xref: /linux/kernel/fork.c (revision b7ad6108484221f431372b94763b74e550d16c93)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
129 
130 static const char * const resident_page_types[] = {
131 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136 
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138 
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
140 
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 	return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148 
149 int nr_processes(void)
150 {
151 	int cpu;
152 	int total = 0;
153 
154 	for_each_possible_cpu(cpu)
155 		total += per_cpu(process_counts, cpu);
156 
157 	return total;
158 }
159 
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163 
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166 
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171 
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 	kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177 
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179 
180 /*
181  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182  * kmemcache based allocator.
183  */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185 
186 #ifdef CONFIG_VMAP_STACK
187 /*
188  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189  * flush.  Try to minimize the number of calls by caching stacks.
190  */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193 
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 	int i;
198 
199 	for (i = 0; i < NR_CACHED_STACKS; i++) {
200 		struct vm_struct *vm_stack = cached_vm_stacks[i];
201 
202 		if (!vm_stack)
203 			continue;
204 
205 		vfree(vm_stack->addr);
206 		cached_vm_stacks[i] = NULL;
207 	}
208 
209 	return 0;
210 }
211 #endif
212 
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 	void *stack;
217 	int i;
218 
219 	for (i = 0; i < NR_CACHED_STACKS; i++) {
220 		struct vm_struct *s;
221 
222 		s = this_cpu_xchg(cached_stacks[i], NULL);
223 
224 		if (!s)
225 			continue;
226 
227 		/* Clear stale pointers from reused stack. */
228 		memset(s->addr, 0, THREAD_SIZE);
229 
230 		tsk->stack_vm_area = s;
231 		tsk->stack = s->addr;
232 		return s->addr;
233 	}
234 
235 	/*
236 	 * Allocated stacks are cached and later reused by new threads,
237 	 * so memcg accounting is performed manually on assigning/releasing
238 	 * stacks to tasks. Drop __GFP_ACCOUNT.
239 	 */
240 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
241 				     VMALLOC_START, VMALLOC_END,
242 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
243 				     PAGE_KERNEL,
244 				     0, node, __builtin_return_address(0));
245 
246 	/*
247 	 * We can't call find_vm_area() in interrupt context, and
248 	 * free_thread_stack() can be called in interrupt context,
249 	 * so cache the vm_struct.
250 	 */
251 	if (stack) {
252 		tsk->stack_vm_area = find_vm_area(stack);
253 		tsk->stack = stack;
254 	}
255 	return stack;
256 #else
257 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
258 					     THREAD_SIZE_ORDER);
259 
260 	if (likely(page)) {
261 		tsk->stack = page_address(page);
262 		return tsk->stack;
263 	}
264 	return NULL;
265 #endif
266 }
267 
268 static inline void free_thread_stack(struct task_struct *tsk)
269 {
270 #ifdef CONFIG_VMAP_STACK
271 	struct vm_struct *vm = task_stack_vm_area(tsk);
272 
273 	if (vm) {
274 		int i;
275 
276 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
277 			mod_memcg_page_state(vm->pages[i],
278 					     MEMCG_KERNEL_STACK_KB,
279 					     -(int)(PAGE_SIZE / 1024));
280 
281 			memcg_kmem_uncharge(vm->pages[i], 0);
282 		}
283 
284 		for (i = 0; i < NR_CACHED_STACKS; i++) {
285 			if (this_cpu_cmpxchg(cached_stacks[i],
286 					NULL, tsk->stack_vm_area) != NULL)
287 				continue;
288 
289 			return;
290 		}
291 
292 		vfree_atomic(tsk->stack);
293 		return;
294 	}
295 #endif
296 
297 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301 
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 						  int node)
304 {
305 	unsigned long *stack;
306 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 	tsk->stack = stack;
308 	return stack;
309 }
310 
311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 	kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315 
316 void thread_stack_cache_init(void)
317 {
318 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 					THREAD_SIZE, THREAD_SIZE, 0, 0,
320 					THREAD_SIZE, NULL);
321 	BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325 
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328 
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331 
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334 
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337 
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340 
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343 
344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 	struct vm_area_struct *vma;
347 
348 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 	if (vma)
350 		vma_init(vma, mm);
351 	return vma;
352 }
353 
354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357 
358 	if (new) {
359 		*new = *orig;
360 		INIT_LIST_HEAD(&new->anon_vma_chain);
361 	}
362 	return new;
363 }
364 
365 void vm_area_free(struct vm_area_struct *vma)
366 {
367 	kmem_cache_free(vm_area_cachep, vma);
368 }
369 
370 static void account_kernel_stack(struct task_struct *tsk, int account)
371 {
372 	void *stack = task_stack_page(tsk);
373 	struct vm_struct *vm = task_stack_vm_area(tsk);
374 
375 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
376 
377 	if (vm) {
378 		int i;
379 
380 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
381 
382 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
383 			mod_zone_page_state(page_zone(vm->pages[i]),
384 					    NR_KERNEL_STACK_KB,
385 					    PAGE_SIZE / 1024 * account);
386 		}
387 	} else {
388 		/*
389 		 * All stack pages are in the same zone and belong to the
390 		 * same memcg.
391 		 */
392 		struct page *first_page = virt_to_page(stack);
393 
394 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
395 				    THREAD_SIZE / 1024 * account);
396 
397 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
398 				     account * (THREAD_SIZE / 1024));
399 	}
400 }
401 
402 static int memcg_charge_kernel_stack(struct task_struct *tsk)
403 {
404 #ifdef CONFIG_VMAP_STACK
405 	struct vm_struct *vm = task_stack_vm_area(tsk);
406 	int ret;
407 
408 	if (vm) {
409 		int i;
410 
411 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
412 			/*
413 			 * If memcg_kmem_charge() fails, page->mem_cgroup
414 			 * pointer is NULL, and both memcg_kmem_uncharge()
415 			 * and mod_memcg_page_state() in free_thread_stack()
416 			 * will ignore this page. So it's safe.
417 			 */
418 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
419 			if (ret)
420 				return ret;
421 
422 			mod_memcg_page_state(vm->pages[i],
423 					     MEMCG_KERNEL_STACK_KB,
424 					     PAGE_SIZE / 1024);
425 		}
426 	}
427 #endif
428 	return 0;
429 }
430 
431 static void release_task_stack(struct task_struct *tsk)
432 {
433 	if (WARN_ON(tsk->state != TASK_DEAD))
434 		return;  /* Better to leak the stack than to free prematurely */
435 
436 	account_kernel_stack(tsk, -1);
437 	free_thread_stack(tsk);
438 	tsk->stack = NULL;
439 #ifdef CONFIG_VMAP_STACK
440 	tsk->stack_vm_area = NULL;
441 #endif
442 }
443 
444 #ifdef CONFIG_THREAD_INFO_IN_TASK
445 void put_task_stack(struct task_struct *tsk)
446 {
447 	if (refcount_dec_and_test(&tsk->stack_refcount))
448 		release_task_stack(tsk);
449 }
450 #endif
451 
452 void free_task(struct task_struct *tsk)
453 {
454 #ifndef CONFIG_THREAD_INFO_IN_TASK
455 	/*
456 	 * The task is finally done with both the stack and thread_info,
457 	 * so free both.
458 	 */
459 	release_task_stack(tsk);
460 #else
461 	/*
462 	 * If the task had a separate stack allocation, it should be gone
463 	 * by now.
464 	 */
465 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
466 #endif
467 	rt_mutex_debug_task_free(tsk);
468 	ftrace_graph_exit_task(tsk);
469 	put_seccomp_filter(tsk);
470 	arch_release_task_struct(tsk);
471 	if (tsk->flags & PF_KTHREAD)
472 		free_kthread_struct(tsk);
473 	free_task_struct(tsk);
474 }
475 EXPORT_SYMBOL(free_task);
476 
477 #ifdef CONFIG_MMU
478 static __latent_entropy int dup_mmap(struct mm_struct *mm,
479 					struct mm_struct *oldmm)
480 {
481 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
482 	struct rb_node **rb_link, *rb_parent;
483 	int retval;
484 	unsigned long charge;
485 	LIST_HEAD(uf);
486 
487 	uprobe_start_dup_mmap();
488 	if (down_write_killable(&oldmm->mmap_sem)) {
489 		retval = -EINTR;
490 		goto fail_uprobe_end;
491 	}
492 	flush_cache_dup_mm(oldmm);
493 	uprobe_dup_mmap(oldmm, mm);
494 	/*
495 	 * Not linked in yet - no deadlock potential:
496 	 */
497 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
498 
499 	/* No ordering required: file already has been exposed. */
500 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
501 
502 	mm->total_vm = oldmm->total_vm;
503 	mm->data_vm = oldmm->data_vm;
504 	mm->exec_vm = oldmm->exec_vm;
505 	mm->stack_vm = oldmm->stack_vm;
506 
507 	rb_link = &mm->mm_rb.rb_node;
508 	rb_parent = NULL;
509 	pprev = &mm->mmap;
510 	retval = ksm_fork(mm, oldmm);
511 	if (retval)
512 		goto out;
513 	retval = khugepaged_fork(mm, oldmm);
514 	if (retval)
515 		goto out;
516 
517 	prev = NULL;
518 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
519 		struct file *file;
520 
521 		if (mpnt->vm_flags & VM_DONTCOPY) {
522 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
523 			continue;
524 		}
525 		charge = 0;
526 		/*
527 		 * Don't duplicate many vmas if we've been oom-killed (for
528 		 * example)
529 		 */
530 		if (fatal_signal_pending(current)) {
531 			retval = -EINTR;
532 			goto out;
533 		}
534 		if (mpnt->vm_flags & VM_ACCOUNT) {
535 			unsigned long len = vma_pages(mpnt);
536 
537 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
538 				goto fail_nomem;
539 			charge = len;
540 		}
541 		tmp = vm_area_dup(mpnt);
542 		if (!tmp)
543 			goto fail_nomem;
544 		retval = vma_dup_policy(mpnt, tmp);
545 		if (retval)
546 			goto fail_nomem_policy;
547 		tmp->vm_mm = mm;
548 		retval = dup_userfaultfd(tmp, &uf);
549 		if (retval)
550 			goto fail_nomem_anon_vma_fork;
551 		if (tmp->vm_flags & VM_WIPEONFORK) {
552 			/* VM_WIPEONFORK gets a clean slate in the child. */
553 			tmp->anon_vma = NULL;
554 			if (anon_vma_prepare(tmp))
555 				goto fail_nomem_anon_vma_fork;
556 		} else if (anon_vma_fork(tmp, mpnt))
557 			goto fail_nomem_anon_vma_fork;
558 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
559 		tmp->vm_next = tmp->vm_prev = NULL;
560 		file = tmp->vm_file;
561 		if (file) {
562 			struct inode *inode = file_inode(file);
563 			struct address_space *mapping = file->f_mapping;
564 
565 			get_file(file);
566 			if (tmp->vm_flags & VM_DENYWRITE)
567 				atomic_dec(&inode->i_writecount);
568 			i_mmap_lock_write(mapping);
569 			if (tmp->vm_flags & VM_SHARED)
570 				atomic_inc(&mapping->i_mmap_writable);
571 			flush_dcache_mmap_lock(mapping);
572 			/* insert tmp into the share list, just after mpnt */
573 			vma_interval_tree_insert_after(tmp, mpnt,
574 					&mapping->i_mmap);
575 			flush_dcache_mmap_unlock(mapping);
576 			i_mmap_unlock_write(mapping);
577 		}
578 
579 		/*
580 		 * Clear hugetlb-related page reserves for children. This only
581 		 * affects MAP_PRIVATE mappings. Faults generated by the child
582 		 * are not guaranteed to succeed, even if read-only
583 		 */
584 		if (is_vm_hugetlb_page(tmp))
585 			reset_vma_resv_huge_pages(tmp);
586 
587 		/*
588 		 * Link in the new vma and copy the page table entries.
