1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/syscall_user_dispatch.h> 57 #include <linux/jiffies.h> 58 #include <linux/futex.h> 59 #include <linux/compat.h> 60 #include <linux/kthread.h> 61 #include <linux/task_io_accounting_ops.h> 62 #include <linux/rcupdate.h> 63 #include <linux/ptrace.h> 64 #include <linux/mount.h> 65 #include <linux/audit.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/proc_fs.h> 69 #include <linux/profile.h> 70 #include <linux/rmap.h> 71 #include <linux/ksm.h> 72 #include <linux/acct.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/tsacct_kern.h> 75 #include <linux/cn_proc.h> 76 #include <linux/freezer.h> 77 #include <linux/delayacct.h> 78 #include <linux/taskstats_kern.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 #include <linux/stackprotector.h> 101 #include <linux/user_events.h> 102 #include <linux/iommu.h> 103 #include <linux/rseq.h> 104 105 #include <asm/pgalloc.h> 106 #include <linux/uaccess.h> 107 #include <asm/mmu_context.h> 108 #include <asm/cacheflush.h> 109 #include <asm/tlbflush.h> 110 111 #include <trace/events/sched.h> 112 113 #define CREATE_TRACE_POINTS 114 #include <trace/events/task.h> 115 116 /* 117 * Minimum number of threads to boot the kernel 118 */ 119 #define MIN_THREADS 20 120 121 /* 122 * Maximum number of threads 123 */ 124 #define MAX_THREADS FUTEX_TID_MASK 125 126 /* 127 * Protected counters by write_lock_irq(&tasklist_lock) 128 */ 129 unsigned long total_forks; /* Handle normal Linux uptimes. */ 130 int nr_threads; /* The idle threads do not count.. */ 131 132 static int max_threads; /* tunable limit on nr_threads */ 133 134 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 135 136 static const char * const resident_page_types[] = { 137 NAMED_ARRAY_INDEX(MM_FILEPAGES), 138 NAMED_ARRAY_INDEX(MM_ANONPAGES), 139 NAMED_ARRAY_INDEX(MM_SWAPENTS), 140 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 141 }; 142 143 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 144 145 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 146 147 #ifdef CONFIG_PROVE_RCU 148 int lockdep_tasklist_lock_is_held(void) 149 { 150 return lockdep_is_held(&tasklist_lock); 151 } 152 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 153 #endif /* #ifdef CONFIG_PROVE_RCU */ 154 155 int nr_processes(void) 156 { 157 int cpu; 158 int total = 0; 159 160 for_each_possible_cpu(cpu) 161 total += per_cpu(process_counts, cpu); 162 163 return total; 164 } 165 166 void __weak arch_release_task_struct(struct task_struct *tsk) 167 { 168 } 169 170 static struct kmem_cache *task_struct_cachep; 171 172 static inline struct task_struct *alloc_task_struct_node(int node) 173 { 174 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 175 } 176 177 static inline void free_task_struct(struct task_struct *tsk) 178 { 179 kmem_cache_free(task_struct_cachep, tsk); 180 } 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 # ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 struct vm_stack { 197 struct rcu_head rcu; 198 struct vm_struct *stack_vm_area; 199 }; 200 201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 202 { 203 unsigned int i; 204 205 for (i = 0; i < NR_CACHED_STACKS; i++) { 206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 static void thread_stack_free_rcu(struct rcu_head *rh) 214 { 215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 216 217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 218 return; 219 220 vfree(vm_stack); 221 } 222 223 static void thread_stack_delayed_free(struct task_struct *tsk) 224 { 225 struct vm_stack *vm_stack = tsk->stack; 226 227 vm_stack->stack_vm_area = tsk->stack_vm_area; 228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 229 } 230 231 static int free_vm_stack_cache(unsigned int cpu) 232 { 233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 234 int i; 235 236 for (i = 0; i < NR_CACHED_STACKS; i++) { 237 struct vm_struct *vm_stack = cached_vm_stacks[i]; 238 239 if (!vm_stack) 240 continue; 241 242 vfree(vm_stack->addr); 243 cached_vm_stacks[i] = NULL; 244 } 245 246 return 0; 247 } 248 249 static int memcg_charge_kernel_stack(struct vm_struct *vm) 250 { 251 int i; 252 int ret; 253 int nr_charged = 0; 254 255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 256 257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 259 if (ret) 260 goto err; 261 nr_charged++; 262 } 263 return 0; 264 err: 265 for (i = 0; i < nr_charged; i++) 266 memcg_kmem_uncharge_page(vm->pages[i], 0); 267 return ret; 268 } 269 270 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 271 { 272 struct vm_struct *vm; 273 void *stack; 274 int i; 275 276 for (i = 0; i < NR_CACHED_STACKS; i++) { 277 struct vm_struct *s; 278 279 s = this_cpu_xchg(cached_stacks[i], NULL); 280 281 if (!s) 282 continue; 283 284 /* Reset stack metadata. */ 285 kasan_unpoison_range(s->addr, THREAD_SIZE); 286 287 stack = kasan_reset_tag(s->addr); 288 289 /* Clear stale pointers from reused stack. */ 290 memset(stack, 0, THREAD_SIZE); 291 292 if (memcg_charge_kernel_stack(s)) { 293 vfree(s->addr); 294 return -ENOMEM; 295 } 296 297 tsk->stack_vm_area = s; 298 tsk->stack = stack; 299 return 0; 300 } 301 302 /* 303 * Allocated stacks are cached and later reused by new threads, 304 * so memcg accounting is performed manually on assigning/releasing 305 * stacks to tasks. Drop __GFP_ACCOUNT. 306 */ 307 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 308 VMALLOC_START, VMALLOC_END, 309 THREADINFO_GFP & ~__GFP_ACCOUNT, 310 PAGE_KERNEL, 311 0, node, __builtin_return_address(0)); 312 if (!stack) 313 return -ENOMEM; 314 315 vm = find_vm_area(stack); 316 if (memcg_charge_kernel_stack(vm)) { 317 vfree(stack); 318 return -ENOMEM; 319 } 320 /* 321 * We can't call find_vm_area() in interrupt context, and 322 * free_thread_stack() can be called in interrupt context, 323 * so cache the vm_struct. 324 */ 325 tsk->stack_vm_area = vm; 326 stack = kasan_reset_tag(stack); 327 tsk->stack = stack; 328 return 0; 329 } 330 331 static void free_thread_stack(struct task_struct *tsk) 332 { 333 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 334 thread_stack_delayed_free(tsk); 335 336 tsk->stack = NULL; 337 tsk->stack_vm_area = NULL; 338 } 339 340 # else /* !CONFIG_VMAP_STACK */ 341 342 static void thread_stack_free_rcu(struct rcu_head *rh) 343 { 344 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 345 } 346 347 static void thread_stack_delayed_free(struct task_struct *tsk) 348 { 349 struct rcu_head *rh = tsk->stack; 350 351 call_rcu(rh, thread_stack_free_rcu); 352 } 353 354 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 355 { 356 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 357 THREAD_SIZE_ORDER); 358 359 if (likely(page)) { 360 tsk->stack = kasan_reset_tag(page_address(page)); 361 return 0; 362 } 363 return -ENOMEM; 364 } 365 366 static void free_thread_stack(struct task_struct *tsk) 367 { 368 thread_stack_delayed_free(tsk); 369 tsk->stack = NULL; 370 } 371 372 # endif /* CONFIG_VMAP_STACK */ 373 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 374 375 static struct kmem_cache *thread_stack_cache; 376 377 static void thread_stack_free_rcu(struct rcu_head *rh) 378 { 379 kmem_cache_free(thread_stack_cache, rh); 380 } 381 382 static void thread_stack_delayed_free(struct task_struct *tsk) 383 { 384 struct rcu_head *rh = tsk->stack; 385 386 call_rcu(rh, thread_stack_free_rcu); 387 } 388 389 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 390 { 391 unsigned long *stack; 392 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 393 stack = kasan_reset_tag(stack); 394 tsk->stack = stack; 395 return stack ? 0 : -ENOMEM; 396 } 397 398 static void free_thread_stack(struct task_struct *tsk) 399 { 400 thread_stack_delayed_free(tsk); 401 tsk->stack = NULL; 402 } 403 404 void thread_stack_cache_init(void) 405 { 406 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 407 THREAD_SIZE, THREAD_SIZE, 0, 0, 408 THREAD_SIZE, NULL); 409 BUG_ON(thread_stack_cache == NULL); 410 } 411 412 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 413 414 /* SLAB cache for signal_struct structures (tsk->signal) */ 415 static struct kmem_cache *signal_cachep; 416 417 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 418 struct kmem_cache *sighand_cachep; 419 420 /* SLAB cache for files_struct structures (tsk->files) */ 421 struct kmem_cache *files_cachep; 422 423 /* SLAB cache for fs_struct structures (tsk->fs) */ 424 struct kmem_cache *fs_cachep; 425 426 /* SLAB cache for vm_area_struct structures */ 427 static struct kmem_cache *vm_area_cachep; 428 429 /* SLAB cache for mm_struct structures (tsk->mm) */ 430 static struct kmem_cache *mm_cachep; 431 432 #ifdef CONFIG_PER_VMA_LOCK 433 434 /* SLAB cache for vm_area_struct.lock */ 435 static struct kmem_cache *vma_lock_cachep; 436 437 static bool vma_lock_alloc(struct vm_area_struct *vma) 438 { 439 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 440 if (!vma->vm_lock) 441 return false; 442 443 init_rwsem(&vma->vm_lock->lock); 444 vma->vm_lock_seq = -1; 445 446 return true; 447 } 448 449 static inline void vma_lock_free(struct vm_area_struct *vma) 450 { 451 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 452 } 453 454 #else /* CONFIG_PER_VMA_LOCK */ 455 456 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 457 static inline void vma_lock_free(struct vm_area_struct *vma) {} 458 459 #endif /* CONFIG_PER_VMA_LOCK */ 460 461 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 462 { 463 struct vm_area_struct *vma; 464 465 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 466 if (!vma) 467 return NULL; 468 469 vma_init(vma, mm); 470 if (!vma_lock_alloc(vma)) { 471 kmem_cache_free(vm_area_cachep, vma); 472 return NULL; 473 } 474 475 return vma; 476 } 477 478 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 479 { 480 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 481 482 if (!new) 483 return NULL; 484 485 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 486 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 487 /* 488 * orig->shared.rb may be modified concurrently, but the clone 489 * will be reinitialized. 490 */ 491 data_race(memcpy(new, orig, sizeof(*new))); 492 if (!vma_lock_alloc(new)) { 493 kmem_cache_free(vm_area_cachep, new); 494 return NULL; 495 } 496 INIT_LIST_HEAD(&new->anon_vma_chain); 497 vma_numab_state_init(new); 498 dup_anon_vma_name(orig, new); 499 500 return new; 501 } 502 503 void __vm_area_free(struct vm_area_struct *vma) 504 { 505 vma_numab_state_free(vma); 506 free_anon_vma_name(vma); 507 vma_lock_free(vma); 508 kmem_cache_free(vm_area_cachep, vma); 509 } 510 511 #ifdef CONFIG_PER_VMA_LOCK 512 static void vm_area_free_rcu_cb(struct rcu_head *head) 513 { 514 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 515 vm_rcu); 516 517 /* The vma should not be locked while being destroyed. */ 518 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 519 __vm_area_free(vma); 520 } 521 #endif 522 523 void vm_area_free(struct vm_area_struct *vma) 524 { 525 #ifdef CONFIG_PER_VMA_LOCK 526 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 527 #else 528 __vm_area_free(vma); 529 #endif 530 } 531 532 static void account_kernel_stack(struct task_struct *tsk, int account) 533 { 534 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 535 struct vm_struct *vm = task_stack_vm_area(tsk); 536 int i; 537 538 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 539 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 540 account * (PAGE_SIZE / 1024)); 541 } else { 542 void *stack = task_stack_page(tsk); 543 544 /* All stack pages are in the same node. */ 545 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 546 account * (THREAD_SIZE / 1024)); 547 } 548 } 549 550 void exit_task_stack_account(struct task_struct *tsk) 551 { 552 account_kernel_stack(tsk, -1); 553 554 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 555 struct vm_struct *vm; 556 int i; 557 558 vm = task_stack_vm_area(tsk); 559 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 560 memcg_kmem_uncharge_page(vm->pages[i], 0); 561 } 562 } 563 564 static void release_task_stack(struct task_struct *tsk) 565 { 566 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 567 return; /* Better to leak the stack than to free prematurely */ 568 569 free_thread_stack(tsk); 570 } 571 572 #ifdef CONFIG_THREAD_INFO_IN_TASK 573 void put_task_stack(struct task_struct *tsk) 574 { 575 if (refcount_dec_and_test(&tsk->stack_refcount)) 576 release_task_stack(tsk); 577 } 578 #endif 579 580 void free_task(struct task_struct *tsk) 581 { 582 #ifdef CONFIG_SECCOMP 583 WARN_ON_ONCE(tsk->seccomp.filter); 584 #endif 585 release_user_cpus_ptr(tsk); 586 scs_release(tsk); 587 588 #ifndef CONFIG_THREAD_INFO_IN_TASK 589 /* 590 * The task is finally done with both the stack and thread_info, 591 * so free both. 592 */ 593 release_task_stack(tsk); 594 #else 595 /* 596 * If the task had a separate stack allocation, it should be gone 597 * by now. 598 */ 599 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 600 #endif 601 rt_mutex_debug_task_free(tsk); 602 ftrace_graph_exit_task(tsk); 603 arch_release_task_struct(tsk); 604 if (tsk->flags & PF_KTHREAD) 605 free_kthread_struct(tsk); 606 bpf_task_storage_free(tsk); 607 free_task_struct(tsk); 608 } 609 EXPORT_SYMBOL(free_task); 610 611 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 612 { 613 struct file *exe_file; 614 615 exe_file = get_mm_exe_file(oldmm); 616 RCU_INIT_POINTER(mm->exe_file, exe_file); 617 /* 618 * We depend on the oldmm having properly denied write access to the 619 * exe_file already. 