xref: /linux/kernel/fork.c (revision b9b77222d4ff6b5bb8f5d87fca20de0910618bb9)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101 
102 #include <trace/events/sched.h>
103 
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106 
107 /*
108  * Minimum number of threads to boot the kernel
109  */
110 #define MIN_THREADS 20
111 
112 /*
113  * Maximum number of threads
114  */
115 #define MAX_THREADS FUTEX_TID_MASK
116 
117 /*
118  * Protected counters by write_lock_irq(&tasklist_lock)
119  */
120 unsigned long total_forks;	/* Handle normal Linux uptimes. */
121 int nr_threads;			/* The idle threads do not count.. */
122 
123 int max_threads;		/* tunable limit on nr_threads */
124 
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126 
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
128 
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 	return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136 
137 int nr_processes(void)
138 {
139 	int cpu;
140 	int total = 0;
141 
142 	for_each_possible_cpu(cpu)
143 		total += per_cpu(process_counts, cpu);
144 
145 	return total;
146 }
147 
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151 
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154 
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159 
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 	kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165 
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169 
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171 
172 /*
173  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174  * kmemcache based allocator.
175  */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 
178 #ifdef CONFIG_VMAP_STACK
179 /*
180  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181  * flush.  Try to minimize the number of calls by caching stacks.
182  */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185 
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 	int i;
190 
191 	for (i = 0; i < NR_CACHED_STACKS; i++) {
192 		struct vm_struct *vm_stack = cached_vm_stacks[i];
193 
194 		if (!vm_stack)
195 			continue;
196 
197 		vfree(vm_stack->addr);
198 		cached_vm_stacks[i] = NULL;
199 	}
200 
201 	return 0;
202 }
203 #endif
204 
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 	void *stack;
209 	int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *s;
213 
214 		s = this_cpu_xchg(cached_stacks[i], NULL);
215 
216 		if (!s)
217 			continue;
218 
219 		/* Clear stale pointers from reused stack. */
220 		memset(s->addr, 0, THREAD_SIZE);
221 
222 		tsk->stack_vm_area = s;
223 		return s->addr;
224 	}
225 
226 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227 				     VMALLOC_START, VMALLOC_END,
228 				     THREADINFO_GFP,
229 				     PAGE_KERNEL,
230 				     0, node, __builtin_return_address(0));
231 
232 	/*
233 	 * We can't call find_vm_area() in interrupt context, and
234 	 * free_thread_stack() can be called in interrupt context,
235 	 * so cache the vm_struct.
236 	 */
237 	if (stack)
238 		tsk->stack_vm_area = find_vm_area(stack);
239 	return stack;
240 #else
241 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242 					     THREAD_SIZE_ORDER);
243 
244 	return page ? page_address(page) : NULL;
245 #endif
246 }
247 
248 static inline void free_thread_stack(struct task_struct *tsk)
249 {
250 #ifdef CONFIG_VMAP_STACK
251 	if (task_stack_vm_area(tsk)) {
252 		int i;
253 
254 		for (i = 0; i < NR_CACHED_STACKS; i++) {
255 			if (this_cpu_cmpxchg(cached_stacks[i],
256 					NULL, tsk->stack_vm_area) != NULL)
257 				continue;
258 
259 			return;
260 		}
261 
262 		vfree_atomic(tsk->stack);
263 		return;
264 	}
265 #endif
266 
267 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271 
272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 						  int node)
274 {
275 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277 
278 static void free_thread_stack(struct task_struct *tsk)
279 {
280 	kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282 
283 void thread_stack_cache_init(void)
284 {
285 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
286 					THREAD_SIZE, THREAD_SIZE, 0, 0,
287 					THREAD_SIZE, NULL);
288 	BUG_ON(thread_stack_cache == NULL);
289 }
290 # endif
291 #endif
292 
293 /* SLAB cache for signal_struct structures (tsk->signal) */
294 static struct kmem_cache *signal_cachep;
295 
296 /* SLAB cache for sighand_struct structures (tsk->sighand) */
297 struct kmem_cache *sighand_cachep;
298 
299 /* SLAB cache for files_struct structures (tsk->files) */
300 struct kmem_cache *files_cachep;
301 
302 /* SLAB cache for fs_struct structures (tsk->fs) */
303 struct kmem_cache *fs_cachep;
304 
305 /* SLAB cache for vm_area_struct structures */
306 static struct kmem_cache *vm_area_cachep;
307 
308 /* SLAB cache for mm_struct structures (tsk->mm) */
309 static struct kmem_cache *mm_cachep;
310 
311 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
312 {
313 	struct vm_area_struct *vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
314 
315 	if (vma)
316 		vma_init(vma, mm);
317 	return vma;
318 }
319 
320 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
321 {
322 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
323 
324 	if (new) {
325 		*new = *orig;
326 		INIT_LIST_HEAD(&new->anon_vma_chain);
327 	}
328 	return new;
329 }
330 
331 void vm_area_free(struct vm_area_struct *vma)
332 {
333 	kmem_cache_free(vm_area_cachep, vma);
334 }
335 
336 static void account_kernel_stack(struct task_struct *tsk, int account)
337 {
338 	void *stack = task_stack_page(tsk);
339 	struct vm_struct *vm = task_stack_vm_area(tsk);
340 
341 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
342 
343 	if (vm) {
344 		int i;
345 
346 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
347 
348 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
349 			mod_zone_page_state(page_zone(vm->pages[i]),
350 					    NR_KERNEL_STACK_KB,
351 					    PAGE_SIZE / 1024 * account);
352 		}
353 
354 		/* All stack pages belong to the same memcg. */
355 		mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
356 				     account * (THREAD_SIZE / 1024));
357 	} else {
358 		/*
359 		 * All stack pages are in the same zone and belong to the
360 		 * same memcg.
361 		 */
362 		struct page *first_page = virt_to_page(stack);
363 
364 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
365 				    THREAD_SIZE / 1024 * account);
366 
367 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
368 				     account * (THREAD_SIZE / 1024));
369 	}
370 }
371 
372 static void release_task_stack(struct task_struct *tsk)
373 {
374 	if (WARN_ON(tsk->state != TASK_DEAD))
375 		return;  /* Better to leak the stack than to free prematurely */
376 
377 	account_kernel_stack(tsk, -1);
378 	arch_release_thread_stack(tsk->stack);
379 	free_thread_stack(tsk);
380 	tsk->stack = NULL;
381 #ifdef CONFIG_VMAP_STACK
382 	tsk->stack_vm_area = NULL;
383 #endif
384 }
385 
386 #ifdef CONFIG_THREAD_INFO_IN_TASK
387 void put_task_stack(struct task_struct *tsk)
388 {
389 	if (atomic_dec_and_test(&tsk->stack_refcount))
390 		release_task_stack(tsk);
391 }
392 #endif
393 
394 void free_task(struct task_struct *tsk)
395 {
396 #ifndef CONFIG_THREAD_INFO_IN_TASK
397 	/*
398 	 * The task is finally done with both the stack and thread_info,
399 	 * so free both.
400 	 */
401 	release_task_stack(tsk);
402 #else
403 	/*
404 	 * If the task had a separate stack allocation, it should be gone
405 	 * by now.
406 	 */
407 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
408 #endif
409 	rt_mutex_debug_task_free(tsk);
410 	ftrace_graph_exit_task(tsk);
411 	put_seccomp_filter(tsk);
412 	arch_release_task_struct(tsk);
413 	if (tsk->flags & PF_KTHREAD)
414 		free_kthread_struct(tsk);
415 	free_task_struct(tsk);
416 }
417 EXPORT_SYMBOL(free_task);
418 
419 #ifdef CONFIG_MMU
420 static __latent_entropy int dup_mmap(struct mm_struct *mm,
421 					struct mm_struct *oldmm)
422 {
423 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
424 	struct rb_node **rb_link, *rb_parent;
425 	int retval;
426 	unsigned long charge;
427 	LIST_HEAD(uf);
428 
429 	uprobe_start_dup_mmap();
430 	if (down_write_killable(&oldmm->mmap_sem)) {
431 		retval = -EINTR;
432 		goto fail_uprobe_end;
433 	}
434 	flush_cache_dup_mm(oldmm);
435 	uprobe_dup_mmap(oldmm, mm);
436 	/*
437 	 * Not linked in yet - no deadlock potential:
438 	 */
439 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
440 
441 	/* No ordering required: file already has been exposed. */
442 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
443 
444 	mm->total_vm = oldmm->total_vm;
445 	mm->data_vm = oldmm->data_vm;
446 	mm->exec_vm = oldmm->exec_vm;
447 	mm->stack_vm = oldmm->stack_vm;
448 
449 	rb_link = &mm->mm_rb.rb_node;
450 	rb_parent = NULL;
451 	pprev = &mm->mmap;
452 	retval = ksm_fork(mm, oldmm);
453 	if (retval)
454 		goto out;
455 	retval = khugepaged_fork(mm, oldmm);
456 	if (retval)
457 		goto out;
458 
459 	prev = NULL;
460 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
461 		struct file *file;
462 
463 		if (mpnt->vm_flags & VM_DONTCOPY) {
464 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
465 			continue;
466 		}
467 		charge = 0;
468 		/*
469 		 * Don't duplicate many vmas if we've been oom-killed (for
470 		 * example)
471 		 */
472 		if (fatal_signal_pending(current)) {
473 			retval = -EINTR;
474 			goto out;
475 		}
476 		if (mpnt->vm_flags & VM_ACCOUNT) {
477 			unsigned long len = vma_pages(mpnt);
478 
479 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
480 				goto fail_nomem;
481 			charge = len;
482 		}
483 		tmp = vm_area_dup(mpnt);
484 		if (!tmp)
485 			goto fail_nomem;
486 		retval = vma_dup_policy(mpnt, tmp);
487 		if (retval)
488 			goto fail_nomem_policy;
489 		tmp->vm_mm = mm;
490 		retval = dup_userfaultfd(tmp, &uf);
491 		if (retval)
492 			goto fail_nomem_anon_vma_fork;
493 		if (tmp->vm_flags & VM_WIPEONFORK) {
494 			/* VM_WIPEONFORK gets a clean slate in the child. */
495 			tmp->anon_vma = NULL;
496 			if (anon_vma_prepare(tmp))
497 				goto fail_nomem_anon_vma_fork;
498 		} else if (anon_vma_fork(tmp, mpnt))
499 			goto fail_nomem_anon_vma_fork;
500 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
501 		tmp->vm_next = tmp->vm_prev = NULL;
502 		file = tmp->vm_file;
503 		if (file) {
504 			struct inode *inode = file_inode(file);
505 			struct address_space *mapping = file->f_mapping;
506 
507 			get_file(file);
508 			if (tmp->vm_flags & VM_DENYWRITE)
509 				atomic_dec(&inode->i_writecount);
510 			i_mmap_lock_write(mapping);
511 			if (tmp->vm_flags & VM_SHARED)
512 				atomic_inc(&mapping->i_mmap_writable);
513 			flush_dcache_mmap_lock(mapping);
514 			/* insert tmp into the share list, just after mpnt */
515 			vma_interval_tree_insert_after(tmp, mpnt,
516 					&mapping->i_mmap);
517 			flush_dcache_mmap_unlock(mapping);
518 			i_mmap_unlock_write(mapping);
519 		}
520 
521 		/*
522 		 * Clear hugetlb-related page reserves for children. This only
523 		 * affects MAP_PRIVATE mappings. Faults generated by the child
524 		 * are not guaranteed to succeed, even if read-only
525 		 */
526 		if (is_vm_hugetlb_page(tmp))
527 			reset_vma_resv_huge_pages(tmp);
528 
529 		/*
530 		 * Link in the new vma and copy the page table entries.
