xref: /linux/kernel/fork.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/perf_event.h>
81 #include <linux/posix-timers.h>
82 #include <linux/user-return-notifier.h>
83 #include <linux/oom.h>
84 #include <linux/khugepaged.h>
85 #include <linux/signalfd.h>
86 #include <linux/uprobes.h>
87 #include <linux/aio.h>
88 #include <linux/compiler.h>
89 #include <linux/sysctl.h>
90 #include <linux/kcov.h>
91 #include <linux/livepatch.h>
92 #include <linux/thread_info.h>
93 
94 #include <asm/pgtable.h>
95 #include <asm/pgalloc.h>
96 #include <linux/uaccess.h>
97 #include <asm/mmu_context.h>
98 #include <asm/cacheflush.h>
99 #include <asm/tlbflush.h>
100 
101 #include <trace/events/sched.h>
102 
103 #define CREATE_TRACE_POINTS
104 #include <trace/events/task.h>
105 
106 /*
107  * Minimum number of threads to boot the kernel
108  */
109 #define MIN_THREADS 20
110 
111 /*
112  * Maximum number of threads
113  */
114 #define MAX_THREADS FUTEX_TID_MASK
115 
116 /*
117  * Protected counters by write_lock_irq(&tasklist_lock)
118  */
119 unsigned long total_forks;	/* Handle normal Linux uptimes. */
120 int nr_threads;			/* The idle threads do not count.. */
121 
122 int max_threads;		/* tunable limit on nr_threads */
123 
124 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
125 
126 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
127 
128 #ifdef CONFIG_PROVE_RCU
129 int lockdep_tasklist_lock_is_held(void)
130 {
131 	return lockdep_is_held(&tasklist_lock);
132 }
133 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
134 #endif /* #ifdef CONFIG_PROVE_RCU */
135 
136 int nr_processes(void)
137 {
138 	int cpu;
139 	int total = 0;
140 
141 	for_each_possible_cpu(cpu)
142 		total += per_cpu(process_counts, cpu);
143 
144 	return total;
145 }
146 
147 void __weak arch_release_task_struct(struct task_struct *tsk)
148 {
149 }
150 
151 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
152 static struct kmem_cache *task_struct_cachep;
153 
154 static inline struct task_struct *alloc_task_struct_node(int node)
155 {
156 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
157 }
158 
159 static inline void free_task_struct(struct task_struct *tsk)
160 {
161 	kmem_cache_free(task_struct_cachep, tsk);
162 }
163 #endif
164 
165 void __weak arch_release_thread_stack(unsigned long *stack)
166 {
167 }
168 
169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
170 
171 /*
172  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
173  * kmemcache based allocator.
174  */
175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
176 
177 #ifdef CONFIG_VMAP_STACK
178 /*
179  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
180  * flush.  Try to minimize the number of calls by caching stacks.
181  */
182 #define NR_CACHED_STACKS 2
183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
184 
185 static int free_vm_stack_cache(unsigned int cpu)
186 {
187 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
188 	int i;
189 
190 	for (i = 0; i < NR_CACHED_STACKS; i++) {
191 		struct vm_struct *vm_stack = cached_vm_stacks[i];
192 
193 		if (!vm_stack)
194 			continue;
195 
196 		vfree(vm_stack->addr);
197 		cached_vm_stacks[i] = NULL;
198 	}
199 
200 	return 0;
201 }
202 #endif
203 
204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
205 {
206 #ifdef CONFIG_VMAP_STACK
207 	void *stack;
208 	int i;
209 
210 	for (i = 0; i < NR_CACHED_STACKS; i++) {
211 		struct vm_struct *s;
212 
213 		s = this_cpu_xchg(cached_stacks[i], NULL);
214 
215 		if (!s)
216 			continue;
217 
218 #ifdef CONFIG_DEBUG_KMEMLEAK
219 		/* Clear stale pointers from reused stack. */
220 		memset(s->addr, 0, THREAD_SIZE);
221 #endif
222 		tsk->stack_vm_area = s;
223 		return s->addr;
224 	}
225 
226 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227 				     VMALLOC_START, VMALLOC_END,
228 				     THREADINFO_GFP,
229 				     PAGE_KERNEL,
230 				     0, node, __builtin_return_address(0));
231 
232 	/*
233 	 * We can't call find_vm_area() in interrupt context, and
234 	 * free_thread_stack() can be called in interrupt context,
235 	 * so cache the vm_struct.
236 	 */
237 	if (stack)
238 		tsk->stack_vm_area = find_vm_area(stack);
239 	return stack;
240 #else
241 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242 					     THREAD_SIZE_ORDER);
243 
244 	return page ? page_address(page) : NULL;
245 #endif
246 }
247 
248 static inline void free_thread_stack(struct task_struct *tsk)
249 {
250 #ifdef CONFIG_VMAP_STACK
251 	if (task_stack_vm_area(tsk)) {
252 		int i;
253 
254 		for (i = 0; i < NR_CACHED_STACKS; i++) {
255 			if (this_cpu_cmpxchg(cached_stacks[i],
256 					NULL, tsk->stack_vm_area) != NULL)
257 				continue;
258 
259 			return;
260 		}
261 
262 		vfree_atomic(tsk->stack);
263 		return;
264 	}
265 #endif
266 
267 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271 
272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 						  int node)
274 {
275 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277 
278 static void free_thread_stack(struct task_struct *tsk)
279 {
280 	kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282 
283 void thread_stack_cache_init(void)
284 {
285 	thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
286 					      THREAD_SIZE, 0, NULL);
287 	BUG_ON(thread_stack_cache == NULL);
288 }
289 # endif
290 #endif
291 
292 /* SLAB cache for signal_struct structures (tsk->signal) */
293 static struct kmem_cache *signal_cachep;
294 
295 /* SLAB cache for sighand_struct structures (tsk->sighand) */
296 struct kmem_cache *sighand_cachep;
297 
298 /* SLAB cache for files_struct structures (tsk->files) */
299 struct kmem_cache *files_cachep;
300 
301 /* SLAB cache for fs_struct structures (tsk->fs) */
302 struct kmem_cache *fs_cachep;
303 
304 /* SLAB cache for vm_area_struct structures */
305 struct kmem_cache *vm_area_cachep;
306 
307 /* SLAB cache for mm_struct structures (tsk->mm) */
308 static struct kmem_cache *mm_cachep;
309 
310 static void account_kernel_stack(struct task_struct *tsk, int account)
311 {
312 	void *stack = task_stack_page(tsk);
313 	struct vm_struct *vm = task_stack_vm_area(tsk);
314 
315 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
316 
317 	if (vm) {
318 		int i;
319 
320 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
321 
322 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
323 			mod_zone_page_state(page_zone(vm->pages[i]),
324 					    NR_KERNEL_STACK_KB,
325 					    PAGE_SIZE / 1024 * account);
326 		}
327 
328 		/* All stack pages belong to the same memcg. */
329 		mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
330 				     account * (THREAD_SIZE / 1024));
331 	} else {
332 		/*
333 		 * All stack pages are in the same zone and belong to the
334 		 * same memcg.
335 		 */
336 		struct page *first_page = virt_to_page(stack);
337 
338 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
339 				    THREAD_SIZE / 1024 * account);
340 
341 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
342 				     account * (THREAD_SIZE / 1024));
343 	}
344 }
345 
346 static void release_task_stack(struct task_struct *tsk)
347 {
348 	if (WARN_ON(tsk->state != TASK_DEAD))
349 		return;  /* Better to leak the stack than to free prematurely */
350 
351 	account_kernel_stack(tsk, -1);
352 	arch_release_thread_stack(tsk->stack);
353 	free_thread_stack(tsk);
354 	tsk->stack = NULL;
355 #ifdef CONFIG_VMAP_STACK
356 	tsk->stack_vm_area = NULL;
357 #endif
358 }
359 
360 #ifdef CONFIG_THREAD_INFO_IN_TASK
361 void put_task_stack(struct task_struct *tsk)
362 {
363 	if (atomic_dec_and_test(&tsk->stack_refcount))
364 		release_task_stack(tsk);
365 }
366 #endif
367 
368 void free_task(struct task_struct *tsk)
369 {
370 #ifndef CONFIG_THREAD_INFO_IN_TASK
371 	/*
372 	 * The task is finally done with both the stack and thread_info,
373 	 * so free both.
374 	 */
375 	release_task_stack(tsk);
376 #else
377 	/*
378 	 * If the task had a separate stack allocation, it should be gone
379 	 * by now.
380 	 */
381 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
382 #endif
383 	rt_mutex_debug_task_free(tsk);
384 	ftrace_graph_exit_task(tsk);
385 	put_seccomp_filter(tsk);
386 	arch_release_task_struct(tsk);
387 	if (tsk->flags & PF_KTHREAD)
388 		free_kthread_struct(tsk);
389 	free_task_struct(tsk);
390 }
391 EXPORT_SYMBOL(free_task);
392 
393 static inline void free_signal_struct(struct signal_struct *sig)
394 {
395 	taskstats_tgid_free(sig);
396 	sched_autogroup_exit(sig);
397 	/*
398 	 * __mmdrop is not safe to call from softirq context on x86 due to
399 	 * pgd_dtor so postpone it to the async context
400 	 */
401 	if (sig->oom_mm)
402 		mmdrop_async(sig->oom_mm);
403 	kmem_cache_free(signal_cachep, sig);
404 }
405 
406 static inline void put_signal_struct(struct signal_struct *sig)
407 {
408 	if (atomic_dec_and_test(&sig->sigcnt))
409 		free_signal_struct(sig);
410 }
411 
412 void __put_task_struct(struct task_struct *tsk)
413 {
414 	WARN_ON(!tsk->exit_state);
415 	WARN_ON(atomic_read(&tsk->usage));
416 	WARN_ON(tsk == current);
417 
418 	cgroup_free(tsk);
419 	task_numa_free(tsk);
420 	security_task_free(tsk);
421 	exit_creds(tsk);
422 	delayacct_tsk_free(tsk);
423 	put_signal_struct(tsk->signal);
424 
425 	if (!profile_handoff_task(tsk))
426 		free_task(tsk);
427 }
428 EXPORT_SYMBOL_GPL(__put_task_struct);
429 
430 void __init __weak arch_task_cache_init(void) { }
431 
432 /*
433  * set_max_threads
434  */
435 static void set_max_threads(unsigned int max_threads_suggested)
436 {
437 	u64 threads;
438 
439 	/*
440 	 * The number of threads shall be limited such that the thread
441 	 * structures may only consume a small part of the available memory.
