1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/hmm.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/vmacache.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/blkdev.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 98 #include <asm/pgtable.h> 99 #include <asm/pgalloc.h> 100 #include <linux/uaccess.h> 101 #include <asm/mmu_context.h> 102 #include <asm/cacheflush.h> 103 #include <asm/tlbflush.h> 104 105 #include <trace/events/sched.h> 106 107 #define CREATE_TRACE_POINTS 108 #include <trace/events/task.h> 109 110 /* 111 * Minimum number of threads to boot the kernel 112 */ 113 #define MIN_THREADS 20 114 115 /* 116 * Maximum number of threads 117 */ 118 #define MAX_THREADS FUTEX_TID_MASK 119 120 /* 121 * Protected counters by write_lock_irq(&tasklist_lock) 122 */ 123 unsigned long total_forks; /* Handle normal Linux uptimes. */ 124 int nr_threads; /* The idle threads do not count.. */ 125 126 int max_threads; /* tunable limit on nr_threads */ 127 128 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 129 130 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 131 132 #ifdef CONFIG_PROVE_RCU 133 int lockdep_tasklist_lock_is_held(void) 134 { 135 return lockdep_is_held(&tasklist_lock); 136 } 137 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 138 #endif /* #ifdef CONFIG_PROVE_RCU */ 139 140 int nr_processes(void) 141 { 142 int cpu; 143 int total = 0; 144 145 for_each_possible_cpu(cpu) 146 total += per_cpu(process_counts, cpu); 147 148 return total; 149 } 150 151 void __weak arch_release_task_struct(struct task_struct *tsk) 152 { 153 } 154 155 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 156 static struct kmem_cache *task_struct_cachep; 157 158 static inline struct task_struct *alloc_task_struct_node(int node) 159 { 160 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 161 } 162 163 static inline void free_task_struct(struct task_struct *tsk) 164 { 165 kmem_cache_free(task_struct_cachep, tsk); 166 } 167 #endif 168 169 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 170 171 /* 172 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 173 * kmemcache based allocator. 174 */ 175 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 176 177 #ifdef CONFIG_VMAP_STACK 178 /* 179 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 180 * flush. Try to minimize the number of calls by caching stacks. 181 */ 182 #define NR_CACHED_STACKS 2 183 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 184 185 static int free_vm_stack_cache(unsigned int cpu) 186 { 187 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 188 int i; 189 190 for (i = 0; i < NR_CACHED_STACKS; i++) { 191 struct vm_struct *vm_stack = cached_vm_stacks[i]; 192 193 if (!vm_stack) 194 continue; 195 196 vfree(vm_stack->addr); 197 cached_vm_stacks[i] = NULL; 198 } 199 200 return 0; 201 } 202 #endif 203 204 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 205 { 206 #ifdef CONFIG_VMAP_STACK 207 void *stack; 208 int i; 209 210 for (i = 0; i < NR_CACHED_STACKS; i++) { 211 struct vm_struct *s; 212 213 s = this_cpu_xchg(cached_stacks[i], NULL); 214 215 if (!s) 216 continue; 217 218 /* Clear stale pointers from reused stack. */ 219 memset(s->addr, 0, THREAD_SIZE); 220 221 tsk->stack_vm_area = s; 222 tsk->stack = s->addr; 223 return s->addr; 224 } 225 226 /* 227 * Allocated stacks are cached and later reused by new threads, 228 * so memcg accounting is performed manually on assigning/releasing 229 * stacks to tasks. Drop __GFP_ACCOUNT. 230 */ 231 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 232 VMALLOC_START, VMALLOC_END, 233 THREADINFO_GFP & ~__GFP_ACCOUNT, 234 PAGE_KERNEL, 235 0, node, __builtin_return_address(0)); 236 237 /* 238 * We can't call find_vm_area() in interrupt context, and 239 * free_thread_stack() can be called in interrupt context, 240 * so cache the vm_struct. 241 */ 242 if (stack) { 243 tsk->stack_vm_area = find_vm_area(stack); 244 tsk->stack = stack; 245 } 246 return stack; 247 #else 248 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 249 THREAD_SIZE_ORDER); 250 251 return page ? page_address(page) : NULL; 252 #endif 253 } 254 255 static inline void free_thread_stack(struct task_struct *tsk) 256 { 257 #ifdef CONFIG_VMAP_STACK 258 struct vm_struct *vm = task_stack_vm_area(tsk); 259 260 if (vm) { 261 int i; 262 263 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 264 mod_memcg_page_state(vm->pages[i], 265 MEMCG_KERNEL_STACK_KB, 266 -(int)(PAGE_SIZE / 1024)); 267 268 memcg_kmem_uncharge(vm->pages[i], 0); 269 } 270 271 for (i = 0; i < NR_CACHED_STACKS; i++) { 272 if (this_cpu_cmpxchg(cached_stacks[i], 273 NULL, tsk->stack_vm_area) != NULL) 274 continue; 275 276 return; 277 } 278 279 vfree_atomic(tsk->stack); 280 return; 281 } 282 #endif 283 284 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 285 } 286 # else 287 static struct kmem_cache *thread_stack_cache; 288 289 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 290 int node) 291 { 292 unsigned long *stack; 293 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 294 tsk->stack = stack; 295 return stack; 296 } 297 298 static void free_thread_stack(struct task_struct *tsk) 299 { 300 kmem_cache_free(thread_stack_cache, tsk->stack); 301 } 302 303 void thread_stack_cache_init(void) 304 { 305 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 306 THREAD_SIZE, THREAD_SIZE, 0, 0, 307 THREAD_SIZE, NULL); 308 BUG_ON(thread_stack_cache == NULL); 309 } 310 # endif 311 #endif 312 313 /* SLAB cache for signal_struct structures (tsk->signal) */ 314 static struct kmem_cache *signal_cachep; 315 316 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 317 struct kmem_cache *sighand_cachep; 318 319 /* SLAB cache for files_struct structures (tsk->files) */ 320 struct kmem_cache *files_cachep; 321 322 /* SLAB cache for fs_struct structures (tsk->fs) */ 323 struct kmem_cache *fs_cachep; 324 325 /* SLAB cache for vm_area_struct structures */ 326 static struct kmem_cache *vm_area_cachep; 327 328 /* SLAB cache for mm_struct structures (tsk->mm) */ 329 static struct kmem_cache *mm_cachep; 330 331 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 332 { 333 struct vm_area_struct *vma; 334 335 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 336 if (vma) 337 vma_init(vma, mm); 338 return vma; 339 } 340 341 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 342 { 343 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 344 345 if (new) { 346 *new = *orig; 347 INIT_LIST_HEAD(&new->anon_vma_chain); 348 } 349 return new; 350 } 351 352 void vm_area_free(struct vm_area_struct *vma) 353 { 354 kmem_cache_free(vm_area_cachep, vma); 355 } 356 357 static void account_kernel_stack(struct task_struct *tsk, int account) 358 { 359 void *stack = task_stack_page(tsk); 360 struct vm_struct *vm = task_stack_vm_area(tsk); 361 362 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 363 364 if (vm) { 365 int i; 366 367 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 368 369 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 370 mod_zone_page_state(page_zone(vm->pages[i]), 371 NR_KERNEL_STACK_KB, 372 PAGE_SIZE / 1024 * account); 373 } 374 } else { 375 /* 376 * All stack pages are in the same zone and belong to the 377 * same memcg. 378 */ 379 struct page *first_page = virt_to_page(stack); 380 381 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 382 THREAD_SIZE / 1024 * account); 383 384 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB, 385 account * (THREAD_SIZE / 1024)); 386 } 387 } 388 389 static int memcg_charge_kernel_stack(struct task_struct *tsk) 390 { 391 #ifdef CONFIG_VMAP_STACK 392 struct vm_struct *vm = task_stack_vm_area(tsk); 393 int ret; 394 395 if (vm) { 396 int i; 397 398 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 399 /* 400 * If memcg_kmem_charge() fails, page->mem_cgroup 401 * pointer is NULL, and both memcg_kmem_uncharge() 402 * and mod_memcg_page_state() in free_thread_stack() 403 * will ignore this page. So it's safe. 404 */ 405 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0); 406 if (ret) 407 return ret; 408 409 mod_memcg_page_state(vm->pages[i], 410 MEMCG_KERNEL_STACK_KB, 411 PAGE_SIZE / 1024); 412 } 413 } 414 #endif 415 return 0; 416 } 417 418 static void release_task_stack(struct task_struct *tsk) 419 { 420 if (WARN_ON(tsk->state != TASK_DEAD)) 421 return; /* Better to leak the stack than to free prematurely */ 422 423 account_kernel_stack(tsk, -1); 424 free_thread_stack(tsk); 425 tsk->stack = NULL; 426 #ifdef CONFIG_VMAP_STACK 427 tsk->stack_vm_area = NULL; 428 #endif 429 } 430 431 #ifdef CONFIG_THREAD_INFO_IN_TASK 432 void put_task_stack(struct task_struct *tsk) 433 { 434 if (refcount_dec_and_test(&tsk->stack_refcount)) 435 release_task_stack(tsk); 436 } 437 #endif 438 439 void free_task(struct task_struct *tsk) 440 { 441 #ifndef CONFIG_THREAD_INFO_IN_TASK 442 /* 443 * The task is finally done with both the stack and thread_info, 444 * so free both. 445 */ 446 release_task_stack(tsk); 447 #else 448 /* 449 * If the task had a separate stack allocation, it should be gone 450 * by now. 451 */ 452 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 453 #endif 454 rt_mutex_debug_task_free(tsk); 455 ftrace_graph_exit_task(tsk); 456 put_seccomp_filter(tsk); 