1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/syscall_user_dispatch.h> 57 #include <linux/jiffies.h> 58 #include <linux/futex.h> 59 #include <linux/compat.h> 60 #include <linux/kthread.h> 61 #include <linux/task_io_accounting_ops.h> 62 #include <linux/rcupdate.h> 63 #include <linux/ptrace.h> 64 #include <linux/mount.h> 65 #include <linux/audit.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/proc_fs.h> 69 #include <linux/profile.h> 70 #include <linux/rmap.h> 71 #include <linux/ksm.h> 72 #include <linux/acct.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/tsacct_kern.h> 75 #include <linux/cn_proc.h> 76 #include <linux/freezer.h> 77 #include <linux/delayacct.h> 78 #include <linux/taskstats_kern.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 #include <linux/stackprotector.h> 101 #include <linux/user_events.h> 102 #include <linux/iommu.h> 103 #include <linux/rseq.h> 104 #include <uapi/linux/pidfd.h> 105 #include <linux/pidfs.h> 106 107 #include <asm/pgalloc.h> 108 #include <linux/uaccess.h> 109 #include <asm/mmu_context.h> 110 #include <asm/cacheflush.h> 111 #include <asm/tlbflush.h> 112 113 #include <trace/events/sched.h> 114 115 #define CREATE_TRACE_POINTS 116 #include <trace/events/task.h> 117 118 /* 119 * Minimum number of threads to boot the kernel 120 */ 121 #define MIN_THREADS 20 122 123 /* 124 * Maximum number of threads 125 */ 126 #define MAX_THREADS FUTEX_TID_MASK 127 128 /* 129 * Protected counters by write_lock_irq(&tasklist_lock) 130 */ 131 unsigned long total_forks; /* Handle normal Linux uptimes. */ 132 int nr_threads; /* The idle threads do not count.. */ 133 134 static int max_threads; /* tunable limit on nr_threads */ 135 136 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 137 138 static const char * const resident_page_types[] = { 139 NAMED_ARRAY_INDEX(MM_FILEPAGES), 140 NAMED_ARRAY_INDEX(MM_ANONPAGES), 141 NAMED_ARRAY_INDEX(MM_SWAPENTS), 142 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 143 }; 144 145 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 146 147 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 148 149 #ifdef CONFIG_PROVE_RCU 150 int lockdep_tasklist_lock_is_held(void) 151 { 152 return lockdep_is_held(&tasklist_lock); 153 } 154 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 155 #endif /* #ifdef CONFIG_PROVE_RCU */ 156 157 int nr_processes(void) 158 { 159 int cpu; 160 int total = 0; 161 162 for_each_possible_cpu(cpu) 163 total += per_cpu(process_counts, cpu); 164 165 return total; 166 } 167 168 void __weak arch_release_task_struct(struct task_struct *tsk) 169 { 170 } 171 172 static struct kmem_cache *task_struct_cachep; 173 174 static inline struct task_struct *alloc_task_struct_node(int node) 175 { 176 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 177 } 178 179 static inline void free_task_struct(struct task_struct *tsk) 180 { 181 kmem_cache_free(task_struct_cachep, tsk); 182 } 183 184 /* 185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 186 * kmemcache based allocator. 187 */ 188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 189 190 # ifdef CONFIG_VMAP_STACK 191 /* 192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 193 * flush. Try to minimize the number of calls by caching stacks. 194 */ 195 #define NR_CACHED_STACKS 2 196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 197 198 struct vm_stack { 199 struct rcu_head rcu; 200 struct vm_struct *stack_vm_area; 201 }; 202 203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 204 { 205 unsigned int i; 206 207 for (i = 0; i < NR_CACHED_STACKS; i++) { 208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 209 continue; 210 return true; 211 } 212 return false; 213 } 214 215 static void thread_stack_free_rcu(struct rcu_head *rh) 216 { 217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 218 219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 220 return; 221 222 vfree(vm_stack); 223 } 224 225 static void thread_stack_delayed_free(struct task_struct *tsk) 226 { 227 struct vm_stack *vm_stack = tsk->stack; 228 229 vm_stack->stack_vm_area = tsk->stack_vm_area; 230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 231 } 232 233 static int free_vm_stack_cache(unsigned int cpu) 234 { 235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 236 int i; 237 238 for (i = 0; i < NR_CACHED_STACKS; i++) { 239 struct vm_struct *vm_stack = cached_vm_stacks[i]; 240 241 if (!vm_stack) 242 continue; 243 244 vfree(vm_stack->addr); 245 cached_vm_stacks[i] = NULL; 246 } 247 248 return 0; 249 } 250 251 static int memcg_charge_kernel_stack(struct vm_struct *vm) 252 { 253 int i; 254 int ret; 255 int nr_charged = 0; 256 257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 258 259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 261 if (ret) 262 goto err; 263 nr_charged++; 264 } 265 return 0; 266 err: 267 for (i = 0; i < nr_charged; i++) 268 memcg_kmem_uncharge_page(vm->pages[i], 0); 269 return ret; 270 } 271 272 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 273 { 274 struct vm_struct *vm; 275 void *stack; 276 int i; 277 278 for (i = 0; i < NR_CACHED_STACKS; i++) { 279 struct vm_struct *s; 280 281 s = this_cpu_xchg(cached_stacks[i], NULL); 282 283 if (!s) 284 continue; 285 286 /* Reset stack metadata. */ 287 kasan_unpoison_range(s->addr, THREAD_SIZE); 288 289 stack = kasan_reset_tag(s->addr); 290 291 /* Clear stale pointers from reused stack. */ 292 memset(stack, 0, THREAD_SIZE); 293 294 if (memcg_charge_kernel_stack(s)) { 295 vfree(s->addr); 296 return -ENOMEM; 297 } 298 299 tsk->stack_vm_area = s; 300 tsk->stack = stack; 301 return 0; 302 } 303 304 /* 305 * Allocated stacks are cached and later reused by new threads, 306 * so memcg accounting is performed manually on assigning/releasing 307 * stacks to tasks. Drop __GFP_ACCOUNT. 308 */ 309 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 310 VMALLOC_START, VMALLOC_END, 311 THREADINFO_GFP & ~__GFP_ACCOUNT, 312 PAGE_KERNEL, 313 0, node, __builtin_return_address(0)); 314 if (!stack) 315 return -ENOMEM; 316 317 vm = find_vm_area(stack); 318 if (memcg_charge_kernel_stack(vm)) { 319 vfree(stack); 320 return -ENOMEM; 321 } 322 /* 323 * We can't call find_vm_area() in interrupt context, and 324 * free_thread_stack() can be called in interrupt context, 325 * so cache the vm_struct. 326 */ 327 tsk->stack_vm_area = vm; 328 stack = kasan_reset_tag(stack); 329 tsk->stack = stack; 330 return 0; 331 } 332 333 static void free_thread_stack(struct task_struct *tsk) 334 { 335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 336 thread_stack_delayed_free(tsk); 337 338 tsk->stack = NULL; 339 tsk->stack_vm_area = NULL; 340 } 341 342 # else /* !CONFIG_VMAP_STACK */ 343 344 static void thread_stack_free_rcu(struct rcu_head *rh) 345 { 346 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 347 } 348 349 static void thread_stack_delayed_free(struct task_struct *tsk) 350 { 351 struct rcu_head *rh = tsk->stack; 352 353 call_rcu(rh, thread_stack_free_rcu); 354 } 355 356 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 357 { 358 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 359 THREAD_SIZE_ORDER); 360 361 if (likely(page)) { 362 tsk->stack = kasan_reset_tag(page_address(page)); 363 return 0; 364 } 365 return -ENOMEM; 366 } 367 368 static void free_thread_stack(struct task_struct *tsk) 369 { 370 thread_stack_delayed_free(tsk); 371 tsk->stack = NULL; 372 } 373 374 # endif /* CONFIG_VMAP_STACK */ 375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 376 377 static struct kmem_cache *thread_stack_cache; 378 379 static void thread_stack_free_rcu(struct rcu_head *rh) 380 { 381 kmem_cache_free(thread_stack_cache, rh); 382 } 383 384 static void thread_stack_delayed_free(struct task_struct *tsk) 385 { 386 struct rcu_head *rh = tsk->stack; 387 388 call_rcu(rh, thread_stack_free_rcu); 389 } 390 391 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 392 { 393 unsigned long *stack; 394 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 395 stack = kasan_reset_tag(stack); 396 tsk->stack = stack; 397 return stack ? 0 : -ENOMEM; 398 } 399 400 static void free_thread_stack(struct task_struct *tsk) 401 { 402 thread_stack_delayed_free(tsk); 403 tsk->stack = NULL; 404 } 405 406 void thread_stack_cache_init(void) 407 { 408 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 409 THREAD_SIZE, THREAD_SIZE, 0, 0, 410 THREAD_SIZE, NULL); 411 BUG_ON(thread_stack_cache == NULL); 412 } 413 414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 415 416 /* SLAB cache for signal_struct structures (tsk->signal) */ 417 static struct kmem_cache *signal_cachep; 418 419 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 420 struct kmem_cache *sighand_cachep; 421 422 /* SLAB cache for files_struct structures (tsk->files) */ 423 struct kmem_cache *files_cachep; 424 425 /* SLAB cache for fs_struct structures (tsk->fs) */ 426 struct kmem_cache *fs_cachep; 427 428 /* SLAB cache for vm_area_struct structures */ 429 static struct kmem_cache *vm_area_cachep; 430 431 /* SLAB cache for mm_struct structures (tsk->mm) */ 432 static struct kmem_cache *mm_cachep; 433 434 #ifdef CONFIG_PER_VMA_LOCK 435 436 /* SLAB cache for vm_area_struct.lock */ 437 static struct kmem_cache *vma_lock_cachep; 438 439 static bool vma_lock_alloc(struct vm_area_struct *vma) 440 { 441 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 442 if (!vma->vm_lock) 443 return false; 444 445 init_rwsem(&vma->vm_lock->lock); 446 vma->vm_lock_seq = -1; 447 448 return true; 449 } 450 451 static inline void vma_lock_free(struct vm_area_struct *vma) 452 { 453 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 454 } 455 456 #else /* CONFIG_PER_VMA_LOCK */ 457 458 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 459 static inline void vma_lock_free(struct vm_area_struct *vma) {} 460 461 #endif /* CONFIG_PER_VMA_LOCK */ 462 463 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 464 { 465 struct vm_area_struct *vma; 466 467 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 468 if (!vma) 469 return NULL; 470 471 vma_init(vma, mm); 472 if (!vma_lock_alloc(vma)) { 473 kmem_cache_free(vm_area_cachep, vma); 474 return NULL; 475 } 476 477 return vma; 478 } 479 480 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 481 { 482 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 483 484 if (!new) 485 return NULL; 486 487 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 488 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 489 /* 490 * orig->shared.rb may be modified concurrently, but the clone 491 * will be reinitialized. 