442 	 */
443 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
444 		threads = MAX_THREADS;
445 	else
446 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
447 				    (u64) THREAD_SIZE * 8UL);
448 
449 	if (threads > max_threads_suggested)
450 		threads = max_threads_suggested;
451 
452 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
453 }
454 
455 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
456 /* Initialized by the architecture: */
457 int arch_task_struct_size __read_mostly;
458 #endif
459 
460 void __init fork_init(void)
461 {
462 	int i;
463 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
464 #ifndef ARCH_MIN_TASKALIGN
465 #define ARCH_MIN_TASKALIGN	0
466 #endif
467 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
468 
469 	/* create a slab on which task_structs can be allocated */
470 	task_struct_cachep = kmem_cache_create("task_struct",
471 			arch_task_struct_size, align,
472 			SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
473 #endif
474 
475 	/* do the arch specific task caches init */
476 	arch_task_cache_init();
477 
478 	set_max_threads(MAX_THREADS);
479 
480 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
481 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
482 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
483 		init_task.signal->rlim[RLIMIT_NPROC];
484 
485 	for (i = 0; i < UCOUNT_COUNTS; i++) {
486 		init_user_ns.ucount_max[i] = max_threads/2;
487 	}
488 
489 #ifdef CONFIG_VMAP_STACK
490 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
491 			  NULL, free_vm_stack_cache);
492 #endif
493 
494 	lockdep_init_task(&init_task);
495 }
496 
497 int __weak arch_dup_task_struct(struct task_struct *dst,
498 					       struct task_struct *src)
499 {
500 	*dst = *src;
501 	return 0;
502 }
503 
504 void set_task_stack_end_magic(struct task_struct *tsk)
505 {
506 	unsigned long *stackend;
507 
508 	stackend = end_of_stack(tsk);
509 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
510 }
511 
512 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
513 {
514 	struct task_struct *tsk;
515 	unsigned long *stack;
516 	struct vm_struct *stack_vm_area;
517 	int err;
518 
519 	if (node == NUMA_NO_NODE)
520 		node = tsk_fork_get_node(orig);
521 	tsk = alloc_task_struct_node(node);
522 	if (!tsk)
523 		return NULL;
524 
525 	stack = alloc_thread_stack_node(tsk, node);
526 	if (!stack)
527 		goto free_tsk;
528 
529 	stack_vm_area = task_stack_vm_area(tsk);
530 
531 	err = arch_dup_task_struct(tsk, orig);
532 
533 	/*
534 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
535 	 * sure they're properly initialized before using any stack-related
536 	 * functions again.
537 	 */
538 	tsk->stack = stack;
539 #ifdef CONFIG_VMAP_STACK
540 	tsk->stack_vm_area = stack_vm_area;
541 #endif
542 #ifdef CONFIG_THREAD_INFO_IN_TASK
543 	atomic_set(&tsk->stack_refcount, 1);
544 #endif
545 
546 	if (err)
547 		goto free_stack;
548 
549 #ifdef CONFIG_SECCOMP
550 	/*
551 	 * We must handle setting up seccomp filters once we're under
552 	 * the sighand lock in case orig has changed between now and
553 	 * then. Until then, filter must be NULL to avoid messing up
554 	 * the usage counts on the error path calling free_task.
555 	 */
556 	tsk->seccomp.filter = NULL;
557 #endif
558 
559 	setup_thread_stack(tsk, orig);
560 	clear_user_return_notifier(tsk);
561 	clear_tsk_need_resched(tsk);
562 	set_task_stack_end_magic(tsk);
563 
564 #ifdef CONFIG_CC_STACKPROTECTOR
565 	tsk->stack_canary = get_random_canary();
566 #endif
567 
568 	/*
569 	 * One for us, one for whoever does the "release_task()" (usually
570 	 * parent)
571 	 */
572 	atomic_set(&tsk->usage, 2);
573 #ifdef CONFIG_BLK_DEV_IO_TRACE
574 	tsk->btrace_seq = 0;
575 #endif
576 	tsk->splice_pipe = NULL;
577 	tsk->task_frag.page = NULL;
578 	tsk->wake_q.next = NULL;
579 
580 	account_kernel_stack(tsk, 1);
581 
582 	kcov_task_init(tsk);
583 
584 #ifdef CONFIG_FAULT_INJECTION
585 	tsk->fail_nth = 0;
586 #endif
587 
588 	return tsk;
589 
590 free_stack:
591 	free_thread_stack(tsk);
592 free_tsk:
593 	free_task_struct(tsk);
594 	return NULL;
595 }
596 
597 #ifdef CONFIG_MMU
598 static __latent_entropy int dup_mmap(struct mm_struct *mm,
599 					struct mm_struct *oldmm)
600 {
601 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
602 	struct rb_node **rb_link, *rb_parent;
603 	int retval;
604 	unsigned long charge;
605 	LIST_HEAD(uf);
606 
607 	uprobe_start_dup_mmap();
608 	if (down_write_killable(&oldmm->mmap_sem)) {
609 		retval = -EINTR;
610 		goto fail_uprobe_end;
611 	}
612 	flush_cache_dup_mm(oldmm);
613 	uprobe_dup_mmap(oldmm, mm);
614 	/*
615 	 * Not linked in yet - no deadlock potential:
616 	 */
617 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
618 
619 	/* No ordering required: file already has been exposed. */
620 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
621 
622 	mm->total_vm = oldmm->total_vm;
623 	mm->data_vm = oldmm->data_vm;
624 	mm->exec_vm = oldmm->exec_vm;
625 	mm->stack_vm = oldmm->stack_vm;
626 
627 	rb_link = &mm->mm_rb.rb_node;
628 	rb_parent = NULL;
629 	pprev = &mm->mmap;
630 	retval = ksm_fork(mm, oldmm);
631 	if (retval)
632 		goto out;
633 	retval = khugepaged_fork(mm, oldmm);
634 	if (retval)
635 		goto out;
636 
637 	prev = NULL;
638 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
639 		struct file *file;
640 
641 		if (mpnt->vm_flags & VM_DONTCOPY) {
642 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
643 			continue;
644 		}
645 		charge = 0;
646 		if (mpnt->vm_flags & VM_ACCOUNT) {
647 			unsigned long len = vma_pages(mpnt);
648 
649 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
650 				goto fail_nomem;
651 			charge = len;
652 		}
653 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
654 		if (!tmp)
655 			goto fail_nomem;
656 		*tmp = *mpnt;
657 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
658 		retval = vma_dup_policy(mpnt, tmp);
659 		if (retval)
660 			goto fail_nomem_policy;
661 		tmp->vm_mm = mm;
662 		retval = dup_userfaultfd(tmp, &uf);
663 		if (retval)
664 			goto fail_nomem_anon_vma_fork;
665 		if (tmp->vm_flags & VM_WIPEONFORK) {
666 			/* VM_WIPEONFORK gets a clean slate in the child. */
667 			tmp->anon_vma = NULL;
668 			if (anon_vma_prepare(tmp))
669 				goto fail_nomem_anon_vma_fork;
670 		} else if (anon_vma_fork(tmp, mpnt))
671 			goto fail_nomem_anon_vma_fork;
672 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
673 		tmp->vm_next = tmp->vm_prev = NULL;
674 		file = tmp->vm_file;
675 		if (file) {
676 			struct inode *inode = file_inode(file);
677 			struct address_space *mapping = file->f_mapping;
678 
679 			get_file(file);
680 			if (tmp->vm_flags & VM_DENYWRITE)
681 				atomic_dec(&inode->i_writecount);
682 			i_mmap_lock_write(mapping);
683 			if (tmp->vm_flags & VM_SHARED)
684 				atomic_inc(&mapping->i_mmap_writable);
685 			flush_dcache_mmap_lock(mapping);
686 			/* insert tmp into the share list, just after mpnt */
687 			vma_interval_tree_insert_after(tmp, mpnt,
688 					&mapping->i_mmap);
689 			flush_dcache_mmap_unlock(mapping);
690 			i_mmap_unlock_write(mapping);
691 		}
692 
693 		/*
694 		 * Clear hugetlb-related page reserves for children. This only
695 		 * affects MAP_PRIVATE mappings. Faults generated by the child
696 		 * are not guaranteed to succeed, even if read-only
697 		 */
698 		if (is_vm_hugetlb_page(tmp))
699 			reset_vma_resv_huge_pages(tmp);
700 
701 		/*
702 		 * Link in the new vma and copy the page table entries.