457 arch_release_task_struct(tsk); 458 if (tsk->flags & PF_KTHREAD) 459 free_kthread_struct(tsk); 460 free_task_struct(tsk); 461 } 462 EXPORT_SYMBOL(free_task); 463 464 #ifdef CONFIG_MMU 465 static __latent_entropy int dup_mmap(struct mm_struct *mm, 466 struct mm_struct *oldmm) 467 { 468 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 469 struct rb_node **rb_link, *rb_parent; 470 int retval; 471 unsigned long charge; 472 LIST_HEAD(uf); 473 474 uprobe_start_dup_mmap(); 475 if (down_write_killable(&oldmm->mmap_sem)) { 476 retval = -EINTR; 477 goto fail_uprobe_end; 478 } 479 flush_cache_dup_mm(oldmm); 480 uprobe_dup_mmap(oldmm, mm); 481 /* 482 * Not linked in yet - no deadlock potential: 483 */ 484 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 485 486 /* No ordering required: file already has been exposed. */ 487 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 488 489 mm->total_vm = oldmm->total_vm; 490 mm->data_vm = oldmm->data_vm; 491 mm->exec_vm = oldmm->exec_vm; 492 mm->stack_vm = oldmm->stack_vm; 493 494 rb_link = &mm->mm_rb.rb_node; 495 rb_parent = NULL; 496 pprev = &mm->mmap; 497 retval = ksm_fork(mm, oldmm); 498 if (retval) 499 goto out; 500 retval = khugepaged_fork(mm, oldmm); 501 if (retval) 502 goto out; 503 504 prev = NULL; 505 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 506 struct file *file; 507 508 if (mpnt->vm_flags & VM_DONTCOPY) { 509 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 510 continue; 511 } 512 charge = 0; 513 /* 514 * Don't duplicate many vmas if we've been oom-killed (for 515 * example) 516 */ 517 if (fatal_signal_pending(current)) { 518 retval = -EINTR; 519 goto out; 520 } 521 if (mpnt->vm_flags & VM_ACCOUNT) { 522 unsigned long len = vma_pages(mpnt); 523 524 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 525 goto fail_nomem; 526 charge = len; 527 } 528 tmp = vm_area_dup(mpnt); 529 if (!tmp) 530 goto fail_nomem; 531 retval = vma_dup_policy(mpnt, tmp); 532 if (retval) 533 goto fail_nomem_policy; 534 tmp->vm_mm = mm; 535 retval = dup_userfaultfd(tmp, &uf); 536 if (retval) 537 goto fail_nomem_anon_vma_fork; 538 if (tmp->vm_flags & VM_WIPEONFORK) { 539 /* VM_WIPEONFORK gets a clean slate in the child. */ 540 tmp->anon_vma = NULL; 541 if (anon_vma_prepare(tmp)) 542 goto fail_nomem_anon_vma_fork; 543 } else if (anon_vma_fork(tmp, mpnt)) 544 goto fail_nomem_anon_vma_fork; 545 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 546 tmp->vm_next = tmp->vm_prev = NULL; 547 file = tmp->vm_file; 548 if (file) { 549 struct inode *inode = file_inode(file); 550 struct address_space *mapping = file->f_mapping; 551 552 get_file(file); 553 if (tmp->vm_flags & VM_DENYWRITE) 554 atomic_dec(&inode->i_writecount); 555 i_mmap_lock_write(mapping); 556 if (tmp->vm_flags & VM_SHARED) 557 atomic_inc(&mapping->i_mmap_writable); 558 flush_dcache_mmap_lock(mapping); 559 /* insert tmp into the share list, just after mpnt */ 560 vma_interval_tree_insert_after(tmp, mpnt, 561 &mapping->i_mmap); 562 flush_dcache_mmap_unlock(mapping); 563 i_mmap_unlock_write(mapping); 564 } 565 566 /* 567 * Clear hugetlb-related page reserves for children. This only 568 * affects MAP_PRIVATE mappings. Faults generated by the child 569 * are not guaranteed to succeed, even if read-only 570 */ 571 if (is_vm_hugetlb_page(tmp)) 572 reset_vma_resv_huge_pages(tmp); 573 574 /* 575 * Link in the new vma and copy the page table entries. 576 */ 577 *pprev = tmp; 578 pprev = &tmp->vm_next; 579 tmp->vm_prev = prev; 580 prev = tmp; 581 582 __vma_link_rb(mm, tmp, rb_link, rb_parent); 583 rb_link = &tmp->vm_rb.rb_right; 584 rb_parent = &tmp->vm_rb; 585 586 mm->map_count++; 587 if (!(tmp->vm_flags & VM_WIPEONFORK)) 588 retval = copy_page_range(mm, oldmm, mpnt); 589 590 if (tmp->vm_ops && tmp->vm_ops->open) 591 tmp->vm_ops->open(tmp); 592 593 if (retval) 594 goto out; 595 } 596 /* a new mm has just been created */ 597 retval = arch_dup_mmap(oldmm, mm); 598 out: 599 up_write(&mm->mmap_sem); 600 flush_tlb_mm(oldmm); 601 up_write(&oldmm->mmap_sem); 602 dup_userfaultfd_complete(&uf); 603 fail_uprobe_end: 604 uprobe_end_dup_mmap(); 605 return retval; 606 fail_nomem_anon_vma_fork: 607 mpol_put(vma_policy(tmp)); 608 fail_nomem_policy: 609 vm_area_free(tmp); 610 fail_nomem: 611 retval = -ENOMEM; 612 vm_unacct_memory(charge); 613 goto out; 614 } 615 616 static inline int mm_alloc_pgd(struct mm_struct *mm) 617 { 618 mm->pgd = pgd_alloc(mm); 619 if (unlikely(!mm->pgd)) 620 return -ENOMEM; 621 return 0; 622 } 623 624 static inline void mm_free_pgd(struct mm_struct *mm) 625 { 626 pgd_free(mm, mm->pgd); 627 } 628 #else 629 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 630 { 631 down_write(&oldmm->mmap_sem); 632 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 633 up_write(&oldmm->mmap_sem); 634 return 0; 635 } 636 #define mm_alloc_pgd(mm) (0) 637 #define mm_free_pgd(mm) 638 #endif /* CONFIG_MMU */ 639 640 static void check_mm(struct mm_struct *mm) 641 { 642 int i; 643 644 for (i = 0; i < NR_MM_COUNTERS; i++) { 645 long x = atomic_long_read(&mm->rss_stat.count[i]); 646 647 if (unlikely(x)) 648 printk(KERN_ALERT "BUG: Bad rss-counter state " 649 "mm:%p idx:%d val:%ld\n", mm, i, x); 650 } 651 652 if (mm_pgtables_bytes(mm)) 653 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 654 mm_pgtables_bytes(mm)); 655 656 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 657 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 658 #endif 659 } 660 661 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 662 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 663 664 /* 665 * Called when the last reference to the mm 666 * is dropped: either by a lazy thread or by 667 * mmput. Free the page directory and the mm. 668 */ 669 void __mmdrop(struct mm_struct *mm) 670 { 671 BUG_ON(mm == &init_mm); 672 WARN_ON_ONCE(mm == current->mm); 673 WARN_ON_ONCE(mm == current->active_mm); 674 mm_free_pgd(mm); 675 destroy_context(mm); 676 hmm_mm_destroy(mm); 677 mmu_notifier_mm_destroy(mm); 678 check_mm(mm); 679 put_user_ns(mm->user_ns); 680 free_mm(mm); 681 } 682 EXPORT_SYMBOL_GPL(__mmdrop); 683 684 static void mmdrop_async_fn(struct work_struct *work) 685 { 686 struct mm_struct *mm; 687 688 mm = container_of(work, struct mm_struct, async_put_work); 689 __mmdrop(mm); 690 } 691 692 static void mmdrop_async(struct mm_struct *mm) 693 { 694 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 695 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 696 schedule_work(&mm->async_put_work); 697 } 698 } 699 700 static inline void free_signal_struct(struct signal_struct *sig) 701 { 702 taskstats_tgid_free(sig); 703 sched_autogroup_exit(sig); 704 /* 705 * __mmdrop is not safe to call from softirq context on x86 due to 706 * pgd_dtor so postpone it to the async context 707 */ 708 if (sig->oom_mm) 709 mmdrop_async(sig->oom_mm); 710 kmem_cache_free(signal_cachep, sig); 711 } 712 713 static inline void put_signal_struct(struct signal_struct *sig) 714 { 715 if (refcount_dec_and_test(&sig->sigcnt)) 716 free_signal_struct(sig); 717 } 718 719 void __put_task_struct(struct task_struct *tsk) 720 { 721 WARN_ON(!tsk->exit_state); 722 WARN_ON(refcount_read(&tsk->usage)); 723 WARN_ON(tsk == current); 724 725 cgroup_free(tsk); 726 task_numa_free(tsk); 727 security_task_free(tsk); 728 exit_creds(tsk); 729 delayacct_tsk_free(tsk); 730 put_signal_struct(tsk->signal); 731 732 if (!profile_handoff_task(tsk)) 733 free_task(tsk); 734 } 735 EXPORT_SYMBOL_GPL(__put_task_struct); 736 737 void __init __weak arch_task_cache_init(void) { } 738 739 /* 740 * set_max_threads 741 */ 742 static void set_max_threads(unsigned int max_threads_suggested) 743 { 744 u64 threads; 745 unsigned long nr_pages = totalram_pages(); 746 747 /* 748 * The number of threads shall be limited such that the thread 749 * structures may only consume a small part of the available memory. 750 */ 751 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 752 threads = MAX_THREADS; 753 else 754 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 755 (u64) THREAD_SIZE * 8UL); 756 757 if (threads > max_threads_suggested) 758 threads = max_threads_suggested; 759 760 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 761 } 762 763 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 764 /* Initialized by the architecture: */ 765 int arch_task_struct_size __read_mostly; 766 #endif 767 768 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 769 { 770 /* Fetch thread_struct whitelist for the architecture. */ 771 arch_thread_struct_whitelist(offset, size); 772 773 /* 774 * Handle zero-sized whitelist or empty thread_struct, otherwise 775 * adjust offset to position of thread_struct in task_struct. 