492 */ 493 data_race(memcpy(new, orig, sizeof(*new))); 494 if (!vma_lock_alloc(new)) { 495 kmem_cache_free(vm_area_cachep, new); 496 return NULL; 497 } 498 INIT_LIST_HEAD(&new->anon_vma_chain); 499 vma_numab_state_init(new); 500 dup_anon_vma_name(orig, new); 501 502 return new; 503 } 504 505 void __vm_area_free(struct vm_area_struct *vma) 506 { 507 vma_numab_state_free(vma); 508 free_anon_vma_name(vma); 509 vma_lock_free(vma); 510 kmem_cache_free(vm_area_cachep, vma); 511 } 512 513 #ifdef CONFIG_PER_VMA_LOCK 514 static void vm_area_free_rcu_cb(struct rcu_head *head) 515 { 516 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 517 vm_rcu); 518 519 /* The vma should not be locked while being destroyed. */ 520 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 521 __vm_area_free(vma); 522 } 523 #endif 524 525 void vm_area_free(struct vm_area_struct *vma) 526 { 527 #ifdef CONFIG_PER_VMA_LOCK 528 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 529 #else 530 __vm_area_free(vma); 531 #endif 532 } 533 534 static void account_kernel_stack(struct task_struct *tsk, int account) 535 { 536 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 537 struct vm_struct *vm = task_stack_vm_area(tsk); 538 int i; 539 540 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 541 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 542 account * (PAGE_SIZE / 1024)); 543 } else { 544 void *stack = task_stack_page(tsk); 545 546 /* All stack pages are in the same node. */ 547 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 548 account * (THREAD_SIZE / 1024)); 549 } 550 } 551 552 void exit_task_stack_account(struct task_struct *tsk) 553 { 554 account_kernel_stack(tsk, -1); 555 556 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 557 struct vm_struct *vm; 558 int i; 559 560 vm = task_stack_vm_area(tsk); 561 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 562 memcg_kmem_uncharge_page(vm->pages[i], 0); 563 } 564 } 565 566 static void release_task_stack(struct task_struct *tsk) 567 { 568 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 569 return; /* Better to leak the stack than to free prematurely */ 570 571 free_thread_stack(tsk); 572 } 573 574 #ifdef CONFIG_THREAD_INFO_IN_TASK 575 void put_task_stack(struct task_struct *tsk) 576 { 577 if (refcount_dec_and_test(&tsk->stack_refcount)) 578 release_task_stack(tsk); 579 } 580 #endif 581 582 void free_task(struct task_struct *tsk) 583 { 584 #ifdef CONFIG_SECCOMP 585 WARN_ON_ONCE(tsk->seccomp.filter); 586 #endif 587 release_user_cpus_ptr(tsk); 588 scs_release(tsk); 589 590 #ifndef CONFIG_THREAD_INFO_IN_TASK 591 /* 592 * The task is finally done with both the stack and thread_info, 593 * so free both. 594 */ 595 release_task_stack(tsk); 596 #else 597 /* 598 * If the task had a separate stack allocation, it should be gone 599 * by now. 600 */ 601 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 602 #endif 603 rt_mutex_debug_task_free(tsk); 604 ftrace_graph_exit_task(tsk); 605 arch_release_task_struct(tsk); 606 if (tsk->flags & PF_KTHREAD) 607 free_kthread_struct(tsk); 608 bpf_task_storage_free(tsk); 609 free_task_struct(tsk); 610 } 611 EXPORT_SYMBOL(free_task); 612 613 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 614 { 615 struct file *exe_file; 616 617 exe_file = get_mm_exe_file(oldmm); 618 RCU_INIT_POINTER(mm->exe_file, exe_file); 619 /* 620 * We depend on the oldmm having properly denied write access to the 621 * exe_file already. 622 */ 623 if (exe_file && deny_write_access(exe_file)) 624 pr_warn_once("deny_write_access() failed in %s\n", __func__); 625 } 626 627 #ifdef CONFIG_MMU 628 static __latent_entropy int dup_mmap(struct mm_struct *mm, 629 struct mm_struct *oldmm) 630 { 631 struct vm_area_struct *mpnt, *tmp; 632 int retval; 633 unsigned long charge = 0; 634 LIST_HEAD(uf); 635 VMA_ITERATOR(vmi, mm, 0); 636 637 uprobe_start_dup_mmap(); 638 if (mmap_write_lock_killable(oldmm)) { 639 retval = -EINTR; 640 goto fail_uprobe_end; 641 } 642 flush_cache_dup_mm(oldmm); 643 uprobe_dup_mmap(oldmm, mm); 644 /* 645 * Not linked in yet - no deadlock potential: 646 */ 647 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 648 649 /* No ordering required: file already has been exposed. */ 650 dup_mm_exe_file(mm, oldmm); 651 652 mm->total_vm = oldmm->total_vm; 653 mm->data_vm = oldmm->data_vm; 654 mm->exec_vm = oldmm->exec_vm; 655 mm->stack_vm = oldmm->stack_vm; 656 657 retval = ksm_fork(mm, oldmm); 658 if (retval) 659 goto out; 660 khugepaged_fork(mm, oldmm); 661 662 /* Use __mt_dup() to efficiently build an identical maple tree. */ 663 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 664 if (unlikely(retval)) 665 goto out; 666 667 mt_clear_in_rcu(vmi.mas.tree); 668 for_each_vma(vmi, mpnt) { 669 struct file *file; 670 671 vma_start_write(mpnt); 672 if (mpnt->vm_flags & VM_DONTCOPY) { 673 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 674 mpnt->vm_end, GFP_KERNEL); 675 if (retval) 676 goto loop_out; 677 678 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 679 continue; 680 } 681 charge = 0; 682 /* 683 * Don't duplicate many vmas if we've been oom-killed (for 684 * example) 685 */ 686 if (fatal_signal_pending(current)) { 687 retval = -EINTR; 688 goto loop_out; 689 } 690 if (mpnt->vm_flags & VM_ACCOUNT) { 691 unsigned long len = vma_pages(mpnt); 692 693 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 694 goto fail_nomem; 695 charge = len; 696 } 697 tmp = vm_area_dup(mpnt); 698 if (!tmp) 699 goto fail_nomem; 700 retval = vma_dup_policy(mpnt, tmp); 701 if (retval) 702 goto fail_nomem_policy; 703 tmp->vm_mm = mm; 704 retval = dup_userfaultfd(tmp, &uf); 705 if (retval) 706 goto fail_nomem_anon_vma_fork; 707 if (tmp->vm_flags & VM_WIPEONFORK) { 708 /* 709 * VM_WIPEONFORK gets a clean slate in the child. 710 * Don't prepare anon_vma until fault since we don't 711 * copy page for current vma. 712 */ 713 tmp->anon_vma = NULL; 714 } else if (anon_vma_fork(tmp, mpnt)) 715 goto fail_nomem_anon_vma_fork; 716 vm_flags_clear(tmp, VM_LOCKED_MASK); 717 file = tmp->vm_file; 718 if (file) { 719 struct address_space *mapping = file->f_mapping; 720 721 get_file(file); 722 i_mmap_lock_write(mapping); 723 if (vma_is_shared_maywrite(tmp)) 724 mapping_allow_writable(mapping); 725 flush_dcache_mmap_lock(mapping); 726 /* insert tmp into the share list, just after mpnt */ 727 vma_interval_tree_insert_after(tmp, mpnt, 728 &mapping->i_mmap); 729 flush_dcache_mmap_unlock(mapping); 730 i_mmap_unlock_write(mapping); 731 } 732 733 /* 734 * Copy/update hugetlb private vma information. 735 */ 736 if (is_vm_hugetlb_page(tmp)) 737 hugetlb_dup_vma_private(tmp); 738 739 /* 740 * Link the vma into the MT. After using __mt_dup(), memory 741 * allocation is not necessary here, so it cannot fail. 742 */ 743 vma_iter_bulk_store(&vmi, tmp); 744 745 mm->map_count++; 746 if (!(tmp->vm_flags & VM_WIPEONFORK)) 747 retval = copy_page_range(tmp, mpnt); 748 749 if (tmp->vm_ops && tmp->vm_ops->open) 750 tmp->vm_ops->open(tmp); 751 752 if (retval) { 753 mpnt = vma_next(&vmi); 754 goto loop_out; 755 } 756 } 757 /* a new mm has just been created */ 758 retval = arch_dup_mmap(oldmm, mm); 759 loop_out: 760 vma_iter_free(&vmi); 761 if (!retval) { 762 mt_set_in_rcu(vmi.mas.tree); 763 } else if (mpnt) { 764 /* 765 * The entire maple tree has already been duplicated. If the 766 * mmap duplication fails, mark the failure point with 767 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 768 * stop releasing VMAs that have not been duplicated after this 769 * point. 770 */ 771 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 772 mas_store(&vmi.mas, XA_ZERO_ENTRY); 773 } 774 out: 775 mmap_write_unlock(mm); 776 flush_tlb_mm(oldmm); 777 mmap_write_unlock(oldmm); 778 dup_userfaultfd_complete(&uf); 779 fail_uprobe_end: 780 uprobe_end_dup_mmap(); 781 return retval; 782 783 fail_nomem_anon_vma_fork: 784 mpol_put(vma_policy(tmp)); 785 fail_nomem_policy: 786 vm_area_free(tmp); 787 fail_nomem: 788 retval = -ENOMEM; 789 vm_unacct_memory(charge); 790 goto loop_out; 791 } 792 793 static inline int mm_alloc_pgd(struct mm_struct *mm) 794 { 795 mm->pgd = pgd_alloc(mm); 796 if (unlikely(!mm->pgd)) 797 return -ENOMEM; 798 return 0; 799 } 800 801 static inline void mm_free_pgd(struct mm_struct *mm) 802 { 803 pgd_free(mm, mm->pgd); 804 } 805 #else 806 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 807 { 808 mmap_write_lock(oldmm); 809 dup_mm_exe_file(mm, oldmm); 810 mmap_write_unlock(oldmm); 811 return 0; 812 } 813 #define mm_alloc_pgd(mm) (0) 814 #define mm_free_pgd(mm) 815 #endif /* CONFIG_MMU */ 816 817 static void check_mm(struct mm_struct *mm) 818 { 819 int i; 820 821 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 822 "Please make sure 'struct resident_page_types[]' is updated as well"); 823 824 for (i = 0; i < NR_MM_COUNTERS; i++) { 825 long x = percpu_counter_sum(&mm->rss_stat[i]); 826 827 if (unlikely(x)) 828 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 829 mm, resident_page_types[i], x); 830 } 831 832 if (mm_pgtables_bytes(mm)) 833 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 834 mm_pgtables_bytes(mm)); 835 836 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 837 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 838 #endif 839 } 840 841 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 842 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 843 844 static void do_check_lazy_tlb(void *arg) 845 { 846 struct mm_struct *mm = arg; 847 848 WARN_ON_ONCE(current->active_mm == mm); 849 } 850 851 static void do_shoot_lazy_tlb(void *arg) 852 { 853 struct mm_struct *mm = arg; 854 855 if (current->active_mm == mm) { 856 WARN_ON_ONCE(current->mm); 857 current->active_mm = &init_mm; 858 switch_mm(mm, &init_mm, current); 859 } 860 } 861 862 static void cleanup_lazy_tlbs(struct mm_struct *mm) 863 { 864 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 865 /* 866 * In this case, lazy tlb mms are refounted and would not reach 867 * __mmdrop until all CPUs have switched away and mmdrop()ed. 868 */ 869 return; 870 } 871 872 /* 873 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 874 * requires lazy mm users to switch to another mm when the refcount 875 * drops to zero, before the mm is freed. This requires IPIs here to 876 * switch kernel threads to init_mm. 877 * 878 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 879 * switch with the final userspace teardown TLB flush which leaves the 880 * mm lazy on this CPU but no others, reducing the need for additional 881 * IPIs here. There are cases where a final IPI is still required here, 882 * such as the final mmdrop being performed on a different CPU than the 883 * one exiting, or kernel threads using the mm when userspace exits. 884 * 885 * IPI overheads have not found to be expensive, but they could be 886 * reduced in a number of possible ways, for example (roughly 887 * increasing order of complexity): 888 * - The last lazy reference created by exit_mm() could instead switch 889 * to init_mm, however it's probable this will run on the same CPU 890 * immediately afterwards, so this may not reduce IPIs much. 891 * - A batch of mms requiring IPIs could be gathered and freed at once. 892 * - CPUs store active_mm where it can be remotely checked without a 893 * lock, to filter out false-positives in the cpumask. 894 * - After mm_users or mm_count reaches zero, switching away from the 895 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 896 * with some batching or delaying of the final IPIs. 897 * - A delayed freeing and RCU-like quiescing sequence based on mm 898 * switching to avoid IPIs completely. 