620 */ 621 if (exe_file && deny_write_access(exe_file)) 622 pr_warn_once("deny_write_access() failed in %s\n", __func__); 623 } 624 625 #ifdef CONFIG_MMU 626 static __latent_entropy int dup_mmap(struct mm_struct *mm, 627 struct mm_struct *oldmm) 628 { 629 struct vm_area_struct *mpnt, *tmp; 630 int retval; 631 unsigned long charge = 0; 632 LIST_HEAD(uf); 633 VMA_ITERATOR(vmi, mm, 0); 634 635 uprobe_start_dup_mmap(); 636 if (mmap_write_lock_killable(oldmm)) { 637 retval = -EINTR; 638 goto fail_uprobe_end; 639 } 640 flush_cache_dup_mm(oldmm); 641 uprobe_dup_mmap(oldmm, mm); 642 /* 643 * Not linked in yet - no deadlock potential: 644 */ 645 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 646 647 /* No ordering required: file already has been exposed. */ 648 dup_mm_exe_file(mm, oldmm); 649 650 mm->total_vm = oldmm->total_vm; 651 mm->data_vm = oldmm->data_vm; 652 mm->exec_vm = oldmm->exec_vm; 653 mm->stack_vm = oldmm->stack_vm; 654 655 retval = ksm_fork(mm, oldmm); 656 if (retval) 657 goto out; 658 khugepaged_fork(mm, oldmm); 659 660 /* Use __mt_dup() to efficiently build an identical maple tree. */ 661 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 662 if (unlikely(retval)) 663 goto out; 664 665 mt_clear_in_rcu(vmi.mas.tree); 666 for_each_vma(vmi, mpnt) { 667 struct file *file; 668 669 vma_start_write(mpnt); 670 if (mpnt->vm_flags & VM_DONTCOPY) { 671 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 672 mpnt->vm_end, GFP_KERNEL); 673 if (retval) 674 goto loop_out; 675 676 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 677 continue; 678 } 679 charge = 0; 680 /* 681 * Don't duplicate many vmas if we've been oom-killed (for 682 * example) 683 */ 684 if (fatal_signal_pending(current)) { 685 retval = -EINTR; 686 goto loop_out; 687 } 688 if (mpnt->vm_flags & VM_ACCOUNT) { 689 unsigned long len = vma_pages(mpnt); 690 691 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 692 goto fail_nomem; 693 charge = len; 694 } 695 tmp = vm_area_dup(mpnt); 696 if (!tmp) 697 goto fail_nomem; 698 retval = vma_dup_policy(mpnt, tmp); 699 if (retval) 700 goto fail_nomem_policy; 701 tmp->vm_mm = mm; 702 retval = dup_userfaultfd(tmp, &uf); 703 if (retval) 704 goto fail_nomem_anon_vma_fork; 705 if (tmp->vm_flags & VM_WIPEONFORK) { 706 /* 707 * VM_WIPEONFORK gets a clean slate in the child. 708 * Don't prepare anon_vma until fault since we don't 709 * copy page for current vma. 710 */ 711 tmp->anon_vma = NULL; 712 } else if (anon_vma_fork(tmp, mpnt)) 713 goto fail_nomem_anon_vma_fork; 714 vm_flags_clear(tmp, VM_LOCKED_MASK); 715 file = tmp->vm_file; 716 if (file) { 717 struct address_space *mapping = file->f_mapping; 718 719 get_file(file); 720 i_mmap_lock_write(mapping); 721 if (vma_is_shared_maywrite(tmp)) 722 mapping_allow_writable(mapping); 723 flush_dcache_mmap_lock(mapping); 724 /* insert tmp into the share list, just after mpnt */ 725 vma_interval_tree_insert_after(tmp, mpnt, 726 &mapping->i_mmap); 727 flush_dcache_mmap_unlock(mapping); 728 i_mmap_unlock_write(mapping); 729 } 730 731 /* 732 * Copy/update hugetlb private vma information. 733 */ 734 if (is_vm_hugetlb_page(tmp)) 735 hugetlb_dup_vma_private(tmp); 736 737 /* 738 * Link the vma into the MT. After using __mt_dup(), memory 739 * allocation is not necessary here, so it cannot fail. 740 */ 741 vma_iter_bulk_store(&vmi, tmp); 742 743 mm->map_count++; 744 if (!(tmp->vm_flags & VM_WIPEONFORK)) 745 retval = copy_page_range(tmp, mpnt); 746 747 if (tmp->vm_ops && tmp->vm_ops->open) 748 tmp->vm_ops->open(tmp); 749 750 if (retval) { 751 mpnt = vma_next(&vmi); 752 goto loop_out; 753 } 754 } 755 /* a new mm has just been created */ 756 retval = arch_dup_mmap(oldmm, mm); 757 loop_out: 758 vma_iter_free(&vmi); 759 if (!retval) { 760 mt_set_in_rcu(vmi.mas.tree); 761 } else if (mpnt) { 762 /* 763 * The entire maple tree has already been duplicated. If the 764 * mmap duplication fails, mark the failure point with 765 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 766 * stop releasing VMAs that have not been duplicated after this 767 * point. 768 */ 769 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 770 mas_store(&vmi.mas, XA_ZERO_ENTRY); 771 } 772 out: 773 mmap_write_unlock(mm); 774 flush_tlb_mm(oldmm); 775 mmap_write_unlock(oldmm); 776 dup_userfaultfd_complete(&uf); 777 fail_uprobe_end: 778 uprobe_end_dup_mmap(); 779 return retval; 780 781 fail_nomem_anon_vma_fork: 782 mpol_put(vma_policy(tmp)); 783 fail_nomem_policy: 784 vm_area_free(tmp); 785 fail_nomem: 786 retval = -ENOMEM; 787 vm_unacct_memory(charge); 788 goto loop_out; 789 } 790 791 static inline int mm_alloc_pgd(struct mm_struct *mm) 792 { 793 mm->pgd = pgd_alloc(mm); 794 if (unlikely(!mm->pgd)) 795 return -ENOMEM; 796 return 0; 797 } 798 799 static inline void mm_free_pgd(struct mm_struct *mm) 800 { 801 pgd_free(mm, mm->pgd); 802 } 803 #else 804 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 805 { 806 mmap_write_lock(oldmm); 807 dup_mm_exe_file(mm, oldmm); 808 mmap_write_unlock(oldmm); 809 return 0; 810 } 811 #define mm_alloc_pgd(mm) (0) 812 #define mm_free_pgd(mm) 813 #endif /* CONFIG_MMU */ 814 815 static void check_mm(struct mm_struct *mm) 816 { 817 int i; 818 819 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 820 "Please make sure 'struct resident_page_types[]' is updated as well"); 821 822 for (i = 0; i < NR_MM_COUNTERS; i++) { 823 long x = percpu_counter_sum(&mm->rss_stat[i]); 824 825 if (unlikely(x)) 826 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 827 mm, resident_page_types[i], x); 828 } 829 830 if (mm_pgtables_bytes(mm)) 831 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 832 mm_pgtables_bytes(mm)); 833 834 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 835 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 836 #endif 837 } 838 839 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 840 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 841 842 static void do_check_lazy_tlb(void *arg) 843 { 844 struct mm_struct *mm = arg; 845 846 WARN_ON_ONCE(current->active_mm == mm); 847 } 848 849 static void do_shoot_lazy_tlb(void *arg) 850 { 851 struct mm_struct *mm = arg; 852 853 if (current->active_mm == mm) { 854 WARN_ON_ONCE(current->mm); 855 current->active_mm = &init_mm; 856 switch_mm(mm, &init_mm, current); 857 } 858 } 859 860 static void cleanup_lazy_tlbs(struct mm_struct *mm) 861 { 862 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 863 /* 864 * In this case, lazy tlb mms are refounted and would not reach 865 * __mmdrop until all CPUs have switched away and mmdrop()ed. 866 */ 867 return; 868 } 869 870 /* 871 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 872 * requires lazy mm users to switch to another mm when the refcount 873 * drops to zero, before the mm is freed. This requires IPIs here to 874 * switch kernel threads to init_mm. 875 * 876 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 877 * switch with the final userspace teardown TLB flush which leaves the 878 * mm lazy on this CPU but no others, reducing the need for additional 879 * IPIs here. There are cases where a final IPI is still required here, 880 * such as the final mmdrop being performed on a different CPU than the 881 * one exiting, or kernel threads using the mm when userspace exits. 882 * 883 * IPI overheads have not found to be expensive, but they could be 884 * reduced in a number of possible ways, for example (roughly 885 * increasing order of complexity): 886 * - The last lazy reference created by exit_mm() could instead switch 887 * to init_mm, however it's probable this will run on the same CPU 888 * immediately afterwards, so this may not reduce IPIs much. 889 * - A batch of mms requiring IPIs could be gathered and freed at once. 890 * - CPUs store active_mm where it can be remotely checked without a 891 * lock, to filter out false-positives in the cpumask. 892 * - After mm_users or mm_count reaches zero, switching away from the 893 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 894 * with some batching or delaying of the final IPIs. 895 * - A delayed freeing and RCU-like quiescing sequence based on mm 896 * switching to avoid IPIs completely. 897 */ 898 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 899 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 900 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 901 } 902 903 /* 904 * Called when the last reference to the mm 905 * is dropped: either by a lazy thread or by 906 * mmput. Free the page directory and the mm. 907 */ 908 void __mmdrop(struct mm_struct *mm) 909 { 910 BUG_ON(mm == &init_mm); 911 WARN_ON_ONCE(mm == current->mm); 912 913 /* Ensure no CPUs are using this as their lazy tlb mm */ 914 cleanup_lazy_tlbs(mm); 915 916 WARN_ON_ONCE(mm == current->active_mm); 917 mm_free_pgd(mm); 918 destroy_context(mm); 919 mmu_notifier_subscriptions_destroy(mm); 920 check_mm(mm); 921 put_user_ns(mm->user_ns); 922 mm_pasid_drop(mm); 923 mm_destroy_cid(mm); 924 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 925 926 free_mm(mm); 927 } 928 EXPORT_SYMBOL_GPL(__mmdrop); 929 930 static void mmdrop_async_fn(struct work_struct *work) 931 { 932 struct mm_struct *mm; 933 934 mm = container_of(work, struct mm_struct, async_put_work); 935 __mmdrop(mm); 936 } 937 938 static void mmdrop_async(struct mm_struct *mm) 939 { 940 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 941 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 942 schedule_work(&mm->async_put_work); 943 } 944 } 945 946 static inline void free_signal_struct(struct signal_struct *sig) 947 { 948 taskstats_tgid_free(sig); 949 sched_autogroup_exit(sig); 950 /* 951 * __mmdrop is not safe to call from softirq context on x86 due to 952 * pgd_dtor so postpone it to the async context 953 */ 954 if (sig->oom_mm) 955 mmdrop_async(sig->oom_mm); 956 kmem_cache_free(signal_cachep, sig); 957 } 958 959 static inline void put_signal_struct(struct signal_struct *sig) 960 { 961 if (refcount_dec_and_test(&sig->sigcnt)) 962 free_signal_struct(sig); 963 } 964 965 void __put_task_struct(struct task_struct *tsk) 966 { 967 WARN_ON(!tsk->exit_state); 968 WARN_ON(refcount_read(&tsk->usage)); 969 WARN_ON(tsk == current); 970 971 io_uring_free(tsk); 972 cgroup_free(tsk); 973 task_numa_free(tsk, true); 974 security_task_free(tsk); 975 exit_creds(tsk); 976 delayacct_tsk_free(tsk); 977 put_signal_struct(tsk->signal); 978 sched_core_free(tsk); 979 free_task(tsk); 980 } 981 EXPORT_SYMBOL_GPL(__put_task_struct); 982 983 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 984 { 985 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 986 987 __put_task_struct(task); 988 } 989 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 990 991 void __init __weak arch_task_cache_init(void) { } 992 993 /* 994 * set_max_threads 995 */ 996 static void set_max_threads(unsigned int max_threads_suggested) 997 { 998 u64 threads; 999 unsigned long nr_pages = totalram_pages(); 1000 1001 /* 1002 * The number of threads shall be limited such that the thread 1003 * structures may only consume a small part of the available memory. 