xref: /linux/kernel/fork.c (revision a9f80df4f51440303d063b55bb98720857693821)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/syscall_user_dispatch.h>
57 #include <linux/jiffies.h>
58 #include <linux/futex.h>
59 #include <linux/compat.h>
60 #include <linux/kthread.h>
61 #include <linux/task_io_accounting_ops.h>
62 #include <linux/rcupdate.h>
63 #include <linux/ptrace.h>
64 #include <linux/mount.h>
65 #include <linux/audit.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/proc_fs.h>
69 #include <linux/profile.h>
70 #include <linux/rmap.h>
71 #include <linux/ksm.h>
72 #include <linux/acct.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/tsacct_kern.h>
75 #include <linux/cn_proc.h>
76 #include <linux/freezer.h>
77 #include <linux/delayacct.h>
78 #include <linux/taskstats_kern.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 #include <linux/stackprotector.h>
101 #include <linux/user_events.h>
102 #include <linux/iommu.h>
103 #include <linux/rseq.h>
104 
105 #include <asm/pgalloc.h>
106 #include <linux/uaccess.h>
107 #include <asm/mmu_context.h>
108 #include <asm/cacheflush.h>
109 #include <asm/tlbflush.h>
110 
111 #include <trace/events/sched.h>
112 
113 #define CREATE_TRACE_POINTS
114 #include <trace/events/task.h>
115 
116 /*
117  * Minimum number of threads to boot the kernel
118  */
119 #define MIN_THREADS 20
120 
121 /*
122  * Maximum number of threads
123  */
124 #define MAX_THREADS FUTEX_TID_MASK
125 
126 /*
127  * Protected counters by write_lock_irq(&tasklist_lock)
128  */
129 unsigned long total_forks;	/* Handle normal Linux uptimes. */
130 int nr_threads;			/* The idle threads do not count.. */
131 
132 static int max_threads;		/* tunable limit on nr_threads */
133 
134 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
135 
136 static const char * const resident_page_types[] = {
137 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
138 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
139 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
140 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
141 };
142 
143 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
144 
145 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
146 
147 #ifdef CONFIG_PROVE_RCU
148 int lockdep_tasklist_lock_is_held(void)
149 {
150 	return lockdep_is_held(&tasklist_lock);
151 }
152 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
153 #endif /* #ifdef CONFIG_PROVE_RCU */
154 
155 int nr_processes(void)
156 {
157 	int cpu;
158 	int total = 0;
159 
160 	for_each_possible_cpu(cpu)
161 		total += per_cpu(process_counts, cpu);
162 
163 	return total;
164 }
165 
166 void __weak arch_release_task_struct(struct task_struct *tsk)
167 {
168 }
169 
170 static struct kmem_cache *task_struct_cachep;
171 
172 static inline struct task_struct *alloc_task_struct_node(int node)
173 {
174 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
175 }
176 
177 static inline void free_task_struct(struct task_struct *tsk)
178 {
179 	kmem_cache_free(task_struct_cachep, tsk);
180 }
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #  ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 struct vm_stack {
197 	struct rcu_head rcu;
198 	struct vm_struct *stack_vm_area;
199 };
200 
201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < NR_CACHED_STACKS; i++) {
206 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207 			continue;
208 		return true;
209 	}
210 	return false;
211 }
212 
213 static void thread_stack_free_rcu(struct rcu_head *rh)
214 {
215 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216 
217 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218 		return;
219 
220 	vfree(vm_stack);
221 }
222 
223 static void thread_stack_delayed_free(struct task_struct *tsk)
224 {
225 	struct vm_stack *vm_stack = tsk->stack;
226 
227 	vm_stack->stack_vm_area = tsk->stack_vm_area;
228 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229 }
230 
231 static int free_vm_stack_cache(unsigned int cpu)
232 {
233 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 	int i;
235 
236 	for (i = 0; i < NR_CACHED_STACKS; i++) {
237 		struct vm_struct *vm_stack = cached_vm_stacks[i];
238 
239 		if (!vm_stack)
240 			continue;
241 
242 		vfree(vm_stack->addr);
243 		cached_vm_stacks[i] = NULL;
244 	}
245 
246 	return 0;
247 }
248 
249 static int memcg_charge_kernel_stack(struct vm_struct *vm)
250 {
251 	int i;
252 	int ret;
253 	int nr_charged = 0;
254 
255 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256 
257 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259 		if (ret)
260 			goto err;
261 		nr_charged++;
262 	}
263 	return 0;
264 err:
265 	for (i = 0; i < nr_charged; i++)
266 		memcg_kmem_uncharge_page(vm->pages[i], 0);
267 	return ret;
268 }
269 
270 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
271 {
272 	struct vm_struct *vm;
273 	void *stack;
274 	int i;
275 
276 	for (i = 0; i < NR_CACHED_STACKS; i++) {
277 		struct vm_struct *s;
278 
279 		s = this_cpu_xchg(cached_stacks[i], NULL);
280 
281 		if (!s)
282 			continue;
283 
284 		/* Reset stack metadata. */
285 		kasan_unpoison_range(s->addr, THREAD_SIZE);
286 
287 		stack = kasan_reset_tag(s->addr);
288 
289 		/* Clear stale pointers from reused stack. */
290 		memset(stack, 0, THREAD_SIZE);
291 
292 		if (memcg_charge_kernel_stack(s)) {
293 			vfree(s->addr);
294 			return -ENOMEM;
295 		}
296 
297 		tsk->stack_vm_area = s;
298 		tsk->stack = stack;
299 		return 0;
300 	}
301 
302 	/*
303 	 * Allocated stacks are cached and later reused by new threads,
304 	 * so memcg accounting is performed manually on assigning/releasing
305 	 * stacks to tasks. Drop __GFP_ACCOUNT.
306 	 */
307 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
308 				     VMALLOC_START, VMALLOC_END,
309 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
310 				     PAGE_KERNEL,
311 				     0, node, __builtin_return_address(0));
312 	if (!stack)
313 		return -ENOMEM;
314 
315 	vm = find_vm_area(stack);
316 	if (memcg_charge_kernel_stack(vm)) {
317 		vfree(stack);
318 		return -ENOMEM;
319 	}
320 	/*
321 	 * We can't call find_vm_area() in interrupt context, and
322 	 * free_thread_stack() can be called in interrupt context,
323 	 * so cache the vm_struct.
324 	 */
325 	tsk->stack_vm_area = vm;
326 	stack = kasan_reset_tag(stack);
327 	tsk->stack = stack;
328 	return 0;
329 }
330 
331 static void free_thread_stack(struct task_struct *tsk)
332 {
333 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
334 		thread_stack_delayed_free(tsk);
335 
336 	tsk->stack = NULL;
337 	tsk->stack_vm_area = NULL;
338 }
339 
340 #  else /* !CONFIG_VMAP_STACK */
341 
342 static void thread_stack_free_rcu(struct rcu_head *rh)
343 {
344 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
345 }
346 
347 static void thread_stack_delayed_free(struct task_struct *tsk)
348 {
349 	struct rcu_head *rh = tsk->stack;
350 
351 	call_rcu(rh, thread_stack_free_rcu);
352 }
353 
354 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
355 {
356 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
357 					     THREAD_SIZE_ORDER);
358 
359 	if (likely(page)) {
360 		tsk->stack = kasan_reset_tag(page_address(page));
361 		return 0;
362 	}
363 	return -ENOMEM;
364 }
365 
366 static void free_thread_stack(struct task_struct *tsk)
367 {
368 	thread_stack_delayed_free(tsk);
369 	tsk->stack = NULL;
370 }
371 
372 #  endif /* CONFIG_VMAP_STACK */
373 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
374 
375 static struct kmem_cache *thread_stack_cache;
376 
377 static void thread_stack_free_rcu(struct rcu_head *rh)
378 {
379 	kmem_cache_free(thread_stack_cache, rh);
380 }
381 
382 static void thread_stack_delayed_free(struct task_struct *tsk)
383 {
384 	struct rcu_head *rh = tsk->stack;
385 
386 	call_rcu(rh, thread_stack_free_rcu);
387 }
388 
389 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
390 {
391 	unsigned long *stack;
392 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
393 	stack = kasan_reset_tag(stack);
394 	tsk->stack = stack;
395 	return stack ? 0 : -ENOMEM;
396 }
397 
398 static void free_thread_stack(struct task_struct *tsk)
399 {
400 	thread_stack_delayed_free(tsk);
401 	tsk->stack = NULL;
402 }
403 
404 void thread_stack_cache_init(void)
405 {
406 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
407 					THREAD_SIZE, THREAD_SIZE, 0, 0,
408 					THREAD_SIZE, NULL);
409 	BUG_ON(thread_stack_cache == NULL);
410 }
411 
412 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
413 
414 /* SLAB cache for signal_struct structures (tsk->signal) */
415 static struct kmem_cache *signal_cachep;
416 
417 /* SLAB cache for sighand_struct structures (tsk->sighand) */
418 struct kmem_cache *sighand_cachep;
419 
420 /* SLAB cache for files_struct structures (tsk->files) */
421 struct kmem_cache *files_cachep;
422 
423 /* SLAB cache for fs_struct structures (tsk->fs) */
424 struct kmem_cache *fs_cachep;
425 
426 /* SLAB cache for vm_area_struct structures */
427 static struct kmem_cache *vm_area_cachep;
428 
429 /* SLAB cache for mm_struct structures (tsk->mm) */
430 static struct kmem_cache *mm_cachep;
431 
432 #ifdef CONFIG_PER_VMA_LOCK
433 
434 /* SLAB cache for vm_area_struct.lock */
435 static struct kmem_cache *vma_lock_cachep;
436 
437 static bool vma_lock_alloc(struct vm_area_struct *vma)
438 {
439 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
440 	if (!vma->vm_lock)
441 		return false;
442 
443 	init_rwsem(&vma->vm_lock->lock);
444 	vma->vm_lock_seq = -1;
445 
446 	return true;
447 }
448 
449 static inline void vma_lock_free(struct vm_area_struct *vma)
450 {
451 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
452 }
453 
454 #else /* CONFIG_PER_VMA_LOCK */
455 
456 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
457 static inline void vma_lock_free(struct vm_area_struct *vma) {}
458 
459 #endif /* CONFIG_PER_VMA_LOCK */
460 
461 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
462 {
463 	struct vm_area_struct *vma;
464 
465 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
466 	if (!vma)
467 		return NULL;
468 
469 	vma_init(vma, mm);
470 	if (!vma_lock_alloc(vma)) {
471 		kmem_cache_free(vm_area_cachep, vma);
472 		return NULL;
473 	}
474 
475 	return vma;
476 }
477 
478 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
479 {
480 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
481 
482 	if (!new)
483 		return NULL;
484 
485 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
486 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
487 	/*
488 	 * orig->shared.rb may be modified concurrently, but the clone
489 	 * will be reinitialized.
490 	 */
491 	data_race(memcpy(new, orig, sizeof(*new)));
492 	if (!vma_lock_alloc(new)) {
493 		kmem_cache_free(vm_area_cachep, new);
494 		return NULL;
495 	}
496 	INIT_LIST_HEAD(&new->anon_vma_chain);
497 	vma_numab_state_init(new);
498 	dup_anon_vma_name(orig, new);
499 
500 	return new;
501 }
502 
503 void __vm_area_free(struct vm_area_struct *vma)
504 {
505 	vma_numab_state_free(vma);
506 	free_anon_vma_name(vma);
507 	vma_lock_free(vma);
508 	kmem_cache_free(vm_area_cachep, vma);
509 }
510 
511 #ifdef CONFIG_PER_VMA_LOCK
512 static void vm_area_free_rcu_cb(struct rcu_head *head)
513 {
514 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
515 						  vm_rcu);
516 
517 	/* The vma should not be locked while being destroyed. */
518 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
519 	__vm_area_free(vma);
520 }
521 #endif
522 
523 void vm_area_free(struct vm_area_struct *vma)
524 {
525 #ifdef CONFIG_PER_VMA_LOCK
526 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
527 #else
528 	__vm_area_free(vma);
529 #endif
530 }
531 
532 static void account_kernel_stack(struct task_struct *tsk, int account)
533 {
534 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
535 		struct vm_struct *vm = task_stack_vm_area(tsk);
536 		int i;
537 
538 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
539 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
540 					      account * (PAGE_SIZE / 1024));
541 	} else {
542 		void *stack = task_stack_page(tsk);
543 
544 		/* All stack pages are in the same node. */
545 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
546 				      account * (THREAD_SIZE / 1024));
547 	}
548 }
549 
550 void exit_task_stack_account(struct task_struct *tsk)
551 {
552 	account_kernel_stack(tsk, -1);
553 
554 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
555 		struct vm_struct *vm;
556 		int i;
557 
558 		vm = task_stack_vm_area(tsk);
559 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
560 			memcg_kmem_uncharge_page(vm->pages[i], 0);
561 	}
562 }
563 
564 static void release_task_stack(struct task_struct *tsk)
565 {
566 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
567 		return;  /* Better to leak the stack than to free prematurely */
568 
569 	free_thread_stack(tsk);
570 }
571 
572 #ifdef CONFIG_THREAD_INFO_IN_TASK
573 void put_task_stack(struct task_struct *tsk)
574 {
575 	if (refcount_dec_and_test(&tsk->stack_refcount))
576 		release_task_stack(tsk);
577 }
578 #endif
579 
580 void free_task(struct task_struct *tsk)
581 {
582 #ifdef CONFIG_SECCOMP
583 	WARN_ON_ONCE(tsk->seccomp.filter);
584 #endif
585 	release_user_cpus_ptr(tsk);
586 	scs_release(tsk);
587 
588 #ifndef CONFIG_THREAD_INFO_IN_TASK
589 	/*
590 	 * The task is finally done with both the stack and thread_info,
591 	 * so free both.
