1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 109 #include <asm/pgalloc.h> 110 #include <linux/uaccess.h> 111 #include <asm/mmu_context.h> 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 115 /* For dup_mmap(). */ 116 #include "../mm/internal.h" 117 118 #include <trace/events/sched.h> 119 120 #define CREATE_TRACE_POINTS 121 #include <trace/events/task.h> 122 123 #include <kunit/visibility.h> 124 125 /* 126 * Minimum number of threads to boot the kernel 127 */ 128 #define MIN_THREADS 20 129 130 /* 131 * Maximum number of threads 132 */ 133 #define MAX_THREADS FUTEX_TID_MASK 134 135 /* 136 * Protected counters by write_lock_irq(&tasklist_lock) 137 */ 138 unsigned long total_forks; /* Handle normal Linux uptimes. */ 139 int nr_threads; /* The idle threads do not count.. */ 140 141 static int max_threads; /* tunable limit on nr_threads */ 142 143 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 144 145 static const char * const resident_page_types[] = { 146 NAMED_ARRAY_INDEX(MM_FILEPAGES), 147 NAMED_ARRAY_INDEX(MM_ANONPAGES), 148 NAMED_ARRAY_INDEX(MM_SWAPENTS), 149 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 150 }; 151 152 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 153 154 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 155 156 #ifdef CONFIG_PROVE_RCU 157 int lockdep_tasklist_lock_is_held(void) 158 { 159 return lockdep_is_held(&tasklist_lock); 160 } 161 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 162 #endif /* #ifdef CONFIG_PROVE_RCU */ 163 164 int nr_processes(void) 165 { 166 int cpu; 167 int total = 0; 168 169 for_each_possible_cpu(cpu) 170 total += per_cpu(process_counts, cpu); 171 172 return total; 173 } 174 175 void __weak arch_release_task_struct(struct task_struct *tsk) 176 { 177 } 178 179 static struct kmem_cache *task_struct_cachep; 180 181 static inline struct task_struct *alloc_task_struct_node(int node) 182 { 183 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 184 } 185 186 static inline void free_task_struct(struct task_struct *tsk) 187 { 188 kmem_cache_free(task_struct_cachep, tsk); 189 } 190 191 /* 192 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 193 * kmemcache based allocator. 194 */ 195 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 196 197 # ifdef CONFIG_VMAP_STACK 198 /* 199 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 200 * flush. Try to minimize the number of calls by caching stacks. 201 */ 202 #define NR_CACHED_STACKS 2 203 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 204 205 struct vm_stack { 206 struct rcu_head rcu; 207 struct vm_struct *stack_vm_area; 208 }; 209 210 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 211 { 212 unsigned int i; 213 214 for (i = 0; i < NR_CACHED_STACKS; i++) { 215 struct vm_struct *tmp = NULL; 216 217 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 218 return true; 219 } 220 return false; 221 } 222 223 static void thread_stack_free_rcu(struct rcu_head *rh) 224 { 225 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 226 227 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 228 return; 229 230 vfree(vm_stack); 231 } 232 233 static void thread_stack_delayed_free(struct task_struct *tsk) 234 { 235 struct vm_stack *vm_stack = tsk->stack; 236 237 vm_stack->stack_vm_area = tsk->stack_vm_area; 238 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 239 } 240 241 static int free_vm_stack_cache(unsigned int cpu) 242 { 243 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 244 int i; 245 246 for (i = 0; i < NR_CACHED_STACKS; i++) { 247 struct vm_struct *vm_stack = cached_vm_stacks[i]; 248 249 if (!vm_stack) 250 continue; 251 252 vfree(vm_stack->addr); 253 cached_vm_stacks[i] = NULL; 254 } 255 256 return 0; 257 } 258 259 static int memcg_charge_kernel_stack(struct vm_struct *vm) 260 { 261 int i; 262 int ret; 263 int nr_charged = 0; 264 265 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 266 267 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 268 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 269 if (ret) 270 goto err; 271 nr_charged++; 272 } 273 return 0; 274 err: 275 for (i = 0; i < nr_charged; i++) 276 memcg_kmem_uncharge_page(vm->pages[i], 0); 277 return ret; 278 } 279 280 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 281 { 282 struct vm_struct *vm; 283 void *stack; 284 int i; 285 286 for (i = 0; i < NR_CACHED_STACKS; i++) { 287 struct vm_struct *s; 288 289 s = this_cpu_xchg(cached_stacks[i], NULL); 290 291 if (!s) 292 continue; 293 294 /* Reset stack metadata. */ 295 kasan_unpoison_range(s->addr, THREAD_SIZE); 296 297 stack = kasan_reset_tag(s->addr); 298 299 /* Clear stale pointers from reused stack. */ 300 memset(stack, 0, THREAD_SIZE); 301 302 if (memcg_charge_kernel_stack(s)) { 303 vfree(s->addr); 304 return -ENOMEM; 305 } 306 307 tsk->stack_vm_area = s; 308 tsk->stack = stack; 309 return 0; 310 } 311 312 /* 313 * Allocated stacks are cached and later reused by new threads, 314 * so memcg accounting is performed manually on assigning/releasing 315 * stacks to tasks. Drop __GFP_ACCOUNT. 316 */ 317 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN, 318 THREADINFO_GFP & ~__GFP_ACCOUNT, 319 node, __builtin_return_address(0)); 320 if (!stack) 321 return -ENOMEM; 322 323 vm = find_vm_area(stack); 324 if (memcg_charge_kernel_stack(vm)) { 325 vfree(stack); 326 return -ENOMEM; 327 } 328 /* 329 * We can't call find_vm_area() in interrupt context, and 330 * free_thread_stack() can be called in interrupt context, 331 * so cache the vm_struct. 332 */ 333 tsk->stack_vm_area = vm; 334 stack = kasan_reset_tag(stack); 335 tsk->stack = stack; 336 return 0; 337 } 338 339 static void free_thread_stack(struct task_struct *tsk) 340 { 341 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 342 thread_stack_delayed_free(tsk); 343 344 tsk->stack = NULL; 345 tsk->stack_vm_area = NULL; 346 } 347 348 # else /* !CONFIG_VMAP_STACK */ 349 350 static void thread_stack_free_rcu(struct rcu_head *rh) 351 { 352 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 353 } 354 355 static void thread_stack_delayed_free(struct task_struct *tsk) 356 { 357 struct rcu_head *rh = tsk->stack; 358 359 call_rcu(rh, thread_stack_free_rcu); 360 } 361 362 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 363 { 364 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 365 THREAD_SIZE_ORDER); 366 367 if (likely(page)) { 368 tsk->stack = kasan_reset_tag(page_address(page)); 369 return 0; 370 } 371 return -ENOMEM; 372 } 373 374 static void free_thread_stack(struct task_struct *tsk) 375 { 376 thread_stack_delayed_free(tsk); 377 tsk->stack = NULL; 378 } 379 380 # endif /* CONFIG_VMAP_STACK */ 381 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 382 383 static struct kmem_cache *thread_stack_cache; 384 385 static void thread_stack_free_rcu(struct rcu_head *rh) 386 { 387 kmem_cache_free(thread_stack_cache, rh); 388 } 389 390 static void thread_stack_delayed_free(struct task_struct *tsk) 391 { 392 struct rcu_head *rh = tsk->stack; 393 394 call_rcu(rh, thread_stack_free_rcu); 395 } 396 397 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 398 { 399 unsigned long *stack; 400 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 401 stack = kasan_reset_tag(stack); 402 tsk->stack = stack; 403 return stack ? 0 : -ENOMEM; 404 } 405 406 static void free_thread_stack(struct task_struct *tsk) 407 { 408 thread_stack_delayed_free(tsk); 409 tsk->stack = NULL; 410 } 411 412 void thread_stack_cache_init(void) 413 { 414 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 415 THREAD_SIZE, THREAD_SIZE, 0, 0, 416 THREAD_SIZE, NULL); 417 BUG_ON(thread_stack_cache == NULL); 418 } 419 420 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 421 422 /* SLAB cache for signal_struct structures (tsk->signal) */ 423 static struct kmem_cache *signal_cachep; 424 425 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 426 struct kmem_cache *sighand_cachep; 427 428 /* SLAB cache for files_struct structures (tsk->files) */ 429 struct kmem_cache *files_cachep; 430 431 /* SLAB cache for fs_struct structures (tsk->fs) */ 432 struct kmem_cache *fs_cachep; 433 434 /* SLAB cache for mm_struct structures (tsk->mm) */ 435 static struct kmem_cache *mm_cachep; 436 437 static void account_kernel_stack(struct task_struct *tsk, int account) 438 { 439 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 440 struct vm_struct *vm = task_stack_vm_area(tsk); 441 int i; 442 443 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 444 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 445 account * (PAGE_SIZE / 1024)); 446 } else { 447 void *stack = task_stack_page(tsk); 448 449 /* All stack pages are in the same node. */ 450 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 451 account * (THREAD_SIZE / 1024)); 452 } 453 } 454 455 void exit_task_stack_account(struct task_struct *tsk) 456 { 457 account_kernel_stack(tsk, -1); 458 459 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 460 struct vm_struct *vm; 461 int i; 462 463 vm = task_stack_vm_area(tsk); 464 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 465 memcg_kmem_uncharge_page(vm->pages[i], 0); 466 } 467 } 468 469 static void release_task_stack(struct task_struct *tsk) 470 { 471 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 472 return; /* Better to leak the stack than to free prematurely */ 473 474 free_thread_stack(tsk); 475 } 476 477 #ifdef CONFIG_THREAD_INFO_IN_TASK 478 void put_task_stack(struct task_struct *tsk) 479 { 480 if (refcount_dec_and_test(&tsk->stack_refcount)) 481 release_task_stack(tsk); 482 } 483 #endif 484 485 void free_task(struct task_struct *tsk) 486 { 487 #ifdef CONFIG_SECCOMP 488 WARN_ON_ONCE(tsk->seccomp.filter); 489 #endif 490 release_user_cpus_ptr(tsk); 491 scs_release(tsk); 492 493 #ifndef CONFIG_THREAD_INFO_IN_TASK 494 /* 495 * The task is finally done with both the stack and thread_info, 496 * so free both. 497 */ 498 release_task_stack(tsk); 499 #else 500 /* 501 * If the task had a separate stack allocation, it should be gone 502 * by now. 503 */ 504 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 505 #endif 506 rt_mutex_debug_task_free(tsk); 507 ftrace_graph_exit_task(tsk); 508 arch_release_task_struct(tsk); 509 if (tsk->flags & PF_KTHREAD) 510 free_kthread_struct(tsk); 511 bpf_task_storage_free(tsk); 512 free_task_struct(tsk); 513 } 514 EXPORT_SYMBOL(free_task); 515 516 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 517 { 518 struct file *exe_file; 519 520 exe_file = get_mm_exe_file(oldmm); 521 RCU_INIT_POINTER(mm->exe_file, exe_file); 522 /* 523 * We depend on the oldmm having properly denied write access to the 524 * exe_file already. 