1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/hmm.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/vmacache.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/blkdev.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 98 #include <asm/pgtable.h> 99 #include <asm/pgalloc.h> 100 #include <linux/uaccess.h> 101 #include <asm/mmu_context.h> 102 #include <asm/cacheflush.h> 103 #include <asm/tlbflush.h> 104 105 #include <trace/events/sched.h> 106 107 #define CREATE_TRACE_POINTS 108 #include <trace/events/task.h> 109 110 /* 111 * Minimum number of threads to boot the kernel 112 */ 113 #define MIN_THREADS 20 114 115 /* 116 * Maximum number of threads 117 */ 118 #define MAX_THREADS FUTEX_TID_MASK 119 120 /* 121 * Protected counters by write_lock_irq(&tasklist_lock) 122 */ 123 unsigned long total_forks; /* Handle normal Linux uptimes. */ 124 int nr_threads; /* The idle threads do not count.. */ 125 126 static int max_threads; /* tunable limit on nr_threads */ 127 128 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 129 130 static const char * const resident_page_types[] = { 131 NAMED_ARRAY_INDEX(MM_FILEPAGES), 132 NAMED_ARRAY_INDEX(MM_ANONPAGES), 133 NAMED_ARRAY_INDEX(MM_SWAPENTS), 134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 135 }; 136 137 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 138 139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 140 141 #ifdef CONFIG_PROVE_RCU 142 int lockdep_tasklist_lock_is_held(void) 143 { 144 return lockdep_is_held(&tasklist_lock); 145 } 146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 147 #endif /* #ifdef CONFIG_PROVE_RCU */ 148 149 int nr_processes(void) 150 { 151 int cpu; 152 int total = 0; 153 154 for_each_possible_cpu(cpu) 155 total += per_cpu(process_counts, cpu); 156 157 return total; 158 } 159 160 void __weak arch_release_task_struct(struct task_struct *tsk) 161 { 162 } 163 164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 165 static struct kmem_cache *task_struct_cachep; 166 167 static inline struct task_struct *alloc_task_struct_node(int node) 168 { 169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 170 } 171 172 static inline void free_task_struct(struct task_struct *tsk) 173 { 174 kmem_cache_free(task_struct_cachep, tsk); 175 } 176 #endif 177 178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 179 180 /* 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 182 * kmemcache based allocator. 183 */ 184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 185 186 #ifdef CONFIG_VMAP_STACK 187 /* 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 189 * flush. Try to minimize the number of calls by caching stacks. 190 */ 191 #define NR_CACHED_STACKS 2 192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 193 194 static int free_vm_stack_cache(unsigned int cpu) 195 { 196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 197 int i; 198 199 for (i = 0; i < NR_CACHED_STACKS; i++) { 200 struct vm_struct *vm_stack = cached_vm_stacks[i]; 201 202 if (!vm_stack) 203 continue; 204 205 vfree(vm_stack->addr); 206 cached_vm_stacks[i] = NULL; 207 } 208 209 return 0; 210 } 211 #endif 212 213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 214 { 215 #ifdef CONFIG_VMAP_STACK 216 void *stack; 217 int i; 218 219 for (i = 0; i < NR_CACHED_STACKS; i++) { 220 struct vm_struct *s; 221 222 s = this_cpu_xchg(cached_stacks[i], NULL); 223 224 if (!s) 225 continue; 226 227 /* Clear stale pointers from reused stack. */ 228 memset(s->addr, 0, THREAD_SIZE); 229 230 tsk->stack_vm_area = s; 231 tsk->stack = s->addr; 232 return s->addr; 233 } 234 235 /* 236 * Allocated stacks are cached and later reused by new threads, 237 * so memcg accounting is performed manually on assigning/releasing 238 * stacks to tasks. Drop __GFP_ACCOUNT. 239 */ 240 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 241 VMALLOC_START, VMALLOC_END, 242 THREADINFO_GFP & ~__GFP_ACCOUNT, 243 PAGE_KERNEL, 244 0, node, __builtin_return_address(0)); 245 246 /* 247 * We can't call find_vm_area() in interrupt context, and 248 * free_thread_stack() can be called in interrupt context, 249 * so cache the vm_struct. 250 */ 251 if (stack) { 252 tsk->stack_vm_area = find_vm_area(stack); 253 tsk->stack = stack; 254 } 255 return stack; 256 #else 257 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 258 THREAD_SIZE_ORDER); 259 260 if (likely(page)) { 261 tsk->stack = page_address(page); 262 return tsk->stack; 263 } 264 return NULL; 265 #endif 266 } 267 268 static inline void free_thread_stack(struct task_struct *tsk) 269 { 270 #ifdef CONFIG_VMAP_STACK 271 struct vm_struct *vm = task_stack_vm_area(tsk); 272 273 if (vm) { 274 int i; 275 276 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 277 mod_memcg_page_state(vm->pages[i], 278 MEMCG_KERNEL_STACK_KB, 279 -(int)(PAGE_SIZE / 1024)); 280 281 memcg_kmem_uncharge(vm->pages[i], 0); 282 } 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 tsk->stack = stack; 308 return stack; 309 } 310 311 static void free_thread_stack(struct task_struct *tsk) 312 { 313 kmem_cache_free(thread_stack_cache, tsk->stack); 314 } 315 316 void thread_stack_cache_init(void) 317 { 318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 319 THREAD_SIZE, THREAD_SIZE, 0, 0, 320 THREAD_SIZE, NULL); 321 BUG_ON(thread_stack_cache == NULL); 322 } 323 # endif 324 #endif 325 326 /* SLAB cache for signal_struct structures (tsk->signal) */ 327 static struct kmem_cache *signal_cachep; 328 329 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 330 struct kmem_cache *sighand_cachep; 331 332 /* SLAB cache for files_struct structures (tsk->files) */ 333 struct kmem_cache *files_cachep; 334 335 /* SLAB cache for fs_struct structures (tsk->fs) */ 336 struct kmem_cache *fs_cachep; 337 338 /* SLAB cache for vm_area_struct structures */ 339 static struct kmem_cache *vm_area_cachep; 340 341 /* SLAB cache for mm_struct structures (tsk->mm) */ 342 static struct kmem_cache *mm_cachep; 343 344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 345 { 346 struct vm_area_struct *vma; 347 348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 349 if (vma) 350 vma_init(vma, mm); 351 return vma; 352 } 353 354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 355 { 356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 357 358 if (new) { 359 *new = *orig; 360 INIT_LIST_HEAD(&new->anon_vma_chain); 361 } 362 return new; 363 } 364 365 void vm_area_free(struct vm_area_struct *vma) 366 { 367 kmem_cache_free(vm_area_cachep, vma); 368 } 369 370 static void account_kernel_stack(struct task_struct *tsk, int account) 371 { 372 void *stack = task_stack_page(tsk); 373 struct vm_struct *vm = task_stack_vm_area(tsk); 374 375 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 376 377 if (vm) { 378 int i; 379 380 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 381 382 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 383 mod_zone_page_state(page_zone(vm->pages[i]), 384 NR_KERNEL_STACK_KB, 385 PAGE_SIZE / 1024 * account); 386 } 387 } else { 388 /* 389 * All stack pages are in the same zone and belong to the 390 * same memcg. 391 */ 392 struct page *first_page = virt_to_page(stack); 393 394 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 395 THREAD_SIZE / 1024 * account); 396 397 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB, 398 account * (THREAD_SIZE / 1024)); 399 } 400 } 401 402 static int memcg_charge_kernel_stack(struct task_struct *tsk) 403 { 404 #ifdef CONFIG_VMAP_STACK 405 struct vm_struct *vm = task_stack_vm_area(tsk); 406 int ret; 407 408 if (vm) { 409 int i; 410 411 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 412 /* 413 * If memcg_kmem_charge() fails, page->mem_cgroup 414 * pointer is NULL, and both memcg_kmem_uncharge() 415 * and mod_memcg_page_state() in free_thread_stack() 416 * will ignore this page. So it's safe. 417 */ 418 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0); 419 if (ret) 420 return ret; 421 422 mod_memcg_page_state(vm->pages[i], 423 MEMCG_KERNEL_STACK_KB, 424 PAGE_SIZE / 1024); 425 } 426 } 427 #endif 428 return 0; 429 } 430 431 static void release_task_stack(struct task_struct *tsk) 432 { 433 if (WARN_ON(tsk->state != TASK_DEAD)) 434 return; /* Better to leak the stack than to free prematurely */ 435 436 account_kernel_stack(tsk, -1); 437 free_thread_stack(tsk); 438 tsk->stack = NULL; 439 #ifdef CONFIG_VMAP_STACK 440 tsk->stack_vm_area = NULL; 441 #endif 442 } 443 444 #ifdef CONFIG_THREAD_INFO_IN_TASK 445 void put_task_stack(struct task_struct *tsk) 446 { 447 if (refcount_dec_and_test(&tsk->stack_refcount)) 448 release_task_stack(tsk); 449 } 450 #endif 451 452 void free_task(struct task_struct *tsk) 453 { 454 #ifndef CONFIG_THREAD_INFO_IN_TASK 455 /* 456 * The task is finally done with both the stack and thread_info, 457 * so free both. 458 */ 459 release_task_stack(tsk); 460 #else 461 /* 462 * If the task had a separate stack allocation, it should be gone 463 * by now. 464 */ 465 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 466 #endif 467 rt_mutex_debug_task_free(tsk); 468 ftrace_graph_exit_task(tsk); 469 put_seccomp_filter(tsk); 470 arch_release_task_struct(tsk); 471 if (tsk->flags & PF_KTHREAD) 472 free_kthread_struct(tsk); 473 free_task_struct(tsk); 474 } 475 EXPORT_SYMBOL(free_task); 476 477 #ifdef CONFIG_MMU 478 static __latent_entropy int dup_mmap(struct mm_struct *mm, 479 struct mm_struct *oldmm) 480 { 481 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 482 struct rb_node **rb_link, *rb_parent; 483 int retval; 484 unsigned long charge; 485 LIST_HEAD(uf); 486 487 uprobe_start_dup_mmap(); 488 if (down_write_killable(&oldmm->mmap_sem)) { 489 retval = -EINTR; 490 goto fail_uprobe_end; 491 } 492 flush_cache_dup_mm(oldmm); 493 uprobe_dup_mmap(oldmm, mm); 494 /* 495 * Not linked in yet - no deadlock potential: 496 */ 497 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 498 499 /* No ordering required: file already has been exposed. */ 500 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 501 502 mm->total_vm = oldmm->total_vm; 503 mm->data_vm = oldmm->data_vm; 504 mm->exec_vm = oldmm->exec_vm; 505 mm->stack_vm = oldmm->stack_vm; 506 507 rb_link = &mm->mm_rb.rb_node; 508 rb_parent = NULL; 509 pprev = &mm->mmap; 510 retval = ksm_fork(mm, oldmm); 511 if (retval) 512 goto out; 513 retval = khugepaged_fork(mm, oldmm); 514 if (retval) 515 goto out; 516 517 prev = NULL; 518 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 519 struct file *file; 520 521 if (mpnt->vm_flags & VM_DONTCOPY) { 522 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 523 continue; 524 } 525 charge = 0; 526 /* 527 * Don't duplicate many vmas if we've been oom-killed (for 528 * example) 529 */ 530 if (fatal_signal_pending(current)) { 531 retval = -EINTR; 532 goto out; 533 } 534 if (mpnt->vm_flags & VM_ACCOUNT) { 535 unsigned long len = vma_pages(mpnt); 536 537 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 538 goto fail_nomem; 539 charge = len; 540 } 541 tmp = vm_area_dup(mpnt); 542 if (!tmp) 543 goto fail_nomem; 544 retval = vma_dup_policy(mpnt, tmp); 545 if (retval) 546 goto fail_nomem_policy; 547 tmp->vm_mm = mm; 548 retval = dup_userfaultfd(tmp, &uf); 549 if (retval) 550 goto fail_nomem_anon_vma_fork; 551 if (tmp->vm_flags & VM_WIPEONFORK) { 552 /* VM_WIPEONFORK gets a clean slate in the child. */ 553 tmp->anon_vma = NULL; 554 if (anon_vma_prepare(tmp)) 555 goto fail_nomem_anon_vma_fork; 556 } else if (anon_vma_fork(tmp, mpnt)) 557 goto fail_nomem_anon_vma_fork; 558 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 559 tmp->vm_next = tmp->vm_prev = NULL; 560 file = tmp->vm_file; 561 if (file) { 562 struct inode *inode = file_inode(file); 563 struct address_space *mapping = file->f_mapping; 564 565 get_file(file); 566 if (tmp->vm_flags & VM_DENYWRITE) 567 atomic_dec(&inode->i_writecount); 568 i_mmap_lock_write(mapping); 569 if (tmp->vm_flags & VM_SHARED) 570 atomic_inc(&mapping->i_mmap_writable); 571 flush_dcache_mmap_lock(mapping); 572 /* insert tmp into the share list, just after mpnt */ 573 vma_interval_tree_insert_after(tmp, mpnt, 574 &mapping->i_mmap); 575 flush_dcache_mmap_unlock(mapping); 576 i_mmap_unlock_write(mapping); 577 } 578 579 /* 580 * Clear hugetlb-related page reserves for children. This only 581 * affects MAP_PRIVATE mappings. Faults generated by the child 582 * are not guaranteed to succeed, even if read-only 583 */ 584 if (is_vm_hugetlb_page(tmp)) 585 reset_vma_resv_huge_pages(tmp); 586 587 /* 588 * Link in the new vma and copy the page table entries. 589 */ 590 *pprev = tmp; 591 pprev = &tmp->vm_next; 592 tmp->vm_prev = prev; 593 prev = tmp; 594 595 __vma_link_rb(mm, tmp, rb_link, rb_parent); 596 rb_link = &tmp->vm_rb.rb_right; 597 rb_parent = &tmp->vm_rb; 598 599 mm->map_count++; 600 if (!(tmp->vm_flags & VM_WIPEONFORK)) 601 retval = copy_page_range(mm, oldmm, mpnt); 602 603 if (tmp->vm_ops && tmp->vm_ops->open) 604 tmp->vm_ops->open(tmp); 605 606 if (retval) 607 goto out; 608 } 609 /* a new mm has just been created */ 610 retval = arch_dup_mmap(oldmm, mm); 611 out: 612 up_write(&mm->mmap_sem); 613 flush_tlb_mm(oldmm); 614 up_write(&oldmm->mmap_sem); 615 dup_userfaultfd_complete(&uf); 616 fail_uprobe_end: 617 uprobe_end_dup_mmap(); 618 return retval; 619 fail_nomem_anon_vma_fork: 620 mpol_put(vma_policy(tmp)); 621 fail_nomem_policy: 622 vm_area_free(tmp); 623 fail_nomem: 624 retval = -ENOMEM; 625 vm_unacct_memory(charge); 626 goto out; 627 } 628 629 static inline int mm_alloc_pgd(struct mm_struct *mm) 630 { 631 mm->pgd = pgd_alloc(mm); 632 if (unlikely(!mm->pgd)) 633 return -ENOMEM; 634 return 0; 635 } 636 637 static inline void mm_free_pgd(struct mm_struct *mm) 638 { 639 pgd_free(mm, mm->pgd); 640 } 641 #else 642 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 643 { 644 down_write(&oldmm->mmap_sem); 645 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 646 up_write(&oldmm->mmap_sem); 647 return 0; 648 } 649 #define mm_alloc_pgd(mm) (0) 650 #define mm_free_pgd(mm) 651 #endif /* CONFIG_MMU */ 652 653 static void check_mm(struct mm_struct *mm) 654 { 655 int i; 656 657 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 658 "Please make sure 'struct resident_page_types[]' is updated as well"); 659 660 for (i = 0; i < NR_MM_COUNTERS; i++) { 661 long x = atomic_long_read(&mm->rss_stat.count[i]); 662 663 if (unlikely(x)) 664 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 665 mm, resident_page_types[i], x); 666 } 667 668 if (mm_pgtables_bytes(mm)) 669 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 670 mm_pgtables_bytes(mm)); 671 672 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 673 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 674 #endif 675 } 676 677 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 678 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 679 680 /* 681 * Called when the last reference to the mm 682 * is dropped: either by a lazy thread or by 683 * mmput. Free the page directory and the mm. 684 */ 685 void __mmdrop(struct mm_struct *mm) 686 { 687 BUG_ON(mm == &init_mm); 688 WARN_ON_ONCE(mm == current->mm); 689 WARN_ON_ONCE(mm == current->active_mm); 690 mm_free_pgd(mm); 691 destroy_context(mm); 692 mmu_notifier_mm_destroy(mm); 693 check_mm(mm); 694 put_user_ns(mm->user_ns); 695 free_mm(mm); 696 } 697 EXPORT_SYMBOL_GPL(__mmdrop); 698 699 static void mmdrop_async_fn(struct work_struct *work) 700 { 701 struct mm_struct *mm; 702 703 mm = container_of(work, struct mm_struct, async_put_work); 704 __mmdrop(mm); 705 } 706 707 static void mmdrop_async(struct mm_struct *mm) 708 { 709 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 710 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 711 schedule_work(&mm->async_put_work); 712 } 713 } 714 715 static inline void free_signal_struct(struct signal_struct *sig) 716 { 717 taskstats_tgid_free(sig); 718 sched_autogroup_exit(sig); 719 /* 720 * __mmdrop is not safe to call from softirq context on x86 due to 721 * pgd_dtor so postpone it to the async context 722 */ 723 if (sig->oom_mm) 724 mmdrop_async(sig->oom_mm); 725 kmem_cache_free(signal_cachep, sig); 726 } 727 728 static inline void put_signal_struct(struct signal_struct *sig) 729 { 730 if (refcount_dec_and_test(&sig->sigcnt)) 731 free_signal_struct(sig); 732 } 733 734 void __put_task_struct(struct task_struct *tsk) 735 { 736 WARN_ON(!tsk->exit_state); 737 WARN_ON(refcount_read(&tsk->usage)); 738 WARN_ON(tsk == current); 739 740 cgroup_free(tsk); 741 task_numa_free(tsk, true); 742 security_task_free(tsk); 743 exit_creds(tsk); 744 delayacct_tsk_free(tsk); 745 put_signal_struct(tsk->signal); 746 747 if (!profile_handoff_task(tsk)) 748 free_task(tsk); 749 } 750 EXPORT_SYMBOL_GPL(__put_task_struct); 751 752 void __init __weak arch_task_cache_init(void) { } 753 754 /* 755 * set_max_threads 756 */ 757 static void set_max_threads(unsigned int max_threads_suggested) 758 { 759 u64 threads; 760 unsigned long nr_pages = totalram_pages(); 761 762 /* 763 * The number of threads shall be limited such that the thread 764 * structures may only consume a small part of the available memory. 765 */ 766 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 767 threads = MAX_THREADS; 768 else 769 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 770 (u64) THREAD_SIZE * 8UL); 771 772 if (threads > max_threads_suggested) 773 threads = max_threads_suggested; 774 775 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 776 } 777 778 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 779 /* Initialized by the architecture: */ 780 int arch_task_struct_size __read_mostly; 781 #endif 782 783 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 784 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 785 { 786 /* Fetch thread_struct whitelist for the architecture. */ 787 arch_thread_struct_whitelist(offset, size); 788 789 /* 790 * Handle zero-sized whitelist or empty thread_struct, otherwise 791 * adjust offset to position of thread_struct in task_struct. 792 */ 793 if (unlikely(*size == 0)) 794 *offset = 0; 795 else 796 *offset += offsetof(struct task_struct, thread); 797 } 798 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 799 800 void __init fork_init(void) 801 { 802 int i; 803 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 804 #ifndef ARCH_MIN_TASKALIGN 805 #define ARCH_MIN_TASKALIGN 0 806 #endif 807 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 808 unsigned long useroffset, usersize; 809 810 /* create a slab on which task_structs can be allocated */ 811 task_struct_whitelist(&useroffset, &usersize); 812 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 813 arch_task_struct_size, align, 814 SLAB_PANIC|SLAB_ACCOUNT, 815 useroffset, usersize, NULL); 816 #endif 817 818 /* do the arch specific task caches init */ 819 arch_task_cache_init(); 820 821 set_max_threads(MAX_THREADS); 822 823 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 824 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 825 init_task.signal->rlim[RLIMIT_SIGPENDING] = 826 init_task.signal->rlim[RLIMIT_NPROC]; 827 828 for (i = 0; i < UCOUNT_COUNTS; i++) { 829 init_user_ns.ucount_max[i] = max_threads/2; 830 } 831 832 #ifdef CONFIG_VMAP_STACK 833 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 834 NULL, free_vm_stack_cache); 835 #endif 836 837 lockdep_init_task(&init_task); 838 uprobes_init(); 839 } 840 841 int __weak arch_dup_task_struct(struct task_struct *dst, 842 struct task_struct *src) 843 { 844 *dst = *src; 845 return 0; 846 } 847 848 void set_task_stack_end_magic(struct task_struct *tsk) 849 { 850 unsigned long *stackend; 851 852 stackend = end_of_stack(tsk); 853 *stackend = STACK_END_MAGIC; /* for overflow detection */ 854 } 855 856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 857 { 858 struct task_struct *tsk; 859 unsigned long *stack; 860 struct vm_struct *stack_vm_area __maybe_unused; 861 int err; 862 863 if (node == NUMA_NO_NODE) 864 node = tsk_fork_get_node(orig); 865 tsk = alloc_task_struct_node(node); 866 if (!tsk) 867 return NULL; 868 869 stack = alloc_thread_stack_node(tsk, node); 870 if (!stack) 871 goto free_tsk; 872 873 if (memcg_charge_kernel_stack(tsk)) 874 goto free_stack; 875 876 stack_vm_area = task_stack_vm_area(tsk); 877 878 err = arch_dup_task_struct(tsk, orig); 879 880 /* 881 * arch_dup_task_struct() clobbers the stack-related fields. Make 882 * sure they're properly initialized before using any stack-related 883 * functions again. 