531 		 */
532 		*pprev = tmp;
533 		pprev = &tmp->vm_next;
534 		tmp->vm_prev = prev;
535 		prev = tmp;
536 
537 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
538 		rb_link = &tmp->vm_rb.rb_right;
539 		rb_parent = &tmp->vm_rb;
540 
541 		mm->map_count++;
542 		if (!(tmp->vm_flags & VM_WIPEONFORK))
543 			retval = copy_page_range(mm, oldmm, mpnt);
544 
545 		if (tmp->vm_ops && tmp->vm_ops->open)
546 			tmp->vm_ops->open(tmp);
547 
548 		if (retval)
549 			goto out;
550 	}
551 	/* a new mm has just been created */
552 	arch_dup_mmap(oldmm, mm);
553 	retval = 0;
554 out:
555 	up_write(&mm->mmap_sem);
556 	flush_tlb_mm(oldmm);
557 	up_write(&oldmm->mmap_sem);
558 	dup_userfaultfd_complete(&uf);
559 fail_uprobe_end:
560 	uprobe_end_dup_mmap();
561 	return retval;
562 fail_nomem_anon_vma_fork:
563 	mpol_put(vma_policy(tmp));
564 fail_nomem_policy:
565 	vm_area_free(tmp);
566 fail_nomem:
567 	retval = -ENOMEM;
568 	vm_unacct_memory(charge);
569 	goto out;
570 }
571 
572 static inline int mm_alloc_pgd(struct mm_struct *mm)
573 {
574 	mm->pgd = pgd_alloc(mm);
575 	if (unlikely(!mm->pgd))
576 		return -ENOMEM;
577 	return 0;
578 }
579 
580 static inline void mm_free_pgd(struct mm_struct *mm)
581 {
582 	pgd_free(mm, mm->pgd);
583 }
584 #else
585 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
586 {
587 	down_write(&oldmm->mmap_sem);
588 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
589 	up_write(&oldmm->mmap_sem);
590 	return 0;
591 }
592 #define mm_alloc_pgd(mm)	(0)
593 #define mm_free_pgd(mm)
594 #endif /* CONFIG_MMU */
595 
596 static void check_mm(struct mm_struct *mm)
597 {
598 	int i;
599 
600 	for (i = 0; i < NR_MM_COUNTERS; i++) {
601 		long x = atomic_long_read(&mm->rss_stat.count[i]);
602 
603 		if (unlikely(x))
604 			printk(KERN_ALERT "BUG: Bad rss-counter state "
605 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
606 	}
607 
608 	if (mm_pgtables_bytes(mm))
609 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
610 				mm_pgtables_bytes(mm));
611 
612 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
613 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
614 #endif
615 }
616 
617 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
618 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
619 
620 /*
621  * Called when the last reference to the mm
622  * is dropped: either by a lazy thread or by
623  * mmput. Free the page directory and the mm.
624  */
625 void __mmdrop(struct mm_struct *mm)
626 {
627 	BUG_ON(mm == &init_mm);
628 	WARN_ON_ONCE(mm == current->mm);
629 	WARN_ON_ONCE(mm == current->active_mm);
630 	mm_free_pgd(mm);
631 	destroy_context(mm);
632 	hmm_mm_destroy(mm);
633 	mmu_notifier_mm_destroy(mm);
634 	check_mm(mm);
635 	put_user_ns(mm->user_ns);
636 	free_mm(mm);
637 }
638 EXPORT_SYMBOL_GPL(__mmdrop);
639 
640 static void mmdrop_async_fn(struct work_struct *work)
641 {
642 	struct mm_struct *mm;
643 
644 	mm = container_of(work, struct mm_struct, async_put_work);
645 	__mmdrop(mm);
646 }
647 
648 static void mmdrop_async(struct mm_struct *mm)
649 {
650 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
651 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
652 		schedule_work(&mm->async_put_work);
653 	}
654 }
655 
656 static inline void free_signal_struct(struct signal_struct *sig)
657 {
658 	taskstats_tgid_free(sig);
659 	sched_autogroup_exit(sig);
660 	/*
661 	 * __mmdrop is not safe to call from softirq context on x86 due to
662 	 * pgd_dtor so postpone it to the async context
663 	 */
664 	if (sig->oom_mm)
665 		mmdrop_async(sig->oom_mm);
666 	kmem_cache_free(signal_cachep, sig);
667 }
668 
669 static inline void put_signal_struct(struct signal_struct *sig)
670 {
671 	if (atomic_dec_and_test(&sig->sigcnt))
672 		free_signal_struct(sig);
673 }
674 
675 void __put_task_struct(struct task_struct *tsk)
676 {
677 	WARN_ON(!tsk->exit_state);
678 	WARN_ON(atomic_read(&tsk->usage));
679 	WARN_ON(tsk == current);
680 
681 	cgroup_free(tsk);
682 	task_numa_free(tsk);
683 	security_task_free(tsk);
684 	exit_creds(tsk);
685 	delayacct_tsk_free(tsk);
686 	put_signal_struct(tsk->signal);
687 
688 	if (!profile_handoff_task(tsk))
689 		free_task(tsk);
690 }
691 EXPORT_SYMBOL_GPL(__put_task_struct);
692 
693 void __init __weak arch_task_cache_init(void) { }
694 
695 /*
696  * set_max_threads
697  */
698 static void set_max_threads(unsigned int max_threads_suggested)
699 {
700 	u64 threads;
701 
702 	/*
703 	 * The number of threads shall be limited such that the thread
704 	 * structures may only consume a small part of the available memory.
705 	 */
706 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
707 		threads = MAX_THREADS;
708 	else
709 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
710 				    (u64) THREAD_SIZE * 8UL);
711 
712 	if (threads > max_threads_suggested)
713 		threads = max_threads_suggested;
714 
715 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
716 }
717 
718 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
719 /* Initialized by the architecture: */
720 int arch_task_struct_size __read_mostly;
721 #endif
722 
723 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
724 {
725 	/* Fetch thread_struct whitelist for the architecture. */
726 	arch_thread_struct_whitelist(offset, size);
727 
728 	/*
729 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
730 	 * adjust offset to position of thread_struct in task_struct.
731 	 */
732 	if (unlikely(*size == 0))
733 		*offset = 0;
734 	else
735 		*offset += offsetof(struct task_struct, thread);
736 }
737 
738 void __init fork_init(void)
739 {
740 	int i;
741 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
742 #ifndef ARCH_MIN_TASKALIGN
743 #define ARCH_MIN_TASKALIGN	0
744 #endif
745 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
746 	unsigned long useroffset, usersize;
747 
748 	/* create a slab on which task_structs can be allocated */
749 	task_struct_whitelist(&useroffset, &usersize);
750 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
751 			arch_task_struct_size, align,
752 			SLAB_PANIC|SLAB_ACCOUNT,
753 			useroffset, usersize, NULL);
754 #endif
755 
756 	/* do the arch specific task caches init */
757 	arch_task_cache_init();
758 
759 	set_max_threads(MAX_THREADS);
760 
761 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
762 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
763 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
764 		init_task.signal->rlim[RLIMIT_NPROC];
765 
766 	for (i = 0; i < UCOUNT_COUNTS; i++) {
767 		init_user_ns.ucount_max[i] = max_threads/2;
768 	}
769 
770 #ifdef CONFIG_VMAP_STACK
771 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
772 			  NULL, free_vm_stack_cache);
773 #endif
774 
775 	lockdep_init_task(&init_task);
776 }
777 
778 int __weak arch_dup_task_struct(struct task_struct *dst,
779 					       struct task_struct *src)
780 {
781 	*dst = *src;
782 	return 0;
783 }
784 
785 void set_task_stack_end_magic(struct task_struct *tsk)
786 {
787 	unsigned long *stackend;
788 
789 	stackend = end_of_stack(tsk);
790 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
791 }
792 
793 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
794 {
795 	struct task_struct *tsk;
796 	unsigned long *stack;
797 	struct vm_struct *stack_vm_area;
798 	int err;
799 
800 	if (node == NUMA_NO_NODE)
801 		node = tsk_fork_get_node(orig);
802 	tsk = alloc_task_struct_node(node);
803 	if (!tsk)
804 		return NULL;
805 
806 	stack = alloc_thread_stack_node(tsk, node);
807 	if (!stack)
808 		goto free_tsk;
809 
810 	stack_vm_area = task_stack_vm_area(tsk);
811 
812 	err = arch_dup_task_struct(tsk, orig);
813 
814 	/*
815 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
816 	 * sure they're properly initialized before using any stack-related
817 	 * functions again.