525 */ 526 if (exe_file && exe_file_deny_write_access(exe_file)) 527 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); 528 } 529 530 #ifdef CONFIG_MMU 531 static inline int mm_alloc_pgd(struct mm_struct *mm) 532 { 533 mm->pgd = pgd_alloc(mm); 534 if (unlikely(!mm->pgd)) 535 return -ENOMEM; 536 return 0; 537 } 538 539 static inline void mm_free_pgd(struct mm_struct *mm) 540 { 541 pgd_free(mm, mm->pgd); 542 } 543 #else 544 #define mm_alloc_pgd(mm) (0) 545 #define mm_free_pgd(mm) 546 #endif /* CONFIG_MMU */ 547 548 #ifdef CONFIG_MM_ID 549 static DEFINE_IDA(mm_ida); 550 551 static inline int mm_alloc_id(struct mm_struct *mm) 552 { 553 int ret; 554 555 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL); 556 if (ret < 0) 557 return ret; 558 mm->mm_id = ret; 559 return 0; 560 } 561 562 static inline void mm_free_id(struct mm_struct *mm) 563 { 564 const mm_id_t id = mm->mm_id; 565 566 mm->mm_id = MM_ID_DUMMY; 567 if (id == MM_ID_DUMMY) 568 return; 569 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX)) 570 return; 571 ida_free(&mm_ida, id); 572 } 573 #else /* !CONFIG_MM_ID */ 574 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; } 575 static inline void mm_free_id(struct mm_struct *mm) {} 576 #endif /* CONFIG_MM_ID */ 577 578 static void check_mm(struct mm_struct *mm) 579 { 580 int i; 581 582 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 583 "Please make sure 'struct resident_page_types[]' is updated as well"); 584 585 for (i = 0; i < NR_MM_COUNTERS; i++) { 586 long x = percpu_counter_sum(&mm->rss_stat[i]); 587 588 if (unlikely(x)) 589 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 590 mm, resident_page_types[i], x); 591 } 592 593 if (mm_pgtables_bytes(mm)) 594 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 595 mm_pgtables_bytes(mm)); 596 597 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 598 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 599 #endif 600 } 601 602 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 603 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 604 605 static void do_check_lazy_tlb(void *arg) 606 { 607 struct mm_struct *mm = arg; 608 609 WARN_ON_ONCE(current->active_mm == mm); 610 } 611 612 static void do_shoot_lazy_tlb(void *arg) 613 { 614 struct mm_struct *mm = arg; 615 616 if (current->active_mm == mm) { 617 WARN_ON_ONCE(current->mm); 618 current->active_mm = &init_mm; 619 switch_mm(mm, &init_mm, current); 620 } 621 } 622 623 static void cleanup_lazy_tlbs(struct mm_struct *mm) 624 { 625 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 626 /* 627 * In this case, lazy tlb mms are refounted and would not reach 628 * __mmdrop until all CPUs have switched away and mmdrop()ed. 629 */ 630 return; 631 } 632 633 /* 634 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 635 * requires lazy mm users to switch to another mm when the refcount 636 * drops to zero, before the mm is freed. This requires IPIs here to 637 * switch kernel threads to init_mm. 638 * 639 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 640 * switch with the final userspace teardown TLB flush which leaves the 641 * mm lazy on this CPU but no others, reducing the need for additional 642 * IPIs here. There are cases where a final IPI is still required here, 643 * such as the final mmdrop being performed on a different CPU than the 644 * one exiting, or kernel threads using the mm when userspace exits. 645 * 646 * IPI overheads have not found to be expensive, but they could be 647 * reduced in a number of possible ways, for example (roughly 648 * increasing order of complexity): 649 * - The last lazy reference created by exit_mm() could instead switch 650 * to init_mm, however it's probable this will run on the same CPU 651 * immediately afterwards, so this may not reduce IPIs much. 652 * - A batch of mms requiring IPIs could be gathered and freed at once. 653 * - CPUs store active_mm where it can be remotely checked without a 654 * lock, to filter out false-positives in the cpumask. 655 * - After mm_users or mm_count reaches zero, switching away from the 656 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 657 * with some batching or delaying of the final IPIs. 658 * - A delayed freeing and RCU-like quiescing sequence based on mm 659 * switching to avoid IPIs completely. 660 */ 661 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 662 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 663 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 664 } 665 666 /* 667 * Called when the last reference to the mm 668 * is dropped: either by a lazy thread or by 669 * mmput. Free the page directory and the mm. 670 */ 671 void __mmdrop(struct mm_struct *mm) 672 { 673 BUG_ON(mm == &init_mm); 674 WARN_ON_ONCE(mm == current->mm); 675 676 /* Ensure no CPUs are using this as their lazy tlb mm */ 677 cleanup_lazy_tlbs(mm); 678 679 WARN_ON_ONCE(mm == current->active_mm); 680 mm_free_pgd(mm); 681 mm_free_id(mm); 682 destroy_context(mm); 683 mmu_notifier_subscriptions_destroy(mm); 684 check_mm(mm); 685 put_user_ns(mm->user_ns); 686 mm_pasid_drop(mm); 687 mm_destroy_cid(mm); 688 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 689 690 free_mm(mm); 691 } 692 EXPORT_SYMBOL_GPL(__mmdrop); 693 694 static void mmdrop_async_fn(struct work_struct *work) 695 { 696 struct mm_struct *mm; 697 698 mm = container_of(work, struct mm_struct, async_put_work); 699 __mmdrop(mm); 700 } 701 702 static void mmdrop_async(struct mm_struct *mm) 703 { 704 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 705 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 706 schedule_work(&mm->async_put_work); 707 } 708 } 709 710 static inline void free_signal_struct(struct signal_struct *sig) 711 { 712 taskstats_tgid_free(sig); 713 sched_autogroup_exit(sig); 714 /* 715 * __mmdrop is not safe to call from softirq context on x86 due to 716 * pgd_dtor so postpone it to the async context 717 */ 718 if (sig->oom_mm) 719 mmdrop_async(sig->oom_mm); 720 kmem_cache_free(signal_cachep, sig); 721 } 722 723 static inline void put_signal_struct(struct signal_struct *sig) 724 { 725 if (refcount_dec_and_test(&sig->sigcnt)) 726 free_signal_struct(sig); 727 } 728 729 void __put_task_struct(struct task_struct *tsk) 730 { 731 WARN_ON(!tsk->exit_state); 732 WARN_ON(refcount_read(&tsk->usage)); 733 WARN_ON(tsk == current); 734 735 sched_ext_free(tsk); 736 io_uring_free(tsk); 737 cgroup_free(tsk); 738 task_numa_free(tsk, true); 739 security_task_free(tsk); 740 exit_creds(tsk); 741 delayacct_tsk_free(tsk); 742 put_signal_struct(tsk->signal); 743 sched_core_free(tsk); 744 free_task(tsk); 745 } 746 EXPORT_SYMBOL_GPL(__put_task_struct); 747 748 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 749 { 750 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 751 752 __put_task_struct(task); 753 } 754 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 755 756 void __init __weak arch_task_cache_init(void) { } 757 758 /* 759 * set_max_threads 760 */ 761 static void __init set_max_threads(unsigned int max_threads_suggested) 762 { 763 u64 threads; 764 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 765 766 /* 767 * The number of threads shall be limited such that the thread 768 * structures may only consume a small part of the available memory. 769 */ 770 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 771 threads = MAX_THREADS; 772 else 773 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 774 (u64) THREAD_SIZE * 8UL); 775 776 if (threads > max_threads_suggested) 777 threads = max_threads_suggested; 778 779 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 780 } 781 782 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 783 /* Initialized by the architecture: */ 784 int arch_task_struct_size __read_mostly; 785 #endif 786 787 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 788 { 789 /* Fetch thread_struct whitelist for the architecture. */ 790 arch_thread_struct_whitelist(offset, size); 791 792 /* 793 * Handle zero-sized whitelist or empty thread_struct, otherwise 794 * adjust offset to position of thread_struct in task_struct. 795 */ 796 if (unlikely(*size == 0)) 797 *offset = 0; 798 else 799 *offset += offsetof(struct task_struct, thread); 800 } 801 802 void __init fork_init(void) 803 { 804 int i; 805 #ifndef ARCH_MIN_TASKALIGN 806 #define ARCH_MIN_TASKALIGN 0 807 #endif 808 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 809 unsigned long useroffset, usersize; 810 811 /* create a slab on which task_structs can be allocated */ 812 task_struct_whitelist(&useroffset, &usersize); 813 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 814 arch_task_struct_size, align, 815 SLAB_PANIC|SLAB_ACCOUNT, 816 useroffset, usersize, NULL); 817 818 /* do the arch specific task caches init */ 819 arch_task_cache_init(); 820 821 set_max_threads(MAX_THREADS); 822 823 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 824 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 825 init_task.signal->rlim[RLIMIT_SIGPENDING] = 826 init_task.signal->rlim[RLIMIT_NPROC]; 827 828 for (i = 0; i < UCOUNT_COUNTS; i++) 829 init_user_ns.ucount_max[i] = max_threads/2; 830 831 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 832 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 833 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 834 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 835 836 #ifdef CONFIG_VMAP_STACK 837 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 838 NULL, free_vm_stack_cache); 839 #endif 840 841 scs_init(); 842 843 lockdep_init_task(&init_task); 844 uprobes_init(); 845 } 846 847 int __weak arch_dup_task_struct(struct task_struct *dst, 848 struct task_struct *src) 849 { 850 *dst = *src; 851 return 0; 852 } 853 854 void set_task_stack_end_magic(struct task_struct *tsk) 855 { 856 unsigned long *stackend; 857 858 stackend = end_of_stack(tsk); 859 *stackend = STACK_END_MAGIC; /* for overflow detection */ 860 } 861 862 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 863 { 864 struct task_struct *tsk; 865 int err; 866 867 if (node == NUMA_NO_NODE) 868 node = tsk_fork_get_node(orig); 869 tsk = alloc_task_struct_node(node); 870 if (!tsk) 871 return NULL; 872 873 err = arch_dup_task_struct(tsk, orig); 874 if (err) 875 goto free_tsk; 876 877 err = alloc_thread_stack_node(tsk, node); 878 if (err) 879 goto free_tsk; 880 881 #ifdef CONFIG_THREAD_INFO_IN_TASK 882 refcount_set(&tsk->stack_refcount, 1); 883 #endif 884 account_kernel_stack(tsk, 1); 885 886 err = scs_prepare(tsk, node); 887 if (err) 888 goto free_stack; 889 890 #ifdef CONFIG_SECCOMP 891 /* 892 * We must handle setting up seccomp filters once we're under 893 * the sighand lock in case orig has changed between now and 894 * then. Until then, filter must be NULL to avoid messing up 895 * the usage counts on the error path calling free_task. 896 */ 897 tsk->seccomp.filter = NULL; 898 #endif 899 900 setup_thread_stack(tsk, orig); 901 clear_user_return_notifier(tsk); 902 clear_tsk_need_resched(tsk); 903 set_task_stack_end_magic(tsk); 904 clear_syscall_work_syscall_user_dispatch(tsk); 905 906 #ifdef CONFIG_STACKPROTECTOR 907 tsk->stack_canary = get_random_canary(); 908 #endif 909 if (orig->cpus_ptr == &orig->cpus_mask) 910 tsk->cpus_ptr = &tsk->cpus_mask; 911 dup_user_cpus_ptr(tsk, orig, node); 912 913 /* 914 * One for the user space visible state that goes away when reaped. 