776 */ 777 if (unlikely(*size == 0)) 778 *offset = 0; 779 else 780 *offset += offsetof(struct task_struct, thread); 781 } 782 783 void __init fork_init(void) 784 { 785 int i; 786 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 787 #ifndef ARCH_MIN_TASKALIGN 788 #define ARCH_MIN_TASKALIGN 0 789 #endif 790 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 791 unsigned long useroffset, usersize; 792 793 /* create a slab on which task_structs can be allocated */ 794 task_struct_whitelist(&useroffset, &usersize); 795 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 796 arch_task_struct_size, align, 797 SLAB_PANIC|SLAB_ACCOUNT, 798 useroffset, usersize, NULL); 799 #endif 800 801 /* do the arch specific task caches init */ 802 arch_task_cache_init(); 803 804 set_max_threads(MAX_THREADS); 805 806 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 807 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 808 init_task.signal->rlim[RLIMIT_SIGPENDING] = 809 init_task.signal->rlim[RLIMIT_NPROC]; 810 811 for (i = 0; i < UCOUNT_COUNTS; i++) { 812 init_user_ns.ucount_max[i] = max_threads/2; 813 } 814 815 #ifdef CONFIG_VMAP_STACK 816 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 817 NULL, free_vm_stack_cache); 818 #endif 819 820 lockdep_init_task(&init_task); 821 uprobes_init(); 822 } 823 824 int __weak arch_dup_task_struct(struct task_struct *dst, 825 struct task_struct *src) 826 { 827 *dst = *src; 828 return 0; 829 } 830 831 void set_task_stack_end_magic(struct task_struct *tsk) 832 { 833 unsigned long *stackend; 834 835 stackend = end_of_stack(tsk); 836 *stackend = STACK_END_MAGIC; /* for overflow detection */ 837 } 838 839 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 840 { 841 struct task_struct *tsk; 842 unsigned long *stack; 843 struct vm_struct *stack_vm_area __maybe_unused; 844 int err; 845 846 if (node == NUMA_NO_NODE) 847 node = tsk_fork_get_node(orig); 848 tsk = alloc_task_struct_node(node); 849 if (!tsk) 850 return NULL; 851 852 stack = alloc_thread_stack_node(tsk, node); 853 if (!stack) 854 goto free_tsk; 855 856 if (memcg_charge_kernel_stack(tsk)) 857 goto free_stack; 858 859 stack_vm_area = task_stack_vm_area(tsk); 860 861 err = arch_dup_task_struct(tsk, orig); 862 863 /* 864 * arch_dup_task_struct() clobbers the stack-related fields. Make 865 * sure they're properly initialized before using any stack-related 866 * functions again. 867 */ 868 tsk->stack = stack; 869 #ifdef CONFIG_VMAP_STACK 870 tsk->stack_vm_area = stack_vm_area; 871 #endif 872 #ifdef CONFIG_THREAD_INFO_IN_TASK 873 refcount_set(&tsk->stack_refcount, 1); 874 #endif 875 876 if (err) 877 goto free_stack; 878 879 #ifdef CONFIG_SECCOMP 880 /* 881 * We must handle setting up seccomp filters once we're under 882 * the sighand lock in case orig has changed between now and 883 * then. Until then, filter must be NULL to avoid messing up 884 * the usage counts on the error path calling free_task. 885 */ 886 tsk->seccomp.filter = NULL; 887 #endif 888 889 setup_thread_stack(tsk, orig); 890 clear_user_return_notifier(tsk); 891 clear_tsk_need_resched(tsk); 892 set_task_stack_end_magic(tsk); 893 894 #ifdef CONFIG_STACKPROTECTOR 895 tsk->stack_canary = get_random_canary(); 896 #endif 897 898 /* 899 * One for us, one for whoever does the "release_task()" (usually 900 * parent) 901 */ 902 refcount_set(&tsk->usage, 2); 903 #ifdef CONFIG_BLK_DEV_IO_TRACE 904 tsk->btrace_seq = 0; 905 #endif 906 tsk->splice_pipe = NULL; 907 tsk->task_frag.page = NULL; 908 tsk->wake_q.next = NULL; 909 910 account_kernel_stack(tsk, 1); 911 912 kcov_task_init(tsk); 913 914 #ifdef CONFIG_FAULT_INJECTION 915 tsk->fail_nth = 0; 916 #endif 917 918 #ifdef CONFIG_BLK_CGROUP 919 tsk->throttle_queue = NULL; 920 tsk->use_memdelay = 0; 921 #endif 922 923 #ifdef CONFIG_MEMCG 924 tsk->active_memcg = NULL; 925 #endif 926 return tsk; 927 928 free_stack: 929 free_thread_stack(tsk); 930 free_tsk: 931 free_task_struct(tsk); 932 return NULL; 933 } 934 935 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 936 937 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 938 939 static int __init coredump_filter_setup(char *s) 940 { 941 default_dump_filter = 942 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 943 MMF_DUMP_FILTER_MASK; 944 return 1; 945 } 946 947 __setup("coredump_filter=", coredump_filter_setup); 948 949 #include <linux/init_task.h> 950 951 static void mm_init_aio(struct mm_struct *mm) 952 { 953 #ifdef CONFIG_AIO 954 spin_lock_init(&mm->ioctx_lock); 955 mm->ioctx_table = NULL; 956 #endif 957 } 958 959 static __always_inline void mm_clear_owner(struct mm_struct *mm, 960 struct task_struct *p) 961 { 962 #ifdef CONFIG_MEMCG 963 if (mm->owner == p) 964 WRITE_ONCE(mm->owner, NULL); 965 #endif 966 } 967 968 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 969 { 970 #ifdef CONFIG_MEMCG 971 mm->owner = p; 972 #endif 973 } 974 975 static void mm_init_uprobes_state(struct mm_struct *mm) 976 { 977 #ifdef CONFIG_UPROBES 978 mm->uprobes_state.xol_area = NULL; 979 #endif 980 } 981 982 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 983 struct user_namespace *user_ns) 984 { 985 mm->mmap = NULL; 986 mm->mm_rb = RB_ROOT; 987 mm->vmacache_seqnum = 0; 988 atomic_set(&mm->mm_users, 1); 989 atomic_set(&mm->mm_count, 1); 990 init_rwsem(&mm->mmap_sem); 991 INIT_LIST_HEAD(&mm->mmlist); 992 mm->core_state = NULL; 993 mm_pgtables_bytes_init(mm); 994 mm->map_count = 0; 995 mm->locked_vm = 0; 996 atomic64_set(&mm->pinned_vm, 0); 997 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 998 spin_lock_init(&mm->page_table_lock); 999 spin_lock_init(&mm->arg_lock); 1000 mm_init_cpumask(mm); 1001 mm_init_aio(mm); 1002 mm_init_owner(mm, p); 1003 RCU_INIT_POINTER(mm->exe_file, NULL); 1004 mmu_notifier_mm_init(mm); 1005 hmm_mm_init(mm); 1006 init_tlb_flush_pending(mm); 1007 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1008 mm->pmd_huge_pte = NULL; 1009 #endif 1010 mm_init_uprobes_state(mm); 1011 1012 if (current->mm) { 1013 mm->flags = current->mm->flags & MMF_INIT_MASK; 1014 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1015 } else { 1016 mm->flags = default_dump_filter; 1017 mm->def_flags = 0; 1018 } 1019 1020 if (mm_alloc_pgd(mm)) 1021 goto fail_nopgd; 1022 1023 if (init_new_context(p, mm)) 1024 goto fail_nocontext; 1025 1026 mm->user_ns = get_user_ns(user_ns); 1027 return mm; 1028 1029 fail_nocontext: 1030 mm_free_pgd(mm); 1031 fail_nopgd: 1032 free_mm(mm); 1033 return NULL; 1034 } 1035 1036 /* 1037 * Allocate and initialize an mm_struct. 1038 */ 1039 struct mm_struct *mm_alloc(void) 1040 { 1041 struct mm_struct *mm; 1042 1043 mm = allocate_mm(); 1044 if (!mm) 1045 return NULL; 1046 1047 memset(mm, 0, sizeof(*mm)); 1048 return mm_init(mm, current, current_user_ns()); 1049 } 1050 1051 static inline void __mmput(struct mm_struct *mm) 1052 { 1053 VM_BUG_ON(atomic_read(&mm->mm_users)); 1054 1055 uprobe_clear_state(mm); 1056 exit_aio(mm); 1057 ksm_exit(mm); 1058 khugepaged_exit(mm); /* must run before exit_mmap */ 1059 exit_mmap(mm); 1060 mm_put_huge_zero_page(mm); 1061 set_mm_exe_file(mm, NULL); 1062 if (!list_empty(&mm->mmlist)) { 1063 spin_lock(&mmlist_lock); 1064 list_del(&mm->mmlist); 1065 spin_unlock(&mmlist_lock); 1066 } 1067 if (mm->binfmt) 1068 module_put(mm->binfmt->module); 1069 mmdrop(mm); 1070 } 1071 1072 /* 1073 * Decrement the use count and release all resources for an mm. 1074 */ 1075 void mmput(struct mm_struct *mm) 1076 { 1077 might_sleep(); 1078 1079 if (atomic_dec_and_test(&mm->mm_users)) 1080 __mmput(mm); 1081 } 1082 EXPORT_SYMBOL_GPL(mmput); 1083 1084 #ifdef CONFIG_MMU 1085 static void mmput_async_fn(struct work_struct *work) 1086 { 1087 struct mm_struct *mm = container_of(work, struct mm_struct, 1088 async_put_work); 1089 1090 __mmput(mm); 1091 } 1092 1093 void mmput_async(struct mm_struct *mm) 1094 { 1095 if (atomic_dec_and_test(&mm->mm_users)) { 1096 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1097 schedule_work(&mm->async_put_work); 1098 } 1099 } 1100 #endif 1101 1102 /** 1103 * set_mm_exe_file - change a reference to the mm's executable file 1104 * 1105 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1106 * 1107 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1108 * invocations: in mmput() nobody alive left, in execve task is single 1109 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1110 * mm->exe_file, but does so without using set_mm_exe_file() in order 1111 * to do avoid the need for any locks. 1112 */ 1113 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1114 { 1115 struct file *old_exe_file; 1116 1117 /* 1118 * It is safe to dereference the exe_file without RCU as 1119 * this function is only called if nobody else can access 1120 * this mm -- see comment above for justification. 1121 */ 1122 old_exe_file = rcu_dereference_raw(mm->exe_file); 1123 1124 if (new_exe_file) 1125 get_file(new_exe_file); 1126 rcu_assign_pointer(mm->exe_file, new_exe_file); 1127 if (old_exe_file) 1128 fput(old_exe_file); 1129 } 1130 1131 /** 1132 * get_mm_exe_file - acquire a reference to the mm's executable file 1133 * 1134 * Returns %NULL if mm has no associated executable file. 1135 * User must release file via fput(). 1136 */ 1137 struct file *get_mm_exe_file(struct mm_struct *mm) 1138 { 1139 struct file *exe_file; 1140 1141 rcu_read_lock(); 1142 exe_file = rcu_dereference(mm->exe_file); 1143 if (exe_file && !get_file_rcu(exe_file)) 1144 exe_file = NULL; 1145 rcu_read_unlock(); 1146 return exe_file; 1147 } 1148 EXPORT_SYMBOL(get_mm_exe_file); 1149 1150 /** 1151 * get_task_exe_file - acquire a reference to the task's executable file 1152 * 1153 * Returns %NULL if task's mm (if any) has no associated executable file or 1154 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1155 * User must release file via fput(). 