1004 */ 1005 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1006 threads = MAX_THREADS; 1007 else 1008 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1009 (u64) THREAD_SIZE * 8UL); 1010 1011 if (threads > max_threads_suggested) 1012 threads = max_threads_suggested; 1013 1014 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1015 } 1016 1017 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1018 /* Initialized by the architecture: */ 1019 int arch_task_struct_size __read_mostly; 1020 #endif 1021 1022 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1023 { 1024 /* Fetch thread_struct whitelist for the architecture. */ 1025 arch_thread_struct_whitelist(offset, size); 1026 1027 /* 1028 * Handle zero-sized whitelist or empty thread_struct, otherwise 1029 * adjust offset to position of thread_struct in task_struct. 1030 */ 1031 if (unlikely(*size == 0)) 1032 *offset = 0; 1033 else 1034 *offset += offsetof(struct task_struct, thread); 1035 } 1036 1037 void __init fork_init(void) 1038 { 1039 int i; 1040 #ifndef ARCH_MIN_TASKALIGN 1041 #define ARCH_MIN_TASKALIGN 0 1042 #endif 1043 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1044 unsigned long useroffset, usersize; 1045 1046 /* create a slab on which task_structs can be allocated */ 1047 task_struct_whitelist(&useroffset, &usersize); 1048 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1049 arch_task_struct_size, align, 1050 SLAB_PANIC|SLAB_ACCOUNT, 1051 useroffset, usersize, NULL); 1052 1053 /* do the arch specific task caches init */ 1054 arch_task_cache_init(); 1055 1056 set_max_threads(MAX_THREADS); 1057 1058 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1059 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1060 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1061 init_task.signal->rlim[RLIMIT_NPROC]; 1062 1063 for (i = 0; i < UCOUNT_COUNTS; i++) 1064 init_user_ns.ucount_max[i] = max_threads/2; 1065 1066 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1067 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1068 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1069 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1070 1071 #ifdef CONFIG_VMAP_STACK 1072 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1073 NULL, free_vm_stack_cache); 1074 #endif 1075 1076 scs_init(); 1077 1078 lockdep_init_task(&init_task); 1079 uprobes_init(); 1080 } 1081 1082 int __weak arch_dup_task_struct(struct task_struct *dst, 1083 struct task_struct *src) 1084 { 1085 *dst = *src; 1086 return 0; 1087 } 1088 1089 void set_task_stack_end_magic(struct task_struct *tsk) 1090 { 1091 unsigned long *stackend; 1092 1093 stackend = end_of_stack(tsk); 1094 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1095 } 1096 1097 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1098 { 1099 struct task_struct *tsk; 1100 int err; 1101 1102 if (node == NUMA_NO_NODE) 1103 node = tsk_fork_get_node(orig); 1104 tsk = alloc_task_struct_node(node); 1105 if (!tsk) 1106 return NULL; 1107 1108 err = arch_dup_task_struct(tsk, orig); 1109 if (err) 1110 goto free_tsk; 1111 1112 err = alloc_thread_stack_node(tsk, node); 1113 if (err) 1114 goto free_tsk; 1115 1116 #ifdef CONFIG_THREAD_INFO_IN_TASK 1117 refcount_set(&tsk->stack_refcount, 1); 1118 #endif 1119 account_kernel_stack(tsk, 1); 1120 1121 err = scs_prepare(tsk, node); 1122 if (err) 1123 goto free_stack; 1124 1125 #ifdef CONFIG_SECCOMP 1126 /* 1127 * We must handle setting up seccomp filters once we're under 1128 * the sighand lock in case orig has changed between now and 1129 * then. Until then, filter must be NULL to avoid messing up 1130 * the usage counts on the error path calling free_task. 1131 */ 1132 tsk->seccomp.filter = NULL; 1133 #endif 1134 1135 setup_thread_stack(tsk, orig); 1136 clear_user_return_notifier(tsk); 1137 clear_tsk_need_resched(tsk); 1138 set_task_stack_end_magic(tsk); 1139 clear_syscall_work_syscall_user_dispatch(tsk); 1140 1141 #ifdef CONFIG_STACKPROTECTOR 1142 tsk->stack_canary = get_random_canary(); 1143 #endif 1144 if (orig->cpus_ptr == &orig->cpus_mask) 1145 tsk->cpus_ptr = &tsk->cpus_mask; 1146 dup_user_cpus_ptr(tsk, orig, node); 1147 1148 /* 1149 * One for the user space visible state that goes away when reaped. 1150 * One for the scheduler. 1151 */ 1152 refcount_set(&tsk->rcu_users, 2); 1153 /* One for the rcu users */ 1154 refcount_set(&tsk->usage, 1); 1155 #ifdef CONFIG_BLK_DEV_IO_TRACE 1156 tsk->btrace_seq = 0; 1157 #endif 1158 tsk->splice_pipe = NULL; 1159 tsk->task_frag.page = NULL; 1160 tsk->wake_q.next = NULL; 1161 tsk->worker_private = NULL; 1162 1163 kcov_task_init(tsk); 1164 kmsan_task_create(tsk); 1165 kmap_local_fork(tsk); 1166 1167 #ifdef CONFIG_FAULT_INJECTION 1168 tsk->fail_nth = 0; 1169 #endif 1170 1171 #ifdef CONFIG_BLK_CGROUP 1172 tsk->throttle_disk = NULL; 1173 tsk->use_memdelay = 0; 1174 #endif 1175 1176 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1177 tsk->pasid_activated = 0; 1178 #endif 1179 1180 #ifdef CONFIG_MEMCG 1181 tsk->active_memcg = NULL; 1182 #endif 1183 1184 #ifdef CONFIG_CPU_SUP_INTEL 1185 tsk->reported_split_lock = 0; 1186 #endif 1187 1188 #ifdef CONFIG_SCHED_MM_CID 1189 tsk->mm_cid = -1; 1190 tsk->last_mm_cid = -1; 1191 tsk->mm_cid_active = 0; 1192 tsk->migrate_from_cpu = -1; 1193 #endif 1194 return tsk; 1195 1196 free_stack: 1197 exit_task_stack_account(tsk); 1198 free_thread_stack(tsk); 1199 free_tsk: 1200 free_task_struct(tsk); 1201 return NULL; 1202 } 1203 1204 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1205 1206 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1207 1208 static int __init coredump_filter_setup(char *s) 1209 { 1210 default_dump_filter = 1211 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1212 MMF_DUMP_FILTER_MASK; 1213 return 1; 1214 } 1215 1216 __setup("coredump_filter=", coredump_filter_setup); 1217 1218 #include <linux/init_task.h> 1219 1220 static void mm_init_aio(struct mm_struct *mm) 1221 { 1222 #ifdef CONFIG_AIO 1223 spin_lock_init(&mm->ioctx_lock); 1224 mm->ioctx_table = NULL; 1225 #endif 1226 } 1227 1228 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1229 struct task_struct *p) 1230 { 1231 #ifdef CONFIG_MEMCG 1232 if (mm->owner == p) 1233 WRITE_ONCE(mm->owner, NULL); 1234 #endif 1235 } 1236 1237 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1238 { 1239 #ifdef CONFIG_MEMCG 1240 mm->owner = p; 1241 #endif 1242 } 1243 1244 static void mm_init_uprobes_state(struct mm_struct *mm) 1245 { 1246 #ifdef CONFIG_UPROBES 1247 mm->uprobes_state.xol_area = NULL; 1248 #endif 1249 } 1250 1251 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1252 struct user_namespace *user_ns) 1253 { 1254 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1255 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1256 atomic_set(&mm->mm_users, 1); 1257 atomic_set(&mm->mm_count, 1); 1258 seqcount_init(&mm->write_protect_seq); 1259 mmap_init_lock(mm); 1260 INIT_LIST_HEAD(&mm->mmlist); 1261 #ifdef CONFIG_PER_VMA_LOCK 1262 mm->mm_lock_seq = 0; 1263 #endif 1264 mm_pgtables_bytes_init(mm); 1265 mm->map_count = 0; 1266 mm->locked_vm = 0; 1267 atomic64_set(&mm->pinned_vm, 0); 1268 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1269 spin_lock_init(&mm->page_table_lock); 1270 spin_lock_init(&mm->arg_lock); 1271 mm_init_cpumask(mm); 1272 mm_init_aio(mm); 1273 mm_init_owner(mm, p); 1274 mm_pasid_init(mm); 1275 RCU_INIT_POINTER(mm->exe_file, NULL); 1276 mmu_notifier_subscriptions_init(mm); 1277 init_tlb_flush_pending(mm); 1278 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1279 mm->pmd_huge_pte = NULL; 1280 #endif 1281 mm_init_uprobes_state(mm); 1282 hugetlb_count_init(mm); 1283 1284 if (current->mm) { 1285 mm->flags = mmf_init_flags(current->mm->flags); 1286 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1287 } else { 1288 mm->flags = default_dump_filter; 1289 mm->def_flags = 0; 1290 } 1291 1292 if (mm_alloc_pgd(mm)) 1293 goto fail_nopgd; 1294 1295 if (init_new_context(p, mm)) 1296 goto fail_nocontext; 1297 1298 if (mm_alloc_cid(mm)) 1299 goto fail_cid; 1300 1301 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1302 NR_MM_COUNTERS)) 1303 goto fail_pcpu; 1304 1305 mm->user_ns = get_user_ns(user_ns); 1306 lru_gen_init_mm(mm); 1307 return mm; 1308 1309 fail_pcpu: 1310 mm_destroy_cid(mm); 1311 fail_cid: 1312 destroy_context(mm); 1313 fail_nocontext: 1314 mm_free_pgd(mm); 1315 fail_nopgd: 1316 free_mm(mm); 1317 return NULL; 1318 } 1319 1320 /* 1321 * Allocate and initialize an mm_struct. 1322 */ 1323 struct mm_struct *mm_alloc(void) 1324 { 1325 struct mm_struct *mm; 1326 1327 mm = allocate_mm(); 1328 if (!mm) 1329 return NULL; 1330 1331 memset(mm, 0, sizeof(*mm)); 1332 return mm_init(mm, current, current_user_ns()); 1333 } 1334 1335 static inline void __mmput(struct mm_struct *mm) 1336 { 1337 VM_BUG_ON(atomic_read(&mm->mm_users)); 1338 1339 uprobe_clear_state(mm); 1340 exit_aio(mm); 1341 ksm_exit(mm); 1342 khugepaged_exit(mm); /* must run before exit_mmap */ 1343 exit_mmap(mm); 1344 mm_put_huge_zero_page(mm); 1345 set_mm_exe_file(mm, NULL); 1346 if (!list_empty(&mm->mmlist)) { 1347 spin_lock(&mmlist_lock); 1348 list_del(&mm->mmlist); 1349 spin_unlock(&mmlist_lock); 1350 } 1351 if (mm->binfmt) 1352 module_put(mm->binfmt->module); 1353 lru_gen_del_mm(mm); 1354 mmdrop(mm); 1355 } 1356 1357 /* 1358 * Decrement the use count and release all resources for an mm. 1359 */ 1360 void mmput(struct mm_struct *mm) 1361 { 1362 might_sleep(); 1363 1364 if (atomic_dec_and_test(&mm->mm_users)) 1365 __mmput(mm); 1366 } 1367 EXPORT_SYMBOL_GPL(mmput); 1368 1369 #ifdef CONFIG_MMU 1370 static void mmput_async_fn(struct work_struct *work) 1371 { 1372 struct mm_struct *mm = container_of(work, struct mm_struct, 1373 async_put_work); 1374 1375 __mmput(mm); 1376 } 1377 1378 void mmput_async(struct mm_struct *mm) 1379 { 1380 if (atomic_dec_and_test(&mm->mm_users)) { 1381 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1382 schedule_work(&mm->async_put_work); 1383 } 1384 } 1385 EXPORT_SYMBOL_GPL(mmput_async); 1386 #endif 1387 1388 /** 1389 * set_mm_exe_file - change a reference to the mm's executable file 1390 * @mm: The mm to change. 1391 * @new_exe_file: The new file to use. 1392 * 1393 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1394 * 1395 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1396 * invocations: in mmput() nobody alive left, in execve it happens before 1397 * the new mm is made visible to anyone. 1398 * 1399 * Can only fail if new_exe_file != NULL. 1400 */ 1401 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1402 { 1403 struct file *old_exe_file; 1404 1405 /* 1406 * It is safe to dereference the exe_file without RCU as 1407 * this function is only called if nobody else can access 1408 * this mm -- see comment above for justification. 1409 */ 1410 old_exe_file = rcu_dereference_raw(mm->exe_file); 1411 1412 if (new_exe_file) { 1413 /* 1414 * We expect the caller (i.e., sys_execve) to already denied 1415 * write access, so this is unlikely to fail. 1416 */ 1417 if (unlikely(deny_write_access(new_exe_file))) 1418 return -EACCES; 1419 get_file(new_exe_file); 1420 } 1421 rcu_assign_pointer(mm->exe_file, new_exe_file); 1422 if (old_exe_file) { 1423 allow_write_access(old_exe_file); 1424 fput(old_exe_file); 1425 } 1426 return 0; 1427 } 1428 1429 /** 1430 * replace_mm_exe_file - replace a reference to the mm's executable file 1431 * @mm: The mm to change. 