818 	 */
819 	tsk->stack = stack;
820 #ifdef CONFIG_VMAP_STACK
821 	tsk->stack_vm_area = stack_vm_area;
822 #endif
823 #ifdef CONFIG_THREAD_INFO_IN_TASK
824 	atomic_set(&tsk->stack_refcount, 1);
825 #endif
826 
827 	if (err)
828 		goto free_stack;
829 
830 #ifdef CONFIG_SECCOMP
831 	/*
832 	 * We must handle setting up seccomp filters once we're under
833 	 * the sighand lock in case orig has changed between now and
834 	 * then. Until then, filter must be NULL to avoid messing up
835 	 * the usage counts on the error path calling free_task.
836 	 */
837 	tsk->seccomp.filter = NULL;
838 #endif
839 
840 	setup_thread_stack(tsk, orig);
841 	clear_user_return_notifier(tsk);
842 	clear_tsk_need_resched(tsk);
843 	set_task_stack_end_magic(tsk);
844 
845 #ifdef CONFIG_STACKPROTECTOR
846 	tsk->stack_canary = get_random_canary();
847 #endif
848 
849 	/*
850 	 * One for us, one for whoever does the "release_task()" (usually
851 	 * parent)
852 	 */
853 	atomic_set(&tsk->usage, 2);
854 #ifdef CONFIG_BLK_DEV_IO_TRACE
855 	tsk->btrace_seq = 0;
856 #endif
857 	tsk->splice_pipe = NULL;
858 	tsk->task_frag.page = NULL;
859 	tsk->wake_q.next = NULL;
860 
861 	account_kernel_stack(tsk, 1);
862 
863 	kcov_task_init(tsk);
864 
865 #ifdef CONFIG_FAULT_INJECTION
866 	tsk->fail_nth = 0;
867 #endif
868 
869 	return tsk;
870 
871 free_stack:
872 	free_thread_stack(tsk);
873 free_tsk:
874 	free_task_struct(tsk);
875 	return NULL;
876 }
877 
878 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
879 
880 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
881 
882 static int __init coredump_filter_setup(char *s)
883 {
884 	default_dump_filter =
885 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
886 		MMF_DUMP_FILTER_MASK;
887 	return 1;
888 }
889 
890 __setup("coredump_filter=", coredump_filter_setup);
891 
892 #include <linux/init_task.h>
893 
894 static void mm_init_aio(struct mm_struct *mm)
895 {
896 #ifdef CONFIG_AIO
897 	spin_lock_init(&mm->ioctx_lock);
898 	mm->ioctx_table = NULL;
899 #endif
900 }
901 
902 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
903 {
904 #ifdef CONFIG_MEMCG
905 	mm->owner = p;
906 #endif
907 }
908 
909 static void mm_init_uprobes_state(struct mm_struct *mm)
910 {
911 #ifdef CONFIG_UPROBES
912 	mm->uprobes_state.xol_area = NULL;
913 #endif
914 }
915 
916 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
917 	struct user_namespace *user_ns)
918 {
919 	mm->mmap = NULL;
920 	mm->mm_rb = RB_ROOT;
921 	mm->vmacache_seqnum = 0;
922 	atomic_set(&mm->mm_users, 1);
923 	atomic_set(&mm->mm_count, 1);
924 	init_rwsem(&mm->mmap_sem);
925 	INIT_LIST_HEAD(&mm->mmlist);
926 	mm->core_state = NULL;
927 	mm_pgtables_bytes_init(mm);
928 	mm->map_count = 0;
929 	mm->locked_vm = 0;
930 	mm->pinned_vm = 0;
931 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
932 	spin_lock_init(&mm->page_table_lock);
933 	spin_lock_init(&mm->arg_lock);
934 	mm_init_cpumask(mm);
935 	mm_init_aio(mm);
936 	mm_init_owner(mm, p);
937 	RCU_INIT_POINTER(mm->exe_file, NULL);
938 	mmu_notifier_mm_init(mm);
939 	hmm_mm_init(mm);
940 	init_tlb_flush_pending(mm);
941 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
942 	mm->pmd_huge_pte = NULL;
943 #endif
944 	mm_init_uprobes_state(mm);
945 
946 	if (current->mm) {
947 		mm->flags = current->mm->flags & MMF_INIT_MASK;
948 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
949 	} else {
950 		mm->flags = default_dump_filter;
951 		mm->def_flags = 0;
952 	}
953 
954 	if (mm_alloc_pgd(mm))
955 		goto fail_nopgd;
956 
957 	if (init_new_context(p, mm))
958 		goto fail_nocontext;
959 
960 	mm->user_ns = get_user_ns(user_ns);
961 	return mm;
962 
963 fail_nocontext:
964 	mm_free_pgd(mm);
965 fail_nopgd:
966 	free_mm(mm);
967 	return NULL;
968 }
969 
970 /*
971  * Allocate and initialize an mm_struct.
972  */
973 struct mm_struct *mm_alloc(void)
974 {
975 	struct mm_struct *mm;
976 
977 	mm = allocate_mm();
978 	if (!mm)
979 		return NULL;
980 
981 	memset(mm, 0, sizeof(*mm));
982 	return mm_init(mm, current, current_user_ns());
983 }
984 
985 static inline void __mmput(struct mm_struct *mm)
986 {
987 	VM_BUG_ON(atomic_read(&mm->mm_users));
988 
989 	uprobe_clear_state(mm);
990 	exit_aio(mm);
991 	ksm_exit(mm);
992 	khugepaged_exit(mm); /* must run before exit_mmap */
993 	exit_mmap(mm);
994 	mm_put_huge_zero_page(mm);
995 	set_mm_exe_file(mm, NULL);
996 	if (!list_empty(&mm->mmlist)) {
997 		spin_lock(&mmlist_lock);
998 		list_del(&mm->mmlist);
999 		spin_unlock(&mmlist_lock);
1000 	}
1001 	if (mm->binfmt)
1002 		module_put(mm->binfmt->module);
1003 	mmdrop(mm);
1004 }
1005 
1006 /*
1007  * Decrement the use count and release all resources for an mm.
1008  */
1009 void mmput(struct mm_struct *mm)
1010 {
1011 	might_sleep();
1012 
1013 	if (atomic_dec_and_test(&mm->mm_users))
1014 		__mmput(mm);
1015 }
1016 EXPORT_SYMBOL_GPL(mmput);
1017 
1018 #ifdef CONFIG_MMU
1019 static void mmput_async_fn(struct work_struct *work)
1020 {
1021 	struct mm_struct *mm = container_of(work, struct mm_struct,
1022 					    async_put_work);
1023 
1024 	__mmput(mm);
1025 }
1026 
1027 void mmput_async(struct mm_struct *mm)
1028 {
1029 	if (atomic_dec_and_test(&mm->mm_users)) {
1030 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1031 		schedule_work(&mm->async_put_work);
1032 	}
1033 }
1034 #endif
1035 
1036 /**
1037  * set_mm_exe_file - change a reference to the mm's executable file
1038  *
1039  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1040  *
1041  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1042  * invocations: in mmput() nobody alive left, in execve task is single
1043  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1044  * mm->exe_file, but does so without using set_mm_exe_file() in order
1045  * to do avoid the need for any locks.
1046  */
1047 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1048 {
1049 	struct file *old_exe_file;
1050 
1051 	/*
1052 	 * It is safe to dereference the exe_file without RCU as
1053 	 * this function is only called if nobody else can access
1054 	 * this mm -- see comment above for justification.
1055 	 */
1056 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1057 
1058 	if (new_exe_file)
1059 		get_file(new_exe_file);
1060 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1061 	if (old_exe_file)
1062 		fput(old_exe_file);
1063 }
1064 
1065 /**
1066  * get_mm_exe_file - acquire a reference to the mm's executable file
1067  *
1068  * Returns %NULL if mm has no associated executable file.
1069  * User must release file via fput().
1070  */
1071 struct file *get_mm_exe_file(struct mm_struct *mm)
1072 {
1073 	struct file *exe_file;
1074 
1075 	rcu_read_lock();
1076 	exe_file = rcu_dereference(mm->exe_file);
1077 	if (exe_file && !get_file_rcu(exe_file))
1078 		exe_file = NULL;
1079 	rcu_read_unlock();
1080 	return exe_file;
1081 }
1082 EXPORT_SYMBOL(get_mm_exe_file);
1083 
1084 /**
1085  * get_task_exe_file - acquire a reference to the task's executable file
1086  *
1087  * Returns %NULL if task's mm (if any) has no associated executable file or
1088  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1089  * User must release file via fput().