915 * One for the scheduler. 916 */ 917 refcount_set(&tsk->rcu_users, 2); 918 /* One for the rcu users */ 919 refcount_set(&tsk->usage, 1); 920 #ifdef CONFIG_BLK_DEV_IO_TRACE 921 tsk->btrace_seq = 0; 922 #endif 923 tsk->splice_pipe = NULL; 924 tsk->task_frag.page = NULL; 925 tsk->wake_q.next = NULL; 926 tsk->worker_private = NULL; 927 928 kcov_task_init(tsk); 929 kmsan_task_create(tsk); 930 kmap_local_fork(tsk); 931 932 #ifdef CONFIG_FAULT_INJECTION 933 tsk->fail_nth = 0; 934 #endif 935 936 #ifdef CONFIG_BLK_CGROUP 937 tsk->throttle_disk = NULL; 938 tsk->use_memdelay = 0; 939 #endif 940 941 #ifdef CONFIG_ARCH_HAS_CPU_PASID 942 tsk->pasid_activated = 0; 943 #endif 944 945 #ifdef CONFIG_MEMCG 946 tsk->active_memcg = NULL; 947 #endif 948 949 #ifdef CONFIG_X86_BUS_LOCK_DETECT 950 tsk->reported_split_lock = 0; 951 #endif 952 953 #ifdef CONFIG_SCHED_MM_CID 954 tsk->mm_cid = -1; 955 tsk->last_mm_cid = -1; 956 tsk->mm_cid_active = 0; 957 tsk->migrate_from_cpu = -1; 958 #endif 959 return tsk; 960 961 free_stack: 962 exit_task_stack_account(tsk); 963 free_thread_stack(tsk); 964 free_tsk: 965 free_task_struct(tsk); 966 return NULL; 967 } 968 969 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 970 971 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 972 973 static int __init coredump_filter_setup(char *s) 974 { 975 default_dump_filter = 976 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 977 MMF_DUMP_FILTER_MASK; 978 return 1; 979 } 980 981 __setup("coredump_filter=", coredump_filter_setup); 982 983 #include <linux/init_task.h> 984 985 static void mm_init_aio(struct mm_struct *mm) 986 { 987 #ifdef CONFIG_AIO 988 spin_lock_init(&mm->ioctx_lock); 989 mm->ioctx_table = NULL; 990 #endif 991 } 992 993 static __always_inline void mm_clear_owner(struct mm_struct *mm, 994 struct task_struct *p) 995 { 996 #ifdef CONFIG_MEMCG 997 if (mm->owner == p) 998 WRITE_ONCE(mm->owner, NULL); 999 #endif 1000 } 1001 1002 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1003 { 1004 #ifdef CONFIG_MEMCG 1005 mm->owner = p; 1006 #endif 1007 } 1008 1009 static void mm_init_uprobes_state(struct mm_struct *mm) 1010 { 1011 #ifdef CONFIG_UPROBES 1012 mm->uprobes_state.xol_area = NULL; 1013 #endif 1014 } 1015 1016 static void mmap_init_lock(struct mm_struct *mm) 1017 { 1018 init_rwsem(&mm->mmap_lock); 1019 mm_lock_seqcount_init(mm); 1020 #ifdef CONFIG_PER_VMA_LOCK 1021 rcuwait_init(&mm->vma_writer_wait); 1022 #endif 1023 } 1024 1025 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1026 struct user_namespace *user_ns) 1027 { 1028 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1029 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1030 atomic_set(&mm->mm_users, 1); 1031 atomic_set(&mm->mm_count, 1); 1032 seqcount_init(&mm->write_protect_seq); 1033 mmap_init_lock(mm); 1034 INIT_LIST_HEAD(&mm->mmlist); 1035 mm_pgtables_bytes_init(mm); 1036 mm->map_count = 0; 1037 mm->locked_vm = 0; 1038 atomic64_set(&mm->pinned_vm, 0); 1039 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1040 spin_lock_init(&mm->page_table_lock); 1041 spin_lock_init(&mm->arg_lock); 1042 mm_init_cpumask(mm); 1043 mm_init_aio(mm); 1044 mm_init_owner(mm, p); 1045 mm_pasid_init(mm); 1046 RCU_INIT_POINTER(mm->exe_file, NULL); 1047 mmu_notifier_subscriptions_init(mm); 1048 init_tlb_flush_pending(mm); 1049 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1050 mm->pmd_huge_pte = NULL; 1051 #endif 1052 mm_init_uprobes_state(mm); 1053 hugetlb_count_init(mm); 1054 1055 if (current->mm) { 1056 mm->flags = mmf_init_flags(current->mm->flags); 1057 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1058 } else { 1059 mm->flags = default_dump_filter; 1060 mm->def_flags = 0; 1061 } 1062 1063 if (mm_alloc_pgd(mm)) 1064 goto fail_nopgd; 1065 1066 if (mm_alloc_id(mm)) 1067 goto fail_noid; 1068 1069 if (init_new_context(p, mm)) 1070 goto fail_nocontext; 1071 1072 if (mm_alloc_cid(mm, p)) 1073 goto fail_cid; 1074 1075 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1076 NR_MM_COUNTERS)) 1077 goto fail_pcpu; 1078 1079 mm->user_ns = get_user_ns(user_ns); 1080 lru_gen_init_mm(mm); 1081 return mm; 1082 1083 fail_pcpu: 1084 mm_destroy_cid(mm); 1085 fail_cid: 1086 destroy_context(mm); 1087 fail_nocontext: 1088 mm_free_id(mm); 1089 fail_noid: 1090 mm_free_pgd(mm); 1091 fail_nopgd: 1092 free_mm(mm); 1093 return NULL; 1094 } 1095 1096 /* 1097 * Allocate and initialize an mm_struct. 1098 */ 1099 struct mm_struct *mm_alloc(void) 1100 { 1101 struct mm_struct *mm; 1102 1103 mm = allocate_mm(); 1104 if (!mm) 1105 return NULL; 1106 1107 memset(mm, 0, sizeof(*mm)); 1108 return mm_init(mm, current, current_user_ns()); 1109 } 1110 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1111 1112 static inline void __mmput(struct mm_struct *mm) 1113 { 1114 VM_BUG_ON(atomic_read(&mm->mm_users)); 1115 1116 uprobe_clear_state(mm); 1117 exit_aio(mm); 1118 ksm_exit(mm); 1119 khugepaged_exit(mm); /* must run before exit_mmap */ 1120 exit_mmap(mm); 1121 mm_put_huge_zero_folio(mm); 1122 set_mm_exe_file(mm, NULL); 1123 if (!list_empty(&mm->mmlist)) { 1124 spin_lock(&mmlist_lock); 1125 list_del(&mm->mmlist); 1126 spin_unlock(&mmlist_lock); 1127 } 1128 if (mm->binfmt) 1129 module_put(mm->binfmt->module); 1130 lru_gen_del_mm(mm); 1131 mmdrop(mm); 1132 } 1133 1134 /* 1135 * Decrement the use count and release all resources for an mm. 1136 */ 1137 void mmput(struct mm_struct *mm) 1138 { 1139 might_sleep(); 1140 1141 if (atomic_dec_and_test(&mm->mm_users)) 1142 __mmput(mm); 1143 } 1144 EXPORT_SYMBOL_GPL(mmput); 1145 1146 #ifdef CONFIG_MMU 1147 static void mmput_async_fn(struct work_struct *work) 1148 { 1149 struct mm_struct *mm = container_of(work, struct mm_struct, 1150 async_put_work); 1151 1152 __mmput(mm); 1153 } 1154 1155 void mmput_async(struct mm_struct *mm) 1156 { 1157 if (atomic_dec_and_test(&mm->mm_users)) { 1158 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1159 schedule_work(&mm->async_put_work); 1160 } 1161 } 1162 EXPORT_SYMBOL_GPL(mmput_async); 1163 #endif 1164 1165 /** 1166 * set_mm_exe_file - change a reference to the mm's executable file 1167 * @mm: The mm to change. 1168 * @new_exe_file: The new file to use. 1169 * 1170 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1171 * 1172 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1173 * invocations: in mmput() nobody alive left, in execve it happens before 1174 * the new mm is made visible to anyone. 1175 * 1176 * Can only fail if new_exe_file != NULL. 1177 */ 1178 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1179 { 1180 struct file *old_exe_file; 1181 1182 /* 1183 * It is safe to dereference the exe_file without RCU as 1184 * this function is only called if nobody else can access 1185 * this mm -- see comment above for justification. 1186 */ 1187 old_exe_file = rcu_dereference_raw(mm->exe_file); 1188 1189 if (new_exe_file) { 1190 /* 1191 * We expect the caller (i.e., sys_execve) to already denied 1192 * write access, so this is unlikely to fail. 1193 */ 1194 if (unlikely(exe_file_deny_write_access(new_exe_file))) 1195 return -EACCES; 1196 get_file(new_exe_file); 1197 } 1198 rcu_assign_pointer(mm->exe_file, new_exe_file); 1199 if (old_exe_file) { 1200 exe_file_allow_write_access(old_exe_file); 1201 fput(old_exe_file); 1202 } 1203 return 0; 1204 } 1205 1206 /** 1207 * replace_mm_exe_file - replace a reference to the mm's executable file 1208 * @mm: The mm to change. 1209 * @new_exe_file: The new file to use. 1210 * 1211 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1212 * 1213 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1214 */ 1215 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1216 { 1217 struct vm_area_struct *vma; 1218 struct file *old_exe_file; 1219 int ret = 0; 1220 1221 /* Forbid mm->exe_file change if old file still mapped. */ 1222 old_exe_file = get_mm_exe_file(mm); 1223 if (old_exe_file) { 1224 VMA_ITERATOR(vmi, mm, 0); 1225 mmap_read_lock(mm); 1226 for_each_vma(vmi, vma) { 1227 if (!vma->vm_file) 1228 continue; 1229 if (path_equal(&vma->vm_file->f_path, 1230 &old_exe_file->f_path)) { 1231 ret = -EBUSY; 1232 break; 1233 } 1234 } 1235 mmap_read_unlock(mm); 1236 fput(old_exe_file); 1237 if (ret) 1238 return ret; 1239 } 1240 1241 ret = exe_file_deny_write_access(new_exe_file); 1242 if (ret) 1243 return -EACCES; 1244 get_file(new_exe_file); 1245 1246 /* set the new file */ 1247 mmap_write_lock(mm); 1248 old_exe_file = rcu_dereference_raw(mm->exe_file); 1249 rcu_assign_pointer(mm->exe_file, new_exe_file); 1250 mmap_write_unlock(mm); 1251 1252 if (old_exe_file) { 1253 exe_file_allow_write_access(old_exe_file); 1254 fput(old_exe_file); 1255 } 1256 return 0; 1257 } 1258 1259 /** 1260 * get_mm_exe_file - acquire a reference to the mm's executable file 1261 * @mm: The mm of interest. 1262 * 1263 * Returns %NULL if mm has no associated executable file. 1264 * User must release file via fput(). 1265 */ 1266 struct file *get_mm_exe_file(struct mm_struct *mm) 1267 { 1268 struct file *exe_file; 1269 1270 rcu_read_lock(); 1271 exe_file = get_file_rcu(&mm->exe_file); 1272 rcu_read_unlock(); 1273 return exe_file; 1274 } 1275 1276 /** 1277 * get_task_exe_file - acquire a reference to the task's executable file 1278 * @task: The task. 1279 * 1280 * Returns %NULL if task's mm (if any) has no associated executable file or 1281 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1282 * User must release file via fput(). 1283 */ 1284 struct file *get_task_exe_file(struct task_struct *task) 1285 { 1286 struct file *exe_file = NULL; 1287 struct mm_struct *mm; 1288 1289 if (task->flags & PF_KTHREAD) 1290 return NULL; 1291 1292 task_lock(task); 1293 mm = task->mm; 1294 if (mm) 1295 exe_file = get_mm_exe_file(mm); 1296 task_unlock(task); 1297 return exe_file; 1298 } 1299 1300 /** 1301 * get_task_mm - acquire a reference to the task's mm 1302 * @task: The task. 1303 * 1304 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1305 * this kernel workthread has transiently adopted a user mm with use_mm, 1306 * to do its AIO) is not set and if so returns a reference to it, after 1307 * bumping up the use count. User must release the mm via mmput() 1308 * after use. Typically used by /proc and ptrace. 