1432 * @new_exe_file: The new file to use. 1433 * 1434 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1435 * 1436 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1437 */ 1438 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1439 { 1440 struct vm_area_struct *vma; 1441 struct file *old_exe_file; 1442 int ret = 0; 1443 1444 /* Forbid mm->exe_file change if old file still mapped. */ 1445 old_exe_file = get_mm_exe_file(mm); 1446 if (old_exe_file) { 1447 VMA_ITERATOR(vmi, mm, 0); 1448 mmap_read_lock(mm); 1449 for_each_vma(vmi, vma) { 1450 if (!vma->vm_file) 1451 continue; 1452 if (path_equal(&vma->vm_file->f_path, 1453 &old_exe_file->f_path)) { 1454 ret = -EBUSY; 1455 break; 1456 } 1457 } 1458 mmap_read_unlock(mm); 1459 fput(old_exe_file); 1460 if (ret) 1461 return ret; 1462 } 1463 1464 ret = deny_write_access(new_exe_file); 1465 if (ret) 1466 return -EACCES; 1467 get_file(new_exe_file); 1468 1469 /* set the new file */ 1470 mmap_write_lock(mm); 1471 old_exe_file = rcu_dereference_raw(mm->exe_file); 1472 rcu_assign_pointer(mm->exe_file, new_exe_file); 1473 mmap_write_unlock(mm); 1474 1475 if (old_exe_file) { 1476 allow_write_access(old_exe_file); 1477 fput(old_exe_file); 1478 } 1479 return 0; 1480 } 1481 1482 /** 1483 * get_mm_exe_file - acquire a reference to the mm's executable file 1484 * @mm: The mm of interest. 1485 * 1486 * Returns %NULL if mm has no associated executable file. 1487 * User must release file via fput(). 1488 */ 1489 struct file *get_mm_exe_file(struct mm_struct *mm) 1490 { 1491 struct file *exe_file; 1492 1493 rcu_read_lock(); 1494 exe_file = get_file_rcu(&mm->exe_file); 1495 rcu_read_unlock(); 1496 return exe_file; 1497 } 1498 1499 /** 1500 * get_task_exe_file - acquire a reference to the task's executable file 1501 * @task: The task. 1502 * 1503 * Returns %NULL if task's mm (if any) has no associated executable file or 1504 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1505 * User must release file via fput(). 1506 */ 1507 struct file *get_task_exe_file(struct task_struct *task) 1508 { 1509 struct file *exe_file = NULL; 1510 struct mm_struct *mm; 1511 1512 task_lock(task); 1513 mm = task->mm; 1514 if (mm) { 1515 if (!(task->flags & PF_KTHREAD)) 1516 exe_file = get_mm_exe_file(mm); 1517 } 1518 task_unlock(task); 1519 return exe_file; 1520 } 1521 1522 /** 1523 * get_task_mm - acquire a reference to the task's mm 1524 * @task: The task. 1525 * 1526 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1527 * this kernel workthread has transiently adopted a user mm with use_mm, 1528 * to do its AIO) is not set and if so returns a reference to it, after 1529 * bumping up the use count. User must release the mm via mmput() 1530 * after use. Typically used by /proc and ptrace. 1531 */ 1532 struct mm_struct *get_task_mm(struct task_struct *task) 1533 { 1534 struct mm_struct *mm; 1535 1536 task_lock(task); 1537 mm = task->mm; 1538 if (mm) { 1539 if (task->flags & PF_KTHREAD) 1540 mm = NULL; 1541 else 1542 mmget(mm); 1543 } 1544 task_unlock(task); 1545 return mm; 1546 } 1547 EXPORT_SYMBOL_GPL(get_task_mm); 1548 1549 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1550 { 1551 struct mm_struct *mm; 1552 int err; 1553 1554 err = down_read_killable(&task->signal->exec_update_lock); 1555 if (err) 1556 return ERR_PTR(err); 1557 1558 mm = get_task_mm(task); 1559 if (mm && mm != current->mm && 1560 !ptrace_may_access(task, mode)) { 1561 mmput(mm); 1562 mm = ERR_PTR(-EACCES); 1563 } 1564 up_read(&task->signal->exec_update_lock); 1565 1566 return mm; 1567 } 1568 1569 static void complete_vfork_done(struct task_struct *tsk) 1570 { 1571 struct completion *vfork; 1572 1573 task_lock(tsk); 1574 vfork = tsk->vfork_done; 1575 if (likely(vfork)) { 1576 tsk->vfork_done = NULL; 1577 complete(vfork); 1578 } 1579 task_unlock(tsk); 1580 } 1581 1582 static int wait_for_vfork_done(struct task_struct *child, 1583 struct completion *vfork) 1584 { 1585 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1586 int killed; 1587 1588 cgroup_enter_frozen(); 1589 killed = wait_for_completion_state(vfork, state); 1590 cgroup_leave_frozen(false); 1591 1592 if (killed) { 1593 task_lock(child); 1594 child->vfork_done = NULL; 1595 task_unlock(child); 1596 } 1597 1598 put_task_struct(child); 1599 return killed; 1600 } 1601 1602 /* Please note the differences between mmput and mm_release. 1603 * mmput is called whenever we stop holding onto a mm_struct, 1604 * error success whatever. 1605 * 1606 * mm_release is called after a mm_struct has been removed 1607 * from the current process. 1608 * 1609 * This difference is important for error handling, when we 1610 * only half set up a mm_struct for a new process and need to restore 1611 * the old one. Because we mmput the new mm_struct before 1612 * restoring the old one. . . 1613 * Eric Biederman 10 January 1998 1614 */ 1615 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1616 { 1617 uprobe_free_utask(tsk); 1618 1619 /* Get rid of any cached register state */ 1620 deactivate_mm(tsk, mm); 1621 1622 /* 1623 * Signal userspace if we're not exiting with a core dump 1624 * because we want to leave the value intact for debugging 1625 * purposes. 1626 */ 1627 if (tsk->clear_child_tid) { 1628 if (atomic_read(&mm->mm_users) > 1) { 1629 /* 1630 * We don't check the error code - if userspace has 1631 * not set up a proper pointer then tough luck. 1632 */ 1633 put_user(0, tsk->clear_child_tid); 1634 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1635 1, NULL, NULL, 0, 0); 1636 } 1637 tsk->clear_child_tid = NULL; 1638 } 1639 1640 /* 1641 * All done, finally we can wake up parent and return this mm to him. 1642 * Also kthread_stop() uses this completion for synchronization. 1643 */ 1644 if (tsk->vfork_done) 1645 complete_vfork_done(tsk); 1646 } 1647 1648 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1649 { 1650 futex_exit_release(tsk); 1651 mm_release(tsk, mm); 1652 } 1653 1654 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1655 { 1656 futex_exec_release(tsk); 1657 mm_release(tsk, mm); 1658 } 1659 1660 /** 1661 * dup_mm() - duplicates an existing mm structure 1662 * @tsk: the task_struct with which the new mm will be associated. 1663 * @oldmm: the mm to duplicate. 1664 * 1665 * Allocates a new mm structure and duplicates the provided @oldmm structure 1666 * content into it. 1667 * 1668 * Return: the duplicated mm or NULL on failure. 1669 */ 1670 static struct mm_struct *dup_mm(struct task_struct *tsk, 1671 struct mm_struct *oldmm) 1672 { 1673 struct mm_struct *mm; 1674 int err; 1675 1676 mm = allocate_mm(); 1677 if (!mm) 1678 goto fail_nomem; 1679 1680 memcpy(mm, oldmm, sizeof(*mm)); 1681 1682 if (!mm_init(mm, tsk, mm->user_ns)) 1683 goto fail_nomem; 1684 1685 err = dup_mmap(mm, oldmm); 1686 if (err) 1687 goto free_pt; 1688 1689 mm->hiwater_rss = get_mm_rss(mm); 1690 mm->hiwater_vm = mm->total_vm; 1691 1692 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1693 goto free_pt; 1694 1695 return mm; 1696 1697 free_pt: 1698 /* don't put binfmt in mmput, we haven't got module yet */ 1699 mm->binfmt = NULL; 1700 mm_init_owner(mm, NULL); 1701 mmput(mm); 1702 1703 fail_nomem: 1704 return NULL; 1705 } 1706 1707 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1708 { 1709 struct mm_struct *mm, *oldmm; 1710 1711 tsk->min_flt = tsk->maj_flt = 0; 1712 tsk->nvcsw = tsk->nivcsw = 0; 1713 #ifdef CONFIG_DETECT_HUNG_TASK 1714 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1715 tsk->last_switch_time = 0; 1716 #endif 1717 1718 tsk->mm = NULL; 1719 tsk->active_mm = NULL; 1720 1721 /* 1722 * Are we cloning a kernel thread? 1723 * 1724 * We need to steal a active VM for that.. 1725 */ 1726 oldmm = current->mm; 1727 if (!oldmm) 1728 return 0; 1729 1730 if (clone_flags & CLONE_VM) { 1731 mmget(oldmm); 1732 mm = oldmm; 1733 } else { 1734 mm = dup_mm(tsk, current->mm); 1735 if (!mm) 1736 return -ENOMEM; 1737 } 1738 1739 tsk->mm = mm; 1740 tsk->active_mm = mm; 1741 sched_mm_cid_fork(tsk); 1742 return 0; 1743 } 1744 1745 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1746 { 1747 struct fs_struct *fs = current->fs; 1748 if (clone_flags & CLONE_FS) { 1749 /* tsk->fs is already what we want */ 1750 spin_lock(&fs->lock); 1751 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1752 if (fs->in_exec) { 1753 spin_unlock(&fs->lock); 1754 return -EAGAIN; 1755 } 1756 fs->users++; 1757 spin_unlock(&fs->lock); 1758 return 0; 1759 } 1760 tsk->fs = copy_fs_struct(fs); 1761 if (!tsk->fs) 1762 return -ENOMEM; 1763 return 0; 1764 } 1765 1766 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1767 int no_files) 1768 { 1769 struct files_struct *oldf, *newf; 1770 int error = 0; 1771 1772 /* 1773 * A background process may not have any files ... 1774 */ 1775 oldf = current->files; 1776 if (!oldf) 1777 goto out; 1778 1779 if (no_files) { 1780 tsk->files = NULL; 1781 goto out; 1782 } 1783 1784 if (clone_flags & CLONE_FILES) { 1785 atomic_inc(&oldf->count); 1786 goto out; 1787 } 1788 1789 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1790 if (!newf) 1791 goto out; 1792 1793 tsk->files = newf; 1794 error = 0; 1795 out: 1796 return error; 1797 } 1798 1799 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1800 { 1801 struct sighand_struct *sig; 1802 1803 if (clone_flags & CLONE_SIGHAND) { 1804 refcount_inc(¤t->sighand->count); 1805 return 0; 1806 } 1807 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1808 RCU_INIT_POINTER(tsk->sighand, sig); 1809 if (!sig) 1810 return -ENOMEM; 1811 1812 refcount_set(&sig->count, 1); 1813 spin_lock_irq(¤t->sighand->siglock); 1814 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1815 spin_unlock_irq(¤t->sighand->siglock); 1816 1817 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1818 if (clone_flags & CLONE_CLEAR_SIGHAND) 1819 flush_signal_handlers(tsk, 0); 1820 1821 return 0; 1822 } 1823 1824 void __cleanup_sighand(struct sighand_struct *sighand) 1825 { 1826 if (refcount_dec_and_test(&sighand->count)) { 1827 signalfd_cleanup(sighand); 1828 /* 1829 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1830 * without an RCU grace period, see __lock_task_sighand(). 1831 */ 1832 kmem_cache_free(sighand_cachep, sighand); 1833 } 1834 } 1835 1836 /* 1837 * Initialize POSIX timer handling for a thread group. 1838 */ 1839 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1840 { 1841 struct posix_cputimers *pct = &sig->posix_cputimers; 1842 unsigned long cpu_limit; 1843 1844 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1845 posix_cputimers_group_init(pct, cpu_limit); 1846 } 1847 1848 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1849 { 1850 struct signal_struct *sig; 1851 1852 if (clone_flags & CLONE_THREAD) 1853 return 0; 1854 1855 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1856 tsk->signal = sig; 1857 if (!sig) 1858 return -ENOMEM; 1859 1860 sig->nr_threads = 1; 1861 sig->quick_threads = 1; 1862 atomic_set(&sig->live, 1); 1863 refcount_set(&sig->sigcnt, 1); 1864 1865 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1866 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1867 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1868 1869 init_waitqueue_head(&sig->wait_chldexit); 1870 sig->curr_target = tsk; 1871 init_sigpending(&sig->shared_pending); 1872 INIT_HLIST_HEAD(&sig->multiprocess); 1873 seqlock_init(&sig->stats_lock); 1874 prev_cputime_init(&sig->prev_cputime); 1875 1876 #ifdef CONFIG_POSIX_TIMERS 1877 INIT_LIST_HEAD(&sig->posix_timers); 1878 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1879 sig->real_timer.function = it_real_fn; 1880 #endif 1881 1882 task_lock(current->group_leader); 1883 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1884 task_unlock(current->group_leader); 1885 1886 posix_cpu_timers_init_group(sig); 1887 1888 tty_audit_fork(sig); 1889 sched_autogroup_fork(sig); 1890 1891 sig->oom_score_adj = current->signal->oom_score_adj; 1892 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1893 1894 mutex_init(&sig->cred_guard_mutex); 1895 init_rwsem(&sig->exec_update_lock); 1896 1897 return 0; 1898 } 1899 1900 static void copy_seccomp(struct task_struct *p) 1901 { 1902 #ifdef CONFIG_SECCOMP 1903 /* 1904 * Must be called with sighand->lock held, which is common to 1905 * all threads in the group. Holding cred_guard_mutex is not 1906 * needed because this new task is not yet running and cannot 1907 * be racing exec. 1908 */ 1909 