592 	 */
593 	release_task_stack(tsk);
594 #else
595 	/*
596 	 * If the task had a separate stack allocation, it should be gone
597 	 * by now.
598 	 */
599 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
600 #endif
601 	rt_mutex_debug_task_free(tsk);
602 	ftrace_graph_exit_task(tsk);
603 	arch_release_task_struct(tsk);
604 	if (tsk->flags & PF_KTHREAD)
605 		free_kthread_struct(tsk);
606 	bpf_task_storage_free(tsk);
607 	free_task_struct(tsk);
608 }
609 EXPORT_SYMBOL(free_task);
610 
611 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
612 {
613 	struct file *exe_file;
614 
615 	exe_file = get_mm_exe_file(oldmm);
616 	RCU_INIT_POINTER(mm->exe_file, exe_file);
617 	/*
618 	 * We depend on the oldmm having properly denied write access to the
619 	 * exe_file already.
620 	 */
621 	if (exe_file && deny_write_access(exe_file))
622 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
623 }
624 
625 #ifdef CONFIG_MMU
626 static __latent_entropy int dup_mmap(struct mm_struct *mm,
627 					struct mm_struct *oldmm)
628 {
629 	struct vm_area_struct *mpnt, *tmp;
630 	int retval;
631 	unsigned long charge = 0;
632 	LIST_HEAD(uf);
633 	VMA_ITERATOR(vmi, mm, 0);
634 
635 	uprobe_start_dup_mmap();
636 	if (mmap_write_lock_killable(oldmm)) {
637 		retval = -EINTR;
638 		goto fail_uprobe_end;
639 	}
640 	flush_cache_dup_mm(oldmm);
641 	uprobe_dup_mmap(oldmm, mm);
642 	/*
643 	 * Not linked in yet - no deadlock potential:
644 	 */
645 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
646 
647 	/* No ordering required: file already has been exposed. */
648 	dup_mm_exe_file(mm, oldmm);
649 
650 	mm->total_vm = oldmm->total_vm;
651 	mm->data_vm = oldmm->data_vm;
652 	mm->exec_vm = oldmm->exec_vm;
653 	mm->stack_vm = oldmm->stack_vm;
654 
655 	retval = ksm_fork(mm, oldmm);
656 	if (retval)
657 		goto out;
658 	khugepaged_fork(mm, oldmm);
659 
660 	/* Use __mt_dup() to efficiently build an identical maple tree. */
661 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
662 	if (unlikely(retval))
663 		goto out;
664 
665 	mt_clear_in_rcu(vmi.mas.tree);
666 	for_each_vma(vmi, mpnt) {
667 		struct file *file;
668 
669 		vma_start_write(mpnt);
670 		if (mpnt->vm_flags & VM_DONTCOPY) {
671 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
672 						    mpnt->vm_end, GFP_KERNEL);
673 			if (retval)
674 				goto loop_out;
675 
676 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
677 			continue;
678 		}
679 		charge = 0;
680 		/*
681 		 * Don't duplicate many vmas if we've been oom-killed (for
682 		 * example)
683 		 */
684 		if (fatal_signal_pending(current)) {
685 			retval = -EINTR;
686 			goto loop_out;
687 		}
688 		if (mpnt->vm_flags & VM_ACCOUNT) {
689 			unsigned long len = vma_pages(mpnt);
690 
691 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
692 				goto fail_nomem;
693 			charge = len;
694 		}
695 		tmp = vm_area_dup(mpnt);
696 		if (!tmp)
697 			goto fail_nomem;
698 		retval = vma_dup_policy(mpnt, tmp);
699 		if (retval)
700 			goto fail_nomem_policy;
701 		tmp->vm_mm = mm;
702 		retval = dup_userfaultfd(tmp, &uf);
703 		if (retval)
704 			goto fail_nomem_anon_vma_fork;
705 		if (tmp->vm_flags & VM_WIPEONFORK) {
706 			/*
707 			 * VM_WIPEONFORK gets a clean slate in the child.
708 			 * Don't prepare anon_vma until fault since we don't
709 			 * copy page for current vma.
710 			 */
711 			tmp->anon_vma = NULL;
712 		} else if (anon_vma_fork(tmp, mpnt))
713 			goto fail_nomem_anon_vma_fork;
714 		vm_flags_clear(tmp, VM_LOCKED_MASK);
715 		file = tmp->vm_file;
716 		if (file) {
717 			struct address_space *mapping = file->f_mapping;
718 
719 			get_file(file);
720 			i_mmap_lock_write(mapping);
721 			if (vma_is_shared_maywrite(tmp))
722 				mapping_allow_writable(mapping);
723 			flush_dcache_mmap_lock(mapping);
724 			/* insert tmp into the share list, just after mpnt */
725 			vma_interval_tree_insert_after(tmp, mpnt,
726 					&mapping->i_mmap);
727 			flush_dcache_mmap_unlock(mapping);
728 			i_mmap_unlock_write(mapping);
729 		}
730 
731 		/*
732 		 * Copy/update hugetlb private vma information.
733 		 */
734 		if (is_vm_hugetlb_page(tmp))
735 			hugetlb_dup_vma_private(tmp);
736 
737 		/*
738 		 * Link the vma into the MT. After using __mt_dup(), memory
739 		 * allocation is not necessary here, so it cannot fail.
740 		 */
741 		vma_iter_bulk_store(&vmi, tmp);
742 
743 		mm->map_count++;
744 		if (!(tmp->vm_flags & VM_WIPEONFORK))
745 			retval = copy_page_range(tmp, mpnt);
746 
747 		if (tmp->vm_ops && tmp->vm_ops->open)
748 			tmp->vm_ops->open(tmp);
749 
750 		if (retval) {
751 			mpnt = vma_next(&vmi);
752 			goto loop_out;
753 		}
754 	}
755 	/* a new mm has just been created */
756 	retval = arch_dup_mmap(oldmm, mm);
757 loop_out:
758 	vma_iter_free(&vmi);
759 	if (!retval) {
760 		mt_set_in_rcu(vmi.mas.tree);
761 	} else if (mpnt) {
762 		/*
763 		 * The entire maple tree has already been duplicated. If the
764 		 * mmap duplication fails, mark the failure point with
765 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
766 		 * stop releasing VMAs that have not been duplicated after this
767 		 * point.
768 		 */
769 		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
770 		mas_store(&vmi.mas, XA_ZERO_ENTRY);
771 	}
772 out:
773 	mmap_write_unlock(mm);
774 	flush_tlb_mm(oldmm);
775 	mmap_write_unlock(oldmm);
776 	dup_userfaultfd_complete(&uf);
777 fail_uprobe_end:
778 	uprobe_end_dup_mmap();
779 	return retval;
780 
781 fail_nomem_anon_vma_fork:
782 	mpol_put(vma_policy(tmp));
783 fail_nomem_policy:
784 	vm_area_free(tmp);
785 fail_nomem:
786 	retval = -ENOMEM;
787 	vm_unacct_memory(charge);
788 	goto loop_out;
789 }
790 
791 static inline int mm_alloc_pgd(struct mm_struct *mm)
792 {
793 	mm->pgd = pgd_alloc(mm);
794 	if (unlikely(!mm->pgd))
795 		return -ENOMEM;
796 	return 0;
797 }
798 
799 static inline void mm_free_pgd(struct mm_struct *mm)
800 {
801 	pgd_free(mm, mm->pgd);
802 }
803 #else
804 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
805 {
806 	mmap_write_lock(oldmm);
807 	dup_mm_exe_file(mm, oldmm);
808 	mmap_write_unlock(oldmm);
809 	return 0;
810 }
811 #define mm_alloc_pgd(mm)	(0)
812 #define mm_free_pgd(mm)
813 #endif /* CONFIG_MMU */
814 
815 static void check_mm(struct mm_struct *mm)
816 {
817 	int i;
818 
819 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
820 			 "Please make sure 'struct resident_page_types[]' is updated as well");
821 
822 	for (i = 0; i < NR_MM_COUNTERS; i++) {
823 		long x = percpu_counter_sum(&mm->rss_stat[i]);
824 
825 		if (unlikely(x))
826 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
827 				 mm, resident_page_types[i], x);
828 	}
829 
830 	if (mm_pgtables_bytes(mm))
831 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
832 				mm_pgtables_bytes(mm));
833 
834 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
835 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
836 #endif
837 }
838 
839 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
840 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
841 
842 static void do_check_lazy_tlb(void *arg)
843 {
844 	struct mm_struct *mm = arg;
845 
846 	WARN_ON_ONCE(current->active_mm == mm);
847 }
848 
849 static void do_shoot_lazy_tlb(void *arg)
850 {
851 	struct mm_struct *mm = arg;
852 
853 	if (current->active_mm == mm) {
854 		WARN_ON_ONCE(current->mm);
855 		current->active_mm = &init_mm;
856 		switch_mm(mm, &init_mm, current);
857 	}
858 }
859 
860 static void cleanup_lazy_tlbs(struct mm_struct *mm)
861 {
862 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
863 		/*
864 		 * In this case, lazy tlb mms are refounted and would not reach
865 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
866 		 */
867 		return;
868 	}
869 
870 	/*
871 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
872 	 * requires lazy mm users to switch to another mm when the refcount
873 	 * drops to zero, before the mm is freed. This requires IPIs here to
874 	 * switch kernel threads to init_mm.
875 	 *
876 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
877 	 * switch with the final userspace teardown TLB flush which leaves the
878 	 * mm lazy on this CPU but no others, reducing the need for additional
879 	 * IPIs here. There are cases where a final IPI is still required here,
880 	 * such as the final mmdrop being performed on a different CPU than the
881 	 * one exiting, or kernel threads using the mm when userspace exits.
882 	 *
883 	 * IPI overheads have not found to be expensive, but they could be
884 	 * reduced in a number of possible ways, for example (roughly
885 	 * increasing order of complexity):
886 	 * - The last lazy reference created by exit_mm() could instead switch
887 	 *   to init_mm, however it's probable this will run on the same CPU
888 	 *   immediately afterwards, so this may not reduce IPIs much.
889 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
890 	 * - CPUs store active_mm where it can be remotely checked without a
891 	 *   lock, to filter out false-positives in the cpumask.
892 	 * - After mm_users or mm_count reaches zero, switching away from the
893 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
894 	 *   with some batching or delaying of the final IPIs.
895 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
896 	 *   switching to avoid IPIs completely.
897 	 */
898 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
899 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
900 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
901 }
902 
903 /*
904  * Called when the last reference to the mm
905  * is dropped: either by a lazy thread or by
906  * mmput. Free the page directory and the mm.
907  */
908 void __mmdrop(struct mm_struct *mm)
909 {
910 	BUG_ON(mm == &init_mm);
911 	WARN_ON_ONCE(mm == current->mm);
912 
913 	/* Ensure no CPUs are using this as their lazy tlb mm */
914 	cleanup_lazy_tlbs(mm);
915 
916 	WARN_ON_ONCE(mm == current->active_mm);
917 	mm_free_pgd(mm);
918 	destroy_context(mm);
919 	mmu_notifier_subscriptions_destroy(mm);
920 	check_mm(mm);
921 	put_user_ns(mm->user_ns);
922 	mm_pasid_drop(mm);
923 	mm_destroy_cid(mm);
924 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
925 
926 	free_mm(mm);
927 }
928 EXPORT_SYMBOL_GPL(__mmdrop);
929 
930 static void mmdrop_async_fn(struct work_struct *work)
931 {
932 	struct mm_struct *mm;
933 
934 	mm = container_of(work, struct mm_struct, async_put_work);
935 	__mmdrop(mm);
936 }
937 
938 static void mmdrop_async(struct mm_struct *mm)
939 {
940 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
941 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
942 		schedule_work(&mm->async_put_work);
943 	}
944 }
945 
946 static inline void free_signal_struct(struct signal_struct *sig)
947 {
948 	taskstats_tgid_free(sig);
949 	sched_autogroup_exit(sig);
950 	/*
951 	 * __mmdrop is not safe to call from softirq context on x86 due to
952 	 * pgd_dtor so postpone it to the async context
953 	 */
954 	if (sig->oom_mm)
955 		mmdrop_async(sig->oom_mm);
956 	kmem_cache_free(signal_cachep, sig);
957 }
958 
959 static inline void put_signal_struct(struct signal_struct *sig)
960 {
961 	if (refcount_dec_and_test(&sig->sigcnt))
962 		free_signal_struct(sig);
963 }
964 
965 void __put_task_struct(struct task_struct *tsk)
966 {
967 	WARN_ON(!tsk->exit_state);
968 	WARN_ON(refcount_read(&tsk->usage));
969 	WARN_ON(tsk == current);
970 
971 	io_uring_free(tsk);
972 	cgroup_free(tsk);
973 	task_numa_free(tsk, true);
974 	security_task_free(tsk);
975 	exit_creds(tsk);
976 	delayacct_tsk_free(tsk);
977 	put_signal_struct(tsk->signal);
978 	sched_core_free(tsk);
979 	free_task(tsk);
980 }
981 EXPORT_SYMBOL_GPL(__put_task_struct);
982 
983 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
984 {
985 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
986 
987 	__put_task_struct(task);
988 }
989 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
990 
991 void __init __weak arch_task_cache_init(void) { }
992 
993 /*
994  * set_max_threads
995  */
996 static void set_max_threads(unsigned int max_threads_suggested)
997 {
998 	u64 threads;
999 	unsigned long nr_pages = totalram_pages();
1000 
1001 	/*
1002 	 * The number of threads shall be limited such that the thread
1003 	 * structures may only consume a small part of the available memory.
