 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2254 /* 2255 * Clear TID on mm_release()? 2256 */ 2257 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2258 2259 ftrace_graph_init_task(p); 2260 2261 rt_mutex_init_task(p); 2262 2263 lockdep_assert_irqs_enabled(); 2264 #ifdef CONFIG_PROVE_LOCKING 2265 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2266 #endif 2267 retval = copy_creds(p, clone_flags); 2268 if (retval < 0) 2269 goto bad_fork_free; 2270 2271 retval = -EAGAIN; 2272 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2273 if (p->real_cred->user != INIT_USER && 2274 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2275 goto bad_fork_cleanup_count; 2276 } 2277 current->flags &= ~PF_NPROC_EXCEEDED; 2278 2279 /* 2280 * If multiple threads are within copy_process(), then this check 2281 * triggers too late. This doesn't hurt, the check is only there 2282 * to stop root fork bombs. 2283 */ 2284 retval = -EAGAIN; 2285 if (data_race(nr_threads >= max_threads)) 2286 goto bad_fork_cleanup_count; 2287 2288 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2289 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2290 p->flags |= PF_FORKNOEXEC; 2291 INIT_LIST_HEAD(&p->children); 2292 INIT_LIST_HEAD(&p->sibling); 2293 rcu_copy_process(p); 2294 p->vfork_done = NULL; 2295 spin_lock_init(&p->alloc_lock); 2296 2297 init_sigpending(&p->pending); 2298 2299 p->utime = p->stime = p->gtime = 0; 2300 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2301 p->utimescaled = p->stimescaled = 0; 2302 #endif 2303 prev_cputime_init(&p->prev_cputime); 2304 2305 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2306 seqcount_init(&p->vtime.seqcount); 2307 p->vtime.starttime = 0; 2308 p->vtime.state = VTIME_INACTIVE; 2309 #endif 2310 2311 #ifdef CONFIG_IO_URING 2312 p->io_uring = NULL; 2313 #endif 2314 2315 p->default_timer_slack_ns = current->timer_slack_ns; 2316 2317 #ifdef CONFIG_PSI 2318 p->psi_flags = 0; 2319 #endif 2320 2321 task_io_accounting_init(&p->ioac); 2322 acct_clear_integrals(p); 2323 2324 posix_cputimers_init(&p->posix_cputimers); 2325 tick_dep_init_task(p); 2326 2327 p->io_context = NULL; 2328 audit_set_context(p, NULL); 2329 cgroup_fork(p); 2330 if (args->kthread) { 2331 if (!set_kthread_struct(p)) 2332 goto bad_fork_cleanup_delayacct; 2333 } 2334 #ifdef CONFIG_NUMA 2335 p->mempolicy = mpol_dup(p->mempolicy); 2336 if (IS_ERR(p->mempolicy)) { 2337 retval = PTR_ERR(p->mempolicy); 2338 p->mempolicy = NULL; 2339 goto bad_fork_cleanup_delayacct; 2340 } 2341 #endif 2342 #ifdef CONFIG_CPUSETS 2343 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2344 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2345 #endif 2346 #ifdef CONFIG_TRACE_IRQFLAGS 2347 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2348 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2349 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2350 p->softirqs_enabled = 1; 2351 p->softirq_context = 0; 2352 #endif 2353 2354 p->pagefault_disabled = 0; 2355 2356 #ifdef CONFIG_LOCKDEP 2357 lockdep_init_task(p); 2358 #endif 2359 2360 #ifdef CONFIG_DEBUG_MUTEXES 2361 p->blocked_on = NULL; /* not blocked yet */ 2362 #endif 2363 #ifdef CONFIG_BCACHE 2364 p->sequential_io = 0; 2365 p->sequential_io_avg = 0; 2366 #endif 2367 #ifdef CONFIG_BPF_SYSCALL 2368 RCU_INIT_POINTER(p->bpf_storage, NULL); 2369 p->bpf_ctx = NULL; 2370 #endif 2371 2372 /* Perform scheduler related setup. Assign this task to a CPU. */ 2373 retval = sched_fork(clone_flags, p); 2374 if (retval) 2375 goto bad_fork_cleanup_policy; 2376 2377 retval = perf_event_init_task(p, clone_flags); 2378 if (retval) 2379 goto bad_fork_sched_cancel_fork; 2380 retval = audit_alloc(p); 2381 if (retval) 2382 goto bad_fork_cleanup_perf; 2383 /* copy all the process information */ 2384 shm_init_task(p); 2385 retval = security_task_alloc(p, clone_flags); 2386 if (retval) 2387 goto bad_fork_cleanup_audit; 2388 retval = copy_semundo(clone_flags, p); 2389 if (retval) 2390 goto bad_fork_cleanup_security; 2391 retval = copy_files(clone_flags, p, args->no_files); 2392 if (retval) 2393 goto bad_fork_cleanup_semundo; 2394 retval = copy_fs(clone_flags, p); 2395 if (retval) 2396 goto bad_fork_cleanup_files; 2397 retval = copy_sighand(clone_flags, p); 