589 		 */
590 		*pprev = tmp;
591 		pprev = &tmp->vm_next;
592 		tmp->vm_prev = prev;
593 		prev = tmp;
594 
595 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
596 		rb_link = &tmp->vm_rb.rb_right;
597 		rb_parent = &tmp->vm_rb;
598 
599 		mm->map_count++;
600 		if (!(tmp->vm_flags & VM_WIPEONFORK))
601 			retval = copy_page_range(mm, oldmm, mpnt);
602 
603 		if (tmp->vm_ops && tmp->vm_ops->open)
604 			tmp->vm_ops->open(tmp);
605 
606 		if (retval)
607 			goto out;
608 	}
609 	/* a new mm has just been created */
610 	retval = arch_dup_mmap(oldmm, mm);
611 out:
612 	up_write(&mm->mmap_sem);
613 	flush_tlb_mm(oldmm);
614 	up_write(&oldmm->mmap_sem);
615 	dup_userfaultfd_complete(&uf);
616 fail_uprobe_end:
617 	uprobe_end_dup_mmap();
618 	return retval;
619 fail_nomem_anon_vma_fork:
620 	mpol_put(vma_policy(tmp));
621 fail_nomem_policy:
622 	vm_area_free(tmp);
623 fail_nomem:
624 	retval = -ENOMEM;
625 	vm_unacct_memory(charge);
626 	goto out;
627 }
628 
629 static inline int mm_alloc_pgd(struct mm_struct *mm)
630 {
631 	mm->pgd = pgd_alloc(mm);
632 	if (unlikely(!mm->pgd))
633 		return -ENOMEM;
634 	return 0;
635 }
636 
637 static inline void mm_free_pgd(struct mm_struct *mm)
638 {
639 	pgd_free(mm, mm->pgd);
640 }
641 #else
642 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
643 {
644 	down_write(&oldmm->mmap_sem);
645 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
646 	up_write(&oldmm->mmap_sem);
647 	return 0;
648 }
649 #define mm_alloc_pgd(mm)	(0)
650 #define mm_free_pgd(mm)
651 #endif /* CONFIG_MMU */
652 
653 static void check_mm(struct mm_struct *mm)
654 {
655 	int i;
656 
657 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
658 			 "Please make sure 'struct resident_page_types[]' is updated as well");
659 
660 	for (i = 0; i < NR_MM_COUNTERS; i++) {
661 		long x = atomic_long_read(&mm->rss_stat.count[i]);
662 
663 		if (unlikely(x))
664 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
665 				 mm, resident_page_types[i], x);
666 	}
667 
668 	if (mm_pgtables_bytes(mm))
669 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
670 				mm_pgtables_bytes(mm));
671 
672 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
673 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
674 #endif
675 }
676 
677 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
678 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
679 
680 /*
681  * Called when the last reference to the mm
682  * is dropped: either by a lazy thread or by
683  * mmput. Free the page directory and the mm.
684  */
685 void __mmdrop(struct mm_struct *mm)
686 {
687 	BUG_ON(mm == &init_mm);
688 	WARN_ON_ONCE(mm == current->mm);
689 	WARN_ON_ONCE(mm == current->active_mm);
690 	mm_free_pgd(mm);
691 	destroy_context(mm);
692 	mmu_notifier_mm_destroy(mm);
693 	check_mm(mm);
694 	put_user_ns(mm->user_ns);
695 	free_mm(mm);
696 }
697 EXPORT_SYMBOL_GPL(__mmdrop);
698 
699 static void mmdrop_async_fn(struct work_struct *work)
700 {
701 	struct mm_struct *mm;
702 
703 	mm = container_of(work, struct mm_struct, async_put_work);
704 	__mmdrop(mm);
705 }
706 
707 static void mmdrop_async(struct mm_struct *mm)
708 {
709 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
710 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
711 		schedule_work(&mm->async_put_work);
712 	}
713 }
714 
715 static inline void free_signal_struct(struct signal_struct *sig)
716 {
717 	taskstats_tgid_free(sig);
718 	sched_autogroup_exit(sig);
719 	/*
720 	 * __mmdrop is not safe to call from softirq context on x86 due to
721 	 * pgd_dtor so postpone it to the async context
722 	 */
723 	if (sig->oom_mm)
724 		mmdrop_async(sig->oom_mm);
725 	kmem_cache_free(signal_cachep, sig);
726 }
727 
728 static inline void put_signal_struct(struct signal_struct *sig)
729 {
730 	if (refcount_dec_and_test(&sig->sigcnt))
731 		free_signal_struct(sig);
732 }
733 
734 void __put_task_struct(struct task_struct *tsk)
735 {
736 	WARN_ON(!tsk->exit_state);
737 	WARN_ON(refcount_read(&tsk->usage));
738 	WARN_ON(tsk == current);
739 
740 	cgroup_free(tsk);
741 	task_numa_free(tsk, true);
742 	security_task_free(tsk);
743 	exit_creds(tsk);
744 	delayacct_tsk_free(tsk);
745 	put_signal_struct(tsk->signal);
746 
747 	if (!profile_handoff_task(tsk))
748 		free_task(tsk);
749 }
750 EXPORT_SYMBOL_GPL(__put_task_struct);
751 
752 void __init __weak arch_task_cache_init(void) { }
753 
754 /*
755  * set_max_threads
756  */
757 static void set_max_threads(unsigned int max_threads_suggested)
758 {
759 	u64 threads;
760 	unsigned long nr_pages = totalram_pages();
761 
762 	/*
763 	 * The number of threads shall be limited such that the thread
764 	 * structures may only consume a small part of the available memory.
765 	 */
766 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
767 		threads = MAX_THREADS;
768 	else
769 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
770 				    (u64) THREAD_SIZE * 8UL);
771 
772 	if (threads > max_threads_suggested)
773 		threads = max_threads_suggested;
774 
775 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
776 }
777 
778 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
779 /* Initialized by the architecture: */
780 int arch_task_struct_size __read_mostly;
781 #endif
782 
783 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
784 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
785 {
786 	/* Fetch thread_struct whitelist for the architecture. */
787 	arch_thread_struct_whitelist(offset, size);
788 
789 	/*
790 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
791 	 * adjust offset to position of thread_struct in task_struct.
792 	 */
793 	if (unlikely(*size == 0))
794 		*offset = 0;
795 	else
796 		*offset += offsetof(struct task_struct, thread);
797 }
798 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
799 
800 void __init fork_init(void)
801 {
802 	int i;
803 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
804 #ifndef ARCH_MIN_TASKALIGN
805 #define ARCH_MIN_TASKALIGN	0
806 #endif
807 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
808 	unsigned long useroffset, usersize;
809 
810 	/* create a slab on which task_structs can be allocated */
811 	task_struct_whitelist(&useroffset, &usersize);
812 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
813 			arch_task_struct_size, align,
814 			SLAB_PANIC|SLAB_ACCOUNT,
815 			useroffset, usersize, NULL);
816 #endif
817 
818 	/* do the arch specific task caches init */
819 	arch_task_cache_init();
820 
821 	set_max_threads(MAX_THREADS);
822 
823 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
824 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
825 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
826 		init_task.signal->rlim[RLIMIT_NPROC];
827 
828 	for (i = 0; i < UCOUNT_COUNTS; i++) {
829 		init_user_ns.ucount_max[i] = max_threads/2;
830 	}
831 
832 #ifdef CONFIG_VMAP_STACK
833 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
834 			  NULL, free_vm_stack_cache);
835 #endif
836 
837 	lockdep_init_task(&init_task);
838 	uprobes_init();
839 }
840 
841 int __weak arch_dup_task_struct(struct task_struct *dst,
842 					       struct task_struct *src)
843 {
844 	*dst = *src;
845 	return 0;
846 }
847 
848 void set_task_stack_end_magic(struct task_struct *tsk)
849 {
850 	unsigned long *stackend;
851 
852 	stackend = end_of_stack(tsk);
853 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
854 }
855 
856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
857 {
858 	struct task_struct *tsk;
859 	unsigned long *stack;
860 	struct vm_struct *stack_vm_area __maybe_unused;
861 	int err;
862 
863 	if (node == NUMA_NO_NODE)
864 		node = tsk_fork_get_node(orig);
865 	tsk = alloc_task_struct_node(node);
866 	if (!tsk)
867 		return NULL;
868 
869 	stack = alloc_thread_stack_node(tsk, node);
870 	if (!stack)
871 		goto free_tsk;
872 
873 	if (memcg_charge_kernel_stack(tsk))
874 		goto free_stack;
875 
876 	stack_vm_area = task_stack_vm_area(tsk);
877 
878 	err = arch_dup_task_struct(tsk, orig);
879 
880 	/*
881 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
882 	 * sure they're properly initialized before using any stack-related
883 	 * functions again.
884 	 */
885 	tsk->stack = stack;
886 #ifdef CONFIG_VMAP_STACK
887 	tsk->stack_vm_area = stack_vm_area;
888 #endif
889 #ifdef CONFIG_THREAD_INFO_IN_TASK
890 	refcount_set(&tsk->stack_refcount, 1);
891 #endif
892 
893 	if (err)
894 		goto free_stack;
895 
896 #ifdef CONFIG_SECCOMP
897 	/*
898 	 * We must handle setting up seccomp filters once we're under
899 	 * the sighand lock in case orig has changed between now and
900 	 * then. Until then, filter must be NULL to avoid messing up
901 	 * the usage counts on the error path calling free_task.