1090  */
1091 struct file *get_task_exe_file(struct task_struct *task)
1092 {
1093 	struct file *exe_file = NULL;
1094 	struct mm_struct *mm;
1095 
1096 	task_lock(task);
1097 	mm = task->mm;
1098 	if (mm) {
1099 		if (!(task->flags & PF_KTHREAD))
1100 			exe_file = get_mm_exe_file(mm);
1101 	}
1102 	task_unlock(task);
1103 	return exe_file;
1104 }
1105 EXPORT_SYMBOL(get_task_exe_file);
1106 
1107 /**
1108  * get_task_mm - acquire a reference to the task's mm
1109  *
1110  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1111  * this kernel workthread has transiently adopted a user mm with use_mm,
1112  * to do its AIO) is not set and if so returns a reference to it, after
1113  * bumping up the use count.  User must release the mm via mmput()
1114  * after use.  Typically used by /proc and ptrace.
1115  */
1116 struct mm_struct *get_task_mm(struct task_struct *task)
1117 {
1118 	struct mm_struct *mm;
1119 
1120 	task_lock(task);
1121 	mm = task->mm;
1122 	if (mm) {
1123 		if (task->flags & PF_KTHREAD)
1124 			mm = NULL;
1125 		else
1126 			mmget(mm);
1127 	}
1128 	task_unlock(task);
1129 	return mm;
1130 }
1131 EXPORT_SYMBOL_GPL(get_task_mm);
1132 
1133 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1134 {
1135 	struct mm_struct *mm;
1136 	int err;
1137 
1138 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1139 	if (err)
1140 		return ERR_PTR(err);
1141 
1142 	mm = get_task_mm(task);
1143 	if (mm && mm != current->mm &&
1144 			!ptrace_may_access(task, mode)) {
1145 		mmput(mm);
1146 		mm = ERR_PTR(-EACCES);
1147 	}
1148 	mutex_unlock(&task->signal->cred_guard_mutex);
1149 
1150 	return mm;
1151 }
1152 
1153 static void complete_vfork_done(struct task_struct *tsk)
1154 {
1155 	struct completion *vfork;
1156 
1157 	task_lock(tsk);
1158 	vfork = tsk->vfork_done;
1159 	if (likely(vfork)) {
1160 		tsk->vfork_done = NULL;
1161 		complete(vfork);
1162 	}
1163 	task_unlock(tsk);
1164 }
1165 
1166 static int wait_for_vfork_done(struct task_struct *child,
1167 				struct completion *vfork)
1168 {
1169 	int killed;
1170 
1171 	freezer_do_not_count();
1172 	killed = wait_for_completion_killable(vfork);
1173 	freezer_count();
1174 
1175 	if (killed) {
1176 		task_lock(child);
1177 		child->vfork_done = NULL;
1178 		task_unlock(child);
1179 	}
1180 
1181 	put_task_struct(child);
1182 	return killed;
1183 }
1184 
1185 /* Please note the differences between mmput and mm_release.
1186  * mmput is called whenever we stop holding onto a mm_struct,
1187  * error success whatever.
1188  *
1189  * mm_release is called after a mm_struct has been removed
1190  * from the current process.
1191  *
1192  * This difference is important for error handling, when we
1193  * only half set up a mm_struct for a new process and need to restore
1194  * the old one.  Because we mmput the new mm_struct before
1195  * restoring the old one. . .
1196  * Eric Biederman 10 January 1998
1197  */
1198 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1199 {
1200 	/* Get rid of any futexes when releasing the mm */
1201 #ifdef CONFIG_FUTEX
1202 	if (unlikely(tsk->robust_list)) {
1203 		exit_robust_list(tsk);
1204 		tsk->robust_list = NULL;
1205 	}
1206 #ifdef CONFIG_COMPAT
1207 	if (unlikely(tsk->compat_robust_list)) {
1208 		compat_exit_robust_list(tsk);
1209 		tsk->compat_robust_list = NULL;
1210 	}
1211 #endif
1212 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1213 		exit_pi_state_list(tsk);
1214 #endif
1215 
1216 	uprobe_free_utask(tsk);
1217 
1218 	/* Get rid of any cached register state */
1219 	deactivate_mm(tsk, mm);
1220 
1221 	/*
1222 	 * Signal userspace if we're not exiting with a core dump
1223 	 * because we want to leave the value intact for debugging
1224 	 * purposes.
1225 	 */
1226 	if (tsk->clear_child_tid) {
1227 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1228 		    atomic_read(&mm->mm_users) > 1) {
1229 			/*
1230 			 * We don't check the error code - if userspace has
1231 			 * not set up a proper pointer then tough luck.
1232 			 */
1233 			put_user(0, tsk->clear_child_tid);
1234 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1235 					1, NULL, NULL, 0, 0);
1236 		}
1237 		tsk->clear_child_tid = NULL;
1238 	}
1239 
1240 	/*
1241 	 * All done, finally we can wake up parent and return this mm to him.
1242 	 * Also kthread_stop() uses this completion for synchronization.
1243 	 */
1244 	if (tsk->vfork_done)
1245 		complete_vfork_done(tsk);
1246 }
1247 
1248 /*
1249  * Allocate a new mm structure and copy contents from the
1250  * mm structure of the passed in task structure.
1251  */
1252 static struct mm_struct *dup_mm(struct task_struct *tsk)
1253 {
1254 	struct mm_struct *mm, *oldmm = current->mm;
1255 	int err;
1256 
1257 	mm = allocate_mm();
1258 	if (!mm)
1259 		goto fail_nomem;
1260 
1261 	memcpy(mm, oldmm, sizeof(*mm));
1262 
1263 	if (!mm_init(mm, tsk, mm->user_ns))
1264 		goto fail_nomem;
1265 
1266 	err = dup_mmap(mm, oldmm);
1267 	if (err)
1268 		goto free_pt;
1269 
1270 	mm->hiwater_rss = get_mm_rss(mm);
1271 	mm->hiwater_vm = mm->total_vm;
1272 
1273 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1274 		goto free_pt;
1275 
1276 	return mm;
1277 
1278 free_pt:
1279 	/* don't put binfmt in mmput, we haven't got module yet */
1280 	mm->binfmt = NULL;
1281 	mmput(mm);
1282 
1283 fail_nomem:
1284 	return NULL;
1285 }
1286 
1287 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1288 {
1289 	struct mm_struct *mm, *oldmm;
1290 	int retval;
1291 
1292 	tsk->min_flt = tsk->maj_flt = 0;
1293 	tsk->nvcsw = tsk->nivcsw = 0;
1294 #ifdef CONFIG_DETECT_HUNG_TASK
1295 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1296 #endif
1297 
1298 	tsk->mm = NULL;
1299 	tsk->active_mm = NULL;
1300 
1301 	/*
1302 	 * Are we cloning a kernel thread?
1303 	 *
1304 	 * We need to steal a active VM for that..
1305 	 */
1306 	oldmm = current->mm;
1307 	if (!oldmm)
1308 		return 0;
1309 
1310 	/* initialize the new vmacache entries */
1311 	vmacache_flush(tsk);
1312 
1313 	if (clone_flags & CLONE_VM) {
1314 		mmget(oldmm);
1315 		mm = oldmm;
1316 		goto good_mm;
1317 	}
1318 
1319 	retval = -ENOMEM;
1320 	mm = dup_mm(tsk);
1321 	if (!mm)
1322 		goto fail_nomem;
1323 
1324 good_mm:
1325 	tsk->mm = mm;
1326 	tsk->active_mm = mm;
1327 	return 0;
1328 
1329 fail_nomem:
1330 	return retval;
1331 }
1332 
1333 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1334 {
1335 	struct fs_struct *fs = current->fs;
1336 	if (clone_flags & CLONE_FS) {
1337 		/* tsk->fs is already what we want */
1338 		spin_lock(&fs->lock);
1339 		if (fs->in_exec) {
1340 			spin_unlock(&fs->lock);
1341 			return -EAGAIN;
1342 		}
1343 		fs->users++;
1344 		spin_unlock(&fs->lock);
1345 		return 0;
1346 	}
1347 	tsk->fs = copy_fs_struct(fs);
1348 	if (!tsk->fs)
1349 		return -ENOMEM;
1350 	return 0;
1351 }
1352 
1353 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1354 {
1355 	struct files_struct *oldf, *newf;
1356 	int error = 0;
1357 
1358 	/*
1359 	 * A background process may not have any files ...
1360 	 */
1361 	oldf = current->files;
1362 	if (!oldf)
1363 		goto out;
1364 
1365 	if (clone_flags & CLONE_FILES) {
1366 		atomic_inc(&oldf->count);
1367 		goto out;
1368 	}
1369 
1370 	newf = dup_fd(oldf, &error);
1371 	if (!newf)
1372 		goto out;
1373 
1374 	tsk->files = newf;
1375 	error = 0;
1376 out:
1377 	return error;
1378 }
1379 
1380 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1381 {
1382 #ifdef CONFIG_BLOCK
1383 	struct io_context *ioc = current->io_context;
1384 	struct io_context *new_ioc;
1385 
1386 	if (!ioc)
1387 		return 0;
1388 	/*
1389 	 * Share io context with parent, if CLONE_IO is set
1390 	 */
1391 	if (clone_flags & CLONE_IO) {
1392 		ioc_task_link(ioc);
1393 		tsk->io_context = ioc;
1394 	} else if (ioprio_valid(ioc->ioprio)) {
1395 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1396 		if (unlikely(!new_ioc))
1397 			return -ENOMEM;
1398 
1399 		new_ioc->ioprio = ioc->ioprio;
1400 		put_io_context(new_ioc);
1401 	}
1402 #endif
1403 	return 0;
1404 }
1405 
1406 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1407 {
1408 	struct sighand_struct *sig;
1409 
1410 	if (clone_flags & CLONE_SIGHAND) {
1411 		atomic_inc(&current->sighand->count);
1412 		return 0;
1413 	}
1414 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1415 	rcu_assign_pointer(tsk->sighand, sig);
1416 	if (!sig)
1417 		return -ENOMEM;
1418 
1419 	atomic_set(&sig->count, 1);
1420 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1421 	return 0;
1422 }
1423 
1424 void __cleanup_sighand(struct sighand_struct *sighand)
1425 {
1426 	if (atomic_dec_and_test(&sighand->count)) {
1427 		signalfd_cleanup(sighand);
1428 		/*
1429 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1430 		 * without an RCU grace period, see __lock_task_sighand().