2398 if (retval) 2399 goto bad_fork_cleanup_fs; 2400 retval = copy_signal(clone_flags, p); 2401 if (retval) 2402 goto bad_fork_cleanup_sighand; 2403 retval = copy_mm(clone_flags, p); 2404 if (retval) 2405 goto bad_fork_cleanup_signal; 2406 retval = copy_namespaces(clone_flags, p); 2407 if (retval) 2408 goto bad_fork_cleanup_mm; 2409 retval = copy_io(clone_flags, p); 2410 if (retval) 2411 goto bad_fork_cleanup_namespaces; 2412 retval = copy_thread(p, args); 2413 if (retval) 2414 goto bad_fork_cleanup_io; 2415 2416 stackleak_task_init(p); 2417 2418 if (pid != &init_struct_pid) { 2419 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2420 args->set_tid_size); 2421 if (IS_ERR(pid)) { 2422 retval = PTR_ERR(pid); 2423 goto bad_fork_cleanup_thread; 2424 } 2425 } 2426 2427 /* 2428 * This has to happen after we've potentially unshared the file 2429 * descriptor table (so that the pidfd doesn't leak into the child 2430 * if the fd table isn't shared). 2431 */ 2432 if (clone_flags & CLONE_PIDFD) { 2433 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2434 2435 /* Note that no task has been attached to @pid yet. */ 2436 retval = __pidfd_prepare(pid, flags, &pidfile); 2437 if (retval < 0) 2438 goto bad_fork_free_pid; 2439 pidfd = retval; 2440 2441 retval = put_user(pidfd, args->pidfd); 2442 if (retval) 2443 goto bad_fork_put_pidfd; 2444 } 2445 2446 #ifdef CONFIG_BLOCK 2447 p->plug = NULL; 2448 #endif 2449 futex_init_task(p); 2450 2451 /* 2452 * sigaltstack should be cleared when sharing the same VM 2453 */ 2454 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2455 sas_ss_reset(p); 2456 2457 /* 2458 * Syscall tracing and stepping should be turned off in the 2459 * child regardless of CLONE_PTRACE. 2460 */ 2461 user_disable_single_step(p); 2462 clear_task_syscall_work(p, SYSCALL_TRACE); 2463 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2464 clear_task_syscall_work(p, SYSCALL_EMU); 2465 #endif 2466 clear_tsk_latency_tracing(p); 2467 2468 /* ok, now we should be set up.. */ 2469 p->pid = pid_nr(pid); 2470 if (clone_flags & CLONE_THREAD) { 2471 p->group_leader = current->group_leader; 2472 p->tgid = current->tgid; 2473 } else { 2474 p->group_leader = p; 2475 p->tgid = p->pid; 2476 } 2477 2478 p->nr_dirtied = 0; 2479 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2480 p->dirty_paused_when = 0; 2481 2482 p->pdeath_signal = 0; 2483 p->task_works = NULL; 2484 clear_posix_cputimers_work(p); 2485 2486 #ifdef CONFIG_KRETPROBES 2487 p->kretprobe_instances.first = NULL; 2488 #endif 2489 #ifdef CONFIG_RETHOOK 2490 p->rethooks.first = NULL; 2491 #endif 2492 2493 /* 2494 * Ensure that the cgroup subsystem policies allow the new process to be 2495 * forked. It should be noted that the new process's css_set can be changed 2496 * between here and cgroup_post_fork() if an organisation operation is in 2497 * progress. 2498 */ 2499 retval = cgroup_can_fork(p, args); 2500 if (retval) 2501 goto bad_fork_put_pidfd; 2502 2503 /* 2504 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2505 * the new task on the correct runqueue. All this *before* the task 2506 * becomes visible. 2507 * 2508 * This isn't part of ->can_fork() because while the re-cloning is 2509 * cgroup specific, it unconditionally needs to place the task on a 2510 * runqueue. 2511 */ 2512 retval = sched_cgroup_fork(p, args); 2513 if (retval) 2514 goto bad_fork_cancel_cgroup; 2515 2516 /* 2517 * From this point on we must avoid any synchronous user-space 2518 * communication until we take the tasklist-lock. In particular, we do 2519 * not want user-space to be able to predict the process start-time by 2520 * stalling fork(2) after we recorded the start_time but before it is 2521 * visible to the system. 2522 */ 2523 2524 p->start_time = ktime_get_ns(); 2525 p->start_boottime = ktime_get_boottime_ns(); 2526 2527 /* 2528 * Make it visible to the rest of the system, but dont wake it up yet. 2529 * Need tasklist lock for parent etc handling! 