902 	 */
903 	tsk->seccomp.filter = NULL;
904 #endif
905 
906 	setup_thread_stack(tsk, orig);
907 	clear_user_return_notifier(tsk);
908 	clear_tsk_need_resched(tsk);
909 	set_task_stack_end_magic(tsk);
910 
911 #ifdef CONFIG_STACKPROTECTOR
912 	tsk->stack_canary = get_random_canary();
913 #endif
914 	if (orig->cpus_ptr == &orig->cpus_mask)
915 		tsk->cpus_ptr = &tsk->cpus_mask;
916 
917 	/*
918 	 * One for us, one for whoever does the "release_task()" (usually
919 	 * parent)
920 	 */
921 	refcount_set(&tsk->usage, 2);
922 #ifdef CONFIG_BLK_DEV_IO_TRACE
923 	tsk->btrace_seq = 0;
924 #endif
925 	tsk->splice_pipe = NULL;
926 	tsk->task_frag.page = NULL;
927 	tsk->wake_q.next = NULL;
928 
929 	account_kernel_stack(tsk, 1);
930 
931 	kcov_task_init(tsk);
932 
933 #ifdef CONFIG_FAULT_INJECTION
934 	tsk->fail_nth = 0;
935 #endif
936 
937 #ifdef CONFIG_BLK_CGROUP
938 	tsk->throttle_queue = NULL;
939 	tsk->use_memdelay = 0;
940 #endif
941 
942 #ifdef CONFIG_MEMCG
943 	tsk->active_memcg = NULL;
944 #endif
945 	return tsk;
946 
947 free_stack:
948 	free_thread_stack(tsk);
949 free_tsk:
950 	free_task_struct(tsk);
951 	return NULL;
952 }
953 
954 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
955 
956 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
957 
958 static int __init coredump_filter_setup(char *s)
959 {
960 	default_dump_filter =
961 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
962 		MMF_DUMP_FILTER_MASK;
963 	return 1;
964 }
965 
966 __setup("coredump_filter=", coredump_filter_setup);
967 
968 #include <linux/init_task.h>
969 
970 static void mm_init_aio(struct mm_struct *mm)
971 {
972 #ifdef CONFIG_AIO
973 	spin_lock_init(&mm->ioctx_lock);
974 	mm->ioctx_table = NULL;
975 #endif
976 }
977 
978 static __always_inline void mm_clear_owner(struct mm_struct *mm,
979 					   struct task_struct *p)
980 {
981 #ifdef CONFIG_MEMCG
982 	if (mm->owner == p)
983 		WRITE_ONCE(mm->owner, NULL);
984 #endif
985 }
986 
987 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
988 {
989 #ifdef CONFIG_MEMCG
990 	mm->owner = p;
991 #endif
992 }
993 
994 static void mm_init_uprobes_state(struct mm_struct *mm)
995 {
996 #ifdef CONFIG_UPROBES
997 	mm->uprobes_state.xol_area = NULL;
998 #endif
999 }
1000 
1001 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1002 	struct user_namespace *user_ns)
1003 {
1004 	mm->mmap = NULL;
1005 	mm->mm_rb = RB_ROOT;
1006 	mm->vmacache_seqnum = 0;
1007 	atomic_set(&mm->mm_users, 1);
1008 	atomic_set(&mm->mm_count, 1);
1009 	init_rwsem(&mm->mmap_sem);
1010 	INIT_LIST_HEAD(&mm->mmlist);
1011 	mm->core_state = NULL;
1012 	mm_pgtables_bytes_init(mm);
1013 	mm->map_count = 0;
1014 	mm->locked_vm = 0;
1015 	atomic64_set(&mm->pinned_vm, 0);
1016 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1017 	spin_lock_init(&mm->page_table_lock);
1018 	spin_lock_init(&mm->arg_lock);
1019 	mm_init_cpumask(mm);
1020 	mm_init_aio(mm);
1021 	mm_init_owner(mm, p);
1022 	RCU_INIT_POINTER(mm->exe_file, NULL);
1023 	mmu_notifier_mm_init(mm);
1024 	init_tlb_flush_pending(mm);
1025 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1026 	mm->pmd_huge_pte = NULL;
1027 #endif
1028 	mm_init_uprobes_state(mm);
1029 
1030 	if (current->mm) {
1031 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1032 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1033 	} else {
1034 		mm->flags = default_dump_filter;
1035 		mm->def_flags = 0;
1036 	}
1037 
1038 	if (mm_alloc_pgd(mm))
1039 		goto fail_nopgd;
1040 
1041 	if (init_new_context(p, mm))
1042 		goto fail_nocontext;
1043 
1044 	mm->user_ns = get_user_ns(user_ns);
1045 	return mm;
1046 
1047 fail_nocontext:
1048 	mm_free_pgd(mm);
1049 fail_nopgd:
1050 	free_mm(mm);
1051 	return NULL;
1052 }
1053 
1054 /*
1055  * Allocate and initialize an mm_struct.
1056  */
1057 struct mm_struct *mm_alloc(void)
1058 {
1059 	struct mm_struct *mm;
1060 
1061 	mm = allocate_mm();
1062 	if (!mm)
1063 		return NULL;
1064 
1065 	memset(mm, 0, sizeof(*mm));
1066 	return mm_init(mm, current, current_user_ns());
1067 }
1068 
1069 static inline void __mmput(struct mm_struct *mm)
1070 {
1071 	VM_BUG_ON(atomic_read(&mm->mm_users));
1072 
1073 	uprobe_clear_state(mm);
1074 	exit_aio(mm);
1075 	ksm_exit(mm);
1076 	khugepaged_exit(mm); /* must run before exit_mmap */
1077 	exit_mmap(mm);
1078 	mm_put_huge_zero_page(mm);
1079 	set_mm_exe_file(mm, NULL);
1080 	if (!list_empty(&mm->mmlist)) {
1081 		spin_lock(&mmlist_lock);
1082 		list_del(&mm->mmlist);
1083 		spin_unlock(&mmlist_lock);
1084 	}
1085 	if (mm->binfmt)
1086 		module_put(mm->binfmt->module);
1087 	mmdrop(mm);
1088 }
1089 
1090 /*
1091  * Decrement the use count and release all resources for an mm.
1092  */
1093 void mmput(struct mm_struct *mm)
1094 {
1095 	might_sleep();
1096 
1097 	if (atomic_dec_and_test(&mm->mm_users))
1098 		__mmput(mm);
1099 }
1100 EXPORT_SYMBOL_GPL(mmput);
1101 
1102 #ifdef CONFIG_MMU
1103 static void mmput_async_fn(struct work_struct *work)
1104 {
1105 	struct mm_struct *mm = container_of(work, struct mm_struct,
1106 					    async_put_work);
1107 
1108 	__mmput(mm);
1109 }
1110 
1111 void mmput_async(struct mm_struct *mm)
1112 {
1113 	if (atomic_dec_and_test(&mm->mm_users)) {
1114 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1115 		schedule_work(&mm->async_put_work);
1116 	}
1117 }
1118 #endif
1119 
1120 /**
1121  * set_mm_exe_file - change a reference to the mm's executable file
1122  *
1123  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1124  *
1125  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1126  * invocations: in mmput() nobody alive left, in execve task is single
1127  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1128  * mm->exe_file, but does so without using set_mm_exe_file() in order
1129  * to do avoid the need for any locks.
1130  */
1131 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1132 {
1133 	struct file *old_exe_file;
1134 
1135 	/*
1136 	 * It is safe to dereference the exe_file without RCU as
1137 	 * this function is only called if nobody else can access
1138 	 * this mm -- see comment above for justification.
1139 	 */
1140 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1141 
1142 	if (new_exe_file)
1143 		get_file(new_exe_file);
1144 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1145 	if (old_exe_file)
1146 		fput(old_exe_file);
1147 }
1148 
1149 /**
1150  * get_mm_exe_file - acquire a reference to the mm's executable file
1151  *
1152  * Returns %NULL if mm has no associated executable file.
1153  * User must release file via fput().
1154  */
1155 struct file *get_mm_exe_file(struct mm_struct *mm)
1156 {
1157 	struct file *exe_file;
1158 
1159 	rcu_read_lock();
1160 	exe_file = rcu_dereference(mm->exe_file);
1161 	if (exe_file && !get_file_rcu(exe_file))
1162 		exe_file = NULL;
1163 	rcu_read_unlock();
1164 	return exe_file;
1165 }
1166 EXPORT_SYMBOL(get_mm_exe_file);
1167 
1168 /**
1169  * get_task_exe_file - acquire a reference to the task's executable file
1170  *
1171  * Returns %NULL if task's mm (if any) has no associated executable file or
1172  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1173  * User must release file via fput().
1174  */
1175 struct file *get_task_exe_file(struct task_struct *task)
1176 {
1177 	struct file *exe_file = NULL;
1178 	struct mm_struct *mm;
1179 
1180 	task_lock(task);
1181 	mm = task->mm;
1182 	if (mm) {
1183 		if (!(task->flags & PF_KTHREAD))
1184 			exe_file = get_mm_exe_file(mm);
1185 	}
1186 	task_unlock(task);
1187 	return exe_file;
1188 }
1189 EXPORT_SYMBOL(get_task_exe_file);
1190 
1191 /**
1192  * get_task_mm - acquire a reference to the task's mm
1193  *
1194  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1195  * this kernel workthread has transiently adopted a user mm with use_mm,
1196  * to do its AIO) is not set and if so returns a reference to it, after
1197  * bumping up the use count.  User must release the mm via mmput()
1198  * after use.  Typically used by /proc and ptrace.
1199  */
1200 struct mm_struct *get_task_mm(struct task_struct *task)
1201 {
1202 	struct mm_struct *mm;
1203 
1204 	task_lock(task);
1205 	mm = task->mm;
1206 	if (mm) {
1207 		if (task->flags & PF_KTHREAD)
1208 			mm = NULL;
1209 		else
1210 			mmget(mm);
1211 	}
1212 	task_unlock(task);
1213 	return mm;
1214 }
1215 EXPORT_SYMBOL_GPL(get_task_mm);
1216 
1217 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1218 {
1219 	struct mm_struct *mm;
1220 	int err;
1221 
1222 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1223 	if (err)
1224 		return ERR_PTR(err);
1225 
1226 	mm = get_task_mm(task);
1227 	if (mm && mm != current->mm &&
1228 			!ptrace_may_access(task, mode)) {
1229 		mmput(mm);
1230 		mm = ERR_PTR(-EACCES);
1231 	}
1232 	mutex_unlock(&task->signal->cred_guard_mutex);
1233 
1234 	return mm;
1235 }
1236 
1237 static void complete_vfork_done(struct task_struct *tsk)
1238 {
1239 	struct completion *vfork;
1240 
1241 	task_lock(tsk);
1242 	vfork = tsk->vfork_done;
1243 	if (likely(vfork)) {
1244 		tsk->vfork_done = NULL;
1245 		complete(vfork);
1246 	}
1247 	task_unlock(tsk);
1248 }
1249 
1250 static int wait_for_vfork_done(struct task_struct *child,
1251 				struct completion *vfork)
1252 {
1253 	int killed;
1254 
1255 	freezer_do_not_count();
1256 	cgroup_enter_frozen();
1257 	killed = wait_for_completion_killable(vfork);
1258 	cgroup_leave_frozen(false);
1259 	freezer_count();
1260 
1261 	if (killed) {
1262 		task_lock(child);
1263 		child->vfork_done = NULL;
1264 		task_unlock(child);
1265 	}
1266 
1267 	put_task_struct(child);
1268 	return killed;
1269 }
1270 
1271 /* Please note the differences between mmput and mm_release.
1272  * mmput is called whenever we stop holding onto a mm_struct,
1273  * error success whatever.
1274  *
1275  * mm_release is called after a mm_struct has been removed
1276  * from the current process.
1277  *
1278  * This difference is important for error handling, when we
1279  * only half set up a mm_struct for a new process and need to restore
1280  * the old one.  Because we mmput the new mm_struct before
1281  * restoring the old one. . .