assert_spin_locked(¤t->sighand->siglock); 1910 1911 /* Ref-count the new filter user, and assign it. */ 1912 get_seccomp_filter(current); 1913 p->seccomp = current->seccomp; 1914 1915 /* 1916 * Explicitly enable no_new_privs here in case it got set 1917 * between the task_struct being duplicated and holding the 1918 * sighand lock. The seccomp state and nnp must be in sync. 1919 */ 1920 if (task_no_new_privs(current)) 1921 task_set_no_new_privs(p); 1922 1923 /* 1924 * If the parent gained a seccomp mode after copying thread 1925 * flags and between before we held the sighand lock, we have 1926 * to manually enable the seccomp thread flag here. 1927 */ 1928 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1929 set_task_syscall_work(p, SECCOMP); 1930 #endif 1931 } 1932 1933 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1934 { 1935 current->clear_child_tid = tidptr; 1936 1937 return task_pid_vnr(current); 1938 } 1939 1940 static void rt_mutex_init_task(struct task_struct *p) 1941 { 1942 raw_spin_lock_init(&p->pi_lock); 1943 #ifdef CONFIG_RT_MUTEXES 1944 p->pi_waiters = RB_ROOT_CACHED; 1945 p->pi_top_task = NULL; 1946 p->pi_blocked_on = NULL; 1947 #endif 1948 } 1949 1950 static inline void init_task_pid_links(struct task_struct *task) 1951 { 1952 enum pid_type type; 1953 1954 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1955 INIT_HLIST_NODE(&task->pid_links[type]); 1956 } 1957 1958 static inline void 1959 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1960 { 1961 if (type == PIDTYPE_PID) 1962 task->thread_pid = pid; 1963 else 1964 task->signal->pids[type] = pid; 1965 } 1966 1967 static inline void rcu_copy_process(struct task_struct *p) 1968 { 1969 #ifdef CONFIG_PREEMPT_RCU 1970 p->rcu_read_lock_nesting = 0; 1971 p->rcu_read_unlock_special.s = 0; 1972 p->rcu_blocked_node = NULL; 1973 INIT_LIST_HEAD(&p->rcu_node_entry); 1974 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1975 #ifdef CONFIG_TASKS_RCU 1976 p->rcu_tasks_holdout = false; 1977 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1978 p->rcu_tasks_idle_cpu = -1; 1979 #endif /* #ifdef CONFIG_TASKS_RCU */ 1980 #ifdef CONFIG_TASKS_TRACE_RCU 1981 p->trc_reader_nesting = 0; 1982 p->trc_reader_special.s = 0; 1983 INIT_LIST_HEAD(&p->trc_holdout_list); 1984 INIT_LIST_HEAD(&p->trc_blkd_node); 1985 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1986 } 1987 1988 struct pid *pidfd_pid(const struct file *file) 1989 { 1990 if (file->f_op == &pidfd_fops) 1991 return file->private_data; 1992 1993 return ERR_PTR(-EBADF); 1994 } 1995 1996 static int pidfd_release(struct inode *inode, struct file *file) 1997 { 1998 struct pid *pid = file->private_data; 1999 2000 file->private_data = NULL; 2001 put_pid(pid); 2002 return 0; 2003 } 2004 2005 #ifdef CONFIG_PROC_FS 2006 /** 2007 * pidfd_show_fdinfo - print information about a pidfd 2008 * @m: proc fdinfo file 2009 * @f: file referencing a pidfd 2010 * 2011 * Pid: 2012 * This function will print the pid that a given pidfd refers to in the 2013 * pid namespace of the procfs instance. 2014 * If the pid namespace of the process is not a descendant of the pid 2015 * namespace of the procfs instance 0 will be shown as its pid. This is 2016 * similar to calling getppid() on a process whose parent is outside of 2017 * its pid namespace. 2018 * 2019 * NSpid: 2020 * If pid namespaces are supported then this function will also print 2021 * the pid of a given pidfd refers to for all descendant pid namespaces 2022 * starting from the current pid namespace of the instance, i.e. the 2023 * Pid field and the first entry in the NSpid field will be identical. 2024 * If the pid namespace of the process is not a descendant of the pid 2025 * namespace of the procfs instance 0 will be shown as its first NSpid 2026 * entry and no others will be shown. 2027 * Note that this differs from the Pid and NSpid fields in 2028 * /proc/<pid>/status where Pid and NSpid are always shown relative to 2029 * the pid namespace of the procfs instance. The difference becomes 2030 * obvious when sending around a pidfd between pid namespaces from a 2031 * different branch of the tree, i.e. where no ancestral relation is 2032 * present between the pid namespaces: 2033 * - create two new pid namespaces ns1 and ns2 in the initial pid 2034 * namespace (also take care to create new mount namespaces in the 2035 * new pid namespace and mount procfs) 2036 * - create a process with a pidfd in ns1 2037 * - send pidfd from ns1 to ns2 2038 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 2039 * have exactly one entry, which is 0 2040 */ 2041 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 2042 { 2043 struct pid *pid = f->private_data; 2044 struct pid_namespace *ns; 2045 pid_t nr = -1; 2046 2047 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 2048 ns = proc_pid_ns(file_inode(m->file)->i_sb); 2049 nr = pid_nr_ns(pid, ns); 2050 } 2051 2052 seq_put_decimal_ll(m, "Pid:\t", nr); 2053 2054 #ifdef CONFIG_PID_NS 2055 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 2056 if (nr > 0) { 2057 int i; 2058 2059 /* If nr is non-zero it means that 'pid' is valid and that 2060 * ns, i.e. the pid namespace associated with the procfs 2061 * instance, is in the pid namespace hierarchy of pid. 2062 * Start at one below the already printed level. 2063 */ 2064 for (i = ns->level + 1; i <= pid->level; i++) 2065 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 2066 } 2067 #endif 2068 seq_putc(m, '\n'); 2069 } 2070 #endif 2071 2072 /* 2073 * Poll support for process exit notification. 2074 */ 2075 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 2076 { 2077 struct pid *pid = file->private_data; 2078 __poll_t poll_flags = 0; 2079 2080 poll_wait(file, &pid->wait_pidfd, pts); 2081 2082 /* 2083 * Inform pollers only when the whole thread group exits. 2084 * If the thread group leader exits before all other threads in the 2085 * group, then poll(2) should block, similar to the wait(2) family. 2086 */ 2087 if (thread_group_exited(pid)) 2088 poll_flags = EPOLLIN | EPOLLRDNORM; 2089 2090 return poll_flags; 2091 } 2092 2093 const struct file_operations pidfd_fops = { 2094 .release = pidfd_release, 2095 .poll = pidfd_poll, 2096 #ifdef CONFIG_PROC_FS 2097 .show_fdinfo = pidfd_show_fdinfo, 2098 #endif 2099 }; 2100 2101 /** 2102 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2103 * @pid: the struct pid for which to create a pidfd 2104 * @flags: flags of the new @pidfd 2105 * @ret: Where to return the file for the pidfd. 2106 * 2107 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2108 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2109 * 2110 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2111 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2112 * pidfd file are prepared. 2113 * 2114 * If this function returns successfully the caller is responsible to either 2115 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2116 * order to install the pidfd into its file descriptor table or they must use 2117 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2118 * respectively. 2119 * 2120 * This function is useful when a pidfd must already be reserved but there 2121 * might still be points of failure afterwards and the caller wants to ensure 2122 * that no pidfd is leaked into its file descriptor table. 2123 * 2124 * Return: On success, a reserved pidfd is returned from the function and a new 2125 * pidfd file is returned in the last argument to the function. On 2126 * error, a negative error code is returned from the function and the 2127 * last argument remains unchanged. 2128 */ 2129 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2130 { 2131 int pidfd; 2132 struct file *pidfd_file; 2133 2134 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 2135 return -EINVAL; 2136 2137 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2138 if (pidfd < 0) 2139 return pidfd; 2140 2141 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2142 flags | O_RDWR | O_CLOEXEC); 2143 if (IS_ERR(pidfd_file)) { 2144 put_unused_fd(pidfd); 2145 return PTR_ERR(pidfd_file); 2146 } 2147 get_pid(pid); /* held by pidfd_file now */ 2148 *ret = pidfd_file; 2149 return pidfd; 2150 } 2151 2152 /** 2153 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2154 * @pid: the struct pid for which to create a pidfd 2155 * @flags: flags of the new @pidfd 2156 * @ret: Where to return the pidfd. 2157 * 2158 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2159 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2160 * 2161 * The helper verifies that @pid is used as a thread group leader. 2162 * 2163 * If this function returns successfully the caller is responsible to either 2164 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2165 * order to install the pidfd into its file descriptor table or they must use 2166 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2167 * respectively. 2168 * 2169 * This function is useful when a pidfd must already be reserved but there 2170 * might still be points of failure afterwards and the caller wants to ensure 2171 * that no pidfd is leaked into its file descriptor table. 2172 * 2173 * Return: On success, a reserved pidfd is returned from the function and a new 2174 * pidfd file is returned in the last argument to the function. On 2175 * error, a negative error code is returned from the function and the 2176 * last argument remains unchanged. 2177 */ 2178 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2179 { 2180 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2181 return -EINVAL; 2182 2183 return __pidfd_prepare(pid, flags, ret); 2184 } 2185 2186 static void __delayed_free_task(struct rcu_head *rhp) 2187 { 2188 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2189 2190 free_task(tsk); 2191 } 2192 2193 static __always_inline void delayed_free_task(struct task_struct *tsk) 2194 { 2195 if (IS_ENABLED(CONFIG_MEMCG)) 2196 call_rcu(&tsk->rcu, __delayed_free_task); 2197 else 2198 free_task(tsk); 2199 } 2200 2201 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2202 { 2203 /* Skip if kernel thread */ 2204 if (!tsk->mm) 2205 return; 2206 2207 /* Skip if spawning a thread or using vfork */ 2208 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2209 return; 2210 2211 /* We need to synchronize with __set_oom_adj */ 2212 mutex_lock(&oom_adj_mutex); 2213 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2214 /* Update the values in case they were changed after copy_signal */ 2215 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2216 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2217 mutex_unlock(&oom_adj_mutex); 2218 } 2219 2220 #ifdef CONFIG_RV 2221 static void rv_task_fork(struct task_struct *p) 2222 { 2223 int i; 2224 2225 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2226 p->rv[i].da_mon.monitoring = false; 2227 } 2228 #else 2229 #define rv_task_fork(p) do {} while (0) 2230 #endif 2231 2232 /* 2233 * This creates a new process as a copy of the old one, 2234 * but does not actually start it yet. 2235 * 2236 * It copies the registers, and all the appropriate 2237 * parts of the process environment (as per the clone 2238 * flags). The actual kick-off is left to the caller. 2239 */ 2240 __latent_entropy struct task_struct *copy_process( 2241 struct pid *pid, 2242 int trace, 2243 int node, 2244 struct kernel_clone_args *args) 2245 { 2246 int pidfd = -1, retval; 2247 struct task_struct *p; 2248 struct multiprocess_signals delayed; 2249 struct file *pidfile = NULL; 2250 const u64 clone_flags = args->flags; 2251 struct nsproxy *nsp = current->nsproxy; 2252 2253 /* 2254 * Don't allow sharing the root directory with processes in a different 2255 * namespace 2256 */ 2257 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2258 return ERR_PTR(-EINVAL); 2259 2260 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2261 return ERR_PTR(-EINVAL); 2262 2263 /* 2264 * Thread groups must share signals as well, and detached threads 2265 * can only be started up within the thread group. 