xref: /linux/kernel/fork.c (revision a6a6a98094116b60e5523a571d9443c53325f5b1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/syscall_user_dispatch.h>
57 #include <linux/jiffies.h>
58 #include <linux/futex.h>
59 #include <linux/compat.h>
60 #include <linux/kthread.h>
61 #include <linux/task_io_accounting_ops.h>
62 #include <linux/rcupdate.h>
63 #include <linux/ptrace.h>
64 #include <linux/mount.h>
65 #include <linux/audit.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/proc_fs.h>
69 #include <linux/profile.h>
70 #include <linux/rmap.h>
71 #include <linux/ksm.h>
72 #include <linux/acct.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/tsacct_kern.h>
75 #include <linux/cn_proc.h>
76 #include <linux/freezer.h>
77 #include <linux/delayacct.h>
78 #include <linux/taskstats_kern.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 #include <linux/stackprotector.h>
101 #include <linux/user_events.h>
102 #include <linux/iommu.h>
103 #include <linux/rseq.h>
104 #include <uapi/linux/pidfd.h>
105 #include <linux/pidfs.h>
106 
107 #include <asm/pgalloc.h>
108 #include <linux/uaccess.h>
109 #include <asm/mmu_context.h>
110 #include <asm/cacheflush.h>
111 #include <asm/tlbflush.h>
112 
113 #include <trace/events/sched.h>
114 
115 #define CREATE_TRACE_POINTS
116 #include <trace/events/task.h>
117 
118 /*
119  * Minimum number of threads to boot the kernel
120  */
121 #define MIN_THREADS 20
122 
123 /*
124  * Maximum number of threads
125  */
126 #define MAX_THREADS FUTEX_TID_MASK
127 
128 /*
129  * Protected counters by write_lock_irq(&tasklist_lock)
130  */
131 unsigned long total_forks;	/* Handle normal Linux uptimes. */
132 int nr_threads;			/* The idle threads do not count.. */
133 
134 static int max_threads;		/* tunable limit on nr_threads */
135 
136 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
137 
138 static const char * const resident_page_types[] = {
139 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
140 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
141 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
142 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
143 };
144 
145 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
146 
147 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
148 
149 #ifdef CONFIG_PROVE_RCU
150 int lockdep_tasklist_lock_is_held(void)
151 {
152 	return lockdep_is_held(&tasklist_lock);
153 }
154 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
155 #endif /* #ifdef CONFIG_PROVE_RCU */
156 
157 int nr_processes(void)
158 {
159 	int cpu;
160 	int total = 0;
161 
162 	for_each_possible_cpu(cpu)
163 		total += per_cpu(process_counts, cpu);
164 
165 	return total;
166 }
167 
168 void __weak arch_release_task_struct(struct task_struct *tsk)
169 {
170 }
171 
172 static struct kmem_cache *task_struct_cachep;
173 
174 static inline struct task_struct *alloc_task_struct_node(int node)
175 {
176 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
177 }
178 
179 static inline void free_task_struct(struct task_struct *tsk)
180 {
181 	kmem_cache_free(task_struct_cachep, tsk);
182 }
183 
184 /*
185  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186  * kmemcache based allocator.
187  */
188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189 
190 #  ifdef CONFIG_VMAP_STACK
191 /*
192  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193  * flush.  Try to minimize the number of calls by caching stacks.