1282  * Eric Biederman 10 January 1998
1283  */
1284 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1285 {
1286 	/* Get rid of any futexes when releasing the mm */
1287 #ifdef CONFIG_FUTEX
1288 	if (unlikely(tsk->robust_list)) {
1289 		exit_robust_list(tsk);
1290 		tsk->robust_list = NULL;
1291 	}
1292 #ifdef CONFIG_COMPAT
1293 	if (unlikely(tsk->compat_robust_list)) {
1294 		compat_exit_robust_list(tsk);
1295 		tsk->compat_robust_list = NULL;
1296 	}
1297 #endif
1298 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1299 		exit_pi_state_list(tsk);
1300 #endif
1301 
1302 	uprobe_free_utask(tsk);
1303 
1304 	/* Get rid of any cached register state */
1305 	deactivate_mm(tsk, mm);
1306 
1307 	/*
1308 	 * Signal userspace if we're not exiting with a core dump
1309 	 * because we want to leave the value intact for debugging
1310 	 * purposes.
1311 	 */
1312 	if (tsk->clear_child_tid) {
1313 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1314 		    atomic_read(&mm->mm_users) > 1) {
1315 			/*
1316 			 * We don't check the error code - if userspace has
1317 			 * not set up a proper pointer then tough luck.
1318 			 */
1319 			put_user(0, tsk->clear_child_tid);
1320 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1321 					1, NULL, NULL, 0, 0);
1322 		}
1323 		tsk->clear_child_tid = NULL;
1324 	}
1325 
1326 	/*
1327 	 * All done, finally we can wake up parent and return this mm to him.
1328 	 * Also kthread_stop() uses this completion for synchronization.
1329 	 */
1330 	if (tsk->vfork_done)
1331 		complete_vfork_done(tsk);
1332 }
1333 
1334 /**
1335  * dup_mm() - duplicates an existing mm structure
1336  * @tsk: the task_struct with which the new mm will be associated.
1337  * @oldmm: the mm to duplicate.
1338  *
1339  * Allocates a new mm structure and duplicates the provided @oldmm structure
1340  * content into it.
1341  *
1342  * Return: the duplicated mm or NULL on failure.
1343  */
1344 static struct mm_struct *dup_mm(struct task_struct *tsk,
1345 				struct mm_struct *oldmm)
1346 {
1347 	struct mm_struct *mm;
1348 	int err;
1349 
1350 	mm = allocate_mm();
1351 	if (!mm)
1352 		goto fail_nomem;
1353 
1354 	memcpy(mm, oldmm, sizeof(*mm));
1355 
1356 	if (!mm_init(mm, tsk, mm->user_ns))
1357 		goto fail_nomem;
1358 
1359 	err = dup_mmap(mm, oldmm);
1360 	if (err)
1361 		goto free_pt;
1362 
1363 	mm->hiwater_rss = get_mm_rss(mm);
1364 	mm->hiwater_vm = mm->total_vm;
1365 
1366 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1367 		goto free_pt;
1368 
1369 	return mm;
1370 
1371 free_pt:
1372 	/* don't put binfmt in mmput, we haven't got module yet */
1373 	mm->binfmt = NULL;
1374 	mm_init_owner(mm, NULL);
1375 	mmput(mm);
1376 
1377 fail_nomem:
1378 	return NULL;
1379 }
1380 
1381 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1382 {
1383 	struct mm_struct *mm, *oldmm;
1384 	int retval;
1385 
1386 	tsk->min_flt = tsk->maj_flt = 0;
1387 	tsk->nvcsw = tsk->nivcsw = 0;
1388 #ifdef CONFIG_DETECT_HUNG_TASK
1389 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1390 	tsk->last_switch_time = 0;
1391 #endif
1392 
1393 	tsk->mm = NULL;
1394 	tsk->active_mm = NULL;
1395 
1396 	/*
1397 	 * Are we cloning a kernel thread?
1398 	 *
1399 	 * We need to steal a active VM for that..
1400 	 */
1401 	oldmm = current->mm;
1402 	if (!oldmm)
1403 		return 0;
1404 
1405 	/* initialize the new vmacache entries */
1406 	vmacache_flush(tsk);
1407 
1408 	if (clone_flags & CLONE_VM) {
1409 		mmget(oldmm);
1410 		mm = oldmm;
1411 		goto good_mm;
1412 	}
1413 
1414 	retval = -ENOMEM;
1415 	mm = dup_mm(tsk, current->mm);
1416 	if (!mm)
1417 		goto fail_nomem;
1418 
1419 good_mm:
1420 	tsk->mm = mm;
1421 	tsk->active_mm = mm;
1422 	return 0;
1423 
1424 fail_nomem:
1425 	return retval;
1426 }
1427 
1428 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1429 {
1430 	struct fs_struct *fs = current->fs;
1431 	if (clone_flags & CLONE_FS) {
1432 		/* tsk->fs is already what we want */
1433 		spin_lock(&fs->lock);
1434 		if (fs->in_exec) {
1435 			spin_unlock(&fs->lock);
1436 			return -EAGAIN;
1437 		}
1438 		fs->users++;
1439 		spin_unlock(&fs->lock);
1440 		return 0;
1441 	}
1442 	tsk->fs = copy_fs_struct(fs);
1443 	if (!tsk->fs)
1444 		return -ENOMEM;
1445 	return 0;
1446 }
1447 
1448 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1449 {
1450 	struct files_struct *oldf, *newf;
1451 	int error = 0;
1452 
1453 	/*
1454 	 * A background process may not have any files ...
1455 	 */
1456 	oldf = current->files;
1457 	if (!oldf)
1458 		goto out;
1459 
1460 	if (clone_flags & CLONE_FILES) {
1461 		atomic_inc(&oldf->count);
1462 		goto out;
1463 	}
1464 
1465 	newf = dup_fd(oldf, &error);
1466 	if (!newf)
1467 		goto out;
1468 
1469 	tsk->files = newf;
1470 	error = 0;
1471 out:
1472 	return error;
1473 }
1474 
1475 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1476 {
1477 #ifdef CONFIG_BLOCK
1478 	struct io_context *ioc = current->io_context;
1479 	struct io_context *new_ioc;
1480 
1481 	if (!ioc)
1482 		return 0;
1483 	/*
1484 	 * Share io context with parent, if CLONE_IO is set
1485 	 */
1486 	if (clone_flags & CLONE_IO) {
1487 		ioc_task_link(ioc);
1488 		tsk->io_context = ioc;
1489 	} else if (ioprio_valid(ioc->ioprio)) {
1490 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1491 		if (unlikely(!new_ioc))
1492 			return -ENOMEM;
1493 
1494 		new_ioc->ioprio = ioc->ioprio;
1495 		put_io_context(new_ioc);
1496 	}
1497 #endif
1498 	return 0;
1499 }
1500 
1501 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1502 {
1503 	struct sighand_struct *sig;
1504 
1505 	if (clone_flags & CLONE_SIGHAND) {
1506 		refcount_inc(&current->sighand->count);
1507 		return 0;
1508 	}
1509 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1510 	rcu_assign_pointer(tsk->sighand, sig);
1511 	if (!sig)
1512 		return -ENOMEM;
1513 
1514 	refcount_set(&sig->count, 1);
1515 	spin_lock_irq(&current->sighand->siglock);
1516 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1517 	spin_unlock_irq(&current->sighand->siglock);
1518 	return 0;
1519 }
1520 
1521 void __cleanup_sighand(struct sighand_struct *sighand)
1522 {
1523 	if (refcount_dec_and_test(&sighand->count)) {
1524 		signalfd_cleanup(sighand);
1525 		/*
1526 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1527 		 * without an RCU grace period, see __lock_task_sighand().
1528 		 */
1529 		kmem_cache_free(sighand_cachep, sighand);
1530 	}
1531 }
1532 
1533 /*
1534  * Initialize POSIX timer handling for a thread group.
1535  */
1536 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1537 {
1538 	struct posix_cputimers *pct = &sig->posix_cputimers;
1539 	unsigned long cpu_limit;
1540 
1541 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1542 	posix_cputimers_group_init(pct, cpu_limit);
1543 }
1544 
1545 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1546 {
1547 	struct signal_struct *sig;
1548 
1549 	if (clone_flags & CLONE_THREAD)
1550 		return 0;
1551 
1552 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1553 	tsk->signal = sig;
1554 	if (!sig)
1555 		return -ENOMEM;
1556 
1557 	sig->nr_threads = 1;
1558 	atomic_set(&sig->live, 1);
1559 	refcount_set(&sig->sigcnt, 1);
1560 
1561 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1562 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1563 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1564 
1565 	init_waitqueue_head(&sig->wait_chldexit);
1566 	sig->curr_target = tsk;
1567 	init_sigpending(&sig->shared_pending);
1568 	INIT_HLIST_HEAD(&sig->multiprocess);
1569 	seqlock_init(&sig->stats_lock);
1570 	prev_cputime_init(&sig->prev_cputime);
1571 
1572 #ifdef CONFIG_POSIX_TIMERS
1573 	INIT_LIST_HEAD(&sig->posix_timers);
1574 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1575 	sig->real_timer.function = it_real_fn;
1576 #endif
1577 
1578 	task_lock(current->group_leader);
1579 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1580 	task_unlock(current->group_leader);
1581 
1582 	posix_cpu_timers_init_group(sig);
1583 
1584 	tty_audit_fork(sig);
1585 	sched_autogroup_fork(sig);
1586 
1587 	sig->oom_score_adj = current->signal->oom_score_adj;
1588 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1589 
1590 	mutex_init(&sig->cred_guard_mutex);
1591 
1592 	return 0;
1593 }
1594 
1595 static void copy_seccomp(struct task_struct *p)
1596 {
1597 #ifdef CONFIG_SECCOMP
1598 	/*
1599 	 * Must be called with sighand->lock held, which is common to
1600 	 * all threads in the group. Holding cred_guard_mutex is not
1601 	 * needed because this new task is not yet running and cannot
1602 	 * be racing exec.
1603 	 */
1604 	assert_spin_locked(&current->sighand->siglock);
1605 
1606 	/* Ref-count the new filter user, and assign it. */
1607 	get_seccomp_filter(current);
1608 	p->seccomp = current->seccomp;
1609 
1610 	/*
1611 	 * Explicitly enable no_new_privs here in case it got set
1612 	 * between the task_struct being duplicated and holding the
1613 	 * sighand lock. The seccomp state and nnp must be in sync.
1614 	 */
1615 	if (task_no_new_privs(current))
1616 		task_set_no_new_privs(p);
1617 
1618 	/*
1619 	 * If the parent gained a seccomp mode after copying thread
1620 	 * flags and between before we held the sighand lock, we have
1621 	 * to manually enable the seccomp thread flag here.