2266 */ 2267 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2268 return ERR_PTR(-EINVAL); 2269 2270 /* 2271 * Shared signal handlers imply shared VM. By way of the above, 2272 * thread groups also imply shared VM. Blocking this case allows 2273 * for various simplifications in other code. 2274 */ 2275 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2276 return ERR_PTR(-EINVAL); 2277 2278 /* 2279 * Siblings of global init remain as zombies on exit since they are 2280 * not reaped by their parent (swapper). To solve this and to avoid 2281 * multi-rooted process trees, prevent global and container-inits 2282 * from creating siblings. 2283 */ 2284 if ((clone_flags & CLONE_PARENT) && 2285 current->signal->flags & SIGNAL_UNKILLABLE) 2286 return ERR_PTR(-EINVAL); 2287 2288 /* 2289 * If the new process will be in a different pid or user namespace 2290 * do not allow it to share a thread group with the forking task. 2291 */ 2292 if (clone_flags & CLONE_THREAD) { 2293 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2294 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2295 return ERR_PTR(-EINVAL); 2296 } 2297 2298 if (clone_flags & CLONE_PIDFD) { 2299 /* 2300 * - CLONE_DETACHED is blocked so that we can potentially 2301 * reuse it later for CLONE_PIDFD. 2302 * - CLONE_THREAD is blocked until someone really needs it. 2303 */ 2304 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2305 return ERR_PTR(-EINVAL); 2306 } 2307 2308 /* 2309 * Force any signals received before this point to be delivered 2310 * before the fork happens. Collect up signals sent to multiple 2311 * processes that happen during the fork and delay them so that 2312 * they appear to happen after the fork. 2313 */ 2314 sigemptyset(&delayed.signal); 2315 INIT_HLIST_NODE(&delayed.node); 2316 2317 spin_lock_irq(¤t->sighand->siglock); 2318 if (!(clone_flags & CLONE_THREAD)) 2319 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2320 recalc_sigpending(); 2321 spin_unlock_irq(¤t->sighand->siglock); 2322 retval = -ERESTARTNOINTR; 2323 if (task_sigpending(current)) 2324 goto fork_out; 2325 2326 retval = -ENOMEM; 2327 p = dup_task_struct(current, node); 2328 if (!p) 2329 goto fork_out; 2330 p->flags &= ~PF_KTHREAD; 2331 if (args->kthread) 2332 p->flags |= PF_KTHREAD; 2333 if (args->user_worker) { 2334 /* 2335 * Mark us a user worker, and block any signal that isn't 2336 * fatal or STOP 2337 */ 2338 p->flags |= PF_USER_WORKER; 2339 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2340 } 2341 if (args->io_thread) 2342 p->flags |= PF_IO_WORKER; 2343 2344 if (args->name) 2345 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2346 2347 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2348 /* 2349 * Clear TID on mm_release()? 2350 */ 2351 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2352 2353 ftrace_graph_init_task(p); 2354 2355 rt_mutex_init_task(p); 2356 2357 lockdep_assert_irqs_enabled(); 2358 #ifdef CONFIG_PROVE_LOCKING 2359 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2360 #endif 2361 retval = copy_creds(p, clone_flags); 2362 if (retval < 0) 2363 goto bad_fork_free; 2364 2365 retval = -EAGAIN; 2366 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2367 if (p->real_cred->user != INIT_USER && 2368 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2369 goto bad_fork_cleanup_count; 2370 } 2371 current->flags &= ~PF_NPROC_EXCEEDED; 2372 2373 /* 2374 * If multiple threads are within copy_process(), then this check 2375 * triggers too late. This doesn't hurt, the check is only there 2376 * to stop root fork bombs. 2377 */ 2378 retval = -EAGAIN; 2379 if (data_race(nr_threads >= max_threads)) 2380 goto bad_fork_cleanup_count; 2381 2382 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2383 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2384 p->flags |= PF_FORKNOEXEC; 2385 INIT_LIST_HEAD(&p->children); 2386 INIT_LIST_HEAD(&p->sibling); 2387 rcu_copy_process(p); 2388 p->vfork_done = NULL; 2389 spin_lock_init(&p->alloc_lock); 2390 2391 init_sigpending(&p->pending); 2392 2393 p->utime = p->stime = p->gtime = 0; 2394 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2395 p->utimescaled = p->stimescaled = 0; 2396 #endif 2397 prev_cputime_init(&p->prev_cputime); 2398 2399 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2400 seqcount_init(&p->vtime.seqcount); 2401 p->vtime.starttime = 0; 2402 p->vtime.state = VTIME_INACTIVE; 2403 #endif 2404 2405 #ifdef CONFIG_IO_URING 2406 p->io_uring = NULL; 2407 #endif 2408 2409 p->default_timer_slack_ns = current->timer_slack_ns; 2410 2411 #ifdef CONFIG_PSI 2412 p->psi_flags = 0; 2413 #endif 2414 2415 task_io_accounting_init(&p->ioac); 2416 acct_clear_integrals(p); 2417 2418 posix_cputimers_init(&p->posix_cputimers); 2419 2420 p->io_context = NULL; 2421 audit_set_context(p, NULL); 2422 cgroup_fork(p); 2423 if (args->kthread) { 2424 if (!set_kthread_struct(p)) 2425 goto bad_fork_cleanup_delayacct; 2426 } 2427 #ifdef CONFIG_NUMA 2428 p->mempolicy = mpol_dup(p->mempolicy); 2429 if (IS_ERR(p->mempolicy)) { 2430 retval = PTR_ERR(p->mempolicy); 2431 p->mempolicy = NULL; 2432 goto bad_fork_cleanup_delayacct; 2433 } 2434 #endif 2435 #ifdef CONFIG_CPUSETS 2436 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2437 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2438 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2439 #endif 2440 #ifdef CONFIG_TRACE_IRQFLAGS 2441 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2442 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2443 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2444 p->softirqs_enabled = 1; 2445 p->softirq_context = 0; 2446 #endif 2447 2448 p->pagefault_disabled = 0; 2449 2450 #ifdef CONFIG_LOCKDEP 2451 lockdep_init_task(p); 2452 #endif 2453 2454 #ifdef CONFIG_DEBUG_MUTEXES 2455 p->blocked_on = NULL; /* not blocked yet */ 2456 #endif 2457 #ifdef CONFIG_BCACHE 2458 p->sequential_io = 0; 2459 p->sequential_io_avg = 0; 2460 #endif 2461 #ifdef CONFIG_BPF_SYSCALL 2462 RCU_INIT_POINTER(p->bpf_storage, NULL); 2463 p->bpf_ctx = NULL; 2464 #endif 2465 2466 /* Perform scheduler related setup. Assign this task to a CPU. */ 2467 retval = sched_fork(clone_flags, p); 2468 if (retval) 2469 goto bad_fork_cleanup_policy; 2470 2471 retval = perf_event_init_task(p, clone_flags); 2472 if (retval) 2473 goto bad_fork_cleanup_policy; 2474 retval = audit_alloc(p); 2475 if (retval) 2476 goto bad_fork_cleanup_perf; 2477 /* copy all the process information */ 2478 shm_init_task(p); 2479 retval = security_task_alloc(p, clone_flags); 2480 if (retval) 2481 goto bad_fork_cleanup_audit; 2482 retval = copy_semundo(clone_flags, p); 2483 if (retval) 2484 goto bad_fork_cleanup_security; 2485 retval = copy_files(clone_flags, p, args->no_files); 2486 if (retval) 2487 goto bad_fork_cleanup_semundo; 2488 retval = copy_fs(clone_flags, p); 2489 if (retval) 2490 goto bad_fork_cleanup_files; 2491 retval = copy_sighand(clone_flags, p); 2492 if (retval) 2493 goto bad_fork_cleanup_fs; 2494 retval = copy_signal(clone_flags, p); 2495 if (retval) 2496 goto bad_fork_cleanup_sighand; 2497 retval = copy_mm(clone_flags, p); 2498 if (retval) 2499 goto bad_fork_cleanup_signal; 2500 retval = copy_namespaces(clone_flags, p); 2501 if (retval) 2502 goto bad_fork_cleanup_mm; 2503 retval = copy_io(clone_flags, p); 2504 if (retval) 2505 goto bad_fork_cleanup_namespaces; 2506 retval = copy_thread(p, args); 2507 if (retval) 2508 goto bad_fork_cleanup_io; 2509 2510 stackleak_task_init(p); 2511 2512 if (pid != &init_struct_pid) { 2513 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2514 args->set_tid_size); 2515 if (IS_ERR(pid)) { 2516 retval = PTR_ERR(pid); 2517 goto bad_fork_cleanup_thread; 2518 } 2519 } 2520 2521 /* 2522 * This has to happen after we've potentially unshared the file 2523 * descriptor table (so that the pidfd doesn't leak into the child 2524 * if the fd table isn't shared). 2525 */ 2526 if (clone_flags & CLONE_PIDFD) { 2527 /* Note that no task has been attached to @pid yet. */ 2528 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2529 if (retval < 0) 2530 goto bad_fork_free_pid; 2531 pidfd = retval; 2532 2533 retval = put_user(pidfd, args->pidfd); 2534 if (retval) 2535 goto bad_fork_put_pidfd; 2536 } 2537 2538 #ifdef CONFIG_BLOCK 2539 p->plug = NULL; 2540 #endif 2541 futex_init_task(p); 2542 2543 /* 2544 * sigaltstack should be cleared when sharing the same VM 2545 */ 2546 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2547 sas_ss_reset(p); 2548 2549 /* 2550 * Syscall tracing and stepping should be turned off in the 2551 * child regardless of CLONE_PTRACE. 2552 */ 2553 user_disable_single_step(p); 2554 clear_task_syscall_work(p, SYSCALL_TRACE); 2555 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2556 clear_task_syscall_work(p, SYSCALL_EMU); 2557 #endif 2558 clear_tsk_latency_tracing(p); 2559 2560 /* ok, now we should be set up.. */ 2561 p->pid = pid_nr(pid); 2562 if (clone_flags & CLONE_THREAD) { 2563 p->group_leader = current->group_leader; 2564 p->tgid = current->tgid; 2565 } else { 2566 p->group_leader = p; 2567 p->tgid = p->pid; 2568 } 2569 2570 p->nr_dirtied = 0; 2571 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2572 p->dirty_paused_when = 0; 2573 2574 p->pdeath_signal = 0; 2575 p->task_works = NULL; 2576 clear_posix_cputimers_work(p); 2577 2578 #ifdef CONFIG_KRETPROBES 2579 p->kretprobe_instances.first = NULL; 2580 #endif 2581 #ifdef CONFIG_RETHOOK 2582 p->rethooks.first = NULL; 2583 #endif 2584 2585 /* 2586 * Ensure that the cgroup subsystem policies allow the new process to be 2587 * forked. It should be noted that the new process's css_set can be changed 2588 * between here and cgroup_post_fork() if an organisation operation is in 2589 * progress. 2590 */ 2591 retval = cgroup_can_fork(p, args); 2592 if (retval) 2593 goto bad_fork_put_pidfd; 2594 2595 /* 2596 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2597 * the new task on the correct runqueue. All this *before* the task 2598 * becomes visible. 2599 * 2600 * This isn't part of ->can_fork() because while the re-cloning is 2601 * cgroup specific, it unconditionally needs to place the task on a 2602 * runqueue. 2603 */ 2604 sched_cgroup_fork(p, args); 2605 2606 /* 2607 * From this point on we must avoid any synchronous user-space 2608 * communication until we take the tasklist-lock. In particular, we do 2609 * not want user-space to be able to predict the process start-time by 2610 * stalling fork(2) after we recorded the start_time but before it is 2611 * visible to the system. 2612 */ 2613 2614 p->start_time = ktime_get_ns(); 2615 p->start_boottime = ktime_get_boottime_ns(); 2616 2617 /* 2618 * Make it visible to the rest of the system, but dont wake it up yet. 2619 * Need tasklist lock for parent etc handling! 2620 */ 2621 write_lock_irq(&tasklist_lock); 2622 2623 /* CLONE_PARENT re-uses the old parent */ 2624 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2625 p->real_parent = current->real_parent; 2626 p->parent_exec_id = current->parent_exec_id; 2627 if (clone_flags & CLONE_THREAD) 2628 p->exit_signal = -1; 2629 else 2630 p->exit_signal = current->group_leader->exit_signal; 2631 } else { 2632 p->real_parent = current; 2633 p->parent_exec_id = current->self_exec_id; 2634 p->exit_signal = args->exit_signal; 2635 } 2636 2637 klp_copy_process(p); 2638 2639 sched_core_fork(p); 2640 2641 spin_lock(¤t->sighand->siglock); 2642 2643 rv_task_fork(p); 2644 2645 rseq_fork(p, clone_flags); 2646 2647 /* Don't start children in a dying pid namespace */ 2648 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2649 retval = -ENOMEM; 2650 goto bad_fork_cancel_cgroup; 2651 } 2652 2653 /* Let kill terminate clone/fork in the middle */ 2654 if (fatal_signal_pending(current)) { 2655 retval = -EINTR; 2656 goto bad_fork_cancel_cgroup; 2657 } 2658 2659 /* No more failure paths after this point. */ 2660 2661 /* 2662 * Copy seccomp details explicitly here, in case they were changed 2663 * before holding sighand lock. 2664 */ 2665 copy_seccomp(p); 2666 2667 init_task_pid_links(p); 2668 if (likely(p->pid)) { 2669 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2670 2671 init_task_pid(p, PIDTYPE_PID, pid); 2672 if (thread_group_leader(p)) { 2673 init_task_pid(p, PIDTYPE_TGID, pid); 2674 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2675 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2676 2677 if (is_child_reaper(pid)) { 2678 ns_of_pid(pid)->child_reaper = p; 2679 p->signal->flags |= SIGNAL_UNKILLABLE; 2680 } 2681 p->signal->shared_pending.signal = delayed.signal; 2682 p->signal->tty = tty_kref_get(current->signal->tty); 2683 /* 2684 * Inherit has_child_subreaper flag under the same 2685 * tasklist_lock with adding child to the process tree 2686 * for propagate_has_child_subreaper optimization. 