2530 */ 2531 write_lock_irq(&tasklist_lock); 2532 2533 /* CLONE_PARENT re-uses the old parent */ 2534 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2535 p->real_parent = current->real_parent; 2536 p->parent_exec_id = current->parent_exec_id; 2537 if (clone_flags & CLONE_THREAD) 2538 p->exit_signal = -1; 2539 else 2540 p->exit_signal = current->group_leader->exit_signal; 2541 } else { 2542 p->real_parent = current; 2543 p->parent_exec_id = current->self_exec_id; 2544 p->exit_signal = args->exit_signal; 2545 } 2546 2547 klp_copy_process(p); 2548 2549 sched_core_fork(p); 2550 2551 spin_lock(¤t->sighand->siglock); 2552 2553 rv_task_fork(p); 2554 2555 rseq_fork(p, clone_flags); 2556 2557 /* Don't start children in a dying pid namespace */ 2558 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2559 retval = -ENOMEM; 2560 goto bad_fork_core_free; 2561 } 2562 2563 /* Let kill terminate clone/fork in the middle */ 2564 if (fatal_signal_pending(current)) { 2565 retval = -EINTR; 2566 goto bad_fork_core_free; 2567 } 2568 2569 /* No more failure paths after this point. */ 2570 2571 /* 2572 * Copy seccomp details explicitly here, in case they were changed 2573 * before holding sighand lock. 2574 */ 2575 copy_seccomp(p); 2576 2577 init_task_pid_links(p); 2578 if (likely(p->pid)) { 2579 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2580 2581 init_task_pid(p, PIDTYPE_PID, pid); 2582 if (thread_group_leader(p)) { 2583 init_task_pid(p, PIDTYPE_TGID, pid); 2584 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2585 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2586 2587 if (is_child_reaper(pid)) { 2588 ns_of_pid(pid)->child_reaper = p; 2589 p->signal->flags |= SIGNAL_UNKILLABLE; 2590 } 2591 p->signal->shared_pending.signal = delayed.signal; 2592 p->signal->tty = tty_kref_get(current->signal->tty); 2593 /* 2594 * Inherit has_child_subreaper flag under the same 2595 * tasklist_lock with adding child to the process tree 2596 * for propagate_has_child_subreaper optimization. 2597 */ 2598 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2599 p->real_parent->signal->is_child_subreaper; 2600 list_add_tail(&p->sibling, &p->real_parent->children); 2601 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2602 attach_pid(p, PIDTYPE_TGID); 2603 attach_pid(p, PIDTYPE_PGID); 2604 attach_pid(p, PIDTYPE_SID); 2605 __this_cpu_inc(process_counts); 2606 } else { 2607 current->signal->nr_threads++; 2608 current->signal->quick_threads++; 2609 atomic_inc(¤t->signal->live); 2610 refcount_inc(¤t->signal->sigcnt); 2611 task_join_group_stop(p); 2612 list_add_tail_rcu(&p->thread_node, 2613 &p->signal->thread_head); 2614 } 2615 attach_pid(p, PIDTYPE_PID); 2616 nr_threads++; 2617 } 2618 total_forks++; 2619 hlist_del_init(&delayed.node); 2620 spin_unlock(¤t->sighand->siglock); 2621 syscall_tracepoint_update(p); 2622 write_unlock_irq(&tasklist_lock); 2623 2624 if (pidfile) 2625 fd_install(pidfd, pidfile); 2626 2627 proc_fork_connector(p); 2628 sched_post_fork(p); 2629 cgroup_post_fork(p, args); 2630 perf_event_fork(p); 2631 2632 trace_task_newtask(p, clone_flags); 2633 uprobe_copy_process(p, clone_flags); 2634 user_events_fork(p, clone_flags); 2635 2636 copy_oom_score_adj(clone_flags, p); 2637 2638 return p; 2639 2640 bad_fork_core_free: 2641 sched_core_free(p); 2642 spin_unlock(¤t->sighand->siglock); 2643 write_unlock_irq(&tasklist_lock); 2644 bad_fork_cancel_cgroup: 2645 cgroup_cancel_fork(p, args); 2646 bad_fork_put_pidfd: 2647 if (clone_flags & CLONE_PIDFD) { 2648 fput(pidfile); 2649 put_unused_fd(pidfd); 2650 } 2651 bad_fork_free_pid: 2652 if (pid != &init_struct_pid) 2653 free_pid(pid); 2654 bad_fork_cleanup_thread: 2655 exit_thread(p); 2656 bad_fork_cleanup_io: 2657 if (p->io_context) 2658 exit_io_context(p); 2659 bad_fork_cleanup_namespaces: 2660 exit_task_namespaces(p); 2661 bad_fork_cleanup_mm: 2662 if (p->mm) { 2663 mm_clear_owner(p->mm, p); 2664 mmput(p->mm); 2665 } 2666 bad_fork_cleanup_signal: 2667 if (!