1622 	 */
1623 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1624 		set_tsk_thread_flag(p, TIF_SECCOMP);
1625 #endif
1626 }
1627 
1628 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1629 {
1630 	current->clear_child_tid = tidptr;
1631 
1632 	return task_pid_vnr(current);
1633 }
1634 
1635 static void rt_mutex_init_task(struct task_struct *p)
1636 {
1637 	raw_spin_lock_init(&p->pi_lock);
1638 #ifdef CONFIG_RT_MUTEXES
1639 	p->pi_waiters = RB_ROOT_CACHED;
1640 	p->pi_top_task = NULL;
1641 	p->pi_blocked_on = NULL;
1642 #endif
1643 }
1644 
1645 static inline void init_task_pid_links(struct task_struct *task)
1646 {
1647 	enum pid_type type;
1648 
1649 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1650 		INIT_HLIST_NODE(&task->pid_links[type]);
1651 	}
1652 }
1653 
1654 static inline void
1655 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1656 {
1657 	if (type == PIDTYPE_PID)
1658 		task->thread_pid = pid;
1659 	else
1660 		task->signal->pids[type] = pid;
1661 }
1662 
1663 static inline void rcu_copy_process(struct task_struct *p)
1664 {
1665 #ifdef CONFIG_PREEMPT_RCU
1666 	p->rcu_read_lock_nesting = 0;
1667 	p->rcu_read_unlock_special.s = 0;
1668 	p->rcu_blocked_node = NULL;
1669 	INIT_LIST_HEAD(&p->rcu_node_entry);
1670 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1671 #ifdef CONFIG_TASKS_RCU
1672 	p->rcu_tasks_holdout = false;
1673 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1674 	p->rcu_tasks_idle_cpu = -1;
1675 #endif /* #ifdef CONFIG_TASKS_RCU */
1676 }
1677 
1678 struct pid *pidfd_pid(const struct file *file)
1679 {
1680 	if (file->f_op == &pidfd_fops)
1681 		return file->private_data;
1682 
1683 	return ERR_PTR(-EBADF);
1684 }
1685 
1686 static int pidfd_release(struct inode *inode, struct file *file)
1687 {
1688 	struct pid *pid = file->private_data;
1689 
1690 	file->private_data = NULL;
1691 	put_pid(pid);
1692 	return 0;
1693 }
1694 
1695 #ifdef CONFIG_PROC_FS
1696 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1697 {
1698 	struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1699 	struct pid *pid = f->private_data;
1700 
1701 	seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1702 	seq_putc(m, '\n');
1703 }
1704 #endif
1705 
1706 /*
1707  * Poll support for process exit notification.
1708  */
1709 static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts)
1710 {
1711 	struct task_struct *task;
1712 	struct pid *pid = file->private_data;
1713 	int poll_flags = 0;
1714 
1715 	poll_wait(file, &pid->wait_pidfd, pts);
1716 
1717 	rcu_read_lock();
1718 	task = pid_task(pid, PIDTYPE_PID);
1719 	/*
1720 	 * Inform pollers only when the whole thread group exits.
1721 	 * If the thread group leader exits before all other threads in the
1722 	 * group, then poll(2) should block, similar to the wait(2) family.
1723 	 */
1724 	if (!task || (task->exit_state && thread_group_empty(task)))
1725 		poll_flags = POLLIN | POLLRDNORM;
1726 	rcu_read_unlock();
1727 
1728 	return poll_flags;
1729 }
1730 
1731 const struct file_operations pidfd_fops = {
1732 	.release = pidfd_release,
1733 	.poll = pidfd_poll,
1734 #ifdef CONFIG_PROC_FS
1735 	.show_fdinfo = pidfd_show_fdinfo,
1736 #endif
1737 };
1738 
1739 static void __delayed_free_task(struct rcu_head *rhp)
1740 {
1741 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1742 
1743 	free_task(tsk);
1744 }
1745 
1746 static __always_inline void delayed_free_task(struct task_struct *tsk)
1747 {
1748 	if (IS_ENABLED(CONFIG_MEMCG))
1749 		call_rcu(&tsk->rcu, __delayed_free_task);
1750 	else
1751 		free_task(tsk);
1752 }
1753 
1754 /*
1755  * This creates a new process as a copy of the old one,
1756  * but does not actually start it yet.
1757  *
1758  * It copies the registers, and all the appropriate
1759  * parts of the process environment (as per the clone
1760  * flags). The actual kick-off is left to the caller.
1761  */
1762 static __latent_entropy struct task_struct *copy_process(
1763 					struct pid *pid,
1764 					int trace,
1765 					int node,
1766 					struct kernel_clone_args *args)
1767 {
1768 	int pidfd = -1, retval;
1769 	struct task_struct *p;
1770 	struct multiprocess_signals delayed;
1771 	struct file *pidfile = NULL;
1772 	u64 clone_flags = args->flags;
1773 
1774 	/*
1775 	 * Don't allow sharing the root directory with processes in a different
1776 	 * namespace
1777 	 */
1778 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1779 		return ERR_PTR(-EINVAL);
1780 
1781 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1782 		return ERR_PTR(-EINVAL);
1783 
1784 	/*
1785 	 * Thread groups must share signals as well, and detached threads
1786 	 * can only be started up within the thread group.
1787 	 */
1788 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1789 		return ERR_PTR(-EINVAL);
1790 
1791 	/*
1792 	 * Shared signal handlers imply shared VM. By way of the above,
1793 	 * thread groups also imply shared VM. Blocking this case allows
1794 	 * for various simplifications in other code.
1795 	 */
1796 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1797 		return ERR_PTR(-EINVAL);
1798 
1799 	/*
1800 	 * Siblings of global init remain as zombies on exit since they are
1801 	 * not reaped by their parent (swapper). To solve this and to avoid
1802 	 * multi-rooted process trees, prevent global and container-inits
1803 	 * from creating siblings.
1804 	 */
1805 	if ((clone_flags & CLONE_PARENT) &&
1806 				current->signal->flags & SIGNAL_UNKILLABLE)
1807 		return ERR_PTR(-EINVAL);
1808 
1809 	/*
1810 	 * If the new process will be in a different pid or user namespace
1811 	 * do not allow it to share a thread group with the forking task.
1812 	 */
1813 	if (clone_flags & CLONE_THREAD) {
1814 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1815 		    (task_active_pid_ns(current) !=
1816 				current->nsproxy->pid_ns_for_children))
1817 			return ERR_PTR(-EINVAL);
1818 	}
1819 
1820 	if (clone_flags & CLONE_PIDFD) {
1821 		/*
1822 		 * - CLONE_DETACHED is blocked so that we can potentially
1823 		 *   reuse it later for CLONE_PIDFD.
1824 		 * - CLONE_THREAD is blocked until someone really needs it.
1825 		 */
1826 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1827 			return ERR_PTR(-EINVAL);
1828 	}
1829 
1830 	/*
1831 	 * Force any signals received before this point to be delivered
1832 	 * before the fork happens.  Collect up signals sent to multiple
1833 	 * processes that happen during the fork and delay them so that
1834 	 * they appear to happen after the fork.
1835 	 */
1836 	sigemptyset(&delayed.signal);
1837 	INIT_HLIST_NODE(&delayed.node);
1838 
1839 	spin_lock_irq(&current->sighand->siglock);
1840 	if (!(clone_flags & CLONE_THREAD))
1841 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1842 	recalc_sigpending();
1843 	spin_unlock_irq(&current->sighand->siglock);
1844 	retval = -ERESTARTNOINTR;
1845 	if (signal_pending(current))
1846 		goto fork_out;
1847 
1848 	retval = -ENOMEM;
1849 	p = dup_task_struct(current, node);
1850 	if (!p)
1851 		goto fork_out;
1852 
1853 	/*
1854 	 * This _must_ happen before we call free_task(), i.e. before we jump
1855 	 * to any of the bad_fork_* labels. This is to avoid freeing
1856 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1857 	 * kernel threads (PF_KTHREAD).
1858 	 */
1859 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1860 	/*
1861 	 * Clear TID on mm_release()?
1862 	 */
1863 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1864 
1865 	ftrace_graph_init_task(p);
1866 
1867 	rt_mutex_init_task(p);
1868 
1869 #ifdef CONFIG_PROVE_LOCKING
1870 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1871 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1872 #endif
1873 	retval = -EAGAIN;
1874 	if (atomic_read(&p->real_cred->user->processes) >=
1875 			task_rlimit(p, RLIMIT_NPROC)) {
1876 		if (p->real_cred->user != INIT_USER &&
1877 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1878 			goto bad_fork_free;
1879 	}
1880 	current->flags &= ~PF_NPROC_EXCEEDED;
1881 
1882 	retval = copy_creds(p, clone_flags);
1883 	if (retval < 0)
1884 		goto bad_fork_free;
1885 
1886 	/*
1887 	 * If multiple threads are within copy_process(), then this check
1888 	 * triggers too late. This doesn't hurt, the check is only there
1889 	 * to stop root fork bombs.