2687 */ 2688 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2689 p->real_parent->signal->is_child_subreaper; 2690 list_add_tail(&p->sibling, &p->real_parent->children); 2691 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2692 attach_pid(p, PIDTYPE_TGID); 2693 attach_pid(p, PIDTYPE_PGID); 2694 attach_pid(p, PIDTYPE_SID); 2695 __this_cpu_inc(process_counts); 2696 } else { 2697 current->signal->nr_threads++; 2698 current->signal->quick_threads++; 2699 atomic_inc(¤t->signal->live); 2700 refcount_inc(¤t->signal->sigcnt); 2701 task_join_group_stop(p); 2702 list_add_tail_rcu(&p->thread_node, 2703 &p->signal->thread_head); 2704 } 2705 attach_pid(p, PIDTYPE_PID); 2706 nr_threads++; 2707 } 2708 total_forks++; 2709 hlist_del_init(&delayed.node); 2710 spin_unlock(¤t->sighand->siglock); 2711 syscall_tracepoint_update(p); 2712 write_unlock_irq(&tasklist_lock); 2713 2714 if (pidfile) 2715 fd_install(pidfd, pidfile); 2716 2717 proc_fork_connector(p); 2718 sched_post_fork(p); 2719 cgroup_post_fork(p, args); 2720 perf_event_fork(p); 2721 2722 trace_task_newtask(p, clone_flags); 2723 uprobe_copy_process(p, clone_flags); 2724 user_events_fork(p, clone_flags); 2725 2726 copy_oom_score_adj(clone_flags, p); 2727 2728 return p; 2729 2730 bad_fork_cancel_cgroup: 2731 sched_core_free(p); 2732 spin_unlock(¤t->sighand->siglock); 2733 write_unlock_irq(&tasklist_lock); 2734 cgroup_cancel_fork(p, args); 2735 bad_fork_put_pidfd: 2736 if (clone_flags & CLONE_PIDFD) { 2737 fput(pidfile); 2738 put_unused_fd(pidfd); 2739 } 2740 bad_fork_free_pid: 2741 if (pid != &init_struct_pid) 2742 free_pid(pid); 2743 bad_fork_cleanup_thread: 2744 exit_thread(p); 2745 bad_fork_cleanup_io: 2746 if (p->io_context) 2747 exit_io_context(p); 2748 bad_fork_cleanup_namespaces: 2749 exit_task_namespaces(p); 2750 bad_fork_cleanup_mm: 2751 if (p->mm) { 2752 mm_clear_owner(p->mm, p); 2753 mmput(p->mm); 2754 } 2755 bad_fork_cleanup_signal: 2756 if (!(clone_flags & CLONE_THREAD)) 2757 free_signal_struct(p->signal); 2758 bad_fork_cleanup_sighand: 2759 __cleanup_sighand(p->sighand); 2760 bad_fork_cleanup_fs: 2761 exit_fs(p); /* blocking */ 2762 bad_fork_cleanup_files: 2763 exit_files(p); /* blocking */ 2764 bad_fork_cleanup_semundo: 2765 exit_sem(p); 2766 bad_fork_cleanup_security: 2767 security_task_free(p); 2768 bad_fork_cleanup_audit: 2769 audit_free(p); 2770 bad_fork_cleanup_perf: 2771 perf_event_free_task(p); 2772 bad_fork_cleanup_policy: 2773 lockdep_free_task(p); 2774 #ifdef CONFIG_NUMA 2775 mpol_put(p->mempolicy); 2776 #endif 2777 bad_fork_cleanup_delayacct: 2778 delayacct_tsk_free(p); 2779 bad_fork_cleanup_count: 2780 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2781 exit_creds(p); 2782 bad_fork_free: 2783 WRITE_ONCE(p->__state, TASK_DEAD); 2784 exit_task_stack_account(p); 2785 put_task_stack(p); 2786 delayed_free_task(p); 2787 fork_out: 2788 spin_lock_irq(¤t->sighand->siglock); 2789 hlist_del_init(&delayed.node); 2790 spin_unlock_irq(¤t->sighand->siglock); 2791 return ERR_PTR(retval); 2792 } 2793 2794 static inline void init_idle_pids(struct task_struct *idle) 2795 { 2796 enum pid_type type; 2797 2798 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2799 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2800 init_task_pid(idle, type, &init_struct_pid); 2801 } 2802 } 2803 2804 static int idle_dummy(void *dummy) 2805 { 2806 /* This function is never called */ 2807 return 0; 2808 } 2809 2810 struct task_struct * __init fork_idle(int cpu) 2811 { 2812 struct task_struct *task; 2813 struct kernel_clone_args args = { 2814 .flags = CLONE_VM, 2815 .fn = &idle_dummy, 2816 .fn_arg = NULL, 2817 .kthread = 1, 2818 .idle = 1, 2819 }; 2820 2821 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2822 if (!IS_ERR(task)) { 2823 init_idle_pids(task); 2824 init_idle(task, cpu); 2825 } 2826 2827 return task; 2828 } 2829 2830 /* 2831 * This is like kernel_clone(), but shaved down and tailored to just 2832 * creating io_uring workers. It returns a created task, or an error pointer. 2833 * The returned task is inactive, and the caller must fire it up through 2834 * wake_up_new_task(p). All signals are blocked in the created task. 2835 */ 2836 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2837 { 2838 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2839 CLONE_IO; 2840 struct kernel_clone_args args = { 2841 .flags = ((lower_32_bits(flags) | CLONE_VM | 2842 CLONE_UNTRACED) & ~CSIGNAL), 2843 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2844 .fn = fn, 2845 .fn_arg = arg, 2846 .io_thread = 1, 2847 .user_worker = 1, 2848 }; 2849 2850 return copy_process(NULL, 0, node, &args); 2851 } 2852 2853 /* 2854 * Ok, this is the main fork-routine. 2855 * 2856 * It copies the process, and if successful kick-starts 2857 * it and waits for it to finish using the VM if required. 2858 * 2859 * args->exit_signal is expected to be checked for sanity by the caller. 2860 */ 2861 pid_t kernel_clone(struct kernel_clone_args *args) 2862 { 2863 u64 clone_flags = args->flags; 2864 struct completion vfork; 2865 struct pid *pid; 2866 struct task_struct *p; 2867 int trace = 0; 2868 pid_t nr; 2869 2870 /* 2871 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2872 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2873 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2874 * field in struct clone_args and it still doesn't make sense to have 2875 * them both point at the same memory location. Performing this check 2876 * here has the advantage that we don't need to have a separate helper 2877 * to check for legacy clone(). 2878 */ 2879 if ((args->flags & CLONE_PIDFD) && 2880 (args->flags & CLONE_PARENT_SETTID) && 2881 (args->pidfd == args->parent_tid)) 2882 return -EINVAL; 2883 2884 /* 2885 * Determine whether and which event to report to ptracer. When 2886 * called from kernel_thread or CLONE_UNTRACED is explicitly 2887 * requested, no event is reported; otherwise, report if the event 2888 * for the type of forking is enabled. 2889 */ 2890 if (!(clone_flags & CLONE_UNTRACED)) { 2891 if (clone_flags & CLONE_VFORK) 2892 trace = PTRACE_EVENT_VFORK; 2893 else if (args->exit_signal != SIGCHLD) 2894 trace = PTRACE_EVENT_CLONE; 2895 else 2896 trace = PTRACE_EVENT_FORK; 2897 2898 if (likely(!ptrace_event_enabled(current, trace))) 2899 trace = 0; 2900 } 2901 2902 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2903 add_latent_entropy(); 2904 2905 if (IS_ERR(p)) 2906 return PTR_ERR(p); 2907 2908 /* 2909 * Do this prior waking up the new thread - the thread pointer 2910 * might get invalid after that point, if the thread exits quickly. 2911 */ 2912 trace_sched_process_fork(current, p); 2913 2914 pid = get_task_pid(p, PIDTYPE_PID); 2915 nr = pid_vnr(pid); 2916 2917 if (clone_flags & CLONE_PARENT_SETTID) 2918 put_user(nr, args->parent_tid); 2919 2920 if (clone_flags & CLONE_VFORK) { 2921 p->vfork_done = &vfork; 2922 init_completion(&vfork); 2923 get_task_struct(p); 2924 } 2925 2926 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2927 /* lock the task to synchronize with memcg migration */ 2928 task_lock(p); 2929 lru_gen_add_mm(p->mm); 2930 task_unlock(p); 2931 } 2932 2933 wake_up_new_task(p); 2934 2935 /* forking complete and child started to run, tell ptracer */ 2936 if (unlikely(trace)) 2937 ptrace_event_pid(trace, pid); 2938 2939 if (clone_flags & CLONE_VFORK) { 2940 if (!wait_for_vfork_done(p, &vfork)) 2941 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2942 } 2943 2944 put_pid(pid); 2945 return nr; 2946 } 2947 2948 /* 2949 * Create a kernel thread. 2950 */ 2951 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2952 unsigned long flags) 2953 { 2954 struct kernel_clone_args args = { 2955 .flags = ((lower_32_bits(flags) | CLONE_VM | 2956 CLONE_UNTRACED) & ~CSIGNAL), 2957 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2958 .fn = fn, 2959 .fn_arg = arg, 2960 .name = name, 2961 .kthread = 1, 2962 }; 2963 2964 return kernel_clone(&args); 2965 } 2966 2967 /* 2968 * Create a user mode thread. 2969 */ 2970 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2971 { 2972 struct kernel_clone_args args = { 2973 .flags = ((lower_32_bits(flags) | CLONE_VM | 2974 CLONE_UNTRACED) & ~CSIGNAL), 2975 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2976 .fn = fn, 2977 .fn_arg = arg, 2978 }; 2979 2980 return kernel_clone(&args); 2981 } 2982 2983 #ifdef __ARCH_WANT_SYS_FORK 2984 SYSCALL_DEFINE0(fork) 2985 { 2986 #ifdef CONFIG_MMU 2987 struct kernel_clone_args args = { 2988 .exit_signal = SIGCHLD, 2989 }; 2990 2991 return kernel_clone(&args); 2992 #else 2993 /* can not support in nommu mode */ 2994 return -EINVAL; 2995 #endif 2996 } 2997 #endif 2998 2999 #ifdef __ARCH_WANT_SYS_VFORK 3000 SYSCALL_DEFINE0(vfork) 3001 { 3002 struct kernel_clone_args args = { 3003 .flags = CLONE_VFORK | CLONE_VM, 3004 .exit_signal = SIGCHLD, 3005 }; 3006 3007 return kernel_clone(&args); 3008 } 3009 #endif 3010 3011 #ifdef __ARCH_WANT_SYS_CLONE 3012 #ifdef CONFIG_CLONE_BACKWARDS 3013 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3014 int __user *, parent_tidptr, 3015 unsigned long, tls, 3016 int __user *, child_tidptr) 3017 #elif defined(CONFIG_CLONE_BACKWARDS2) 3018 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 3019 int __user *, parent_tidptr, 3020 int __user *, child_tidptr, 3021 unsigned long, tls) 3022 #elif defined(CONFIG_CLONE_BACKWARDS3) 3023 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 3024 int, stack_size, 3025 int __user *, parent_tidptr, 3026 int __user *, child_tidptr, 3027 unsigned long, tls) 3028 #else 3029 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 3030 int __user *, parent_tidptr, 3031 int __user *, child_tidptr, 3032 unsigned long, tls) 3033 #endif 3034 { 3035 struct kernel_clone_args args = { 3036 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 3037 .pidfd = parent_tidptr, 3038 .child_tid = child_tidptr, 3039 .parent_tid = parent_tidptr, 3040 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 3041 .stack = newsp, 3042 .tls = tls, 3043 }; 3044 3045 return kernel_clone(&args); 3046 } 3047 #endif 3048 3049 #ifdef __ARCH_WANT_SYS_CLONE3 3050 3051 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 3052 struct clone_args __user *uargs, 3053 size_t usize) 3054 { 3055 int err; 3056 struct clone_args args; 3057 pid_t *kset_tid = kargs->set_tid; 3058 3059 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 3060 CLONE_ARGS_SIZE_VER0); 3061 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 3062 CLONE_ARGS_SIZE_VER1); 3063 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 3064 CLONE_ARGS_SIZE_VER2); 3065 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 3066 3067 if (unlikely(usize > PAGE_SIZE)) 3068 return -E2BIG; 3069 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 3070 return -EINVAL; 3071 3072 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 3073 if (err) 3074 return err; 3075 3076 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 3077 return -EINVAL; 3078 3079 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 3080 return -EINVAL; 3081 3082 if (unlikely(args.set_tid && args.set_tid_size == 0)) 3083 return -EINVAL; 3084 3085 /* 3086 * Verify that higher 32bits of exit_signal are unset and that 3087 * it is a valid signal 3088 */ 3089 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 3090 !valid_signal(args.exit_signal))) 3091 return -EINVAL; 3092 3093 if ((args.flags & CLONE_INTO_CGROUP) && 3094 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 3095 return -EINVAL; 3096 3097 *kargs = (struct kernel_clone_args){ 3098 .flags = args.flags, 3099 .pidfd = u64_to_user_ptr(args.pidfd), 3100 .child_tid = u64_to_user_ptr(args.child_tid), 3101 .parent_tid = u64_to_user_ptr(args.parent_tid), 3102 .exit_signal = args.exit_signal, 3103 .stack = args.stack, 3104 .stack_size = args.stack_size, 3105 .tls = args.tls, 3106 .set_tid_size = args.set_tid_size, 3107 .cgroup = args.cgroup, 3108 }; 3109 3110 if (args.set_tid && 3111 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3112 (kargs->set_tid_size * sizeof(pid_t)))) 3113 return -EFAULT; 3114 3115 kargs->set_tid = kset_tid; 3116 3117 return 0; 3118 } 3119 3120 /** 3121 * clone3_stack_valid - check and prepare stack 3122 * @kargs: kernel clone args 3123 * 3124 * Verify that the stack arguments userspace gave us are sane. 3125 * In addition, set the stack direction for userspace since it's easy for us to 3126 * determine. 