899 */ 900 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 901 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 902 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 903 } 904 905 /* 906 * Called when the last reference to the mm 907 * is dropped: either by a lazy thread or by 908 * mmput. Free the page directory and the mm. 909 */ 910 void __mmdrop(struct mm_struct *mm) 911 { 912 BUG_ON(mm == &init_mm); 913 WARN_ON_ONCE(mm == current->mm); 914 915 /* Ensure no CPUs are using this as their lazy tlb mm */ 916 cleanup_lazy_tlbs(mm); 917 918 WARN_ON_ONCE(mm == current->active_mm); 919 mm_free_pgd(mm); 920 destroy_context(mm); 921 mmu_notifier_subscriptions_destroy(mm); 922 check_mm(mm); 923 put_user_ns(mm->user_ns); 924 mm_pasid_drop(mm); 925 mm_destroy_cid(mm); 926 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 927 928 free_mm(mm); 929 } 930 EXPORT_SYMBOL_GPL(__mmdrop); 931 932 static void mmdrop_async_fn(struct work_struct *work) 933 { 934 struct mm_struct *mm; 935 936 mm = container_of(work, struct mm_struct, async_put_work); 937 __mmdrop(mm); 938 } 939 940 static void mmdrop_async(struct mm_struct *mm) 941 { 942 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 943 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 944 schedule_work(&mm->async_put_work); 945 } 946 } 947 948 static inline void free_signal_struct(struct signal_struct *sig) 949 { 950 taskstats_tgid_free(sig); 951 sched_autogroup_exit(sig); 952 /* 953 * __mmdrop is not safe to call from softirq context on x86 due to 954 * pgd_dtor so postpone it to the async context 955 */ 956 if (sig->oom_mm) 957 mmdrop_async(sig->oom_mm); 958 kmem_cache_free(signal_cachep, sig); 959 } 960 961 static inline void put_signal_struct(struct signal_struct *sig) 962 { 963 if (refcount_dec_and_test(&sig->sigcnt)) 964 free_signal_struct(sig); 965 } 966 967 void __put_task_struct(struct task_struct *tsk) 968 { 969 WARN_ON(!tsk->exit_state); 970 WARN_ON(refcount_read(&tsk->usage)); 971 WARN_ON(tsk == current); 972 973 io_uring_free(tsk); 974 cgroup_free(tsk); 975 task_numa_free(tsk, true); 976 security_task_free(tsk); 977 exit_creds(tsk); 978 delayacct_tsk_free(tsk); 979 put_signal_struct(tsk->signal); 980 sched_core_free(tsk); 981 free_task(tsk); 982 } 983 EXPORT_SYMBOL_GPL(__put_task_struct); 984 985 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 986 { 987 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 988 989 __put_task_struct(task); 990 } 991 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 992 993 void __init __weak arch_task_cache_init(void) { } 994 995 /* 996 * set_max_threads 997 */ 998 static void set_max_threads(unsigned int max_threads_suggested) 999 { 1000 u64 threads; 1001 unsigned long nr_pages = totalram_pages(); 1002 1003 /* 1004 * The number of threads shall be limited such that the thread 1005 * structures may only consume a small part of the available memory. 1006 */ 1007 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1008 threads = MAX_THREADS; 1009 else 1010 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1011 (u64) THREAD_SIZE * 8UL); 1012 1013 if (threads > max_threads_suggested) 1014 threads = max_threads_suggested; 1015 1016 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1017 } 1018 1019 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1020 /* Initialized by the architecture: */ 1021 int arch_task_struct_size __read_mostly; 1022 #endif 1023 1024 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1025 { 1026 /* Fetch thread_struct whitelist for the architecture. */ 1027 arch_thread_struct_whitelist(offset, size); 1028 1029 /* 1030 * Handle zero-sized whitelist or empty thread_struct, otherwise 1031 * adjust offset to position of thread_struct in task_struct. 1032 */ 1033 if (unlikely(*size == 0)) 1034 *offset = 0; 1035 else 1036 *offset += offsetof(struct task_struct, thread); 1037 } 1038 1039 void __init fork_init(void) 1040 { 1041 int i; 1042 #ifndef ARCH_MIN_TASKALIGN 1043 #define ARCH_MIN_TASKALIGN 0 1044 #endif 1045 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1046 unsigned long useroffset, usersize; 1047 1048 /* create a slab on which task_structs can be allocated */ 1049 task_struct_whitelist(&useroffset, &usersize); 1050 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1051 arch_task_struct_size, align, 1052 SLAB_PANIC|SLAB_ACCOUNT, 1053 useroffset, usersize, NULL); 1054 1055 /* do the arch specific task caches init */ 1056 arch_task_cache_init(); 1057 1058 set_max_threads(MAX_THREADS); 1059 1060 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1061 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1062 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1063 init_task.signal->rlim[RLIMIT_NPROC]; 1064 1065 for (i = 0; i < UCOUNT_COUNTS; i++) 1066 init_user_ns.ucount_max[i] = max_threads/2; 1067 1068 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1069 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1071 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1072 1073 #ifdef CONFIG_VMAP_STACK 1074 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1075 NULL, free_vm_stack_cache); 1076 #endif 1077 1078 scs_init(); 1079 1080 lockdep_init_task(&init_task); 1081 uprobes_init(); 1082 } 1083 1084 int __weak arch_dup_task_struct(struct task_struct *dst, 1085 struct task_struct *src) 1086 { 1087 *dst = *src; 1088 return 0; 1089 } 1090 1091 void set_task_stack_end_magic(struct task_struct *tsk) 1092 { 1093 unsigned long *stackend; 1094 1095 stackend = end_of_stack(tsk); 1096 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1097 } 1098 1099 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1100 { 1101 struct task_struct *tsk; 1102 int err; 1103 1104 if (node == NUMA_NO_NODE) 1105 node = tsk_fork_get_node(orig); 1106 tsk = alloc_task_struct_node(node); 1107 if (!tsk) 1108 return NULL; 1109 1110 err = arch_dup_task_struct(tsk, orig); 1111 if (err) 1112 goto free_tsk; 1113 1114 err = alloc_thread_stack_node(tsk, node); 1115 if (err) 1116 goto free_tsk; 1117 1118 #ifdef CONFIG_THREAD_INFO_IN_TASK 1119 refcount_set(&tsk->stack_refcount, 1); 1120 #endif 1121 account_kernel_stack(tsk, 1); 1122 1123 err = scs_prepare(tsk, node); 1124 if (err) 1125 goto free_stack; 1126 1127 #ifdef CONFIG_SECCOMP 1128 /* 1129 * We must handle setting up seccomp filters once we're under 1130 * the sighand lock in case orig has changed between now and 1131 * then. Until then, filter must be NULL to avoid messing up 1132 * the usage counts on the error path calling free_task. 1133 */ 1134 tsk->seccomp.filter = NULL; 1135 #endif 1136 1137 setup_thread_stack(tsk, orig); 1138 clear_user_return_notifier(tsk); 1139 clear_tsk_need_resched(tsk); 1140 set_task_stack_end_magic(tsk); 1141 clear_syscall_work_syscall_user_dispatch(tsk); 1142 1143 #ifdef CONFIG_STACKPROTECTOR 1144 tsk->stack_canary = get_random_canary(); 1145 #endif 1146 if (orig->cpus_ptr == &orig->cpus_mask) 1147 tsk->cpus_ptr = &tsk->cpus_mask; 1148 dup_user_cpus_ptr(tsk, orig, node); 1149 1150 /* 1151 * One for the user space visible state that goes away when reaped. 1152 * One for the scheduler. 1153 */ 1154 refcount_set(&tsk->rcu_users, 2); 1155 /* One for the rcu users */ 1156 refcount_set(&tsk->usage, 1); 1157 #ifdef CONFIG_BLK_DEV_IO_TRACE 1158 tsk->btrace_seq = 0; 1159 #endif 1160 tsk->splice_pipe = NULL; 1161 tsk->task_frag.page = NULL; 1162 tsk->wake_q.next = NULL; 1163 tsk->worker_private = NULL; 1164 1165 kcov_task_init(tsk); 1166 kmsan_task_create(tsk); 1167 kmap_local_fork(tsk); 1168 1169 #ifdef CONFIG_FAULT_INJECTION 1170 tsk->fail_nth = 0; 1171 #endif 1172 1173 #ifdef CONFIG_BLK_CGROUP 1174 tsk->throttle_disk = NULL; 1175 tsk->use_memdelay = 0; 1176 #endif 1177 1178 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1179 tsk->pasid_activated = 0; 1180 #endif 1181 1182 #ifdef CONFIG_MEMCG 1183 tsk->active_memcg = NULL; 1184 #endif 1185 1186 #ifdef CONFIG_CPU_SUP_INTEL 1187 tsk->reported_split_lock = 0; 1188 #endif 1189 1190 #ifdef CONFIG_SCHED_MM_CID 1191 tsk->mm_cid = -1; 1192 tsk->last_mm_cid = -1; 1193 tsk->mm_cid_active = 0; 1194 tsk->migrate_from_cpu = -1; 1195 #endif 1196 return tsk; 1197 1198 free_stack: 1199 exit_task_stack_account(tsk); 1200 free_thread_stack(tsk); 1201 free_tsk: 1202 free_task_struct(tsk); 1203 return NULL; 1204 } 1205 1206 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1207 1208 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1209 1210 static int __init coredump_filter_setup(char *s) 1211 { 1212 default_dump_filter = 1213 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1214 MMF_DUMP_FILTER_MASK; 1215 return 1; 1216 } 1217 1218 __setup("coredump_filter=", coredump_filter_setup); 1219 1220 #include <linux/init_task.h> 1221 1222 static void mm_init_aio(struct mm_struct *mm) 1223 { 1224 #ifdef CONFIG_AIO 1225 spin_lock_init(&mm->ioctx_lock); 1226 mm->ioctx_table = NULL; 1227 #endif 1228 } 1229 1230 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1231 struct task_struct *p) 1232 { 1233 #ifdef CONFIG_MEMCG 1234 if (mm->owner == p) 1235 WRITE_ONCE(mm->owner, NULL); 1236 #endif 1237 } 1238 1239 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1240 { 1241 #ifdef CONFIG_MEMCG 1242 mm->owner = p; 1243 #endif 1244 } 1245 1246 static void mm_init_uprobes_state(struct mm_struct *mm) 1247 { 1248 #ifdef CONFIG_UPROBES 1249 mm->uprobes_state.xol_area = NULL; 1250 #endif 1251 } 1252 1253 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1254 struct user_namespace *user_ns) 1255 { 1256 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1257 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1258 atomic_set(&mm->mm_users, 1); 1259 atomic_set(&mm->mm_count, 1); 1260 seqcount_init(&mm->write_protect_seq); 1261 mmap_init_lock(mm); 1262 INIT_LIST_HEAD(&mm->mmlist); 1263 #ifdef CONFIG_PER_VMA_LOCK 1264 mm->mm_lock_seq = 0; 1265 #endif 1266 mm_pgtables_bytes_init(mm); 1267 mm->map_count = 0; 1268 mm->locked_vm = 0; 1269 atomic64_set(&mm->pinned_vm, 0); 1270 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1271 spin_lock_init(&mm->page_table_lock); 1272 spin_lock_init(&mm->arg_lock); 1273 mm_init_cpumask(mm); 1274 mm_init_aio(mm); 1275 mm_init_owner(mm, p); 1276 mm_pasid_init(mm); 1277 RCU_INIT_POINTER(mm->exe_file, NULL); 1278 mmu_notifier_subscriptions_init(mm); 1279 init_tlb_flush_pending(mm); 1280 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1281 mm->pmd_huge_pte = NULL; 1282 #endif 1283 mm_init_uprobes_state(mm); 1284 hugetlb_count_init(mm); 1285 1286 if (current->mm) { 1287 mm->flags = mmf_init_flags(current->mm->flags); 1288 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1289 } else { 1290 mm->flags = default_dump_filter; 1291 mm->def_flags = 0; 1292 } 1293 1294 if (mm_alloc_pgd(mm)) 1295 goto fail_nopgd; 1296 1297 if (init_new_context(p, mm)) 1298 goto fail_nocontext; 1299 1300 if (mm_alloc_cid(mm)) 1301 goto fail_cid; 1302 1303 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1304 NR_MM_COUNTERS)) 1305 goto fail_pcpu; 1306 1307 mm->user_ns = get_user_ns(user_ns); 1308 lru_gen_init_mm(mm); 1309 return mm; 1310 1311 fail_pcpu: 1312 mm_destroy_cid(mm); 1313 fail_cid: 1314 destroy_context(mm); 1315 fail_nocontext: 1316 mm_free_pgd(mm); 1317 fail_nopgd: 1318 free_mm(mm); 1319 return NULL; 1320 } 1321 1322 /* 1323 * Allocate and initialize an mm_struct. 1324 */ 1325 struct mm_struct *mm_alloc(void) 1326 { 1327 struct mm_struct *mm; 1328 1329 mm = allocate_mm(); 1330 if (!mm) 1331 return NULL; 1332 1333 memset(mm, 0, sizeof(*mm)); 1334 return mm_init(mm, current, current_user_ns()); 1335 } 1336 1337 static inline void __mmput(struct mm_struct *mm) 1338 { 1339 VM_BUG_ON(atomic_read(&mm->mm_users)); 1340 1341 uprobe_clear_state(mm); 1342 exit_aio(mm); 1343 ksm_exit(mm); 1344 khugepaged_exit(mm); /* must run before exit_mmap */ 1345 exit_mmap(mm); 1346 mm_put_huge_zero_page(mm); 1347 set_mm_exe_file(mm, NULL); 1348 if (!list_empty(&mm->mmlist)) { 1349 spin_lock(&mmlist_lock); 1350 list_del(&mm->mmlist); 1351 spin_unlock(&mmlist_lock); 1352 } 1353 if (mm->binfmt) 1354 module_put(mm->binfmt->module); 1355 lru_gen_del_mm(mm); 1356 mmdrop(mm); 1357 } 1358 1359 /* 1360 * Decrement the use count and release all resources for an mm. 1361 */ 1362 void mmput(struct mm_struct *mm) 1363 { 1364 might_sleep(); 1365 1366 if (atomic_dec_and_test(&mm->mm_users)) 1367 __mmput(mm); 1368 } 1369 EXPORT_SYMBOL_GPL(mmput); 1370 1371 #ifdef CONFIG_MMU 1372 static void mmput_async_fn(struct work_struct *work) 1373 { 1374 struct mm_struct *mm = container_of(work, struct mm_struct, 1375 async_put_work); 1376 1377 __mmput(mm); 1378 } 1379 1380 void mmput_async(struct mm_struct *mm) 1381 { 1382 if (atomic_dec_and_test(&mm->mm_users)) { 1383 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1384 schedule_work(&mm->async_put_work); 1385 } 1386 } 1387 EXPORT_SYMBOL_GPL(mmput_async); 1388 #endif 1389 1390 /** 1391 * set_mm_exe_file - change a reference to the mm's executable file 1392 * @mm: The mm to change. 