1156 */ 1157 struct file *get_task_exe_file(struct task_struct *task) 1158 { 1159 struct file *exe_file = NULL; 1160 struct mm_struct *mm; 1161 1162 task_lock(task); 1163 mm = task->mm; 1164 if (mm) { 1165 if (!(task->flags & PF_KTHREAD)) 1166 exe_file = get_mm_exe_file(mm); 1167 } 1168 task_unlock(task); 1169 return exe_file; 1170 } 1171 EXPORT_SYMBOL(get_task_exe_file); 1172 1173 /** 1174 * get_task_mm - acquire a reference to the task's mm 1175 * 1176 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1177 * this kernel workthread has transiently adopted a user mm with use_mm, 1178 * to do its AIO) is not set and if so returns a reference to it, after 1179 * bumping up the use count. User must release the mm via mmput() 1180 * after use. Typically used by /proc and ptrace. 1181 */ 1182 struct mm_struct *get_task_mm(struct task_struct *task) 1183 { 1184 struct mm_struct *mm; 1185 1186 task_lock(task); 1187 mm = task->mm; 1188 if (mm) { 1189 if (task->flags & PF_KTHREAD) 1190 mm = NULL; 1191 else 1192 mmget(mm); 1193 } 1194 task_unlock(task); 1195 return mm; 1196 } 1197 EXPORT_SYMBOL_GPL(get_task_mm); 1198 1199 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1200 { 1201 struct mm_struct *mm; 1202 int err; 1203 1204 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 1205 if (err) 1206 return ERR_PTR(err); 1207 1208 mm = get_task_mm(task); 1209 if (mm && mm != current->mm && 1210 !ptrace_may_access(task, mode)) { 1211 mmput(mm); 1212 mm = ERR_PTR(-EACCES); 1213 } 1214 mutex_unlock(&task->signal->cred_guard_mutex); 1215 1216 return mm; 1217 } 1218 1219 static void complete_vfork_done(struct task_struct *tsk) 1220 { 1221 struct completion *vfork; 1222 1223 task_lock(tsk); 1224 vfork = tsk->vfork_done; 1225 if (likely(vfork)) { 1226 tsk->vfork_done = NULL; 1227 complete(vfork); 1228 } 1229 task_unlock(tsk); 1230 } 1231 1232 static int wait_for_vfork_done(struct task_struct *child, 1233 struct completion *vfork) 1234 { 1235 int killed; 1236 1237 freezer_do_not_count(); 1238 cgroup_enter_frozen(); 1239 killed = wait_for_completion_killable(vfork); 1240 cgroup_leave_frozen(false); 1241 freezer_count(); 1242 1243 if (killed) { 1244 task_lock(child); 1245 child->vfork_done = NULL; 1246 task_unlock(child); 1247 } 1248 1249 put_task_struct(child); 1250 return killed; 1251 } 1252 1253 /* Please note the differences between mmput and mm_release. 1254 * mmput is called whenever we stop holding onto a mm_struct, 1255 * error success whatever. 1256 * 1257 * mm_release is called after a mm_struct has been removed 1258 * from the current process. 1259 * 1260 * This difference is important for error handling, when we 1261 * only half set up a mm_struct for a new process and need to restore 1262 * the old one. Because we mmput the new mm_struct before 1263 * restoring the old one. . . 1264 * Eric Biederman 10 January 1998 1265 */ 1266 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1267 { 1268 /* Get rid of any futexes when releasing the mm */ 1269 #ifdef CONFIG_FUTEX 1270 if (unlikely(tsk->robust_list)) { 1271 exit_robust_list(tsk); 1272 tsk->robust_list = NULL; 1273 } 1274 #ifdef CONFIG_COMPAT 1275 if (unlikely(tsk->compat_robust_list)) { 1276 compat_exit_robust_list(tsk); 1277 tsk->compat_robust_list = NULL; 1278 } 1279 #endif 1280 if (unlikely(!list_empty(&tsk->pi_state_list))) 1281 exit_pi_state_list(tsk); 1282 #endif 1283 1284 uprobe_free_utask(tsk); 1285 1286 /* Get rid of any cached register state */ 1287 deactivate_mm(tsk, mm); 1288 1289 /* 1290 * Signal userspace if we're not exiting with a core dump 1291 * because we want to leave the value intact for debugging 1292 * purposes. 1293 */ 1294 if (tsk->clear_child_tid) { 1295 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1296 atomic_read(&mm->mm_users) > 1) { 1297 /* 1298 * We don't check the error code - if userspace has 1299 * not set up a proper pointer then tough luck. 1300 */ 1301 put_user(0, tsk->clear_child_tid); 1302 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1303 1, NULL, NULL, 0, 0); 1304 } 1305 tsk->clear_child_tid = NULL; 1306 } 1307 1308 /* 1309 * All done, finally we can wake up parent and return this mm to him. 1310 * Also kthread_stop() uses this completion for synchronization. 1311 */ 1312 if (tsk->vfork_done) 1313 complete_vfork_done(tsk); 1314 } 1315 1316 /** 1317 * dup_mm() - duplicates an existing mm structure 1318 * @tsk: the task_struct with which the new mm will be associated. 1319 * @oldmm: the mm to duplicate. 1320 * 1321 * Allocates a new mm structure and duplicates the provided @oldmm structure 1322 * content into it. 1323 * 1324 * Return: the duplicated mm or NULL on failure. 1325 */ 1326 static struct mm_struct *dup_mm(struct task_struct *tsk, 1327 struct mm_struct *oldmm) 1328 { 1329 struct mm_struct *mm; 1330 int err; 1331 1332 mm = allocate_mm(); 1333 if (!mm) 1334 goto fail_nomem; 1335 1336 memcpy(mm, oldmm, sizeof(*mm)); 1337 1338 if (!mm_init(mm, tsk, mm->user_ns)) 1339 goto fail_nomem; 1340 1341 err = dup_mmap(mm, oldmm); 1342 if (err) 1343 goto free_pt; 1344 1345 mm->hiwater_rss = get_mm_rss(mm); 1346 mm->hiwater_vm = mm->total_vm; 1347 1348 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1349 goto free_pt; 1350 1351 return mm; 1352 1353 free_pt: 1354 /* don't put binfmt in mmput, we haven't got module yet */ 1355 mm->binfmt = NULL; 1356 mm_init_owner(mm, NULL); 1357 mmput(mm); 1358 1359 fail_nomem: 1360 return NULL; 1361 } 1362 1363 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1364 { 1365 struct mm_struct *mm, *oldmm; 1366 int retval; 1367 1368 tsk->min_flt = tsk->maj_flt = 0; 1369 tsk->nvcsw = tsk->nivcsw = 0; 1370 #ifdef CONFIG_DETECT_HUNG_TASK 1371 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1372 tsk->last_switch_time = 0; 1373 #endif 1374 1375 tsk->mm = NULL; 1376 tsk->active_mm = NULL; 1377 1378 /* 1379 * Are we cloning a kernel thread? 1380 * 1381 * We need to steal a active VM for that.. 1382 */ 1383 oldmm = current->mm; 1384 if (!oldmm) 1385 return 0; 1386 1387 /* initialize the new vmacache entries */ 1388 vmacache_flush(tsk); 1389 1390 if (clone_flags & CLONE_VM) { 1391 mmget(oldmm); 1392 mm = oldmm; 1393 goto good_mm; 1394 } 1395 1396 retval = -ENOMEM; 1397 mm = dup_mm(tsk, current->mm); 1398 if (!mm) 1399 goto fail_nomem; 1400 1401 good_mm: 1402 tsk->mm = mm; 1403 tsk->active_mm = mm; 1404 return 0; 1405 1406 fail_nomem: 1407 return retval; 1408 } 1409 1410 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1411 { 1412 struct fs_struct *fs = current->fs; 1413 if (clone_flags & CLONE_FS) { 1414 /* tsk->fs is already what we want */ 1415 spin_lock(&fs->lock); 1416 if (fs->in_exec) { 1417 spin_unlock(&fs->lock); 1418 return -EAGAIN; 1419 } 1420 fs->users++; 1421 spin_unlock(&fs->lock); 1422 return 0; 1423 } 1424 tsk->fs = copy_fs_struct(fs); 1425 if (!tsk->fs) 1426 return -ENOMEM; 1427 return 0; 1428 } 1429 1430 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1431 { 1432 struct files_struct *oldf, *newf; 1433 int error = 0; 1434 1435 /* 1436 * A background process may not have any files ... 1437 */ 1438 oldf = current->files; 1439 if (!oldf) 1440 goto out; 1441 1442 if (clone_flags & CLONE_FILES) { 1443 atomic_inc(&oldf->count); 1444 goto out; 1445 } 1446 1447 newf = dup_fd(oldf, &error); 1448 if (!newf) 1449 goto out; 1450 1451 tsk->files = newf; 1452 error = 0; 1453 out: 1454 return error; 1455 } 1456 1457 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1458 { 1459 #ifdef CONFIG_BLOCK 1460 struct io_context *ioc = current->io_context; 1461 struct io_context *new_ioc; 1462 1463 if (!ioc) 1464 return 0; 1465 /* 1466 * Share io context with parent, if CLONE_IO is set 1467 */ 1468 if (clone_flags & CLONE_IO) { 1469 ioc_task_link(ioc); 1470 tsk->io_context = ioc; 1471 } else if (ioprio_valid(ioc->ioprio)) { 1472 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1473 if (unlikely(!new_ioc)) 1474 return -ENOMEM; 1475 1476 new_ioc->ioprio = ioc->ioprio; 1477 put_io_context(new_ioc); 1478 } 1479 #endif 1480 return 0; 1481 } 1482 1483 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1484 { 1485 struct sighand_struct *sig; 1486 1487 if (clone_flags & CLONE_SIGHAND) { 1488 refcount_inc(¤t->sighand->count); 1489 return 0; 1490 } 1491 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1492 rcu_assign_pointer(tsk->sighand, sig); 1493 if (!sig) 1494 return -ENOMEM; 1495 1496 refcount_set(&sig->count, 1); 1497 spin_lock_irq(¤t->sighand->siglock); 1498 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1499 spin_unlock_irq(¤t->sighand->siglock); 1500 return 0; 1501 } 1502 1503 void __cleanup_sighand(struct sighand_struct *sighand) 1504 { 1505 if (refcount_dec_and_test(&sighand->count)) { 1506 signalfd_cleanup(sighand); 1507 /* 1508 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1509 * without an RCU grace period, see __lock_task_sighand(). 1510 */ 1511 kmem_cache_free(sighand_cachep, sighand); 1512 } 1513 } 1514 1515 #ifdef CONFIG_POSIX_TIMERS 1516 /* 1517 * Initialize POSIX timer handling for a thread group. 