884 */ 885 tsk->stack = stack; 886 #ifdef CONFIG_VMAP_STACK 887 tsk->stack_vm_area = stack_vm_area; 888 #endif 889 #ifdef CONFIG_THREAD_INFO_IN_TASK 890 refcount_set(&tsk->stack_refcount, 1); 891 #endif 892 893 if (err) 894 goto free_stack; 895 896 #ifdef CONFIG_SECCOMP 897 /* 898 * We must handle setting up seccomp filters once we're under 899 * the sighand lock in case orig has changed between now and 900 * then. Until then, filter must be NULL to avoid messing up 901 * the usage counts on the error path calling free_task. 902 */ 903 tsk->seccomp.filter = NULL; 904 #endif 905 906 setup_thread_stack(tsk, orig); 907 clear_user_return_notifier(tsk); 908 clear_tsk_need_resched(tsk); 909 set_task_stack_end_magic(tsk); 910 911 #ifdef CONFIG_STACKPROTECTOR 912 tsk->stack_canary = get_random_canary(); 913 #endif 914 if (orig->cpus_ptr == &orig->cpus_mask) 915 tsk->cpus_ptr = &tsk->cpus_mask; 916 917 /* 918 * One for us, one for whoever does the "release_task()" (usually 919 * parent) 920 */ 921 refcount_set(&tsk->usage, 2); 922 #ifdef CONFIG_BLK_DEV_IO_TRACE 923 tsk->btrace_seq = 0; 924 #endif 925 tsk->splice_pipe = NULL; 926 tsk->task_frag.page = NULL; 927 tsk->wake_q.next = NULL; 928 929 account_kernel_stack(tsk, 1); 930 931 kcov_task_init(tsk); 932 933 #ifdef CONFIG_FAULT_INJECTION 934 tsk->fail_nth = 0; 935 #endif 936 937 #ifdef CONFIG_BLK_CGROUP 938 tsk->throttle_queue = NULL; 939 tsk->use_memdelay = 0; 940 #endif 941 942 #ifdef CONFIG_MEMCG 943 tsk->active_memcg = NULL; 944 #endif 945 return tsk; 946 947 free_stack: 948 free_thread_stack(tsk); 949 free_tsk: 950 free_task_struct(tsk); 951 return NULL; 952 } 953 954 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 955 956 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 957 958 static int __init coredump_filter_setup(char *s) 959 { 960 default_dump_filter = 961 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 962 MMF_DUMP_FILTER_MASK; 963 return 1; 964 } 965 966 __setup("coredump_filter=", coredump_filter_setup); 967 968 #include <linux/init_task.h> 969 970 static void mm_init_aio(struct mm_struct *mm) 971 { 972 #ifdef CONFIG_AIO 973 spin_lock_init(&mm->ioctx_lock); 974 mm->ioctx_table = NULL; 975 #endif 976 } 977 978 static __always_inline void mm_clear_owner(struct mm_struct *mm, 979 struct task_struct *p) 980 { 981 #ifdef CONFIG_MEMCG 982 if (mm->owner == p) 983 WRITE_ONCE(mm->owner, NULL); 984 #endif 985 } 986 987 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 988 { 989 #ifdef CONFIG_MEMCG 990 mm->owner = p; 991 #endif 992 } 993 994 static void mm_init_uprobes_state(struct mm_struct *mm) 995 { 996 #ifdef CONFIG_UPROBES 997 mm->uprobes_state.xol_area = NULL; 998 #endif 999 } 1000 1001 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1002 struct user_namespace *user_ns) 1003 { 1004 mm->mmap = NULL; 1005 mm->mm_rb = RB_ROOT; 1006 mm->vmacache_seqnum = 0; 1007 atomic_set(&mm->mm_users, 1); 1008 atomic_set(&mm->mm_count, 1); 1009 init_rwsem(&mm->mmap_sem); 1010 INIT_LIST_HEAD(&mm->mmlist); 1011 mm->core_state = NULL; 1012 mm_pgtables_bytes_init(mm); 1013 mm->map_count = 0; 1014 mm->locked_vm = 0; 1015 atomic64_set(&mm->pinned_vm, 0); 1016 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1017 spin_lock_init(&mm->page_table_lock); 1018 spin_lock_init(&mm->arg_lock); 1019 mm_init_cpumask(mm); 1020 mm_init_aio(mm); 1021 mm_init_owner(mm, p); 1022 RCU_INIT_POINTER(mm->exe_file, NULL); 1023 mmu_notifier_mm_init(mm); 1024 init_tlb_flush_pending(mm); 1025 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1026 mm->pmd_huge_pte = NULL; 1027 #endif 1028 mm_init_uprobes_state(mm); 1029 1030 if (current->mm) { 1031 mm->flags = current->mm->flags & MMF_INIT_MASK; 1032 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1033 } else { 1034 mm->flags = default_dump_filter; 1035 mm->def_flags = 0; 1036 } 1037 1038 if (mm_alloc_pgd(mm)) 1039 goto fail_nopgd; 1040 1041 if (init_new_context(p, mm)) 1042 goto fail_nocontext; 1043 1044 mm->user_ns = get_user_ns(user_ns); 1045 return mm; 1046 1047 fail_nocontext: 1048 mm_free_pgd(mm); 1049 fail_nopgd: 1050 free_mm(mm); 1051 return NULL; 1052 } 1053 1054 /* 1055 * Allocate and initialize an mm_struct. 1056 */ 1057 struct mm_struct *mm_alloc(void) 1058 { 1059 struct mm_struct *mm; 1060 1061 mm = allocate_mm(); 1062 if (!mm) 1063 return NULL; 1064 1065 memset(mm, 0, sizeof(*mm)); 1066 return mm_init(mm, current, current_user_ns()); 1067 } 1068 1069 static inline void __mmput(struct mm_struct *mm) 1070 { 1071 VM_BUG_ON(atomic_read(&mm->mm_users)); 1072 1073 uprobe_clear_state(mm); 1074 exit_aio(mm); 1075 ksm_exit(mm); 1076 khugepaged_exit(mm); /* must run before exit_mmap */ 1077 exit_mmap(mm); 1078 mm_put_huge_zero_page(mm); 1079 set_mm_exe_file(mm, NULL); 1080 if (!list_empty(&mm->mmlist)) { 1081 spin_lock(&mmlist_lock); 1082 list_del(&mm->mmlist); 1083 spin_unlock(&mmlist_lock); 1084 } 1085 if (mm->binfmt) 1086 module_put(mm->binfmt->module); 1087 mmdrop(mm); 1088 } 1089 1090 /* 1091 * Decrement the use count and release all resources for an mm. 1092 */ 1093 void mmput(struct mm_struct *mm) 1094 { 1095 might_sleep(); 1096 1097 if (atomic_dec_and_test(&mm->mm_users)) 1098 __mmput(mm); 1099 } 1100 EXPORT_SYMBOL_GPL(mmput); 1101 1102 #ifdef CONFIG_MMU 1103 static void mmput_async_fn(struct work_struct *work) 1104 { 1105 struct mm_struct *mm = container_of(work, struct mm_struct, 1106 async_put_work); 1107 1108 __mmput(mm); 1109 } 1110 1111 void mmput_async(struct mm_struct *mm) 1112 { 1113 if (atomic_dec_and_test(&mm->mm_users)) { 1114 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1115 schedule_work(&mm->async_put_work); 1116 } 1117 } 1118 #endif 1119 1120 /** 1121 * set_mm_exe_file - change a reference to the mm's executable file 1122 * 1123 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1124 * 1125 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1126 * invocations: in mmput() nobody alive left, in execve task is single 1127 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1128 * mm->exe_file, but does so without using set_mm_exe_file() in order 1129 * to do avoid the need for any locks. 1130 */ 1131 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1132 { 1133 struct file *old_exe_file; 1134 1135 /* 1136 * It is safe to dereference the exe_file without RCU as 1137 * this function is only called if nobody else can access 1138 * this mm -- see comment above for justification. 1139 */ 1140 old_exe_file = rcu_dereference_raw(mm->exe_file); 1141 1142 if (new_exe_file) 1143 get_file(new_exe_file); 1144 rcu_assign_pointer(mm->exe_file, new_exe_file); 1145 if (old_exe_file) 1146 fput(old_exe_file); 1147 } 1148 1149 /** 1150 * get_mm_exe_file - acquire a reference to the mm's executable file 1151 * 1152 * Returns %NULL if mm has no associated executable file. 1153 * User must release file via fput(). 1154 */ 1155 struct file *get_mm_exe_file(struct mm_struct *mm) 1156 { 1157 struct file *exe_file; 1158 1159 rcu_read_lock(); 1160 exe_file = rcu_dereference(mm->exe_file); 1161 if (exe_file && !get_file_rcu(exe_file)) 1162 exe_file = NULL; 1163 rcu_read_unlock(); 1164 return exe_file; 1165 } 1166 EXPORT_SYMBOL(get_mm_exe_file); 1167 1168 /** 1169 * get_task_exe_file - acquire a reference to the task's executable file 1170 * 1171 * Returns %NULL if task's mm (if any) has no associated executable file or 1172 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1173 * User must release file via fput(). 1174 */ 1175 struct file *get_task_exe_file(struct task_struct *task) 1176 { 1177 struct file *exe_file = NULL; 1178 struct mm_struct *mm; 1179 1180 task_lock(task); 1181 mm = task->mm; 1182 if (mm) { 1183 if (!(task->flags & PF_KTHREAD)) 1184 exe_file = get_mm_exe_file(mm); 1185 } 1186 task_unlock(task); 1187 return exe_file; 1188 } 1189 EXPORT_SYMBOL(get_task_exe_file); 1190 1191 /** 1192 * get_task_mm - acquire a reference to the task's mm 1193 * 1194 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1195 * this kernel workthread has transiently adopted a user mm with use_mm, 1196 * to do its AIO) is not set and if so returns a reference to it, after 1197 * bumping up the use count. User must release the mm via mmput() 1198 * after use. Typically used by /proc and ptrace. 