1393 * @new_exe_file: The new file to use. 1394 * 1395 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1396 * 1397 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1398 * invocations: in mmput() nobody alive left, in execve it happens before 1399 * the new mm is made visible to anyone. 1400 * 1401 * Can only fail if new_exe_file != NULL. 1402 */ 1403 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1404 { 1405 struct file *old_exe_file; 1406 1407 /* 1408 * It is safe to dereference the exe_file without RCU as 1409 * this function is only called if nobody else can access 1410 * this mm -- see comment above for justification. 1411 */ 1412 old_exe_file = rcu_dereference_raw(mm->exe_file); 1413 1414 if (new_exe_file) { 1415 /* 1416 * We expect the caller (i.e., sys_execve) to already denied 1417 * write access, so this is unlikely to fail. 1418 */ 1419 if (unlikely(deny_write_access(new_exe_file))) 1420 return -EACCES; 1421 get_file(new_exe_file); 1422 } 1423 rcu_assign_pointer(mm->exe_file, new_exe_file); 1424 if (old_exe_file) { 1425 allow_write_access(old_exe_file); 1426 fput(old_exe_file); 1427 } 1428 return 0; 1429 } 1430 1431 /** 1432 * replace_mm_exe_file - replace a reference to the mm's executable file 1433 * @mm: The mm to change. 1434 * @new_exe_file: The new file to use. 1435 * 1436 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1437 * 1438 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1439 */ 1440 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1441 { 1442 struct vm_area_struct *vma; 1443 struct file *old_exe_file; 1444 int ret = 0; 1445 1446 /* Forbid mm->exe_file change if old file still mapped. */ 1447 old_exe_file = get_mm_exe_file(mm); 1448 if (old_exe_file) { 1449 VMA_ITERATOR(vmi, mm, 0); 1450 mmap_read_lock(mm); 1451 for_each_vma(vmi, vma) { 1452 if (!vma->vm_file) 1453 continue; 1454 if (path_equal(&vma->vm_file->f_path, 1455 &old_exe_file->f_path)) { 1456 ret = -EBUSY; 1457 break; 1458 } 1459 } 1460 mmap_read_unlock(mm); 1461 fput(old_exe_file); 1462 if (ret) 1463 return ret; 1464 } 1465 1466 ret = deny_write_access(new_exe_file); 1467 if (ret) 1468 return -EACCES; 1469 get_file(new_exe_file); 1470 1471 /* set the new file */ 1472 mmap_write_lock(mm); 1473 old_exe_file = rcu_dereference_raw(mm->exe_file); 1474 rcu_assign_pointer(mm->exe_file, new_exe_file); 1475 mmap_write_unlock(mm); 1476 1477 if (old_exe_file) { 1478 allow_write_access(old_exe_file); 1479 fput(old_exe_file); 1480 } 1481 return 0; 1482 } 1483 1484 /** 1485 * get_mm_exe_file - acquire a reference to the mm's executable file 1486 * @mm: The mm of interest. 1487 * 1488 * Returns %NULL if mm has no associated executable file. 1489 * User must release file via fput(). 1490 */ 1491 struct file *get_mm_exe_file(struct mm_struct *mm) 1492 { 1493 struct file *exe_file; 1494 1495 rcu_read_lock(); 1496 exe_file = get_file_rcu(&mm->exe_file); 1497 rcu_read_unlock(); 1498 return exe_file; 1499 } 1500 1501 /** 1502 * get_task_exe_file - acquire a reference to the task's executable file 1503 * @task: The task. 1504 * 1505 * Returns %NULL if task's mm (if any) has no associated executable file or 1506 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1507 * User must release file via fput(). 1508 */ 1509 struct file *get_task_exe_file(struct task_struct *task) 1510 { 1511 struct file *exe_file = NULL; 1512 struct mm_struct *mm; 1513 1514 task_lock(task); 1515 mm = task->mm; 1516 if (mm) { 1517 if (!(task->flags & PF_KTHREAD)) 1518 exe_file = get_mm_exe_file(mm); 1519 } 1520 task_unlock(task); 1521 return exe_file; 1522 } 1523 1524 /** 1525 * get_task_mm - acquire a reference to the task's mm 1526 * @task: The task. 1527 * 1528 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1529 * this kernel workthread has transiently adopted a user mm with use_mm, 1530 * to do its AIO) is not set and if so returns a reference to it, after 1531 * bumping up the use count. User must release the mm via mmput() 1532 * after use. Typically used by /proc and ptrace. 1533 */ 1534 struct mm_struct *get_task_mm(struct task_struct *task) 1535 { 1536 struct mm_struct *mm; 1537 1538 task_lock(task); 1539 mm = task->mm; 1540 if (mm) { 1541 if (task->flags & PF_KTHREAD) 1542 mm = NULL; 1543 else 1544 mmget(mm); 1545 } 1546 task_unlock(task); 1547 return mm; 1548 } 1549 EXPORT_SYMBOL_GPL(get_task_mm); 1550 1551 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1552 { 1553 struct mm_struct *mm; 1554 int err; 1555 1556 err = down_read_killable(&task->signal->exec_update_lock); 1557 if (err) 1558 return ERR_PTR(err); 1559 1560 mm = get_task_mm(task); 1561 if (mm && mm != current->mm && 1562 !ptrace_may_access(task, mode)) { 1563 mmput(mm); 1564 mm = ERR_PTR(-EACCES); 1565 } 1566 up_read(&task->signal->exec_update_lock); 1567 1568 return mm; 1569 } 1570 1571 static void complete_vfork_done(struct task_struct *tsk) 1572 { 1573 struct completion *vfork; 1574 1575 task_lock(tsk); 1576 vfork = tsk->vfork_done; 1577 if (likely(vfork)) { 1578 tsk->vfork_done = NULL; 1579 complete(vfork); 1580 } 1581 task_unlock(tsk); 1582 } 1583 1584 static int wait_for_vfork_done(struct task_struct *child, 1585 struct completion *vfork) 1586 { 1587 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1588 int killed; 1589 1590 cgroup_enter_frozen(); 1591 killed = wait_for_completion_state(vfork, state); 1592 cgroup_leave_frozen(false); 1593 1594 if (killed) { 1595 task_lock(child); 1596 child->vfork_done = NULL; 1597 task_unlock(child); 1598 } 1599 1600 put_task_struct(child); 1601 return killed; 1602 } 1603 1604 /* Please note the differences between mmput and mm_release. 1605 * mmput is called whenever we stop holding onto a mm_struct, 1606 * error success whatever. 1607 * 1608 * mm_release is called after a mm_struct has been removed 1609 * from the current process. 1610 * 1611 * This difference is important for error handling, when we 1612 * only half set up a mm_struct for a new process and need to restore 1613 * the old one. Because we mmput the new mm_struct before 1614 * restoring the old one. . . 1615 * Eric Biederman 10 January 1998 1616 */ 1617 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1618 { 1619 uprobe_free_utask(tsk); 1620 1621 /* Get rid of any cached register state */ 1622 deactivate_mm(tsk, mm); 1623 1624 /* 1625 * Signal userspace if we're not exiting with a core dump 1626 * because we want to leave the value intact for debugging 1627 * purposes. 1628 */ 1629 if (tsk->clear_child_tid) { 1630 if (atomic_read(&mm->mm_users) > 1) { 1631 /* 1632 * We don't check the error code - if userspace has 1633 * not set up a proper pointer then tough luck. 1634 */ 1635 put_user(0, tsk->clear_child_tid); 1636 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1637 1, NULL, NULL, 0, 0); 1638 } 1639 tsk->clear_child_tid = NULL; 1640 } 1641 1642 /* 1643 * All done, finally we can wake up parent and return this mm to him. 1644 * Also kthread_stop() uses this completion for synchronization. 1645 */ 1646 if (tsk->vfork_done) 1647 complete_vfork_done(tsk); 1648 } 1649 1650 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1651 { 1652 futex_exit_release(tsk); 1653 mm_release(tsk, mm); 1654 } 1655 1656 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1657 { 1658 futex_exec_release(tsk); 1659 mm_release(tsk, mm); 1660 } 1661 1662 /** 1663 * dup_mm() - duplicates an existing mm structure 1664 * @tsk: the task_struct with which the new mm will be associated. 1665 * @oldmm: the mm to duplicate. 1666 * 1667 * Allocates a new mm structure and duplicates the provided @oldmm structure 1668 * content into it. 1669 * 1670 * Return: the duplicated mm or NULL on failure. 1671 */ 1672 static struct mm_struct *dup_mm(struct task_struct *tsk, 1673 struct mm_struct *oldmm) 1674 { 1675 struct mm_struct *mm; 1676 int err; 1677 1678 mm = allocate_mm(); 1679 if (!mm) 1680 goto fail_nomem; 1681 1682 memcpy(mm, oldmm, sizeof(*mm)); 1683 1684 if (!mm_init(mm, tsk, mm->user_ns)) 1685 goto fail_nomem; 1686 1687 err = dup_mmap(mm, oldmm); 1688 if (err) 1689 goto free_pt; 1690 1691 mm->hiwater_rss = get_mm_rss(mm); 1692 mm->hiwater_vm = mm->total_vm; 1693 1694 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1695 goto free_pt; 1696 1697 return mm; 1698 1699 free_pt: 1700 /* don't put binfmt in mmput, we haven't got module yet */ 1701 mm->binfmt = NULL; 1702 mm_init_owner(mm, NULL); 1703 mmput(mm); 1704 1705 fail_nomem: 1706 return NULL; 1707 } 1708 1709 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1710 { 1711 struct mm_struct *mm, *oldmm; 1712 1713 tsk->min_flt = tsk->maj_flt = 0; 1714 tsk->nvcsw = tsk->nivcsw = 0; 1715 #ifdef CONFIG_DETECT_HUNG_TASK 1716 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1717 tsk->last_switch_time = 0; 1718 #endif 1719 1720 tsk->mm = NULL; 1721 tsk->active_mm = NULL; 1722 1723 /* 1724 * Are we cloning a kernel thread? 1725 * 1726 * We need to steal a active VM for that.. 1727 */ 1728 oldmm = current->mm; 1729 if (!oldmm) 1730 return 0; 1731 1732 if (clone_flags & CLONE_VM) { 1733 mmget(oldmm); 1734 mm = oldmm; 1735 } else { 1736 mm = dup_mm(tsk, current->mm); 1737 if (!mm) 1738 return -ENOMEM; 1739 } 1740 1741 tsk->mm = mm; 1742 tsk->active_mm = mm; 1743 sched_mm_cid_fork(tsk); 1744 return 0; 1745 } 1746 1747 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1748 { 1749 struct fs_struct *fs = current->fs; 1750 if (clone_flags & CLONE_FS) { 1751 /* tsk->fs is already what we want */ 1752 spin_lock(&fs->lock); 1753 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1754 if (fs->in_exec) { 1755 spin_unlock(&fs->lock); 1756 return -EAGAIN; 1757 } 1758 fs->users++; 1759 spin_unlock(&fs->lock); 1760 return 0; 1761 } 1762 tsk->fs = copy_fs_struct(fs); 1763 if (!tsk->fs) 1764 return -ENOMEM; 1765 return 0; 1766 } 1767 1768 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1769 int no_files) 1770 { 1771 struct files_struct *oldf, *newf; 1772 int error = 0; 1773 1774 /* 1775 * A background process may not have any files ... 1776 */ 1777 oldf = current->files; 1778 if (!oldf) 1779 goto out; 1780 1781 if (no_files) { 1782 tsk->files = NULL; 1783 goto out; 1784 } 1785 1786 if (clone_flags & CLONE_FILES) { 1787 atomic_inc(&oldf->count); 1788 goto out; 1789 } 1790 1791 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1792 if (!newf) 1793 goto out; 1794 1795 tsk->files = newf; 1796 error = 0; 1797 out: 1798 return error; 1799 } 1800 1801 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1802 { 1803 struct sighand_struct *sig; 1804 1805 if (clone_flags & CLONE_SIGHAND) { 1806 refcount_inc(¤t->sighand->count); 1807 return 0; 1808 } 1809 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1810 RCU_INIT_POINTER(tsk->sighand, sig); 1811 if (!sig) 1812 return -ENOMEM; 1813 1814 refcount_set(&sig->count, 1); 1815 spin_lock_irq(¤t->sighand->siglock); 1816 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1817 spin_unlock_irq(¤t->sighand->siglock); 1818 1819 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1820 if (clone_flags & CLONE_CLEAR_SIGHAND) 1821 flush_signal_handlers(tsk, 0); 1822 1823 return 0; 1824 } 1825 1826 void __cleanup_sighand(struct sighand_struct *sighand) 1827 { 1828 if (refcount_dec_and_test(&sighand->count)) { 1829 signalfd_cleanup(sighand); 1830 /* 1831 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1832 * without an RCU grace period, see __lock_task_sighand(). 1833 */ 1834 kmem_cache_free(sighand_cachep, sighand); 1835 } 1836 } 1837 1838 /* 1839 * Initialize POSIX timer handling for a thread group. 