703 		 */
704 		*pprev = tmp;
705 		pprev = &tmp->vm_next;
706 		tmp->vm_prev = prev;
707 		prev = tmp;
708 
709 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
710 		rb_link = &tmp->vm_rb.rb_right;
711 		rb_parent = &tmp->vm_rb;
712 
713 		mm->map_count++;
714 		if (!(tmp->vm_flags & VM_WIPEONFORK))
715 			retval = copy_page_range(mm, oldmm, mpnt);
716 
717 		if (tmp->vm_ops && tmp->vm_ops->open)
718 			tmp->vm_ops->open(tmp);
719 
720 		if (retval)
721 			goto out;
722 	}
723 	/* a new mm has just been created */
724 	arch_dup_mmap(oldmm, mm);
725 	retval = 0;
726 out:
727 	up_write(&mm->mmap_sem);
728 	flush_tlb_mm(oldmm);
729 	up_write(&oldmm->mmap_sem);
730 	dup_userfaultfd_complete(&uf);
731 fail_uprobe_end:
732 	uprobe_end_dup_mmap();
733 	return retval;
734 fail_nomem_anon_vma_fork:
735 	mpol_put(vma_policy(tmp));
736 fail_nomem_policy:
737 	kmem_cache_free(vm_area_cachep, tmp);
738 fail_nomem:
739 	retval = -ENOMEM;
740 	vm_unacct_memory(charge);
741 	goto out;
742 }
743 
744 static inline int mm_alloc_pgd(struct mm_struct *mm)
745 {
746 	mm->pgd = pgd_alloc(mm);
747 	if (unlikely(!mm->pgd))
748 		return -ENOMEM;
749 	return 0;
750 }
751 
752 static inline void mm_free_pgd(struct mm_struct *mm)
753 {
754 	pgd_free(mm, mm->pgd);
755 }
756 #else
757 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
758 {
759 	down_write(&oldmm->mmap_sem);
760 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
761 	up_write(&oldmm->mmap_sem);
762 	return 0;
763 }
764 #define mm_alloc_pgd(mm)	(0)
765 #define mm_free_pgd(mm)
766 #endif /* CONFIG_MMU */
767 
768 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
769 
770 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
771 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
772 
773 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
774 
775 static int __init coredump_filter_setup(char *s)
776 {
777 	default_dump_filter =
778 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
779 		MMF_DUMP_FILTER_MASK;
780 	return 1;
781 }
782 
783 __setup("coredump_filter=", coredump_filter_setup);
784 
785 #include <linux/init_task.h>
786 
787 static void mm_init_aio(struct mm_struct *mm)
788 {
789 #ifdef CONFIG_AIO
790 	spin_lock_init(&mm->ioctx_lock);
791 	mm->ioctx_table = NULL;
792 #endif
793 }
794 
795 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
796 {
797 #ifdef CONFIG_MEMCG
798 	mm->owner = p;
799 #endif
800 }
801 
802 static void mm_init_uprobes_state(struct mm_struct *mm)
803 {
804 #ifdef CONFIG_UPROBES
805 	mm->uprobes_state.xol_area = NULL;
806 #endif
807 }
808 
809 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
810 	struct user_namespace *user_ns)
811 {
812 	mm->mmap = NULL;
813 	mm->mm_rb = RB_ROOT;
814 	mm->vmacache_seqnum = 0;
815 	atomic_set(&mm->mm_users, 1);
816 	atomic_set(&mm->mm_count, 1);
817 	init_rwsem(&mm->mmap_sem);
818 	INIT_LIST_HEAD(&mm->mmlist);
819 	mm->core_state = NULL;
820 	atomic_long_set(&mm->nr_ptes, 0);
821 	mm_nr_pmds_init(mm);
822 	mm->map_count = 0;
823 	mm->locked_vm = 0;
824 	mm->pinned_vm = 0;
825 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
826 	spin_lock_init(&mm->page_table_lock);
827 	mm_init_cpumask(mm);
828 	mm_init_aio(mm);
829 	mm_init_owner(mm, p);
830 	RCU_INIT_POINTER(mm->exe_file, NULL);
831 	mmu_notifier_mm_init(mm);
832 	hmm_mm_init(mm);
833 	init_tlb_flush_pending(mm);
834 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
835 	mm->pmd_huge_pte = NULL;
836 #endif
837 	mm_init_uprobes_state(mm);
838 
839 	if (current->mm) {
840 		mm->flags = current->mm->flags & MMF_INIT_MASK;
841 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
842 	} else {
843 		mm->flags = default_dump_filter;
844 		mm->def_flags = 0;
845 	}
846 
847 	if (mm_alloc_pgd(mm))
848 		goto fail_nopgd;
849 
850 	if (init_new_context(p, mm))
851 		goto fail_nocontext;
852 
853 	mm->user_ns = get_user_ns(user_ns);
854 	return mm;
855 
856 fail_nocontext:
857 	mm_free_pgd(mm);
858 fail_nopgd:
859 	free_mm(mm);
860 	return NULL;
861 }
862 
863 static void check_mm(struct mm_struct *mm)
864 {
865 	int i;
866 
867 	for (i = 0; i < NR_MM_COUNTERS; i++) {
868 		long x = atomic_long_read(&mm->rss_stat.count[i]);
869 
870 		if (unlikely(x))
871 			printk(KERN_ALERT "BUG: Bad rss-counter state "
872 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
873 	}
874 
875 	if (atomic_long_read(&mm->nr_ptes))
876 		pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
877 				atomic_long_read(&mm->nr_ptes));
878 	if (mm_nr_pmds(mm))
879 		pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
880 				mm_nr_pmds(mm));
881 
882 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
883 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
884 #endif
885 }
886 
887 /*
888  * Allocate and initialize an mm_struct.
889  */
890 struct mm_struct *mm_alloc(void)
891 {
892 	struct mm_struct *mm;
893 
894 	mm = allocate_mm();
895 	if (!mm)
896 		return NULL;
897 
898 	memset(mm, 0, sizeof(*mm));
899 	return mm_init(mm, current, current_user_ns());
900 }
901 
902 /*
903  * Called when the last reference to the mm
904  * is dropped: either by a lazy thread or by
905  * mmput. Free the page directory and the mm.
906  */
907 void __mmdrop(struct mm_struct *mm)
908 {
909 	BUG_ON(mm == &init_mm);
910 	mm_free_pgd(mm);
911 	destroy_context(mm);
912 	hmm_mm_destroy(mm);
913 	mmu_notifier_mm_destroy(mm);
914 	check_mm(mm);
915 	put_user_ns(mm->user_ns);
916 	free_mm(mm);
917 }
918 EXPORT_SYMBOL_GPL(__mmdrop);
919 
920 static inline void __mmput(struct mm_struct *mm)
921 {
922 	VM_BUG_ON(atomic_read(&mm->mm_users));
923 
924 	uprobe_clear_state(mm);
925 	exit_aio(mm);
926 	ksm_exit(mm);
927 	khugepaged_exit(mm); /* must run before exit_mmap */
928 	exit_mmap(mm);
929 	mm_put_huge_zero_page(mm);
930 	set_mm_exe_file(mm, NULL);
931 	if (!list_empty(&mm->mmlist)) {
932 		spin_lock(&mmlist_lock);
933 		list_del(&mm->mmlist);
934 		spin_unlock(&mmlist_lock);
935 	}
936 	if (mm->binfmt)
937 		module_put(mm->binfmt->module);
938 	mmdrop(mm);
939 }
940 
941 /*
942  * Decrement the use count and release all resources for an mm.
943  */
944 void mmput(struct mm_struct *mm)
945 {
946 	might_sleep();
947 
948 	if (atomic_dec_and_test(&mm->mm_users))
949 		__mmput(mm);
950 }
951 EXPORT_SYMBOL_GPL(mmput);
952 
953 #ifdef CONFIG_MMU
954 static void mmput_async_fn(struct work_struct *work)
955 {
956 	struct mm_struct *mm = container_of(work, struct mm_struct,
957 					    async_put_work);
958 
959 	__mmput(mm);
960 }
961 
962 void mmput_async(struct mm_struct *mm)
963 {
964 	if (atomic_dec_and_test(&mm->mm_users)) {
965 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
966 		schedule_work(&mm->async_put_work);
967 	}
968 }
969 #endif
970 
971 /**
972  * set_mm_exe_file - change a reference to the mm's executable file
973  *
974  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
975  *
976  * Main users are mmput() and sys_execve(). Callers prevent concurrent
977  * invocations: in mmput() nobody alive left, in execve task is single
978  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
979  * mm->exe_file, but does so without using set_mm_exe_file() in order
980  * to do avoid the need for any locks.
981  */
982 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
983 {
984 	struct file *old_exe_file;
985 
986 	/*
987 	 * It is safe to dereference the exe_file without RCU as
988 	 * this function is only called if nobody else can access
989 	 * this mm -- see comment above for justification.
990 	 */
991 	old_exe_file = rcu_dereference_raw(mm->exe_file);
992 
993 	if (new_exe_file)
994 		get_file(new_exe_file);
995 	rcu_assign_pointer(mm->exe_file, new_exe_file);
996 	if (old_exe_file)
997 		fput(old_exe_file);
998 }
999 
1000 /**
1001  * get_mm_exe_file - acquire a reference to the mm's executable file
1002  *
1003  * Returns %NULL if mm has no associated executable file.
1004  * User must release file via fput().
1005  */
1006 struct file *get_mm_exe_file(struct mm_struct *mm)
1007 {
1008 	struct file *exe_file;
1009 
1010 	rcu_read_lock();
1011 	exe_file = rcu_dereference(mm->exe_file);
1012 	if (exe_file && !get_file_rcu(exe_file))
1013 		exe_file = NULL;
1014 	rcu_read_unlock();
1015 	return exe_file;
1016 }
1017 EXPORT_SYMBOL(get_mm_exe_file);
1018 
1019 /**
1020  * get_task_exe_file - acquire a reference to the task's executable file
1021  *
1022  * Returns %NULL if task's mm (if any) has no associated executable file or
1023  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1024  * User must release file via fput().