1431 		 */
1432 		kmem_cache_free(sighand_cachep, sighand);
1433 	}
1434 }
1435 
1436 #ifdef CONFIG_POSIX_TIMERS
1437 /*
1438  * Initialize POSIX timer handling for a thread group.
1439  */
1440 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1441 {
1442 	unsigned long cpu_limit;
1443 
1444 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1445 	if (cpu_limit != RLIM_INFINITY) {
1446 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1447 		sig->cputimer.running = true;
1448 	}
1449 
1450 	/* The timer lists. */
1451 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1452 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1453 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1454 }
1455 #else
1456 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1457 #endif
1458 
1459 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1460 {
1461 	struct signal_struct *sig;
1462 
1463 	if (clone_flags & CLONE_THREAD)
1464 		return 0;
1465 
1466 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1467 	tsk->signal = sig;
1468 	if (!sig)
1469 		return -ENOMEM;
1470 
1471 	sig->nr_threads = 1;
1472 	atomic_set(&sig->live, 1);
1473 	atomic_set(&sig->sigcnt, 1);
1474 
1475 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1476 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1477 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1478 
1479 	init_waitqueue_head(&sig->wait_chldexit);
1480 	sig->curr_target = tsk;
1481 	init_sigpending(&sig->shared_pending);
1482 	seqlock_init(&sig->stats_lock);
1483 	prev_cputime_init(&sig->prev_cputime);
1484 
1485 #ifdef CONFIG_POSIX_TIMERS
1486 	INIT_LIST_HEAD(&sig->posix_timers);
1487 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1488 	sig->real_timer.function = it_real_fn;
1489 #endif
1490 
1491 	task_lock(current->group_leader);
1492 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1493 	task_unlock(current->group_leader);
1494 
1495 	posix_cpu_timers_init_group(sig);
1496 
1497 	tty_audit_fork(sig);
1498 	sched_autogroup_fork(sig);
1499 
1500 	sig->oom_score_adj = current->signal->oom_score_adj;
1501 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1502 
1503 	mutex_init(&sig->cred_guard_mutex);
1504 
1505 	return 0;
1506 }
1507 
1508 static void copy_seccomp(struct task_struct *p)
1509 {
1510 #ifdef CONFIG_SECCOMP
1511 	/*
1512 	 * Must be called with sighand->lock held, which is common to
1513 	 * all threads in the group. Holding cred_guard_mutex is not
1514 	 * needed because this new task is not yet running and cannot
1515 	 * be racing exec.
1516 	 */
1517 	assert_spin_locked(&current->sighand->siglock);
1518 
1519 	/* Ref-count the new filter user, and assign it. */
1520 	get_seccomp_filter(current);
1521 	p->seccomp = current->seccomp;
1522 
1523 	/*
1524 	 * Explicitly enable no_new_privs here in case it got set
1525 	 * between the task_struct being duplicated and holding the
1526 	 * sighand lock. The seccomp state and nnp must be in sync.
1527 	 */
1528 	if (task_no_new_privs(current))
1529 		task_set_no_new_privs(p);
1530 
1531 	/*
1532 	 * If the parent gained a seccomp mode after copying thread
1533 	 * flags and between before we held the sighand lock, we have
1534 	 * to manually enable the seccomp thread flag here.
1535 	 */
1536 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1537 		set_tsk_thread_flag(p, TIF_SECCOMP);
1538 #endif
1539 }
1540 
1541 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1542 {
1543 	current->clear_child_tid = tidptr;
1544 
1545 	return task_pid_vnr(current);
1546 }
1547 
1548 static void rt_mutex_init_task(struct task_struct *p)
1549 {
1550 	raw_spin_lock_init(&p->pi_lock);
1551 #ifdef CONFIG_RT_MUTEXES
1552 	p->pi_waiters = RB_ROOT_CACHED;
1553 	p->pi_top_task = NULL;
1554 	p->pi_blocked_on = NULL;
1555 #endif
1556 }
1557 
1558 #ifdef CONFIG_POSIX_TIMERS
1559 /*
1560  * Initialize POSIX timer handling for a single task.
1561  */
1562 static void posix_cpu_timers_init(struct task_struct *tsk)
1563 {
1564 	tsk->cputime_expires.prof_exp = 0;
1565 	tsk->cputime_expires.virt_exp = 0;
1566 	tsk->cputime_expires.sched_exp = 0;
1567 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1568 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1569 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1570 }
1571 #else
1572 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1573 #endif
1574 
1575 static inline void
1576 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1577 {
1578 	 task->pids[type].pid = pid;
1579 }
1580 
1581 static inline void rcu_copy_process(struct task_struct *p)
1582 {
1583 #ifdef CONFIG_PREEMPT_RCU
1584 	p->rcu_read_lock_nesting = 0;
1585 	p->rcu_read_unlock_special.s = 0;
1586 	p->rcu_blocked_node = NULL;
1587 	INIT_LIST_HEAD(&p->rcu_node_entry);
1588 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1589 #ifdef CONFIG_TASKS_RCU
1590 	p->rcu_tasks_holdout = false;
1591 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1592 	p->rcu_tasks_idle_cpu = -1;
1593 #endif /* #ifdef CONFIG_TASKS_RCU */
1594 }
1595 
1596 /*
1597  * This creates a new process as a copy of the old one,
1598  * but does not actually start it yet.
1599  *
1600  * It copies the registers, and all the appropriate
1601  * parts of the process environment (as per the clone
1602  * flags). The actual kick-off is left to the caller.
1603  */
1604 static __latent_entropy struct task_struct *copy_process(
1605 					unsigned long clone_flags,
1606 					unsigned long stack_start,
1607 					unsigned long stack_size,
1608 					int __user *child_tidptr,
1609 					struct pid *pid,
1610 					int trace,
1611 					unsigned long tls,
1612 					int node)
1613 {
1614 	int retval;
1615 	struct task_struct *p;
1616 
1617 	/*
1618 	 * Don't allow sharing the root directory with processes in a different
1619 	 * namespace
1620 	 */
1621 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1622 		return ERR_PTR(-EINVAL);
1623 
1624 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1625 		return ERR_PTR(-EINVAL);
1626 
1627 	/*
1628 	 * Thread groups must share signals as well, and detached threads
1629 	 * can only be started up within the thread group.
1630 	 */
1631 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1632 		return ERR_PTR(-EINVAL);
1633 
1634 	/*
1635 	 * Shared signal handlers imply shared VM. By way of the above,
1636 	 * thread groups also imply shared VM. Blocking this case allows
1637 	 * for various simplifications in other code.
1638 	 */
1639 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1640 		return ERR_PTR(-EINVAL);
1641 
1642 	/*
1643 	 * Siblings of global init remain as zombies on exit since they are
1644 	 * not reaped by their parent (swapper). To solve this and to avoid
1645 	 * multi-rooted process trees, prevent global and container-inits
1646 	 * from creating siblings.
1647 	 */
1648 	if ((clone_flags & CLONE_PARENT) &&
1649 				current->signal->flags & SIGNAL_UNKILLABLE)
1650 		return ERR_PTR(-EINVAL);
1651 
1652 	/*
1653 	 * If the new process will be in a different pid or user namespace
1654 	 * do not allow it to share a thread group with the forking task.
1655 	 */
1656 	if (clone_flags & CLONE_THREAD) {
1657 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1658 		    (task_active_pid_ns(current) !=
1659 				current->nsproxy->pid_ns_for_children))
1660 			return ERR_PTR(-EINVAL);
1661 	}
1662 
1663 	retval = -ENOMEM;
1664 	p = dup_task_struct(current, node);
1665 	if (!p)
1666 		goto fork_out;
1667 
1668 	/*
1669 	 * This _must_ happen before we call free_task(), i.e. before we jump
1670 	 * to any of the bad_fork_* labels. This is to avoid freeing
1671 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1672 	 * kernel threads (PF_KTHREAD).
1673 	 */
1674 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1675 	/*
1676 	 * Clear TID on mm_release()?
1677 	 */
1678 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1679 
1680 	ftrace_graph_init_task(p);
1681 
1682 	rt_mutex_init_task(p);
1683 
1684 #ifdef CONFIG_PROVE_LOCKING
1685 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1686 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1687 #endif
1688 	retval = -EAGAIN;
1689 	if (atomic_read(&p->real_cred->user->processes) >=
1690 			task_rlimit(p, RLIMIT_NPROC)) {
1691 		if (p->real_cred->user != INIT_USER &&
1692 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1693 			goto bad_fork_free;
1694 	}
1695 	current->flags &= ~PF_NPROC_EXCEEDED;
1696 
1697 	retval = copy_creds(p, clone_flags);
1698 	if (retval < 0)
1699 		goto bad_fork_free;
1700 
1701 	/*
1702 	 * If multiple threads are within copy_process(), then this check
1703 	 * triggers too late. This doesn't hurt, the check is only there
1704 	 * to stop root fork bombs.