1199 */ 1200 struct mm_struct *get_task_mm(struct task_struct *task) 1201 { 1202 struct mm_struct *mm; 1203 1204 task_lock(task); 1205 mm = task->mm; 1206 if (mm) { 1207 if (task->flags & PF_KTHREAD) 1208 mm = NULL; 1209 else 1210 mmget(mm); 1211 } 1212 task_unlock(task); 1213 return mm; 1214 } 1215 EXPORT_SYMBOL_GPL(get_task_mm); 1216 1217 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1218 { 1219 struct mm_struct *mm; 1220 int err; 1221 1222 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 1223 if (err) 1224 return ERR_PTR(err); 1225 1226 mm = get_task_mm(task); 1227 if (mm && mm != current->mm && 1228 !ptrace_may_access(task, mode)) { 1229 mmput(mm); 1230 mm = ERR_PTR(-EACCES); 1231 } 1232 mutex_unlock(&task->signal->cred_guard_mutex); 1233 1234 return mm; 1235 } 1236 1237 static void complete_vfork_done(struct task_struct *tsk) 1238 { 1239 struct completion *vfork; 1240 1241 task_lock(tsk); 1242 vfork = tsk->vfork_done; 1243 if (likely(vfork)) { 1244 tsk->vfork_done = NULL; 1245 complete(vfork); 1246 } 1247 task_unlock(tsk); 1248 } 1249 1250 static int wait_for_vfork_done(struct task_struct *child, 1251 struct completion *vfork) 1252 { 1253 int killed; 1254 1255 freezer_do_not_count(); 1256 cgroup_enter_frozen(); 1257 killed = wait_for_completion_killable(vfork); 1258 cgroup_leave_frozen(false); 1259 freezer_count(); 1260 1261 if (killed) { 1262 task_lock(child); 1263 child->vfork_done = NULL; 1264 task_unlock(child); 1265 } 1266 1267 put_task_struct(child); 1268 return killed; 1269 } 1270 1271 /* Please note the differences between mmput and mm_release. 1272 * mmput is called whenever we stop holding onto a mm_struct, 1273 * error success whatever. 1274 * 1275 * mm_release is called after a mm_struct has been removed 1276 * from the current process. 1277 * 1278 * This difference is important for error handling, when we 1279 * only half set up a mm_struct for a new process and need to restore 1280 * the old one. Because we mmput the new mm_struct before 1281 * restoring the old one. . . 1282 * Eric Biederman 10 January 1998 1283 */ 1284 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1285 { 1286 /* Get rid of any futexes when releasing the mm */ 1287 #ifdef CONFIG_FUTEX 1288 if (unlikely(tsk->robust_list)) { 1289 exit_robust_list(tsk); 1290 tsk->robust_list = NULL; 1291 } 1292 #ifdef CONFIG_COMPAT 1293 if (unlikely(tsk->compat_robust_list)) { 1294 compat_exit_robust_list(tsk); 1295 tsk->compat_robust_list = NULL; 1296 } 1297 #endif 1298 if (unlikely(!list_empty(&tsk->pi_state_list))) 1299 exit_pi_state_list(tsk); 1300 #endif 1301 1302 uprobe_free_utask(tsk); 1303 1304 /* Get rid of any cached register state */ 1305 deactivate_mm(tsk, mm); 1306 1307 /* 1308 * Signal userspace if we're not exiting with a core dump 1309 * because we want to leave the value intact for debugging 1310 * purposes. 1311 */ 1312 if (tsk->clear_child_tid) { 1313 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1314 atomic_read(&mm->mm_users) > 1) { 1315 /* 1316 * We don't check the error code - if userspace has 1317 * not set up a proper pointer then tough luck. 1318 */ 1319 put_user(0, tsk->clear_child_tid); 1320 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1321 1, NULL, NULL, 0, 0); 1322 } 1323 tsk->clear_child_tid = NULL; 1324 } 1325 1326 /* 1327 * All done, finally we can wake up parent and return this mm to him. 1328 * Also kthread_stop() uses this completion for synchronization. 1329 */ 1330 if (tsk->vfork_done) 1331 complete_vfork_done(tsk); 1332 } 1333 1334 /** 1335 * dup_mm() - duplicates an existing mm structure 1336 * @tsk: the task_struct with which the new mm will be associated. 1337 * @oldmm: the mm to duplicate. 1338 * 1339 * Allocates a new mm structure and duplicates the provided @oldmm structure 1340 * content into it. 1341 * 1342 * Return: the duplicated mm or NULL on failure. 1343 */ 1344 static struct mm_struct *dup_mm(struct task_struct *tsk, 1345 struct mm_struct *oldmm) 1346 { 1347 struct mm_struct *mm; 1348 int err; 1349 1350 mm = allocate_mm(); 1351 if (!mm) 1352 goto fail_nomem; 1353 1354 memcpy(mm, oldmm, sizeof(*mm)); 1355 1356 if (!mm_init(mm, tsk, mm->user_ns)) 1357 goto fail_nomem; 1358 1359 err = dup_mmap(mm, oldmm); 1360 if (err) 1361 goto free_pt; 1362 1363 mm->hiwater_rss = get_mm_rss(mm); 1364 mm->hiwater_vm = mm->total_vm; 1365 1366 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1367 goto free_pt; 1368 1369 return mm; 1370 1371 free_pt: 1372 /* don't put binfmt in mmput, we haven't got module yet */ 1373 mm->binfmt = NULL; 1374 mm_init_owner(mm, NULL); 1375 mmput(mm); 1376 1377 fail_nomem: 1378 return NULL; 1379 } 1380 1381 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1382 { 1383 struct mm_struct *mm, *oldmm; 1384 int retval; 1385 1386 tsk->min_flt = tsk->maj_flt = 0; 1387 tsk->nvcsw = tsk->nivcsw = 0; 1388 #ifdef CONFIG_DETECT_HUNG_TASK 1389 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1390 tsk->last_switch_time = 0; 1391 #endif 1392 1393 tsk->mm = NULL; 1394 tsk->active_mm = NULL; 1395 1396 /* 1397 * Are we cloning a kernel thread? 1398 * 1399 * We need to steal a active VM for that.. 1400 */ 1401 oldmm = current->mm; 1402 if (!oldmm) 1403 return 0; 1404 1405 /* initialize the new vmacache entries */ 1406 vmacache_flush(tsk); 1407 1408 if (clone_flags & CLONE_VM) { 1409 mmget(oldmm); 1410 mm = oldmm; 1411 goto good_mm; 1412 } 1413 1414 retval = -ENOMEM; 1415 mm = dup_mm(tsk, current->mm); 1416 if (!mm) 1417 goto fail_nomem; 1418 1419 good_mm: 1420 tsk->mm = mm; 1421 tsk->active_mm = mm; 1422 return 0; 1423 1424 fail_nomem: 1425 return retval; 1426 } 1427 1428 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1429 { 1430 struct fs_struct *fs = current->fs; 1431 if (clone_flags & CLONE_FS) { 1432 /* tsk->fs is already what we want */ 1433 spin_lock(&fs->lock); 1434 if (fs->in_exec) { 1435 spin_unlock(&fs->lock); 1436 return -EAGAIN; 1437 } 1438 fs->users++; 1439 spin_unlock(&fs->lock); 1440 return 0; 1441 } 1442 tsk->fs = copy_fs_struct(fs); 1443 if (!tsk->fs) 1444 return -ENOMEM; 1445 return 0; 1446 } 1447 1448 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1449 { 1450 struct files_struct *oldf, *newf; 1451 int error = 0; 1452 1453 /* 1454 * A background process may not have any files ... 1455 */ 1456 oldf = current->files; 1457 if (!oldf) 1458 goto out; 1459 1460 if (clone_flags & CLONE_FILES) { 1461 atomic_inc(&oldf->count); 1462 goto out; 1463 } 1464 1465 newf = dup_fd(oldf, &error); 1466 if (!newf) 1467 goto out; 1468 1469 tsk->files = newf; 1470 error = 0; 1471 out: 1472 return error; 1473 } 1474 1475 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1476 { 1477 #ifdef CONFIG_BLOCK 1478 struct io_context *ioc = current->io_context; 1479 struct io_context *new_ioc; 1480 1481 if (!ioc) 1482 return 0; 1483 /* 1484 * Share io context with parent, if CLONE_IO is set 1485 */ 1486 if (clone_flags & CLONE_IO) { 1487 ioc_task_link(ioc); 1488 tsk->io_context = ioc; 1489 } else if (ioprio_valid(ioc->ioprio)) { 1490 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1491 if (unlikely(!new_ioc)) 1492 return -ENOMEM; 1493 1494 new_ioc->ioprio = ioc->ioprio; 1495 put_io_context(new_ioc); 1496 } 1497 #endif 1498 return 0; 1499 } 1500 1501 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1502 { 1503 struct sighand_struct *sig; 1504 1505 if (clone_flags & CLONE_SIGHAND) { 1506 refcount_inc(¤t->sighand->count); 1507 return 0; 1508 } 1509 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1510 rcu_assign_pointer(tsk->sighand, sig); 1511 if (!sig) 1512 return -ENOMEM; 1513 1514 refcount_set(&sig->count, 1); 1515 spin_lock_irq(¤t->sighand->siglock); 1516 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1517 spin_unlock_irq(¤t->sighand->siglock); 1518 return 0; 1519 } 1520 1521 void __cleanup_sighand(struct sighand_struct *sighand) 1522 { 1523 if (refcount_dec_and_test(&sighand->count)) { 1524 signalfd_cleanup(sighand); 1525 /* 1526 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1527 * without an RCU grace period, see __lock_task_sighand(). 1528 */ 1529 kmem_cache_free(sighand_cachep, sighand); 1530 } 1531 } 1532 1533 /* 1534 * Initialize POSIX timer handling for a thread group. 1535 */ 1536 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1537 { 1538 struct posix_cputimers *pct = &sig->posix_cputimers; 1539 unsigned long cpu_limit; 1540 1541 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1542 posix_cputimers_group_init(pct, cpu_limit); 1543 } 1544 1545 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1546 { 1547 struct signal_struct *sig; 1548 1549 if (clone_flags & CLONE_THREAD) 1550 return 0; 1551 1552 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1553 tsk->signal = sig; 1554 if (!sig) 1555 return -ENOMEM; 1556 1557 sig->nr_threads = 1; 1558 atomic_set(&sig->live, 1); 1559 refcount_set(&sig->sigcnt, 1); 1560 1561 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1562 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1563 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1564 1565 init_waitqueue_head(&sig->wait_chldexit); 1566 sig->curr_target = tsk; 1567 init_sigpending(&sig->shared_pending); 1568 INIT_HLIST_HEAD(&sig->multiprocess); 1569 seqlock_init(&sig->stats_lock); 1570 prev_cputime_init(&sig->prev_cputime); 1571 1572 #ifdef CONFIG_POSIX_TIMERS 1573 INIT_LIST_HEAD(&sig->posix_timers); 1574 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1575 sig->real_timer.function = it_real_fn; 1576 #endif 1577 1578 task_lock(current->group_leader); 1579 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1580 task_unlock(current->group_leader); 1581 1582 posix_cpu_timers_init_group(sig); 1583 1584 tty_audit_fork(sig); 1585 sched_autogroup_fork(sig); 1586 1587 sig->oom_score_adj = current->signal->oom_score_adj; 1588 