1518 */ 1519 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1520 { 1521 unsigned long cpu_limit; 1522 1523 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1524 if (cpu_limit != RLIM_INFINITY) { 1525 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC; 1526 sig->cputimer.running = true; 1527 } 1528 1529 /* The timer lists. */ 1530 INIT_LIST_HEAD(&sig->cpu_timers[0]); 1531 INIT_LIST_HEAD(&sig->cpu_timers[1]); 1532 INIT_LIST_HEAD(&sig->cpu_timers[2]); 1533 } 1534 #else 1535 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { } 1536 #endif 1537 1538 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1539 { 1540 struct signal_struct *sig; 1541 1542 if (clone_flags & CLONE_THREAD) 1543 return 0; 1544 1545 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1546 tsk->signal = sig; 1547 if (!sig) 1548 return -ENOMEM; 1549 1550 sig->nr_threads = 1; 1551 atomic_set(&sig->live, 1); 1552 refcount_set(&sig->sigcnt, 1); 1553 1554 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1555 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1556 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1557 1558 init_waitqueue_head(&sig->wait_chldexit); 1559 sig->curr_target = tsk; 1560 init_sigpending(&sig->shared_pending); 1561 INIT_HLIST_HEAD(&sig->multiprocess); 1562 seqlock_init(&sig->stats_lock); 1563 prev_cputime_init(&sig->prev_cputime); 1564 1565 #ifdef CONFIG_POSIX_TIMERS 1566 INIT_LIST_HEAD(&sig->posix_timers); 1567 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1568 sig->real_timer.function = it_real_fn; 1569 #endif 1570 1571 task_lock(current->group_leader); 1572 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1573 task_unlock(current->group_leader); 1574 1575 posix_cpu_timers_init_group(sig); 1576 1577 tty_audit_fork(sig); 1578 sched_autogroup_fork(sig); 1579 1580 sig->oom_score_adj = current->signal->oom_score_adj; 1581 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1582 1583 mutex_init(&sig->cred_guard_mutex); 1584 1585 return 0; 1586 } 1587 1588 static void copy_seccomp(struct task_struct *p) 1589 { 1590 #ifdef CONFIG_SECCOMP 1591 /* 1592 * Must be called with sighand->lock held, which is common to 1593 * all threads in the group. Holding cred_guard_mutex is not 1594 * needed because this new task is not yet running and cannot 1595 * be racing exec. 1596 */ 1597 assert_spin_locked(¤t->sighand->siglock); 1598 1599 /* Ref-count the new filter user, and assign it. */ 1600 get_seccomp_filter(current); 1601 p->seccomp = current->seccomp; 1602 1603 /* 1604 * Explicitly enable no_new_privs here in case it got set 1605 * between the task_struct being duplicated and holding the 1606 * sighand lock. The seccomp state and nnp must be in sync. 1607 */ 1608 if (task_no_new_privs(current)) 1609 task_set_no_new_privs(p); 1610 1611 /* 1612 * If the parent gained a seccomp mode after copying thread 1613 * flags and between before we held the sighand lock, we have 1614 * to manually enable the seccomp thread flag here. 1615 */ 1616 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1617 set_tsk_thread_flag(p, TIF_SECCOMP); 1618 #endif 1619 } 1620 1621 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1622 { 1623 current->clear_child_tid = tidptr; 1624 1625 return task_pid_vnr(current); 1626 } 1627 1628 static void rt_mutex_init_task(struct task_struct *p) 1629 { 1630 raw_spin_lock_init(&p->pi_lock); 1631 #ifdef CONFIG_RT_MUTEXES 1632 p->pi_waiters = RB_ROOT_CACHED; 1633 p->pi_top_task = NULL; 1634 p->pi_blocked_on = NULL; 1635 #endif 1636 } 1637 1638 #ifdef CONFIG_POSIX_TIMERS 1639 /* 1640 * Initialize POSIX timer handling for a single task. 1641 */ 1642 static void posix_cpu_timers_init(struct task_struct *tsk) 1643 { 1644 tsk->cputime_expires.prof_exp = 0; 1645 tsk->cputime_expires.virt_exp = 0; 1646 tsk->cputime_expires.sched_exp = 0; 1647 INIT_LIST_HEAD(&tsk->cpu_timers[0]); 1648 INIT_LIST_HEAD(&tsk->cpu_timers[1]); 1649 INIT_LIST_HEAD(&tsk->cpu_timers[2]); 1650 } 1651 #else 1652 static inline void posix_cpu_timers_init(struct task_struct *tsk) { } 1653 #endif 1654 1655 static inline void init_task_pid_links(struct task_struct *task) 1656 { 1657 enum pid_type type; 1658 1659 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1660 INIT_HLIST_NODE(&task->pid_links[type]); 1661 } 1662 } 1663 1664 static inline void 1665 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1666 { 1667 if (type == PIDTYPE_PID) 1668 task->thread_pid = pid; 1669 else 1670 task->signal->pids[type] = pid; 1671 } 1672 1673 static inline void rcu_copy_process(struct task_struct *p) 1674 { 1675 #ifdef CONFIG_PREEMPT_RCU 1676 p->rcu_read_lock_nesting = 0; 1677 p->rcu_read_unlock_special.s = 0; 1678 p->rcu_blocked_node = NULL; 1679 INIT_LIST_HEAD(&p->rcu_node_entry); 1680 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1681 #ifdef CONFIG_TASKS_RCU 1682 p->rcu_tasks_holdout = false; 1683 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1684 p->rcu_tasks_idle_cpu = -1; 1685 #endif /* #ifdef CONFIG_TASKS_RCU */ 1686 } 1687 1688 static int pidfd_release(struct inode *inode, struct file *file) 1689 { 1690 struct pid *pid = file->private_data; 1691 1692 file->private_data = NULL; 1693 put_pid(pid); 1694 return 0; 1695 } 1696 1697 #ifdef CONFIG_PROC_FS 1698 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1699 { 1700 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file)); 1701 struct pid *pid = f->private_data; 1702 1703 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns)); 1704 seq_putc(m, '\n'); 1705 } 1706 #endif 1707 1708 const struct file_operations pidfd_fops = { 1709 .release = pidfd_release, 1710 #ifdef CONFIG_PROC_FS 1711 .show_fdinfo = pidfd_show_fdinfo, 1712 #endif 1713 }; 1714 1715 /** 1716 * pidfd_create() - Create a new pid file descriptor. 1717 * 1718 * @pid: struct pid that the pidfd will reference 1719 * 1720 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 1721 * 1722 * Note, that this function can only be called after the fd table has 1723 * been unshared to avoid leaking the pidfd to the new process. 1724 * 1725 * Return: On success, a cloexec pidfd is returned. 1726 * On error, a negative errno number will be returned. 1727 */ 1728 static int pidfd_create(struct pid *pid) 1729 { 1730 int fd; 1731 1732 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), 1733 O_RDWR | O_CLOEXEC); 1734 if (fd < 0) 1735 put_pid(pid); 1736 1737 return fd; 1738 } 1739 1740 static void __delayed_free_task(struct rcu_head *rhp) 1741 { 1742 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1743 1744 free_task(tsk); 1745 } 1746 1747 static __always_inline void delayed_free_task(struct task_struct *tsk) 1748 { 1749 if (IS_ENABLED(CONFIG_MEMCG)) 1750 call_rcu(&tsk->rcu, __delayed_free_task); 1751 else 1752 free_task(tsk); 1753 } 1754 1755 /* 1756 * This creates a new process as a copy of the old one, 1757 * but does not actually start it yet. 1758 * 1759 * It copies the registers, and all the appropriate 1760 * parts of the process environment (as per the clone 1761 * flags). The actual kick-off is left to the caller. 1762 */ 1763 static __latent_entropy struct task_struct *copy_process( 1764 unsigned long clone_flags, 1765 unsigned long stack_start, 1766 unsigned long stack_size, 1767 int __user *parent_tidptr, 1768 int __user *child_tidptr, 1769 struct pid *pid, 1770 int trace, 1771 unsigned long tls, 1772 int node) 1773 { 1774 int pidfd = -1, retval; 1775 struct task_struct *p; 1776 struct multiprocess_signals delayed; 1777 1778 /* 1779 * Don't allow sharing the root directory with processes in a different 1780 * namespace 1781 */ 1782 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1783 return ERR_PTR(-EINVAL); 1784 1785 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1786 return ERR_PTR(-EINVAL); 1787 1788 /* 1789 * Thread groups must share signals as well, and detached threads 1790 * can only be started up within the thread group. 1791 */ 1792 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1793 return ERR_PTR(-EINVAL); 1794 1795 /* 1796 * Shared signal handlers imply shared VM. By way of the above, 1797 * thread groups also imply shared VM. Blocking this case allows 1798 * for various simplifications in other code. 1799 */ 1800 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1801 return ERR_PTR(-EINVAL); 1802 1803 /* 1804 * Siblings of global init remain as zombies on exit since they are 1805 * not reaped by their parent (swapper). To solve this and to avoid 1806 * multi-rooted process trees, prevent global and container-inits 1807 * from creating siblings. 1808 */ 1809 if ((clone_flags & CLONE_PARENT) && 1810 current->signal->flags & SIGNAL_UNKILLABLE) 1811 return ERR_PTR(-EINVAL); 1812 1813 /* 1814 * If the new process will be in a different pid or user namespace 1815 * do not allow it to share a thread group with the forking task. 1816 */ 1817 if (clone_flags & CLONE_THREAD) { 1818 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1819 (task_active_pid_ns(current) != 1820 current->nsproxy->pid_ns_for_children)) 1821 return ERR_PTR(-EINVAL); 1822 } 1823 1824 if (clone_flags & CLONE_PIDFD) { 1825 int reserved; 1826 1827 /* 1828 * - CLONE_PARENT_SETTID is useless for pidfds and also 1829 * parent_tidptr is used to return pidfds. 1830 * - CLONE_DETACHED is blocked so that we can potentially 1831 * reuse it later for CLONE_PIDFD. 1832 * - CLONE_THREAD is blocked until someone really needs it. 1833 */ 1834 if (clone_flags & 1835 (CLONE_DETACHED | CLONE_PARENT_SETTID | CLONE_THREAD)) 1836 return ERR_PTR(-EINVAL); 1837 1838 /* 1839 * Verify that parent_tidptr is sane so we can potentially 1840 * reuse it later. 