1309 */ 1310 struct mm_struct *get_task_mm(struct task_struct *task) 1311 { 1312 struct mm_struct *mm; 1313 1314 if (task->flags & PF_KTHREAD) 1315 return NULL; 1316 1317 task_lock(task); 1318 mm = task->mm; 1319 if (mm) 1320 mmget(mm); 1321 task_unlock(task); 1322 return mm; 1323 } 1324 EXPORT_SYMBOL_GPL(get_task_mm); 1325 1326 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode) 1327 { 1328 if (mm == current->mm) 1329 return true; 1330 if (ptrace_may_access(task, mode)) 1331 return true; 1332 if ((mode & PTRACE_MODE_READ) && perfmon_capable()) 1333 return true; 1334 return false; 1335 } 1336 1337 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1338 { 1339 struct mm_struct *mm; 1340 int err; 1341 1342 err = down_read_killable(&task->signal->exec_update_lock); 1343 if (err) 1344 return ERR_PTR(err); 1345 1346 mm = get_task_mm(task); 1347 if (!mm) { 1348 mm = ERR_PTR(-ESRCH); 1349 } else if (!may_access_mm(mm, task, mode)) { 1350 mmput(mm); 1351 mm = ERR_PTR(-EACCES); 1352 } 1353 up_read(&task->signal->exec_update_lock); 1354 1355 return mm; 1356 } 1357 1358 static void complete_vfork_done(struct task_struct *tsk) 1359 { 1360 struct completion *vfork; 1361 1362 task_lock(tsk); 1363 vfork = tsk->vfork_done; 1364 if (likely(vfork)) { 1365 tsk->vfork_done = NULL; 1366 complete(vfork); 1367 } 1368 task_unlock(tsk); 1369 } 1370 1371 static int wait_for_vfork_done(struct task_struct *child, 1372 struct completion *vfork) 1373 { 1374 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1375 int killed; 1376 1377 cgroup_enter_frozen(); 1378 killed = wait_for_completion_state(vfork, state); 1379 cgroup_leave_frozen(false); 1380 1381 if (killed) { 1382 task_lock(child); 1383 child->vfork_done = NULL; 1384 task_unlock(child); 1385 } 1386 1387 put_task_struct(child); 1388 return killed; 1389 } 1390 1391 /* Please note the differences between mmput and mm_release. 1392 * mmput is called whenever we stop holding onto a mm_struct, 1393 * error success whatever. 1394 * 1395 * mm_release is called after a mm_struct has been removed 1396 * from the current process. 1397 * 1398 * This difference is important for error handling, when we 1399 * only half set up a mm_struct for a new process and need to restore 1400 * the old one. Because we mmput the new mm_struct before 1401 * restoring the old one. . . 1402 * Eric Biederman 10 January 1998 1403 */ 1404 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1405 { 1406 uprobe_free_utask(tsk); 1407 1408 /* Get rid of any cached register state */ 1409 deactivate_mm(tsk, mm); 1410 1411 /* 1412 * Signal userspace if we're not exiting with a core dump 1413 * because we want to leave the value intact for debugging 1414 * purposes. 1415 */ 1416 if (tsk->clear_child_tid) { 1417 if (atomic_read(&mm->mm_users) > 1) { 1418 /* 1419 * We don't check the error code - if userspace has 1420 * not set up a proper pointer then tough luck. 1421 */ 1422 put_user(0, tsk->clear_child_tid); 1423 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1424 1, NULL, NULL, 0, 0); 1425 } 1426 tsk->clear_child_tid = NULL; 1427 } 1428 1429 /* 1430 * All done, finally we can wake up parent and return this mm to him. 1431 * Also kthread_stop() uses this completion for synchronization. 1432 */ 1433 if (tsk->vfork_done) 1434 complete_vfork_done(tsk); 1435 } 1436 1437 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1438 { 1439 futex_exit_release(tsk); 1440 mm_release(tsk, mm); 1441 } 1442 1443 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1444 { 1445 futex_exec_release(tsk); 1446 mm_release(tsk, mm); 1447 } 1448 1449 /** 1450 * dup_mm() - duplicates an existing mm structure 1451 * @tsk: the task_struct with which the new mm will be associated. 1452 * @oldmm: the mm to duplicate. 1453 * 1454 * Allocates a new mm structure and duplicates the provided @oldmm structure 1455 * content into it. 1456 * 1457 * Return: the duplicated mm or NULL on failure. 1458 */ 1459 static struct mm_struct *dup_mm(struct task_struct *tsk, 1460 struct mm_struct *oldmm) 1461 { 1462 struct mm_struct *mm; 1463 int err; 1464 1465 mm = allocate_mm(); 1466 if (!mm) 1467 goto fail_nomem; 1468 1469 memcpy(mm, oldmm, sizeof(*mm)); 1470 1471 if (!mm_init(mm, tsk, mm->user_ns)) 1472 goto fail_nomem; 1473 1474 uprobe_start_dup_mmap(); 1475 err = dup_mmap(mm, oldmm); 1476 if (err) 1477 goto free_pt; 1478 uprobe_end_dup_mmap(); 1479 1480 mm->hiwater_rss = get_mm_rss(mm); 1481 mm->hiwater_vm = mm->total_vm; 1482 1483 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1484 goto free_pt; 1485 1486 return mm; 1487 1488 free_pt: 1489 /* don't put binfmt in mmput, we haven't got module yet */ 1490 mm->binfmt = NULL; 1491 mm_init_owner(mm, NULL); 1492 mmput(mm); 1493 if (err) 1494 uprobe_end_dup_mmap(); 1495 1496 fail_nomem: 1497 return NULL; 1498 } 1499 1500 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1501 { 1502 struct mm_struct *mm, *oldmm; 1503 1504 tsk->min_flt = tsk->maj_flt = 0; 1505 tsk->nvcsw = tsk->nivcsw = 0; 1506 #ifdef CONFIG_DETECT_HUNG_TASK 1507 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1508 tsk->last_switch_time = 0; 1509 #endif 1510 1511 tsk->mm = NULL; 1512 tsk->active_mm = NULL; 1513 1514 /* 1515 * Are we cloning a kernel thread? 1516 * 1517 * We need to steal a active VM for that.. 1518 */ 1519 oldmm = current->mm; 1520 if (!oldmm) 1521 return 0; 1522 1523 if (clone_flags & CLONE_VM) { 1524 mmget(oldmm); 1525 mm = oldmm; 1526 } else { 1527 mm = dup_mm(tsk, current->mm); 1528 if (!mm) 1529 return -ENOMEM; 1530 } 1531 1532 tsk->mm = mm; 1533 tsk->active_mm = mm; 1534 sched_mm_cid_fork(tsk); 1535 return 0; 1536 } 1537 1538 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1539 { 1540 struct fs_struct *fs = current->fs; 1541 if (clone_flags & CLONE_FS) { 1542 /* tsk->fs is already what we want */ 1543 spin_lock(&fs->lock); 1544 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1545 if (fs->in_exec) { 1546 spin_unlock(&fs->lock); 1547 return -EAGAIN; 1548 } 1549 fs->users++; 1550 spin_unlock(&fs->lock); 1551 return 0; 1552 } 1553 tsk->fs = copy_fs_struct(fs); 1554 if (!tsk->fs) 1555 return -ENOMEM; 1556 return 0; 1557 } 1558 1559 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1560 int no_files) 1561 { 1562 struct files_struct *oldf, *newf; 1563 1564 /* 1565 * A background process may not have any files ... 1566 */ 1567 oldf = current->files; 1568 if (!oldf) 1569 return 0; 1570 1571 if (no_files) { 1572 tsk->files = NULL; 1573 return 0; 1574 } 1575 1576 if (clone_flags & CLONE_FILES) { 1577 atomic_inc(&oldf->count); 1578 return 0; 1579 } 1580 1581 newf = dup_fd(oldf, NULL); 1582 if (IS_ERR(newf)) 1583 return PTR_ERR(newf); 1584 1585 tsk->files = newf; 1586 return 0; 1587 } 1588 1589 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1590 { 1591 struct sighand_struct *sig; 1592 1593 if (clone_flags & CLONE_SIGHAND) { 1594 refcount_inc(¤t->sighand->count); 1595 return 0; 1596 } 1597 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1598 RCU_INIT_POINTER(tsk->sighand, sig); 1599 if (!sig) 1600 return -ENOMEM; 1601 1602 refcount_set(&sig->count, 1); 1603 spin_lock_irq(¤t->sighand->siglock); 1604 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1605 spin_unlock_irq(¤t->sighand->siglock); 1606 1607 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1608 if (clone_flags & CLONE_CLEAR_SIGHAND) 1609 flush_signal_handlers(tsk, 0); 1610 1611 return 0; 1612 } 1613 1614 void __cleanup_sighand(struct sighand_struct *sighand) 1615 { 1616 if (refcount_dec_and_test(&sighand->count)) { 1617 signalfd_cleanup(sighand); 1618 /* 1619 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1620 * without an RCU grace period, see __lock_task_sighand(). 1621 */ 1622 kmem_cache_free(sighand_cachep, sighand); 1623 } 1624 } 1625 1626 /* 1627 * Initialize POSIX timer handling for a thread group. 1628 */ 1629 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1630 { 1631 struct posix_cputimers *pct = &sig->posix_cputimers; 1632 unsigned long cpu_limit; 1633 1634 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1635 posix_cputimers_group_init(pct, cpu_limit); 1636 } 1637 1638 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1639 { 1640 struct signal_struct *sig; 1641 1642 if (clone_flags & CLONE_THREAD) 1643 return 0; 1644 1645 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1646 tsk->signal = sig; 1647 if (!sig) 1648 return -ENOMEM; 1649 1650 sig->nr_threads = 1; 1651 sig->quick_threads = 1; 1652 atomic_set(&sig->live, 1); 1653 refcount_set(&sig->sigcnt, 1); 1654 1655 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1656 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1657 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1658 1659 init_waitqueue_head(&sig->wait_chldexit); 1660 sig->curr_target = tsk; 1661 init_sigpending(&sig->shared_pending); 1662 INIT_HLIST_HEAD(&sig->multiprocess); 1663 seqlock_init(&sig->stats_lock); 1664 prev_cputime_init(&sig->prev_cputime); 1665 1666 #ifdef CONFIG_POSIX_TIMERS 1667 INIT_HLIST_HEAD(&sig->posix_timers); 1668 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1669 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1670 #endif 1671 1672 task_lock(current->group_leader); 1673 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1674 task_unlock(current->group_leader); 1675 1676 posix_cpu_timers_init_group(sig); 1677 1678 tty_audit_fork(sig); 1679 sched_autogroup_fork(sig); 1680 1681 sig->oom_score_adj = current->signal->oom_score_adj; 1682 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1683 1684 mutex_init(&sig->cred_guard_mutex); 1685 init_rwsem(&sig->exec_update_lock); 1686 1687 return 0; 1688 } 1689 1690 static void copy_seccomp(struct task_struct *p) 1691 { 1692 #ifdef CONFIG_SECCOMP 1693 /* 1694 * Must be called with sighand->lock held, which is common to 1695 * all threads in the group. Holding cred_guard_mutex is not 1696 * needed because this new task is not yet running and cannot 1697 * be racing exec. 1698 */ 1699 assert_spin_locked(¤t->sighand->siglock); 1700 1701 /* Ref-count the new filter user, and assign it. */ 1702 get_seccomp_filter(current); 1703 p->seccomp = current->seccomp; 1704 1705 /* 1706 * Explicitly enable no_new_privs here in case it got set 1707 * between the task_struct being duplicated and holding the 1708 * sighand lock. The seccomp state and nnp must be in sync. 1709 */ 1710 if (task_no_new_privs(current)) 1711 task_set_no_new_privs(p); 1712 1713 /* 1714 * If the parent gained a seccomp mode after copying thread 1715 * flags and between before we held the sighand lock, we have 1716 * to manually enable the seccomp thread flag here. 1717 */ 1718 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1719 set_task_syscall_work(p, SECCOMP); 1720 #endif 1721 } 1722 1723 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1724 { 1725 current->clear_child_tid = tidptr; 1726 1727 return task_pid_vnr(current); 1728 } 1729 1730 static void rt_mutex_init_task(struct task_struct *p) 1731 { 1732 raw_spin_lock_init(&p->pi_lock); 1733 #ifdef CONFIG_RT_MUTEXES 1734 p->pi_waiters = RB_ROOT_CACHED; 1735 p->pi_top_task = NULL; 1736 p->pi_blocked_on = NULL; 1737 #endif 1738 } 1739 1740 static inline void init_task_pid_links(struct task_struct *task) 1741 { 1742 enum pid_type type; 1743 1744 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1745 INIT_HLIST_NODE(&task->pid_links[type]); 1746 } 1747 1748 static inline void 1749 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1750 { 1751 if (type == PIDTYPE_PID) 1752 task->thread_pid = pid; 1753 else 1754 task->signal->pids[type] = pid; 1755 } 1756 1757 static inline void rcu_copy_process(struct task_struct *p) 1758 { 1759 #ifdef CONFIG_PREEMPT_RCU 1760 p->rcu_read_lock_nesting = 0; 1761 p->rcu_read_unlock_special.s = 0; 1762 p->rcu_blocked_node = NULL; 1763 INIT_LIST_HEAD(&p->rcu_node_entry); 1764 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1765 #ifdef CONFIG_TASKS_RCU 1766 p->rcu_tasks_holdout = false; 1767 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1768 p->rcu_tasks_idle_cpu = -1; 1769 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1770 #endif /* #ifdef CONFIG_TASKS_RCU */ 1771 #ifdef CONFIG_TASKS_TRACE_RCU 1772 p->trc_reader_nesting = 0; 1773 p->trc_reader_special.s = 0; 1774 INIT_LIST_HEAD(&p->trc_holdout_list); 1775 INIT_LIST_HEAD(&p->trc_blkd_node); 1776 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1777 } 1778 1779 /** 1780 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1781 * @pid: the struct pid for which to create a pidfd 1782 * @flags: flags of the new @pidfd 1783 * @ret: Where to return the file for the pidfd. 