1004 	 */
1005 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1006 		threads = MAX_THREADS;
1007 	else
1008 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1009 				    (u64) THREAD_SIZE * 8UL);
1010 
1011 	if (threads > max_threads_suggested)
1012 		threads = max_threads_suggested;
1013 
1014 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1015 }
1016 
1017 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1018 /* Initialized by the architecture: */
1019 int arch_task_struct_size __read_mostly;
1020 #endif
1021 
1022 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1023 {
1024 	/* Fetch thread_struct whitelist for the architecture. */
1025 	arch_thread_struct_whitelist(offset, size);
1026 
1027 	/*
1028 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1029 	 * adjust offset to position of thread_struct in task_struct.
1030 	 */
1031 	if (unlikely(*size == 0))
1032 		*offset = 0;
1033 	else
1034 		*offset += offsetof(struct task_struct, thread);
1035 }
1036 
1037 void __init fork_init(void)
1038 {
1039 	int i;
1040 #ifndef ARCH_MIN_TASKALIGN
1041 #define ARCH_MIN_TASKALIGN	0
1042 #endif
1043 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1044 	unsigned long useroffset, usersize;
1045 
1046 	/* create a slab on which task_structs can be allocated */
1047 	task_struct_whitelist(&useroffset, &usersize);
1048 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1049 			arch_task_struct_size, align,
1050 			SLAB_PANIC|SLAB_ACCOUNT,
1051 			useroffset, usersize, NULL);
1052 
1053 	/* do the arch specific task caches init */
1054 	arch_task_cache_init();
1055 
1056 	set_max_threads(MAX_THREADS);
1057 
1058 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1059 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1060 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1061 		init_task.signal->rlim[RLIMIT_NPROC];
1062 
1063 	for (i = 0; i < UCOUNT_COUNTS; i++)
1064 		init_user_ns.ucount_max[i] = max_threads/2;
1065 
1066 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1067 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1068 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1069 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1070 
1071 #ifdef CONFIG_VMAP_STACK
1072 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1073 			  NULL, free_vm_stack_cache);
1074 #endif
1075 
1076 	scs_init();
1077 
1078 	lockdep_init_task(&init_task);
1079 	uprobes_init();
1080 }
1081 
1082 int __weak arch_dup_task_struct(struct task_struct *dst,
1083 					       struct task_struct *src)
1084 {
1085 	*dst = *src;
1086 	return 0;
1087 }
1088 
1089 void set_task_stack_end_magic(struct task_struct *tsk)
1090 {
1091 	unsigned long *stackend;
1092 
1093 	stackend = end_of_stack(tsk);
1094 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1095 }
1096 
1097 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1098 {
1099 	struct task_struct *tsk;
1100 	int err;
1101 
1102 	if (node == NUMA_NO_NODE)
1103 		node = tsk_fork_get_node(orig);
1104 	tsk = alloc_task_struct_node(node);
1105 	if (!tsk)
1106 		return NULL;
1107 
1108 	err = arch_dup_task_struct(tsk, orig);
1109 	if (err)
1110 		goto free_tsk;
1111 
1112 	err = alloc_thread_stack_node(tsk, node);
1113 	if (err)
1114 		goto free_tsk;
1115 
1116 #ifdef CONFIG_THREAD_INFO_IN_TASK
1117 	refcount_set(&tsk->stack_refcount, 1);
1118 #endif
1119 	account_kernel_stack(tsk, 1);
1120 
1121 	err = scs_prepare(tsk, node);
1122 	if (err)
1123 		goto free_stack;
1124 
1125 #ifdef CONFIG_SECCOMP
1126 	/*
1127 	 * We must handle setting up seccomp filters once we're under
1128 	 * the sighand lock in case orig has changed between now and
1129 	 * then. Until then, filter must be NULL to avoid messing up
1130 	 * the usage counts on the error path calling free_task.
1131 	 */
1132 	tsk->seccomp.filter = NULL;
1133 #endif
1134 
1135 	setup_thread_stack(tsk, orig);
1136 	clear_user_return_notifier(tsk);
1137 	clear_tsk_need_resched(tsk);
1138 	set_task_stack_end_magic(tsk);
1139 	clear_syscall_work_syscall_user_dispatch(tsk);
1140 
1141 #ifdef CONFIG_STACKPROTECTOR
1142 	tsk->stack_canary = get_random_canary();
1143 #endif
1144 	if (orig->cpus_ptr == &orig->cpus_mask)
1145 		tsk->cpus_ptr = &tsk->cpus_mask;
1146 	dup_user_cpus_ptr(tsk, orig, node);
1147 
1148 	/*
1149 	 * One for the user space visible state that goes away when reaped.
1150 	 * One for the scheduler.
1151 	 */
1152 	refcount_set(&tsk->rcu_users, 2);
1153 	/* One for the rcu users */
1154 	refcount_set(&tsk->usage, 1);
1155 #ifdef CONFIG_BLK_DEV_IO_TRACE
1156 	tsk->btrace_seq = 0;
1157 #endif
1158 	tsk->splice_pipe = NULL;
1159 	tsk->task_frag.page = NULL;
1160 	tsk->wake_q.next = NULL;
1161 	tsk->worker_private = NULL;
1162 
1163 	kcov_task_init(tsk);
1164 	kmsan_task_create(tsk);
1165 	kmap_local_fork(tsk);
1166 
1167 #ifdef CONFIG_FAULT_INJECTION
1168 	tsk->fail_nth = 0;
1169 #endif
1170 
1171 #ifdef CONFIG_BLK_CGROUP
1172 	tsk->throttle_disk = NULL;
1173 	tsk->use_memdelay = 0;
1174 #endif
1175 
1176 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1177 	tsk->pasid_activated = 0;
1178 #endif
1179 
1180 #ifdef CONFIG_MEMCG
1181 	tsk->active_memcg = NULL;
1182 #endif
1183 
1184 #ifdef CONFIG_CPU_SUP_INTEL
1185 	tsk->reported_split_lock = 0;
1186 #endif
1187 
1188 #ifdef CONFIG_SCHED_MM_CID
1189 	tsk->mm_cid = -1;
1190 	tsk->last_mm_cid = -1;
1191 	tsk->mm_cid_active = 0;
1192 	tsk->migrate_from_cpu = -1;
1193 #endif
1194 	return tsk;
1195 
1196 free_stack:
1197 	exit_task_stack_account(tsk);
1198 	free_thread_stack(tsk);
1199 free_tsk:
1200 	free_task_struct(tsk);
1201 	return NULL;
1202 }
1203 
1204 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1205 
1206 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1207 
1208 static int __init coredump_filter_setup(char *s)
1209 {
1210 	default_dump_filter =
1211 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1212 		MMF_DUMP_FILTER_MASK;
1213 	return 1;
1214 }
1215 
1216 __setup("coredump_filter=", coredump_filter_setup);
1217 
1218 #include <linux/init_task.h>
1219 
1220 static void mm_init_aio(struct mm_struct *mm)
1221 {
1222 #ifdef CONFIG_AIO
1223 	spin_lock_init(&mm->ioctx_lock);
1224 	mm->ioctx_table = NULL;
1225 #endif
1226 }
1227 
1228 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1229 					   struct task_struct *p)
1230 {
1231 #ifdef CONFIG_MEMCG
1232 	if (mm->owner == p)
1233 		WRITE_ONCE(mm->owner, NULL);
1234 #endif
1235 }
1236 
1237 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1238 {
1239 #ifdef CONFIG_MEMCG
1240 	mm->owner = p;
1241 #endif
1242 }
1243 
1244 static void mm_init_uprobes_state(struct mm_struct *mm)
1245 {
1246 #ifdef CONFIG_UPROBES
1247 	mm->uprobes_state.xol_area = NULL;
1248 #endif
1249 }
1250 
1251 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1252 	struct user_namespace *user_ns)
1253 {
1254 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1255 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1256 	atomic_set(&mm->mm_users, 1);
1257 	atomic_set(&mm->mm_count, 1);
1258 	seqcount_init(&mm->write_protect_seq);
1259 	mmap_init_lock(mm);
1260 	INIT_LIST_HEAD(&mm->mmlist);
1261 #ifdef CONFIG_PER_VMA_LOCK
1262 	mm->mm_lock_seq = 0;
1263 #endif
1264 	mm_pgtables_bytes_init(mm);
1265 	mm->map_count = 0;
1266 	mm->locked_vm = 0;
1267 	atomic64_set(&mm->pinned_vm, 0);
1268 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1269 	spin_lock_init(&mm->page_table_lock);
1270 	spin_lock_init(&mm->arg_lock);
1271 	mm_init_cpumask(mm);
1272 	mm_init_aio(mm);
1273 	mm_init_owner(mm, p);
1274 	mm_pasid_init(mm);
1275 	RCU_INIT_POINTER(mm->exe_file, NULL);
1276 	mmu_notifier_subscriptions_init(mm);
1277 	init_tlb_flush_pending(mm);
1278 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1279 	mm->pmd_huge_pte = NULL;
1280 #endif
1281 	mm_init_uprobes_state(mm);
1282 	hugetlb_count_init(mm);
1283 
1284 	if (current->mm) {
1285 		mm->flags = mmf_init_flags(current->mm->flags);
1286 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1287 	} else {
1288 		mm->flags = default_dump_filter;
1289 		mm->def_flags = 0;
1290 	}
1291 
1292 	if (mm_alloc_pgd(mm))
1293 		goto fail_nopgd;
1294 
1295 	if (init_new_context(p, mm))
1296 		goto fail_nocontext;
1297 
1298 	if (mm_alloc_cid(mm))
1299 		goto fail_cid;
1300 
1301 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1302 				     NR_MM_COUNTERS))
1303 		goto fail_pcpu;
1304 
1305 	mm->user_ns = get_user_ns(user_ns);
1306 	lru_gen_init_mm(mm);
1307 	return mm;
1308 
1309 fail_pcpu:
1310 	mm_destroy_cid(mm);
1311 fail_cid:
1312 	destroy_context(mm);
1313 fail_nocontext:
1314 	mm_free_pgd(mm);
1315 fail_nopgd:
1316 	free_mm(mm);
1317 	return NULL;
1318 }
1319 
1320 /*
1321  * Allocate and initialize an mm_struct.
1322  */
1323 struct mm_struct *mm_alloc(void)
1324 {
1325 	struct mm_struct *mm;
1326 
1327 	mm = allocate_mm();
1328 	if (!mm)
1329 		return NULL;
1330 
1331 	memset(mm, 0, sizeof(*mm));
1332 	return mm_init(mm, current, current_user_ns());
1333 }
1334 
1335 static inline void __mmput(struct mm_struct *mm)
1336 {
1337 	VM_BUG_ON(atomic_read(&mm->mm_users));
1338 
1339 	uprobe_clear_state(mm);
1340 	exit_aio(mm);
1341 	ksm_exit(mm);
1342 	khugepaged_exit(mm); /* must run before exit_mmap */
1343 	exit_mmap(mm);
1344 	mm_put_huge_zero_page(mm);
1345 	set_mm_exe_file(mm, NULL);
1346 	if (!list_empty(&mm->mmlist)) {
1347 		spin_lock(&mmlist_lock);
1348 		list_del(&mm->mmlist);
1349 		spin_unlock(&mmlist_lock);
1350 	}
1351 	if (mm->binfmt)
1352 		module_put(mm->binfmt->module);
1353 	lru_gen_del_mm(mm);
1354 	mmdrop(mm);
1355 }
1356 
1357 /*
1358  * Decrement the use count and release all resources for an mm.
1359  */
1360 void mmput(struct mm_struct *mm)
1361 {
1362 	might_sleep();
1363 
1364 	if (atomic_dec_and_test(&mm->mm_users))
1365 		__mmput(mm);
1366 }
1367 EXPORT_SYMBOL_GPL(mmput);
1368 
1369 #ifdef CONFIG_MMU
1370 static void mmput_async_fn(struct work_struct *work)
1371 {
1372 	struct mm_struct *mm = container_of(work, struct mm_struct,
1373 					    async_put_work);
1374 
1375 	__mmput(mm);
1376 }
1377 
1378 void mmput_async(struct mm_struct *mm)
1379 {
1380 	if (atomic_dec_and_test(&mm->mm_users)) {
1381 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1382 		schedule_work(&mm->async_put_work);
1383 	}
1384 }
1385 EXPORT_SYMBOL_GPL(mmput_async);
1386 #endif
1387 
1388 /**
1389  * set_mm_exe_file - change a reference to the mm's executable file
1390  * @mm: The mm to change.
1391  * @new_exe_file: The new file to use.
1392  *
1393  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1394  *
1395  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1396  * invocations: in mmput() nobody alive left, in execve it happens before
1397  * the new mm is made visible to anyone.
1398  *
1399  * Can only fail if new_exe_file != NULL.
1400  */
1401 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1402 {
1403 	struct file *old_exe_file;
1404 
1405 	/*
1406 	 * It is safe to dereference the exe_file without RCU as
1407 	 * this function is only called if nobody else can access
1408 	 * this mm -- see comment above for justification.
1409 	 */
1410 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1411 
1412 	if (new_exe_file) {
1413 		/*
1414 		 * We expect the caller (i.e., sys_execve) to already denied
1415 		 * write access, so this is unlikely to fail.
1416 		 */
1417 		if (unlikely(deny_write_access(new_exe_file)))
1418 			return -EACCES;
1419 		get_file(new_exe_file);
1420 	}
1421 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1422 	if (old_exe_file) {
1423 		allow_write_access(old_exe_file);
1424 		fput(old_exe_file);
1425 	}
1426 	return 0;
1427 }
1428 
1429 /**
1430  * replace_mm_exe_file - replace a reference to the mm's executable file
1431  * @mm: The mm to change.