1840 */ 1841 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1842 { 1843 struct posix_cputimers *pct = &sig->posix_cputimers; 1844 unsigned long cpu_limit; 1845 1846 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1847 posix_cputimers_group_init(pct, cpu_limit); 1848 } 1849 1850 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1851 { 1852 struct signal_struct *sig; 1853 1854 if (clone_flags & CLONE_THREAD) 1855 return 0; 1856 1857 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1858 tsk->signal = sig; 1859 if (!sig) 1860 return -ENOMEM; 1861 1862 sig->nr_threads = 1; 1863 sig->quick_threads = 1; 1864 atomic_set(&sig->live, 1); 1865 refcount_set(&sig->sigcnt, 1); 1866 1867 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1868 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1869 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1870 1871 init_waitqueue_head(&sig->wait_chldexit); 1872 sig->curr_target = tsk; 1873 init_sigpending(&sig->shared_pending); 1874 INIT_HLIST_HEAD(&sig->multiprocess); 1875 seqlock_init(&sig->stats_lock); 1876 prev_cputime_init(&sig->prev_cputime); 1877 1878 #ifdef CONFIG_POSIX_TIMERS 1879 INIT_LIST_HEAD(&sig->posix_timers); 1880 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1881 sig->real_timer.function = it_real_fn; 1882 #endif 1883 1884 task_lock(current->group_leader); 1885 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1886 task_unlock(current->group_leader); 1887 1888 posix_cpu_timers_init_group(sig); 1889 1890 tty_audit_fork(sig); 1891 sched_autogroup_fork(sig); 1892 1893 sig->oom_score_adj = current->signal->oom_score_adj; 1894 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1895 1896 mutex_init(&sig->cred_guard_mutex); 1897 init_rwsem(&sig->exec_update_lock); 1898 1899 return 0; 1900 } 1901 1902 static void copy_seccomp(struct task_struct *p) 1903 { 1904 #ifdef CONFIG_SECCOMP 1905 /* 1906 * Must be called with sighand->lock held, which is common to 1907 * all threads in the group. Holding cred_guard_mutex is not 1908 * needed because this new task is not yet running and cannot 1909 * be racing exec. 1910 */ 1911 assert_spin_locked(¤t->sighand->siglock); 1912 1913 /* Ref-count the new filter user, and assign it. */ 1914 get_seccomp_filter(current); 1915 p->seccomp = current->seccomp; 1916 1917 /* 1918 * Explicitly enable no_new_privs here in case it got set 1919 * between the task_struct being duplicated and holding the 1920 * sighand lock. The seccomp state and nnp must be in sync. 1921 */ 1922 if (task_no_new_privs(current)) 1923 task_set_no_new_privs(p); 1924 1925 /* 1926 * If the parent gained a seccomp mode after copying thread 1927 * flags and between before we held the sighand lock, we have 1928 * to manually enable the seccomp thread flag here. 1929 */ 1930 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1931 set_task_syscall_work(p, SECCOMP); 1932 #endif 1933 } 1934 1935 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1936 { 1937 current->clear_child_tid = tidptr; 1938 1939 return task_pid_vnr(current); 1940 } 1941 1942 static void rt_mutex_init_task(struct task_struct *p) 1943 { 1944 raw_spin_lock_init(&p->pi_lock); 1945 #ifdef CONFIG_RT_MUTEXES 1946 p->pi_waiters = RB_ROOT_CACHED; 1947 p->pi_top_task = NULL; 1948 p->pi_blocked_on = NULL; 1949 #endif 1950 } 1951 1952 static inline void init_task_pid_links(struct task_struct *task) 1953 { 1954 enum pid_type type; 1955 1956 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1957 INIT_HLIST_NODE(&task->pid_links[type]); 1958 } 1959 1960 static inline void 1961 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1962 { 1963 if (type == PIDTYPE_PID) 1964 task->thread_pid = pid; 1965 else 1966 task->signal->pids[type] = pid; 1967 } 1968 1969 static inline void rcu_copy_process(struct task_struct *p) 1970 { 1971 #ifdef CONFIG_PREEMPT_RCU 1972 p->rcu_read_lock_nesting = 0; 1973 p->rcu_read_unlock_special.s = 0; 1974 p->rcu_blocked_node = NULL; 1975 INIT_LIST_HEAD(&p->rcu_node_entry); 1976 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1977 #ifdef CONFIG_TASKS_RCU 1978 p->rcu_tasks_holdout = false; 1979 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1980 p->rcu_tasks_idle_cpu = -1; 1981 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1982 #endif /* #ifdef CONFIG_TASKS_RCU */ 1983 #ifdef CONFIG_TASKS_TRACE_RCU 1984 p->trc_reader_nesting = 0; 1985 p->trc_reader_special.s = 0; 1986 INIT_LIST_HEAD(&p->trc_holdout_list); 1987 INIT_LIST_HEAD(&p->trc_blkd_node); 1988 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1989 } 1990 1991 /** 1992 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1993 * @pid: the struct pid for which to create a pidfd 1994 * @flags: flags of the new @pidfd 1995 * @ret: Where to return the file for the pidfd. 1996 * 1997 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1998 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1999 * 2000 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2001 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2002 * pidfd file are prepared. 2003 * 2004 * If this function returns successfully the caller is responsible to either 2005 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2006 * order to install the pidfd into its file descriptor table or they must use 2007 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2008 * respectively. 2009 * 2010 * This function is useful when a pidfd must already be reserved but there 2011 * might still be points of failure afterwards and the caller wants to ensure 2012 * that no pidfd is leaked into its file descriptor table. 2013 * 2014 * Return: On success, a reserved pidfd is returned from the function and a new 2015 * pidfd file is returned in the last argument to the function. On 2016 * error, a negative error code is returned from the function and the 2017 * last argument remains unchanged. 2018 */ 2019 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2020 { 2021 int pidfd; 2022 struct file *pidfd_file; 2023 2024 pidfd = get_unused_fd_flags(O_CLOEXEC); 2025 if (pidfd < 0) 2026 return pidfd; 2027 2028 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2029 if (IS_ERR(pidfd_file)) { 2030 put_unused_fd(pidfd); 2031 return PTR_ERR(pidfd_file); 2032 } 2033 /* 2034 * anon_inode_getfile() ignores everything outside of the 2035 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2036 */ 2037 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2038 *ret = pidfd_file; 2039 return pidfd; 2040 } 2041 2042 /** 2043 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2044 * @pid: the struct pid for which to create a pidfd 2045 * @flags: flags of the new @pidfd 2046 * @ret: Where to return the pidfd. 2047 * 2048 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2049 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2050 * 2051 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2052 * task identified by @pid must be a thread-group leader. 2053 * 2054 * If this function returns successfully the caller is responsible to either 2055 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2056 * order to install the pidfd into its file descriptor table or they must use 2057 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2058 * respectively. 2059 * 2060 * This function is useful when a pidfd must already be reserved but there 2061 * might still be points of failure afterwards and the caller wants to ensure 2062 * that no pidfd is leaked into its file descriptor table. 2063 * 2064 * Return: On success, a reserved pidfd is returned from the function and a new 2065 * pidfd file is returned in the last argument to the function. On 2066 * error, a negative error code is returned from the function and the 2067 * last argument remains unchanged. 2068 */ 2069 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2070 { 2071 bool thread = flags & PIDFD_THREAD; 2072 2073 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2074 return -EINVAL; 2075 2076 return __pidfd_prepare(pid, flags, ret); 2077 } 2078 2079 static void __delayed_free_task(struct rcu_head *rhp) 2080 { 2081 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2082 2083 free_task(tsk); 2084 } 2085 2086 static __always_inline void delayed_free_task(struct task_struct *tsk) 2087 { 2088 if (IS_ENABLED(CONFIG_MEMCG)) 2089 call_rcu(&tsk->rcu, __delayed_free_task); 2090 else 2091 free_task(tsk); 2092 } 2093 2094 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2095 { 2096 /* Skip if kernel thread */ 2097 if (!tsk->mm) 2098 return; 2099 2100 /* Skip if spawning a thread or using vfork */ 2101 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2102 return; 2103 2104 /* We need to synchronize with __set_oom_adj */ 2105 mutex_lock(&oom_adj_mutex); 2106 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2107 /* Update the values in case they were changed after copy_signal */ 2108 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2109 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2110 mutex_unlock(&oom_adj_mutex); 2111 } 2112 2113 #ifdef CONFIG_RV 2114 static void rv_task_fork(struct task_struct *p) 2115 { 2116 int i; 2117 2118 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2119 p->rv[i].da_mon.monitoring = false; 2120 } 2121 #else 2122 #define rv_task_fork(p) do {} while (0) 2123 #endif 2124 2125 /* 2126 * This creates a new process as a copy of the old one, 2127 * but does not actually start it yet. 2128 * 2129 * It copies the registers, and all the appropriate 2130 * parts of the process environment (as per the clone 2131 * flags). The actual kick-off is left to the caller. 2132 */ 2133 __latent_entropy struct task_struct *copy_process( 2134 struct pid *pid, 2135 int trace, 2136 int node, 2137 struct kernel_clone_args *args) 2138 { 2139 int pidfd = -1, retval; 2140 struct task_struct *p; 2141 struct multiprocess_signals delayed; 2142 struct file *pidfile = NULL; 2143 const u64 clone_flags = args->flags; 2144 struct nsproxy *nsp = current->nsproxy; 2145 2146 /* 2147 * Don't allow sharing the root directory with processes in a different 2148 * namespace 2149 */ 2150 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2151 return ERR_PTR(-EINVAL); 2152 2153 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2154 return ERR_PTR(-EINVAL); 2155 2156 /* 2157 * Thread groups must share signals as well, and detached threads 2158 * can only be started up within the thread group. 2159 */ 2160 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2161 return ERR_PTR(-EINVAL); 2162 2163 /* 2164 * Shared signal handlers imply shared VM. By way of the above, 2165 * thread groups also imply shared VM. Blocking this case allows 2166 * for various simplifications in other code. 2167 */ 2168 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2169 return ERR_PTR(-EINVAL); 2170 2171 /* 2172 * Siblings of global init remain as zombies on exit since they are 2173 * not reaped by their parent (swapper). To solve this and to avoid 2174 * multi-rooted process trees, prevent global and container-inits 2175 * from creating siblings. 2176 */ 2177 if ((clone_flags & CLONE_PARENT) && 2178 current->signal->flags & SIGNAL_UNKILLABLE) 2179 return ERR_PTR(-EINVAL); 2180 2181 /* 2182 * If the new process will be in a different pid or user namespace 2183 * do not allow it to share a thread group with the forking task. 2184 */ 2185 if (clone_flags & CLONE_THREAD) { 2186 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2187 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2188 return ERR_PTR(-EINVAL); 2189 } 2190 2191 if (clone_flags & CLONE_PIDFD) { 2192 /* 2193 * - CLONE_DETACHED is blocked so that we can potentially 2194 * reuse it later for CLONE_PIDFD. 