1784 * 1785 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1786 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1787 * 1788 * The helper doesn't perform checks on @pid which makes it useful for pidfds 1789 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 1790 * pidfd file are prepared. 1791 * 1792 * If this function returns successfully the caller is responsible to either 1793 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1794 * order to install the pidfd into its file descriptor table or they must use 1795 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1796 * respectively. 1797 * 1798 * This function is useful when a pidfd must already be reserved but there 1799 * might still be points of failure afterwards and the caller wants to ensure 1800 * that no pidfd is leaked into its file descriptor table. 1801 * 1802 * Return: On success, a reserved pidfd is returned from the function and a new 1803 * pidfd file is returned in the last argument to the function. On 1804 * error, a negative error code is returned from the function and the 1805 * last argument remains unchanged. 1806 */ 1807 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 1808 { 1809 struct file *pidfd_file; 1810 1811 CLASS(get_unused_fd, pidfd)(O_CLOEXEC); 1812 if (pidfd < 0) 1813 return pidfd; 1814 1815 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 1816 if (IS_ERR(pidfd_file)) 1817 return PTR_ERR(pidfd_file); 1818 1819 *ret = pidfd_file; 1820 return take_fd(pidfd); 1821 } 1822 1823 /** 1824 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1825 * @pid: the struct pid for which to create a pidfd 1826 * @flags: flags of the new @pidfd 1827 * @ret: Where to return the pidfd. 1828 * 1829 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1830 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1831 * 1832 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 1833 * task identified by @pid must be a thread-group leader. 1834 * 1835 * If this function returns successfully the caller is responsible to either 1836 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1837 * order to install the pidfd into its file descriptor table or they must use 1838 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1839 * respectively. 1840 * 1841 * This function is useful when a pidfd must already be reserved but there 1842 * might still be points of failure afterwards and the caller wants to ensure 1843 * that no pidfd is leaked into its file descriptor table. 1844 * 1845 * Return: On success, a reserved pidfd is returned from the function and a new 1846 * pidfd file is returned in the last argument to the function. On 1847 * error, a negative error code is returned from the function and the 1848 * last argument remains unchanged. 1849 */ 1850 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 1851 { 1852 bool thread = flags & PIDFD_THREAD; 1853 1854 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 1855 return -EINVAL; 1856 1857 return __pidfd_prepare(pid, flags, ret); 1858 } 1859 1860 static void __delayed_free_task(struct rcu_head *rhp) 1861 { 1862 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1863 1864 free_task(tsk); 1865 } 1866 1867 static __always_inline void delayed_free_task(struct task_struct *tsk) 1868 { 1869 if (IS_ENABLED(CONFIG_MEMCG)) 1870 call_rcu(&tsk->rcu, __delayed_free_task); 1871 else 1872 free_task(tsk); 1873 } 1874 1875 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1876 { 1877 /* Skip if kernel thread */ 1878 if (!tsk->mm) 1879 return; 1880 1881 /* Skip if spawning a thread or using vfork */ 1882 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1883 return; 1884 1885 /* We need to synchronize with __set_oom_adj */ 1886 mutex_lock(&oom_adj_mutex); 1887 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1888 /* Update the values in case they were changed after copy_signal */ 1889 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1890 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1891 mutex_unlock(&oom_adj_mutex); 1892 } 1893 1894 #ifdef CONFIG_RV 1895 static void rv_task_fork(struct task_struct *p) 1896 { 1897 int i; 1898 1899 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 1900 p->rv[i].da_mon.monitoring = false; 1901 } 1902 #else 1903 #define rv_task_fork(p) do {} while (0) 1904 #endif 1905 1906 /* 1907 * This creates a new process as a copy of the old one, 1908 * but does not actually start it yet. 1909 * 1910 * It copies the registers, and all the appropriate 1911 * parts of the process environment (as per the clone 1912 * flags). The actual kick-off is left to the caller. 1913 */ 1914 __latent_entropy struct task_struct *copy_process( 1915 struct pid *pid, 1916 int trace, 1917 int node, 1918 struct kernel_clone_args *args) 1919 { 1920 int pidfd = -1, retval; 1921 struct task_struct *p; 1922 struct multiprocess_signals delayed; 1923 struct file *pidfile = NULL; 1924 const u64 clone_flags = args->flags; 1925 struct nsproxy *nsp = current->nsproxy; 1926 1927 /* 1928 * Don't allow sharing the root directory with processes in a different 1929 * namespace 1930 */ 1931 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1932 return ERR_PTR(-EINVAL); 1933 1934 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1935 return ERR_PTR(-EINVAL); 1936 1937 /* 1938 * Thread groups must share signals as well, and detached threads 1939 * can only be started up within the thread group. 1940 */ 1941 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1942 return ERR_PTR(-EINVAL); 1943 1944 /* 1945 * Shared signal handlers imply shared VM. By way of the above, 1946 * thread groups also imply shared VM. Blocking this case allows 1947 * for various simplifications in other code. 1948 */ 1949 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1950 return ERR_PTR(-EINVAL); 1951 1952 /* 1953 * Siblings of global init remain as zombies on exit since they are 1954 * not reaped by their parent (swapper). To solve this and to avoid 1955 * multi-rooted process trees, prevent global and container-inits 1956 * from creating siblings. 1957 */ 1958 if ((clone_flags & CLONE_PARENT) && 1959 current->signal->flags & SIGNAL_UNKILLABLE) 1960 return ERR_PTR(-EINVAL); 1961 1962 /* 1963 * If the new process will be in a different pid or user namespace 1964 * do not allow it to share a thread group with the forking task. 1965 */ 1966 if (clone_flags & CLONE_THREAD) { 1967 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1968 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1969 return ERR_PTR(-EINVAL); 1970 } 1971 1972 if (clone_flags & CLONE_PIDFD) { 1973 /* 1974 * - CLONE_DETACHED is blocked so that we can potentially 1975 * reuse it later for CLONE_PIDFD. 1976 */ 1977 if (clone_flags & CLONE_DETACHED) 1978 return ERR_PTR(-EINVAL); 1979 } 1980 1981 /* 1982 * Force any signals received before this point to be delivered 1983 * before the fork happens. Collect up signals sent to multiple 1984 * processes that happen during the fork and delay them so that 1985 * they appear to happen after the fork. 1986 */ 1987 sigemptyset(&delayed.signal); 1988 INIT_HLIST_NODE(&delayed.node); 1989 1990 spin_lock_irq(¤t->sighand->siglock); 1991 if (!(clone_flags & CLONE_THREAD)) 1992 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1993 recalc_sigpending(); 1994 spin_unlock_irq(¤t->sighand->siglock); 1995 retval = -ERESTARTNOINTR; 1996 if (task_sigpending(current)) 1997 goto fork_out; 1998 1999 retval = -ENOMEM; 2000 p = dup_task_struct(current, node); 2001 if (!p) 2002 goto fork_out; 2003 p->flags &= ~PF_KTHREAD; 2004 if (args->kthread) 2005 p->flags |= PF_KTHREAD; 2006 if (args->user_worker) { 2007 /* 2008 * Mark us a user worker, and block any signal that isn't 2009 * fatal or STOP 2010 */ 2011 p->flags |= PF_USER_WORKER; 2012 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2013 } 2014 if (args->io_thread) 2015 p->flags |= PF_IO_WORKER; 2016 2017 if (args->name) 2018 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2019 2020 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2021 /* 2022 * Clear TID on mm_release()? 2023 */ 2024 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2025 2026 ftrace_graph_init_task(p); 2027 2028 rt_mutex_init_task(p); 2029 2030 lockdep_assert_irqs_enabled(); 2031 #ifdef CONFIG_PROVE_LOCKING 2032 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2033 #endif 2034 retval = copy_creds(p, clone_flags); 2035 if (retval < 0) 2036 goto bad_fork_free; 2037 2038 retval = -EAGAIN; 2039 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2040 if (p->real_cred->user != INIT_USER && 2041 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2042 goto bad_fork_cleanup_count; 2043 } 2044 current->flags &= ~PF_NPROC_EXCEEDED; 2045 2046 /* 2047 * If multiple threads are within copy_process(), then this check 2048 * triggers too late. This doesn't hurt, the check is only there 2049 * to stop root fork bombs. 