1841 */ 1842 if (get_user(reserved, parent_tidptr)) 1843 return ERR_PTR(-EFAULT); 1844 1845 if (reserved != 0) 1846 return ERR_PTR(-EINVAL); 1847 } 1848 1849 /* 1850 * Force any signals received before this point to be delivered 1851 * before the fork happens. Collect up signals sent to multiple 1852 * processes that happen during the fork and delay them so that 1853 * they appear to happen after the fork. 1854 */ 1855 sigemptyset(&delayed.signal); 1856 INIT_HLIST_NODE(&delayed.node); 1857 1858 spin_lock_irq(¤t->sighand->siglock); 1859 if (!(clone_flags & CLONE_THREAD)) 1860 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1861 recalc_sigpending(); 1862 spin_unlock_irq(¤t->sighand->siglock); 1863 retval = -ERESTARTNOINTR; 1864 if (signal_pending(current)) 1865 goto fork_out; 1866 1867 retval = -ENOMEM; 1868 p = dup_task_struct(current, node); 1869 if (!p) 1870 goto fork_out; 1871 1872 /* 1873 * This _must_ happen before we call free_task(), i.e. before we jump 1874 * to any of the bad_fork_* labels. This is to avoid freeing 1875 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1876 * kernel threads (PF_KTHREAD). 1877 */ 1878 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL; 1879 /* 1880 * Clear TID on mm_release()? 1881 */ 1882 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL; 1883 1884 ftrace_graph_init_task(p); 1885 1886 rt_mutex_init_task(p); 1887 1888 #ifdef CONFIG_PROVE_LOCKING 1889 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1890 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1891 #endif 1892 retval = -EAGAIN; 1893 if (atomic_read(&p->real_cred->user->processes) >= 1894 task_rlimit(p, RLIMIT_NPROC)) { 1895 if (p->real_cred->user != INIT_USER && 1896 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1897 goto bad_fork_free; 1898 } 1899 current->flags &= ~PF_NPROC_EXCEEDED; 1900 1901 retval = copy_creds(p, clone_flags); 1902 if (retval < 0) 1903 goto bad_fork_free; 1904 1905 /* 1906 * If multiple threads are within copy_process(), then this check 1907 * triggers too late. This doesn't hurt, the check is only there 1908 * to stop root fork bombs. 1909 */ 1910 retval = -EAGAIN; 1911 if (nr_threads >= max_threads) 1912 goto bad_fork_cleanup_count; 1913 1914 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1915 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1916 p->flags |= PF_FORKNOEXEC; 1917 INIT_LIST_HEAD(&p->children); 1918 INIT_LIST_HEAD(&p->sibling); 1919 rcu_copy_process(p); 1920 p->vfork_done = NULL; 1921 spin_lock_init(&p->alloc_lock); 1922 1923 init_sigpending(&p->pending); 1924 1925 p->utime = p->stime = p->gtime = 0; 1926 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1927 p->utimescaled = p->stimescaled = 0; 1928 #endif 1929 prev_cputime_init(&p->prev_cputime); 1930 1931 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1932 seqcount_init(&p->vtime.seqcount); 1933 p->vtime.starttime = 0; 1934 p->vtime.state = VTIME_INACTIVE; 1935 #endif 1936 1937 #if defined(SPLIT_RSS_COUNTING) 1938 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1939 #endif 1940 1941 p->default_timer_slack_ns = current->timer_slack_ns; 1942 1943 #ifdef CONFIG_PSI 1944 p->psi_flags = 0; 1945 #endif 1946 1947 task_io_accounting_init(&p->ioac); 1948 acct_clear_integrals(p); 1949 1950 posix_cpu_timers_init(p); 1951 1952 p->io_context = NULL; 1953 audit_set_context(p, NULL); 1954 cgroup_fork(p); 1955 #ifdef CONFIG_NUMA 1956 p->mempolicy = mpol_dup(p->mempolicy); 1957 if (IS_ERR(p->mempolicy)) { 1958 retval = PTR_ERR(p->mempolicy); 1959 p->mempolicy = NULL; 1960 goto bad_fork_cleanup_threadgroup_lock; 1961 } 1962 #endif 1963 #ifdef CONFIG_CPUSETS 1964 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 1965 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 1966 seqcount_init(&p->mems_allowed_seq); 1967 #endif 1968 #ifdef CONFIG_TRACE_IRQFLAGS 1969 p->irq_events = 0; 1970 p->hardirqs_enabled = 0; 1971 p->hardirq_enable_ip = 0; 1972 p->hardirq_enable_event = 0; 1973 p->hardirq_disable_ip = _THIS_IP_; 1974 p->hardirq_disable_event = 0; 1975 p->softirqs_enabled = 1; 1976 p->softirq_enable_ip = _THIS_IP_; 1977 p->softirq_enable_event = 0; 1978 p->softirq_disable_ip = 0; 1979 p->softirq_disable_event = 0; 1980 p->hardirq_context = 0; 1981 p->softirq_context = 0; 1982 #endif 1983 1984 p->pagefault_disabled = 0; 1985 1986 #ifdef CONFIG_LOCKDEP 1987 p->lockdep_depth = 0; /* no locks held yet */ 1988 p->curr_chain_key = 0; 1989 p->lockdep_recursion = 0; 1990 lockdep_init_task(p); 1991 #endif 1992 1993 #ifdef CONFIG_DEBUG_MUTEXES 1994 p->blocked_on = NULL; /* not blocked yet */ 1995 #endif 1996 #ifdef CONFIG_BCACHE 1997 p->sequential_io = 0; 1998 p->sequential_io_avg = 0; 1999 #endif 2000 2001 /* Perform scheduler related setup. Assign this task to a CPU. */ 2002 retval = sched_fork(clone_flags, p); 2003 if (retval) 2004 goto bad_fork_cleanup_policy; 2005 2006 retval = perf_event_init_task(p); 2007 if (retval) 2008 goto bad_fork_cleanup_policy; 2009 retval = audit_alloc(p); 2010 if (retval) 2011 goto bad_fork_cleanup_perf; 2012 /* copy all the process information */ 2013 shm_init_task(p); 2014 retval = security_task_alloc(p, clone_flags); 2015 if (retval) 2016 goto bad_fork_cleanup_audit; 2017 retval = copy_semundo(clone_flags, p); 2018 if (retval) 2019 goto bad_fork_cleanup_security; 2020 retval = copy_files(clone_flags, p); 2021 if (retval) 2022 goto bad_fork_cleanup_semundo; 2023 retval = copy_fs(clone_flags, p); 2024 if (retval) 2025 goto bad_fork_cleanup_files; 2026 retval = copy_sighand(clone_flags, p); 2027 if (retval) 2028 goto bad_fork_cleanup_fs; 2029 retval = copy_signal(clone_flags, p); 2030 if (retval) 2031 goto bad_fork_cleanup_sighand; 2032 retval = copy_mm(clone_flags, p); 2033 if (retval) 2034 goto bad_fork_cleanup_signal; 2035 retval = copy_namespaces(clone_flags, p); 2036 if (retval) 2037 goto bad_fork_cleanup_mm; 2038 retval = copy_io(clone_flags, p); 2039 if (retval) 2040 goto bad_fork_cleanup_namespaces; 2041 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls); 2042 if (retval) 2043 goto bad_fork_cleanup_io; 2044 2045 stackleak_task_init(p); 2046 2047 if (pid != &init_struct_pid) { 2048 pid = alloc_pid(p->nsproxy->pid_ns_for_children); 2049 if (IS_ERR(pid)) { 2050 retval = PTR_ERR(pid); 2051 goto bad_fork_cleanup_thread; 2052 } 2053 } 2054 2055 /* 2056 * This has to happen after we've potentially unshared the file 2057 * descriptor table (so that the pidfd doesn't leak into the child 2058 * if the fd table isn't shared). 2059 */ 2060 if (clone_flags & CLONE_PIDFD) { 2061 retval = pidfd_create(pid); 2062 if (retval < 0) 2063 goto bad_fork_free_pid; 2064 2065 pidfd = retval; 2066 retval = put_user(pidfd, parent_tidptr); 2067 if (retval) 2068 goto bad_fork_put_pidfd; 2069 } 2070 2071 #ifdef CONFIG_BLOCK 2072 p->plug = NULL; 2073 #endif 2074 #ifdef CONFIG_FUTEX 2075 p->robust_list = NULL; 2076 #ifdef CONFIG_COMPAT 2077 p->compat_robust_list = NULL; 2078 #endif 2079 INIT_LIST_HEAD(&p->pi_state_list); 2080 p->pi_state_cache = NULL; 2081 #endif 2082 /* 2083 * sigaltstack should be cleared when sharing the same VM 2084 */ 2085 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2086 sas_ss_reset(p); 2087 2088 /* 2089 * Syscall tracing and stepping should be turned off in the 2090 * child regardless of CLONE_PTRACE. 2091 */ 2092 user_disable_single_step(p); 2093 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2094 #ifdef TIF_SYSCALL_EMU 2095 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2096 #endif 2097 clear_tsk_latency_tracing(p); 2098 2099 /* ok, now we should be set up.. */ 2100 p->pid = pid_nr(pid); 2101 if (clone_flags & CLONE_THREAD) { 2102 p->exit_signal = -1; 2103 p->group_leader = current->group_leader; 2104 p->tgid = current->tgid; 2105 } else { 2106 if (clone_flags & CLONE_PARENT) 2107 p->exit_signal = current->group_leader->exit_signal; 2108 else 2109 p->exit_signal = (clone_flags & CSIGNAL); 2110 p->group_leader = p; 2111 p->tgid = p->pid; 2112 } 2113 2114 p->nr_dirtied = 0; 2115 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2116 p->dirty_paused_when = 0; 2117 2118 p->pdeath_signal = 0; 2119 INIT_LIST_HEAD(&p->thread_group); 2120 p->task_works = NULL; 2121 2122 cgroup_threadgroup_change_begin(current); 2123 /* 2124 * Ensure that the cgroup subsystem policies allow the new process to be 2125 * forked. It should be noted the the new process's css_set can be changed 2126 * between here and cgroup_post_fork() if an organisation operation is in 2127 * progress. 2128 */ 2129 retval = cgroup_can_fork(p); 2130 if (retval) 2131 goto bad_fork_cgroup_threadgroup_change_end; 2132 2133 /* 2134 * From this point on we must avoid any synchronous user-space 2135 * communication until we take the tasklist-lock. In particular, we do 2136 * not want user-space to be able to predict the process start-time by 2137 * stalling fork(2) after we recorded the start_time but before it is 2138 * visible to the system. 2139 */ 2140 2141 p->start_time = ktime_get_ns(); 2142 p->real_start_time = ktime_get_boot_ns(); 2143 2144 /* 2145 * Make it visible to the rest of the system, but dont wake it up yet. 2146 * Need tasklist lock for parent etc handling! 