1025  */
1026 struct file *get_task_exe_file(struct task_struct *task)
1027 {
1028 	struct file *exe_file = NULL;
1029 	struct mm_struct *mm;
1030 
1031 	task_lock(task);
1032 	mm = task->mm;
1033 	if (mm) {
1034 		if (!(task->flags & PF_KTHREAD))
1035 			exe_file = get_mm_exe_file(mm);
1036 	}
1037 	task_unlock(task);
1038 	return exe_file;
1039 }
1040 EXPORT_SYMBOL(get_task_exe_file);
1041 
1042 /**
1043  * get_task_mm - acquire a reference to the task's mm
1044  *
1045  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1046  * this kernel workthread has transiently adopted a user mm with use_mm,
1047  * to do its AIO) is not set and if so returns a reference to it, after
1048  * bumping up the use count.  User must release the mm via mmput()
1049  * after use.  Typically used by /proc and ptrace.
1050  */
1051 struct mm_struct *get_task_mm(struct task_struct *task)
1052 {
1053 	struct mm_struct *mm;
1054 
1055 	task_lock(task);
1056 	mm = task->mm;
1057 	if (mm) {
1058 		if (task->flags & PF_KTHREAD)
1059 			mm = NULL;
1060 		else
1061 			mmget(mm);
1062 	}
1063 	task_unlock(task);
1064 	return mm;
1065 }
1066 EXPORT_SYMBOL_GPL(get_task_mm);
1067 
1068 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1069 {
1070 	struct mm_struct *mm;
1071 	int err;
1072 
1073 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1074 	if (err)
1075 		return ERR_PTR(err);
1076 
1077 	mm = get_task_mm(task);
1078 	if (mm && mm != current->mm &&
1079 			!ptrace_may_access(task, mode)) {
1080 		mmput(mm);
1081 		mm = ERR_PTR(-EACCES);
1082 	}
1083 	mutex_unlock(&task->signal->cred_guard_mutex);
1084 
1085 	return mm;
1086 }
1087 
1088 static void complete_vfork_done(struct task_struct *tsk)
1089 {
1090 	struct completion *vfork;
1091 
1092 	task_lock(tsk);
1093 	vfork = tsk->vfork_done;
1094 	if (likely(vfork)) {
1095 		tsk->vfork_done = NULL;
1096 		complete(vfork);
1097 	}
1098 	task_unlock(tsk);
1099 }
1100 
1101 static int wait_for_vfork_done(struct task_struct *child,
1102 				struct completion *vfork)
1103 {
1104 	int killed;
1105 
1106 	freezer_do_not_count();
1107 	killed = wait_for_completion_killable(vfork);
1108 	freezer_count();
1109 
1110 	if (killed) {
1111 		task_lock(child);
1112 		child->vfork_done = NULL;
1113 		task_unlock(child);
1114 	}
1115 
1116 	put_task_struct(child);
1117 	return killed;
1118 }
1119 
1120 /* Please note the differences between mmput and mm_release.
1121  * mmput is called whenever we stop holding onto a mm_struct,
1122  * error success whatever.
1123  *
1124  * mm_release is called after a mm_struct has been removed
1125  * from the current process.
1126  *
1127  * This difference is important for error handling, when we
1128  * only half set up a mm_struct for a new process and need to restore
1129  * the old one.  Because we mmput the new mm_struct before
1130  * restoring the old one. . .
1131  * Eric Biederman 10 January 1998
1132  */
1133 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1134 {
1135 	/* Get rid of any futexes when releasing the mm */
1136 #ifdef CONFIG_FUTEX
1137 	if (unlikely(tsk->robust_list)) {
1138 		exit_robust_list(tsk);
1139 		tsk->robust_list = NULL;
1140 	}
1141 #ifdef CONFIG_COMPAT
1142 	if (unlikely(tsk->compat_robust_list)) {
1143 		compat_exit_robust_list(tsk);
1144 		tsk->compat_robust_list = NULL;
1145 	}
1146 #endif
1147 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1148 		exit_pi_state_list(tsk);
1149 #endif
1150 
1151 	uprobe_free_utask(tsk);
1152 
1153 	/* Get rid of any cached register state */
1154 	deactivate_mm(tsk, mm);
1155 
1156 	/*
1157 	 * Signal userspace if we're not exiting with a core dump
1158 	 * because we want to leave the value intact for debugging
1159 	 * purposes.
1160 	 */
1161 	if (tsk->clear_child_tid) {
1162 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1163 		    atomic_read(&mm->mm_users) > 1) {
1164 			/*
1165 			 * We don't check the error code - if userspace has
1166 			 * not set up a proper pointer then tough luck.
1167 			 */
1168 			put_user(0, tsk->clear_child_tid);
1169 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1170 					1, NULL, NULL, 0);
1171 		}
1172 		tsk->clear_child_tid = NULL;
1173 	}
1174 
1175 	/*
1176 	 * All done, finally we can wake up parent and return this mm to him.
1177 	 * Also kthread_stop() uses this completion for synchronization.
1178 	 */
1179 	if (tsk->vfork_done)
1180 		complete_vfork_done(tsk);
1181 }
1182 
1183 /*
1184  * Allocate a new mm structure and copy contents from the
1185  * mm structure of the passed in task structure.
1186  */
1187 static struct mm_struct *dup_mm(struct task_struct *tsk)
1188 {
1189 	struct mm_struct *mm, *oldmm = current->mm;
1190 	int err;
1191 
1192 	mm = allocate_mm();
1193 	if (!mm)
1194 		goto fail_nomem;
1195 
1196 	memcpy(mm, oldmm, sizeof(*mm));
1197 
1198 	if (!mm_init(mm, tsk, mm->user_ns))
1199 		goto fail_nomem;
1200 
1201 	err = dup_mmap(mm, oldmm);
1202 	if (err)
1203 		goto free_pt;
1204 
1205 	mm->hiwater_rss = get_mm_rss(mm);
1206 	mm->hiwater_vm = mm->total_vm;
1207 
1208 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1209 		goto free_pt;
1210 
1211 	return mm;
1212 
1213 free_pt:
1214 	/* don't put binfmt in mmput, we haven't got module yet */
1215 	mm->binfmt = NULL;
1216 	mmput(mm);
1217 
1218 fail_nomem:
1219 	return NULL;
1220 }
1221 
1222 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1223 {
1224 	struct mm_struct *mm, *oldmm;
1225 	int retval;
1226 
1227 	tsk->min_flt = tsk->maj_flt = 0;
1228 	tsk->nvcsw = tsk->nivcsw = 0;
1229 #ifdef CONFIG_DETECT_HUNG_TASK
1230 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1231 #endif
1232 
1233 	tsk->mm = NULL;
1234 	tsk->active_mm = NULL;
1235 
1236 	/*
1237 	 * Are we cloning a kernel thread?
1238 	 *
1239 	 * We need to steal a active VM for that..
1240 	 */
1241 	oldmm = current->mm;
1242 	if (!oldmm)
1243 		return 0;
1244 
1245 	/* initialize the new vmacache entries */
1246 	vmacache_flush(tsk);
1247 
1248 	if (clone_flags & CLONE_VM) {
1249 		mmget(oldmm);
1250 		mm = oldmm;
1251 		goto good_mm;
1252 	}
1253 
1254 	retval = -ENOMEM;
1255 	mm = dup_mm(tsk);
1256 	if (!mm)
1257 		goto fail_nomem;
1258 
1259 good_mm:
1260 	tsk->mm = mm;
1261 	tsk->active_mm = mm;
1262 	return 0;
1263 
1264 fail_nomem:
1265 	return retval;
1266 }
1267 
1268 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1269 {
1270 	struct fs_struct *fs = current->fs;
1271 	if (clone_flags & CLONE_FS) {
1272 		/* tsk->fs is already what we want */
1273 		spin_lock(&fs->lock);
1274 		if (fs->in_exec) {
1275 			spin_unlock(&fs->lock);
1276 			return -EAGAIN;
1277 		}
1278 		fs->users++;
1279 		spin_unlock(&fs->lock);
1280 		return 0;
1281 	}
1282 	tsk->fs = copy_fs_struct(fs);
1283 	if (!tsk->fs)
1284 		return -ENOMEM;
1285 	return 0;
1286 }
1287 
1288 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1289 {
1290 	struct files_struct *oldf, *newf;
1291 	int error = 0;
1292 
1293 	/*
1294 	 * A background process may not have any files ...
1295 	 */
1296 	oldf = current->files;
1297 	if (!oldf)
1298 		goto out;
1299 
1300 	if (clone_flags & CLONE_FILES) {
1301 		atomic_inc(&oldf->count);
1302 		goto out;
1303 	}
1304 
1305 	newf = dup_fd(oldf, &error);
1306 	if (!newf)
1307 		goto out;
1308 
1309 	tsk->files = newf;
1310 	error = 0;
1311 out:
1312 	return error;
1313 }
1314 
1315 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1316 {
1317 #ifdef CONFIG_BLOCK
1318 	struct io_context *ioc = current->io_context;
1319 	struct io_context *new_ioc;
1320 
1321 	if (!ioc)
1322 		return 0;
1323 	/*
1324 	 * Share io context with parent, if CLONE_IO is set
1325 	 */
1326 	if (clone_flags & CLONE_IO) {
1327 		ioc_task_link(ioc);
1328 		tsk->io_context = ioc;
1329 	} else if (ioprio_valid(ioc->ioprio)) {
1330 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1331 		if (unlikely(!new_ioc))
1332 			return -ENOMEM;
1333 
1334 		new_ioc->ioprio = ioc->ioprio;
1335 		put_io_context(new_ioc);
1336 	}
1337 #endif
1338 	return 0;
1339 }
1340 
1341 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1342 {
1343 	struct sighand_struct *sig;
1344 
1345 	if (clone_flags & CLONE_SIGHAND) {
1346 		atomic_inc(&current->sighand->count);
1347 		return 0;
1348 	}
1349 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1350 	rcu_assign_pointer(tsk->sighand, sig);
1351 	if (!sig)
1352 		return -ENOMEM;
1353 
1354 	atomic_set(&sig->count, 1);
1355 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1356 	return 0;
1357 }
1358 
1359 void __cleanup_sighand(struct sighand_struct *sighand)
1360 {
1361 	if (atomic_dec_and_test(&sighand->count)) {
1362 		signalfd_cleanup(sighand);
1363 		/*
1364 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1365 		 * without an RCU grace period, see __lock_task_sighand().