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1589 1590 mutex_init(&sig->cred_guard_mutex); 1591 1592 return 0; 1593 } 1594 1595 static void copy_seccomp(struct task_struct *p) 1596 { 1597 #ifdef CONFIG_SECCOMP 1598 /* 1599 * Must be called with sighand->lock held, which is common to 1600 * all threads in the group. Holding cred_guard_mutex is not 1601 * needed because this new task is not yet running and cannot 1602 * be racing exec. 1603 */ 1604 assert_spin_locked(¤t->sighand->siglock); 1605 1606 /* Ref-count the new filter user, and assign it. */ 1607 get_seccomp_filter(current); 1608 p->seccomp = current->seccomp; 1609 1610 /* 1611 * Explicitly enable no_new_privs here in case it got set 1612 * between the task_struct being duplicated and holding the 1613 * sighand lock. The seccomp state and nnp must be in sync. 1614 */ 1615 if (task_no_new_privs(current)) 1616 task_set_no_new_privs(p); 1617 1618 /* 1619 * If the parent gained a seccomp mode after copying thread 1620 * flags and between before we held the sighand lock, we have 1621 * to manually enable the seccomp thread flag here. 1622 */ 1623 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1624 set_tsk_thread_flag(p, TIF_SECCOMP); 1625 #endif 1626 } 1627 1628 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1629 { 1630 current->clear_child_tid = tidptr; 1631 1632 return task_pid_vnr(current); 1633 } 1634 1635 static void rt_mutex_init_task(struct task_struct *p) 1636 { 1637 raw_spin_lock_init(&p->pi_lock); 1638 #ifdef CONFIG_RT_MUTEXES 1639 p->pi_waiters = RB_ROOT_CACHED; 1640 p->pi_top_task = NULL; 1641 p->pi_blocked_on = NULL; 1642 #endif 1643 } 1644 1645 static inline void init_task_pid_links(struct task_struct *task) 1646 { 1647 enum pid_type type; 1648 1649 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1650 INIT_HLIST_NODE(&task->pid_links[type]); 1651 } 1652 } 1653 1654 static inline void 1655 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1656 { 1657 if (type == PIDTYPE_PID) 1658 task->thread_pid = pid; 1659 else 1660 task->signal->pids[type] = pid; 1661 } 1662 1663 static inline void rcu_copy_process(struct task_struct *p) 1664 { 1665 #ifdef CONFIG_PREEMPT_RCU 1666 p->rcu_read_lock_nesting = 0; 1667 p->rcu_read_unlock_special.s = 0; 1668 p->rcu_blocked_node = NULL; 1669 INIT_LIST_HEAD(&p->rcu_node_entry); 1670 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1671 #ifdef CONFIG_TASKS_RCU 1672 p->rcu_tasks_holdout = false; 1673 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1674 p->rcu_tasks_idle_cpu = -1; 1675 #endif /* #ifdef CONFIG_TASKS_RCU */ 1676 } 1677 1678 struct pid *pidfd_pid(const struct file *file) 1679 { 1680 if (file->f_op == &pidfd_fops) 1681 return file->private_data; 1682 1683 return ERR_PTR(-EBADF); 1684 } 1685 1686 static int pidfd_release(struct inode *inode, struct file *file) 1687 { 1688 struct pid *pid = file->private_data; 1689 1690 file->private_data = NULL; 1691 put_pid(pid); 1692 return 0; 1693 } 1694 1695 #ifdef CONFIG_PROC_FS 1696 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1697 { 1698 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file)); 1699 struct pid *pid = f->private_data; 1700 1701 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns)); 1702 seq_putc(m, '\n'); 1703 } 1704 #endif 1705 1706 /* 1707 * Poll support for process exit notification. 1708 */ 1709 static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts) 1710 { 1711 struct task_struct *task; 1712 struct pid *pid = file->private_data; 1713 int poll_flags = 0; 1714 1715 poll_wait(file, &pid->wait_pidfd, pts); 1716 1717 rcu_read_lock(); 1718 task = pid_task(pid, PIDTYPE_PID); 1719 /* 1720 * Inform pollers only when the whole thread group exits. 1721 * If the thread group leader exits before all other threads in the 1722 * group, then poll(2) should block, similar to the wait(2) family. 1723 */ 1724 if (!task || (task->exit_state && thread_group_empty(task))) 1725 poll_flags = POLLIN | POLLRDNORM; 1726 rcu_read_unlock(); 1727 1728 return poll_flags; 1729 } 1730 1731 const struct file_operations pidfd_fops = { 1732 .release = pidfd_release, 1733 .poll = pidfd_poll, 1734 #ifdef CONFIG_PROC_FS 1735 .show_fdinfo = pidfd_show_fdinfo, 1736 #endif 1737 }; 1738 1739 static void __delayed_free_task(struct rcu_head *rhp) 1740 { 1741 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1742 1743 free_task(tsk); 1744 } 1745 1746 static __always_inline void delayed_free_task(struct task_struct *tsk) 1747 { 1748 if (IS_ENABLED(CONFIG_MEMCG)) 1749 call_rcu(&tsk->rcu, __delayed_free_task); 1750 else 1751 free_task(tsk); 1752 } 1753 1754 /* 1755 * This creates a new process as a copy of the old one, 1756 * but does not actually start it yet. 1757 * 1758 * It copies the registers, and all the appropriate 1759 * parts of the process environment (as per the clone 1760 * flags). The actual kick-off is left to the caller. 1761 */ 1762 static __latent_entropy struct task_struct *copy_process( 1763 struct pid *pid, 1764 int trace, 1765 int node, 1766 struct kernel_clone_args *args) 1767 { 1768 int pidfd = -1, retval; 1769 struct task_struct *p; 1770 struct multiprocess_signals delayed; 1771 struct file *pidfile = NULL; 1772 u64 clone_flags = args->flags; 1773 1774 /* 1775 * Don't allow sharing the root directory with processes in a different 1776 * namespace 1777 */ 1778 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1779 return ERR_PTR(-EINVAL); 1780 1781 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1782 return ERR_PTR(-EINVAL); 1783 1784 /* 1785 * Thread groups must share signals as well, and detached threads 1786 * can only be started up within the thread group. 1787 */ 1788 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1789 return ERR_PTR(-EINVAL); 1790 1791 /* 1792 * Shared signal handlers imply shared VM. By way of the above, 1793 * thread groups also imply shared VM. Blocking this case allows 1794 * for various simplifications in other code. 1795 */ 1796 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1797 return ERR_PTR(-EINVAL); 1798 1799 /* 1800 * Siblings of global init remain as zombies on exit since they are 1801 * not reaped by their parent (swapper). To solve this and to avoid 1802 * multi-rooted process trees, prevent global and container-inits 1803 * from creating siblings. 1804 */ 1805 if ((clone_flags & CLONE_PARENT) && 1806 current->signal->flags & SIGNAL_UNKILLABLE) 1807 return ERR_PTR(-EINVAL); 1808 1809 /* 1810 * If the new process will be in a different pid or user namespace 1811 * do not allow it to share a thread group with the forking task. 1812 */ 1813 if (clone_flags & CLONE_THREAD) { 1814 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1815 (task_active_pid_ns(current) != 1816 current->nsproxy->pid_ns_for_children)) 1817 return ERR_PTR(-EINVAL); 1818 } 1819 1820 if (clone_flags & CLONE_PIDFD) { 1821 /* 1822 * - CLONE_DETACHED is blocked so that we can potentially 1823 * reuse it later for CLONE_PIDFD. 1824 * - CLONE_THREAD is blocked until someone really needs it. 1825 */ 1826 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1827 return ERR_PTR(-EINVAL); 1828 } 1829 1830 /* 1831 * Force any signals received before this point to be delivered 1832 * before the fork happens. Collect up signals sent to multiple 1833 * processes that happen during the fork and delay them so that 1834 * they appear to happen after the fork. 1835 */ 1836 sigemptyset(&delayed.signal); 1837 INIT_HLIST_NODE(&delayed.node); 1838 1839 spin_lock_irq(¤t->sighand->siglock); 1840 if (!(clone_flags & CLONE_THREAD)) 1841 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1842 recalc_sigpending(); 1843 spin_unlock_irq(¤t->sighand->siglock); 1844 retval = -ERESTARTNOINTR; 1845 if (signal_pending(current)) 1846 goto fork_out; 1847 1848 retval = -ENOMEM; 1849 p = dup_task_struct(current, node); 1850 if (!p) 1851 goto fork_out; 1852 1853 /* 1854 * This _must_ happen before we call free_task(), i.e. before we jump 1855 * to any of the bad_fork_* labels. This is to avoid freeing 1856 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1857 * kernel threads (PF_KTHREAD). 1858 */ 1859 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1860 /* 1861 * Clear TID on mm_release()? 1862 */ 1863 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1864 1865 ftrace_graph_init_task(p); 1866 1867 rt_mutex_init_task(p); 1868 1869 #ifdef CONFIG_PROVE_LOCKING 1870 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1871 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1872 #endif 1873 retval = -EAGAIN; 1874 if (atomic_read(&p->real_cred->user->processes) >= 1875 task_rlimit(p, RLIMIT_NPROC)) { 1876 if (p->real_cred->user != INIT_USER && 1877 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1878 goto bad_fork_free; 1879 } 1880 current->flags &= ~PF_NPROC_EXCEEDED; 1881 1882 retval = copy_creds(p, clone_flags); 1883 if (retval < 0) 1884 goto bad_fork_free; 1885 1886 /* 1887 * If multiple threads are within copy_process(), then this check 1888 * triggers too late. This doesn't hurt, the check is only there 1889 * to stop root fork bombs. 