1890 	 */
1891 	retval = -EAGAIN;
1892 	if (nr_threads >= max_threads)
1893 		goto bad_fork_cleanup_count;
1894 
1895 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1896 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1897 	p->flags |= PF_FORKNOEXEC;
1898 	INIT_LIST_HEAD(&p->children);
1899 	INIT_LIST_HEAD(&p->sibling);
1900 	rcu_copy_process(p);
1901 	p->vfork_done = NULL;
1902 	spin_lock_init(&p->alloc_lock);
1903 
1904 	init_sigpending(&p->pending);
1905 
1906 	p->utime = p->stime = p->gtime = 0;
1907 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1908 	p->utimescaled = p->stimescaled = 0;
1909 #endif
1910 	prev_cputime_init(&p->prev_cputime);
1911 
1912 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1913 	seqcount_init(&p->vtime.seqcount);
1914 	p->vtime.starttime = 0;
1915 	p->vtime.state = VTIME_INACTIVE;
1916 #endif
1917 
1918 #if defined(SPLIT_RSS_COUNTING)
1919 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1920 #endif
1921 
1922 	p->default_timer_slack_ns = current->timer_slack_ns;
1923 
1924 #ifdef CONFIG_PSI
1925 	p->psi_flags = 0;
1926 #endif
1927 
1928 	task_io_accounting_init(&p->ioac);
1929 	acct_clear_integrals(p);
1930 
1931 	posix_cputimers_init(&p->posix_cputimers);
1932 
1933 	p->io_context = NULL;
1934 	audit_set_context(p, NULL);
1935 	cgroup_fork(p);
1936 #ifdef CONFIG_NUMA
1937 	p->mempolicy = mpol_dup(p->mempolicy);
1938 	if (IS_ERR(p->mempolicy)) {
1939 		retval = PTR_ERR(p->mempolicy);
1940 		p->mempolicy = NULL;
1941 		goto bad_fork_cleanup_threadgroup_lock;
1942 	}
1943 #endif
1944 #ifdef CONFIG_CPUSETS
1945 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1946 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1947 	seqcount_init(&p->mems_allowed_seq);
1948 #endif
1949 #ifdef CONFIG_TRACE_IRQFLAGS
1950 	p->irq_events = 0;
1951 	p->hardirqs_enabled = 0;
1952 	p->hardirq_enable_ip = 0;
1953 	p->hardirq_enable_event = 0;
1954 	p->hardirq_disable_ip = _THIS_IP_;
1955 	p->hardirq_disable_event = 0;
1956 	p->softirqs_enabled = 1;
1957 	p->softirq_enable_ip = _THIS_IP_;
1958 	p->softirq_enable_event = 0;
1959 	p->softirq_disable_ip = 0;
1960 	p->softirq_disable_event = 0;
1961 	p->hardirq_context = 0;
1962 	p->softirq_context = 0;
1963 #endif
1964 
1965 	p->pagefault_disabled = 0;
1966 
1967 #ifdef CONFIG_LOCKDEP
1968 	lockdep_init_task(p);
1969 #endif
1970 
1971 #ifdef CONFIG_DEBUG_MUTEXES
1972 	p->blocked_on = NULL; /* not blocked yet */
1973 #endif
1974 #ifdef CONFIG_BCACHE
1975 	p->sequential_io	= 0;
1976 	p->sequential_io_avg	= 0;
1977 #endif
1978 
1979 	/* Perform scheduler related setup. Assign this task to a CPU. */
1980 	retval = sched_fork(clone_flags, p);
1981 	if (retval)
1982 		goto bad_fork_cleanup_policy;
1983 
1984 	retval = perf_event_init_task(p);
1985 	if (retval)
1986 		goto bad_fork_cleanup_policy;
1987 	retval = audit_alloc(p);
1988 	if (retval)
1989 		goto bad_fork_cleanup_perf;
1990 	/* copy all the process information */
1991 	shm_init_task(p);
1992 	retval = security_task_alloc(p, clone_flags);
1993 	if (retval)
1994 		goto bad_fork_cleanup_audit;
1995 	retval = copy_semundo(clone_flags, p);
1996 	if (retval)
1997 		goto bad_fork_cleanup_security;
1998 	retval = copy_files(clone_flags, p);
1999 	if (retval)
2000 		goto bad_fork_cleanup_semundo;
2001 	retval = copy_fs(clone_flags, p);
2002 	if (retval)
2003 		goto bad_fork_cleanup_files;
2004 	retval = copy_sighand(clone_flags, p);
2005 	if (retval)
2006 		goto bad_fork_cleanup_fs;
2007 	retval = copy_signal(clone_flags, p);
2008 	if (retval)
2009 		goto bad_fork_cleanup_sighand;
2010 	retval = copy_mm(clone_flags, p);
2011 	if (retval)
2012 		goto bad_fork_cleanup_signal;
2013 	retval = copy_namespaces(clone_flags, p);
2014 	if (retval)
2015 		goto bad_fork_cleanup_mm;
2016 	retval = copy_io(clone_flags, p);
2017 	if (retval)
2018 		goto bad_fork_cleanup_namespaces;
2019 	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2020 				 args->tls);
2021 	if (retval)
2022 		goto bad_fork_cleanup_io;
2023 
2024 	stackleak_task_init(p);
2025 
2026 	if (pid != &init_struct_pid) {
2027 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2028 		if (IS_ERR(pid)) {
2029 			retval = PTR_ERR(pid);
2030 			goto bad_fork_cleanup_thread;
2031 		}
2032 	}
2033 
2034 	/*
2035 	 * This has to happen after we've potentially unshared the file
2036 	 * descriptor table (so that the pidfd doesn't leak into the child
2037 	 * if the fd table isn't shared).
2038 	 */
2039 	if (clone_flags & CLONE_PIDFD) {
2040 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2041 		if (retval < 0)
2042 			goto bad_fork_free_pid;
2043 
2044 		pidfd = retval;
2045 
2046 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2047 					      O_RDWR | O_CLOEXEC);
2048 		if (IS_ERR(pidfile)) {
2049 			put_unused_fd(pidfd);
2050 			retval = PTR_ERR(pidfile);
2051 			goto bad_fork_free_pid;
2052 		}
2053 		get_pid(pid);	/* held by pidfile now */
2054 
2055 		retval = put_user(pidfd, args->pidfd);
2056 		if (retval)
2057 			goto bad_fork_put_pidfd;
2058 	}
2059 
2060 #ifdef CONFIG_BLOCK
2061 	p->plug = NULL;
2062 #endif
2063 #ifdef CONFIG_FUTEX
2064 	p->robust_list = NULL;
2065 #ifdef CONFIG_COMPAT
2066 	p->compat_robust_list = NULL;
2067 #endif
2068 	INIT_LIST_HEAD(&p->pi_state_list);
2069 	p->pi_state_cache = NULL;
2070 #endif
2071 	/*
2072 	 * sigaltstack should be cleared when sharing the same VM
2073 	 */
2074 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2075 		sas_ss_reset(p);
2076 
2077 	/*
2078 	 * Syscall tracing and stepping should be turned off in the
2079 	 * child regardless of CLONE_PTRACE.
2080 	 */
2081 	user_disable_single_step(p);
2082 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2083 #ifdef TIF_SYSCALL_EMU
2084 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2085 #endif
2086 	clear_tsk_latency_tracing(p);
2087 
2088 	/* ok, now we should be set up.. */
2089 	p->pid = pid_nr(pid);
2090 	if (clone_flags & CLONE_THREAD) {
2091 		p->exit_signal = -1;
2092 		p->group_leader = current->group_leader;
2093 		p->tgid = current->tgid;
2094 	} else {
2095 		if (clone_flags & CLONE_PARENT)
2096 			p->exit_signal = current->group_leader->exit_signal;
2097 		else
2098 			p->exit_signal = args->exit_signal;
2099 		p->group_leader = p;
2100 		p->tgid = p->pid;
2101 	}
2102 
2103 	p->nr_dirtied = 0;
2104 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2105 	p->dirty_paused_when = 0;
2106 
2107 	p->pdeath_signal = 0;
2108 	INIT_LIST_HEAD(&p->thread_group);
2109 	p->task_works = NULL;
2110 
2111 	cgroup_threadgroup_change_begin(current);
2112 	/*
2113 	 * Ensure that the cgroup subsystem policies allow the new process to be
2114 	 * forked. It should be noted the the new process's css_set can be changed
2115 	 * between here and cgroup_post_fork() if an organisation operation is in
2116 	 * progress.
2117 	 */
2118 	retval = cgroup_can_fork(p);
2119 	if (retval)
2120 		goto bad_fork_cgroup_threadgroup_change_end;
2121 
2122 	/*
2123 	 * From this point on we must avoid any synchronous user-space
2124 	 * communication until we take the tasklist-lock. In particular, we do
2125 	 * not want user-space to be able to predict the process start-time by
2126 	 * stalling fork(2) after we recorded the start_time but before it is
2127 	 * visible to the system.
2128 	 */
2129 
2130 	p->start_time = ktime_get_ns();
2131 	p->real_start_time = ktime_get_boottime_ns();
2132 
2133 	/*
2134 	 * Make it visible to the rest of the system, but dont wake it up yet.
2135 	 * Need tasklist lock for parent etc handling!
2136 	 */
2137 	write_lock_irq(&tasklist_lock);
2138 
2139 	/* CLONE_PARENT re-uses the old parent */
2140 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2141 		p->real_parent = current->real_parent;
2142 		p->parent_exec_id = current->parent_exec_id;
2143 	} else {
2144 		p->real_parent = current;
2145 		p->parent_exec_id = current->self_exec_id;
2146 	}
2147 
2148 	klp_copy_process(p);
2149 
2150 	spin_lock(&current->sighand->siglock);
2151 
2152 	/*
2153 	 * Copy seccomp details explicitly here, in case they were changed
2154 	 * before holding sighand lock.
2155 	 */
2156 	copy_seccomp(p);
2157 
2158 	rseq_fork(p, clone_flags);
2159 
2160 	/* Don't start children in a dying pid namespace */
2161 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2162 		retval = -ENOMEM;
2163 		goto bad_fork_cancel_cgroup;
2164 	}
2165 
2166 	/* Let kill terminate clone/fork in the middle */
2167 	if (fatal_signal_pending(current)) {
2168 		retval = -EINTR;
2169 		goto bad_fork_cancel_cgroup;
2170 	}
2171 
2172 	/* past the last point of failure */
2173 	if (pidfile)
2174 		fd_install(pidfd, pidfile);
2175 
2176 	init_task_pid_links(p);
2177 	if (likely(p->pid)) {
2178 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2179 
2180 		init_task_pid(p, PIDTYPE_PID, pid);
2181 		if (thread_group_leader(p)) {
2182 			init_task_pid(p, PIDTYPE_TGID, pid);
2183 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2184 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2185 
2186 			if (is_child_reaper(pid)) {
2187 				ns_of_pid(pid)->child_reaper = p;
2188 				p->signal->flags |= SIGNAL_UNKILLABLE;
2189 			}
2190 			p->signal->shared_pending.signal = delayed.signal;
2191 			p->signal->tty = tty_kref_get(current->signal->tty);
2192 			/*
2193 			 * Inherit has_child_subreaper flag under the same
2194 			 * tasklist_lock with adding child to the process tree
2195 			 * for propagate_has_child_subreaper optimization.