194  */
195 #define NR_CACHED_STACKS 2
196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
197 
198 struct vm_stack {
199 	struct rcu_head rcu;
200 	struct vm_struct *stack_vm_area;
201 };
202 
203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204 {
205 	unsigned int i;
206 
207 	for (i = 0; i < NR_CACHED_STACKS; i++) {
208 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 			continue;
210 		return true;
211 	}
212 	return false;
213 }
214 
215 static void thread_stack_free_rcu(struct rcu_head *rh)
216 {
217 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218 
219 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 		return;
221 
222 	vfree(vm_stack);
223 }
224 
225 static void thread_stack_delayed_free(struct task_struct *tsk)
226 {
227 	struct vm_stack *vm_stack = tsk->stack;
228 
229 	vm_stack->stack_vm_area = tsk->stack_vm_area;
230 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231 }
232 
233 static int free_vm_stack_cache(unsigned int cpu)
234 {
235 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 	int i;
237 
238 	for (i = 0; i < NR_CACHED_STACKS; i++) {
239 		struct vm_struct *vm_stack = cached_vm_stacks[i];
240 
241 		if (!vm_stack)
242 			continue;
243 
244 		vfree(vm_stack->addr);
245 		cached_vm_stacks[i] = NULL;
246 	}
247 
248 	return 0;
249 }
250 
251 static int memcg_charge_kernel_stack(struct vm_struct *vm)
252 {
253 	int i;
254 	int ret;
255 	int nr_charged = 0;
256 
257 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258 
259 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 		if (ret)
262 			goto err;
263 		nr_charged++;
264 	}
265 	return 0;
266 err:
267 	for (i = 0; i < nr_charged; i++)
268 		memcg_kmem_uncharge_page(vm->pages[i], 0);
269 	return ret;
270 }
271 
272 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
273 {
274 	struct vm_struct *vm;
275 	void *stack;
276 	int i;
277 
278 	for (i = 0; i < NR_CACHED_STACKS; i++) {
279 		struct vm_struct *s;
280 
281 		s = this_cpu_xchg(cached_stacks[i], NULL);
282 
283 		if (!s)
284 			continue;
285 
286 		/* Reset stack metadata. */
287 		kasan_unpoison_range(s->addr, THREAD_SIZE);
288 
289 		stack = kasan_reset_tag(s->addr);
290 
291 		/* Clear stale pointers from reused stack. */
292 		memset(stack, 0, THREAD_SIZE);
293 
294 		if (memcg_charge_kernel_stack(s)) {
295 			vfree(s->addr);
296 			return -ENOMEM;
297 		}
298 
299 		tsk->stack_vm_area = s;
300 		tsk->stack = stack;
301 		return 0;
302 	}
303 
304 	/*
305 	 * Allocated stacks are cached and later reused by new threads,
306 	 * so memcg accounting is performed manually on assigning/releasing
307 	 * stacks to tasks. Drop __GFP_ACCOUNT.
308 	 */
309 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
310 				     VMALLOC_START, VMALLOC_END,
311 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
312 				     PAGE_KERNEL,
313 				     0, node, __builtin_return_address(0));
314 	if (!stack)
315 		return -ENOMEM;
316 
317 	vm = find_vm_area(stack);
318 	if (memcg_charge_kernel_stack(vm)) {
319 		vfree(stack);
320 		return -ENOMEM;
321 	}
322 	/*
323 	 * We can't call find_vm_area() in interrupt context, and
324 	 * free_thread_stack() can be called in interrupt context,
325 	 * so cache the vm_struct.
326 	 */
327 	tsk->stack_vm_area = vm;
328 	stack = kasan_reset_tag(stack);
329 	tsk->stack = stack;
330 	return 0;
331 }
332 
333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 		thread_stack_delayed_free(tsk);
337 
338 	tsk->stack = NULL;
339 	tsk->stack_vm_area = NULL;
340 }
341 
342 #  else /* !CONFIG_VMAP_STACK */
343 
344 static void thread_stack_free_rcu(struct rcu_head *rh)
345 {
346 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347 }
348 
349 static void thread_stack_delayed_free(struct task_struct *tsk)
350 {
351 	struct rcu_head *rh = tsk->stack;
352 
353 	call_rcu(rh, thread_stack_free_rcu);
354 }
355 
356 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
357 {
358 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 					     THREAD_SIZE_ORDER);
360 
361 	if (likely(page)) {
362 		tsk->stack = kasan_reset_tag(page_address(page));
363 		return 0;
364 	}
365 	return -ENOMEM;
366 }
367 
368 static void free_thread_stack(struct task_struct *tsk)
369 {
370 	thread_stack_delayed_free(tsk);
371 	tsk->stack = NULL;
372 }
373 
374 #  endif /* CONFIG_VMAP_STACK */
375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
376 
377 static struct kmem_cache *thread_stack_cache;
378 
379 static void thread_stack_free_rcu(struct rcu_head *rh)
380 {
381 	kmem_cache_free(thread_stack_cache, rh);
382 }
383 
384 static void thread_stack_delayed_free(struct task_struct *tsk)
385 {
386 	struct rcu_head *rh = tsk->stack;
387 
388 	call_rcu(rh, thread_stack_free_rcu);
389 }
390 
391 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
392 {
393 	unsigned long *stack;
394 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
395 	stack = kasan_reset_tag(stack);
396 	tsk->stack = stack;
397 	return stack ? 0 : -ENOMEM;
398 }
399 
400 static void free_thread_stack(struct task_struct *tsk)
401 {
402 	thread_stack_delayed_free(tsk);
403 	tsk->stack = NULL;
404 }
405 
406 void thread_stack_cache_init(void)