1890 */ 1891 retval = -EAGAIN; 1892 if (nr_threads >= max_threads) 1893 goto bad_fork_cleanup_count; 1894 1895 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1896 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1897 p->flags |= PF_FORKNOEXEC; 1898 INIT_LIST_HEAD(&p->children); 1899 INIT_LIST_HEAD(&p->sibling); 1900 rcu_copy_process(p); 1901 p->vfork_done = NULL; 1902 spin_lock_init(&p->alloc_lock); 1903 1904 init_sigpending(&p->pending); 1905 1906 p->utime = p->stime = p->gtime = 0; 1907 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1908 p->utimescaled = p->stimescaled = 0; 1909 #endif 1910 prev_cputime_init(&p->prev_cputime); 1911 1912 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1913 seqcount_init(&p->vtime.seqcount); 1914 p->vtime.starttime = 0; 1915 p->vtime.state = VTIME_INACTIVE; 1916 #endif 1917 1918 #if defined(SPLIT_RSS_COUNTING) 1919 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1920 #endif 1921 1922 p->default_timer_slack_ns = current->timer_slack_ns; 1923 1924 #ifdef CONFIG_PSI 1925 p->psi_flags = 0; 1926 #endif 1927 1928 task_io_accounting_init(&p->ioac); 1929 acct_clear_integrals(p); 1930 1931 posix_cputimers_init(&p->posix_cputimers); 1932 1933 p->io_context = NULL; 1934 audit_set_context(p, NULL); 1935 cgroup_fork(p); 1936 #ifdef CONFIG_NUMA 1937 p->mempolicy = mpol_dup(p->mempolicy); 1938 if (IS_ERR(p->mempolicy)) { 1939 retval = PTR_ERR(p->mempolicy); 1940 p->mempolicy = NULL; 1941 goto bad_fork_cleanup_threadgroup_lock; 1942 } 1943 #endif 1944 #ifdef CONFIG_CPUSETS 1945 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1946 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1947 seqcount_init(&p->mems_allowed_seq); 1948 #endif 1949 #ifdef CONFIG_TRACE_IRQFLAGS 1950 p->irq_events = 0; 1951 p->hardirqs_enabled = 0; 1952 p->hardirq_enable_ip = 0; 1953 p->hardirq_enable_event = 0; 1954 p->hardirq_disable_ip = _THIS_IP_; 1955 p->hardirq_disable_event = 0; 1956 p->softirqs_enabled = 1; 1957 p->softirq_enable_ip = _THIS_IP_; 1958 p->softirq_enable_event = 0; 1959 p->softirq_disable_ip = 0; 1960 p->softirq_disable_event = 0; 1961 p->hardirq_context = 0; 1962 p->softirq_context = 0; 1963 #endif 1964 1965 p->pagefault_disabled = 0; 1966 1967 #ifdef CONFIG_LOCKDEP 1968 lockdep_init_task(p); 1969 #endif 1970 1971 #ifdef CONFIG_DEBUG_MUTEXES 1972 p->blocked_on = NULL; /* not blocked yet */ 1973 #endif 1974 #ifdef CONFIG_BCACHE 1975 p->sequential_io = 0; 1976 p->sequential_io_avg = 0; 1977 #endif 1978 1979 /* Perform scheduler related setup. Assign this task to a CPU. */ 1980 retval = sched_fork(clone_flags, p); 1981 if (retval) 1982 goto bad_fork_cleanup_policy; 1983 1984 retval = perf_event_init_task(p); 1985 if (retval) 1986 goto bad_fork_cleanup_policy; 1987 retval = audit_alloc(p); 1988 if (retval) 1989 goto bad_fork_cleanup_perf; 1990 /* copy all the process information */ 1991 shm_init_task(p); 1992 retval = security_task_alloc(p, clone_flags); 1993 if (retval) 1994 goto bad_fork_cleanup_audit; 1995 retval = copy_semundo(clone_flags, p); 1996 if (retval) 1997 goto bad_fork_cleanup_security; 1998 retval = copy_files(clone_flags, p); 1999 if (retval) 2000 goto bad_fork_cleanup_semundo; 2001 retval = copy_fs(clone_flags, p); 2002 if (retval) 2003 goto bad_fork_cleanup_files; 2004 retval = copy_sighand(clone_flags, p); 2005 if (retval) 2006 goto bad_fork_cleanup_fs; 2007 retval = copy_signal(clone_flags, p); 2008 if (retval) 2009 goto bad_fork_cleanup_sighand; 2010 retval = copy_mm(clone_flags, p); 2011 if (retval) 2012 goto bad_fork_cleanup_signal; 2013 retval = copy_namespaces(clone_flags, p); 2014 if (retval) 2015 goto bad_fork_cleanup_mm; 2016 retval = copy_io(clone_flags, p); 2017 if (retval) 2018 goto bad_fork_cleanup_namespaces; 2019 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p, 2020 args->tls); 2021 if (retval) 2022 goto bad_fork_cleanup_io; 2023 2024 stackleak_task_init(p); 2025 2026 if (pid != &init_struct_pid) { 2027 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 2028 if (IS_ERR(pid)) { 2029 retval = PTR_ERR(pid); 2030 goto bad_fork_cleanup_thread; 2031 } 2032 } 2033 2034 /* 2035 * This has to happen after we've potentially unshared the file 2036 * descriptor table (so that the pidfd doesn't leak into the child 2037 * if the fd table isn't shared). 2038 */ 2039 if (clone_flags & CLONE_PIDFD) { 2040 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2041 if (retval < 0) 2042 goto bad_fork_free_pid; 2043 2044 pidfd = retval; 2045 2046 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2047 O_RDWR | O_CLOEXEC); 2048 if (IS_ERR(pidfile)) { 2049 put_unused_fd(pidfd); 2050 retval = PTR_ERR(pidfile); 2051 goto bad_fork_free_pid; 2052 } 2053 get_pid(pid); /* held by pidfile now */ 2054 2055 retval = put_user(pidfd, args->pidfd); 2056 if (retval) 2057 goto bad_fork_put_pidfd; 2058 } 2059 2060 #ifdef CONFIG_BLOCK 2061 p->plug = NULL; 2062 #endif 2063 #ifdef CONFIG_FUTEX 2064 p->robust_list = NULL; 2065 #ifdef CONFIG_COMPAT 2066 p->compat_robust_list = NULL; 2067 #endif 2068 INIT_LIST_HEAD(&p->pi_state_list); 2069 p->pi_state_cache = NULL; 2070 #endif 2071 /* 2072 * sigaltstack should be cleared when sharing the same VM 2073 */ 2074 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2075 sas_ss_reset(p); 2076 2077 /* 2078 * Syscall tracing and stepping should be turned off in the 2079 * child regardless of CLONE_PTRACE. 2080 */ 2081 user_disable_single_step(p); 2082 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2083 #ifdef TIF_SYSCALL_EMU 2084 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2085 #endif 2086 clear_tsk_latency_tracing(p); 2087 2088 /* ok, now we should be set up.. */ 2089 p->pid = pid_nr(pid); 2090 if (clone_flags & CLONE_THREAD) { 2091 p->exit_signal = -1; 2092 p->group_leader = current->group_leader; 2093 p->tgid = current->tgid; 2094 } else { 2095 if (clone_flags & CLONE_PARENT) 2096 p->exit_signal = current->group_leader->exit_signal; 2097 else 2098 p->exit_signal = args->exit_signal; 2099 p->group_leader = p; 2100 p->tgid = p->pid; 2101 } 2102 2103 p->nr_dirtied = 0; 2104 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2105 p->dirty_paused_when = 0; 2106 2107 p->pdeath_signal = 0; 2108 INIT_LIST_HEAD(&p->thread_group); 2109 p->task_works = NULL; 2110 2111 cgroup_threadgroup_change_begin(current); 2112 /* 2113 * Ensure that the cgroup subsystem policies allow the new process to be 2114 * forked. It should be noted the the new process's css_set can be changed 2115 * between here and cgroup_post_fork() if an organisation operation is in 2116 * progress. 2117 */ 2118 retval = cgroup_can_fork(p); 2119 if (retval) 2120 goto bad_fork_cgroup_threadgroup_change_end; 2121 2122 /* 2123 * From this point on we must avoid any synchronous user-space 2124 * communication until we take the tasklist-lock. In particular, we do 2125 * not want user-space to be able to predict the process start-time by 2126 * stalling fork(2) after we recorded the start_time but before it is 2127 * visible to the system. 2128 */ 2129 2130 p->start_time = ktime_get_ns(); 2131 p->real_start_time = ktime_get_boottime_ns(); 2132 2133 /* 2134 * Make it visible to the rest of the system, but dont wake it up yet. 2135 * Need tasklist lock for parent etc handling! 2136 */ 2137 write_lock_irq(&tasklist_lock); 2138 2139 /* CLONE_PARENT re-uses the old parent */ 2140 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2141 p->real_parent = current->real_parent; 2142 p->parent_exec_id = current->parent_exec_id; 2143 } else { 2144 p->real_parent = current; 2145 p->parent_exec_id = current->self_exec_id; 2146 } 2147 2148 klp_copy_process(p); 2149 2150 spin_lock(¤t->sighand->siglock); 2151 2152 /* 2153 * Copy seccomp details explicitly here, in case they were changed 2154 * before holding sighand lock. 2155 */ 2156 copy_seccomp(p); 2157 2158 rseq_fork(p, clone_flags); 2159 2160 /* Don't start children in a dying pid namespace */ 2161 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2162 retval = -ENOMEM; 2163 goto bad_fork_cancel_cgroup; 2164 } 2165 2166 /* Let kill terminate clone/fork in the middle */ 2167 if (fatal_signal_pending(current)) { 2168 retval = -EINTR; 2169 goto bad_fork_cancel_cgroup; 2170 } 2171 2172 /* past the last point of failure */ 2173 if (pidfile) 2174 fd_install(pidfd, pidfile); 2175 2176 init_task_pid_links(p); 2177 if (likely(p->pid)) { 2178 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2179 2180 init_task_pid(p, PIDTYPE_PID, pid); 2181 if (thread_group_leader(p)) { 2182 init_task_pid(p, PIDTYPE_TGID, pid); 2183 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2184 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2185 2186 if (is_child_reaper(pid)) { 2187 ns_of_pid(pid)->child_reaper = p; 2188 p->signal->flags |= SIGNAL_UNKILLABLE; 2189 } 2190 p->signal->shared_pending.signal = delayed.signal; 2191 p->signal->tty = tty_kref_get(current->signal->tty); 2192 /* 2193 * Inherit has_child_subreaper flag under the same 2194 * tasklist_lock with adding child to the process tree 2195 * for propagate_has_child_subreaper optimization. 2196 */ 2197 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2198 p->real_parent->signal->is_child_subreaper; 2199 list_add_tail(&p->sibling, &p->real_parent->children); 2200 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2201 attach_pid(p, PIDTYPE_TGID); 2202 attach_pid(p, PIDTYPE_PGID); 2203 attach_pid(p, PIDTYPE_SID); 2204 __this_cpu_inc(process_counts); 2205 } else { 2206 current->signal->nr_threads++; 2207 atomic_inc(¤t->signal->live); 2208 refcount_inc(¤t->signal->sigcnt); 2209 task_join_group_stop(p); 2210 list_add_tail_rcu(&p->thread_group, 2211 &p->group_leader->thread_group); 2212 list_add_tail_rcu(&p->thread_node, 2213 &p->signal->thread_head); 2214 } 2215 attach_pid(p, PIDTYPE_PID); 2216 nr_threads++; 2217 } 2218 total_forks++; 2219 hlist_del_init(&delayed.node); 2220 spin_unlock(¤t->sighand->siglock); 2221 syscall_tracepoint_update(p); 2222 write_unlock_irq(&tasklist_lock); 2223 2224 proc_fork_connector(p); 2225 cgroup_post_fork(p); 2226 cgroup_threadgroup_change_end(current); 2227 perf_event_fork(p); 2228 2229 trace_task_newtask(p, clone_flags); 2230 uprobe_copy_process(p, clone_flags); 2231 2232 return p; 2233 2234 bad_fork_cancel_cgroup: 2235 spin_unlock(¤t->sighand->siglock); 2236 write_unlock_irq(&tasklist_lock); 2237 cgroup_cancel_fork(p); 2238 bad_fork_cgroup_threadgroup_change_end: 2239 cgroup_threadgroup_change_end(current); 2240 bad_fork_put_pidfd: 2241 if (clone_flags & CLONE_PIDFD) { 2242 fput(pidfile); 2243 put_unused_fd(pidfd); 2244 } 2245 bad_fork_free_pid: 2246 if (pid != &init_struct_pid) 2247 free_pid(pid); 2248 bad_fork_cleanup_thread: 2249 exit_thread(p); 2250 bad_fork_cleanup_io: 2251 if (p->io_context) 2252 exit_io_context(p); 2253 bad_fork_cleanup_namespaces: 2254 exit_task_namespaces(p); 2255 bad_fork_cleanup_mm: 2256 if (p->mm) { 2257 mm_clear_owner(p->mm, p); 2258 mmput(p->mm); 2259 } 2260 bad_fork_cleanup_signal: 2261 if (!