(clone_flags & CLONE_THREAD)) 2668 free_signal_struct(p->signal); 2669 bad_fork_cleanup_sighand: 2670 __cleanup_sighand(p->sighand); 2671 bad_fork_cleanup_fs: 2672 exit_fs(p); /* blocking */ 2673 bad_fork_cleanup_files: 2674 exit_files(p); /* blocking */ 2675 bad_fork_cleanup_semundo: 2676 exit_sem(p); 2677 bad_fork_cleanup_security: 2678 security_task_free(p); 2679 bad_fork_cleanup_audit: 2680 audit_free(p); 2681 bad_fork_cleanup_perf: 2682 perf_event_free_task(p); 2683 bad_fork_sched_cancel_fork: 2684 sched_cancel_fork(p); 2685 bad_fork_cleanup_policy: 2686 lockdep_free_task(p); 2687 #ifdef CONFIG_NUMA 2688 mpol_put(p->mempolicy); 2689 #endif 2690 bad_fork_cleanup_delayacct: 2691 delayacct_tsk_free(p); 2692 bad_fork_cleanup_count: 2693 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2694 exit_creds(p); 2695 bad_fork_free: 2696 WRITE_ONCE(p->__state, TASK_DEAD); 2697 exit_task_stack_account(p); 2698 put_task_stack(p); 2699 delayed_free_task(p); 2700 fork_out: 2701 spin_lock_irq(¤t->sighand->siglock); 2702 hlist_del_init(&delayed.node); 2703 spin_unlock_irq(¤t->sighand->siglock); 2704 return ERR_PTR(retval); 2705 } 2706 2707 static inline void init_idle_pids(struct task_struct *idle) 2708 { 2709 enum pid_type type; 2710 2711 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2712 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2713 init_task_pid(idle, type, &init_struct_pid); 2714 } 2715 } 2716 2717 static int idle_dummy(void *dummy) 2718 { 2719 /* This function is never called */ 2720 return 0; 2721 } 2722 2723 struct task_struct * __init fork_idle(int cpu) 2724 { 2725 struct task_struct *task; 2726 struct kernel_clone_args args = { 2727 .flags = CLONE_VM, 2728 .fn = &idle_dummy, 2729 .fn_arg = NULL, 2730 .kthread = 1, 2731 .idle = 1, 2732 }; 2733 2734 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2735 if (!IS_ERR(task)) { 2736 init_idle_pids(task); 2737 init_idle(task, cpu); 2738 } 2739 2740 return task; 2741 } 2742 2743 /* 2744 * This is like kernel_clone(), but shaved down and tailored to just 2745 * creating io_uring workers. It returns a created task, or an error pointer. 2746 * The returned task is inactive, and the caller must fire it up through 2747 * wake_up_new_task(p). All signals are blocked in the created task. 2748 */ 2749 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2750 { 2751 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2752 CLONE_IO; 2753 struct kernel_clone_args args = { 2754 .flags = ((lower_32_bits(flags) | CLONE_VM | 2755 CLONE_UNTRACED) & ~CSIGNAL), 2756 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2757 .fn = fn, 2758 .fn_arg = arg, 2759 .io_thread = 1, 2760 .user_worker = 1, 2761 }; 2762 2763 return copy_process(NULL, 0, node, &args); 2764 } 2765 2766 /* 2767 * Ok, this is the main fork-routine. 2768 * 2769 * It copies the process, and if successful kick-starts 2770 * it and waits for it to finish using the VM if required. 2771 * 2772 * args->exit_signal is expected to be checked for sanity by the caller. 2773 */ 2774 pid_t kernel_clone(struct kernel_clone_args *args) 2775 { 2776 u64 clone_flags = args->flags; 2777 struct completion vfork; 2778 struct pid *pid; 2779 struct task_struct *p; 2780 int trace = 0; 2781 pid_t nr; 2782 2783 /* 2784 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2785 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2786 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2787 * field in struct clone_args and it still doesn't make sense to have 2788 * them both point at the same memory location. Performing this check 2789 * here has the advantage that we don't need to have a separate helper 2790 * to check for legacy clone(). 2791 */ 2792 if ((clone_flags & CLONE_PIDFD) && 2793 (clone_flags & CLONE_PARENT_SETTID) && 2794 (args->pidfd == args->parent_tid)) 2795 return -EINVAL; 2796 2797 /* 2798 * Determine whether and which event to report to ptracer. When 2799 * called from kernel_thread or CLONE_UNTRACED is explicitly 2800 * requested, no event is reported; otherwise, report if the event 2801 * for the type of forking is enabled. 2802 */ 2803 if (!(clone_flags & CLONE_UNTRACED)) { 2804 if (clone_flags & CLONE_VFORK) 2805 trace = PTRACE_EVENT_VFORK; 2806 else if (args->exit_signal != SIGCHLD) 2807 trace = PTRACE_EVENT_CLONE; 2808 else 2809 trace = PTRACE_EVENT_FORK; 2810 2811 if (likely(!ptrace_event_enabled(current, trace))) 2812 trace = 0; 2813 } 2814 2815 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2816 add_latent_entropy(); 2817 2818 if (IS_ERR(p)) 2819 return PTR_ERR(p); 2820 2821 /* 2822 * Do this prior waking up the new thread - the thread pointer 2823 * might get invalid after that point, if the thread exits quickly. 