2195 */ 2196 if (clone_flags & CLONE_DETACHED) 2197 return ERR_PTR(-EINVAL); 2198 } 2199 2200 /* 2201 * Force any signals received before this point to be delivered 2202 * before the fork happens. Collect up signals sent to multiple 2203 * processes that happen during the fork and delay them so that 2204 * they appear to happen after the fork. 2205 */ 2206 sigemptyset(&delayed.signal); 2207 INIT_HLIST_NODE(&delayed.node); 2208 2209 spin_lock_irq(¤t->sighand->siglock); 2210 if (!(clone_flags & CLONE_THREAD)) 2211 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2212 recalc_sigpending(); 2213 spin_unlock_irq(¤t->sighand->siglock); 2214 retval = -ERESTARTNOINTR; 2215 if (task_sigpending(current)) 2216 goto fork_out; 2217 2218 retval = -ENOMEM; 2219 p = dup_task_struct(current, node); 2220 if (!p) 2221 goto fork_out; 2222 p->flags &= ~PF_KTHREAD; 2223 if (args->kthread) 2224 p->flags |= PF_KTHREAD; 2225 if (args->user_worker) { 2226 /* 2227 * Mark us a user worker, and block any signal that isn't 2228 * fatal or STOP 2229 */ 2230 p->flags |= PF_USER_WORKER; 2231 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2232 } 2233 if (args->io_thread) 2234 p->flags |= PF_IO_WORKER; 2235 2236 if (args->name) 2237 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2238 2239 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2240 /* 2241 * Clear TID on mm_release()? 2242 */ 2243 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2244 2245 ftrace_graph_init_task(p); 2246 2247 rt_mutex_init_task(p); 2248 2249 lockdep_assert_irqs_enabled(); 2250 #ifdef CONFIG_PROVE_LOCKING 2251 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2252 #endif 2253 retval = copy_creds(p, clone_flags); 2254 if (retval < 0) 2255 goto bad_fork_free; 2256 2257 retval = -EAGAIN; 2258 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2259 if (p->real_cred->user != INIT_USER && 2260 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2261 goto bad_fork_cleanup_count; 2262 } 2263 current->flags &= ~PF_NPROC_EXCEEDED; 2264 2265 /* 2266 * If multiple threads are within copy_process(), then this check 2267 * triggers too late. This doesn't hurt, the check is only there 2268 * to stop root fork bombs. 2269 */ 2270 retval = -EAGAIN; 2271 if (data_race(nr_threads >= max_threads)) 2272 goto bad_fork_cleanup_count; 2273 2274 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2275 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2276 p->flags |= PF_FORKNOEXEC; 2277 INIT_LIST_HEAD(&p->children); 2278 INIT_LIST_HEAD(&p->sibling); 2279 rcu_copy_process(p); 2280 p->vfork_done = NULL; 2281 spin_lock_init(&p->alloc_lock); 2282 2283 init_sigpending(&p->pending); 2284 2285 p->utime = p->stime = p->gtime = 0; 2286 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2287 p->utimescaled = p->stimescaled = 0; 2288 #endif 2289 prev_cputime_init(&p->prev_cputime); 2290 2291 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2292 seqcount_init(&p->vtime.seqcount); 2293 p->vtime.starttime = 0; 2294 p->vtime.state = VTIME_INACTIVE; 2295 #endif 2296 2297 #ifdef CONFIG_IO_URING 2298 p->io_uring = NULL; 2299 #endif 2300 2301 p->default_timer_slack_ns = current->timer_slack_ns; 2302 2303 #ifdef CONFIG_PSI 2304 p->psi_flags = 0; 2305 #endif 2306 2307 task_io_accounting_init(&p->ioac); 2308 acct_clear_integrals(p); 2309 2310 posix_cputimers_init(&p->posix_cputimers); 2311 2312 p->io_context = NULL; 2313 audit_set_context(p, NULL); 2314 cgroup_fork(p); 2315 if (args->kthread) { 2316 if (!set_kthread_struct(p)) 2317 goto bad_fork_cleanup_delayacct; 2318 } 2319 #ifdef CONFIG_NUMA 2320 p->mempolicy = mpol_dup(p->mempolicy); 2321 if (IS_ERR(p->mempolicy)) { 2322 retval = PTR_ERR(p->mempolicy); 2323 p->mempolicy = NULL; 2324 goto bad_fork_cleanup_delayacct; 2325 } 2326 #endif 2327 #ifdef CONFIG_CPUSETS 2328 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2329 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2330 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2331 #endif 2332 #ifdef CONFIG_TRACE_IRQFLAGS 2333 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2334 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2335 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2336 p->softirqs_enabled = 1; 2337 p->softirq_context = 0; 2338 #endif 2339 2340 p->pagefault_disabled = 0; 2341 2342 #ifdef CONFIG_LOCKDEP 2343 lockdep_init_task(p); 2344 #endif 2345 2346 #ifdef CONFIG_DEBUG_MUTEXES 2347 p->blocked_on = NULL; /* not blocked yet */ 2348 #endif 2349 #ifdef CONFIG_BCACHE 2350 p->sequential_io = 0; 2351 p->sequential_io_avg = 0; 2352 #endif 2353 #ifdef CONFIG_BPF_SYSCALL 2354 RCU_INIT_POINTER(p->bpf_storage, NULL); 2355 p->bpf_ctx = NULL; 2356 #endif 2357 2358 /* Perform scheduler related setup. Assign this task to a CPU. */ 2359 retval = sched_fork(clone_flags, p); 2360 if (retval) 2361 goto bad_fork_cleanup_policy; 2362 2363 retval = perf_event_init_task(p, clone_flags); 2364 if (retval) 2365 goto bad_fork_cleanup_policy; 2366 retval = audit_alloc(p); 2367 if (retval) 2368 goto bad_fork_cleanup_perf; 2369 /* copy all the process information */ 2370 shm_init_task(p); 2371 retval = security_task_alloc(p, clone_flags); 2372 if (retval) 2373 goto bad_fork_cleanup_audit; 2374 retval = copy_semundo(clone_flags, p); 2375 if (retval) 2376 goto bad_fork_cleanup_security; 2377 retval = copy_files(clone_flags, p, args->no_files); 2378 if (retval) 2379 goto bad_fork_cleanup_semundo; 2380 retval = copy_fs(clone_flags, p); 2381 if (retval) 2382 goto bad_fork_cleanup_files; 2383 retval = copy_sighand(clone_flags, p); 2384 if (retval) 2385 goto bad_fork_cleanup_fs; 2386 retval = copy_signal(clone_flags, p); 2387 if (retval) 2388 goto bad_fork_cleanup_sighand; 2389 retval = copy_mm(clone_flags, p); 2390 if (retval) 2391 goto bad_fork_cleanup_signal; 2392 retval = copy_namespaces(clone_flags, p); 2393 if (retval) 2394 goto bad_fork_cleanup_mm; 2395 retval = copy_io(clone_flags, p); 2396 if (retval) 2397 goto bad_fork_cleanup_namespaces; 2398 retval = copy_thread(p, args); 2399 if (retval) 2400 goto bad_fork_cleanup_io; 2401 2402 stackleak_task_init(p); 2403 2404 if (pid != &init_struct_pid) { 2405 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2406 args->set_tid_size); 2407 if (IS_ERR(pid)) { 2408 retval = PTR_ERR(pid); 2409 goto bad_fork_cleanup_thread; 2410 } 2411 } 2412 2413 /* 2414 * This has to happen after we've potentially unshared the file 2415 * descriptor table (so that the pidfd doesn't leak into the child 2416 * if the fd table isn't shared). 2417 */ 2418 if (clone_flags & CLONE_PIDFD) { 2419 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2420 2421 /* Note that no task has been attached to @pid yet. */ 2422 retval = __pidfd_prepare(pid, flags, &pidfile); 2423 if (retval < 0) 2424 goto bad_fork_free_pid; 2425 pidfd = retval; 2426 2427 retval = put_user(pidfd, args->pidfd); 2428 if (retval) 2429 goto bad_fork_put_pidfd; 2430 } 2431 2432 #ifdef CONFIG_BLOCK 2433 p->plug = NULL; 2434 #endif 2435 futex_init_task(p); 2436 2437 /* 2438 * sigaltstack should be cleared when sharing the same VM 2439 */ 2440 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2441 sas_ss_reset(p); 2442 2443 /* 2444 * Syscall tracing and stepping should be turned off in the 2445 * child regardless of CLONE_PTRACE. 2446 */ 2447 user_disable_single_step(p); 2448 clear_task_syscall_work(p, SYSCALL_TRACE); 2449 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2450 clear_task_syscall_work(p, SYSCALL_EMU); 2451 #endif 2452 clear_tsk_latency_tracing(p); 2453 2454 /* ok, now we should be set up.. */ 2455 p->pid = pid_nr(pid); 2456 if (clone_flags & CLONE_THREAD) { 2457 p->group_leader = current->group_leader; 2458 p->tgid = current->tgid; 2459 } else { 2460 p->group_leader = p; 2461 p->tgid = p->pid; 2462 } 2463 2464 p->nr_dirtied = 0; 2465 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2466 p->dirty_paused_when = 0; 2467 2468 p->pdeath_signal = 0; 2469 p->task_works = NULL; 2470 clear_posix_cputimers_work(p); 2471 2472 #ifdef CONFIG_KRETPROBES 2473 p->kretprobe_instances.first = NULL; 2474 #endif 2475 #ifdef CONFIG_RETHOOK 2476 p->rethooks.first = NULL; 2477 #endif 2478 2479 /* 2480 * Ensure that the cgroup subsystem policies allow the new process to be 2481 * forked. It should be noted that the new process's css_set can be changed 2482 * between here and cgroup_post_fork() if an organisation operation is in 2483 * progress. 2484 */ 2485 retval = cgroup_can_fork(p, args); 2486 if (retval) 2487 goto bad_fork_put_pidfd; 2488 2489 /* 2490 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2491 * the new task on the correct runqueue. All this *before* the task 2492 * becomes visible. 2493 * 2494 * This isn't part of ->can_fork() because while the re-cloning is 2495 * cgroup specific, it unconditionally needs to place the task on a 2496 * runqueue. 2497 */ 2498 sched_cgroup_fork(p, args); 2499 2500 /* 2501 * From this point on we must avoid any synchronous user-space 2502 * communication until we take the tasklist-lock. In particular, we do 2503 * not want user-space to be able to predict the process start-time by 2504 * stalling fork(2) after we recorded the start_time but before it is 2505 * visible to the system. 2506 */ 2507 2508 p->start_time = ktime_get_ns(); 2509 p->start_boottime = ktime_get_boottime_ns(); 2510 2511 /* 2512 * Make it visible to the rest of the system, but dont wake it up yet. 2513 * Need tasklist lock for parent etc handling! 2514 */ 2515 write_lock_irq(&tasklist_lock); 2516 2517 /* CLONE_PARENT re-uses the old parent */ 2518 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2519 p->real_parent = current->real_parent; 2520 p->parent_exec_id = current->parent_exec_id; 2521 if (clone_flags & CLONE_THREAD) 2522 p->exit_signal = -1; 2523 else 2524 p->exit_signal = current->group_leader->exit_signal; 2525 } else { 2526 p->real_parent = current; 2527 p->parent_exec_id = current->self_exec_id; 2528 p->exit_signal = args->exit_signal; 2529 } 2530 2531 klp_copy_process(p); 2532 2533 sched_core_fork(p); 2534 2535 spin_lock(¤t->sighand->siglock); 2536 2537 rv_task_fork(p); 2538 2539 rseq_fork(p, clone_flags); 2540 2541 /* Don't start children in a dying pid namespace */ 2542 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2543 retval = -ENOMEM; 2544 goto bad_fork_cancel_cgroup; 2545 } 2546 2547 /* Let kill terminate clone/fork in the middle */ 2548 if (fatal_signal_pending(current)) { 2549 retval = -EINTR; 2550 goto bad_fork_cancel_cgroup; 2551 } 2552 2553 /* No more failure paths after this point. */ 2554 2555 /* 2556 * Copy seccomp details explicitly here, in case they were changed 2557 * before holding sighand lock. 2558 */ 2559 copy_seccomp(p); 2560 2561 init_task_pid_links(p); 2562 if (likely(p->pid)) { 2563 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2564 2565 init_task_pid(p, PIDTYPE_PID, pid); 2566 if (thread_group_leader(p)) { 2567 init_task_pid(p, PIDTYPE_TGID, pid); 2568 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2569 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2570 2571 if (is_child_reaper(pid)) { 2572 ns_of_pid(pid)->child_reaper = p; 2573 p->signal->flags |= SIGNAL_UNKILLABLE; 2574 } 2575 p->signal->shared_pending.signal = delayed.signal; 2576 p->signal->tty = tty_kref_get(current->signal->tty); 2577 /* 2578 * Inherit has_child_subreaper flag under the same 2579 * tasklist_lock with adding child to the process tree 2580 * for propagate_has_child_subreaper optimization. 