1366 		 */
1367 		kmem_cache_free(sighand_cachep, sighand);
1368 	}
1369 }
1370 
1371 #ifdef CONFIG_POSIX_TIMERS
1372 /*
1373  * Initialize POSIX timer handling for a thread group.
1374  */
1375 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1376 {
1377 	unsigned long cpu_limit;
1378 
1379 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1380 	if (cpu_limit != RLIM_INFINITY) {
1381 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1382 		sig->cputimer.running = true;
1383 	}
1384 
1385 	/* The timer lists. */
1386 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1387 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1388 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1389 }
1390 #else
1391 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1392 #endif
1393 
1394 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1395 {
1396 	struct signal_struct *sig;
1397 
1398 	if (clone_flags & CLONE_THREAD)
1399 		return 0;
1400 
1401 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1402 	tsk->signal = sig;
1403 	if (!sig)
1404 		return -ENOMEM;
1405 
1406 	sig->nr_threads = 1;
1407 	atomic_set(&sig->live, 1);
1408 	atomic_set(&sig->sigcnt, 1);
1409 
1410 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1411 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1412 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1413 
1414 	init_waitqueue_head(&sig->wait_chldexit);
1415 	sig->curr_target = tsk;
1416 	init_sigpending(&sig->shared_pending);
1417 	seqlock_init(&sig->stats_lock);
1418 	prev_cputime_init(&sig->prev_cputime);
1419 
1420 #ifdef CONFIG_POSIX_TIMERS
1421 	INIT_LIST_HEAD(&sig->posix_timers);
1422 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1423 	sig->real_timer.function = it_real_fn;
1424 #endif
1425 
1426 	task_lock(current->group_leader);
1427 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1428 	task_unlock(current->group_leader);
1429 
1430 	posix_cpu_timers_init_group(sig);
1431 
1432 	tty_audit_fork(sig);
1433 	sched_autogroup_fork(sig);
1434 
1435 	sig->oom_score_adj = current->signal->oom_score_adj;
1436 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1437 
1438 	mutex_init(&sig->cred_guard_mutex);
1439 
1440 	return 0;
1441 }
1442 
1443 static void copy_seccomp(struct task_struct *p)
1444 {
1445 #ifdef CONFIG_SECCOMP
1446 	/*
1447 	 * Must be called with sighand->lock held, which is common to
1448 	 * all threads in the group. Holding cred_guard_mutex is not
1449 	 * needed because this new task is not yet running and cannot
1450 	 * be racing exec.
1451 	 */
1452 	assert_spin_locked(&current->sighand->siglock);
1453 
1454 	/* Ref-count the new filter user, and assign it. */
1455 	get_seccomp_filter(current);
1456 	p->seccomp = current->seccomp;
1457 
1458 	/*
1459 	 * Explicitly enable no_new_privs here in case it got set
1460 	 * between the task_struct being duplicated and holding the
1461 	 * sighand lock. The seccomp state and nnp must be in sync.
1462 	 */
1463 	if (task_no_new_privs(current))
1464 		task_set_no_new_privs(p);
1465 
1466 	/*
1467 	 * If the parent gained a seccomp mode after copying thread
1468 	 * flags and between before we held the sighand lock, we have
1469 	 * to manually enable the seccomp thread flag here.
1470 	 */
1471 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1472 		set_tsk_thread_flag(p, TIF_SECCOMP);
1473 #endif
1474 }
1475 
1476 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1477 {
1478 	current->clear_child_tid = tidptr;
1479 
1480 	return task_pid_vnr(current);
1481 }
1482 
1483 static void rt_mutex_init_task(struct task_struct *p)
1484 {
1485 	raw_spin_lock_init(&p->pi_lock);
1486 #ifdef CONFIG_RT_MUTEXES
1487 	p->pi_waiters = RB_ROOT_CACHED;
1488 	p->pi_top_task = NULL;
1489 	p->pi_blocked_on = NULL;
1490 #endif
1491 }
1492 
1493 #ifdef CONFIG_POSIX_TIMERS
1494 /*
1495  * Initialize POSIX timer handling for a single task.
1496  */
1497 static void posix_cpu_timers_init(struct task_struct *tsk)
1498 {
1499 	tsk->cputime_expires.prof_exp = 0;
1500 	tsk->cputime_expires.virt_exp = 0;
1501 	tsk->cputime_expires.sched_exp = 0;
1502 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1503 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1504 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1505 }
1506 #else
1507 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1508 #endif
1509 
1510 static inline void
1511 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1512 {
1513 	 task->pids[type].pid = pid;
1514 }
1515 
1516 static inline void rcu_copy_process(struct task_struct *p)
1517 {
1518 #ifdef CONFIG_PREEMPT_RCU
1519 	p->rcu_read_lock_nesting = 0;
1520 	p->rcu_read_unlock_special.s = 0;
1521 	p->rcu_blocked_node = NULL;
1522 	INIT_LIST_HEAD(&p->rcu_node_entry);
1523 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1524 #ifdef CONFIG_TASKS_RCU
1525 	p->rcu_tasks_holdout = false;
1526 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1527 	p->rcu_tasks_idle_cpu = -1;
1528 #endif /* #ifdef CONFIG_TASKS_RCU */
1529 }
1530 
1531 /*
1532  * This creates a new process as a copy of the old one,
1533  * but does not actually start it yet.
1534  *
1535  * It copies the registers, and all the appropriate
1536  * parts of the process environment (as per the clone
1537  * flags). The actual kick-off is left to the caller.
1538  */
1539 static __latent_entropy struct task_struct *copy_process(
1540 					unsigned long clone_flags,
1541 					unsigned long stack_start,
1542 					unsigned long stack_size,
1543 					int __user *child_tidptr,
1544 					struct pid *pid,
1545 					int trace,
1546 					unsigned long tls,
1547 					int node)
1548 {
1549 	int retval;
1550 	struct task_struct *p;
1551 
1552 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1553 		return ERR_PTR(-EINVAL);
1554 
1555 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1556 		return ERR_PTR(-EINVAL);
1557 
1558 	/*
1559 	 * Thread groups must share signals as well, and detached threads
1560 	 * can only be started up within the thread group.
1561 	 */
1562 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1563 		return ERR_PTR(-EINVAL);
1564 
1565 	/*
1566 	 * Shared signal handlers imply shared VM. By way of the above,
1567 	 * thread groups also imply shared VM. Blocking this case allows
1568 	 * for various simplifications in other code.
1569 	 */
1570 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1571 		return ERR_PTR(-EINVAL);
1572 
1573 	/*
1574 	 * Siblings of global init remain as zombies on exit since they are
1575 	 * not reaped by their parent (swapper). To solve this and to avoid
1576 	 * multi-rooted process trees, prevent global and container-inits
1577 	 * from creating siblings.
1578 	 */
1579 	if ((clone_flags & CLONE_PARENT) &&
1580 				current->signal->flags & SIGNAL_UNKILLABLE)
1581 		return ERR_PTR(-EINVAL);
1582 
1583 	/*
1584 	 * If the new process will be in a different pid or user namespace
1585 	 * do not allow it to share a thread group with the forking task.
1586 	 */
1587 	if (clone_flags & CLONE_THREAD) {
1588 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1589 		    (task_active_pid_ns(current) !=
1590 				current->nsproxy->pid_ns_for_children))
1591 			return ERR_PTR(-EINVAL);
1592 	}
1593 
1594 	retval = -ENOMEM;
1595 	p = dup_task_struct(current, node);
1596 	if (!p)
1597 		goto fork_out;
1598 
1599 	/*
1600 	 * This _must_ happen before we call free_task(), i.e. before we jump
1601 	 * to any of the bad_fork_* labels. This is to avoid freeing
1602 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1603 	 * kernel threads (PF_KTHREAD).
1604 	 */
1605 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1606 	/*
1607 	 * Clear TID on mm_release()?
1608 	 */
1609 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1610 
1611 	ftrace_graph_init_task(p);
1612 
1613 	rt_mutex_init_task(p);
1614 
1615 #ifdef CONFIG_PROVE_LOCKING
1616 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1617 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1618 #endif
1619 	retval = -EAGAIN;
1620 	if (atomic_read(&p->real_cred->user->processes) >=
1621 			task_rlimit(p, RLIMIT_NPROC)) {
1622 		if (p->real_cred->user != INIT_USER &&
1623 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1624 			goto bad_fork_free;
1625 	}
1626 	current->flags &= ~PF_NPROC_EXCEEDED;
1627 
1628 	retval = copy_creds(p, clone_flags);
1629 	if (retval < 0)
1630 		goto bad_fork_free;
1631 
1632 	/*
1633 	 * If multiple threads are within copy_process(), then this check
1634 	 * triggers too late. This doesn't hurt, the check is only there
1635 	 * to stop root fork bombs.