2824 */ 2825 trace_sched_process_fork(current, p); 2826 2827 pid = get_task_pid(p, PIDTYPE_PID); 2828 nr = pid_vnr(pid); 2829 2830 if (clone_flags & CLONE_PARENT_SETTID) 2831 put_user(nr, args->parent_tid); 2832 2833 if (clone_flags & CLONE_VFORK) { 2834 p->vfork_done = &vfork; 2835 init_completion(&vfork); 2836 get_task_struct(p); 2837 } 2838 2839 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2840 /* lock the task to synchronize with memcg migration */ 2841 task_lock(p); 2842 lru_gen_add_mm(p->mm); 2843 task_unlock(p); 2844 } 2845 2846 wake_up_new_task(p); 2847 2848 /* forking complete and child started to run, tell ptracer */ 2849 if (unlikely(trace)) 2850 ptrace_event_pid(trace, pid); 2851 2852 if (clone_flags & CLONE_VFORK) { 2853 if (!wait_for_vfork_done(p, &vfork)) 2854 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2855 } 2856 2857 put_pid(pid); 2858 return nr; 2859 } 2860 2861 /* 2862 * Create a kernel thread. 2863 */ 2864 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2865 unsigned long flags) 2866 { 2867 struct kernel_clone_args args = { 2868 .flags = ((lower_32_bits(flags) | CLONE_VM | 2869 CLONE_UNTRACED) & ~CSIGNAL), 2870 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2871 .fn = fn, 2872 .fn_arg = arg, 2873 .name = name, 2874 .kthread = 1, 2875 }; 2876 2877 return kernel_clone(&args); 2878 } 2879 2880 /* 2881 * Create a user mode thread. 2882 */ 2883 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2884 { 2885 struct kernel_clone_args args = { 2886 .flags = ((lower_32_bits(flags) | CLONE_VM | 2887 CLONE_UNTRACED) & ~CSIGNAL), 2888 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2889 .fn = fn, 2890 .fn_arg = arg, 2891 }; 2892 2893 return kernel_clone(&args); 2894 } 2895 2896 #ifdef __ARCH_WANT_SYS_FORK 2897 SYSCALL_DEFINE0(fork) 2898 { 2899 #ifdef CONFIG_MMU 2900 struct kernel_clone_args args = { 2901 .exit_signal = SIGCHLD, 2902 }; 2903 2904 return kernel_clone(&args); 2905 #else 2906 /* can not support in nommu mode */ 2907 return -EINVAL; 2908 #endif 2909 } 2910 #endif 2911 2912 #ifdef __ARCH_WANT_SYS_VFORK 2913 SYSCALL_DEFINE0(vfork) 2914 { 2915 struct kernel_clone_args args = { 2916 .flags = CLONE_VFORK | CLONE_VM, 2917 .exit_signal = SIGCHLD, 2918 }; 2919 2920 return kernel_clone(&args); 2921 } 2922 #endif 2923 2924 #ifdef __ARCH_WANT_SYS_CLONE 2925 #ifdef CONFIG_CLONE_BACKWARDS 2926 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2927 int __user *, parent_tidptr, 2928 unsigned long, tls, 2929 int __user *, child_tidptr) 2930 #elif defined(CONFIG_CLONE_BACKWARDS2) 2931 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2932 int __user *, parent_tidptr, 2933 int __user *, child_tidptr, 2934 unsigned long, tls) 2935 #elif defined(CONFIG_CLONE_BACKWARDS3) 2936 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2937 int, stack_size, 2938 int __user *, parent_tidptr, 2939 int __user *, child_tidptr, 2940 unsigned long, tls) 2941 #else 2942 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2943 int __user *, parent_tidptr, 2944 int __user *, child_tidptr, 2945 unsigned long, tls) 2946 #endif 2947 { 2948 struct kernel_clone_args args = { 2949 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2950 .pidfd = parent_tidptr, 2951 .child_tid = child_tidptr, 2952 .parent_tid = parent_tidptr, 2953 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2954 .stack = newsp, 2955 .tls = tls, 2956 }; 2957 2958 return kernel_clone(&args); 2959 } 2960 #endif 2961 2962 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2963 struct clone_args __user *uargs, 2964 size_t usize) 2965 { 2966 int err; 2967 struct clone_args args; 2968 pid_t *kset_tid = kargs->set_tid; 2969 2970 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2971 CLONE_ARGS_SIZE_VER0); 2972 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2973 CLONE_ARGS_SIZE_VER1); 2974 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2975 CLONE_ARGS_SIZE_VER2); 2976 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2977 2978 if (unlikely(usize > PAGE_SIZE)) 2979 return -E2BIG; 2980 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2981 return -EINVAL; 2982 2983 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2984 if (err) 2985 return err; 2986 2987 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2988 return -EINVAL; 