(clone_flags & CLONE_THREAD)) 2262 free_signal_struct(p->signal); 2263 bad_fork_cleanup_sighand: 2264 __cleanup_sighand(p->sighand); 2265 bad_fork_cleanup_fs: 2266 exit_fs(p); /* blocking */ 2267 bad_fork_cleanup_files: 2268 exit_files(p); /* blocking */ 2269 bad_fork_cleanup_semundo: 2270 exit_sem(p); 2271 bad_fork_cleanup_security: 2272 security_task_free(p); 2273 bad_fork_cleanup_audit: 2274 audit_free(p); 2275 bad_fork_cleanup_perf: 2276 perf_event_free_task(p); 2277 bad_fork_cleanup_policy: 2278 lockdep_free_task(p); 2279 #ifdef CONFIG_NUMA 2280 mpol_put(p->mempolicy); 2281 bad_fork_cleanup_threadgroup_lock: 2282 #endif 2283 delayacct_tsk_free(p); 2284 bad_fork_cleanup_count: 2285 atomic_dec(&p->cred->user->processes); 2286 exit_creds(p); 2287 bad_fork_free: 2288 p->state = TASK_DEAD; 2289 put_task_stack(p); 2290 delayed_free_task(p); 2291 fork_out: 2292 spin_lock_irq(¤t->sighand->siglock); 2293 hlist_del_init(&delayed.node); 2294 spin_unlock_irq(¤t->sighand->siglock); 2295 return ERR_PTR(retval); 2296 } 2297 2298 static inline void init_idle_pids(struct task_struct *idle) 2299 { 2300 enum pid_type type; 2301 2302 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2303 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2304 init_task_pid(idle, type, &init_struct_pid); 2305 } 2306 } 2307 2308 struct task_struct *fork_idle(int cpu) 2309 { 2310 struct task_struct *task; 2311 struct kernel_clone_args args = { 2312 .flags = CLONE_VM, 2313 }; 2314 2315 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2316 if (!IS_ERR(task)) { 2317 init_idle_pids(task); 2318 init_idle(task, cpu); 2319 } 2320 2321 return task; 2322 } 2323 2324 struct mm_struct *copy_init_mm(void) 2325 { 2326 return dup_mm(NULL, &init_mm); 2327 } 2328 2329 /* 2330 * Ok, this is the main fork-routine. 2331 * 2332 * It copies the process, and if successful kick-starts 2333 * it and waits for it to finish using the VM if required. 2334 * 2335 * args->exit_signal is expected to be checked for sanity by the caller. 2336 */ 2337 long _do_fork(struct kernel_clone_args *args) 2338 { 2339 u64 clone_flags = args->flags; 2340 struct completion vfork; 2341 struct pid *pid; 2342 struct task_struct *p; 2343 int trace = 0; 2344 long nr; 2345 2346 /* 2347 * Determine whether and which event to report to ptracer. When 2348 * called from kernel_thread or CLONE_UNTRACED is explicitly 2349 * requested, no event is reported; otherwise, report if the event 2350 * for the type of forking is enabled. 2351 */ 2352 if (!(clone_flags & CLONE_UNTRACED)) { 2353 if (clone_flags & CLONE_VFORK) 2354 trace = PTRACE_EVENT_VFORK; 2355 else if (args->exit_signal != SIGCHLD) 2356 trace = PTRACE_EVENT_CLONE; 2357 else 2358 trace = PTRACE_EVENT_FORK; 2359 2360 if (likely(!ptrace_event_enabled(current, trace))) 2361 trace = 0; 2362 } 2363 2364 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2365 add_latent_entropy(); 2366 2367 if (IS_ERR(p)) 2368 return PTR_ERR(p); 2369 2370 /* 2371 * Do this prior waking up the new thread - the thread pointer 2372 * might get invalid after that point, if the thread exits quickly. 2373 */ 2374 trace_sched_process_fork(current, p); 2375 2376 pid = get_task_pid(p, PIDTYPE_PID); 2377 nr = pid_vnr(pid); 2378 2379 if (clone_flags & CLONE_PARENT_SETTID) 2380 put_user(nr, args->parent_tid); 2381 2382 if (clone_flags & CLONE_VFORK) { 2383 p->vfork_done = &vfork; 2384 init_completion(&vfork); 2385 get_task_struct(p); 2386 } 2387 2388 wake_up_new_task(p); 2389 2390 /* forking complete and child started to run, tell ptracer */ 2391 if (unlikely(trace)) 2392 ptrace_event_pid(trace, pid); 2393 2394 if (clone_flags & CLONE_VFORK) { 2395 if (!wait_for_vfork_done(p, &vfork)) 2396 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2397 } 2398 2399 put_pid(pid); 2400 return nr; 2401 } 2402 2403 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs) 2404 { 2405 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */ 2406 if ((kargs->flags & CLONE_PIDFD) && 2407 (kargs->flags & CLONE_PARENT_SETTID)) 2408 return false; 2409 2410 return true; 2411 } 2412 2413 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2414 /* For compatibility with architectures that call do_fork directly rather than 2415 * using the syscall entry points below. */ 2416 long do_fork(unsigned long clone_flags, 2417 unsigned long stack_start, 2418 unsigned long stack_size, 2419 int __user *parent_tidptr, 2420 int __user *child_tidptr) 2421 { 2422 struct kernel_clone_args args = { 2423 .flags = (clone_flags & ~CSIGNAL), 2424 .pidfd = parent_tidptr, 2425 .child_tid = child_tidptr, 2426 .parent_tid = parent_tidptr, 2427 .exit_signal = (clone_flags & CSIGNAL), 2428 .stack = stack_start, 2429 .stack_size = stack_size, 2430 }; 2431 2432 if (!legacy_clone_args_valid(&args)) 2433 return -EINVAL; 2434 2435 return _do_fork(&args); 2436 } 2437 #endif 2438 2439 /* 2440 * Create a kernel thread. 2441 */ 2442 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2443 { 2444 struct kernel_clone_args args = { 2445 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), 2446 .exit_signal = (flags & CSIGNAL), 2447 .stack = (unsigned long)fn, 2448 .stack_size = (unsigned long)arg, 2449 }; 2450 2451 return _do_fork(&args); 2452 } 2453 2454 #ifdef __ARCH_WANT_SYS_FORK 2455 SYSCALL_DEFINE0(fork) 2456 { 2457 #ifdef CONFIG_MMU 2458 struct kernel_clone_args args = { 2459 .exit_signal = SIGCHLD, 2460 }; 2461 2462 return _do_fork(&args); 2463 #else 2464 /* can not support in nommu mode */ 2465 return -EINVAL; 2466 #endif 2467 } 2468 #endif 2469 2470 #ifdef __ARCH_WANT_SYS_VFORK 2471 SYSCALL_DEFINE0(vfork) 2472 { 2473 struct kernel_clone_args args = { 2474 .flags = CLONE_VFORK | CLONE_VM, 2475 .exit_signal = SIGCHLD, 2476 }; 2477 2478 return _do_fork(&args); 2479 } 2480 #endif 2481 2482 #ifdef __ARCH_WANT_SYS_CLONE 2483 #ifdef CONFIG_CLONE_BACKWARDS 2484 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2485 int __user *, parent_tidptr, 2486 unsigned long, tls, 2487 int __user *, child_tidptr) 2488 #elif defined(CONFIG_CLONE_BACKWARDS2) 2489 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2490 int __user *, parent_tidptr, 2491 int __user *, child_tidptr, 2492 unsigned long, tls) 2493 #elif defined(CONFIG_CLONE_BACKWARDS3) 2494 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2495 int, stack_size, 2496 int __user *, parent_tidptr, 2497 int __user *, child_tidptr, 2498 unsigned long, tls) 2499 #else 2500 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2501 int __user *, parent_tidptr, 2502 int __user *, child_tidptr, 2503 unsigned long, tls) 2504 #endif 2505 { 2506 struct kernel_clone_args args = { 2507 .flags = (clone_flags & ~CSIGNAL), 2508 .pidfd = parent_tidptr, 2509 .child_tid = child_tidptr, 2510 .parent_tid = parent_tidptr, 2511 .exit_signal = (clone_flags & CSIGNAL), 2512 .stack = newsp, 2513 .tls = tls, 2514 }; 2515 2516 if (!legacy_clone_args_valid(&args)) 2517 return -EINVAL; 2518 2519 return _do_fork(&args); 2520 } 2521 #endif 2522 2523 #ifdef __ARCH_WANT_SYS_CLONE3 2524 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2525 struct clone_args __user *uargs, 2526 size_t size) 2527 { 2528 struct clone_args args; 2529 2530 if (unlikely(size > PAGE_SIZE)) 2531 return -E2BIG; 2532 2533 if (unlikely(size < sizeof(struct clone_args))) 2534 return -EINVAL; 2535 2536 if (unlikely(!access_ok(uargs, size))) 2537 return -EFAULT; 2538 2539 if (size > sizeof(struct clone_args)) { 2540 unsigned char __user *addr; 2541 unsigned char __user *end; 2542 unsigned char val; 2543 2544 addr = (void __user *)uargs + sizeof(struct clone_args); 2545 end = (void __user *)uargs + size; 2546 2547 for (; addr < end; addr++) { 2548 if (get_user(val, addr)) 2549 return -EFAULT; 2550 if (val) 2551 return -E2BIG; 2552 } 2553 2554 size = sizeof(struct clone_args); 2555 } 2556 2557 if (copy_from_user(&args, uargs, size)) 2558 return -EFAULT; 2559 2560 /* 2561 * Verify that higher 32bits of exit_signal are unset and that 2562 * it is a valid signal 2563 */ 2564 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2565 !valid_signal(args.exit_signal))) 2566 return -EINVAL; 2567 2568 *kargs = (struct kernel_clone_args){ 2569 .flags = args.flags, 2570 .pidfd = u64_to_user_ptr(args.pidfd), 2571 .child_tid = u64_to_user_ptr(args.child_tid), 2572 .parent_tid = u64_to_user_ptr(args.parent_tid), 2573 .exit_signal = args.exit_signal, 2574 .stack = args.stack, 2575 .stack_size = args.stack_size, 2576 .tls = args.tls, 2577 }; 2578 2579 return 0; 2580 } 2581 2582 static bool clone3_args_valid(const struct kernel_clone_args *kargs) 2583 { 2584 /* 2585 * All lower bits of the flag word are taken. 2586 * Verify that no other unknown flags are passed along. 