1432  * @new_exe_file: The new file to use.
1433  *
1434  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1435  *
1436  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1437  */
1438 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1439 {
1440 	struct vm_area_struct *vma;
1441 	struct file *old_exe_file;
1442 	int ret = 0;
1443 
1444 	/* Forbid mm->exe_file change if old file still mapped. */
1445 	old_exe_file = get_mm_exe_file(mm);
1446 	if (old_exe_file) {
1447 		VMA_ITERATOR(vmi, mm, 0);
1448 		mmap_read_lock(mm);
1449 		for_each_vma(vmi, vma) {
1450 			if (!vma->vm_file)
1451 				continue;
1452 			if (path_equal(&vma->vm_file->f_path,
1453 				       &old_exe_file->f_path)) {
1454 				ret = -EBUSY;
1455 				break;
1456 			}
1457 		}
1458 		mmap_read_unlock(mm);
1459 		fput(old_exe_file);
1460 		if (ret)
1461 			return ret;
1462 	}
1463 
1464 	ret = deny_write_access(new_exe_file);
1465 	if (ret)
1466 		return -EACCES;
1467 	get_file(new_exe_file);
1468 
1469 	/* set the new file */
1470 	mmap_write_lock(mm);
1471 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1472 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1473 	mmap_write_unlock(mm);
1474 
1475 	if (old_exe_file) {
1476 		allow_write_access(old_exe_file);
1477 		fput(old_exe_file);
1478 	}
1479 	return 0;
1480 }
1481 
1482 /**
1483  * get_mm_exe_file - acquire a reference to the mm's executable file
1484  * @mm: The mm of interest.
1485  *
1486  * Returns %NULL if mm has no associated executable file.
1487  * User must release file via fput().
1488  */
1489 struct file *get_mm_exe_file(struct mm_struct *mm)
1490 {
1491 	struct file *exe_file;
1492 
1493 	rcu_read_lock();
1494 	exe_file = get_file_rcu(&mm->exe_file);
1495 	rcu_read_unlock();
1496 	return exe_file;
1497 }
1498 
1499 /**
1500  * get_task_exe_file - acquire a reference to the task's executable file
1501  * @task: The task.
1502  *
1503  * Returns %NULL if task's mm (if any) has no associated executable file or
1504  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1505  * User must release file via fput().
1506  */
1507 struct file *get_task_exe_file(struct task_struct *task)
1508 {
1509 	struct file *exe_file = NULL;
1510 	struct mm_struct *mm;
1511 
1512 	task_lock(task);
1513 	mm = task->mm;
1514 	if (mm) {
1515 		if (!(task->flags & PF_KTHREAD))
1516 			exe_file = get_mm_exe_file(mm);
1517 	}
1518 	task_unlock(task);
1519 	return exe_file;
1520 }
1521 
1522 /**
1523  * get_task_mm - acquire a reference to the task's mm
1524  * @task: The task.
1525  *
1526  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1527  * this kernel workthread has transiently adopted a user mm with use_mm,
1528  * to do its AIO) is not set and if so returns a reference to it, after
1529  * bumping up the use count.  User must release the mm via mmput()
1530  * after use.  Typically used by /proc and ptrace.
1531  */
1532 struct mm_struct *get_task_mm(struct task_struct *task)
1533 {
1534 	struct mm_struct *mm;
1535 
1536 	task_lock(task);
1537 	mm = task->mm;
1538 	if (mm) {
1539 		if (task->flags & PF_KTHREAD)
1540 			mm = NULL;
1541 		else
1542 			mmget(mm);
1543 	}
1544 	task_unlock(task);
1545 	return mm;
1546 }
1547 EXPORT_SYMBOL_GPL(get_task_mm);
1548 
1549 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1550 {
1551 	struct mm_struct *mm;
1552 	int err;
1553 
1554 	err =  down_read_killable(&task->signal->exec_update_lock);
1555 	if (err)
1556 		return ERR_PTR(err);
1557 
1558 	mm = get_task_mm(task);
1559 	if (mm && mm != current->mm &&
1560 			!ptrace_may_access(task, mode)) {
1561 		mmput(mm);
1562 		mm = ERR_PTR(-EACCES);
1563 	}
1564 	up_read(&task->signal->exec_update_lock);
1565 
1566 	return mm;
1567 }
1568 
1569 static void complete_vfork_done(struct task_struct *tsk)
1570 {
1571 	struct completion *vfork;
1572 
1573 	task_lock(tsk);
1574 	vfork = tsk->vfork_done;
1575 	if (likely(vfork)) {
1576 		tsk->vfork_done = NULL;
1577 		complete(vfork);
1578 	}
1579 	task_unlock(tsk);
1580 }
1581 
1582 static int wait_for_vfork_done(struct task_struct *child,
1583 				struct completion *vfork)
1584 {
1585 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1586 	int killed;
1587 
1588 	cgroup_enter_frozen();
1589 	killed = wait_for_completion_state(vfork, state);
1590 	cgroup_leave_frozen(false);
1591 
1592 	if (killed) {
1593 		task_lock(child);
1594 		child->vfork_done = NULL;
1595 		task_unlock(child);
1596 	}
1597 
1598 	put_task_struct(child);
1599 	return killed;
1600 }
1601 
1602 /* Please note the differences between mmput and mm_release.
1603  * mmput is called whenever we stop holding onto a mm_struct,
1604  * error success whatever.
1605  *
1606  * mm_release is called after a mm_struct has been removed
1607  * from the current process.
1608  *
1609  * This difference is important for error handling, when we
1610  * only half set up a mm_struct for a new process and need to restore
1611  * the old one.  Because we mmput the new mm_struct before
1612  * restoring the old one. . .
1613  * Eric Biederman 10 January 1998
1614  */
1615 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1616 {
1617 	uprobe_free_utask(tsk);
1618 
1619 	/* Get rid of any cached register state */
1620 	deactivate_mm(tsk, mm);
1621 
1622 	/*
1623 	 * Signal userspace if we're not exiting with a core dump
1624 	 * because we want to leave the value intact for debugging
1625 	 * purposes.
1626 	 */
1627 	if (tsk->clear_child_tid) {
1628 		if (atomic_read(&mm->mm_users) > 1) {
1629 			/*
1630 			 * We don't check the error code - if userspace has
1631 			 * not set up a proper pointer then tough luck.
1632 			 */
1633 			put_user(0, tsk->clear_child_tid);
1634 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1635 					1, NULL, NULL, 0, 0);
1636 		}
1637 		tsk->clear_child_tid = NULL;
1638 	}
1639 
1640 	/*
1641 	 * All done, finally we can wake up parent and return this mm to him.
1642 	 * Also kthread_stop() uses this completion for synchronization.
1643 	 */
1644 	if (tsk->vfork_done)
1645 		complete_vfork_done(tsk);
1646 }
1647 
1648 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1649 {
1650 	futex_exit_release(tsk);
1651 	mm_release(tsk, mm);
1652 }
1653 
1654 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1655 {
1656 	futex_exec_release(tsk);
1657 	mm_release(tsk, mm);
1658 }
1659 
1660 /**
1661  * dup_mm() - duplicates an existing mm structure
1662  * @tsk: the task_struct with which the new mm will be associated.
1663  * @oldmm: the mm to duplicate.
1664  *
1665  * Allocates a new mm structure and duplicates the provided @oldmm structure
1666  * content into it.
1667  *
1668  * Return: the duplicated mm or NULL on failure.
1669  */
1670 static struct mm_struct *dup_mm(struct task_struct *tsk,
1671 				struct mm_struct *oldmm)
1672 {
1673 	struct mm_struct *mm;
1674 	int err;
1675 
1676 	mm = allocate_mm();
1677 	if (!mm)
1678 		goto fail_nomem;
1679 
1680 	memcpy(mm, oldmm, sizeof(*mm));
1681 
1682 	if (!mm_init(mm, tsk, mm->user_ns))
1683 		goto fail_nomem;
1684 
1685 	err = dup_mmap(mm, oldmm);
1686 	if (err)
1687 		goto free_pt;
1688 
1689 	mm->hiwater_rss = get_mm_rss(mm);
1690 	mm->hiwater_vm = mm->total_vm;
1691 
1692 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1693 		goto free_pt;
1694 
1695 	return mm;
1696 
1697 free_pt:
1698 	/* don't put binfmt in mmput, we haven't got module yet */
1699 	mm->binfmt = NULL;
1700 	mm_init_owner(mm, NULL);
1701 	mmput(mm);
1702 
1703 fail_nomem:
1704 	return NULL;
1705 }
1706 
1707 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1708 {
1709 	struct mm_struct *mm, *oldmm;
1710 
1711 	tsk->min_flt = tsk->maj_flt = 0;
1712 	tsk->nvcsw = tsk->nivcsw = 0;
1713 #ifdef CONFIG_DETECT_HUNG_TASK
1714 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1715 	tsk->last_switch_time = 0;
1716 #endif
1717 
1718 	tsk->mm = NULL;
1719 	tsk->active_mm = NULL;
1720 
1721 	/*
1722 	 * Are we cloning a kernel thread?
1723 	 *
1724 	 * We need to steal a active VM for that..
1725 	 */
1726 	oldmm = current->mm;
1727 	if (!oldmm)
1728 		return 0;
1729 
1730 	if (clone_flags & CLONE_VM) {
1731 		mmget(oldmm);
1732 		mm = oldmm;
1733 	} else {
1734 		mm = dup_mm(tsk, current->mm);
1735 		if (!mm)
1736 			return -ENOMEM;
1737 	}
1738 
1739 	tsk->mm = mm;
1740 	tsk->active_mm = mm;
1741 	sched_mm_cid_fork(tsk);
1742 	return 0;
1743 }
1744 
1745 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1746 {
1747 	struct fs_struct *fs = current->fs;
1748 	if (clone_flags & CLONE_FS) {
1749 		/* tsk->fs is already what we want */
1750 		spin_lock(&fs->lock);
1751 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1752 		if (fs->in_exec) {
1753 			spin_unlock(&fs->lock);
1754 			return -EAGAIN;
1755 		}
1756 		fs->users++;
1757 		spin_unlock(&fs->lock);
1758 		return 0;
1759 	}
1760 	tsk->fs = copy_fs_struct(fs);
1761 	if (!tsk->fs)
1762 		return -ENOMEM;
1763 	return 0;
1764 }
1765 
1766 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1767 		      int no_files)
1768 {
1769 	struct files_struct *oldf, *newf;
1770 	int error = 0;
1771 
1772 	/*
1773 	 * A background process may not have any files ...
1774 	 */
1775 	oldf = current->files;
1776 	if (!oldf)
1777 		goto out;
1778 
1779 	if (no_files) {
1780 		tsk->files = NULL;
1781 		goto out;
1782 	}
1783 
1784 	if (clone_flags & CLONE_FILES) {
1785 		atomic_inc(&oldf->count);
1786 		goto out;
1787 	}
1788 
1789 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1790 	if (!newf)
1791 		goto out;
1792 
1793 	tsk->files = newf;
1794 	error = 0;
1795 out:
1796 	return error;
1797 }
1798 
1799 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1800 {
1801 	struct sighand_struct *sig;
1802 
1803 	if (clone_flags & CLONE_SIGHAND) {
1804 		refcount_inc(&current->sighand->count);
1805 		return 0;
1806 	}
1807 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1808 	RCU_INIT_POINTER(tsk->sighand, sig);
1809 	if (!sig)
1810 		return -ENOMEM;
1811 
1812 	refcount_set(&sig->count, 1);
1813 	spin_lock_irq(&current->sighand->siglock);
1814 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1815 	spin_unlock_irq(&current->sighand->siglock);
1816 
1817 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1818 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1819 		flush_signal_handlers(tsk, 0);
1820 
1821 	return 0;
1822 }
1823 
1824 void __cleanup_sighand(struct sighand_struct *sighand)
1825 {
1826 	if (refcount_dec_and_test(&sighand->count)) {
1827 		signalfd_cleanup(sighand);
1828 		/*
1829 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1830 		 * without an RCU grace period, see __lock_task_sighand().
1831 		 */
1832 		kmem_cache_free(sighand_cachep, sighand);
1833 	}
1834 }
1835 
1836 /*
1837  * Initialize POSIX timer handling for a thread group.
1838  */
1839 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1840 {
1841 	struct posix_cputimers *pct = &sig->posix_cputimers;
1842 	unsigned long cpu_limit;
1843 
1844 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1845 	posix_cputimers_group_init(pct, cpu_limit);
1846 }
1847 
1848 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1849 {
1850 	struct signal_struct *sig;
1851 
1852 	if (clone_flags & CLONE_THREAD)
1853 		return 0;
1854 
1855 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1856 	tsk->signal = sig;
1857 	if (!sig)
1858 		return -ENOMEM;
1859 
1860 	sig->nr_threads = 1;
1861 	sig->quick_threads = 1;
1862 	atomic_set(&sig->live, 1);
1863 	refcount_set(&sig->sigcnt, 1);
1864 
1865 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1866 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1867 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1868 
1869 	init_waitqueue_head(&sig->wait_chldexit);
1870 	sig->curr_target = tsk;
1871 	init_sigpending(&sig->shared_pending);
1872 	INIT_HLIST_HEAD(&sig->multiprocess);
1873 	seqlock_init(&sig->stats_lock);
1874 	prev_cputime_init(&sig->prev_cputime);
1875 
1876 #ifdef CONFIG_POSIX_TIMERS
1877 	INIT_LIST_HEAD(&sig->posix_timers);
1878 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1879 	sig->real_timer.function = it_real_fn;
1880 #endif
1881 
1882 	task_lock(current->group_leader);
1883 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1884 	task_unlock(current->group_leader);
1885 
1886 	posix_cpu_timers_init_group(sig);
1887 
1888 	tty_audit_fork(sig);
1889 	sched_autogroup_fork(sig);
1890 
1891 	sig->oom_score_adj = current->signal->oom_score_adj;
1892 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1893 
1894 	mutex_init(&sig->cred_guard_mutex);
1895 	init_rwsem(&sig->exec_update_lock);
1896 
1897 	return 0;
1898 }
1899 
1900 static void copy_seccomp(struct task_struct *p)
1901 {
1902 #ifdef CONFIG_SECCOMP
1903 	/*
1904 	 * Must be called with sighand->lock held, which is common to
1905 	 * all threads in the group. Holding cred_guard_mutex is not
1906 	 * needed because this new task is not yet running and cannot
1907 	 * be racing exec.