1636 	 */
1637 	retval = -EAGAIN;
1638 	if (nr_threads >= max_threads)
1639 		goto bad_fork_cleanup_count;
1640 
1641 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1642 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1643 	p->flags |= PF_FORKNOEXEC;
1644 	INIT_LIST_HEAD(&p->children);
1645 	INIT_LIST_HEAD(&p->sibling);
1646 	rcu_copy_process(p);
1647 	p->vfork_done = NULL;
1648 	spin_lock_init(&p->alloc_lock);
1649 
1650 	init_sigpending(&p->pending);
1651 
1652 	p->utime = p->stime = p->gtime = 0;
1653 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1654 	p->utimescaled = p->stimescaled = 0;
1655 #endif
1656 	prev_cputime_init(&p->prev_cputime);
1657 
1658 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1659 	seqcount_init(&p->vtime.seqcount);
1660 	p->vtime.starttime = 0;
1661 	p->vtime.state = VTIME_INACTIVE;
1662 #endif
1663 
1664 #if defined(SPLIT_RSS_COUNTING)
1665 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1666 #endif
1667 
1668 	p->default_timer_slack_ns = current->timer_slack_ns;
1669 
1670 	task_io_accounting_init(&p->ioac);
1671 	acct_clear_integrals(p);
1672 
1673 	posix_cpu_timers_init(p);
1674 
1675 	p->start_time = ktime_get_ns();
1676 	p->real_start_time = ktime_get_boot_ns();
1677 	p->io_context = NULL;
1678 	p->audit_context = NULL;
1679 	cgroup_fork(p);
1680 #ifdef CONFIG_NUMA
1681 	p->mempolicy = mpol_dup(p->mempolicy);
1682 	if (IS_ERR(p->mempolicy)) {
1683 		retval = PTR_ERR(p->mempolicy);
1684 		p->mempolicy = NULL;
1685 		goto bad_fork_cleanup_threadgroup_lock;
1686 	}
1687 #endif
1688 #ifdef CONFIG_CPUSETS
1689 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1690 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1691 	seqcount_init(&p->mems_allowed_seq);
1692 #endif
1693 #ifdef CONFIG_TRACE_IRQFLAGS
1694 	p->irq_events = 0;
1695 	p->hardirqs_enabled = 0;
1696 	p->hardirq_enable_ip = 0;
1697 	p->hardirq_enable_event = 0;
1698 	p->hardirq_disable_ip = _THIS_IP_;
1699 	p->hardirq_disable_event = 0;
1700 	p->softirqs_enabled = 1;
1701 	p->softirq_enable_ip = _THIS_IP_;
1702 	p->softirq_enable_event = 0;
1703 	p->softirq_disable_ip = 0;
1704 	p->softirq_disable_event = 0;
1705 	p->hardirq_context = 0;
1706 	p->softirq_context = 0;
1707 #endif
1708 
1709 	p->pagefault_disabled = 0;
1710 
1711 #ifdef CONFIG_LOCKDEP
1712 	p->lockdep_depth = 0; /* no locks held yet */
1713 	p->curr_chain_key = 0;
1714 	p->lockdep_recursion = 0;
1715 	lockdep_init_task(p);
1716 #endif
1717 
1718 #ifdef CONFIG_DEBUG_MUTEXES
1719 	p->blocked_on = NULL; /* not blocked yet */
1720 #endif
1721 #ifdef CONFIG_BCACHE
1722 	p->sequential_io	= 0;
1723 	p->sequential_io_avg	= 0;
1724 #endif
1725 
1726 	/* Perform scheduler related setup. Assign this task to a CPU. */
1727 	retval = sched_fork(clone_flags, p);
1728 	if (retval)
1729 		goto bad_fork_cleanup_policy;
1730 
1731 	retval = perf_event_init_task(p);
1732 	if (retval)
1733 		goto bad_fork_cleanup_policy;
1734 	retval = audit_alloc(p);
1735 	if (retval)
1736 		goto bad_fork_cleanup_perf;
1737 	/* copy all the process information */
1738 	shm_init_task(p);
1739 	retval = security_task_alloc(p, clone_flags);
1740 	if (retval)
1741 		goto bad_fork_cleanup_audit;
1742 	retval = copy_semundo(clone_flags, p);
1743 	if (retval)
1744 		goto bad_fork_cleanup_security;
1745 	retval = copy_files(clone_flags, p);
1746 	if (retval)
1747 		goto bad_fork_cleanup_semundo;
1748 	retval = copy_fs(clone_flags, p);
1749 	if (retval)
1750 		goto bad_fork_cleanup_files;
1751 	retval = copy_sighand(clone_flags, p);
1752 	if (retval)
1753 		goto bad_fork_cleanup_fs;
1754 	retval = copy_signal(clone_flags, p);
1755 	if (retval)
1756 		goto bad_fork_cleanup_sighand;
1757 	retval = copy_mm(clone_flags, p);
1758 	if (retval)
1759 		goto bad_fork_cleanup_signal;
1760 	retval = copy_namespaces(clone_flags, p);
1761 	if (retval)
1762 		goto bad_fork_cleanup_mm;
1763 	retval = copy_io(clone_flags, p);
1764 	if (retval)
1765 		goto bad_fork_cleanup_namespaces;
1766 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1767 	if (retval)
1768 		goto bad_fork_cleanup_io;
1769 
1770 	if (pid != &init_struct_pid) {
1771 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1772 		if (IS_ERR(pid)) {
1773 			retval = PTR_ERR(pid);
1774 			goto bad_fork_cleanup_thread;
1775 		}
1776 	}
1777 
1778 #ifdef CONFIG_BLOCK
1779 	p->plug = NULL;
1780 #endif
1781 #ifdef CONFIG_FUTEX
1782 	p->robust_list = NULL;
1783 #ifdef CONFIG_COMPAT
1784 	p->compat_robust_list = NULL;
1785 #endif
1786 	INIT_LIST_HEAD(&p->pi_state_list);
1787 	p->pi_state_cache = NULL;
1788 #endif
1789 	/*
1790 	 * sigaltstack should be cleared when sharing the same VM
1791 	 */
1792 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1793 		sas_ss_reset(p);
1794 
1795 	/*
1796 	 * Syscall tracing and stepping should be turned off in the
1797 	 * child regardless of CLONE_PTRACE.
1798 	 */
1799 	user_disable_single_step(p);
1800 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1801 #ifdef TIF_SYSCALL_EMU
1802 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1803 #endif
1804 	clear_all_latency_tracing(p);
1805 
1806 	/* ok, now we should be set up.. */
1807 	p->pid = pid_nr(pid);
1808 	if (clone_flags & CLONE_THREAD) {
1809 		p->exit_signal = -1;
1810 		p->group_leader = current->group_leader;
1811 		p->tgid = current->tgid;
1812 	} else {
1813 		if (clone_flags & CLONE_PARENT)
1814 			p->exit_signal = current->group_leader->exit_signal;
1815 		else
1816 			p->exit_signal = (clone_flags & CSIGNAL);
1817 		p->group_leader = p;
1818 		p->tgid = p->pid;
1819 	}
1820 
1821 	p->nr_dirtied = 0;
1822 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1823 	p->dirty_paused_when = 0;
1824 
1825 	p->pdeath_signal = 0;
1826 	INIT_LIST_HEAD(&p->thread_group);
1827 	p->task_works = NULL;
1828 
1829 	cgroup_threadgroup_change_begin(current);
1830 	/*
1831 	 * Ensure that the cgroup subsystem policies allow the new process to be
1832 	 * forked. It should be noted the the new process's css_set can be changed
1833 	 * between here and cgroup_post_fork() if an organisation operation is in
1834 	 * progress.
1835 	 */
1836 	retval = cgroup_can_fork(p);
1837 	if (retval)
1838 		goto bad_fork_free_pid;
1839 
1840 	/*
1841 	 * Make it visible to the rest of the system, but dont wake it up yet.
1842 	 * Need tasklist lock for parent etc handling!
1843 	 */
1844 	write_lock_irq(&tasklist_lock);
1845 
1846 	/* CLONE_PARENT re-uses the old parent */
1847 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1848 		p->real_parent = current->real_parent;
1849 		p->parent_exec_id = current->parent_exec_id;
1850 	} else {
1851 		p->real_parent = current;
1852 		p->parent_exec_id = current->self_exec_id;
1853 	}
1854 
1855 	klp_copy_process(p);
1856 
1857 	spin_lock(&current->sighand->siglock);
1858 
1859 	/*
1860 	 * Copy seccomp details explicitly here, in case they were changed
1861 	 * before holding sighand lock.
1862 	 */
1863 	copy_seccomp(p);
1864 
1865 	/*
1866 	 * Process group and session signals need to be delivered to just the
1867 	 * parent before the fork or both the parent and the child after the
1868 	 * fork. Restart if a signal comes in before we add the new process to
1869 	 * it's process group.
1870 	 * A fatal signal pending means that current will exit, so the new
1871 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1872 	*/
1873 	recalc_sigpending();
1874 	if (signal_pending(current)) {
1875 		retval = -ERESTARTNOINTR;
1876 		goto bad_fork_cancel_cgroup;
1877 	}
1878 	if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1879 		retval = -ENOMEM;
1880 		goto bad_fork_cancel_cgroup;
1881 	}
1882 
1883 	if (likely(p->pid)) {
1884 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1885 
1886 		init_task_pid(p, PIDTYPE_PID, pid);
1887 		if (thread_group_leader(p)) {
1888 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1889 			init_task_pid(p, PIDTYPE_SID, task_session(current));
1890 
1891 			if (is_child_reaper(pid)) {
1892 				ns_of_pid(pid)->child_reaper = p;
1893 				p->signal->flags |= SIGNAL_UNKILLABLE;
1894 			}
1895 
1896 			p->signal->leader_pid = pid;
1897 			p->signal->tty = tty_kref_get(current->signal->tty);
1898 			/*
1899 			 * Inherit has_child_subreaper flag under the same
1900 			 * tasklist_lock with adding child to the process tree
1901 			 * for propagate_has_child_subreaper optimization.