2147 */ 2148 write_lock_irq(&tasklist_lock); 2149 2150 /* CLONE_PARENT re-uses the old parent */ 2151 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2152 p->real_parent = current->real_parent; 2153 p->parent_exec_id = current->parent_exec_id; 2154 } else { 2155 p->real_parent = current; 2156 p->parent_exec_id = current->self_exec_id; 2157 } 2158 2159 klp_copy_process(p); 2160 2161 spin_lock(¤t->sighand->siglock); 2162 2163 /* 2164 * Copy seccomp details explicitly here, in case they were changed 2165 * before holding sighand lock. 2166 */ 2167 copy_seccomp(p); 2168 2169 rseq_fork(p, clone_flags); 2170 2171 /* Don't start children in a dying pid namespace */ 2172 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2173 retval = -ENOMEM; 2174 goto bad_fork_cancel_cgroup; 2175 } 2176 2177 /* Let kill terminate clone/fork in the middle */ 2178 if (fatal_signal_pending(current)) { 2179 retval = -EINTR; 2180 goto bad_fork_cancel_cgroup; 2181 } 2182 2183 2184 init_task_pid_links(p); 2185 if (likely(p->pid)) { 2186 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2187 2188 init_task_pid(p, PIDTYPE_PID, pid); 2189 if (thread_group_leader(p)) { 2190 init_task_pid(p, PIDTYPE_TGID, pid); 2191 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2192 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2193 2194 if (is_child_reaper(pid)) { 2195 ns_of_pid(pid)->child_reaper = p; 2196 p->signal->flags |= SIGNAL_UNKILLABLE; 2197 } 2198 p->signal->shared_pending.signal = delayed.signal; 2199 p->signal->tty = tty_kref_get(current->signal->tty); 2200 /* 2201 * Inherit has_child_subreaper flag under the same 2202 * tasklist_lock with adding child to the process tree 2203 * for propagate_has_child_subreaper optimization. 2204 */ 2205 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2206 p->real_parent->signal->is_child_subreaper; 2207 list_add_tail(&p->sibling, &p->real_parent->children); 2208 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2209 attach_pid(p, PIDTYPE_TGID); 2210 attach_pid(p, PIDTYPE_PGID); 2211 attach_pid(p, PIDTYPE_SID); 2212 __this_cpu_inc(process_counts); 2213 } else { 2214 current->signal->nr_threads++; 2215 atomic_inc(¤t->signal->live); 2216 refcount_inc(¤t->signal->sigcnt); 2217 task_join_group_stop(p); 2218 list_add_tail_rcu(&p->thread_group, 2219 &p->group_leader->thread_group); 2220 list_add_tail_rcu(&p->thread_node, 2221 &p->signal->thread_head); 2222 } 2223 attach_pid(p, PIDTYPE_PID); 2224 nr_threads++; 2225 } 2226 total_forks++; 2227 hlist_del_init(&delayed.node); 2228 spin_unlock(¤t->sighand->siglock); 2229 syscall_tracepoint_update(p); 2230 write_unlock_irq(&tasklist_lock); 2231 2232 proc_fork_connector(p); 2233 cgroup_post_fork(p); 2234 cgroup_threadgroup_change_end(current); 2235 perf_event_fork(p); 2236 2237 trace_task_newtask(p, clone_flags); 2238 uprobe_copy_process(p, clone_flags); 2239 2240 return p; 2241 2242 bad_fork_cancel_cgroup: 2243 spin_unlock(¤t->sighand->siglock); 2244 write_unlock_irq(&tasklist_lock); 2245 cgroup_cancel_fork(p); 2246 bad_fork_cgroup_threadgroup_change_end: 2247 cgroup_threadgroup_change_end(current); 2248 bad_fork_put_pidfd: 2249 if (clone_flags & CLONE_PIDFD) 2250 ksys_close(pidfd); 2251 bad_fork_free_pid: 2252 if (pid != &init_struct_pid) 2253 free_pid(pid); 2254 bad_fork_cleanup_thread: 2255 exit_thread(p); 2256 bad_fork_cleanup_io: 2257 if (p->io_context) 2258 exit_io_context(p); 2259 bad_fork_cleanup_namespaces: 2260 exit_task_namespaces(p); 2261 bad_fork_cleanup_mm: 2262 if (p->mm) { 2263 mm_clear_owner(p->mm, p); 2264 mmput(p->mm); 2265 } 2266 bad_fork_cleanup_signal: 2267 if (!(clone_flags & CLONE_THREAD)) 2268 free_signal_struct(p->signal); 2269 bad_fork_cleanup_sighand: 2270 __cleanup_sighand(p->sighand); 2271 bad_fork_cleanup_fs: 2272 exit_fs(p); /* blocking */ 2273 bad_fork_cleanup_files: 2274 exit_files(p); /* blocking */ 2275 bad_fork_cleanup_semundo: 2276 exit_sem(p); 2277 bad_fork_cleanup_security: 2278 security_task_free(p); 2279 bad_fork_cleanup_audit: 2280 audit_free(p); 2281 bad_fork_cleanup_perf: 2282 perf_event_free_task(p); 2283 bad_fork_cleanup_policy: 2284 lockdep_free_task(p); 2285 #ifdef CONFIG_NUMA 2286 mpol_put(p->mempolicy); 2287 bad_fork_cleanup_threadgroup_lock: 2288 #endif 2289 delayacct_tsk_free(p); 2290 bad_fork_cleanup_count: 2291 atomic_dec(&p->cred->user->processes); 2292 exit_creds(p); 2293 bad_fork_free: 2294 p->state = TASK_DEAD; 2295 put_task_stack(p); 2296 delayed_free_task(p); 2297 fork_out: 2298 spin_lock_irq(¤t->sighand->siglock); 2299 hlist_del_init(&delayed.node); 2300 spin_unlock_irq(¤t->sighand->siglock); 2301 return ERR_PTR(retval); 2302 } 2303 2304 static inline void init_idle_pids(struct task_struct *idle) 2305 { 2306 enum pid_type type; 2307 2308 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2309 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2310 init_task_pid(idle, type, &init_struct_pid); 2311 } 2312 } 2313 2314 struct task_struct *fork_idle(int cpu) 2315 { 2316 struct task_struct *task; 2317 task = copy_process(CLONE_VM, 0, 0, NULL, NULL, &init_struct_pid, 0, 0, 2318 cpu_to_node(cpu)); 2319 if (!IS_ERR(task)) { 2320 init_idle_pids(task); 2321 init_idle(task, cpu); 2322 } 2323 2324 return task; 2325 } 2326 2327 struct mm_struct *copy_init_mm(void) 2328 { 2329 return dup_mm(NULL, &init_mm); 2330 } 2331 2332 /* 2333 * Ok, this is the main fork-routine. 2334 * 2335 * It copies the process, and if successful kick-starts 2336 * it and waits for it to finish using the VM if required. 2337 */ 2338 long _do_fork(unsigned long clone_flags, 2339 unsigned long stack_start, 2340 unsigned long stack_size, 2341 int __user *parent_tidptr, 2342 int __user *child_tidptr, 2343 unsigned long tls) 2344 { 2345 struct completion vfork; 2346 struct pid *pid; 2347 struct task_struct *p; 2348 int trace = 0; 2349 long nr; 2350 2351 /* 2352 * Determine whether and which event to report to ptracer. When 2353 * called from kernel_thread or CLONE_UNTRACED is explicitly 2354 * requested, no event is reported; otherwise, report if the event 2355 * for the type of forking is enabled. 2356 */ 2357 if (!(clone_flags & CLONE_UNTRACED)) { 2358 if (clone_flags & CLONE_VFORK) 2359 trace = PTRACE_EVENT_VFORK; 2360 else if ((clone_flags & CSIGNAL) != SIGCHLD) 2361 trace = PTRACE_EVENT_CLONE; 2362 else 2363 trace = PTRACE_EVENT_FORK; 2364 2365 if (likely(!ptrace_event_enabled(current, trace))) 2366 trace = 0; 2367 } 2368 2369 p = copy_process(clone_flags, stack_start, stack_size, parent_tidptr, 2370 child_tidptr, NULL, trace, tls, NUMA_NO_NODE); 2371 add_latent_entropy(); 2372 2373 if (IS_ERR(p)) 2374 return PTR_ERR(p); 2375 2376 /* 2377 * Do this prior waking up the new thread - the thread pointer 2378 * might get invalid after that point, if the thread exits quickly. 2379 */ 2380 trace_sched_process_fork(current, p); 2381 2382 pid = get_task_pid(p, PIDTYPE_PID); 2383 nr = pid_vnr(pid); 2384 2385 if (clone_flags & CLONE_PARENT_SETTID) 2386 put_user(nr, parent_tidptr); 2387 2388 if (clone_flags & CLONE_VFORK) { 2389 p->vfork_done = &vfork; 2390 init_completion(&vfork); 2391 get_task_struct(p); 2392 } 2393 2394 wake_up_new_task(p); 2395 2396 /* forking complete and child started to run, tell ptracer */ 2397 if (unlikely(trace)) 2398 ptrace_event_pid(trace, pid); 2399 2400 if (clone_flags & CLONE_VFORK) { 2401 if (!wait_for_vfork_done(p, &vfork)) 2402 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2403 } 2404 2405 put_pid(pid); 2406 return nr; 2407 } 2408 2409 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2410 /* For compatibility with architectures that call do_fork directly rather than 2411 * using the syscall entry points below. */ 2412 long do_fork(unsigned long clone_flags, 2413 unsigned long stack_start, 2414 unsigned long stack_size, 2415 int __user *parent_tidptr, 2416 int __user *child_tidptr) 2417 { 2418 return _do_fork(clone_flags, stack_start, stack_size, 2419 parent_tidptr, child_tidptr, 0); 2420 } 2421 #endif 2422 2423 /* 2424 * Create a kernel thread. 