2050 */ 2051 retval = -EAGAIN; 2052 if (data_race(nr_threads >= max_threads)) 2053 goto bad_fork_cleanup_count; 2054 2055 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2056 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2057 p->flags |= PF_FORKNOEXEC; 2058 INIT_LIST_HEAD(&p->children); 2059 INIT_LIST_HEAD(&p->sibling); 2060 rcu_copy_process(p); 2061 p->vfork_done = NULL; 2062 spin_lock_init(&p->alloc_lock); 2063 2064 init_sigpending(&p->pending); 2065 2066 p->utime = p->stime = p->gtime = 0; 2067 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2068 p->utimescaled = p->stimescaled = 0; 2069 #endif 2070 prev_cputime_init(&p->prev_cputime); 2071 2072 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2073 seqcount_init(&p->vtime.seqcount); 2074 p->vtime.starttime = 0; 2075 p->vtime.state = VTIME_INACTIVE; 2076 #endif 2077 2078 #ifdef CONFIG_IO_URING 2079 p->io_uring = NULL; 2080 #endif 2081 2082 p->default_timer_slack_ns = current->timer_slack_ns; 2083 2084 #ifdef CONFIG_PSI 2085 p->psi_flags = 0; 2086 #endif 2087 2088 task_io_accounting_init(&p->ioac); 2089 acct_clear_integrals(p); 2090 2091 posix_cputimers_init(&p->posix_cputimers); 2092 tick_dep_init_task(p); 2093 2094 p->io_context = NULL; 2095 audit_set_context(p, NULL); 2096 cgroup_fork(p); 2097 if (args->kthread) { 2098 if (!set_kthread_struct(p)) 2099 goto bad_fork_cleanup_delayacct; 2100 } 2101 #ifdef CONFIG_NUMA 2102 p->mempolicy = mpol_dup(p->mempolicy); 2103 if (IS_ERR(p->mempolicy)) { 2104 retval = PTR_ERR(p->mempolicy); 2105 p->mempolicy = NULL; 2106 goto bad_fork_cleanup_delayacct; 2107 } 2108 #endif 2109 #ifdef CONFIG_CPUSETS 2110 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2111 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2112 #endif 2113 #ifdef CONFIG_TRACE_IRQFLAGS 2114 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2115 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2116 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2117 p->softirqs_enabled = 1; 2118 p->softirq_context = 0; 2119 #endif 2120 2121 p->pagefault_disabled = 0; 2122 2123 #ifdef CONFIG_LOCKDEP 2124 lockdep_init_task(p); 2125 #endif 2126 2127 #ifdef CONFIG_DEBUG_MUTEXES 2128 p->blocked_on = NULL; /* not blocked yet */ 2129 #endif 2130 #ifdef CONFIG_BCACHE 2131 p->sequential_io = 0; 2132 p->sequential_io_avg = 0; 2133 #endif 2134 #ifdef CONFIG_BPF_SYSCALL 2135 RCU_INIT_POINTER(p->bpf_storage, NULL); 2136 p->bpf_ctx = NULL; 2137 #endif 2138 2139 /* Perform scheduler related setup. Assign this task to a CPU. */ 2140 retval = sched_fork(clone_flags, p); 2141 if (retval) 2142 goto bad_fork_cleanup_policy; 2143 2144 retval = perf_event_init_task(p, clone_flags); 2145 if (retval) 2146 goto bad_fork_sched_cancel_fork; 2147 retval = audit_alloc(p); 2148 if (retval) 2149 goto bad_fork_cleanup_perf; 2150 /* copy all the process information */ 2151 shm_init_task(p); 2152 retval = security_task_alloc(p, clone_flags); 2153 if (retval) 2154 goto bad_fork_cleanup_audit; 2155 retval = copy_semundo(clone_flags, p); 2156 if (retval) 2157 goto bad_fork_cleanup_security; 2158 retval = copy_files(clone_flags, p, args->no_files); 2159 if (retval) 2160 goto bad_fork_cleanup_semundo; 2161 retval = copy_fs(clone_flags, p); 2162 if (retval) 2163 goto bad_fork_cleanup_files; 2164 retval = copy_sighand(clone_flags, p); 2165 if (retval) 2166 goto bad_fork_cleanup_fs; 2167 retval = copy_signal(clone_flags, p); 2168 if (retval) 2169 goto bad_fork_cleanup_sighand; 2170 retval = copy_mm(clone_flags, p); 2171 if (retval) 2172 goto bad_fork_cleanup_signal; 2173 retval = copy_namespaces(clone_flags, p); 2174 if (retval) 2175 goto bad_fork_cleanup_mm; 2176 retval = copy_io(clone_flags, p); 2177 if (retval) 2178 goto bad_fork_cleanup_namespaces; 2179 retval = copy_thread(p, args); 2180 if (retval) 2181 goto bad_fork_cleanup_io; 2182 2183 stackleak_task_init(p); 2184 2185 if (pid != &init_struct_pid) { 2186 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2187 args->set_tid_size); 2188 if (IS_ERR(pid)) { 2189 retval = PTR_ERR(pid); 2190 goto bad_fork_cleanup_thread; 2191 } 2192 } 2193 2194 /* 2195 * This has to happen after we've potentially unshared the file 2196 * descriptor table (so that the pidfd doesn't leak into the child 2197 * if the fd table isn't shared). 2198 */ 2199 if (clone_flags & CLONE_PIDFD) { 2200 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2201 2202 /* 2203 * Note that no task has been attached to @pid yet indicate 2204 * that via CLONE_PIDFD. 2205 */ 2206 retval = __pidfd_prepare(pid, flags | PIDFD_CLONE, &pidfile); 2207 if (retval < 0) 2208 goto bad_fork_free_pid; 2209 pidfd = retval; 2210 2211 retval = put_user(pidfd, args->pidfd); 2212 if (retval) 2213 goto bad_fork_put_pidfd; 2214 } 2215 2216 #ifdef CONFIG_BLOCK 2217 p->plug = NULL; 2218 #endif 2219 futex_init_task(p); 2220 2221 /* 2222 * sigaltstack should be cleared when sharing the same VM 2223 */ 2224 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2225 sas_ss_reset(p); 2226 2227 /* 2228 * Syscall tracing and stepping should be turned off in the 2229 * child regardless of CLONE_PTRACE. 2230 */ 2231 user_disable_single_step(p); 2232 clear_task_syscall_work(p, SYSCALL_TRACE); 2233 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2234 clear_task_syscall_work(p, SYSCALL_EMU); 2235 #endif 2236 clear_tsk_latency_tracing(p); 2237 2238 /* ok, now we should be set up.. */ 2239 p->pid = pid_nr(pid); 2240 if (clone_flags & CLONE_THREAD) { 2241 p->group_leader = current->group_leader; 2242 p->tgid = current->tgid; 2243 } else { 2244 p->group_leader = p; 2245 p->tgid = p->pid; 2246 } 2247 2248 p->nr_dirtied = 0; 2249 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2250 p->dirty_paused_when = 0; 2251 2252 p->pdeath_signal = 0; 2253 p->task_works = NULL; 2254 clear_posix_cputimers_work(p); 2255 2256 #ifdef CONFIG_KRETPROBES 2257 p->kretprobe_instances.first = NULL; 2258 #endif 2259 #ifdef CONFIG_RETHOOK 2260 p->rethooks.first = NULL; 2261 #endif 2262 2263 /* 2264 * Ensure that the cgroup subsystem policies allow the new process to be 2265 * forked. It should be noted that the new process's css_set can be changed 2266 * between here and cgroup_post_fork() if an organisation operation is in 2267 * progress. 2268 */ 2269 retval = cgroup_can_fork(p, args); 2270 if (retval) 2271 goto bad_fork_put_pidfd; 2272 2273 /* 2274 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2275 * the new task on the correct runqueue. All this *before* the task 2276 * becomes visible. 2277 * 2278 * This isn't part of ->can_fork() because while the re-cloning is 2279 * cgroup specific, it unconditionally needs to place the task on a 2280 * runqueue. 2281 */ 2282 retval = sched_cgroup_fork(p, args); 2283 if (retval) 2284 goto bad_fork_cancel_cgroup; 2285 2286 /* 2287 * From this point on we must avoid any synchronous user-space 2288 * communication until we take the tasklist-lock. In particular, we do 2289 * not want user-space to be able to predict the process start-time by 2290 * stalling fork(2) after we recorded the start_time but before it is 2291 * visible to the system. 2292 */ 2293 2294 p->start_time = ktime_get_ns(); 2295 p->start_boottime = ktime_get_boottime_ns(); 2296 2297 /* 2298 * Make it visible to the rest of the system, but dont wake it up yet. 2299 * Need tasklist lock for parent etc handling! 2300 */ 2301 write_lock_irq(&tasklist_lock); 2302 2303 /* CLONE_PARENT re-uses the old parent */ 2304 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2305 p->real_parent = current->real_parent; 2306 p->parent_exec_id = current->parent_exec_id; 2307 if (clone_flags & CLONE_THREAD) 2308 p->exit_signal = -1; 2309 else 2310 p->exit_signal = current->group_leader->exit_signal; 2311 } else { 2312 p->real_parent = current; 2313 p->parent_exec_id = current->self_exec_id; 2314 p->exit_signal = args->exit_signal; 2315 } 2316 2317 klp_copy_process(p); 2318 2319 sched_core_fork(p); 2320 2321 spin_lock(¤t->sighand->siglock); 2322 2323 rv_task_fork(p); 2324 2325 rseq_fork(p, clone_flags); 2326 2327 /* Don't start children in a dying pid namespace */ 2328 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2329 retval = -ENOMEM; 2330 goto bad_fork_core_free; 2331 } 2332 2333 /* Let kill terminate clone/fork in the middle */ 2334 if (fatal_signal_pending(current)) { 2335 retval = -EINTR; 2336 goto bad_fork_core_free; 2337 } 2338 2339 /* No more failure paths after this point. */ 2340 2341 /* 2342 * Copy seccomp details explicitly here, in case they were changed 2343 * before holding sighand lock. 2344 */ 2345 copy_seccomp(p); 2346 2347 init_task_pid_links(p); 2348 if (likely(p->pid)) { 2349 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2350 2351 init_task_pid(p, PIDTYPE_PID, pid); 2352 if (thread_group_leader(p)) { 2353 init_task_pid(p, PIDTYPE_TGID, pid); 2354 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2355 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2356 2357 if (is_child_reaper(pid)) { 2358 ns_of_pid(pid)->child_reaper = p; 2359 p->signal->flags |= SIGNAL_UNKILLABLE; 2360 } 2361 p->signal->shared_pending.signal = delayed.signal; 2362 p->signal->tty = tty_kref_get(current->signal->tty); 2363 /* 2364 * Inherit has_child_subreaper flag under the same 2365 * tasklist_lock with adding child to the process tree 2366 * for propagate_has_child_subreaper optimization. 2367 */ 2368 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2369 p->real_parent->signal->is_child_subreaper; 2370 list_add_tail(&p->sibling, &p->real_parent->children); 2371 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2372 attach_pid(p, PIDTYPE_TGID); 2373 attach_pid(p, PIDTYPE_PGID); 2374 attach_pid(p, PIDTYPE_SID); 2375 __this_cpu_inc(process_counts); 2376 } else { 2377 current->signal->nr_threads++; 2378 current->signal->quick_threads++; 2379 atomic_inc(¤t->signal->live); 2380 refcount_inc(¤t->signal->sigcnt); 2381 task_join_group_stop(p); 2382 list_add_tail_rcu(&p->thread_node, 2383 &p->signal->thread_head); 2384 } 2385 attach_pid(p, PIDTYPE_PID); 2386 nr_threads++; 2387 } 2388 total_forks++; 2389 hlist_del_init(&delayed.node); 2390 spin_unlock(¤t->sighand->siglock); 2391 syscall_tracepoint_update(p); 2392 write_unlock_irq(&tasklist_lock); 2393 2394 if (pidfile) 2395 fd_install(pidfd, pidfile); 2396 2397 proc_fork_connector(p); 2398 sched_post_fork(p); 2399 cgroup_post_fork(p, args); 2400 perf_event_fork(p); 2401 2402 trace_task_newtask(p, clone_flags); 2403 uprobe_copy_process(p, clone_flags); 2404 user_events_fork(p, clone_flags); 2405 2406 copy_oom_score_adj(clone_flags, p); 2407 2408 return p; 2409 2410 bad_fork_core_free: 2411 sched_core_free(p); 2412 spin_unlock(¤t->sighand->siglock); 2413 write_unlock_irq(&tasklist_lock); 2414 bad_fork_cancel_cgroup: 2415 cgroup_cancel_fork(p, args); 2416 bad_fork_put_pidfd: 2417 if (clone_flags & CLONE_PIDFD) { 2418 fput(pidfile); 2419 put_unused_fd(pidfd); 2420 } 2421 bad_fork_free_pid: 2422 if (pid != &init_struct_pid) 2423 free_pid(pid); 2424 bad_fork_cleanup_thread: 2425 exit_thread(p); 2426 bad_fork_cleanup_io: 2427 if (p->io_context) 2428 exit_io_context(p); 2429 bad_fork_cleanup_namespaces: 2430 exit_task_namespaces(p); 2431 bad_fork_cleanup_mm: 2432 if (p->mm) { 2433 mm_clear_owner(p->mm, p); 2434 mmput(p->mm); 2435 } 2436 bad_fork_cleanup_signal: 2437 if (!