1902 			 */
1903 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1904 							 p->real_parent->signal->is_child_subreaper;
1905 			list_add_tail(&p->sibling, &p->real_parent->children);
1906 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1907 			attach_pid(p, PIDTYPE_PGID);
1908 			attach_pid(p, PIDTYPE_SID);
1909 			__this_cpu_inc(process_counts);
1910 		} else {
1911 			current->signal->nr_threads++;
1912 			atomic_inc(&current->signal->live);
1913 			atomic_inc(&current->signal->sigcnt);
1914 			list_add_tail_rcu(&p->thread_group,
1915 					  &p->group_leader->thread_group);
1916 			list_add_tail_rcu(&p->thread_node,
1917 					  &p->signal->thread_head);
1918 		}
1919 		attach_pid(p, PIDTYPE_PID);
1920 		nr_threads++;
1921 	}
1922 
1923 	total_forks++;
1924 	spin_unlock(&current->sighand->siglock);
1925 	syscall_tracepoint_update(p);
1926 	write_unlock_irq(&tasklist_lock);
1927 
1928 	proc_fork_connector(p);
1929 	cgroup_post_fork(p);
1930 	cgroup_threadgroup_change_end(current);
1931 	perf_event_fork(p);
1932 
1933 	trace_task_newtask(p, clone_flags);
1934 	uprobe_copy_process(p, clone_flags);
1935 
1936 	return p;
1937 
1938 bad_fork_cancel_cgroup:
1939 	spin_unlock(&current->sighand->siglock);
1940 	write_unlock_irq(&tasklist_lock);
1941 	cgroup_cancel_fork(p);
1942 bad_fork_free_pid:
1943 	cgroup_threadgroup_change_end(current);
1944 	if (pid != &init_struct_pid)
1945 		free_pid(pid);
1946 bad_fork_cleanup_thread:
1947 	exit_thread(p);
1948 bad_fork_cleanup_io:
1949 	if (p->io_context)
1950 		exit_io_context(p);
1951 bad_fork_cleanup_namespaces:
1952 	exit_task_namespaces(p);
1953 bad_fork_cleanup_mm:
1954 	if (p->mm)
1955 		mmput(p->mm);
1956 bad_fork_cleanup_signal:
1957 	if (!(clone_flags & CLONE_THREAD))
1958 		free_signal_struct(p->signal);
1959 bad_fork_cleanup_sighand:
1960 	__cleanup_sighand(p->sighand);
1961 bad_fork_cleanup_fs:
1962 	exit_fs(p); /* blocking */
1963 bad_fork_cleanup_files:
1964 	exit_files(p); /* blocking */
1965 bad_fork_cleanup_semundo:
1966 	exit_sem(p);
1967 bad_fork_cleanup_security:
1968 	security_task_free(p);
1969 bad_fork_cleanup_audit:
1970 	audit_free(p);
1971 bad_fork_cleanup_perf:
1972 	perf_event_free_task(p);
1973 bad_fork_cleanup_policy:
1974 	lockdep_free_task(p);
1975 #ifdef CONFIG_NUMA
1976 	mpol_put(p->mempolicy);
1977 bad_fork_cleanup_threadgroup_lock:
1978 #endif
1979 	delayacct_tsk_free(p);
1980 bad_fork_cleanup_count:
1981 	atomic_dec(&p->cred->user->processes);
1982 	exit_creds(p);
1983 bad_fork_free:
1984 	p->state = TASK_DEAD;
1985 	put_task_stack(p);
1986 	free_task(p);
1987 fork_out:
1988 	return ERR_PTR(retval);
1989 }
1990 
1991 static inline void init_idle_pids(struct pid_link *links)
1992 {
1993 	enum pid_type type;
1994 
1995 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1996 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1997 		links[type].pid = &init_struct_pid;
1998 	}
1999 }
2000 
2001 struct task_struct *fork_idle(int cpu)
2002 {
2003 	struct task_struct *task;
2004 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2005 			    cpu_to_node(cpu));
2006 	if (!IS_ERR(task)) {
2007 		init_idle_pids(task->pids);
2008 		init_idle(task, cpu);
2009 	}
2010 
2011 	return task;
2012 }
2013 
2014 /*
2015  *  Ok, this is the main fork-routine.
2016  *
2017  * It copies the process, and if successful kick-starts
2018  * it and waits for it to finish using the VM if required.
2019  */
2020 long _do_fork(unsigned long clone_flags,
2021 	      unsigned long stack_start,
2022 	      unsigned long stack_size,
2023 	      int __user *parent_tidptr,
2024 	      int __user *child_tidptr,
2025 	      unsigned long tls)
2026 {
2027 	struct task_struct *p;
2028 	int trace = 0;
2029 	long nr;
2030 
2031 	/*
2032 	 * Determine whether and which event to report to ptracer.  When
2033 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2034 	 * requested, no event is reported; otherwise, report if the event
2035 	 * for the type of forking is enabled.
2036 	 */
2037 	if (!(clone_flags & CLONE_UNTRACED)) {
2038 		if (clone_flags & CLONE_VFORK)
2039 			trace = PTRACE_EVENT_VFORK;
2040 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2041 			trace = PTRACE_EVENT_CLONE;
2042 		else
2043 			trace = PTRACE_EVENT_FORK;
2044 
2045 		if (likely(!ptrace_event_enabled(current, trace)))
2046 			trace = 0;
2047 	}
2048 
2049 	p = copy_process(clone_flags, stack_start, stack_size,
2050 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2051 	add_latent_entropy();
2052 	/*
2053 	 * Do this prior waking up the new thread - the thread pointer
2054 	 * might get invalid after that point, if the thread exits quickly.
2055 	 */
2056 	if (!IS_ERR(p)) {
2057 		struct completion vfork;
2058 		struct pid *pid;
2059 
2060 		trace_sched_process_fork(current, p);
2061 
2062 		pid = get_task_pid(p, PIDTYPE_PID);
2063 		nr = pid_vnr(pid);
2064 
2065 		if (clone_flags & CLONE_PARENT_SETTID)
2066 			put_user(nr, parent_tidptr);
2067 
2068 		if (clone_flags & CLONE_VFORK) {
2069 			p->vfork_done = &vfork;
2070 			init_completion(&vfork);
2071 			get_task_struct(p);
2072 		}
2073 
2074 		wake_up_new_task(p);
2075 
2076 		/* forking complete and child started to run, tell ptracer */
2077 		if (unlikely(trace))
2078 			ptrace_event_pid(trace, pid);
2079 
2080 		if (clone_flags & CLONE_VFORK) {
2081 			if (!wait_for_vfork_done(p, &vfork))
2082 				ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2083 		}
2084 
2085 		put_pid(pid);
2086 	} else {
2087 		nr = PTR_ERR(p);
2088 	}
2089 	return nr;
2090 }
2091 
2092 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2093 /* For compatibility with architectures that call do_fork directly rather than
2094  * using the syscall entry points below. */
2095 long do_fork(unsigned long clone_flags,
2096 	      unsigned long stack_start,
2097 	      unsigned long stack_size,
2098 	      int __user *parent_tidptr,
2099 	      int __user *child_tidptr)
2100 {
2101 	return _do_fork(clone_flags, stack_start, stack_size,
2102 			parent_tidptr, child_tidptr, 0);
2103 }
2104 #endif
2105 
2106 /*
2107  * Create a kernel thread.