2989 2990 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2991 return -EINVAL; 2992 2993 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2994 return -EINVAL; 2995 2996 /* 2997 * Verify that higher 32bits of exit_signal are unset and that 2998 * it is a valid signal 2999 */ 3000 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3001 !valid_signal(args.exit_signal))) 3002 return -EINVAL; 3003 3004 if ((args.flags & CLONE_INTO_CGROUP) && 3005 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3006 return -EINVAL; 3007 3008 *kargs = (struct kernel_clone_args){ 3009 .flags = args.flags, 3010 .pidfd = u64_to_user_ptr(args.pidfd), 3011 .child_tid = u64_to_user_ptr(args.child_tid), 3012 .parent_tid = u64_to_user_ptr(args.parent_tid), 3013 .exit_signal = args.exit_signal, 3014 .stack = args.stack, 3015 .stack_size = args.stack_size, 3016 .tls = args.tls, 3017 .set_tid_size = args.set_tid_size, 3018 .cgroup = args.cgroup, 3019 }; 3020 3021 if (args.set_tid && 3022 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3023 (kargs->set_tid_size * sizeof(pid_t)))) 3024 return -EFAULT; 3025 3026 kargs->set_tid = kset_tid; 3027 3028 return 0; 3029 } 3030 3031 /** 3032 * clone3_stack_valid - check and prepare stack 3033 * @kargs: kernel clone args 3034 * 3035 * Verify that the stack arguments userspace gave us are sane. 3036 * In addition, set the stack direction for userspace since it's easy for us to 3037 * determine. 3038 */ 3039 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3040 { 3041 if (kargs->stack == 0) { 3042 if (kargs->stack_size > 0) 3043 return false; 3044 } else { 3045 if (kargs->stack_size == 0) 3046 return false; 3047 3048 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3049 return false; 3050 3051 #if !defined(CONFIG_STACK_GROWSUP) 3052 kargs->stack += kargs->stack_size; 3053 #endif 3054 } 3055 3056 return true; 3057 } 3058 3059 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3060 { 3061 /* Verify that no unknown flags are passed along. */ 3062 if (kargs->flags & 3063 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3064 return false; 3065 3066 /* 3067 * - make the CLONE_DETACHED bit reusable for clone3 3068 * - make the CSIGNAL bits reusable for clone3 3069 */ 3070 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3071 return false; 3072 3073 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3074 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3075 return false; 3076 3077 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3078 kargs->exit_signal) 3079 return false; 3080 3081 if (!clone3_stack_valid(kargs)) 3082 return false; 3083 3084 return true; 3085 } 3086 3087 /** 3088 * sys_clone3 - create a new process with specific properties 3089 * @uargs: argument structure 3090 * @size: size of @uargs 3091 * 3092 * clone3() is the extensible successor to clone()/clone2(). 3093 * It takes a struct as argument that is versioned by its size. 3094 * 3095 * Return: On success, a positive PID for the child process. 3096 * On error, a negative errno number. 3097 */ 3098 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3099 { 3100 int err; 3101 3102 struct kernel_clone_args kargs; 3103 pid_t set_tid[MAX_PID_NS_LEVEL]; 3104 3105 #ifdef __ARCH_BROKEN_SYS_CLONE3 3106 #warning clone3() entry point is missing, please fix 3107 return -ENOSYS; 3108 #endif 3109 3110 kargs.set_tid = set_tid; 3111 3112 err = copy_clone_args_from_user(&kargs, uargs, size); 3113 if (err) 3114 return err; 3115 3116 if (!clone3_args_valid(&kargs)) 3117 return -EINVAL; 3118 3119 return kernel_clone(&kargs); 3120 } 3121 3122 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3123 { 3124 struct task_struct *leader, *parent, *child; 3125 int res; 3126 3127 read_lock(&tasklist_lock); 3128 leader = top = top->group_leader; 3129 down: 3130 for_each_thread(leader, parent) { 3131 list_for_each_entry(child, &parent->children, sibling) { 3132 res = visitor(child, data); 3133 if (res) { 3134 if (res < 0) 3135 goto out; 3136 leader = child; 3137 goto down; 3138 } 3139 up: 3140 ; 3141 } 3142 } 3143 3144 if (leader != top) { 3145 child = leader; 3146 parent = child->real_parent; 3147 leader = parent->group_leader; 3148 goto up; 3149 } 3150 out: 3151 read_unlock(&tasklist_lock); 3152 } 3153 3154 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3155 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3156 #endif 3157 3158 static void sighand_ctor(void *data) 3159 { 3160 struct sighand_struct *sighand = data; 3161 3162 spin_lock_init(&sighand->siglock); 3163 init_waitqueue_head(&sighand->signalfd_wqh); 3164 } 3165 3166 void __init mm_cache_init(void) 3167 { 3168 unsigned int mm_size; 3169 3170 /* 3171 * The mm_cpumask is located at the end of mm_struct, and is 3172 * dynamically sized based on the maximum CPU number this system 3173 * can have, taking hotplug into account (nr_cpu_ids). 