(clone_flags & CLONE_THREAD)) 2438 free_signal_struct(p->signal); 2439 bad_fork_cleanup_sighand: 2440 __cleanup_sighand(p->sighand); 2441 bad_fork_cleanup_fs: 2442 exit_fs(p); /* blocking */ 2443 bad_fork_cleanup_files: 2444 exit_files(p); /* blocking */ 2445 bad_fork_cleanup_semundo: 2446 exit_sem(p); 2447 bad_fork_cleanup_security: 2448 security_task_free(p); 2449 bad_fork_cleanup_audit: 2450 audit_free(p); 2451 bad_fork_cleanup_perf: 2452 perf_event_free_task(p); 2453 bad_fork_sched_cancel_fork: 2454 sched_cancel_fork(p); 2455 bad_fork_cleanup_policy: 2456 lockdep_free_task(p); 2457 #ifdef CONFIG_NUMA 2458 mpol_put(p->mempolicy); 2459 #endif 2460 bad_fork_cleanup_delayacct: 2461 delayacct_tsk_free(p); 2462 bad_fork_cleanup_count: 2463 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2464 exit_creds(p); 2465 bad_fork_free: 2466 WRITE_ONCE(p->__state, TASK_DEAD); 2467 exit_task_stack_account(p); 2468 put_task_stack(p); 2469 delayed_free_task(p); 2470 fork_out: 2471 spin_lock_irq(¤t->sighand->siglock); 2472 hlist_del_init(&delayed.node); 2473 spin_unlock_irq(¤t->sighand->siglock); 2474 return ERR_PTR(retval); 2475 } 2476 2477 static inline void init_idle_pids(struct task_struct *idle) 2478 { 2479 enum pid_type type; 2480 2481 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2482 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2483 init_task_pid(idle, type, &init_struct_pid); 2484 } 2485 } 2486 2487 static int idle_dummy(void *dummy) 2488 { 2489 /* This function is never called */ 2490 return 0; 2491 } 2492 2493 struct task_struct * __init fork_idle(int cpu) 2494 { 2495 struct task_struct *task; 2496 struct kernel_clone_args args = { 2497 .flags = CLONE_VM, 2498 .fn = &idle_dummy, 2499 .fn_arg = NULL, 2500 .kthread = 1, 2501 .idle = 1, 2502 }; 2503 2504 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2505 if (!IS_ERR(task)) { 2506 init_idle_pids(task); 2507 init_idle(task, cpu); 2508 } 2509 2510 return task; 2511 } 2512 2513 /* 2514 * This is like kernel_clone(), but shaved down and tailored to just 2515 * creating io_uring workers. It returns a created task, or an error pointer. 2516 * The returned task is inactive, and the caller must fire it up through 2517 * wake_up_new_task(p). All signals are blocked in the created task. 2518 */ 2519 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2520 { 2521 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2522 CLONE_IO; 2523 struct kernel_clone_args args = { 2524 .flags = ((lower_32_bits(flags) | CLONE_VM | 2525 CLONE_UNTRACED) & ~CSIGNAL), 2526 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2527 .fn = fn, 2528 .fn_arg = arg, 2529 .io_thread = 1, 2530 .user_worker = 1, 2531 }; 2532 2533 return copy_process(NULL, 0, node, &args); 2534 } 2535 2536 /* 2537 * Ok, this is the main fork-routine. 2538 * 2539 * It copies the process, and if successful kick-starts 2540 * it and waits for it to finish using the VM if required. 2541 * 2542 * args->exit_signal is expected to be checked for sanity by the caller. 2543 */ 2544 pid_t kernel_clone(struct kernel_clone_args *args) 2545 { 2546 u64 clone_flags = args->flags; 2547 struct completion vfork; 2548 struct pid *pid; 2549 struct task_struct *p; 2550 int trace = 0; 2551 pid_t nr; 2552 2553 /* 2554 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2555 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2556 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2557 * field in struct clone_args and it still doesn't make sense to have 2558 * them both point at the same memory location. Performing this check 2559 * here has the advantage that we don't need to have a separate helper 2560 * to check for legacy clone(). 2561 */ 2562 if ((clone_flags & CLONE_PIDFD) && 2563 (clone_flags & CLONE_PARENT_SETTID) && 2564 (args->pidfd == args->parent_tid)) 2565 return -EINVAL; 2566 2567 /* 2568 * Determine whether and which event to report to ptracer. When 2569 * called from kernel_thread or CLONE_UNTRACED is explicitly 2570 * requested, no event is reported; otherwise, report if the event 2571 * for the type of forking is enabled. 2572 */ 2573 if (!(clone_flags & CLONE_UNTRACED)) { 2574 if (clone_flags & CLONE_VFORK) 2575 trace = PTRACE_EVENT_VFORK; 2576 else if (args->exit_signal != SIGCHLD) 2577 trace = PTRACE_EVENT_CLONE; 2578 else 2579 trace = PTRACE_EVENT_FORK; 2580 2581 if (likely(!ptrace_event_enabled(current, trace))) 2582 trace = 0; 2583 } 2584 2585 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2586 add_latent_entropy(); 2587 2588 if (IS_ERR(p)) 2589 return PTR_ERR(p); 2590 2591 /* 2592 * Do this prior waking up the new thread - the thread pointer 2593 * might get invalid after that point, if the thread exits quickly. 2594 */ 2595 trace_sched_process_fork(current, p); 2596 2597 pid = get_task_pid(p, PIDTYPE_PID); 2598 nr = pid_vnr(pid); 2599 2600 if (clone_flags & CLONE_PARENT_SETTID) 2601 put_user(nr, args->parent_tid); 2602 2603 if (clone_flags & CLONE_VFORK) { 2604 p->vfork_done = &vfork; 2605 init_completion(&vfork); 2606 get_task_struct(p); 2607 } 2608 2609 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2610 /* lock the task to synchronize with memcg migration */ 2611 task_lock(p); 2612 lru_gen_add_mm(p->mm); 2613 task_unlock(p); 2614 } 2615 2616 wake_up_new_task(p); 2617 2618 /* forking complete and child started to run, tell ptracer */ 2619 if (unlikely(trace)) 2620 ptrace_event_pid(trace, pid); 2621 2622 if (clone_flags & CLONE_VFORK) { 2623 if (!wait_for_vfork_done(p, &vfork)) 2624 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2625 } 2626 2627 put_pid(pid); 2628 return nr; 2629 } 2630 2631 /* 2632 * Create a kernel thread. 2633 */ 2634 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2635 unsigned long flags) 2636 { 2637 struct kernel_clone_args args = { 2638 .flags = ((lower_32_bits(flags) | CLONE_VM | 2639 CLONE_UNTRACED) & ~CSIGNAL), 2640 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2641 .fn = fn, 2642 .fn_arg = arg, 2643 .name = name, 2644 .kthread = 1, 2645 }; 2646 2647 return kernel_clone(&args); 2648 } 2649 2650 /* 2651 * Create a user mode thread. 2652 */ 2653 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2654 { 2655 struct kernel_clone_args args = { 2656 .flags = ((lower_32_bits(flags) | CLONE_VM | 2657 CLONE_UNTRACED) & ~CSIGNAL), 2658 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2659 .fn = fn, 2660 .fn_arg = arg, 2661 }; 2662 2663 return kernel_clone(&args); 2664 } 2665 2666 #ifdef __ARCH_WANT_SYS_FORK 2667 SYSCALL_DEFINE0(fork) 2668 { 2669 #ifdef CONFIG_MMU 2670 struct kernel_clone_args args = { 2671 .exit_signal = SIGCHLD, 2672 }; 2673 2674 return kernel_clone(&args); 2675 #else 2676 /* can not support in nommu mode */ 2677 return -EINVAL; 2678 #endif 2679 } 2680 #endif 2681 2682 #ifdef __ARCH_WANT_SYS_VFORK 2683 SYSCALL_DEFINE0(vfork) 2684 { 2685 struct kernel_clone_args args = { 2686 .flags = CLONE_VFORK | CLONE_VM, 2687 .exit_signal = SIGCHLD, 2688 }; 2689 2690 return kernel_clone(&args); 2691 } 2692 #endif 2693 2694 #ifdef __ARCH_WANT_SYS_CLONE 2695 #ifdef CONFIG_CLONE_BACKWARDS 2696 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2697 int __user *, parent_tidptr, 2698 unsigned long, tls, 2699 int __user *, child_tidptr) 2700 #elif defined(CONFIG_CLONE_BACKWARDS2) 2701 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2702 int __user *, parent_tidptr, 2703 int __user *, child_tidptr, 2704 unsigned long, tls) 2705 #elif defined(CONFIG_CLONE_BACKWARDS3) 2706 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2707 int, stack_size, 2708 int __user *, parent_tidptr, 2709 int __user *, child_tidptr, 2710 unsigned long, tls) 2711 #else 2712 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2713 int __user *, parent_tidptr, 2714 int __user *, child_tidptr, 2715 unsigned long, tls) 2716 #endif 2717 { 2718 struct kernel_clone_args args = { 2719 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2720 .pidfd = parent_tidptr, 2721 .child_tid = child_tidptr, 2722 .parent_tid = parent_tidptr, 2723 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2724 .stack = newsp, 2725 .tls = tls, 2726 }; 2727 2728 return kernel_clone(&args); 2729 } 2730 #endif 2731 2732 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2733 struct clone_args __user *uargs, 2734 size_t usize) 2735 { 2736 int err; 2737 struct clone_args args; 2738 pid_t *kset_tid = kargs->set_tid; 2739 2740 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2741 CLONE_ARGS_SIZE_VER0); 2742 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2743 CLONE_ARGS_SIZE_VER1); 2744 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2745 CLONE_ARGS_SIZE_VER2); 2746 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2747 2748 if (unlikely(usize > PAGE_SIZE)) 2749 return -E2BIG; 2750 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2751 return -EINVAL; 2752 2753 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2754 if (err) 2755 return err; 2756 2757 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2758 return -EINVAL; 2759 2760 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2761 return -EINVAL; 2762 2763 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2764 return -EINVAL; 2765 2766 /* 2767 * Verify that higher 32bits of exit_signal are unset and that 2768 * it is a valid signal 2769 */ 2770 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2771 !valid_signal(args.exit_signal))) 2772 return -EINVAL; 2773 2774 if ((args.flags & CLONE_INTO_CGROUP) && 2775 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2776 return -EINVAL; 2777 2778 *kargs = (struct kernel_clone_args){ 2779 .flags = args.flags, 2780 .pidfd = u64_to_user_ptr(args.pidfd), 2781 .child_tid = u64_to_user_ptr(args.child_tid), 2782 .parent_tid = u64_to_user_ptr(args.parent_tid), 2783 .exit_signal = args.exit_signal, 2784 .stack = args.stack, 2785 .stack_size = args.stack_size, 2786 .tls = args.tls, 2787 .set_tid_size = args.set_tid_size, 2788 .cgroup = args.cgroup, 2789 }; 2790 2791 if (args.set_tid && 2792 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2793 (kargs->set_tid_size * sizeof(pid_t)))) 2794 return -EFAULT; 2795 2796 kargs->set_tid = kset_tid; 2797 2798 return 0; 2799 } 2800 2801 /** 2802 * clone3_stack_valid - check and prepare stack 2803 * @kargs: kernel clone args 2804 * 2805 * Verify that the stack arguments userspace gave us are sane. 2806 * In addition, set the stack direction for userspace since it's easy for us to 2807 * determine. 