407 {
408 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 					THREAD_SIZE, THREAD_SIZE, 0, 0,
410 					THREAD_SIZE, NULL);
411 	BUG_ON(thread_stack_cache == NULL);
412 }
413 
414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
415 
416 /* SLAB cache for signal_struct structures (tsk->signal) */
417 static struct kmem_cache *signal_cachep;
418 
419 /* SLAB cache for sighand_struct structures (tsk->sighand) */
420 struct kmem_cache *sighand_cachep;
421 
422 /* SLAB cache for files_struct structures (tsk->files) */
423 struct kmem_cache *files_cachep;
424 
425 /* SLAB cache for fs_struct structures (tsk->fs) */
426 struct kmem_cache *fs_cachep;
427 
428 /* SLAB cache for vm_area_struct structures */
429 static struct kmem_cache *vm_area_cachep;
430 
431 /* SLAB cache for mm_struct structures (tsk->mm) */
432 static struct kmem_cache *mm_cachep;
433 
434 #ifdef CONFIG_PER_VMA_LOCK
435 
436 /* SLAB cache for vm_area_struct.lock */
437 static struct kmem_cache *vma_lock_cachep;
438 
439 static bool vma_lock_alloc(struct vm_area_struct *vma)
440 {
441 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
442 	if (!vma->vm_lock)
443 		return false;
444 
445 	init_rwsem(&vma->vm_lock->lock);
446 	vma->vm_lock_seq = -1;
447 
448 	return true;
449 }
450 
451 static inline void vma_lock_free(struct vm_area_struct *vma)
452 {
453 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
454 }
455 
456 #else /* CONFIG_PER_VMA_LOCK */
457 
458 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
459 static inline void vma_lock_free(struct vm_area_struct *vma) {}
460 
461 #endif /* CONFIG_PER_VMA_LOCK */
462 
463 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
464 {
465 	struct vm_area_struct *vma;
466 
467 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
468 	if (!vma)
469 		return NULL;
470 
471 	vma_init(vma, mm);
472 	if (!vma_lock_alloc(vma)) {
473 		kmem_cache_free(vm_area_cachep, vma);
474 		return NULL;
475 	}
476 
477 	return vma;
478 }
479 
480 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
481 {
482 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
483 
484 	if (!new)
485 		return NULL;
486 
487 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
488 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
489 	/*
490 	 * orig->shared.rb may be modified concurrently, but the clone
491 	 * will be reinitialized.
492 	 */
493 	data_race(memcpy(new, orig, sizeof(*new)));
494 	if (!vma_lock_alloc(new)) {
495 		kmem_cache_free(vm_area_cachep, new);
496 		return NULL;
497 	}
498 	INIT_LIST_HEAD(&new->anon_vma_chain);
499 	vma_numab_state_init(new);
500 	dup_anon_vma_name(orig, new);
501 
502 	return new;
503 }
504 
505 void __vm_area_free(struct vm_area_struct *vma)
506 {
507 	vma_numab_state_free(vma);
508 	free_anon_vma_name(vma);
509 	vma_lock_free(vma);
510 	kmem_cache_free(vm_area_cachep, vma);
511 }
512 
513 #ifdef CONFIG_PER_VMA_LOCK
514 static void vm_area_free_rcu_cb(struct rcu_head *head)
515 {
516 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
517 						  vm_rcu);
518 
519 	/* The vma should not be locked while being destroyed. */
520 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
521 	__vm_area_free(vma);
522 }
523 #endif
524 
525 void vm_area_free(struct vm_area_struct *vma)
526 {
527 #ifdef CONFIG_PER_VMA_LOCK
528 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
529 #else
530 	__vm_area_free(vma);
531 #endif
532 }
533 
534 static void account_kernel_stack(struct task_struct *tsk, int account)
535 {
536 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
537 		struct vm_struct *vm = task_stack_vm_area(tsk);
538 		int i;
539 
540 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
541 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
542 					      account * (PAGE_SIZE / 1024));
543 	} else {
544 		void *stack = task_stack_page(tsk);
545 
546 		/* All stack pages are in the same node. */
547 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
548 				      account * (THREAD_SIZE / 1024));
549 	}
550 }
551 
552 void exit_task_stack_account(struct task_struct *tsk)
553 {
554 	account_kernel_stack(tsk, -1);
555 
556 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
557 		struct vm_struct *vm;
558 		int i;
559 
560 		vm = task_stack_vm_area(tsk);
561 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
562 			memcg_kmem_uncharge_page(vm->pages[i], 0);
563 	}
564 }
565 
566 static void release_task_stack(struct task_struct *tsk)
567 {
568 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
569 		return;  /* Better to leak the stack than to free prematurely */
570 
571 	free_thread_stack(tsk);
572 }
573 
574 #ifdef CONFIG_THREAD_INFO_IN_TASK
575 void put_task_stack(struct task_struct *tsk)
576 {
577 	if (refcount_dec_and_test(&tsk->stack_refcount))
578 		release_task_stack(tsk);
579 }
580 #endif
581 
582 void free_task(struct task_struct *tsk)
583 {
584 #ifdef CONFIG_SECCOMP
585 	WARN_ON_ONCE(tsk->seccomp.filter);
586 #endif
587 	release_user_cpus_ptr(tsk);
588 	scs_release(tsk);
589 
590 #ifndef CONFIG_THREAD_INFO_IN_TASK
591 	/*
592 	 * The task is finally done with both the stack and thread_info,
593 	 * so free both.