1908 	 */
1909 	assert_spin_locked(&current->sighand->siglock);
1910 
1911 	/* Ref-count the new filter user, and assign it. */
1912 	get_seccomp_filter(current);
1913 	p->seccomp = current->seccomp;
1914 
1915 	/*
1916 	 * Explicitly enable no_new_privs here in case it got set
1917 	 * between the task_struct being duplicated and holding the
1918 	 * sighand lock. The seccomp state and nnp must be in sync.
1919 	 */
1920 	if (task_no_new_privs(current))
1921 		task_set_no_new_privs(p);
1922 
1923 	/*
1924 	 * If the parent gained a seccomp mode after copying thread
1925 	 * flags and between before we held the sighand lock, we have
1926 	 * to manually enable the seccomp thread flag here.
1927 	 */
1928 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1929 		set_task_syscall_work(p, SECCOMP);
1930 #endif
1931 }
1932 
1933 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1934 {
1935 	current->clear_child_tid = tidptr;
1936 
1937 	return task_pid_vnr(current);
1938 }
1939 
1940 static void rt_mutex_init_task(struct task_struct *p)
1941 {
1942 	raw_spin_lock_init(&p->pi_lock);
1943 #ifdef CONFIG_RT_MUTEXES
1944 	p->pi_waiters = RB_ROOT_CACHED;
1945 	p->pi_top_task = NULL;
1946 	p->pi_blocked_on = NULL;
1947 #endif
1948 }
1949 
1950 static inline void init_task_pid_links(struct task_struct *task)
1951 {
1952 	enum pid_type type;
1953 
1954 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1955 		INIT_HLIST_NODE(&task->pid_links[type]);
1956 }
1957 
1958 static inline void
1959 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1960 {
1961 	if (type == PIDTYPE_PID)
1962 		task->thread_pid = pid;
1963 	else
1964 		task->signal->pids[type] = pid;
1965 }
1966 
1967 static inline void rcu_copy_process(struct task_struct *p)
1968 {
1969 #ifdef CONFIG_PREEMPT_RCU
1970 	p->rcu_read_lock_nesting = 0;
1971 	p->rcu_read_unlock_special.s = 0;
1972 	p->rcu_blocked_node = NULL;
1973 	INIT_LIST_HEAD(&p->rcu_node_entry);
1974 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1975 #ifdef CONFIG_TASKS_RCU
1976 	p->rcu_tasks_holdout = false;
1977 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1978 	p->rcu_tasks_idle_cpu = -1;
1979 #endif /* #ifdef CONFIG_TASKS_RCU */
1980 #ifdef CONFIG_TASKS_TRACE_RCU
1981 	p->trc_reader_nesting = 0;
1982 	p->trc_reader_special.s = 0;
1983 	INIT_LIST_HEAD(&p->trc_holdout_list);
1984 	INIT_LIST_HEAD(&p->trc_blkd_node);
1985 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1986 }
1987 
1988 struct pid *pidfd_pid(const struct file *file)
1989 {
1990 	if (file->f_op == &pidfd_fops)
1991 		return file->private_data;
1992 
1993 	return ERR_PTR(-EBADF);
1994 }
1995 
1996 static int pidfd_release(struct inode *inode, struct file *file)
1997 {
1998 	struct pid *pid = file->private_data;
1999 
2000 	file->private_data = NULL;
2001 	put_pid(pid);
2002 	return 0;
2003 }
2004 
2005 #ifdef CONFIG_PROC_FS
2006 /**
2007  * pidfd_show_fdinfo - print information about a pidfd
2008  * @m: proc fdinfo file
2009  * @f: file referencing a pidfd
2010  *
2011  * Pid:
2012  * This function will print the pid that a given pidfd refers to in the
2013  * pid namespace of the procfs instance.
2014  * If the pid namespace of the process is not a descendant of the pid
2015  * namespace of the procfs instance 0 will be shown as its pid. This is
2016  * similar to calling getppid() on a process whose parent is outside of
2017  * its pid namespace.
2018  *
2019  * NSpid:
2020  * If pid namespaces are supported then this function will also print
2021  * the pid of a given pidfd refers to for all descendant pid namespaces
2022  * starting from the current pid namespace of the instance, i.e. the
2023  * Pid field and the first entry in the NSpid field will be identical.
2024  * If the pid namespace of the process is not a descendant of the pid
2025  * namespace of the procfs instance 0 will be shown as its first NSpid
2026  * entry and no others will be shown.
2027  * Note that this differs from the Pid and NSpid fields in
2028  * /proc/<pid>/status where Pid and NSpid are always shown relative to
2029  * the  pid namespace of the procfs instance. The difference becomes
2030  * obvious when sending around a pidfd between pid namespaces from a
2031  * different branch of the tree, i.e. where no ancestral relation is
2032  * present between the pid namespaces:
2033  * - create two new pid namespaces ns1 and ns2 in the initial pid
2034  *   namespace (also take care to create new mount namespaces in the
2035  *   new pid namespace and mount procfs)
2036  * - create a process with a pidfd in ns1
2037  * - send pidfd from ns1 to ns2
2038  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2039  *   have exactly one entry, which is 0
2040  */
2041 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2042 {
2043 	struct pid *pid = f->private_data;
2044 	struct pid_namespace *ns;
2045 	pid_t nr = -1;
2046 
2047 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
2048 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
2049 		nr = pid_nr_ns(pid, ns);
2050 	}
2051 
2052 	seq_put_decimal_ll(m, "Pid:\t", nr);
2053 
2054 #ifdef CONFIG_PID_NS
2055 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2056 	if (nr > 0) {
2057 		int i;
2058 
2059 		/* If nr is non-zero it means that 'pid' is valid and that
2060 		 * ns, i.e. the pid namespace associated with the procfs
2061 		 * instance, is in the pid namespace hierarchy of pid.
2062 		 * Start at one below the already printed level.
2063 		 */
2064 		for (i = ns->level + 1; i <= pid->level; i++)
2065 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
2066 	}
2067 #endif
2068 	seq_putc(m, '\n');
2069 }
2070 #endif
2071 
2072 /*
2073  * Poll support for process exit notification.
2074  */
2075 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
2076 {
2077 	struct pid *pid = file->private_data;
2078 	__poll_t poll_flags = 0;
2079 
2080 	poll_wait(file, &pid->wait_pidfd, pts);
2081 
2082 	/*
2083 	 * Inform pollers only when the whole thread group exits.
2084 	 * If the thread group leader exits before all other threads in the
2085 	 * group, then poll(2) should block, similar to the wait(2) family.
2086 	 */
2087 	if (thread_group_exited(pid))
2088 		poll_flags = EPOLLIN | EPOLLRDNORM;
2089 
2090 	return poll_flags;
2091 }
2092 
2093 const struct file_operations pidfd_fops = {
2094 	.release = pidfd_release,
2095 	.poll = pidfd_poll,
2096 #ifdef CONFIG_PROC_FS
2097 	.show_fdinfo = pidfd_show_fdinfo,
2098 #endif
2099 };
2100 
2101 /**
2102  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2103  * @pid:   the struct pid for which to create a pidfd
2104  * @flags: flags of the new @pidfd
2105  * @ret: Where to return the file for the pidfd.
2106  *
2107  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2108  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2109  *
2110  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2111  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2112  * pidfd file are prepared.
2113  *
2114  * If this function returns successfully the caller is responsible to either
2115  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2116  * order to install the pidfd into its file descriptor table or they must use
2117  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2118  * respectively.
2119  *
2120  * This function is useful when a pidfd must already be reserved but there
2121  * might still be points of failure afterwards and the caller wants to ensure
2122  * that no pidfd is leaked into its file descriptor table.
2123  *
2124  * Return: On success, a reserved pidfd is returned from the function and a new
2125  *         pidfd file is returned in the last argument to the function. On
2126  *         error, a negative error code is returned from the function and the
2127  *         last argument remains unchanged.
2128  */
2129 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2130 {
2131 	int pidfd;
2132 	struct file *pidfd_file;
2133 
2134 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2135 		return -EINVAL;
2136 
2137 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2138 	if (pidfd < 0)
2139 		return pidfd;
2140 
2141 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2142 					flags | O_RDWR | O_CLOEXEC);
2143 	if (IS_ERR(pidfd_file)) {
2144 		put_unused_fd(pidfd);
2145 		return PTR_ERR(pidfd_file);
2146 	}
2147 	get_pid(pid); /* held by pidfd_file now */
2148 	*ret = pidfd_file;
2149 	return pidfd;
2150 }
2151 
2152 /**
2153  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2154  * @pid:   the struct pid for which to create a pidfd
2155  * @flags: flags of the new @pidfd
2156  * @ret: Where to return the pidfd.
2157  *
2158  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2159  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2160  *
2161  * The helper verifies that @pid is used as a thread group leader.
2162  *
2163  * If this function returns successfully the caller is responsible to either
2164  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2165  * order to install the pidfd into its file descriptor table or they must use
2166  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2167  * respectively.
2168  *
2169  * This function is useful when a pidfd must already be reserved but there
2170  * might still be points of failure afterwards and the caller wants to ensure
2171  * that no pidfd is leaked into its file descriptor table.
2172  *
2173  * Return: On success, a reserved pidfd is returned from the function and a new
2174  *         pidfd file is returned in the last argument to the function. On
2175  *         error, a negative error code is returned from the function and the
2176  *         last argument remains unchanged.
2177  */
2178 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2179 {
2180 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2181 		return -EINVAL;
2182 
2183 	return __pidfd_prepare(pid, flags, ret);
2184 }
2185 
2186 static void __delayed_free_task(struct rcu_head *rhp)
2187 {
2188 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2189 
2190 	free_task(tsk);
2191 }
2192 
2193 static __always_inline void delayed_free_task(struct task_struct *tsk)
2194 {
2195 	if (IS_ENABLED(CONFIG_MEMCG))
2196 		call_rcu(&tsk->rcu, __delayed_free_task);
2197 	else
2198 		free_task(tsk);
2199 }
2200 
2201 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2202 {
2203 	/* Skip if kernel thread */
2204 	if (!tsk->mm)
2205 		return;
2206 
2207 	/* Skip if spawning a thread or using vfork */
2208 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2209 		return;
2210 
2211 	/* We need to synchronize with __set_oom_adj */
2212 	mutex_lock(&oom_adj_mutex);
2213 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2214 	/* Update the values in case they were changed after copy_signal */
2215 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2216 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2217 	mutex_unlock(&oom_adj_mutex);
2218 }
2219 
2220 #ifdef CONFIG_RV
2221 static void rv_task_fork(struct task_struct *p)
2222 {
2223 	int i;
2224 
2225 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2226 		p->rv[i].da_mon.monitoring = false;
2227 }
2228 #else
2229 #define rv_task_fork(p) do {} while (0)
2230 #endif
2231 
2232 /*
2233  * This creates a new process as a copy of the old one,
2234  * but does not actually start it yet.
2235  *
2236  * It copies the registers, and all the appropriate
2237  * parts of the process environment (as per the clone
2238  * flags). The actual kick-off is left to the caller.
2239  */
2240 __latent_entropy struct task_struct *copy_process(
2241 					struct pid *pid,
2242 					int trace,
2243 					int node,
2244 					struct kernel_clone_args *args)
2245 {
2246 	int pidfd = -1, retval;
2247 	struct task_struct *p;
2248 	struct multiprocess_signals delayed;
2249 	struct file *pidfile = NULL;
2250 	const u64 clone_flags = args->flags;
2251 	struct nsproxy *nsp = current->nsproxy;
2252 
2253 	/*
2254 	 * Don't allow sharing the root directory with processes in a different
2255 	 * namespace
2256 	 */
2257 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2258 		return ERR_PTR(-EINVAL);
2259 
2260 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2261 		return ERR_PTR(-EINVAL);
2262 
2263 	/*
2264 	 * Thread groups must share signals as well, and detached threads
2265 	 * can only be started up within the thread group.
2266 	 */
2267 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2268 		return ERR_PTR(-EINVAL);
2269 
2270 	/*
2271 	 * Shared signal handlers imply shared VM. By way of the above,
2272 	 * thread groups also imply shared VM. Blocking this case allows
2273 	 * for various simplifications in other code.
2274 	 */
2275 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2276 		return ERR_PTR(-EINVAL);
2277 
2278 	/*
2279 	 * Siblings of global init remain as zombies on exit since they are
2280 	 * not reaped by their parent (swapper). To solve this and to avoid
2281 	 * multi-rooted process trees, prevent global and container-inits
2282 	 * from creating siblings.
2283 	 */
2284 	if ((clone_flags & CLONE_PARENT) &&
2285 				current->signal->flags & SIGNAL_UNKILLABLE)
2286 		return ERR_PTR(-EINVAL);
2287 
2288 	/*
2289 	 * If the new process will be in a different pid or user namespace
2290 	 * do not allow it to share a thread group with the forking task.