2808 */ 2809 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2810 { 2811 if (kargs->stack == 0) { 2812 if (kargs->stack_size > 0) 2813 return false; 2814 } else { 2815 if (kargs->stack_size == 0) 2816 return false; 2817 2818 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2819 return false; 2820 2821 #if !defined(CONFIG_STACK_GROWSUP) 2822 kargs->stack += kargs->stack_size; 2823 #endif 2824 } 2825 2826 return true; 2827 } 2828 2829 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2830 { 2831 /* Verify that no unknown flags are passed along. */ 2832 if (kargs->flags & 2833 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2834 return false; 2835 2836 /* 2837 * - make the CLONE_DETACHED bit reusable for clone3 2838 * - make the CSIGNAL bits reusable for clone3 2839 */ 2840 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 2841 return false; 2842 2843 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2844 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2845 return false; 2846 2847 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2848 kargs->exit_signal) 2849 return false; 2850 2851 if (!clone3_stack_valid(kargs)) 2852 return false; 2853 2854 return true; 2855 } 2856 2857 /** 2858 * sys_clone3 - create a new process with specific properties 2859 * @uargs: argument structure 2860 * @size: size of @uargs 2861 * 2862 * clone3() is the extensible successor to clone()/clone2(). 2863 * It takes a struct as argument that is versioned by its size. 2864 * 2865 * Return: On success, a positive PID for the child process. 2866 * On error, a negative errno number. 2867 */ 2868 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2869 { 2870 int err; 2871 2872 struct kernel_clone_args kargs; 2873 pid_t set_tid[MAX_PID_NS_LEVEL]; 2874 2875 #ifdef __ARCH_BROKEN_SYS_CLONE3 2876 #warning clone3() entry point is missing, please fix 2877 return -ENOSYS; 2878 #endif 2879 2880 kargs.set_tid = set_tid; 2881 2882 err = copy_clone_args_from_user(&kargs, uargs, size); 2883 if (err) 2884 return err; 2885 2886 if (!clone3_args_valid(&kargs)) 2887 return -EINVAL; 2888 2889 return kernel_clone(&kargs); 2890 } 2891 2892 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2893 { 2894 struct task_struct *leader, *parent, *child; 2895 int res; 2896 2897 read_lock(&tasklist_lock); 2898 leader = top = top->group_leader; 2899 down: 2900 for_each_thread(leader, parent) { 2901 list_for_each_entry(child, &parent->children, sibling) { 2902 res = visitor(child, data); 2903 if (res) { 2904 if (res < 0) 2905 goto out; 2906 leader = child; 2907 goto down; 2908 } 2909 up: 2910 ; 2911 } 2912 } 2913 2914 if (leader != top) { 2915 child = leader; 2916 parent = child->real_parent; 2917 leader = parent->group_leader; 2918 goto up; 2919 } 2920 out: 2921 read_unlock(&tasklist_lock); 2922 } 2923 2924 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2925 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2926 #endif 2927 2928 static void sighand_ctor(void *data) 2929 { 2930 struct sighand_struct *sighand = data; 2931 2932 spin_lock_init(&sighand->siglock); 2933 init_waitqueue_head(&sighand->signalfd_wqh); 2934 } 2935 2936 void __init mm_cache_init(void) 2937 { 2938 unsigned int mm_size; 2939 2940 /* 2941 * The mm_cpumask is located at the end of mm_struct, and is 2942 * dynamically sized based on the maximum CPU number this system 2943 * can have, taking hotplug into account (nr_cpu_ids). 2944 */ 2945 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 2946 2947 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2948 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2949 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2950 offsetof(struct mm_struct, saved_auxv), 2951 sizeof_field(struct mm_struct, saved_auxv), 2952 NULL); 2953 } 2954 2955 void __init proc_caches_init(void) 2956 { 2957 sighand_cachep = kmem_cache_create("sighand_cache", 2958 sizeof(struct sighand_struct), 0, 2959 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2960 SLAB_ACCOUNT, sighand_ctor); 2961 signal_cachep = kmem_cache_create("signal_cache", 2962 sizeof(struct signal_struct), 0, 2963 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2964 NULL); 2965 files_cachep = kmem_cache_create("files_cache", 2966 sizeof(struct files_struct), 0, 2967 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2968 NULL); 2969 fs_cachep = kmem_cache_create("fs_cache", 2970 sizeof(struct fs_struct), 0, 2971 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2972 NULL); 2973 mmap_init(); 2974 nsproxy_cache_init(); 2975 } 2976 2977 /* 2978 * Check constraints on flags passed to the unshare system call. 2979 */ 2980 static int check_unshare_flags(unsigned long unshare_flags) 2981 { 2982 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2983 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2984 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2985 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2986 CLONE_NEWTIME)) 2987 return -EINVAL; 2988 /* 2989 * Not implemented, but pretend it works if there is nothing 2990 * to unshare. Note that unsharing the address space or the 2991 * signal handlers also need to unshare the signal queues (aka 2992 * CLONE_THREAD). 2993 */ 2994 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2995 if (!thread_group_empty(current)) 2996 return -EINVAL; 2997 } 2998 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2999 if (refcount_read(¤t->sighand->count) > 1) 3000 return -EINVAL; 3001 } 3002 if (unshare_flags & CLONE_VM) { 3003 if (!current_is_single_threaded()) 3004 return -EINVAL; 3005 } 3006 3007 return 0; 3008 } 3009 3010 /* 3011 * Unshare the filesystem structure if it is being shared 3012 */ 3013 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3014 { 3015 struct fs_struct *fs = current->fs; 3016 3017 if (!(unshare_flags & CLONE_FS) || !fs) 3018 return 0; 3019 3020 /* don't need lock here; in the worst case we'll do useless copy */ 3021 if (fs->users == 1) 3022 return 0; 3023 3024 *new_fsp = copy_fs_struct(fs); 3025 if (!*new_fsp) 3026 return -ENOMEM; 3027 3028 return 0; 3029 } 3030 3031 /* 3032 * Unshare file descriptor table if it is being shared 3033 */ 3034 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3035 { 3036 struct files_struct *fd = current->files; 3037 3038 if ((unshare_flags & CLONE_FILES) && 3039 (fd && atomic_read(&fd->count) > 1)) { 3040 fd = dup_fd(fd, NULL); 3041 if (IS_ERR(fd)) 3042 return PTR_ERR(fd); 3043 *new_fdp = fd; 3044 } 3045 3046 return 0; 3047 } 3048 3049 /* 3050 * unshare allows a process to 'unshare' part of the process 3051 * context which was originally shared using clone. copy_* 3052 * functions used by kernel_clone() cannot be used here directly 3053 * because they modify an inactive task_struct that is being 3054 * constructed. Here we are modifying the current, active, 3055 * task_struct. 3056 */ 3057 int ksys_unshare(unsigned long unshare_flags) 3058 { 3059 struct fs_struct *fs, *new_fs = NULL; 3060 struct files_struct *new_fd = NULL; 3061 struct cred *new_cred = NULL; 3062 struct nsproxy *new_nsproxy = NULL; 3063 int do_sysvsem = 0; 3064 int err; 3065 3066 /* 3067 * If unsharing a user namespace must also unshare the thread group 3068 * and unshare the filesystem root and working directories. 3069 */ 3070 if (unshare_flags & CLONE_NEWUSER) 3071 unshare_flags |= CLONE_THREAD | CLONE_FS; 3072 /* 3073 * If unsharing vm, must also unshare signal handlers. 3074 */ 3075 if (unshare_flags & CLONE_VM) 3076 unshare_flags |= CLONE_SIGHAND; 3077 /* 3078 * If unsharing a signal handlers, must also unshare the signal queues. 3079 */ 3080 if (unshare_flags & CLONE_SIGHAND) 3081 unshare_flags |= CLONE_THREAD; 3082 /* 3083 * If unsharing namespace, must also unshare filesystem information. 3084 */ 3085 if (unshare_flags & CLONE_NEWNS) 3086 unshare_flags |= CLONE_FS; 3087 3088 err = check_unshare_flags(unshare_flags); 3089 if (err) 3090 goto bad_unshare_out; 3091 /* 3092 * CLONE_NEWIPC must also detach from the undolist: after switching 3093 * to a new ipc namespace, the semaphore arrays from the old 3094 * namespace are unreachable. 3095 */ 3096 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3097 do_sysvsem = 1; 3098 err = unshare_fs(unshare_flags, &new_fs); 3099 if (err) 3100 goto bad_unshare_out; 3101 err = unshare_fd(unshare_flags, &new_fd); 3102 if (err) 3103 goto bad_unshare_cleanup_fs; 3104 err = unshare_userns(unshare_flags, &new_cred); 3105 if (err) 3106 goto bad_unshare_cleanup_fd; 3107 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3108 new_cred, new_fs); 3109 if (err) 3110 goto bad_unshare_cleanup_cred; 3111 3112 if (new_cred) { 3113 err = set_cred_ucounts(new_cred); 3114 if (err) 3115 goto bad_unshare_cleanup_cred; 3116 } 3117 3118 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3119 if (do_sysvsem) { 3120 /* 3121 * CLONE_SYSVSEM is equivalent to sys_exit(). 3122 */ 3123 exit_sem(current); 3124 } 3125 if (unshare_flags & CLONE_NEWIPC) { 3126 /* Orphan segments in old ns (see sem above). */ 3127 exit_shm(current); 3128 shm_init_task(current); 3129 } 3130 3131 if (new_nsproxy) 3132 switch_task_namespaces(current, new_nsproxy); 3133 3134 task_lock(current); 3135 3136 if (new_fs) { 3137 fs = current->fs; 3138 spin_lock(&fs->lock); 3139 current->fs = new_fs; 3140 if (--fs->users) 3141 new_fs = NULL; 3142 else 3143 new_fs = fs; 3144 spin_unlock(&fs->lock); 3145 } 3146 3147 if (new_fd) 3148 swap(current->files, new_fd); 3149 3150 task_unlock(current); 3151 3152 if (new_cred) { 3153 /* Install the new user namespace */ 3154 commit_creds(new_cred); 3155 new_cred = NULL; 3156 } 3157 } 3158 3159 perf_event_namespaces(current); 3160 3161 bad_unshare_cleanup_cred: 3162 if (new_cred) 3163 put_cred(new_cred); 3164 bad_unshare_cleanup_fd: 3165 if (new_fd) 3166 put_files_struct(new_fd); 3167 3168 bad_unshare_cleanup_fs: 3169 if (new_fs) 3170 free_fs_struct(new_fs); 3171 3172 bad_unshare_out: 3173 return err; 3174 } 3175 3176 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3177 { 3178 return ksys_unshare(unshare_flags); 3179 } 3180 3181 /* 3182 * Helper to unshare the files of the current task. 3183 * We don't want to expose copy_files internals to 3184 * the exec layer of the kernel. 3185 */ 3186 3187 int unshare_files(void) 3188 { 3189 struct task_struct *task = current; 3190 struct files_struct *old, *copy = NULL; 3191 int error; 3192 3193 error = unshare_fd(CLONE_FILES, ©); 3194 if (error || !copy) 3195 return error; 3196 3197 old = task->files; 3198 task_lock(task); 3199 task->files = copy; 3200 task_unlock(task); 3201 put_files_struct(old); 3202 return 0; 3203 } 3204 3205 int sysctl_max_threads(const struct ctl_table *table, int write, 3206 void *buffer, size_t *lenp, loff_t *ppos) 3207 { 3208 struct ctl_table t; 3209 int ret; 3210 int threads = max_threads; 3211 int min = 1; 3212 int max = MAX_THREADS; 3213 3214 t = *table; 3215 t.data = &threads; 3216 t.extra1 = &min; 3217 t.extra2 = &max; 3218 3219 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3220 if (ret || !write) 3221 return ret; 3222 3223 max_threads = threads; 3224 3225 return 0; 3226 } 3227