2108  */
2109 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2110 {
2111 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2112 		(unsigned long)arg, NULL, NULL, 0);
2113 }
2114 
2115 #ifdef __ARCH_WANT_SYS_FORK
2116 SYSCALL_DEFINE0(fork)
2117 {
2118 #ifdef CONFIG_MMU
2119 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2120 #else
2121 	/* can not support in nommu mode */
2122 	return -EINVAL;
2123 #endif
2124 }
2125 #endif
2126 
2127 #ifdef __ARCH_WANT_SYS_VFORK
2128 SYSCALL_DEFINE0(vfork)
2129 {
2130 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2131 			0, NULL, NULL, 0);
2132 }
2133 #endif
2134 
2135 #ifdef __ARCH_WANT_SYS_CLONE
2136 #ifdef CONFIG_CLONE_BACKWARDS
2137 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2138 		 int __user *, parent_tidptr,
2139 		 unsigned long, tls,
2140 		 int __user *, child_tidptr)
2141 #elif defined(CONFIG_CLONE_BACKWARDS2)
2142 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2143 		 int __user *, parent_tidptr,
2144 		 int __user *, child_tidptr,
2145 		 unsigned long, tls)
2146 #elif defined(CONFIG_CLONE_BACKWARDS3)
2147 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2148 		int, stack_size,
2149 		int __user *, parent_tidptr,
2150 		int __user *, child_tidptr,
2151 		unsigned long, tls)
2152 #else
2153 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2154 		 int __user *, parent_tidptr,
2155 		 int __user *, child_tidptr,
2156 		 unsigned long, tls)
2157 #endif
2158 {
2159 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2160 }
2161 #endif
2162 
2163 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2164 {
2165 	struct task_struct *leader, *parent, *child;
2166 	int res;
2167 
2168 	read_lock(&tasklist_lock);
2169 	leader = top = top->group_leader;
2170 down:
2171 	for_each_thread(leader, parent) {
2172 		list_for_each_entry(child, &parent->children, sibling) {
2173 			res = visitor(child, data);
2174 			if (res) {
2175 				if (res < 0)
2176 					goto out;
2177 				leader = child;
2178 				goto down;
2179 			}
2180 up:
2181 			;
2182 		}
2183 	}
2184 
2185 	if (leader != top) {
2186 		child = leader;
2187 		parent = child->real_parent;
2188 		leader = parent->group_leader;
2189 		goto up;
2190 	}
2191 out:
2192 	read_unlock(&tasklist_lock);
2193 }
2194 
2195 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2196 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2197 #endif
2198 
2199 static void sighand_ctor(void *data)
2200 {
2201 	struct sighand_struct *sighand = data;
2202 
2203 	spin_lock_init(&sighand->siglock);
2204 	init_waitqueue_head(&sighand->signalfd_wqh);
2205 }
2206 
2207 void __init proc_caches_init(void)
2208 {
2209 	sighand_cachep = kmem_cache_create("sighand_cache",
2210 			sizeof(struct sighand_struct), 0,
2211 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2212 			SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2213 	signal_cachep = kmem_cache_create("signal_cache",
2214 			sizeof(struct signal_struct), 0,
2215 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2216 			NULL);
2217 	files_cachep = kmem_cache_create("files_cache",
2218 			sizeof(struct files_struct), 0,
2219 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2220 			NULL);
2221 	fs_cachep = kmem_cache_create("fs_cache",
2222 			sizeof(struct fs_struct), 0,
2223 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2224 			NULL);
2225 	/*
2226 	 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2227 	 * whole struct cpumask for the OFFSTACK case. We could change
2228 	 * this to *only* allocate as much of it as required by the
2229 	 * maximum number of CPU's we can ever have.  The cpumask_allocation
2230 	 * is at the end of the structure, exactly for that reason.
2231 	 */
2232 	mm_cachep = kmem_cache_create("mm_struct",
2233 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2234 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2235 			NULL);
2236 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2237 	mmap_init();
2238 	nsproxy_cache_init();
2239 }
2240 
2241 /*
2242  * Check constraints on flags passed to the unshare system call.
2243  */
2244 static int check_unshare_flags(unsigned long unshare_flags)
2245 {
2246 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2247 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2248 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2249 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2250 		return -EINVAL;
2251 	/*
2252 	 * Not implemented, but pretend it works if there is nothing
2253 	 * to unshare.  Note that unsharing the address space or the
2254 	 * signal handlers also need to unshare the signal queues (aka
2255 	 * CLONE_THREAD).
2256 	 */
2257 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2258 		if (!thread_group_empty(current))
2259 			return -EINVAL;
2260 	}
2261 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2262 		if (atomic_read(&current->sighand->count) > 1)
2263 			return -EINVAL;
2264 	}
2265 	if (unshare_flags & CLONE_VM) {
2266 		if (!current_is_single_threaded())
2267 			return -EINVAL;
2268 	}
2269 
2270 	return 0;
2271 }
2272 
2273 /*
2274  * Unshare the filesystem structure if it is being shared
2275  */
2276 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2277 {
2278 	struct fs_struct *fs = current->fs;
2279 
2280 	if (!(unshare_flags & CLONE_FS) || !fs)
2281 		return 0;
2282 
2283 	/* don't need lock here; in the worst case we'll do useless copy */
2284 	if (fs->users == 1)
2285 		return 0;
2286 
2287 	*new_fsp = copy_fs_struct(fs);
2288 	if (!*new_fsp)
2289 		return -ENOMEM;
2290 
2291 	return 0;
2292 }
2293 
2294 /*
2295  * Unshare file descriptor table if it is being shared
2296  */
2297 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2298 {
2299 	struct files_struct *fd = current->files;
2300 	int error = 0;
2301 
2302 	if ((unshare_flags & CLONE_FILES) &&
2303 	    (fd && atomic_read(&fd->count) > 1)) {
2304 		*new_fdp = dup_fd(fd, &error);
2305 		if (!*new_fdp)
2306 			return error;
2307 	}
2308 
2309 	return 0;
2310 }
2311 
2312 /*
2313  * unshare allows a process to 'unshare' part of the process
2314  * context which was originally shared using clone.  copy_*
2315  * functions used by do_fork() cannot be used here directly
2316  * because they modify an inactive task_struct that is being
2317  * constructed. Here we are modifying the current, active,
2318  * task_struct.
2319  */
2320 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2321 {
2322 	struct fs_struct *fs, *new_fs = NULL;
2323 	struct files_struct *fd, *new_fd = NULL;
2324 	struct cred *new_cred = NULL;
2325 	struct nsproxy *new_nsproxy = NULL;
2326 	int do_sysvsem = 0;
2327 	int err;
2328 
2329 	/*
2330 	 * If unsharing a user namespace must also unshare the thread group
2331 	 * and unshare the filesystem root and working directories.
2332 	 */
2333 	if (unshare_flags & CLONE_NEWUSER)
2334 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2335 	/*
2336 	 * If unsharing vm, must also unshare signal handlers.
2337 	 */
2338 	if (unshare_flags & CLONE_VM)
2339 		unshare_flags |= CLONE_SIGHAND;
2340 	/*
2341 	 * If unsharing a signal handlers, must also unshare the signal queues.
2342 	 */
2343 	if (unshare_flags & CLONE_SIGHAND)
2344 		unshare_flags |= CLONE_THREAD;
2345 	/*
2346 	 * If unsharing namespace, must also unshare filesystem information.
2347 	 */
2348 	if (unshare_flags & CLONE_NEWNS)
2349 		unshare_flags |= CLONE_FS;
2350 
2351 	err = check_unshare_flags(unshare_flags);
2352 	if (err)
2353 		goto bad_unshare_out;
2354 	/*
2355 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2356 	 * to a new ipc namespace, the semaphore arrays from the old
2357 	 * namespace are unreachable.
2358 	 */
2359 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2360 		do_sysvsem = 1;
2361 	err = unshare_fs(unshare_flags, &new_fs);
2362 	if (err)
2363 		goto bad_unshare_out;
2364 	err = unshare_fd(unshare_flags, &new_fd);
2365 	if (err)
2366 		goto bad_unshare_cleanup_fs;
2367 	err = unshare_userns(unshare_flags, &new_cred);
2368 	if (err)
2369 		goto bad_unshare_cleanup_fd;
2370 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2371 					 new_cred, new_fs);
2372 	if (err)
2373 		goto bad_unshare_cleanup_cred;
2374 
2375 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2376 		if (do_sysvsem) {
2377 			/*
2378 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2379 			 */
2380 			exit_sem(current);
2381 		}
2382 		if (unshare_flags & CLONE_NEWIPC) {
2383 			/* Orphan segments in old ns (see sem above). */
2384 			exit_shm(current);
2385 			shm_init_task(current);
2386 		}
2387 
2388 		if (new_nsproxy)
2389 			switch_task_namespaces(current, new_nsproxy);
2390 
2391 		task_lock(current);
2392 
2393 		if (new_fs) {
2394 			fs = current->fs;
2395 			spin_lock(&fs->lock);
2396 			current->fs = new_fs;
2397 			if (--fs->users)
2398 				new_fs = NULL;
2399 			else
2400 				new_fs = fs;
2401 			spin_unlock(&fs->lock);
2402 		}
2403 
2404 		if (new_fd) {
2405 			fd = current->files;
2406 			current->files = new_fd;
2407 			new_fd = fd;
2408 		}
2409 
2410 		task_unlock(current);
2411 
2412 		if (new_cred) {
2413 			/* Install the new user namespace */
2414 			commit_creds(new_cred);
2415 			new_cred = NULL;
2416 		}
2417 	}
2418 
2419 	perf_event_namespaces(current);
2420 
2421 bad_unshare_cleanup_cred:
2422 	if (new_cred)
2423 		put_cred(new_cred);
2424 bad_unshare_cleanup_fd:
2425 	if (new_fd)
2426 		put_files_struct(new_fd);
2427 
2428 bad_unshare_cleanup_fs:
2429 	if (new_fs)
2430 		free_fs_struct(new_fs);
2431 
2432 bad_unshare_out:
2433 	return err;
2434 }
2435 
2436 /*
2437  *	Helper to unshare the files of the current task.
2438  *	We don't want to expose copy_files internals to
2439  *	the exec layer of the kernel.
2440  */
2441 
2442 int unshare_files(struct files_struct **displaced)
2443 {
2444 	struct task_struct *task = current;
2445 	struct files_struct *copy = NULL;
2446 	int error;
2447 
2448 	error = unshare_fd(CLONE_FILES, &copy);
2449 	if (error || !copy) {
2450 		*displaced = NULL;
2451 		return error;
2452 	}
2453 	*displaced = task->files;
2454 	task_lock(task);
2455 	task->files = copy;
2456 	task_unlock(task);
2457 	return 0;
2458 }
2459 
2460 int sysctl_max_threads(struct ctl_table *table, int write,
2461 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2462 {
2463 	struct ctl_table t;
2464 	int ret;
2465 	int threads = max_threads;
2466 	int min = MIN_THREADS;
2467 	int max = MAX_THREADS;
2468 
2469 	t = *table;
2470 	t.data = &threads;
2471 	t.extra1 = &min;
2472 	t.extra2 = &max;
2473 
2474 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2475 	if (ret || !write)
2476 		return ret;
2477 
2478 	set_max_threads(threads);
2479 
2480 	return 0;
2481 }
2482