1705 	 */
1706 	retval = -EAGAIN;
1707 	if (nr_threads >= max_threads)
1708 		goto bad_fork_cleanup_count;
1709 
1710 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1711 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1712 	p->flags |= PF_FORKNOEXEC;
1713 	INIT_LIST_HEAD(&p->children);
1714 	INIT_LIST_HEAD(&p->sibling);
1715 	rcu_copy_process(p);
1716 	p->vfork_done = NULL;
1717 	spin_lock_init(&p->alloc_lock);
1718 
1719 	init_sigpending(&p->pending);
1720 
1721 	p->utime = p->stime = p->gtime = 0;
1722 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1723 	p->utimescaled = p->stimescaled = 0;
1724 #endif
1725 	prev_cputime_init(&p->prev_cputime);
1726 
1727 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1728 	seqcount_init(&p->vtime.seqcount);
1729 	p->vtime.starttime = 0;
1730 	p->vtime.state = VTIME_INACTIVE;
1731 #endif
1732 
1733 #if defined(SPLIT_RSS_COUNTING)
1734 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1735 #endif
1736 
1737 	p->default_timer_slack_ns = current->timer_slack_ns;
1738 
1739 	task_io_accounting_init(&p->ioac);
1740 	acct_clear_integrals(p);
1741 
1742 	posix_cpu_timers_init(p);
1743 
1744 	p->start_time = ktime_get_ns();
1745 	p->real_start_time = ktime_get_boot_ns();
1746 	p->io_context = NULL;
1747 	audit_set_context(p, NULL);
1748 	cgroup_fork(p);
1749 #ifdef CONFIG_NUMA
1750 	p->mempolicy = mpol_dup(p->mempolicy);
1751 	if (IS_ERR(p->mempolicy)) {
1752 		retval = PTR_ERR(p->mempolicy);
1753 		p->mempolicy = NULL;
1754 		goto bad_fork_cleanup_threadgroup_lock;
1755 	}
1756 #endif
1757 #ifdef CONFIG_CPUSETS
1758 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1759 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1760 	seqcount_init(&p->mems_allowed_seq);
1761 #endif
1762 #ifdef CONFIG_TRACE_IRQFLAGS
1763 	p->irq_events = 0;
1764 	p->hardirqs_enabled = 0;
1765 	p->hardirq_enable_ip = 0;
1766 	p->hardirq_enable_event = 0;
1767 	p->hardirq_disable_ip = _THIS_IP_;
1768 	p->hardirq_disable_event = 0;
1769 	p->softirqs_enabled = 1;
1770 	p->softirq_enable_ip = _THIS_IP_;
1771 	p->softirq_enable_event = 0;
1772 	p->softirq_disable_ip = 0;
1773 	p->softirq_disable_event = 0;
1774 	p->hardirq_context = 0;
1775 	p->softirq_context = 0;
1776 #endif
1777 
1778 	p->pagefault_disabled = 0;
1779 
1780 #ifdef CONFIG_LOCKDEP
1781 	p->lockdep_depth = 0; /* no locks held yet */
1782 	p->curr_chain_key = 0;
1783 	p->lockdep_recursion = 0;
1784 	lockdep_init_task(p);
1785 #endif
1786 
1787 #ifdef CONFIG_DEBUG_MUTEXES
1788 	p->blocked_on = NULL; /* not blocked yet */
1789 #endif
1790 #ifdef CONFIG_BCACHE
1791 	p->sequential_io	= 0;
1792 	p->sequential_io_avg	= 0;
1793 #endif
1794 
1795 	/* Perform scheduler related setup. Assign this task to a CPU. */
1796 	retval = sched_fork(clone_flags, p);
1797 	if (retval)
1798 		goto bad_fork_cleanup_policy;
1799 
1800 	retval = perf_event_init_task(p);
1801 	if (retval)
1802 		goto bad_fork_cleanup_policy;
1803 	retval = audit_alloc(p);
1804 	if (retval)
1805 		goto bad_fork_cleanup_perf;
1806 	/* copy all the process information */
1807 	shm_init_task(p);
1808 	retval = security_task_alloc(p, clone_flags);
1809 	if (retval)
1810 		goto bad_fork_cleanup_audit;
1811 	retval = copy_semundo(clone_flags, p);
1812 	if (retval)
1813 		goto bad_fork_cleanup_security;
1814 	retval = copy_files(clone_flags, p);
1815 	if (retval)
1816 		goto bad_fork_cleanup_semundo;
1817 	retval = copy_fs(clone_flags, p);
1818 	if (retval)
1819 		goto bad_fork_cleanup_files;
1820 	retval = copy_sighand(clone_flags, p);
1821 	if (retval)
1822 		goto bad_fork_cleanup_fs;
1823 	retval = copy_signal(clone_flags, p);
1824 	if (retval)
1825 		goto bad_fork_cleanup_sighand;
1826 	retval = copy_mm(clone_flags, p);
1827 	if (retval)
1828 		goto bad_fork_cleanup_signal;
1829 	retval = copy_namespaces(clone_flags, p);
1830 	if (retval)
1831 		goto bad_fork_cleanup_mm;
1832 	retval = copy_io(clone_flags, p);
1833 	if (retval)
1834 		goto bad_fork_cleanup_namespaces;
1835 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1836 	if (retval)
1837 		goto bad_fork_cleanup_io;
1838 
1839 	if (pid != &init_struct_pid) {
1840 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1841 		if (IS_ERR(pid)) {
1842 			retval = PTR_ERR(pid);
1843 			goto bad_fork_cleanup_thread;
1844 		}
1845 	}
1846 
1847 #ifdef CONFIG_BLOCK
1848 	p->plug = NULL;
1849 #endif
1850 #ifdef CONFIG_FUTEX
1851 	p->robust_list = NULL;
1852 #ifdef CONFIG_COMPAT
1853 	p->compat_robust_list = NULL;
1854 #endif
1855 	INIT_LIST_HEAD(&p->pi_state_list);
1856 	p->pi_state_cache = NULL;
1857 #endif
1858 	/*
1859 	 * sigaltstack should be cleared when sharing the same VM
1860 	 */
1861 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1862 		sas_ss_reset(p);
1863 
1864 	/*
1865 	 * Syscall tracing and stepping should be turned off in the
1866 	 * child regardless of CLONE_PTRACE.
1867 	 */
1868 	user_disable_single_step(p);
1869 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1870 #ifdef TIF_SYSCALL_EMU
1871 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1872 #endif
1873 	clear_all_latency_tracing(p);
1874 
1875 	/* ok, now we should be set up.. */
1876 	p->pid = pid_nr(pid);
1877 	if (clone_flags & CLONE_THREAD) {
1878 		p->exit_signal = -1;
1879 		p->group_leader = current->group_leader;
1880 		p->tgid = current->tgid;
1881 	} else {
1882 		if (clone_flags & CLONE_PARENT)
1883 			p->exit_signal = current->group_leader->exit_signal;
1884 		else
1885 			p->exit_signal = (clone_flags & CSIGNAL);
1886 		p->group_leader = p;
1887 		p->tgid = p->pid;
1888 	}
1889 
1890 	p->nr_dirtied = 0;
1891 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1892 	p->dirty_paused_when = 0;
1893 
1894 	p->pdeath_signal = 0;
1895 	INIT_LIST_HEAD(&p->thread_group);
1896 	p->task_works = NULL;
1897 
1898 	cgroup_threadgroup_change_begin(current);
1899 	/*
1900 	 * Ensure that the cgroup subsystem policies allow the new process to be
1901 	 * forked. It should be noted the the new process's css_set can be changed
1902 	 * between here and cgroup_post_fork() if an organisation operation is in
1903 	 * progress.
1904 	 */
1905 	retval = cgroup_can_fork(p);
1906 	if (retval)
1907 		goto bad_fork_free_pid;
1908 
1909 	/*
1910 	 * Make it visible to the rest of the system, but dont wake it up yet.
1911 	 * Need tasklist lock for parent etc handling!
1912 	 */
1913 	write_lock_irq(&tasklist_lock);
1914 
1915 	/* CLONE_PARENT re-uses the old parent */
1916 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1917 		p->real_parent = current->real_parent;
1918 		p->parent_exec_id = current->parent_exec_id;
1919 	} else {
1920 		p->real_parent = current;
1921 		p->parent_exec_id = current->self_exec_id;
1922 	}
1923 
1924 	klp_copy_process(p);
1925 
1926 	spin_lock(&current->sighand->siglock);
1927 
1928 	/*
1929 	 * Copy seccomp details explicitly here, in case they were changed
1930 	 * before holding sighand lock.
1931 	 */
1932 	copy_seccomp(p);
1933 
1934 	rseq_fork(p, clone_flags);
1935 
1936 	/*
1937 	 * Process group and session signals need to be delivered to just the
1938 	 * parent before the fork or both the parent and the child after the
1939 	 * fork. Restart if a signal comes in before we add the new process to
1940 	 * it's process group.
1941 	 * A fatal signal pending means that current will exit, so the new
1942 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1943 	*/
1944 	recalc_sigpending();
1945 	if (signal_pending(current)) {
1946 		retval = -ERESTARTNOINTR;
1947 		goto bad_fork_cancel_cgroup;
1948 	}
1949 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1950 		retval = -ENOMEM;
1951 		goto bad_fork_cancel_cgroup;
1952 	}
1953 
1954 	if (likely(p->pid)) {
1955 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1956 
1957 		init_task_pid(p, PIDTYPE_PID, pid);
1958 		if (thread_group_leader(p)) {
1959 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1960 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1961 
1962 			if (is_child_reaper(pid)) {
1963 				ns_of_pid(pid)->child_reaper = p;
1964 				p->signal->flags |= SIGNAL_UNKILLABLE;
1965 			}
1966 
1967 			p->signal->leader_pid = pid;
1968 			p->signal->tty = tty_kref_get(current->signal->tty);
1969 			/*
1970 			 * Inherit has_child_subreaper flag under the same
1971 			 * tasklist_lock with adding child to the process tree
1972 			 * for propagate_has_child_subreaper optimization.