2581 */ 2582 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2583 p->real_parent->signal->is_child_subreaper; 2584 list_add_tail(&p->sibling, &p->real_parent->children); 2585 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2586 attach_pid(p, PIDTYPE_TGID); 2587 attach_pid(p, PIDTYPE_PGID); 2588 attach_pid(p, PIDTYPE_SID); 2589 __this_cpu_inc(process_counts); 2590 } else { 2591 current->signal->nr_threads++; 2592 current->signal->quick_threads++; 2593 atomic_inc(¤t->signal->live); 2594 refcount_inc(¤t->signal->sigcnt); 2595 task_join_group_stop(p); 2596 list_add_tail_rcu(&p->thread_node, 2597 &p->signal->thread_head); 2598 } 2599 attach_pid(p, PIDTYPE_PID); 2600 nr_threads++; 2601 } 2602 total_forks++; 2603 hlist_del_init(&delayed.node); 2604 spin_unlock(¤t->sighand->siglock); 2605 syscall_tracepoint_update(p); 2606 write_unlock_irq(&tasklist_lock); 2607 2608 if (pidfile) 2609 fd_install(pidfd, pidfile); 2610 2611 proc_fork_connector(p); 2612 sched_post_fork(p); 2613 cgroup_post_fork(p, args); 2614 perf_event_fork(p); 2615 2616 trace_task_newtask(p, clone_flags); 2617 uprobe_copy_process(p, clone_flags); 2618 user_events_fork(p, clone_flags); 2619 2620 copy_oom_score_adj(clone_flags, p); 2621 2622 return p; 2623 2624 bad_fork_cancel_cgroup: 2625 sched_core_free(p); 2626 spin_unlock(¤t->sighand->siglock); 2627 write_unlock_irq(&tasklist_lock); 2628 cgroup_cancel_fork(p, args); 2629 bad_fork_put_pidfd: 2630 if (clone_flags & CLONE_PIDFD) { 2631 fput(pidfile); 2632 put_unused_fd(pidfd); 2633 } 2634 bad_fork_free_pid: 2635 if (pid != &init_struct_pid) 2636 free_pid(pid); 2637 bad_fork_cleanup_thread: 2638 exit_thread(p); 2639 bad_fork_cleanup_io: 2640 if (p->io_context) 2641 exit_io_context(p); 2642 bad_fork_cleanup_namespaces: 2643 exit_task_namespaces(p); 2644 bad_fork_cleanup_mm: 2645 if (p->mm) { 2646 mm_clear_owner(p->mm, p); 2647 mmput(p->mm); 2648 } 2649 bad_fork_cleanup_signal: 2650 if (!(clone_flags & CLONE_THREAD)) 2651 free_signal_struct(p->signal); 2652 bad_fork_cleanup_sighand: 2653 __cleanup_sighand(p->sighand); 2654 bad_fork_cleanup_fs: 2655 exit_fs(p); /* blocking */ 2656 bad_fork_cleanup_files: 2657 exit_files(p); /* blocking */ 2658 bad_fork_cleanup_semundo: 2659 exit_sem(p); 2660 bad_fork_cleanup_security: 2661 security_task_free(p); 2662 bad_fork_cleanup_audit: 2663 audit_free(p); 2664 bad_fork_cleanup_perf: 2665 perf_event_free_task(p); 2666 bad_fork_cleanup_policy: 2667 lockdep_free_task(p); 2668 #ifdef CONFIG_NUMA 2669 mpol_put(p->mempolicy); 2670 #endif 2671 bad_fork_cleanup_delayacct: 2672 delayacct_tsk_free(p); 2673 bad_fork_cleanup_count: 2674 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2675 exit_creds(p); 2676 bad_fork_free: 2677 WRITE_ONCE(p->__state, TASK_DEAD); 2678 exit_task_stack_account(p); 2679 put_task_stack(p); 2680 delayed_free_task(p); 2681 fork_out: 2682 spin_lock_irq(¤t->sighand->siglock); 2683 hlist_del_init(&delayed.node); 2684 spin_unlock_irq(¤t->sighand->siglock); 2685 return ERR_PTR(retval); 2686 } 2687 2688 static inline void init_idle_pids(struct task_struct *idle) 2689 { 2690 enum pid_type type; 2691 2692 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2693 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2694 init_task_pid(idle, type, &init_struct_pid); 2695 } 2696 } 2697 2698 static int idle_dummy(void *dummy) 2699 { 2700 /* This function is never called */ 2701 return 0; 2702 } 2703 2704 struct task_struct * __init fork_idle(int cpu) 2705 { 2706 struct task_struct *task; 2707 struct kernel_clone_args args = { 2708 .flags = CLONE_VM, 2709 .fn = &idle_dummy, 2710 .fn_arg = NULL, 2711 .kthread = 1, 2712 .idle = 1, 2713 }; 2714 2715 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2716 if (!IS_ERR(task)) { 2717 init_idle_pids(task); 2718 init_idle(task, cpu); 2719 } 2720 2721 return task; 2722 } 2723 2724 /* 2725 * This is like kernel_clone(), but shaved down and tailored to just 2726 * creating io_uring workers. It returns a created task, or an error pointer. 2727 * The returned task is inactive, and the caller must fire it up through 2728 * wake_up_new_task(p). All signals are blocked in the created task. 2729 */ 2730 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2731 { 2732 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2733 CLONE_IO; 2734 struct kernel_clone_args args = { 2735 .flags = ((lower_32_bits(flags) | CLONE_VM | 2736 CLONE_UNTRACED) & ~CSIGNAL), 2737 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2738 .fn = fn, 2739 .fn_arg = arg, 2740 .io_thread = 1, 2741 .user_worker = 1, 2742 }; 2743 2744 return copy_process(NULL, 0, node, &args); 2745 } 2746 2747 /* 2748 * Ok, this is the main fork-routine. 2749 * 2750 * It copies the process, and if successful kick-starts 2751 * it and waits for it to finish using the VM if required. 2752 * 2753 * args->exit_signal is expected to be checked for sanity by the caller. 2754 */ 2755 pid_t kernel_clone(struct kernel_clone_args *args) 2756 { 2757 u64 clone_flags = args->flags; 2758 struct completion vfork; 2759 struct pid *pid; 2760 struct task_struct *p; 2761 int trace = 0; 2762 pid_t nr; 2763 2764 /* 2765 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2766 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2767 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2768 * field in struct clone_args and it still doesn't make sense to have 2769 * them both point at the same memory location. Performing this check 2770 * here has the advantage that we don't need to have a separate helper 2771 * to check for legacy clone(). 2772 */ 2773 if ((clone_flags & CLONE_PIDFD) && 2774 (clone_flags & CLONE_PARENT_SETTID) && 2775 (args->pidfd == args->parent_tid)) 2776 return -EINVAL; 2777 2778 /* 2779 * Determine whether and which event to report to ptracer. When 2780 * called from kernel_thread or CLONE_UNTRACED is explicitly 2781 * requested, no event is reported; otherwise, report if the event 2782 * for the type of forking is enabled. 2783 */ 2784 if (!(clone_flags & CLONE_UNTRACED)) { 2785 if (clone_flags & CLONE_VFORK) 2786 trace = PTRACE_EVENT_VFORK; 2787 else if (args->exit_signal != SIGCHLD) 2788 trace = PTRACE_EVENT_CLONE; 2789 else 2790 trace = PTRACE_EVENT_FORK; 2791 2792 if (likely(!ptrace_event_enabled(current, trace))) 2793 trace = 0; 2794 } 2795 2796 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2797 add_latent_entropy(); 2798 2799 if (IS_ERR(p)) 2800 return PTR_ERR(p); 2801 2802 /* 2803 * Do this prior waking up the new thread - the thread pointer 2804 * might get invalid after that point, if the thread exits quickly. 2805 */ 2806 trace_sched_process_fork(current, p); 2807 2808 pid = get_task_pid(p, PIDTYPE_PID); 2809 nr = pid_vnr(pid); 2810 2811 if (clone_flags & CLONE_PARENT_SETTID) 2812 put_user(nr, args->parent_tid); 2813 2814 if (clone_flags & CLONE_VFORK) { 2815 p->vfork_done = &vfork; 2816 init_completion(&vfork); 2817 get_task_struct(p); 2818 } 2819 2820 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2821 /* lock the task to synchronize with memcg migration */ 2822 task_lock(p); 2823 lru_gen_add_mm(p->mm); 2824 task_unlock(p); 2825 } 2826 2827 wake_up_new_task(p); 2828 2829 /* forking complete and child started to run, tell ptracer */ 2830 if (unlikely(trace)) 2831 ptrace_event_pid(trace, pid); 2832 2833 if (clone_flags & CLONE_VFORK) { 2834 if (!wait_for_vfork_done(p, &vfork)) 2835 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2836 } 2837 2838 put_pid(pid); 2839 return nr; 2840 } 2841 2842 /* 2843 * Create a kernel thread. 2844 */ 2845 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2846 unsigned long flags) 2847 { 2848 struct kernel_clone_args args = { 2849 .flags = ((lower_32_bits(flags) | CLONE_VM | 2850 CLONE_UNTRACED) & ~CSIGNAL), 2851 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2852 .fn = fn, 2853 .fn_arg = arg, 2854 .name = name, 2855 .kthread = 1, 2856 }; 2857 2858 return kernel_clone(&args); 2859 } 2860 2861 /* 2862 * Create a user mode thread. 2863 */ 2864 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2865 { 2866 struct kernel_clone_args args = { 2867 .flags = ((lower_32_bits(flags) | CLONE_VM | 2868 CLONE_UNTRACED) & ~CSIGNAL), 2869 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2870 .fn = fn, 2871 .fn_arg = arg, 2872 }; 2873 2874 return kernel_clone(&args); 2875 } 2876 2877 #ifdef __ARCH_WANT_SYS_FORK 2878 SYSCALL_DEFINE0(fork) 2879 { 2880 #ifdef CONFIG_MMU 2881 struct kernel_clone_args args = { 2882 .exit_signal = SIGCHLD, 2883 }; 2884 2885 return kernel_clone(&args); 2886 #else 2887 /* can not support in nommu mode */ 2888 return -EINVAL; 2889 #endif 2890 } 2891 #endif 2892 2893 #ifdef __ARCH_WANT_SYS_VFORK 2894 SYSCALL_DEFINE0(vfork) 2895 { 2896 struct kernel_clone_args args = { 2897 .flags = CLONE_VFORK | CLONE_VM, 2898 .exit_signal = SIGCHLD, 2899 }; 2900 2901 return kernel_clone(&args); 2902 } 2903 #endif 2904 2905 #ifdef __ARCH_WANT_SYS_CLONE 2906 #ifdef CONFIG_CLONE_BACKWARDS 2907 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2908 int __user *, parent_tidptr, 2909 unsigned long, tls, 2910 int __user *, child_tidptr) 2911 #elif defined(CONFIG_CLONE_BACKWARDS2) 2912 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2913 int __user *, parent_tidptr, 2914 int __user *, child_tidptr, 2915 unsigned long, tls) 2916 #elif defined(CONFIG_CLONE_BACKWARDS3) 2917 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2918 int, stack_size, 2919 int __user *, parent_tidptr, 2920 int __user *, child_tidptr, 2921 unsigned long, tls) 2922 #else 2923 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2924 int __user *, parent_tidptr, 2925 int __user *, child_tidptr, 2926 unsigned long, tls) 2927 #endif 2928 { 2929 struct kernel_clone_args args = { 2930 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2931 .pidfd = parent_tidptr, 2932 .child_tid = child_tidptr, 2933 .parent_tid = parent_tidptr, 2934 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2935 .stack = newsp, 2936 .tls = tls, 2937 }; 2938 2939 return kernel_clone(&args); 2940 } 2941 #endif 2942 2943 #ifdef __ARCH_WANT_SYS_CLONE3 2944 2945 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2946 struct clone_args __user *uargs, 2947 size_t usize) 2948 { 2949 int err; 2950 struct clone_args args; 2951 pid_t *kset_tid = kargs->set_tid; 2952 2953 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2954 CLONE_ARGS_SIZE_VER0); 2955 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2956 CLONE_ARGS_SIZE_VER1); 2957 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2958 CLONE_ARGS_SIZE_VER2); 2959 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2960 2961 if (unlikely(usize > PAGE_SIZE)) 2962 return -E2BIG; 2963 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2964 return -EINVAL; 2965 2966 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2967 if (err) 2968 return err; 2969 2970 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2971 return -EINVAL; 2972 2973 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2974 return -EINVAL; 2975 2976 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2977 return -EINVAL; 2978 2979 /* 2980 * Verify that higher 32bits of exit_signal are unset and that 2981 * it is a valid signal 2982 */ 2983 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2984 !valid_signal(args.exit_signal))) 2985 return -EINVAL; 2986 2987 if ((args.flags & CLONE_INTO_CGROUP) && 2988 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2989 return -EINVAL; 2990 2991 *kargs = (struct kernel_clone_args){ 2992 .flags = args.flags, 2993 .pidfd = u64_to_user_ptr(args.pidfd), 2994 .child_tid = u64_to_user_ptr(args.child_tid), 2995 .parent_tid = u64_to_user_ptr(args.parent_tid), 2996 .exit_signal = args.exit_signal, 2997 .stack = args.stack, 2998 .stack_size = args.stack_size, 2999 .tls = args.tls, 3000 .set_tid_size = args.set_tid_size, 3001 .cgroup = args.cgroup, 3002 }; 3003 3004 if (args.set_tid && 3005 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3006 (kargs->set_tid_size * sizeof(pid_t)))) 3007 return -EFAULT; 3008 3009 kargs->set_tid = kset_tid; 3010 3011 return 0; 3012 } 3013 3014 /** 3015 * clone3_stack_valid - check and prepare stack 3016 * @kargs: kernel clone args 3017 * 3018 * Verify that the stack arguments userspace gave us are sane. 3019 * In addition, set the stack direction for userspace since it's easy for us to 3020 * determine. 