594 	 */
595 	release_task_stack(tsk);
596 #else
597 	/*
598 	 * If the task had a separate stack allocation, it should be gone
599 	 * by now.
600 	 */
601 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
602 #endif
603 	rt_mutex_debug_task_free(tsk);
604 	ftrace_graph_exit_task(tsk);
605 	arch_release_task_struct(tsk);
606 	if (tsk->flags & PF_KTHREAD)
607 		free_kthread_struct(tsk);
608 	bpf_task_storage_free(tsk);
609 	free_task_struct(tsk);
610 }
611 EXPORT_SYMBOL(free_task);
612 
613 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
614 {
615 	struct file *exe_file;
616 
617 	exe_file = get_mm_exe_file(oldmm);
618 	RCU_INIT_POINTER(mm->exe_file, exe_file);
619 	/*
620 	 * We depend on the oldmm having properly denied write access to the
621 	 * exe_file already.
622 	 */
623 	if (exe_file && deny_write_access(exe_file))
624 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
625 }
626 
627 #ifdef CONFIG_MMU
628 static __latent_entropy int dup_mmap(struct mm_struct *mm,
629 					struct mm_struct *oldmm)
630 {
631 	struct vm_area_struct *mpnt, *tmp;
632 	int retval;
633 	unsigned long charge = 0;
634 	LIST_HEAD(uf);
635 	VMA_ITERATOR(vmi, mm, 0);
636 
637 	uprobe_start_dup_mmap();
638 	if (mmap_write_lock_killable(oldmm)) {
639 		retval = -EINTR;
640 		goto fail_uprobe_end;
641 	}
642 	flush_cache_dup_mm(oldmm);
643 	uprobe_dup_mmap(oldmm, mm);
644 	/*
645 	 * Not linked in yet - no deadlock potential:
646 	 */
647 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
648 
649 	/* No ordering required: file already has been exposed. */
650 	dup_mm_exe_file(mm, oldmm);
651 
652 	mm->total_vm = oldmm->total_vm;
653 	mm->data_vm = oldmm->data_vm;
654 	mm->exec_vm = oldmm->exec_vm;
655 	mm->stack_vm = oldmm->stack_vm;
656 
657 	retval = ksm_fork(mm, oldmm);
658 	if (retval)
659 		goto out;
660 	khugepaged_fork(mm, oldmm);
661 
662 	/* Use __mt_dup() to efficiently build an identical maple tree. */
663 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
664 	if (unlikely(retval))
665 		goto out;
666 
667 	mt_clear_in_rcu(vmi.mas.tree);
668 	for_each_vma(vmi, mpnt) {
669 		struct file *file;
670 
671 		vma_start_write(mpnt);
672 		if (mpnt->vm_flags & VM_DONTCOPY) {
673 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
674 						    mpnt->vm_end, GFP_KERNEL);
675 			if (retval)
676 				goto loop_out;
677 
678 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
679 			continue;
680 		}
681 		charge = 0;
682 		/*
683 		 * Don't duplicate many vmas if we've been oom-killed (for
684 		 * example)
685 		 */
686 		if (fatal_signal_pending(current)) {
687 			retval = -EINTR;
688 			goto loop_out;
689 		}
690 		if (mpnt->vm_flags & VM_ACCOUNT) {
691 			unsigned long len = vma_pages(mpnt);
692 
693 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
694 				goto fail_nomem;
695 			charge = len;
696 		}
697 		tmp = vm_area_dup(mpnt);
698 		if (!tmp)
699 			goto fail_nomem;
700 		retval = vma_dup_policy(mpnt, tmp);
701 		if (retval)
702 			goto fail_nomem_policy;
703 		tmp->vm_mm = mm;
704 		retval = dup_userfaultfd(tmp, &uf);
705 		if (retval)
706 			goto fail_nomem_anon_vma_fork;
707 		if (tmp->vm_flags & VM_WIPEONFORK) {
708 			/*
709 			 * VM_WIPEONFORK gets a clean slate in the child.