1973 			 */
1974 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1975 							 p->real_parent->signal->is_child_subreaper;
1976 			list_add_tail(&p->sibling, &p->real_parent->children);
1977 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1978 			attach_pid(p, PIDTYPE_PGID);
1979 			attach_pid(p, PIDTYPE_SID);
1980 			__this_cpu_inc(process_counts);
1981 		} else {
1982 			current->signal->nr_threads++;
1983 			atomic_inc(&current->signal->live);
1984 			atomic_inc(&current->signal->sigcnt);
1985 			list_add_tail_rcu(&p->thread_group,
1986 					  &p->group_leader->thread_group);
1987 			list_add_tail_rcu(&p->thread_node,
1988 					  &p->signal->thread_head);
1989 		}
1990 		attach_pid(p, PIDTYPE_PID);
1991 		nr_threads++;
1992 	}
1993 
1994 	total_forks++;
1995 	spin_unlock(&current->sighand->siglock);
1996 	syscall_tracepoint_update(p);
1997 	write_unlock_irq(&tasklist_lock);
1998 
1999 	proc_fork_connector(p);
2000 	cgroup_post_fork(p);
2001 	cgroup_threadgroup_change_end(current);
2002 	perf_event_fork(p);
2003 
2004 	trace_task_newtask(p, clone_flags);
2005 	uprobe_copy_process(p, clone_flags);
2006 
2007 	return p;
2008 
2009 bad_fork_cancel_cgroup:
2010 	spin_unlock(&current->sighand->siglock);
2011 	write_unlock_irq(&tasklist_lock);
2012 	cgroup_cancel_fork(p);
2013 bad_fork_free_pid:
2014 	cgroup_threadgroup_change_end(current);
2015 	if (pid != &init_struct_pid)
2016 		free_pid(pid);
2017 bad_fork_cleanup_thread:
2018 	exit_thread(p);
2019 bad_fork_cleanup_io:
2020 	if (p->io_context)
2021 		exit_io_context(p);
2022 bad_fork_cleanup_namespaces:
2023 	exit_task_namespaces(p);
2024 bad_fork_cleanup_mm:
2025 	if (p->mm)
2026 		mmput(p->mm);
2027 bad_fork_cleanup_signal:
2028 	if (!(clone_flags & CLONE_THREAD))
2029 		free_signal_struct(p->signal);
2030 bad_fork_cleanup_sighand:
2031 	__cleanup_sighand(p->sighand);
2032 bad_fork_cleanup_fs:
2033 	exit_fs(p); /* blocking */
2034 bad_fork_cleanup_files:
2035 	exit_files(p); /* blocking */
2036 bad_fork_cleanup_semundo:
2037 	exit_sem(p);
2038 bad_fork_cleanup_security:
2039 	security_task_free(p);
2040 bad_fork_cleanup_audit:
2041 	audit_free(p);
2042 bad_fork_cleanup_perf:
2043 	perf_event_free_task(p);
2044 bad_fork_cleanup_policy:
2045 	lockdep_free_task(p);
2046 #ifdef CONFIG_NUMA
2047 	mpol_put(p->mempolicy);
2048 bad_fork_cleanup_threadgroup_lock:
2049 #endif
2050 	delayacct_tsk_free(p);
2051 bad_fork_cleanup_count:
2052 	atomic_dec(&p->cred->user->processes);
2053 	exit_creds(p);
2054 bad_fork_free:
2055 	p->state = TASK_DEAD;
2056 	put_task_stack(p);
2057 	free_task(p);
2058 fork_out:
2059 	return ERR_PTR(retval);
2060 }
2061 
2062 static inline void init_idle_pids(struct pid_link *links)
2063 {
2064 	enum pid_type type;
2065 
2066 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2067 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
2068 		links[type].pid = &init_struct_pid;
2069 	}
2070 }
2071 
2072 struct task_struct *fork_idle(int cpu)
2073 {
2074 	struct task_struct *task;
2075 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2076 			    cpu_to_node(cpu));
2077 	if (!IS_ERR(task)) {
2078 		init_idle_pids(task->pids);
2079 		init_idle(task, cpu);
2080 	}
2081 
2082 	return task;
2083 }
2084 
2085 /*
2086  *  Ok, this is the main fork-routine.
2087  *
2088  * It copies the process, and if successful kick-starts
2089  * it and waits for it to finish using the VM if required.
2090  */
2091 long _do_fork(unsigned long clone_flags,
2092 	      unsigned long stack_start,
2093 	      unsigned long stack_size,
2094 	      int __user *parent_tidptr,
2095 	      int __user *child_tidptr,
2096 	      unsigned long tls)
2097 {
2098 	struct completion vfork;
2099 	struct pid *pid;
2100 	struct task_struct *p;
2101 	int trace = 0;
2102 	long nr;
2103 
2104 	/*
2105 	 * Determine whether and which event to report to ptracer.  When
2106 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2107 	 * requested, no event is reported; otherwise, report if the event
2108 	 * for the type of forking is enabled.
2109 	 */
2110 	if (!(clone_flags & CLONE_UNTRACED)) {
2111 		if (clone_flags & CLONE_VFORK)
2112 			trace = PTRACE_EVENT_VFORK;
2113 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2114 			trace = PTRACE_EVENT_CLONE;
2115 		else
2116 			trace = PTRACE_EVENT_FORK;
2117 
2118 		if (likely(!ptrace_event_enabled(current, trace)))
2119 			trace = 0;
2120 	}
2121 
2122 	p = copy_process(clone_flags, stack_start, stack_size,
2123 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2124 	add_latent_entropy();
2125 
2126 	if (IS_ERR(p))
2127 		return PTR_ERR(p);
2128 
2129 	/*
2130 	 * Do this prior waking up the new thread - the thread pointer
2131 	 * might get invalid after that point, if the thread exits quickly.
2132 	 */
2133 	trace_sched_process_fork(current, p);
2134 
2135 	pid = get_task_pid(p, PIDTYPE_PID);
2136 	nr = pid_vnr(pid);
2137 
2138 	if (clone_flags & CLONE_PARENT_SETTID)
2139 		put_user(nr, parent_tidptr);
2140 
2141 	if (clone_flags & CLONE_VFORK) {
2142 		p->vfork_done = &vfork;
2143 		init_completion(&vfork);
2144 		get_task_struct(p);
2145 	}
2146 
2147 	wake_up_new_task(p);
2148 
2149 	/* forking complete and child started to run, tell ptracer */
2150 	if (unlikely(trace))
2151 		ptrace_event_pid(trace, pid);
2152 
2153 	if (clone_flags & CLONE_VFORK) {
2154 		if (!wait_for_vfork_done(p, &vfork))
2155 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2156 	}
2157 
2158 	put_pid(pid);
2159 	return nr;
2160 }
2161 
2162 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2163 /* For compatibility with architectures that call do_fork directly rather than
2164  * using the syscall entry points below. */
2165 long do_fork(unsigned long clone_flags,
2166 	      unsigned long stack_start,
2167 	      unsigned long stack_size,
2168 	      int __user *parent_tidptr,
2169 	      int __user *child_tidptr)
2170 {
2171 	return _do_fork(clone_flags, stack_start, stack_size,
2172 			parent_tidptr, child_tidptr, 0);
2173 }
2174 #endif
2175 
2176 /*
2177  * Create a kernel thread.
2178  */
2179 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2180 {
2181 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2182 		(unsigned long)arg, NULL, NULL, 0);
2183 }
2184 
2185 #ifdef __ARCH_WANT_SYS_FORK
2186 SYSCALL_DEFINE0(fork)
2187 {
2188 #ifdef CONFIG_MMU
2189 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2190 #else
2191 	/* can not support in nommu mode */
2192 	return -EINVAL;
2193 #endif
2194 }
2195 #endif
2196 
2197 #ifdef __ARCH_WANT_SYS_VFORK
2198 SYSCALL_DEFINE0(vfork)
2199 {
2200 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2201 			0, NULL, NULL, 0);
2202 }
2203 #endif
2204 
2205 #ifdef __ARCH_WANT_SYS_CLONE
2206 #ifdef CONFIG_CLONE_BACKWARDS
2207 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2208 		 int __user *, parent_tidptr,
2209 		 unsigned long, tls,
2210 		 int __user *, child_tidptr)
2211 #elif defined(CONFIG_CLONE_BACKWARDS2)
2212 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2213 		 int __user *, parent_tidptr,
2214 		 int __user *, child_tidptr,
2215 		 unsigned long, tls)
2216 #elif defined(CONFIG_CLONE_BACKWARDS3)
2217 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2218 		int, stack_size,
2219 		int __user *, parent_tidptr,
2220 		int __user *, child_tidptr,
2221 		unsigned long, tls)
2222 #else
2223 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2224 		 int __user *, parent_tidptr,
2225 		 int __user *, child_tidptr,
2226 		 unsigned long, tls)
2227 #endif
2228 {
2229 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2230 }
2231 #endif
2232 
2233 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2234 {
2235 	struct task_struct *leader, *parent, *child;
2236 	int res;
2237 
2238 	read_lock(&tasklist_lock);
2239 	leader = top = top->group_leader;
2240 down:
2241 	for_each_thread(leader, parent) {
2242 		list_for_each_entry(child, &parent->children, sibling) {
2243 			res = visitor(child, data);
2244 			if (res) {
2245 				if (res < 0)
2246 					goto out;
2247 				leader = child;
2248 				goto down;
2249 			}
2250 up:
2251 			;
2252 		}
2253 	}
2254 
2255 	if (leader != top) {
2256 		child = leader;
2257 		parent = child->real_parent;
2258 		leader = parent->group_leader;
2259 		goto up;
2260 	}
2261 out:
2262 	read_unlock(&tasklist_lock);
2263 }
2264 
2265 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2266 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2267 #endif
2268 
2269 static void sighand_ctor(void *data)
2270 {
2271 	struct sighand_struct *sighand = data;
2272 
2273 	spin_lock_init(&sighand->siglock);
2274 	init_waitqueue_head(&sighand->signalfd_wqh);
2275 }
2276 
2277 void __init proc_caches_init(void)
2278 {
2279 	sighand_cachep = kmem_cache_create("sighand_cache",
2280 			sizeof(struct sighand_struct), 0,
2281 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2282 			SLAB_ACCOUNT, sighand_ctor);
2283 	signal_cachep = kmem_cache_create("signal_cache",
2284 			sizeof(struct signal_struct), 0,
2285 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2286 			NULL);
2287 	files_cachep = kmem_cache_create("files_cache",
2288 			sizeof(struct files_struct), 0,
2289 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2290 			NULL);
2291 	fs_cachep = kmem_cache_create("fs_cache",
2292 			sizeof(struct fs_struct), 0,
2293 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2294 			NULL);
2295 	/*
2296 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2297 	 * whole struct cpumask for the OFFSTACK case. We could change
2298 	 * this to *only* allocate as much of it as required by the
2299 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2300 	 * is at the end of the structure, exactly for that reason.