2291 	 */
2292 	if (clone_flags & CLONE_THREAD) {
2293 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2294 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2295 			return ERR_PTR(-EINVAL);
2296 	}
2297 
2298 	if (clone_flags & CLONE_PIDFD) {
2299 		/*
2300 		 * - CLONE_DETACHED is blocked so that we can potentially
2301 		 *   reuse it later for CLONE_PIDFD.
2302 		 * - CLONE_THREAD is blocked until someone really needs it.
2303 		 */
2304 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2305 			return ERR_PTR(-EINVAL);
2306 	}
2307 
2308 	/*
2309 	 * Force any signals received before this point to be delivered
2310 	 * before the fork happens.  Collect up signals sent to multiple
2311 	 * processes that happen during the fork and delay them so that
2312 	 * they appear to happen after the fork.
2313 	 */
2314 	sigemptyset(&delayed.signal);
2315 	INIT_HLIST_NODE(&delayed.node);
2316 
2317 	spin_lock_irq(&current->sighand->siglock);
2318 	if (!(clone_flags & CLONE_THREAD))
2319 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2320 	recalc_sigpending();
2321 	spin_unlock_irq(&current->sighand->siglock);
2322 	retval = -ERESTARTNOINTR;
2323 	if (task_sigpending(current))
2324 		goto fork_out;
2325 
2326 	retval = -ENOMEM;
2327 	p = dup_task_struct(current, node);
2328 	if (!p)
2329 		goto fork_out;
2330 	p->flags &= ~PF_KTHREAD;
2331 	if (args->kthread)
2332 		p->flags |= PF_KTHREAD;
2333 	if (args->user_worker) {
2334 		/*
2335 		 * Mark us a user worker, and block any signal that isn't
2336 		 * fatal or STOP
2337 		 */
2338 		p->flags |= PF_USER_WORKER;
2339 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2340 	}
2341 	if (args->io_thread)
2342 		p->flags |= PF_IO_WORKER;
2343 
2344 	if (args->name)
2345 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2346 
2347 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2348 	/*
2349 	 * Clear TID on mm_release()?
2350 	 */
2351 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2352 
2353 	ftrace_graph_init_task(p);
2354 
2355 	rt_mutex_init_task(p);
2356 
2357 	lockdep_assert_irqs_enabled();
2358 #ifdef CONFIG_PROVE_LOCKING
2359 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2360 #endif
2361 	retval = copy_creds(p, clone_flags);
2362 	if (retval < 0)
2363 		goto bad_fork_free;
2364 
2365 	retval = -EAGAIN;
2366 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2367 		if (p->real_cred->user != INIT_USER &&
2368 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2369 			goto bad_fork_cleanup_count;
2370 	}
2371 	current->flags &= ~PF_NPROC_EXCEEDED;
2372 
2373 	/*
2374 	 * If multiple threads are within copy_process(), then this check
2375 	 * triggers too late. This doesn't hurt, the check is only there
2376 	 * to stop root fork bombs.
2377 	 */
2378 	retval = -EAGAIN;
2379 	if (data_race(nr_threads >= max_threads))
2380 		goto bad_fork_cleanup_count;
2381 
2382 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2383 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2384 	p->flags |= PF_FORKNOEXEC;
2385 	INIT_LIST_HEAD(&p->children);
2386 	INIT_LIST_HEAD(&p->sibling);
2387 	rcu_copy_process(p);
2388 	p->vfork_done = NULL;
2389 	spin_lock_init(&p->alloc_lock);
2390 
2391 	init_sigpending(&p->pending);
2392 
2393 	p->utime = p->stime = p->gtime = 0;
2394 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2395 	p->utimescaled = p->stimescaled = 0;
2396 #endif
2397 	prev_cputime_init(&p->prev_cputime);
2398 
2399 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2400 	seqcount_init(&p->vtime.seqcount);
2401 	p->vtime.starttime = 0;
2402 	p->vtime.state = VTIME_INACTIVE;
2403 #endif
2404 
2405 #ifdef CONFIG_IO_URING
2406 	p->io_uring = NULL;
2407 #endif
2408 
2409 	p->default_timer_slack_ns = current->timer_slack_ns;
2410 
2411 #ifdef CONFIG_PSI
2412 	p->psi_flags = 0;
2413 #endif
2414 
2415 	task_io_accounting_init(&p->ioac);
2416 	acct_clear_integrals(p);
2417 
2418 	posix_cputimers_init(&p->posix_cputimers);
2419 
2420 	p->io_context = NULL;
2421 	audit_set_context(p, NULL);
2422 	cgroup_fork(p);
2423 	if (args->kthread) {
2424 		if (!set_kthread_struct(p))
2425 			goto bad_fork_cleanup_delayacct;
2426 	}
2427 #ifdef CONFIG_NUMA
2428 	p->mempolicy = mpol_dup(p->mempolicy);
2429 	if (IS_ERR(p->mempolicy)) {
2430 		retval = PTR_ERR(p->mempolicy);
2431 		p->mempolicy = NULL;
2432 		goto bad_fork_cleanup_delayacct;
2433 	}
2434 #endif
2435 #ifdef CONFIG_CPUSETS
2436 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2437 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2438 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2439 #endif
2440 #ifdef CONFIG_TRACE_IRQFLAGS
2441 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2442 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2443 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2444 	p->softirqs_enabled		= 1;
2445 	p->softirq_context		= 0;
2446 #endif
2447 
2448 	p->pagefault_disabled = 0;
2449 
2450 #ifdef CONFIG_LOCKDEP
2451 	lockdep_init_task(p);
2452 #endif
2453 
2454 #ifdef CONFIG_DEBUG_MUTEXES
2455 	p->blocked_on = NULL; /* not blocked yet */
2456 #endif
2457 #ifdef CONFIG_BCACHE
2458 	p->sequential_io	= 0;
2459 	p->sequential_io_avg	= 0;
2460 #endif
2461 #ifdef CONFIG_BPF_SYSCALL
2462 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2463 	p->bpf_ctx = NULL;
2464 #endif
2465 
2466 	/* Perform scheduler related setup. Assign this task to a CPU. */
2467 	retval = sched_fork(clone_flags, p);
2468 	if (retval)
2469 		goto bad_fork_cleanup_policy;
2470 
2471 	retval = perf_event_init_task(p, clone_flags);
2472 	if (retval)
2473 		goto bad_fork_cleanup_policy;
2474 	retval = audit_alloc(p);
2475 	if (retval)
2476 		goto bad_fork_cleanup_perf;
2477 	/* copy all the process information */
2478 	shm_init_task(p);
2479 	retval = security_task_alloc(p, clone_flags);
2480 	if (retval)
2481 		goto bad_fork_cleanup_audit;
2482 	retval = copy_semundo(clone_flags, p);
2483 	if (retval)
2484 		goto bad_fork_cleanup_security;
2485 	retval = copy_files(clone_flags, p, args->no_files);
2486 	if (retval)
2487 		goto bad_fork_cleanup_semundo;
2488 	retval = copy_fs(clone_flags, p);
2489 	if (retval)
2490 		goto bad_fork_cleanup_files;
2491 	retval = copy_sighand(clone_flags, p);
2492 	if (retval)
2493 		goto bad_fork_cleanup_fs;
2494 	retval = copy_signal(clone_flags, p);
2495 	if (retval)
2496 		goto bad_fork_cleanup_sighand;
2497 	retval = copy_mm(clone_flags, p);
2498 	if (retval)
2499 		goto bad_fork_cleanup_signal;
2500 	retval = copy_namespaces(clone_flags, p);
2501 	if (retval)
2502 		goto bad_fork_cleanup_mm;
2503 	retval = copy_io(clone_flags, p);
2504 	if (retval)
2505 		goto bad_fork_cleanup_namespaces;
2506 	retval = copy_thread(p, args);
2507 	if (retval)
2508 		goto bad_fork_cleanup_io;
2509 
2510 	stackleak_task_init(p);
2511 
2512 	if (pid != &init_struct_pid) {
2513 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2514 				args->set_tid_size);
2515 		if (IS_ERR(pid)) {
2516 			retval = PTR_ERR(pid);
2517 			goto bad_fork_cleanup_thread;
2518 		}
2519 	}
2520 
2521 	/*
2522 	 * This has to happen after we've potentially unshared the file
2523 	 * descriptor table (so that the pidfd doesn't leak into the child
2524 	 * if the fd table isn't shared).
2525 	 */
2526 	if (clone_flags & CLONE_PIDFD) {
2527 		/* Note that no task has been attached to @pid yet. */
2528 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2529 		if (retval < 0)
2530 			goto bad_fork_free_pid;
2531 		pidfd = retval;
2532 
2533 		retval = put_user(pidfd, args->pidfd);
2534 		if (retval)
2535 			goto bad_fork_put_pidfd;
2536 	}
2537 
2538 #ifdef CONFIG_BLOCK
2539 	p->plug = NULL;
2540 #endif
2541 	futex_init_task(p);
2542 
2543 	/*
2544 	 * sigaltstack should be cleared when sharing the same VM
2545 	 */
2546 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2547 		sas_ss_reset(p);
2548 
2549 	/*
2550 	 * Syscall tracing and stepping should be turned off in the
2551 	 * child regardless of CLONE_PTRACE.
2552 	 */
2553 	user_disable_single_step(p);
2554 	clear_task_syscall_work(p, SYSCALL_TRACE);
2555 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2556 	clear_task_syscall_work(p, SYSCALL_EMU);
2557 #endif
2558 	clear_tsk_latency_tracing(p);
2559 
2560 	/* ok, now we should be set up.. */
2561 	p->pid = pid_nr(pid);
2562 	if (clone_flags & CLONE_THREAD) {
2563 		p->group_leader = current->group_leader;
2564 		p->tgid = current->tgid;
2565 	} else {
2566 		p->group_leader = p;
2567 		p->tgid = p->pid;
2568 	}
2569 
2570 	p->nr_dirtied = 0;
2571 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2572 	p->dirty_paused_when = 0;
2573 
2574 	p->pdeath_signal = 0;
2575 	p->task_works = NULL;
2576 	clear_posix_cputimers_work(p);
2577 
2578 #ifdef CONFIG_KRETPROBES
2579 	p->kretprobe_instances.first = NULL;
2580 #endif
2581 #ifdef CONFIG_RETHOOK
2582 	p->rethooks.first = NULL;
2583 #endif
2584 
2585 	/*
2586 	 * Ensure that the cgroup subsystem policies allow the new process to be
2587 	 * forked. It should be noted that the new process's css_set can be changed
2588 	 * between here and cgroup_post_fork() if an organisation operation is in
2589 	 * progress.
2590 	 */
2591 	retval = cgroup_can_fork(p, args);
2592 	if (retval)
2593 		goto bad_fork_put_pidfd;
2594 
2595 	/*
2596 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2597 	 * the new task on the correct runqueue. All this *before* the task
2598 	 * becomes visible.
2599 	 *
2600 	 * This isn't part of ->can_fork() because while the re-cloning is
2601 	 * cgroup specific, it unconditionally needs to place the task on a
2602 	 * runqueue.
2603 	 */
2604 	sched_cgroup_fork(p, args);
2605 
2606 	/*
2607 	 * From this point on we must avoid any synchronous user-space
2608 	 * communication until we take the tasklist-lock. In particular, we do
2609 	 * not want user-space to be able to predict the process start-time by
2610 	 * stalling fork(2) after we recorded the start_time but before it is
2611 	 * visible to the system.
2612 	 */
2613 
2614 	p->start_time = ktime_get_ns();
2615 	p->start_boottime = ktime_get_boottime_ns();
2616 
2617 	/*
2618 	 * Make it visible to the rest of the system, but dont wake it up yet.
2619 	 * Need tasklist lock for parent etc handling!
2620 	 */
2621 	write_lock_irq(&tasklist_lock);
2622 
2623 	/* CLONE_PARENT re-uses the old parent */
2624 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2625 		p->real_parent = current->real_parent;
2626 		p->parent_exec_id = current->parent_exec_id;
2627 		if (clone_flags & CLONE_THREAD)
2628 			p->exit_signal = -1;
2629 		else
2630 			p->exit_signal = current->group_leader->exit_signal;
2631 	} else {
2632 		p->real_parent = current;
2633 		p->parent_exec_id = current->self_exec_id;
2634 		p->exit_signal = args->exit_signal;
2635 	}
2636 
2637 	klp_copy_process(p);
2638 
2639 	sched_core_fork(p);
2640 
2641 	spin_lock(&current->sighand->siglock);
2642 
2643 	rv_task_fork(p);
2644 
2645 	rseq_fork(p, clone_flags);
2646 
2647 	/* Don't start children in a dying pid namespace */
2648 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2649 		retval = -ENOMEM;
2650 		goto bad_fork_cancel_cgroup;
2651 	}
2652 
2653 	/* Let kill terminate clone/fork in the middle */
2654 	if (fatal_signal_pending(current)) {
2655 		retval = -EINTR;
2656 		goto bad_fork_cancel_cgroup;
2657 	}
2658 
2659 	/* No more failure paths after this point. */
2660 
2661 	/*
2662 	 * Copy seccomp details explicitly here, in case they were changed
2663 	 * before holding sighand lock.