3127 */ 3128 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3129 { 3130 if (kargs->stack == 0) { 3131 if (kargs->stack_size > 0) 3132 return false; 3133 } else { 3134 if (kargs->stack_size == 0) 3135 return false; 3136 3137 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3138 return false; 3139 3140 #if !defined(CONFIG_STACK_GROWSUP) 3141 kargs->stack += kargs->stack_size; 3142 #endif 3143 } 3144 3145 return true; 3146 } 3147 3148 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3149 { 3150 /* Verify that no unknown flags are passed along. */ 3151 if (kargs->flags & 3152 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3153 return false; 3154 3155 /* 3156 * - make the CLONE_DETACHED bit reusable for clone3 3157 * - make the CSIGNAL bits reusable for clone3 3158 */ 3159 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3160 return false; 3161 3162 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3163 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3164 return false; 3165 3166 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3167 kargs->exit_signal) 3168 return false; 3169 3170 if (!clone3_stack_valid(kargs)) 3171 return false; 3172 3173 return true; 3174 } 3175 3176 /** 3177 * sys_clone3 - create a new process with specific properties 3178 * @uargs: argument structure 3179 * @size: size of @uargs 3180 * 3181 * clone3() is the extensible successor to clone()/clone2(). 3182 * It takes a struct as argument that is versioned by its size. 3183 * 3184 * Return: On success, a positive PID for the child process. 3185 * On error, a negative errno number. 3186 */ 3187 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3188 { 3189 int err; 3190 3191 struct kernel_clone_args kargs; 3192 pid_t set_tid[MAX_PID_NS_LEVEL]; 3193 3194 kargs.set_tid = set_tid; 3195 3196 err = copy_clone_args_from_user(&kargs, uargs, size); 3197 if (err) 3198 return err; 3199 3200 if (!clone3_args_valid(&kargs)) 3201 return -EINVAL; 3202 3203 return kernel_clone(&kargs); 3204 } 3205 #endif 3206 3207 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3208 { 3209 struct task_struct *leader, *parent, *child; 3210 int res; 3211 3212 read_lock(&tasklist_lock); 3213 leader = top = top->group_leader; 3214 down: 3215 for_each_thread(leader, parent) { 3216 list_for_each_entry(child, &parent->children, sibling) { 3217 res = visitor(child, data); 3218 if (res) { 3219 if (res < 0) 3220 goto out; 3221 leader = child; 3222 goto down; 3223 } 3224 up: 3225 ; 3226 } 3227 } 3228 3229 if (leader != top) { 3230 child = leader; 3231 parent = child->real_parent; 3232 leader = parent->group_leader; 3233 goto up; 3234 } 3235 out: 3236 read_unlock(&tasklist_lock); 3237 } 3238 3239 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3240 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3241 #endif 3242 3243 static void sighand_ctor(void *data) 3244 { 3245 struct sighand_struct *sighand = data; 3246 3247 spin_lock_init(&sighand->siglock); 3248 init_waitqueue_head(&sighand->signalfd_wqh); 3249 } 3250 3251 void __init mm_cache_init(void) 3252 { 3253 unsigned int mm_size; 3254 3255 /* 3256 * The mm_cpumask is located at the end of mm_struct, and is 3257 * dynamically sized based on the maximum CPU number this system 3258 * can have, taking hotplug into account (nr_cpu_ids). 3259 */ 3260 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3261 3262 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3263 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3264 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3265 offsetof(struct mm_struct, saved_auxv), 3266 sizeof_field(struct mm_struct, saved_auxv), 3267 NULL); 3268 } 3269 3270 void __init proc_caches_init(void) 3271 { 3272 sighand_cachep = kmem_cache_create("sighand_cache", 3273 sizeof(struct sighand_struct), 0, 3274 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3275 SLAB_ACCOUNT, sighand_ctor); 3276 signal_cachep = kmem_cache_create("signal_cache", 3277 sizeof(struct signal_struct), 0, 3278 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3279 NULL); 3280 files_cachep = kmem_cache_create("files_cache", 3281 sizeof(struct files_struct), 0, 3282 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3283 NULL); 3284 fs_cachep = kmem_cache_create("fs_cache", 3285 sizeof(struct fs_struct), 0, 3286 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3287 NULL); 3288 3289 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3290 #ifdef CONFIG_PER_VMA_LOCK 3291 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3292 #endif 3293 mmap_init(); 3294 nsproxy_cache_init(); 3295 } 3296 3297 /* 3298 * Check constraints on flags passed to the unshare system call. 3299 */ 3300 static int check_unshare_flags(unsigned long unshare_flags) 3301 { 3302 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3303 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3304 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3305 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3306 CLONE_NEWTIME)) 3307 return -EINVAL; 3308 /* 3309 * Not implemented, but pretend it works if there is nothing 3310 * to unshare. Note that unsharing the address space or the 3311 * signal handlers also need to unshare the signal queues (aka 3312 * CLONE_THREAD). 3313 */ 3314 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3315 if (!thread_group_empty(current)) 3316 return -EINVAL; 3317 } 3318 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3319 if (refcount_read(¤t->sighand->count) > 1) 3320 return -EINVAL; 3321 } 3322 if (unshare_flags & CLONE_VM) { 3323 if (!current_is_single_threaded()) 3324 return -EINVAL; 3325 } 3326 3327 return 0; 3328 } 3329 3330 /* 3331 * Unshare the filesystem structure if it is being shared 3332 */ 3333 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3334 { 3335 struct fs_struct *fs = current->fs; 3336 3337 if (!(unshare_flags & CLONE_FS) || !fs) 3338 return 0; 3339 3340 /* don't need lock here; in the worst case we'll do useless copy */ 3341 if (fs->users == 1) 3342 return 0; 3343 3344 *new_fsp = copy_fs_struct(fs); 3345 if (!*new_fsp) 3346 return -ENOMEM; 3347 3348 return 0; 3349 } 3350 3351 /* 3352 * Unshare file descriptor table if it is being shared 3353 */ 3354 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3355 struct files_struct **new_fdp) 3356 { 3357 struct files_struct *fd = current->files; 3358 int error = 0; 3359 3360 if ((unshare_flags & CLONE_FILES) && 3361 (fd && atomic_read(&fd->count) > 1)) { 3362 *new_fdp = dup_fd(fd, max_fds, &error); 3363 if (!*new_fdp) 3364 return error; 3365 } 3366 3367 return 0; 3368 } 3369 3370 /* 3371 * unshare allows a process to 'unshare' part of the process 3372 * context which was originally shared using clone. copy_* 3373 * functions used by kernel_clone() cannot be used here directly 3374 * because they modify an inactive task_struct that is being 3375 * constructed. Here we are modifying the current, active, 3376 * task_struct. 3377 */ 3378 int ksys_unshare(unsigned long unshare_flags) 3379 { 3380 struct fs_struct *fs, *new_fs = NULL; 3381 struct files_struct *new_fd = NULL; 3382 struct cred *new_cred = NULL; 3383 struct nsproxy *new_nsproxy = NULL; 3384 int do_sysvsem = 0; 3385 int err; 3386 3387 /* 3388 * If unsharing a user namespace must also unshare the thread group 3389 * and unshare the filesystem root and working directories. 3390 */ 3391 if (unshare_flags & CLONE_NEWUSER) 3392 unshare_flags |= CLONE_THREAD | CLONE_FS; 3393 /* 3394 * If unsharing vm, must also unshare signal handlers. 3395 */ 3396 if (unshare_flags & CLONE_VM) 3397 unshare_flags |= CLONE_SIGHAND; 3398 /* 3399 * If unsharing a signal handlers, must also unshare the signal queues. 3400 */ 3401 if (unshare_flags & CLONE_SIGHAND) 3402 unshare_flags |= CLONE_THREAD; 3403 /* 3404 * If unsharing namespace, must also unshare filesystem information. 3405 */ 3406 if (unshare_flags & CLONE_NEWNS) 3407 unshare_flags |= CLONE_FS; 3408 3409 err = check_unshare_flags(unshare_flags); 3410 if (err) 3411 goto bad_unshare_out; 3412 /* 3413 * CLONE_NEWIPC must also detach from the undolist: after switching 3414 * to a new ipc namespace, the semaphore arrays from the old 3415 * namespace are unreachable. 3416 */ 3417 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3418 do_sysvsem = 1; 3419 err = unshare_fs(unshare_flags, &new_fs); 3420 if (err) 3421 goto bad_unshare_out; 3422 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3423 if (err) 3424 goto bad_unshare_cleanup_fs; 3425 err = unshare_userns(unshare_flags, &new_cred); 3426 if (err) 3427 goto bad_unshare_cleanup_fd; 3428 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3429 new_cred, new_fs); 3430 if (err) 3431 goto bad_unshare_cleanup_cred; 3432 3433 if (new_cred) { 3434 err = set_cred_ucounts(new_cred); 3435 if (err) 3436 goto bad_unshare_cleanup_cred; 3437 } 3438 3439 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3440 if (do_sysvsem) { 3441 /* 3442 * CLONE_SYSVSEM is equivalent to sys_exit(). 3443 */ 3444 exit_sem(current); 3445 } 3446 if (unshare_flags & CLONE_NEWIPC) { 3447 /* Orphan segments in old ns (see sem above). */ 3448 exit_shm(current); 3449 shm_init_task(current); 3450 } 3451 3452 if (new_nsproxy) 3453 switch_task_namespaces(current, new_nsproxy); 3454 3455 task_lock(current); 3456 3457 if (new_fs) { 3458 fs = current->fs; 3459 spin_lock(&fs->lock); 3460 current->fs = new_fs; 3461 if (--fs->users) 3462 new_fs = NULL; 3463 else 3464 new_fs = fs; 3465 spin_unlock(&fs->lock); 3466 } 3467 3468 if (new_fd) 3469 swap(current->files, new_fd); 3470 3471 task_unlock(current); 3472 3473 if (new_cred) { 3474 /* Install the new user namespace */ 3475 commit_creds(new_cred); 3476 new_cred = NULL; 3477 } 3478 } 3479 3480 perf_event_namespaces(current); 3481 3482 bad_unshare_cleanup_cred: 3483 if (new_cred) 3484 put_cred(new_cred); 3485 bad_unshare_cleanup_fd: 3486 if (new_fd) 3487 put_files_struct(new_fd); 3488 3489 bad_unshare_cleanup_fs: 3490 if (new_fs) 3491 free_fs_struct(new_fs); 3492 3493 bad_unshare_out: 3494 return err; 3495 } 3496 3497 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3498 { 3499 return ksys_unshare(unshare_flags); 3500 } 3501 3502 /* 3503 * Helper to unshare the files of the current task. 3504 * We don't want to expose copy_files internals to 3505 * the exec layer of the kernel. 3506 */ 3507 3508 int unshare_files(void) 3509 { 3510 struct task_struct *task = current; 3511 struct files_struct *old, *copy = NULL; 3512 int error; 3513 3514 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3515 if (error || !copy) 3516 return error; 3517 3518 old = task->files; 3519 task_lock(task); 3520 task->files = copy; 3521 task_unlock(task); 3522 put_files_struct(old); 3523 return 0; 3524 } 3525 3526 int sysctl_max_threads(struct ctl_table *table, int write, 3527 void *buffer, size_t *lenp, loff_t *ppos) 3528 { 3529 struct ctl_table t; 3530 int ret; 3531 int threads = max_threads; 3532 int min = 1; 3533 int max = MAX_THREADS; 3534 3535 t = *table; 3536 t.data = &threads; 3537 t.extra1 = &min; 3538 t.extra2 = &max; 3539 3540 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3541 if (ret || !write) 3542 return ret; 3543 3544 max_threads = threads; 3545 3546 return 0; 3547 } 3548