2587 */ 2588 if (kargs->flags & ~CLONE_LEGACY_FLAGS) 2589 return false; 2590 2591 /* 2592 * - make the CLONE_DETACHED bit reuseable for clone3 2593 * - make the CSIGNAL bits reuseable for clone3 2594 */ 2595 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2596 return false; 2597 2598 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2599 kargs->exit_signal) 2600 return false; 2601 2602 return true; 2603 } 2604 2605 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2606 { 2607 int err; 2608 2609 struct kernel_clone_args kargs; 2610 2611 err = copy_clone_args_from_user(&kargs, uargs, size); 2612 if (err) 2613 return err; 2614 2615 if (!clone3_args_valid(&kargs)) 2616 return -EINVAL; 2617 2618 return _do_fork(&kargs); 2619 } 2620 #endif 2621 2622 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2623 { 2624 struct task_struct *leader, *parent, *child; 2625 int res; 2626 2627 read_lock(&tasklist_lock); 2628 leader = top = top->group_leader; 2629 down: 2630 for_each_thread(leader, parent) { 2631 list_for_each_entry(child, &parent->children, sibling) { 2632 res = visitor(child, data); 2633 if (res) { 2634 if (res < 0) 2635 goto out; 2636 leader = child; 2637 goto down; 2638 } 2639 up: 2640 ; 2641 } 2642 } 2643 2644 if (leader != top) { 2645 child = leader; 2646 parent = child->real_parent; 2647 leader = parent->group_leader; 2648 goto up; 2649 } 2650 out: 2651 read_unlock(&tasklist_lock); 2652 } 2653 2654 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2655 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2656 #endif 2657 2658 static void sighand_ctor(void *data) 2659 { 2660 struct sighand_struct *sighand = data; 2661 2662 spin_lock_init(&sighand->siglock); 2663 init_waitqueue_head(&sighand->signalfd_wqh); 2664 } 2665 2666 void __init proc_caches_init(void) 2667 { 2668 unsigned int mm_size; 2669 2670 sighand_cachep = kmem_cache_create("sighand_cache", 2671 sizeof(struct sighand_struct), 0, 2672 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2673 SLAB_ACCOUNT, sighand_ctor); 2674 signal_cachep = kmem_cache_create("signal_cache", 2675 sizeof(struct signal_struct), 0, 2676 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2677 NULL); 2678 files_cachep = kmem_cache_create("files_cache", 2679 sizeof(struct files_struct), 0, 2680 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2681 NULL); 2682 fs_cachep = kmem_cache_create("fs_cache", 2683 sizeof(struct fs_struct), 0, 2684 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2685 NULL); 2686 2687 /* 2688 * The mm_cpumask is located at the end of mm_struct, and is 2689 * dynamically sized based on the maximum CPU number this system 2690 * can have, taking hotplug into account (nr_cpu_ids). 2691 */ 2692 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2693 2694 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2695 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2696 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2697 offsetof(struct mm_struct, saved_auxv), 2698 sizeof_field(struct mm_struct, saved_auxv), 2699 NULL); 2700 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2701 mmap_init(); 2702 nsproxy_cache_init(); 2703 } 2704 2705 /* 2706 * Check constraints on flags passed to the unshare system call. 2707 */ 2708 static int check_unshare_flags(unsigned long unshare_flags) 2709 { 2710 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2711 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2712 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2713 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) 2714 return -EINVAL; 2715 /* 2716 * Not implemented, but pretend it works if there is nothing 2717 * to unshare. Note that unsharing the address space or the 2718 * signal handlers also need to unshare the signal queues (aka 2719 * CLONE_THREAD). 2720 */ 2721 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2722 if (!thread_group_empty(current)) 2723 return -EINVAL; 2724 } 2725 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2726 if (refcount_read(¤t->sighand->count) > 1) 2727 return -EINVAL; 2728 } 2729 if (unshare_flags & CLONE_VM) { 2730 if (!current_is_single_threaded()) 2731 return -EINVAL; 2732 } 2733 2734 return 0; 2735 } 2736 2737 /* 2738 * Unshare the filesystem structure if it is being shared 2739 */ 2740 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2741 { 2742 struct fs_struct *fs = current->fs; 2743 2744 if (!(unshare_flags & CLONE_FS) || !fs) 2745 return 0; 2746 2747 /* don't need lock here; in the worst case we'll do useless copy */ 2748 if (fs->users == 1) 2749 return 0; 2750 2751 *new_fsp = copy_fs_struct(fs); 2752 if (!*new_fsp) 2753 return -ENOMEM; 2754 2755 return 0; 2756 } 2757 2758 /* 2759 * Unshare file descriptor table if it is being shared 2760 */ 2761 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 2762 { 2763 struct files_struct *fd = current->files; 2764 int error = 0; 2765 2766 if ((unshare_flags & CLONE_FILES) && 2767 (fd && atomic_read(&fd->count) > 1)) { 2768 *new_fdp = dup_fd(fd, &error); 2769 if (!*new_fdp) 2770 return error; 2771 } 2772 2773 return 0; 2774 } 2775 2776 /* 2777 * unshare allows a process to 'unshare' part of the process 2778 * context which was originally shared using clone. copy_* 2779 * functions used by do_fork() cannot be used here directly 2780 * because they modify an inactive task_struct that is being 2781 * constructed. Here we are modifying the current, active, 2782 * task_struct. 2783 */ 2784 int ksys_unshare(unsigned long unshare_flags) 2785 { 2786 struct fs_struct *fs, *new_fs = NULL; 2787 struct files_struct *fd, *new_fd = NULL; 2788 struct cred *new_cred = NULL; 2789 struct nsproxy *new_nsproxy = NULL; 2790 int do_sysvsem = 0; 2791 int err; 2792 2793 /* 2794 * If unsharing a user namespace must also unshare the thread group 2795 * and unshare the filesystem root and working directories. 2796 */ 2797 if (unshare_flags & CLONE_NEWUSER) 2798 unshare_flags |= CLONE_THREAD | CLONE_FS; 2799 /* 2800 * If unsharing vm, must also unshare signal handlers. 2801 */ 2802 if (unshare_flags & CLONE_VM) 2803 unshare_flags |= CLONE_SIGHAND; 2804 /* 2805 * If unsharing a signal handlers, must also unshare the signal queues. 2806 */ 2807 if (unshare_flags & CLONE_SIGHAND) 2808 unshare_flags |= CLONE_THREAD; 2809 /* 2810 * If unsharing namespace, must also unshare filesystem information. 2811 */ 2812 if (unshare_flags & CLONE_NEWNS) 2813 unshare_flags |= CLONE_FS; 2814 2815 err = check_unshare_flags(unshare_flags); 2816 if (err) 2817 goto bad_unshare_out; 2818 /* 2819 * CLONE_NEWIPC must also detach from the undolist: after switching 2820 * to a new ipc namespace, the semaphore arrays from the old 2821 * namespace are unreachable. 2822 */ 2823 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2824 do_sysvsem = 1; 2825 err = unshare_fs(unshare_flags, &new_fs); 2826 if (err) 2827 goto bad_unshare_out; 2828 err = unshare_fd(unshare_flags, &new_fd); 2829 if (err) 2830 goto bad_unshare_cleanup_fs; 2831 err = unshare_userns(unshare_flags, &new_cred); 2832 if (err) 2833 goto bad_unshare_cleanup_fd; 2834 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2835 new_cred, new_fs); 2836 if (err) 2837 goto bad_unshare_cleanup_cred; 2838 2839 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2840 if (do_sysvsem) { 2841 /* 2842 * CLONE_SYSVSEM is equivalent to sys_exit(). 2843 */ 2844 exit_sem(current); 2845 } 2846 if (unshare_flags & CLONE_NEWIPC) { 2847 /* Orphan segments in old ns (see sem above). */ 2848 exit_shm(current); 2849 shm_init_task(current); 2850 } 2851 2852 if (new_nsproxy) 2853 switch_task_namespaces(current, new_nsproxy); 2854 2855 task_lock(current); 2856 2857 if (new_fs) { 2858 fs = current->fs; 2859 spin_lock(&fs->lock); 2860 current->fs = new_fs; 2861 if (--fs->users) 2862 new_fs = NULL; 2863 else 2864 new_fs = fs; 2865 spin_unlock(&fs->lock); 2866 } 2867 2868 if (new_fd) { 2869 fd = current->files; 2870 current->files = new_fd; 2871 new_fd = fd; 2872 } 2873 2874 task_unlock(current); 2875 2876 if (new_cred) { 2877 /* Install the new user namespace */ 2878 commit_creds(new_cred); 2879 new_cred = NULL; 2880 } 2881 } 2882 2883 perf_event_namespaces(current); 2884 2885 bad_unshare_cleanup_cred: 2886 if (new_cred) 2887 put_cred(new_cred); 2888 bad_unshare_cleanup_fd: 2889 if (new_fd) 2890 put_files_struct(new_fd); 2891 2892 bad_unshare_cleanup_fs: 2893 if (new_fs) 2894 free_fs_struct(new_fs); 2895 2896 bad_unshare_out: 2897 return err; 2898 } 2899 2900 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 2901 { 2902 return ksys_unshare(unshare_flags); 2903 } 2904 2905 /* 2906 * Helper to unshare the files of the current task. 2907 * We don't want to expose copy_files internals to 2908 * the exec layer of the kernel. 2909 */ 2910 2911 int unshare_files(struct files_struct **displaced) 2912 { 2913 struct task_struct *task = current; 2914 struct files_struct *copy = NULL; 2915 int error; 2916 2917 error = unshare_fd(CLONE_FILES, ©); 2918 if (error || !copy) { 2919 *displaced = NULL; 2920 return error; 2921 } 2922 *displaced = task->files; 2923 task_lock(task); 2924 task->files = copy; 2925 task_unlock(task); 2926 return 0; 2927 } 2928 2929 int sysctl_max_threads(struct ctl_table *table, int write, 2930 void __user *buffer, size_t *lenp, loff_t *ppos) 2931 { 2932 struct ctl_table t; 2933 int ret; 2934 int threads = max_threads; 2935 int min = MIN_THREADS; 2936 int max = MAX_THREADS; 2937 2938 t = *table; 2939 t.data = &threads; 2940 t.extra1 = &min; 2941 t.extra2 = &max; 2942 2943 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2944 if (ret || !write) 2945 return ret; 2946 2947 set_max_threads(threads); 2948 2949 return 0; 2950 } 2951