2425 */ 2426 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2427 { 2428 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn, 2429 (unsigned long)arg, NULL, NULL, 0); 2430 } 2431 2432 #ifdef __ARCH_WANT_SYS_FORK 2433 SYSCALL_DEFINE0(fork) 2434 { 2435 #ifdef CONFIG_MMU 2436 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0); 2437 #else 2438 /* can not support in nommu mode */ 2439 return -EINVAL; 2440 #endif 2441 } 2442 #endif 2443 2444 #ifdef __ARCH_WANT_SYS_VFORK 2445 SYSCALL_DEFINE0(vfork) 2446 { 2447 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0, 2448 0, NULL, NULL, 0); 2449 } 2450 #endif 2451 2452 #ifdef __ARCH_WANT_SYS_CLONE 2453 #ifdef CONFIG_CLONE_BACKWARDS 2454 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2455 int __user *, parent_tidptr, 2456 unsigned long, tls, 2457 int __user *, child_tidptr) 2458 #elif defined(CONFIG_CLONE_BACKWARDS2) 2459 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2460 int __user *, parent_tidptr, 2461 int __user *, child_tidptr, 2462 unsigned long, tls) 2463 #elif defined(CONFIG_CLONE_BACKWARDS3) 2464 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2465 int, stack_size, 2466 int __user *, parent_tidptr, 2467 int __user *, child_tidptr, 2468 unsigned long, tls) 2469 #else 2470 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2471 int __user *, parent_tidptr, 2472 int __user *, child_tidptr, 2473 unsigned long, tls) 2474 #endif 2475 { 2476 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls); 2477 } 2478 #endif 2479 2480 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2481 { 2482 struct task_struct *leader, *parent, *child; 2483 int res; 2484 2485 read_lock(&tasklist_lock); 2486 leader = top = top->group_leader; 2487 down: 2488 for_each_thread(leader, parent) { 2489 list_for_each_entry(child, &parent->children, sibling) { 2490 res = visitor(child, data); 2491 if (res) { 2492 if (res < 0) 2493 goto out; 2494 leader = child; 2495 goto down; 2496 } 2497 up: 2498 ; 2499 } 2500 } 2501 2502 if (leader != top) { 2503 child = leader; 2504 parent = child->real_parent; 2505 leader = parent->group_leader; 2506 goto up; 2507 } 2508 out: 2509 read_unlock(&tasklist_lock); 2510 } 2511 2512 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2513 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2514 #endif 2515 2516 static void sighand_ctor(void *data) 2517 { 2518 struct sighand_struct *sighand = data; 2519 2520 spin_lock_init(&sighand->siglock); 2521 init_waitqueue_head(&sighand->signalfd_wqh); 2522 } 2523 2524 void __init proc_caches_init(void) 2525 { 2526 unsigned int mm_size; 2527 2528 sighand_cachep = kmem_cache_create("sighand_cache", 2529 sizeof(struct sighand_struct), 0, 2530 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2531 SLAB_ACCOUNT, sighand_ctor); 2532 signal_cachep = kmem_cache_create("signal_cache", 2533 sizeof(struct signal_struct), 0, 2534 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2535 NULL); 2536 files_cachep = kmem_cache_create("files_cache", 2537 sizeof(struct files_struct), 0, 2538 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2539 NULL); 2540 fs_cachep = kmem_cache_create("fs_cache", 2541 sizeof(struct fs_struct), 0, 2542 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2543 NULL); 2544 2545 /* 2546 * The mm_cpumask is located at the end of mm_struct, and is 2547 * dynamically sized based on the maximum CPU number this system 2548 * can have, taking hotplug into account (nr_cpu_ids). 2549 */ 2550 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2551 2552 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2553 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2554 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2555 offsetof(struct mm_struct, saved_auxv), 2556 sizeof_field(struct mm_struct, saved_auxv), 2557 NULL); 2558 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2559 mmap_init(); 2560 nsproxy_cache_init(); 2561 } 2562 2563 /* 2564 * Check constraints on flags passed to the unshare system call. 2565 */ 2566 static int check_unshare_flags(unsigned long unshare_flags) 2567 { 2568 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2569 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2570 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2571 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) 2572 return -EINVAL; 2573 /* 2574 * Not implemented, but pretend it works if there is nothing 2575 * to unshare. Note that unsharing the address space or the 2576 * signal handlers also need to unshare the signal queues (aka 2577 * CLONE_THREAD). 2578 */ 2579 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2580 if (!thread_group_empty(current)) 2581 return -EINVAL; 2582 } 2583 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2584 if (refcount_read(¤t->sighand->count) > 1) 2585 return -EINVAL; 2586 } 2587 if (unshare_flags & CLONE_VM) { 2588 if (!current_is_single_threaded()) 2589 return -EINVAL; 2590 } 2591 2592 return 0; 2593 } 2594 2595 /* 2596 * Unshare the filesystem structure if it is being shared 2597 */ 2598 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2599 { 2600 struct fs_struct *fs = current->fs; 2601 2602 if (!(unshare_flags & CLONE_FS) || !fs) 2603 return 0; 2604 2605 /* don't need lock here; in the worst case we'll do useless copy */ 2606 if (fs->users == 1) 2607 return 0; 2608 2609 *new_fsp = copy_fs_struct(fs); 2610 if (!*new_fsp) 2611 return -ENOMEM; 2612 2613 return 0; 2614 } 2615 2616 /* 2617 * Unshare file descriptor table if it is being shared 2618 */ 2619 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 2620 { 2621 struct files_struct *fd = current->files; 2622 int error = 0; 2623 2624 if ((unshare_flags & CLONE_FILES) && 2625 (fd && atomic_read(&fd->count) > 1)) { 2626 *new_fdp = dup_fd(fd, &error); 2627 if (!*new_fdp) 2628 return error; 2629 } 2630 2631 return 0; 2632 } 2633 2634 /* 2635 * unshare allows a process to 'unshare' part of the process 2636 * context which was originally shared using clone. copy_* 2637 * functions used by do_fork() cannot be used here directly 2638 * because they modify an inactive task_struct that is being 2639 * constructed. Here we are modifying the current, active, 2640 * task_struct. 2641 */ 2642 int ksys_unshare(unsigned long unshare_flags) 2643 { 2644 struct fs_struct *fs, *new_fs = NULL; 2645 struct files_struct *fd, *new_fd = NULL; 2646 struct cred *new_cred = NULL; 2647 struct nsproxy *new_nsproxy = NULL; 2648 int do_sysvsem = 0; 2649 int err; 2650 2651 /* 2652 * If unsharing a user namespace must also unshare the thread group 2653 * and unshare the filesystem root and working directories. 2654 */ 2655 if (unshare_flags & CLONE_NEWUSER) 2656 unshare_flags |= CLONE_THREAD | CLONE_FS; 2657 /* 2658 * If unsharing vm, must also unshare signal handlers. 2659 */ 2660 if (unshare_flags & CLONE_VM) 2661 unshare_flags |= CLONE_SIGHAND; 2662 /* 2663 * If unsharing a signal handlers, must also unshare the signal queues. 2664 */ 2665 if (unshare_flags & CLONE_SIGHAND) 2666 unshare_flags |= CLONE_THREAD; 2667 /* 2668 * If unsharing namespace, must also unshare filesystem information. 2669 */ 2670 if (unshare_flags & CLONE_NEWNS) 2671 unshare_flags |= CLONE_FS; 2672 2673 err = check_unshare_flags(unshare_flags); 2674 if (err) 2675 goto bad_unshare_out; 2676 /* 2677 * CLONE_NEWIPC must also detach from the undolist: after switching 2678 * to a new ipc namespace, the semaphore arrays from the old 2679 * namespace are unreachable. 2680 */ 2681 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2682 do_sysvsem = 1; 2683 err = unshare_fs(unshare_flags, &new_fs); 2684 if (err) 2685 goto bad_unshare_out; 2686 err = unshare_fd(unshare_flags, &new_fd); 2687 if (err) 2688 goto bad_unshare_cleanup_fs; 2689 err = unshare_userns(unshare_flags, &new_cred); 2690 if (err) 2691 goto bad_unshare_cleanup_fd; 2692 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2693 new_cred, new_fs); 2694 if (err) 2695 goto bad_unshare_cleanup_cred; 2696 2697 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2698 if (do_sysvsem) { 2699 /* 2700 * CLONE_SYSVSEM is equivalent to sys_exit(). 2701 */ 2702 exit_sem(current); 2703 } 2704 if (unshare_flags & CLONE_NEWIPC) { 2705 /* Orphan segments in old ns (see sem above). */ 2706 exit_shm(current); 2707 shm_init_task(current); 2708 } 2709 2710 if (new_nsproxy) 2711 switch_task_namespaces(current, new_nsproxy); 2712 2713 task_lock(current); 2714 2715 if (new_fs) { 2716 fs = current->fs; 2717 spin_lock(&fs->lock); 2718 current->fs = new_fs; 2719 if (--fs->users) 2720 new_fs = NULL; 2721 else 2722 new_fs = fs; 2723 spin_unlock(&fs->lock); 2724 } 2725 2726 if (new_fd) { 2727 fd = current->files; 2728 current->files = new_fd; 2729 new_fd = fd; 2730 } 2731 2732 task_unlock(current); 2733 2734 if (new_cred) { 2735 /* Install the new user namespace */ 2736 commit_creds(new_cred); 2737 new_cred = NULL; 2738 } 2739 } 2740 2741 perf_event_namespaces(current); 2742 2743 bad_unshare_cleanup_cred: 2744 if (new_cred) 2745 put_cred(new_cred); 2746 bad_unshare_cleanup_fd: 2747 if (new_fd) 2748 put_files_struct(new_fd); 2749 2750 bad_unshare_cleanup_fs: 2751 if (new_fs) 2752 free_fs_struct(new_fs); 2753 2754 bad_unshare_out: 2755 return err; 2756 } 2757 2758 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 2759 { 2760 return ksys_unshare(unshare_flags); 2761 } 2762 2763 /* 2764 * Helper to unshare the files of the current task. 2765 * We don't want to expose copy_files internals to 2766 * the exec layer of the kernel. 2767 */ 2768 2769 int unshare_files(struct files_struct **displaced) 2770 { 2771 struct task_struct *task = current; 2772 struct files_struct *copy = NULL; 2773 int error; 2774 2775 error = unshare_fd(CLONE_FILES, ©); 2776 if (error || !copy) { 2777 *displaced = NULL; 2778 return error; 2779 } 2780 *displaced = task->files; 2781 task_lock(task); 2782 task->files = copy; 2783 task_unlock(task); 2784 return 0; 2785 } 2786 2787 int sysctl_max_threads(struct ctl_table *table, int write, 2788 void __user *buffer, size_t *lenp, loff_t *ppos) 2789 { 2790 struct ctl_table t; 2791 int ret; 2792 int threads = max_threads; 2793 int min = MIN_THREADS; 2794 int max = MAX_THREADS; 2795 2796 t = *table; 2797 t.data = &threads; 2798 t.extra1 = &min; 2799 t.extra2 = &max; 2800 2801 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 2802 if (ret || !write) 2803 return ret; 2804 2805 set_max_threads(threads); 2806 2807 return 0; 2808 } 2809