2196 			 */
2197 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2198 							 p->real_parent->signal->is_child_subreaper;
2199 			list_add_tail(&p->sibling, &p->real_parent->children);
2200 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2201 			attach_pid(p, PIDTYPE_TGID);
2202 			attach_pid(p, PIDTYPE_PGID);
2203 			attach_pid(p, PIDTYPE_SID);
2204 			__this_cpu_inc(process_counts);
2205 		} else {
2206 			current->signal->nr_threads++;
2207 			atomic_inc(&current->signal->live);
2208 			refcount_inc(&current->signal->sigcnt);
2209 			task_join_group_stop(p);
2210 			list_add_tail_rcu(&p->thread_group,
2211 					  &p->group_leader->thread_group);
2212 			list_add_tail_rcu(&p->thread_node,
2213 					  &p->signal->thread_head);
2214 		}
2215 		attach_pid(p, PIDTYPE_PID);
2216 		nr_threads++;
2217 	}
2218 	total_forks++;
2219 	hlist_del_init(&delayed.node);
2220 	spin_unlock(&current->sighand->siglock);
2221 	syscall_tracepoint_update(p);
2222 	write_unlock_irq(&tasklist_lock);
2223 
2224 	proc_fork_connector(p);
2225 	cgroup_post_fork(p);
2226 	cgroup_threadgroup_change_end(current);
2227 	perf_event_fork(p);
2228 
2229 	trace_task_newtask(p, clone_flags);
2230 	uprobe_copy_process(p, clone_flags);
2231 
2232 	return p;
2233 
2234 bad_fork_cancel_cgroup:
2235 	spin_unlock(&current->sighand->siglock);
2236 	write_unlock_irq(&tasklist_lock);
2237 	cgroup_cancel_fork(p);
2238 bad_fork_cgroup_threadgroup_change_end:
2239 	cgroup_threadgroup_change_end(current);
2240 bad_fork_put_pidfd:
2241 	if (clone_flags & CLONE_PIDFD) {
2242 		fput(pidfile);
2243 		put_unused_fd(pidfd);
2244 	}
2245 bad_fork_free_pid:
2246 	if (pid != &init_struct_pid)
2247 		free_pid(pid);
2248 bad_fork_cleanup_thread:
2249 	exit_thread(p);
2250 bad_fork_cleanup_io:
2251 	if (p->io_context)
2252 		exit_io_context(p);
2253 bad_fork_cleanup_namespaces:
2254 	exit_task_namespaces(p);
2255 bad_fork_cleanup_mm:
2256 	if (p->mm) {
2257 		mm_clear_owner(p->mm, p);
2258 		mmput(p->mm);
2259 	}
2260 bad_fork_cleanup_signal:
2261 	if (!(clone_flags & CLONE_THREAD))
2262 		free_signal_struct(p->signal);
2263 bad_fork_cleanup_sighand:
2264 	__cleanup_sighand(p->sighand);
2265 bad_fork_cleanup_fs:
2266 	exit_fs(p); /* blocking */
2267 bad_fork_cleanup_files:
2268 	exit_files(p); /* blocking */
2269 bad_fork_cleanup_semundo:
2270 	exit_sem(p);
2271 bad_fork_cleanup_security:
2272 	security_task_free(p);
2273 bad_fork_cleanup_audit:
2274 	audit_free(p);
2275 bad_fork_cleanup_perf:
2276 	perf_event_free_task(p);
2277 bad_fork_cleanup_policy:
2278 	lockdep_free_task(p);
2279 #ifdef CONFIG_NUMA
2280 	mpol_put(p->mempolicy);
2281 bad_fork_cleanup_threadgroup_lock:
2282 #endif
2283 	delayacct_tsk_free(p);
2284 bad_fork_cleanup_count:
2285 	atomic_dec(&p->cred->user->processes);
2286 	exit_creds(p);
2287 bad_fork_free:
2288 	p->state = TASK_DEAD;
2289 	put_task_stack(p);
2290 	delayed_free_task(p);
2291 fork_out:
2292 	spin_lock_irq(&current->sighand->siglock);
2293 	hlist_del_init(&delayed.node);
2294 	spin_unlock_irq(&current->sighand->siglock);
2295 	return ERR_PTR(retval);
2296 }
2297 
2298 static inline void init_idle_pids(struct task_struct *idle)
2299 {
2300 	enum pid_type type;
2301 
2302 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2303 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2304 		init_task_pid(idle, type, &init_struct_pid);
2305 	}
2306 }
2307 
2308 struct task_struct *fork_idle(int cpu)
2309 {
2310 	struct task_struct *task;
2311 	struct kernel_clone_args args = {
2312 		.flags = CLONE_VM,
2313 	};
2314 
2315 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2316 	if (!IS_ERR(task)) {
2317 		init_idle_pids(task);
2318 		init_idle(task, cpu);
2319 	}
2320 
2321 	return task;
2322 }
2323 
2324 struct mm_struct *copy_init_mm(void)
2325 {
2326 	return dup_mm(NULL, &init_mm);
2327 }
2328 
2329 /*
2330  *  Ok, this is the main fork-routine.
2331  *
2332  * It copies the process, and if successful kick-starts
2333  * it and waits for it to finish using the VM if required.
2334  *
2335  * args->exit_signal is expected to be checked for sanity by the caller.
2336  */
2337 long _do_fork(struct kernel_clone_args *args)
2338 {
2339 	u64 clone_flags = args->flags;
2340 	struct completion vfork;
2341 	struct pid *pid;
2342 	struct task_struct *p;
2343 	int trace = 0;
2344 	long nr;
2345 
2346 	/*
2347 	 * Determine whether and which event to report to ptracer.  When
2348 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2349 	 * requested, no event is reported; otherwise, report if the event
2350 	 * for the type of forking is enabled.
2351 	 */
2352 	if (!(clone_flags & CLONE_UNTRACED)) {
2353 		if (clone_flags & CLONE_VFORK)
2354 			trace = PTRACE_EVENT_VFORK;
2355 		else if (args->exit_signal != SIGCHLD)
2356 			trace = PTRACE_EVENT_CLONE;
2357 		else
2358 			trace = PTRACE_EVENT_FORK;
2359 
2360 		if (likely(!ptrace_event_enabled(current, trace)))
2361 			trace = 0;
2362 	}
2363 
2364 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2365 	add_latent_entropy();
2366 
2367 	if (IS_ERR(p))
2368 		return PTR_ERR(p);
2369 
2370 	/*
2371 	 * Do this prior waking up the new thread - the thread pointer
2372 	 * might get invalid after that point, if the thread exits quickly.
2373 	 */
2374 	trace_sched_process_fork(current, p);
2375 
2376 	pid = get_task_pid(p, PIDTYPE_PID);
2377 	nr = pid_vnr(pid);
2378 
2379 	if (clone_flags & CLONE_PARENT_SETTID)
2380 		put_user(nr, args->parent_tid);
2381 
2382 	if (clone_flags & CLONE_VFORK) {
2383 		p->vfork_done = &vfork;
2384 		init_completion(&vfork);
2385 		get_task_struct(p);
2386 	}
2387 
2388 	wake_up_new_task(p);
2389 
2390 	/* forking complete and child started to run, tell ptracer */
2391 	if (unlikely(trace))
2392 		ptrace_event_pid(trace, pid);
2393 
2394 	if (clone_flags & CLONE_VFORK) {
2395 		if (!wait_for_vfork_done(p, &vfork))
2396 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2397 	}
2398 
2399 	put_pid(pid);
2400 	return nr;
2401 }
2402 
2403 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2404 {
2405 	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2406 	if ((kargs->flags & CLONE_PIDFD) &&
2407 	    (kargs->flags & CLONE_PARENT_SETTID))
2408 		return false;
2409 
2410 	return true;
2411 }
2412 
2413 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2414 /* For compatibility with architectures that call do_fork directly rather than
2415  * using the syscall entry points below. */
2416 long do_fork(unsigned long clone_flags,
2417 	      unsigned long stack_start,
2418 	      unsigned long stack_size,
2419 	      int __user *parent_tidptr,
2420 	      int __user *child_tidptr)
2421 {
2422 	struct kernel_clone_args args = {
2423 		.flags		= (clone_flags & ~CSIGNAL),
2424 		.pidfd		= parent_tidptr,
2425 		.child_tid	= child_tidptr,
2426 		.parent_tid	= parent_tidptr,
2427 		.exit_signal	= (clone_flags & CSIGNAL),
2428 		.stack		= stack_start,
2429 		.stack_size	= stack_size,
2430 	};
2431 
2432 	if (!legacy_clone_args_valid(&args))
2433 		return -EINVAL;
2434 
2435 	return _do_fork(&args);
2436 }
2437 #endif
2438 
2439 /*
2440  * Create a kernel thread.
2441  */
2442 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2443 {
2444 	struct kernel_clone_args args = {
2445 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2446 		.exit_signal	= (flags & CSIGNAL),
2447 		.stack		= (unsigned long)fn,
2448 		.stack_size	= (unsigned long)arg,
2449 	};
2450 
2451 	return _do_fork(&args);
2452 }
2453 
2454 #ifdef __ARCH_WANT_SYS_FORK
2455 SYSCALL_DEFINE0(fork)
2456 {
2457 #ifdef CONFIG_MMU
2458 	struct kernel_clone_args args = {
2459 		.exit_signal = SIGCHLD,
2460 	};
2461 
2462 	return _do_fork(&args);
2463 #else
2464 	/* can not support in nommu mode */
2465 	return -EINVAL;
2466 #endif
2467 }
2468 #endif
2469 
2470 #ifdef __ARCH_WANT_SYS_VFORK
2471 SYSCALL_DEFINE0(vfork)
2472 {
2473 	struct kernel_clone_args args = {
2474 		.flags		= CLONE_VFORK | CLONE_VM,
2475 		.exit_signal	= SIGCHLD,
2476 	};
2477 
2478 	return _do_fork(&args);
2479 }
2480 #endif
2481 
2482 #ifdef __ARCH_WANT_SYS_CLONE
2483 #ifdef CONFIG_CLONE_BACKWARDS
2484 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2485 		 int __user *, parent_tidptr,
2486 		 unsigned long, tls,
2487 		 int __user *, child_tidptr)
2488 #elif defined(CONFIG_CLONE_BACKWARDS2)
2489 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2490 		 int __user *, parent_tidptr,
2491 		 int __user *, child_tidptr,
2492 		 unsigned long, tls)
2493 #elif defined(CONFIG_CLONE_BACKWARDS3)
2494 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2495 		int, stack_size,
2496 		int __user *, parent_tidptr,
2497 		int __user *, child_tidptr,
2498 		unsigned long, tls)
2499 #else
2500 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2501 		 int __user *, parent_tidptr,
2502 		 int __user *, child_tidptr,
2503 		 unsigned long, tls)
2504 #endif
2505 {
2506 	struct kernel_clone_args args = {
2507 		.flags		= (clone_flags & ~CSIGNAL),
2508 		.pidfd		= parent_tidptr,
2509 		.child_tid	= child_tidptr,
2510 		.parent_tid	= parent_tidptr,
2511 		.exit_signal	= (clone_flags & CSIGNAL),
2512 		.stack		= newsp,
2513 		.tls		= tls,
2514 	};
2515 
2516 	if (!legacy_clone_args_valid(&args))
2517 		return -EINVAL;
2518 
2519 	return _do_fork(&args);
2520 }
2521 #endif
2522 
2523 #ifdef __ARCH_WANT_SYS_CLONE3
2524 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2525 					      struct clone_args __user *uargs,
2526 					      size_t size)
2527 {
2528 	struct clone_args args;
2529 
2530 	if (unlikely(size > PAGE_SIZE))
2531 		return -E2BIG;
2532 
2533 	if (unlikely(size < sizeof(struct clone_args)))
2534 		return -EINVAL;
2535 
2536 	if (unlikely(!access_ok(uargs, size)))
2537 		return -EFAULT;
2538 
2539 	if (size > sizeof(struct clone_args)) {
2540 		unsigned char __user *addr;
2541 		unsigned char __user *end;
2542 		unsigned char val;
2543 
2544 		addr = (void __user *)uargs + sizeof(struct clone_args);
2545 		end = (void __user *)uargs + size;
2546 
2547 		for (; addr < end; addr++) {
2548 			if (get_user(val, addr))
2549 				return -EFAULT;
2550 			if (val)
2551 				return -E2BIG;
2552 		}
2553 
2554 		size = sizeof(struct clone_args);
2555 	}
2556 
2557 	if (copy_from_user(&args, uargs, size))
2558 		return -EFAULT;
2559 
2560 	/*
2561 	 * Verify that higher 32bits of exit_signal are unset and that
2562 	 * it is a valid signal
2563 	 */
2564 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2565 		     !valid_signal(args.exit_signal)))
2566 		return -EINVAL;
2567 
2568 	*kargs = (struct kernel_clone_args){
2569 		.flags		= args.flags,
2570 		.pidfd		= u64_to_user_ptr(args.pidfd),
2571 		.child_tid	= u64_to_user_ptr(args.child_tid),
2572 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2573 		.exit_signal	= args.exit_signal,
2574 		.stack		= args.stack,
2575 		.stack_size	= args.stack_size,
2576 		.tls		= args.tls,
2577 	};
2578 
2579 	return 0;
2580 }
2581 
2582 static bool clone3_args_valid(const struct kernel_clone_args *kargs)
2583 {
2584 	/*
2585 	 * All lower bits of the flag word are taken.