3174 */ 3175 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3176 3177 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3178 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3179 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3180 offsetof(struct mm_struct, saved_auxv), 3181 sizeof_field(struct mm_struct, saved_auxv), 3182 NULL); 3183 } 3184 3185 void __init proc_caches_init(void) 3186 { 3187 sighand_cachep = kmem_cache_create("sighand_cache", 3188 sizeof(struct sighand_struct), 0, 3189 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3190 SLAB_ACCOUNT, sighand_ctor); 3191 signal_cachep = kmem_cache_create("signal_cache", 3192 sizeof(struct signal_struct), 0, 3193 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3194 NULL); 3195 files_cachep = kmem_cache_create("files_cache", 3196 sizeof(struct files_struct), 0, 3197 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3198 NULL); 3199 fs_cachep = kmem_cache_create("fs_cache", 3200 sizeof(struct fs_struct), 0, 3201 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3202 NULL); 3203 3204 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3205 #ifdef CONFIG_PER_VMA_LOCK 3206 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3207 #endif 3208 mmap_init(); 3209 nsproxy_cache_init(); 3210 } 3211 3212 /* 3213 * Check constraints on flags passed to the unshare system call. 3214 */ 3215 static int check_unshare_flags(unsigned long unshare_flags) 3216 { 3217 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3218 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3219 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3220 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3221 CLONE_NEWTIME)) 3222 return -EINVAL; 3223 /* 3224 * Not implemented, but pretend it works if there is nothing 3225 * to unshare. Note that unsharing the address space or the 3226 * signal handlers also need to unshare the signal queues (aka 3227 * CLONE_THREAD). 3228 */ 3229 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3230 if (!thread_group_empty(current)) 3231 return -EINVAL; 3232 } 3233 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3234 if (refcount_read(¤t->sighand->count) > 1) 3235 return -EINVAL; 3236 } 3237 if (unshare_flags & CLONE_VM) { 3238 if (!current_is_single_threaded()) 3239 return -EINVAL; 3240 } 3241 3242 return 0; 3243 } 3244 3245 /* 3246 * Unshare the filesystem structure if it is being shared 3247 */ 3248 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3249 { 3250 struct fs_struct *fs = current->fs; 3251 3252 if (!(unshare_flags & CLONE_FS) || !fs) 3253 return 0; 3254 3255 /* don't need lock here; in the worst case we'll do useless copy */ 3256 if (fs->users == 1) 3257 return 0; 3258 3259 *new_fsp = copy_fs_struct(fs); 3260 if (!*new_fsp) 3261 return -ENOMEM; 3262 3263 return 0; 3264 } 3265 3266 /* 3267 * Unshare file descriptor table if it is being shared 3268 */ 3269 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3270 { 3271 struct files_struct *fd = current->files; 3272 3273 if ((unshare_flags & CLONE_FILES) && 3274 (fd && atomic_read(&fd->count) > 1)) { 3275 fd = dup_fd(fd, NULL); 3276 if (IS_ERR(fd)) 3277 return PTR_ERR(fd); 3278 *new_fdp = fd; 3279 } 3280 3281 return 0; 3282 } 3283 3284 /* 3285 * unshare allows a process to 'unshare' part of the process 3286 * context which was originally shared using clone. copy_* 3287 * functions used by kernel_clone() cannot be used here directly 3288 * because they modify an inactive task_struct that is being 3289 * constructed. Here we are modifying the current, active, 3290 * task_struct. 