2664 	 */
2665 	copy_seccomp(p);
2666 
2667 	init_task_pid_links(p);
2668 	if (likely(p->pid)) {
2669 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2670 
2671 		init_task_pid(p, PIDTYPE_PID, pid);
2672 		if (thread_group_leader(p)) {
2673 			init_task_pid(p, PIDTYPE_TGID, pid);
2674 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2675 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2676 
2677 			if (is_child_reaper(pid)) {
2678 				ns_of_pid(pid)->child_reaper = p;
2679 				p->signal->flags |= SIGNAL_UNKILLABLE;
2680 			}
2681 			p->signal->shared_pending.signal = delayed.signal;
2682 			p->signal->tty = tty_kref_get(current->signal->tty);
2683 			/*
2684 			 * Inherit has_child_subreaper flag under the same
2685 			 * tasklist_lock with adding child to the process tree
2686 			 * for propagate_has_child_subreaper optimization.
2687 			 */
2688 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2689 							 p->real_parent->signal->is_child_subreaper;
2690 			list_add_tail(&p->sibling, &p->real_parent->children);
2691 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2692 			attach_pid(p, PIDTYPE_TGID);
2693 			attach_pid(p, PIDTYPE_PGID);
2694 			attach_pid(p, PIDTYPE_SID);
2695 			__this_cpu_inc(process_counts);
2696 		} else {
2697 			current->signal->nr_threads++;
2698 			current->signal->quick_threads++;
2699 			atomic_inc(&current->signal->live);
2700 			refcount_inc(&current->signal->sigcnt);
2701 			task_join_group_stop(p);
2702 			list_add_tail_rcu(&p->thread_node,
2703 					  &p->signal->thread_head);
2704 		}
2705 		attach_pid(p, PIDTYPE_PID);
2706 		nr_threads++;
2707 	}
2708 	total_forks++;
2709 	hlist_del_init(&delayed.node);
2710 	spin_unlock(&current->sighand->siglock);
2711 	syscall_tracepoint_update(p);
2712 	write_unlock_irq(&tasklist_lock);
2713 
2714 	if (pidfile)
2715 		fd_install(pidfd, pidfile);
2716 
2717 	proc_fork_connector(p);
2718 	sched_post_fork(p);
2719 	cgroup_post_fork(p, args);
2720 	perf_event_fork(p);
2721 
2722 	trace_task_newtask(p, clone_flags);
2723 	uprobe_copy_process(p, clone_flags);
2724 	user_events_fork(p, clone_flags);
2725 
2726 	copy_oom_score_adj(clone_flags, p);
2727 
2728 	return p;
2729 
2730 bad_fork_cancel_cgroup:
2731 	sched_core_free(p);
2732 	spin_unlock(&current->sighand->siglock);
2733 	write_unlock_irq(&tasklist_lock);
2734 	cgroup_cancel_fork(p, args);
2735 bad_fork_put_pidfd:
2736 	if (clone_flags & CLONE_PIDFD) {
2737 		fput(pidfile);
2738 		put_unused_fd(pidfd);
2739 	}
2740 bad_fork_free_pid:
2741 	if (pid != &init_struct_pid)
2742 		free_pid(pid);
2743 bad_fork_cleanup_thread:
2744 	exit_thread(p);
2745 bad_fork_cleanup_io:
2746 	if (p->io_context)
2747 		exit_io_context(p);
2748 bad_fork_cleanup_namespaces:
2749 	exit_task_namespaces(p);
2750 bad_fork_cleanup_mm:
2751 	if (p->mm) {
2752 		mm_clear_owner(p->mm, p);
2753 		mmput(p->mm);
2754 	}
2755 bad_fork_cleanup_signal:
2756 	if (!(clone_flags & CLONE_THREAD))
2757 		free_signal_struct(p->signal);
2758 bad_fork_cleanup_sighand:
2759 	__cleanup_sighand(p->sighand);
2760 bad_fork_cleanup_fs:
2761 	exit_fs(p); /* blocking */
2762 bad_fork_cleanup_files:
2763 	exit_files(p); /* blocking */
2764 bad_fork_cleanup_semundo:
2765 	exit_sem(p);
2766 bad_fork_cleanup_security:
2767 	security_task_free(p);
2768 bad_fork_cleanup_audit:
2769 	audit_free(p);
2770 bad_fork_cleanup_perf:
2771 	perf_event_free_task(p);
2772 bad_fork_cleanup_policy:
2773 	lockdep_free_task(p);
2774 #ifdef CONFIG_NUMA
2775 	mpol_put(p->mempolicy);
2776 #endif
2777 bad_fork_cleanup_delayacct:
2778 	delayacct_tsk_free(p);
2779 bad_fork_cleanup_count:
2780 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2781 	exit_creds(p);
2782 bad_fork_free:
2783 	WRITE_ONCE(p->__state, TASK_DEAD);
2784 	exit_task_stack_account(p);
2785 	put_task_stack(p);
2786 	delayed_free_task(p);
2787 fork_out:
2788 	spin_lock_irq(&current->sighand->siglock);
2789 	hlist_del_init(&delayed.node);
2790 	spin_unlock_irq(&current->sighand->siglock);
2791 	return ERR_PTR(retval);
2792 }
2793 
2794 static inline void init_idle_pids(struct task_struct *idle)
2795 {
2796 	enum pid_type type;
2797 
2798 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2799 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2800 		init_task_pid(idle, type, &init_struct_pid);
2801 	}
2802 }
2803 
2804 static int idle_dummy(void *dummy)
2805 {
2806 	/* This function is never called */
2807 	return 0;
2808 }
2809 
2810 struct task_struct * __init fork_idle(int cpu)
2811 {
2812 	struct task_struct *task;
2813 	struct kernel_clone_args args = {
2814 		.flags		= CLONE_VM,
2815 		.fn		= &idle_dummy,
2816 		.fn_arg		= NULL,
2817 		.kthread	= 1,
2818 		.idle		= 1,
2819 	};
2820 
2821 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2822 	if (!IS_ERR(task)) {
2823 		init_idle_pids(task);
2824 		init_idle(task, cpu);
2825 	}
2826 
2827 	return task;
2828 }
2829 
2830 /*
2831  * This is like kernel_clone(), but shaved down and tailored to just
2832  * creating io_uring workers. It returns a created task, or an error pointer.
2833  * The returned task is inactive, and the caller must fire it up through
2834  * wake_up_new_task(p). All signals are blocked in the created task.
2835  */
2836 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2837 {
2838 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2839 				CLONE_IO;
2840 	struct kernel_clone_args args = {
2841 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2842 				    CLONE_UNTRACED) & ~CSIGNAL),
2843 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2844 		.fn		= fn,
2845 		.fn_arg		= arg,
2846 		.io_thread	= 1,
2847 		.user_worker	= 1,
2848 	};
2849 
2850 	return copy_process(NULL, 0, node, &args);
2851 }
2852 
2853 /*
2854  *  Ok, this is the main fork-routine.
2855  *
2856  * It copies the process, and if successful kick-starts
2857  * it and waits for it to finish using the VM if required.
2858  *
2859  * args->exit_signal is expected to be checked for sanity by the caller.
2860  */
2861 pid_t kernel_clone(struct kernel_clone_args *args)
2862 {
2863 	u64 clone_flags = args->flags;
2864 	struct completion vfork;
2865 	struct pid *pid;
2866 	struct task_struct *p;
2867 	int trace = 0;
2868 	pid_t nr;
2869 
2870 	/*
2871 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2872 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2873 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2874 	 * field in struct clone_args and it still doesn't make sense to have
2875 	 * them both point at the same memory location. Performing this check
2876 	 * here has the advantage that we don't need to have a separate helper
2877 	 * to check for legacy clone().
2878 	 */
2879 	if ((args->flags & CLONE_PIDFD) &&
2880 	    (args->flags & CLONE_PARENT_SETTID) &&
2881 	    (args->pidfd == args->parent_tid))
2882 		return -EINVAL;
2883 
2884 	/*
2885 	 * Determine whether and which event to report to ptracer.  When
2886 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2887 	 * requested, no event is reported; otherwise, report if the event
2888 	 * for the type of forking is enabled.
2889 	 */
2890 	if (!(clone_flags & CLONE_UNTRACED)) {
2891 		if (clone_flags & CLONE_VFORK)
2892 			trace = PTRACE_EVENT_VFORK;
2893 		else if (args->exit_signal != SIGCHLD)
2894 			trace = PTRACE_EVENT_CLONE;
2895 		else
2896 			trace = PTRACE_EVENT_FORK;
2897 
2898 		if (likely(!ptrace_event_enabled(current, trace)))
2899 			trace = 0;
2900 	}
2901 
2902 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2903 	add_latent_entropy();
2904 
2905 	if (IS_ERR(p))
2906 		return PTR_ERR(p);
2907 
2908 	/*
2909 	 * Do this prior waking up the new thread - the thread pointer
2910 	 * might get invalid after that point, if the thread exits quickly.
2911 	 */
2912 	trace_sched_process_fork(current, p);
2913 
2914 	pid = get_task_pid(p, PIDTYPE_PID);
2915 	nr = pid_vnr(pid);
2916 
2917 	if (clone_flags & CLONE_PARENT_SETTID)
2918 		put_user(nr, args->parent_tid);
2919 
2920 	if (clone_flags & CLONE_VFORK) {
2921 		p->vfork_done = &vfork;
2922 		init_completion(&vfork);
2923 		get_task_struct(p);
2924 	}
2925 
2926 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2927 		/* lock the task to synchronize with memcg migration */
2928 		task_lock(p);
2929 		lru_gen_add_mm(p->mm);
2930 		task_unlock(p);
2931 	}
2932 
2933 	wake_up_new_task(p);
2934 
2935 	/* forking complete and child started to run, tell ptracer */
2936 	if (unlikely(trace))
2937 		ptrace_event_pid(trace, pid);
2938 
2939 	if (clone_flags & CLONE_VFORK) {
2940 		if (!wait_for_vfork_done(p, &vfork))
2941 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2942 	}
2943 
2944 	put_pid(pid);
2945 	return nr;
2946 }
2947 
2948 /*
2949  * Create a kernel thread.
2950  */
2951 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2952 		    unsigned long flags)
2953 {
2954 	struct kernel_clone_args args = {
2955 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2956 				    CLONE_UNTRACED) & ~CSIGNAL),
2957 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2958 		.fn		= fn,
2959 		.fn_arg		= arg,
2960 		.name		= name,
2961 		.kthread	= 1,
2962 	};
2963 
2964 	return kernel_clone(&args);
2965 }
2966 
2967 /*
2968  * Create a user mode thread.
2969  */
2970 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2971 {
2972 	struct kernel_clone_args args = {
2973 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2974 				    CLONE_UNTRACED) & ~CSIGNAL),
2975 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2976 		.fn		= fn,
2977 		.fn_arg		= arg,
2978 	};
2979 
2980 	return kernel_clone(&args);
2981 }
2982 
2983 #ifdef __ARCH_WANT_SYS_FORK
2984 SYSCALL_DEFINE0(fork)
2985 {
2986 #ifdef CONFIG_MMU
2987 	struct kernel_clone_args args = {
2988 		.exit_signal = SIGCHLD,
2989 	};
2990 
2991 	return kernel_clone(&args);
2992 #else
2993 	/* can not support in nommu mode */
2994 	return -EINVAL;
2995 #endif
2996 }
2997 #endif
2998 
2999 #ifdef __ARCH_WANT_SYS_VFORK
3000 SYSCALL_DEFINE0(vfork)
3001 {
3002 	struct kernel_clone_args args = {
3003 		.flags		= CLONE_VFORK | CLONE_VM,
3004 		.exit_signal	= SIGCHLD,
3005 	};
3006 
3007 	return kernel_clone(&args);
3008 }
3009 #endif
3010 
3011 #ifdef __ARCH_WANT_SYS_CLONE
3012 #ifdef CONFIG_CLONE_BACKWARDS
3013 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3014 		 int __user *, parent_tidptr,
3015 		 unsigned long, tls,
3016 		 int __user *, child_tidptr)
3017 #elif defined(CONFIG_CLONE_BACKWARDS2)
3018 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3019 		 int __user *, parent_tidptr,
3020 		 int __user *, child_tidptr,
3021 		 unsigned long, tls)
3022 #elif defined(CONFIG_CLONE_BACKWARDS3)
3023 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3024 		int, stack_size,
3025 		int __user *, parent_tidptr,
3026 		int __user *, child_tidptr,
3027 		unsigned long, tls)
3028 #else
3029 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3030 		 int __user *, parent_tidptr,
3031 		 int __user *, child_tidptr,
3032 		 unsigned long, tls)
3033 #endif
3034 {
3035 	struct kernel_clone_args args = {
3036 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
3037 		.pidfd		= parent_tidptr,
3038 		.child_tid	= child_tidptr,
3039 		.parent_tid	= parent_tidptr,
3040 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
3041 		.stack		= newsp,
3042 		.tls		= tls,
3043 	};
3044 
3045 	return kernel_clone(&args);
3046 }
3047 #endif
3048 
3049 #ifdef __ARCH_WANT_SYS_CLONE3
3050 
3051 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3052 					      struct clone_args __user *uargs,
3053 					      size_t usize)
3054 {
3055 	int err;
3056 	struct clone_args args;
3057 	pid_t *kset_tid = kargs->set_tid;
3058 
3059 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3060 		     CLONE_ARGS_SIZE_VER0);
3061 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3062 		     CLONE_ARGS_SIZE_VER1);
3063 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3064 		     CLONE_ARGS_SIZE_VER2);
3065 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3066 
3067 	if (unlikely(usize > PAGE_SIZE))
3068 		return -E2BIG;
3069 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3070 		return -EINVAL;
3071 
3072 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3073 	if (err)
3074 		return err;
3075 
3076 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3077 		return -EINVAL;
3078 
3079 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3080 		return -EINVAL;
3081 
3082 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3083 		return -EINVAL;
3084 
3085 	/*
3086 	 * Verify that higher 32bits of exit_signal are unset and that
3087 	 * it is a valid signal
3088 	 */
3089 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3090 		     !valid_signal(args.exit_signal)))
3091 		return -EINVAL;
3092 
3093 	if ((args.flags & CLONE_INTO_CGROUP) &&
3094 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3095 		return -EINVAL;
3096 
3097 	*kargs = (struct kernel_clone_args){
3098 		.flags		= args.flags,
3099 		.pidfd		= u64_to_user_ptr(args.pidfd),
3100 		.child_tid	= u64_to_user_ptr(args.child_tid),
3101 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3102 		.exit_signal	= args.exit_signal,
3103 		.stack		= args.stack,
3104 		.stack_size	= args.stack_size,
3105 		.tls		= args.tls,
3106 		.set_tid_size	= args.set_tid_size,
3107 		.cgroup		= args.cgroup,
3108 	};
3109 
3110 	if (args.set_tid &&
3111 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3112 			(kargs->set_tid_size * sizeof(pid_t))))
3113 		return -EFAULT;
3114 
3115 	kargs->set_tid = kset_tid;
3116 
3117 	return 0;
3118 }
3119 
3120 /**
3121  * clone3_stack_valid - check and prepare stack
3122  * @kargs: kernel clone args
3123  *
3124  * Verify that the stack arguments userspace gave us are sane.