2586 	 * Verify that no other unknown flags are passed along.
2587 	 */
2588 	if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2589 		return false;
2590 
2591 	/*
2592 	 * - make the CLONE_DETACHED bit reuseable for clone3
2593 	 * - make the CSIGNAL bits reuseable for clone3
2594 	 */
2595 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2596 		return false;
2597 
2598 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2599 	    kargs->exit_signal)
2600 		return false;
2601 
2602 	return true;
2603 }
2604 
2605 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2606 {
2607 	int err;
2608 
2609 	struct kernel_clone_args kargs;
2610 
2611 	err = copy_clone_args_from_user(&kargs, uargs, size);
2612 	if (err)
2613 		return err;
2614 
2615 	if (!clone3_args_valid(&kargs))
2616 		return -EINVAL;
2617 
2618 	return _do_fork(&kargs);
2619 }
2620 #endif
2621 
2622 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2623 {
2624 	struct task_struct *leader, *parent, *child;
2625 	int res;
2626 
2627 	read_lock(&tasklist_lock);
2628 	leader = top = top->group_leader;
2629 down:
2630 	for_each_thread(leader, parent) {
2631 		list_for_each_entry(child, &parent->children, sibling) {
2632 			res = visitor(child, data);
2633 			if (res) {
2634 				if (res < 0)
2635 					goto out;
2636 				leader = child;
2637 				goto down;
2638 			}
2639 up:
2640 			;
2641 		}
2642 	}
2643 
2644 	if (leader != top) {
2645 		child = leader;
2646 		parent = child->real_parent;
2647 		leader = parent->group_leader;
2648 		goto up;
2649 	}
2650 out:
2651 	read_unlock(&tasklist_lock);
2652 }
2653 
2654 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2655 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2656 #endif
2657 
2658 static void sighand_ctor(void *data)
2659 {
2660 	struct sighand_struct *sighand = data;
2661 
2662 	spin_lock_init(&sighand->siglock);
2663 	init_waitqueue_head(&sighand->signalfd_wqh);
2664 }
2665 
2666 void __init proc_caches_init(void)
2667 {
2668 	unsigned int mm_size;
2669 
2670 	sighand_cachep = kmem_cache_create("sighand_cache",
2671 			sizeof(struct sighand_struct), 0,
2672 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2673 			SLAB_ACCOUNT, sighand_ctor);
2674 	signal_cachep = kmem_cache_create("signal_cache",
2675 			sizeof(struct signal_struct), 0,
2676 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2677 			NULL);
2678 	files_cachep = kmem_cache_create("files_cache",
2679 			sizeof(struct files_struct), 0,
2680 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2681 			NULL);
2682 	fs_cachep = kmem_cache_create("fs_cache",
2683 			sizeof(struct fs_struct), 0,
2684 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2685 			NULL);
2686 
2687 	/*
2688 	 * The mm_cpumask is located at the end of mm_struct, and is
2689 	 * dynamically sized based on the maximum CPU number this system
2690 	 * can have, taking hotplug into account (nr_cpu_ids).
2691 	 */
2692 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2693 
2694 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2695 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2696 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2697 			offsetof(struct mm_struct, saved_auxv),
2698 			sizeof_field(struct mm_struct, saved_auxv),
2699 			NULL);
2700 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2701 	mmap_init();
2702 	nsproxy_cache_init();
2703 }
2704 
2705 /*
2706  * Check constraints on flags passed to the unshare system call.
2707  */
2708 static int check_unshare_flags(unsigned long unshare_flags)
2709 {
2710 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2711 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2712 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2713 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2714 		return -EINVAL;
2715 	/*
2716 	 * Not implemented, but pretend it works if there is nothing
2717 	 * to unshare.  Note that unsharing the address space or the
2718 	 * signal handlers also need to unshare the signal queues (aka
2719 	 * CLONE_THREAD).
2720 	 */
2721 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2722 		if (!thread_group_empty(current))
2723 			return -EINVAL;
2724 	}
2725 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2726 		if (refcount_read(&current->sighand->count) > 1)
2727 			return -EINVAL;
2728 	}
2729 	if (unshare_flags & CLONE_VM) {
2730 		if (!current_is_single_threaded())
2731 			return -EINVAL;
2732 	}
2733 
2734 	return 0;
2735 }
2736 
2737 /*
2738  * Unshare the filesystem structure if it is being shared
2739  */
2740 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2741 {
2742 	struct fs_struct *fs = current->fs;
2743 
2744 	if (!(unshare_flags & CLONE_FS) || !fs)
2745 		return 0;
2746 
2747 	/* don't need lock here; in the worst case we'll do useless copy */
2748 	if (fs->users == 1)
2749 		return 0;
2750 
2751 	*new_fsp = copy_fs_struct(fs);
2752 	if (!*new_fsp)
2753 		return -ENOMEM;
2754 
2755 	return 0;
2756 }
2757 
2758 /*
2759  * Unshare file descriptor table if it is being shared
2760  */
2761 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2762 {
2763 	struct files_struct *fd = current->files;
2764 	int error = 0;
2765 
2766 	if ((unshare_flags & CLONE_FILES) &&
2767 	    (fd && atomic_read(&fd->count) > 1)) {
2768 		*new_fdp = dup_fd(fd, &error);
2769 		if (!*new_fdp)
2770 			return error;
2771 	}
2772 
2773 	return 0;
2774 }
2775 
2776 /*
2777  * unshare allows a process to 'unshare' part of the process
2778  * context which was originally shared using clone.  copy_*
2779  * functions used by do_fork() cannot be used here directly
2780  * because they modify an inactive task_struct that is being
2781  * constructed. Here we are modifying the current, active,
2782  * task_struct.
2783  */
2784 int ksys_unshare(unsigned long unshare_flags)
2785 {
2786 	struct fs_struct *fs, *new_fs = NULL;
2787 	struct files_struct *fd, *new_fd = NULL;
2788 	struct cred *new_cred = NULL;
2789 	struct nsproxy *new_nsproxy = NULL;
2790 	int do_sysvsem = 0;
2791 	int err;
2792 
2793 	/*
2794 	 * If unsharing a user namespace must also unshare the thread group
2795 	 * and unshare the filesystem root and working directories.
2796 	 */
2797 	if (unshare_flags & CLONE_NEWUSER)
2798 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2799 	/*
2800 	 * If unsharing vm, must also unshare signal handlers.
2801 	 */
2802 	if (unshare_flags & CLONE_VM)
2803 		unshare_flags |= CLONE_SIGHAND;
2804 	/*
2805 	 * If unsharing a signal handlers, must also unshare the signal queues.
2806 	 */
2807 	if (unshare_flags & CLONE_SIGHAND)
2808 		unshare_flags |= CLONE_THREAD;
2809 	/*
2810 	 * If unsharing namespace, must also unshare filesystem information.
2811 	 */
2812 	if (unshare_flags & CLONE_NEWNS)
2813 		unshare_flags |= CLONE_FS;
2814 
2815 	err = check_unshare_flags(unshare_flags);
2816 	if (err)
2817 		goto bad_unshare_out;
2818 	/*
2819 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2820 	 * to a new ipc namespace, the semaphore arrays from the old
2821 	 * namespace are unreachable.
2822 	 */
2823 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2824 		do_sysvsem = 1;
2825 	err = unshare_fs(unshare_flags, &new_fs);
2826 	if (err)
2827 		goto bad_unshare_out;
2828 	err = unshare_fd(unshare_flags, &new_fd);
2829 	if (err)
2830 		goto bad_unshare_cleanup_fs;
2831 	err = unshare_userns(unshare_flags, &new_cred);
2832 	if (err)
2833 		goto bad_unshare_cleanup_fd;
2834 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2835 					 new_cred, new_fs);
2836 	if (err)
2837 		goto bad_unshare_cleanup_cred;
2838 
2839 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2840 		if (do_sysvsem) {
2841 			/*
2842 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2843 			 */
2844 			exit_sem(current);
2845 		}
2846 		if (unshare_flags & CLONE_NEWIPC) {
2847 			/* Orphan segments in old ns (see sem above). */
2848 			exit_shm(current);
2849 			shm_init_task(current);
2850 		}
2851 
2852 		if (new_nsproxy)
2853 			switch_task_namespaces(current, new_nsproxy);
2854 
2855 		task_lock(current);
2856 
2857 		if (new_fs) {
2858 			fs = current->fs;
2859 			spin_lock(&fs->lock);
2860 			current->fs = new_fs;
2861 			if (--fs->users)
2862 				new_fs = NULL;
2863 			else
2864 				new_fs = fs;
2865 			spin_unlock(&fs->lock);
2866 		}
2867 
2868 		if (new_fd) {
2869 			fd = current->files;
2870 			current->files = new_fd;
2871 			new_fd = fd;
2872 		}
2873 
2874 		task_unlock(current);
2875 
2876 		if (new_cred) {
2877 			/* Install the new user namespace */
2878 			commit_creds(new_cred);
2879 			new_cred = NULL;
2880 		}
2881 	}
2882 
2883 	perf_event_namespaces(current);
2884 
2885 bad_unshare_cleanup_cred:
2886 	if (new_cred)
2887 		put_cred(new_cred);
2888 bad_unshare_cleanup_fd:
2889 	if (new_fd)
2890 		put_files_struct(new_fd);
2891 
2892 bad_unshare_cleanup_fs:
2893 	if (new_fs)
2894 		free_fs_struct(new_fs);
2895 
2896 bad_unshare_out:
2897 	return err;
2898 }
2899 
2900 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2901 {
2902 	return ksys_unshare(unshare_flags);
2903 }
2904 
2905 /*
2906  *	Helper to unshare the files of the current task.
2907  *	We don't want to expose copy_files internals to
2908  *	the exec layer of the kernel.
2909  */
2910 
2911 int unshare_files(struct files_struct **displaced)
2912 {
2913 	struct task_struct *task = current;
2914 	struct files_struct *copy = NULL;
2915 	int error;
2916 
2917 	error = unshare_fd(CLONE_FILES, &copy);
2918 	if (error || !copy) {
2919 		*displaced = NULL;
2920 		return error;
2921 	}
2922 	*displaced = task->files;
2923 	task_lock(task);
2924 	task->files = copy;
2925 	task_unlock(task);
2926 	return 0;
2927 }
2928 
2929 int sysctl_max_threads(struct ctl_table *table, int write,
2930 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2931 {
2932 	struct ctl_table t;
2933 	int ret;
2934 	int threads = max_threads;
2935 	int min = MIN_THREADS;
2936 	int max = MAX_THREADS;
2937 
2938 	t = *table;
2939 	t.data = &threads;
2940 	t.extra1 = &min;
2941 	t.extra2 = &max;
2942 
2943 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2944 	if (ret || !write)
2945 		return ret;
2946 
2947 	set_max_threads(threads);
2948 
2949 	return 0;
2950 }
2951