3021 */ 3022 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3023 { 3024 if (kargs->stack == 0) { 3025 if (kargs->stack_size > 0) 3026 return false; 3027 } else { 3028 if (kargs->stack_size == 0) 3029 return false; 3030 3031 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3032 return false; 3033 3034 #if !defined(CONFIG_STACK_GROWSUP) 3035 kargs->stack += kargs->stack_size; 3036 #endif 3037 } 3038 3039 return true; 3040 } 3041 3042 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3043 { 3044 /* Verify that no unknown flags are passed along. */ 3045 if (kargs->flags & 3046 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3047 return false; 3048 3049 /* 3050 * - make the CLONE_DETACHED bit reusable for clone3 3051 * - make the CSIGNAL bits reusable for clone3 3052 */ 3053 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3054 return false; 3055 3056 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3057 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3058 return false; 3059 3060 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3061 kargs->exit_signal) 3062 return false; 3063 3064 if (!clone3_stack_valid(kargs)) 3065 return false; 3066 3067 return true; 3068 } 3069 3070 /** 3071 * sys_clone3 - create a new process with specific properties 3072 * @uargs: argument structure 3073 * @size: size of @uargs 3074 * 3075 * clone3() is the extensible successor to clone()/clone2(). 3076 * It takes a struct as argument that is versioned by its size. 3077 * 3078 * Return: On success, a positive PID for the child process. 3079 * On error, a negative errno number. 3080 */ 3081 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3082 { 3083 int err; 3084 3085 struct kernel_clone_args kargs; 3086 pid_t set_tid[MAX_PID_NS_LEVEL]; 3087 3088 kargs.set_tid = set_tid; 3089 3090 err = copy_clone_args_from_user(&kargs, uargs, size); 3091 if (err) 3092 return err; 3093 3094 if (!clone3_args_valid(&kargs)) 3095 return -EINVAL; 3096 3097 return kernel_clone(&kargs); 3098 } 3099 #endif 3100 3101 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3102 { 3103 struct task_struct *leader, *parent, *child; 3104 int res; 3105 3106 read_lock(&tasklist_lock); 3107 leader = top = top->group_leader; 3108 down: 3109 for_each_thread(leader, parent) { 3110 list_for_each_entry(child, &parent->children, sibling) { 3111 res = visitor(child, data); 3112 if (res) { 3113 if (res < 0) 3114 goto out; 3115 leader = child; 3116 goto down; 3117 } 3118 up: 3119 ; 3120 } 3121 } 3122 3123 if (leader != top) { 3124 child = leader; 3125 parent = child->real_parent; 3126 leader = parent->group_leader; 3127 goto up; 3128 } 3129 out: 3130 read_unlock(&tasklist_lock); 3131 } 3132 3133 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3134 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3135 #endif 3136 3137 static void sighand_ctor(void *data) 3138 { 3139 struct sighand_struct *sighand = data; 3140 3141 spin_lock_init(&sighand->siglock); 3142 init_waitqueue_head(&sighand->signalfd_wqh); 3143 } 3144 3145 void __init mm_cache_init(void) 3146 { 3147 unsigned int mm_size; 3148 3149 /* 3150 * The mm_cpumask is located at the end of mm_struct, and is 3151 * dynamically sized based on the maximum CPU number this system 3152 * can have, taking hotplug into account (nr_cpu_ids). 3153 */ 3154 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3155 3156 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3157 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3158 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3159 offsetof(struct mm_struct, saved_auxv), 3160 sizeof_field(struct mm_struct, saved_auxv), 3161 NULL); 3162 } 3163 3164 void __init proc_caches_init(void) 3165 { 3166 sighand_cachep = kmem_cache_create("sighand_cache", 3167 sizeof(struct sighand_struct), 0, 3168 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3169 SLAB_ACCOUNT, sighand_ctor); 3170 signal_cachep = kmem_cache_create("signal_cache", 3171 sizeof(struct signal_struct), 0, 3172 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3173 NULL); 3174 files_cachep = kmem_cache_create("files_cache", 3175 sizeof(struct files_struct), 0, 3176 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3177 NULL); 3178 fs_cachep = kmem_cache_create("fs_cache", 3179 sizeof(struct fs_struct), 0, 3180 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3181 NULL); 3182 3183 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3184 #ifdef CONFIG_PER_VMA_LOCK 3185 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3186 #endif 3187 mmap_init(); 3188 nsproxy_cache_init(); 3189 } 3190 3191 /* 3192 * Check constraints on flags passed to the unshare system call. 3193 */ 3194 static int check_unshare_flags(unsigned long unshare_flags) 3195 { 3196 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3197 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3198 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3199 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3200 CLONE_NEWTIME)) 3201 return -EINVAL; 3202 /* 3203 * Not implemented, but pretend it works if there is nothing 3204 * to unshare. Note that unsharing the address space or the 3205 * signal handlers also need to unshare the signal queues (aka 3206 * CLONE_THREAD). 3207 */ 3208 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3209 if (!thread_group_empty(current)) 3210 return -EINVAL; 3211 } 3212 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3213 if (refcount_read(¤t->sighand->count) > 1) 3214 return -EINVAL; 3215 } 3216 if (unshare_flags & CLONE_VM) { 3217 if (!current_is_single_threaded()) 3218 return -EINVAL; 3219 } 3220 3221 return 0; 3222 } 3223 3224 /* 3225 * Unshare the filesystem structure if it is being shared 3226 */ 3227 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3228 { 3229 struct fs_struct *fs = current->fs; 3230 3231 if (!(unshare_flags & CLONE_FS) || !fs) 3232 return 0; 3233 3234 /* don't need lock here; in the worst case we'll do useless copy */ 3235 if (fs->users == 1) 3236 return 0; 3237 3238 *new_fsp = copy_fs_struct(fs); 3239 if (!*new_fsp) 3240 return -ENOMEM; 3241 3242 return 0; 3243 } 3244 3245 /* 3246 * Unshare file descriptor table if it is being shared 3247 */ 3248 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3249 struct files_struct **new_fdp) 3250 { 3251 struct files_struct *fd = current->files; 3252 int error = 0; 3253 3254 if ((unshare_flags & CLONE_FILES) && 3255 (fd && atomic_read(&fd->count) > 1)) { 3256 *new_fdp = dup_fd(fd, max_fds, &error); 3257 if (!*new_fdp) 3258 return error; 3259 } 3260 3261 return 0; 3262 } 3263 3264 /* 3265 * unshare allows a process to 'unshare' part of the process 3266 * context which was originally shared using clone. copy_* 3267 * functions used by kernel_clone() cannot be used here directly 3268 * because they modify an inactive task_struct that is being 3269 * constructed. Here we are modifying the current, active, 3270 * task_struct. 3271 */ 3272 int ksys_unshare(unsigned long unshare_flags) 3273 { 3274 struct fs_struct *fs, *new_fs = NULL; 3275 struct files_struct *new_fd = NULL; 3276 struct cred *new_cred = NULL; 3277 struct nsproxy *new_nsproxy = NULL; 3278 int do_sysvsem = 0; 3279 int err; 3280 3281 /* 3282 * If unsharing a user namespace must also unshare the thread group 3283 * and unshare the filesystem root and working directories. 3284 */ 3285 if (unshare_flags & CLONE_NEWUSER) 3286 unshare_flags |= CLONE_THREAD | CLONE_FS; 3287 /* 3288 * If unsharing vm, must also unshare signal handlers. 3289 */ 3290 if (unshare_flags & CLONE_VM) 3291 unshare_flags |= CLONE_SIGHAND; 3292 /* 3293 * If unsharing a signal handlers, must also unshare the signal queues. 3294 */ 3295 if (unshare_flags & CLONE_SIGHAND) 3296 unshare_flags |= CLONE_THREAD; 3297 /* 3298 * If unsharing namespace, must also unshare filesystem information. 3299 */ 3300 if (unshare_flags & CLONE_NEWNS) 3301 unshare_flags |= CLONE_FS; 3302 3303 err = check_unshare_flags(unshare_flags); 3304 if (err) 3305 goto bad_unshare_out; 3306 /* 3307 * CLONE_NEWIPC must also detach from the undolist: after switching 3308 * to a new ipc namespace, the semaphore arrays from the old 3309 * namespace are unreachable. 3310 */ 3311 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3312 do_sysvsem = 1; 3313 err = unshare_fs(unshare_flags, &new_fs); 3314 if (err) 3315 goto bad_unshare_out; 3316 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3317 if (err) 3318 goto bad_unshare_cleanup_fs; 3319 err = unshare_userns(unshare_flags, &new_cred); 3320 if (err) 3321 goto bad_unshare_cleanup_fd; 3322 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3323 new_cred, new_fs); 3324 if (err) 3325 goto bad_unshare_cleanup_cred; 3326 3327 if (new_cred) { 3328 err = set_cred_ucounts(new_cred); 3329 if (err) 3330 goto bad_unshare_cleanup_cred; 3331 } 3332 3333 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3334 if (do_sysvsem) { 3335 /* 3336 * CLONE_SYSVSEM is equivalent to sys_exit(). 3337 */ 3338 exit_sem(current); 3339 } 3340 if (unshare_flags & CLONE_NEWIPC) { 3341 /* Orphan segments in old ns (see sem above). */ 3342 exit_shm(current); 3343 shm_init_task(current); 3344 } 3345 3346 if (new_nsproxy) 3347 switch_task_namespaces(current, new_nsproxy); 3348 3349 task_lock(current); 3350 3351 if (new_fs) { 3352 fs = current->fs; 3353 spin_lock(&fs->lock); 3354 current->fs = new_fs; 3355 if (--fs->users) 3356 new_fs = NULL; 3357 else 3358 new_fs = fs; 3359 spin_unlock(&fs->lock); 3360 } 3361 3362 if (new_fd) 3363 swap(current->files, new_fd); 3364 3365 task_unlock(current); 3366 3367 if (new_cred) { 3368 /* Install the new user namespace */ 3369 commit_creds(new_cred); 3370 new_cred = NULL; 3371 } 3372 } 3373 3374 perf_event_namespaces(current); 3375 3376 bad_unshare_cleanup_cred: 3377 if (new_cred) 3378 put_cred(new_cred); 3379 bad_unshare_cleanup_fd: 3380 if (new_fd) 3381 put_files_struct(new_fd); 3382 3383 bad_unshare_cleanup_fs: 3384 if (new_fs) 3385 free_fs_struct(new_fs); 3386 3387 bad_unshare_out: 3388 return err; 3389 } 3390 3391 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3392 { 3393 return ksys_unshare(unshare_flags); 3394 } 3395 3396 /* 3397 * Helper to unshare the files of the current task. 3398 * We don't want to expose copy_files internals to 3399 * the exec layer of the kernel. 3400 */ 3401 3402 int unshare_files(void) 3403 { 3404 struct task_struct *task = current; 3405 struct files_struct *old, *copy = NULL; 3406 int error; 3407 3408 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3409 if (error || !copy) 3410 return error; 3411 3412 old = task->files; 3413 task_lock(task); 3414 task->files = copy; 3415 task_unlock(task); 3416 put_files_struct(old); 3417 return 0; 3418 } 3419 3420 int sysctl_max_threads(struct ctl_table *table, int write, 3421 void *buffer, size_t *lenp, loff_t *ppos) 3422 { 3423 struct ctl_table t; 3424 int ret; 3425 int threads = max_threads; 3426 int min = 1; 3427 int max = MAX_THREADS; 3428 3429 t = *table; 3430 t.data = &threads; 3431 t.extra1 = &min; 3432 t.extra2 = &max; 3433 3434 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3435 if (ret || !write) 3436 return ret; 3437 3438 max_threads = threads; 3439 3440 return 0; 3441 } 3442