3125  * In addition, set the stack direction for userspace since it's easy for us to
3126  * determine.
3127  */
3128 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3129 {
3130 	if (kargs->stack == 0) {
3131 		if (kargs->stack_size > 0)
3132 			return false;
3133 	} else {
3134 		if (kargs->stack_size == 0)
3135 			return false;
3136 
3137 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3138 			return false;
3139 
3140 #if !defined(CONFIG_STACK_GROWSUP)
3141 		kargs->stack += kargs->stack_size;
3142 #endif
3143 	}
3144 
3145 	return true;
3146 }
3147 
3148 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3149 {
3150 	/* Verify that no unknown flags are passed along. */
3151 	if (kargs->flags &
3152 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3153 		return false;
3154 
3155 	/*
3156 	 * - make the CLONE_DETACHED bit reusable for clone3
3157 	 * - make the CSIGNAL bits reusable for clone3
3158 	 */
3159 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3160 		return false;
3161 
3162 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3163 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3164 		return false;
3165 
3166 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3167 	    kargs->exit_signal)
3168 		return false;
3169 
3170 	if (!clone3_stack_valid(kargs))
3171 		return false;
3172 
3173 	return true;
3174 }
3175 
3176 /**
3177  * sys_clone3 - create a new process with specific properties
3178  * @uargs: argument structure
3179  * @size:  size of @uargs
3180  *
3181  * clone3() is the extensible successor to clone()/clone2().
3182  * It takes a struct as argument that is versioned by its size.
3183  *
3184  * Return: On success, a positive PID for the child process.
3185  *         On error, a negative errno number.
3186  */
3187 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3188 {
3189 	int err;
3190 
3191 	struct kernel_clone_args kargs;
3192 	pid_t set_tid[MAX_PID_NS_LEVEL];
3193 
3194 	kargs.set_tid = set_tid;
3195 
3196 	err = copy_clone_args_from_user(&kargs, uargs, size);
3197 	if (err)
3198 		return err;
3199 
3200 	if (!clone3_args_valid(&kargs))
3201 		return -EINVAL;
3202 
3203 	return kernel_clone(&kargs);
3204 }
3205 #endif
3206 
3207 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3208 {
3209 	struct task_struct *leader, *parent, *child;
3210 	int res;
3211 
3212 	read_lock(&tasklist_lock);
3213 	leader = top = top->group_leader;
3214 down:
3215 	for_each_thread(leader, parent) {
3216 		list_for_each_entry(child, &parent->children, sibling) {
3217 			res = visitor(child, data);
3218 			if (res) {
3219 				if (res < 0)
3220 					goto out;
3221 				leader = child;
3222 				goto down;
3223 			}
3224 up:
3225 			;
3226 		}
3227 	}
3228 
3229 	if (leader != top) {
3230 		child = leader;
3231 		parent = child->real_parent;
3232 		leader = parent->group_leader;
3233 		goto up;
3234 	}
3235 out:
3236 	read_unlock(&tasklist_lock);
3237 }
3238 
3239 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3240 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3241 #endif
3242 
3243 static void sighand_ctor(void *data)
3244 {
3245 	struct sighand_struct *sighand = data;
3246 
3247 	spin_lock_init(&sighand->siglock);
3248 	init_waitqueue_head(&sighand->signalfd_wqh);
3249 }
3250 
3251 void __init mm_cache_init(void)
3252 {
3253 	unsigned int mm_size;
3254 
3255 	/*
3256 	 * The mm_cpumask is located at the end of mm_struct, and is
3257 	 * dynamically sized based on the maximum CPU number this system
3258 	 * can have, taking hotplug into account (nr_cpu_ids).
3259 	 */
3260 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3261 
3262 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3263 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3264 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3265 			offsetof(struct mm_struct, saved_auxv),
3266 			sizeof_field(struct mm_struct, saved_auxv),
3267 			NULL);
3268 }
3269 
3270 void __init proc_caches_init(void)
3271 {
3272 	sighand_cachep = kmem_cache_create("sighand_cache",
3273 			sizeof(struct sighand_struct), 0,
3274 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3275 			SLAB_ACCOUNT, sighand_ctor);
3276 	signal_cachep = kmem_cache_create("signal_cache",
3277 			sizeof(struct signal_struct), 0,
3278 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3279 			NULL);
3280 	files_cachep = kmem_cache_create("files_cache",
3281 			sizeof(struct files_struct), 0,
3282 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3283 			NULL);
3284 	fs_cachep = kmem_cache_create("fs_cache",
3285 			sizeof(struct fs_struct), 0,
3286 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3287 			NULL);
3288 
3289 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3290 #ifdef CONFIG_PER_VMA_LOCK
3291 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3292 #endif
3293 	mmap_init();
3294 	nsproxy_cache_init();
3295 }
3296 
3297 /*
3298  * Check constraints on flags passed to the unshare system call.
3299  */
3300 static int check_unshare_flags(unsigned long unshare_flags)
3301 {
3302 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3303 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3304 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3305 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3306 				CLONE_NEWTIME))
3307 		return -EINVAL;
3308 	/*
3309 	 * Not implemented, but pretend it works if there is nothing
3310 	 * to unshare.  Note that unsharing the address space or the
3311 	 * signal handlers also need to unshare the signal queues (aka
3312 	 * CLONE_THREAD).
3313 	 */
3314 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3315 		if (!thread_group_empty(current))
3316 			return -EINVAL;
3317 	}
3318 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3319 		if (refcount_read(&current->sighand->count) > 1)
3320 			return -EINVAL;
3321 	}
3322 	if (unshare_flags & CLONE_VM) {
3323 		if (!current_is_single_threaded())
3324 			return -EINVAL;
3325 	}
3326 
3327 	return 0;
3328 }
3329 
3330 /*
3331  * Unshare the filesystem structure if it is being shared
3332  */
3333 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3334 {
3335 	struct fs_struct *fs = current->fs;
3336 
3337 	if (!(unshare_flags & CLONE_FS) || !fs)
3338 		return 0;
3339 
3340 	/* don't need lock here; in the worst case we'll do useless copy */
3341 	if (fs->users == 1)
3342 		return 0;
3343 
3344 	*new_fsp = copy_fs_struct(fs);
3345 	if (!*new_fsp)
3346 		return -ENOMEM;
3347 
3348 	return 0;
3349 }
3350 
3351 /*
3352  * Unshare file descriptor table if it is being shared
3353  */
3354 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3355 	       struct files_struct **new_fdp)
3356 {
3357 	struct files_struct *fd = current->files;
3358 	int error = 0;
3359 
3360 	if ((unshare_flags & CLONE_FILES) &&
3361 	    (fd && atomic_read(&fd->count) > 1)) {
3362 		*new_fdp = dup_fd(fd, max_fds, &error);
3363 		if (!*new_fdp)
3364 			return error;
3365 	}
3366 
3367 	return 0;
3368 }
3369 
3370 /*
3371  * unshare allows a process to 'unshare' part of the process
3372  * context which was originally shared using clone.  copy_*
3373  * functions used by kernel_clone() cannot be used here directly
3374  * because they modify an inactive task_struct that is being
3375  * constructed. Here we are modifying the current, active,
3376  * task_struct.
3377  */
3378 int ksys_unshare(unsigned long unshare_flags)
3379 {
3380 	struct fs_struct *fs, *new_fs = NULL;
3381 	struct files_struct *new_fd = NULL;
3382 	struct cred *new_cred = NULL;
3383 	struct nsproxy *new_nsproxy = NULL;
3384 	int do_sysvsem = 0;
3385 	int err;
3386 
3387 	/*
3388 	 * If unsharing a user namespace must also unshare the thread group
3389 	 * and unshare the filesystem root and working directories.
3390 	 */
3391 	if (unshare_flags & CLONE_NEWUSER)
3392 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3393 	/*
3394 	 * If unsharing vm, must also unshare signal handlers.
3395 	 */
3396 	if (unshare_flags & CLONE_VM)
3397 		unshare_flags |= CLONE_SIGHAND;
3398 	/*
3399 	 * If unsharing a signal handlers, must also unshare the signal queues.
3400 	 */
3401 	if (unshare_flags & CLONE_SIGHAND)
3402 		unshare_flags |= CLONE_THREAD;
3403 	/*
3404 	 * If unsharing namespace, must also unshare filesystem information.
3405 	 */
3406 	if (unshare_flags & CLONE_NEWNS)
3407 		unshare_flags |= CLONE_FS;
3408 
3409 	err = check_unshare_flags(unshare_flags);
3410 	if (err)
3411 		goto bad_unshare_out;
3412 	/*
3413 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3414 	 * to a new ipc namespace, the semaphore arrays from the old
3415 	 * namespace are unreachable.
3416 	 */
3417 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3418 		do_sysvsem = 1;
3419 	err = unshare_fs(unshare_flags, &new_fs);
3420 	if (err)
3421 		goto bad_unshare_out;
3422 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3423 	if (err)
3424 		goto bad_unshare_cleanup_fs;
3425 	err = unshare_userns(unshare_flags, &new_cred);
3426 	if (err)
3427 		goto bad_unshare_cleanup_fd;
3428 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3429 					 new_cred, new_fs);
3430 	if (err)
3431 		goto bad_unshare_cleanup_cred;
3432 
3433 	if (new_cred) {
3434 		err = set_cred_ucounts(new_cred);
3435 		if (err)
3436 			goto bad_unshare_cleanup_cred;
3437 	}
3438 
3439 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3440 		if (do_sysvsem) {
3441 			/*
3442 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3443 			 */
3444 			exit_sem(current);
3445 		}
3446 		if (unshare_flags & CLONE_NEWIPC) {
3447 			/* Orphan segments in old ns (see sem above). */
3448 			exit_shm(current);
3449 			shm_init_task(current);
3450 		}
3451 
3452 		if (new_nsproxy)
3453 			switch_task_namespaces(current, new_nsproxy);
3454 
3455 		task_lock(current);
3456 
3457 		if (new_fs) {
3458 			fs = current->fs;
3459 			spin_lock(&fs->lock);
3460 			current->fs = new_fs;
3461 			if (--fs->users)
3462 				new_fs = NULL;
3463 			else
3464 				new_fs = fs;
3465 			spin_unlock(&fs->lock);
3466 		}
3467 
3468 		if (new_fd)
3469 			swap(current->files, new_fd);
3470 
3471 		task_unlock(current);
3472 
3473 		if (new_cred) {
3474 			/* Install the new user namespace */
3475 			commit_creds(new_cred);
3476 			new_cred = NULL;
3477 		}
3478 	}
3479 
3480 	perf_event_namespaces(current);
3481 
3482 bad_unshare_cleanup_cred:
3483 	if (new_cred)
3484 		put_cred(new_cred);
3485 bad_unshare_cleanup_fd:
3486 	if (new_fd)
3487 		put_files_struct(new_fd);
3488 
3489 bad_unshare_cleanup_fs:
3490 	if (new_fs)
3491 		free_fs_struct(new_fs);
3492 
3493 bad_unshare_out:
3494 	return err;
3495 }
3496 
3497 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3498 {
3499 	return ksys_unshare(unshare_flags);
3500 }
3501 
3502 /*
3503  *	Helper to unshare the files of the current task.
3504  *	We don't want to expose copy_files internals to
3505  *	the exec layer of the kernel.
3506  */
3507 
3508 int unshare_files(void)
3509 {
3510 	struct task_struct *task = current;
3511 	struct files_struct *old, *copy = NULL;
3512 	int error;
3513 
3514 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3515 	if (error || !copy)
3516 		return error;
3517 
3518 	old = task->files;
3519 	task_lock(task);
3520 	task->files = copy;
3521 	task_unlock(task);
3522 	put_files_struct(old);
3523 	return 0;
3524 }
3525 
3526 int sysctl_max_threads(struct ctl_table *table, int write,
3527 		       void *buffer, size_t *lenp, loff_t *ppos)
3528 {
3529 	struct ctl_table t;
3530 	int ret;
3531 	int threads = max_threads;
3532 	int min = 1;
3533 	int max = MAX_THREADS;
3534 
3535 	t = *table;
3536 	t.data = &threads;
3537 	t.extra1 = &min;
3538 	t.extra2 = &max;
3539 
3540 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3541 	if (ret || !write)
3542 		return ret;
3543 
3544 	max_threads = threads;
3545 
3546 	return 0;
3547 }
3548