3291 */ 3292 int ksys_unshare(unsigned long unshare_flags) 3293 { 3294 struct fs_struct *fs, *new_fs = NULL; 3295 struct files_struct *new_fd = NULL; 3296 struct cred *new_cred = NULL; 3297 struct nsproxy *new_nsproxy = NULL; 3298 int do_sysvsem = 0; 3299 int err; 3300 3301 /* 3302 * If unsharing a user namespace must also unshare the thread group 3303 * and unshare the filesystem root and working directories. 3304 */ 3305 if (unshare_flags & CLONE_NEWUSER) 3306 unshare_flags |= CLONE_THREAD | CLONE_FS; 3307 /* 3308 * If unsharing vm, must also unshare signal handlers. 3309 */ 3310 if (unshare_flags & CLONE_VM) 3311 unshare_flags |= CLONE_SIGHAND; 3312 /* 3313 * If unsharing a signal handlers, must also unshare the signal queues. 3314 */ 3315 if (unshare_flags & CLONE_SIGHAND) 3316 unshare_flags |= CLONE_THREAD; 3317 /* 3318 * If unsharing namespace, must also unshare filesystem information. 3319 */ 3320 if (unshare_flags & CLONE_NEWNS) 3321 unshare_flags |= CLONE_FS; 3322 3323 err = check_unshare_flags(unshare_flags); 3324 if (err) 3325 goto bad_unshare_out; 3326 /* 3327 * CLONE_NEWIPC must also detach from the undolist: after switching 3328 * to a new ipc namespace, the semaphore arrays from the old 3329 * namespace are unreachable. 3330 */ 3331 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3332 do_sysvsem = 1; 3333 err = unshare_fs(unshare_flags, &new_fs); 3334 if (err) 3335 goto bad_unshare_out; 3336 err = unshare_fd(unshare_flags, &new_fd); 3337 if (err) 3338 goto bad_unshare_cleanup_fs; 3339 err = unshare_userns(unshare_flags, &new_cred); 3340 if (err) 3341 goto bad_unshare_cleanup_fd; 3342 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3343 new_cred, new_fs); 3344 if (err) 3345 goto bad_unshare_cleanup_cred; 3346 3347 if (new_cred) { 3348 err = set_cred_ucounts(new_cred); 3349 if (err) 3350 goto bad_unshare_cleanup_cred; 3351 } 3352 3353 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3354 if (do_sysvsem) { 3355 /* 3356 * CLONE_SYSVSEM is equivalent to sys_exit(). 3357 */ 3358 exit_sem(current); 3359 } 3360 if (unshare_flags & CLONE_NEWIPC) { 3361 /* Orphan segments in old ns (see sem above). */ 3362 exit_shm(current); 3363 shm_init_task(current); 3364 } 3365 3366 if (new_nsproxy) 3367 switch_task_namespaces(current, new_nsproxy); 3368 3369 task_lock(current); 3370 3371 if (new_fs) { 3372 fs = current->fs; 3373 spin_lock(&fs->lock); 3374 current->fs = new_fs; 3375 if (--fs->users) 3376 new_fs = NULL; 3377 else 3378 new_fs = fs; 3379 spin_unlock(&fs->lock); 3380 } 3381 3382 if (new_fd) 3383 swap(current->files, new_fd); 3384 3385 task_unlock(current); 3386 3387 if (new_cred) { 3388 /* Install the new user namespace */ 3389 commit_creds(new_cred); 3390 new_cred = NULL; 3391 } 3392 } 3393 3394 perf_event_namespaces(current); 3395 3396 bad_unshare_cleanup_cred: 3397 if (new_cred) 3398 put_cred(new_cred); 3399 bad_unshare_cleanup_fd: 3400 if (new_fd) 3401 put_files_struct(new_fd); 3402 3403 bad_unshare_cleanup_fs: 3404 if (new_fs) 3405 free_fs_struct(new_fs); 3406 3407 bad_unshare_out: 3408 return err; 3409 } 3410 3411 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3412 { 3413 return ksys_unshare(unshare_flags); 3414 } 3415 3416 /* 3417 * Helper to unshare the files of the current task. 3418 * We don't want to expose copy_files internals to 3419 * the exec layer of the kernel. 3420 */ 3421 3422 int unshare_files(void) 3423 { 3424 struct task_struct *task = current; 3425 struct files_struct *old, *copy = NULL; 3426 int error; 3427 3428 error = unshare_fd(CLONE_FILES, ©); 3429 if (error || !copy) 3430 return error; 3431 3432 old = task->files; 3433 task_lock(task); 3434 task->files = copy; 3435 task_unlock(task); 3436 put_files_struct(old); 3437 return 0; 3438 } 3439 3440 int sysctl_max_threads(const struct ctl_table *table, int write, 3441 void *buffer, size_t *lenp, loff_t *ppos) 3442 { 3443 struct ctl_table t; 3444 int ret; 3445 int threads = max_threads; 3446 int min = 1; 3447 int max = MAX_THREADS; 3448 3449 t = *table; 3450 t.data = &threads; 3451 t.extra1 = &min; 3452 t.extra2 = &max; 3453 3454 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3455 if (ret || !write) 3456 return ret; 3457 3458 max_threads = threads; 3459 3460 return 0; 3461 } 3462