2301 	 */
2302 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2303 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2304 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2305 			offsetof(struct mm_struct, saved_auxv),
2306 			sizeof_field(struct mm_struct, saved_auxv),
2307 			NULL);
2308 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2309 	mmap_init();
2310 	nsproxy_cache_init();
2311 }
2312 
2313 /*
2314  * Check constraints on flags passed to the unshare system call.
2315  */
2316 static int check_unshare_flags(unsigned long unshare_flags)
2317 {
2318 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2319 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2320 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2321 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2322 		return -EINVAL;
2323 	/*
2324 	 * Not implemented, but pretend it works if there is nothing
2325 	 * to unshare.  Note that unsharing the address space or the
2326 	 * signal handlers also need to unshare the signal queues (aka
2327 	 * CLONE_THREAD).
2328 	 */
2329 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2330 		if (!thread_group_empty(current))
2331 			return -EINVAL;
2332 	}
2333 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2334 		if (atomic_read(&current->sighand->count) > 1)
2335 			return -EINVAL;
2336 	}
2337 	if (unshare_flags & CLONE_VM) {
2338 		if (!current_is_single_threaded())
2339 			return -EINVAL;
2340 	}
2341 
2342 	return 0;
2343 }
2344 
2345 /*
2346  * Unshare the filesystem structure if it is being shared
2347  */
2348 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2349 {
2350 	struct fs_struct *fs = current->fs;
2351 
2352 	if (!(unshare_flags & CLONE_FS) || !fs)
2353 		return 0;
2354 
2355 	/* don't need lock here; in the worst case we'll do useless copy */
2356 	if (fs->users == 1)
2357 		return 0;
2358 
2359 	*new_fsp = copy_fs_struct(fs);
2360 	if (!*new_fsp)
2361 		return -ENOMEM;
2362 
2363 	return 0;
2364 }
2365 
2366 /*
2367  * Unshare file descriptor table if it is being shared
2368  */
2369 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2370 {
2371 	struct files_struct *fd = current->files;
2372 	int error = 0;
2373 
2374 	if ((unshare_flags & CLONE_FILES) &&
2375 	    (fd && atomic_read(&fd->count) > 1)) {
2376 		*new_fdp = dup_fd(fd, &error);
2377 		if (!*new_fdp)
2378 			return error;
2379 	}
2380 
2381 	return 0;
2382 }
2383 
2384 /*
2385  * unshare allows a process to 'unshare' part of the process
2386  * context which was originally shared using clone.  copy_*
2387  * functions used by do_fork() cannot be used here directly
2388  * because they modify an inactive task_struct that is being
2389  * constructed. Here we are modifying the current, active,
2390  * task_struct.
2391  */
2392 int ksys_unshare(unsigned long unshare_flags)
2393 {
2394 	struct fs_struct *fs, *new_fs = NULL;
2395 	struct files_struct *fd, *new_fd = NULL;
2396 	struct cred *new_cred = NULL;
2397 	struct nsproxy *new_nsproxy = NULL;
2398 	int do_sysvsem = 0;
2399 	int err;
2400 
2401 	/*
2402 	 * If unsharing a user namespace must also unshare the thread group
2403 	 * and unshare the filesystem root and working directories.
2404 	 */
2405 	if (unshare_flags & CLONE_NEWUSER)
2406 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2407 	/*
2408 	 * If unsharing vm, must also unshare signal handlers.
2409 	 */
2410 	if (unshare_flags & CLONE_VM)
2411 		unshare_flags |= CLONE_SIGHAND;
2412 	/*
2413 	 * If unsharing a signal handlers, must also unshare the signal queues.
2414 	 */
2415 	if (unshare_flags & CLONE_SIGHAND)
2416 		unshare_flags |= CLONE_THREAD;
2417 	/*
2418 	 * If unsharing namespace, must also unshare filesystem information.
2419 	 */
2420 	if (unshare_flags & CLONE_NEWNS)
2421 		unshare_flags |= CLONE_FS;
2422 
2423 	err = check_unshare_flags(unshare_flags);
2424 	if (err)
2425 		goto bad_unshare_out;
2426 	/*
2427 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2428 	 * to a new ipc namespace, the semaphore arrays from the old
2429 	 * namespace are unreachable.
2430 	 */
2431 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2432 		do_sysvsem = 1;
2433 	err = unshare_fs(unshare_flags, &new_fs);
2434 	if (err)
2435 		goto bad_unshare_out;
2436 	err = unshare_fd(unshare_flags, &new_fd);
2437 	if (err)
2438 		goto bad_unshare_cleanup_fs;
2439 	err = unshare_userns(unshare_flags, &new_cred);
2440 	if (err)
2441 		goto bad_unshare_cleanup_fd;
2442 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2443 					 new_cred, new_fs);
2444 	if (err)
2445 		goto bad_unshare_cleanup_cred;
2446 
2447 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2448 		if (do_sysvsem) {
2449 			/*
2450 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2451 			 */
2452 			exit_sem(current);
2453 		}
2454 		if (unshare_flags & CLONE_NEWIPC) {
2455 			/* Orphan segments in old ns (see sem above). */
2456 			exit_shm(current);
2457 			shm_init_task(current);
2458 		}
2459 
2460 		if (new_nsproxy)
2461 			switch_task_namespaces(current, new_nsproxy);
2462 
2463 		task_lock(current);
2464 
2465 		if (new_fs) {
2466 			fs = current->fs;
2467 			spin_lock(&fs->lock);
2468 			current->fs = new_fs;
2469 			if (--fs->users)
2470 				new_fs = NULL;
2471 			else
2472 				new_fs = fs;
2473 			spin_unlock(&fs->lock);
2474 		}
2475 
2476 		if (new_fd) {
2477 			fd = current->files;
2478 			current->files = new_fd;
2479 			new_fd = fd;
2480 		}
2481 
2482 		task_unlock(current);
2483 
2484 		if (new_cred) {
2485 			/* Install the new user namespace */
2486 			commit_creds(new_cred);
2487 			new_cred = NULL;
2488 		}
2489 	}
2490 
2491 	perf_event_namespaces(current);
2492 
2493 bad_unshare_cleanup_cred:
2494 	if (new_cred)
2495 		put_cred(new_cred);
2496 bad_unshare_cleanup_fd:
2497 	if (new_fd)
2498 		put_files_struct(new_fd);
2499 
2500 bad_unshare_cleanup_fs:
2501 	if (new_fs)
2502 		free_fs_struct(new_fs);
2503 
2504 bad_unshare_out:
2505 	return err;
2506 }
2507 
2508 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2509 {
2510 	return ksys_unshare(unshare_flags);
2511 }
2512 
2513 /*
2514  *	Helper to unshare the files of the current task.
2515  *	We don't want to expose copy_files internals to
2516  *	the exec layer of the kernel.
2517  */
2518 
2519 int unshare_files(struct files_struct **displaced)
2520 {
2521 	struct task_struct *task = current;
2522 	struct files_struct *copy = NULL;
2523 	int error;
2524 
2525 	error = unshare_fd(CLONE_FILES, &copy);
2526 	if (error || !copy) {
2527 		*displaced = NULL;
2528 		return error;
2529 	}
2530 	*displaced = task->files;
2531 	task_lock(task);
2532 	task->files = copy;
2533 	task_unlock(task);
2534 	return 0;
2535 }
2536 
2537 int sysctl_max_threads(struct ctl_table *table, int write,
2538 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2539 {
2540 	struct ctl_table t;
2541 	int ret;
2542 	int threads = max_threads;
2543 	int min = MIN_THREADS;
2544 	int max = MAX_THREADS;
2545 
2546 	t = *table;
2547 	t.data = &threads;
2548 	t.extra1 = &min;
2549 	t.extra2 = &max;
2550 
2551 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2552 	if (ret || !write)
2553 		return ret;
2554 
2555 	set_max_threads(threads);
2556 
2557 	return 0;
2558 }
2559