710 			 * Don't prepare anon_vma until fault since we don't
711 			 * copy page for current vma.
712 			 */
713 			tmp->anon_vma = NULL;
714 		} else if (anon_vma_fork(tmp, mpnt))
715 			goto fail_nomem_anon_vma_fork;
716 		vm_flags_clear(tmp, VM_LOCKED_MASK);
717 		/*
718 		 * Copy/update hugetlb private vma information.
719 		 */
720 		if (is_vm_hugetlb_page(tmp))
721 			hugetlb_dup_vma_private(tmp);
722 
723 		/*
724 		 * Link the vma into the MT. After using __mt_dup(), memory
725 		 * allocation is not necessary here, so it cannot fail.
726 		 */
727 		vma_iter_bulk_store(&vmi, tmp);
728 
729 		mm->map_count++;
730 
731 		if (tmp->vm_ops && tmp->vm_ops->open)
732 			tmp->vm_ops->open(tmp);
733 
734 		file = tmp->vm_file;
735 		if (file) {
736 			struct address_space *mapping = file->f_mapping;
737 
738 			get_file(file);
739 			i_mmap_lock_write(mapping);
740 			if (vma_is_shared_maywrite(tmp))
741 				mapping_allow_writable(mapping);
742 			flush_dcache_mmap_lock(mapping);
743 			/* insert tmp into the share list, just after mpnt */
744 			vma_interval_tree_insert_after(tmp, mpnt,
745 					&mapping->i_mmap);
746 			flush_dcache_mmap_unlock(mapping);
747 			i_mmap_unlock_write(mapping);
748 		}
749 
750 		if (!(tmp->vm_flags & VM_WIPEONFORK))
751 			retval = copy_page_range(tmp, mpnt);
752 
753 		if (retval) {
754 			mpnt = vma_next(&vmi);
755 			goto loop_out;
756 		}
757 	}
758 	/* a new mm has just been created */
759 	retval = arch_dup_mmap(oldmm, mm);
760 loop_out:
761 	vma_iter_free(&vmi);
762 	if (!retval) {
763 		mt_set_in_rcu(vmi.mas.tree);
764 	} else if (mpnt) {
765 		/*
766 		 * The entire maple tree has already been duplicated. If the
767 		 * mmap duplication fails, mark the failure point with
768 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
769 		 * stop releasing VMAs that have not been duplicated after this
770 		 * point.
771 		 */
772 		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
773 		mas_store(&vmi.mas, XA_ZERO_ENTRY);
774 	}
775 out:
776 	mmap_write_unlock(mm);
777 	flush_tlb_mm(oldmm);
778 	mmap_write_unlock(oldmm);
779 	dup_userfaultfd_complete(&uf);
780 fail_uprobe_end:
781 	uprobe_end_dup_mmap();
782 	return retval;
783 
784 fail_nomem_anon_vma_fork:
785 	mpol_put(vma_policy(tmp));
786 fail_nomem_policy:
787 	vm_area_free(tmp);
788 fail_nomem:
789 	retval = -ENOMEM;
790 	vm_unacct_memory(charge);
791 	goto loop_out;
792 }
793 
794 static inline int mm_alloc_pgd(struct mm_struct *mm)
795 {
796 	mm->pgd = pgd_alloc(mm);
797 	if (unlikely(!mm->pgd))
798 		return -ENOMEM;
799 	return 0;
800 }
801 
802 static inline void mm_free_pgd(struct mm_struct *mm)
803 {
804 	pgd_free(mm, mm->pgd);
805 }
806 #else
807 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
808 {
809 	mmap_write_lock(oldmm);
810 	dup_mm_exe_file(mm, oldmm);
811 	mmap_write_unlock(oldmm);
812 	return 0;
813 }
814 #define mm_alloc_pgd(mm)	(0)
815 #define mm_free_pgd(mm)
816 #endif /* CONFIG_MMU */
817 
818 static void check_mm(struct mm_struct *mm)
819 {
820 	int i;
821 
822 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
823 			 "Please make sure 'struct resident_page_types[]' is updated as well");
824 
825 	for (i = 0; i < NR_MM_COUNTERS; i++) {
826 		long x = percpu_counter_sum(&mm->rss_stat[i]);
827 
828 		if (unlikely(x))
829 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
830 				 mm, resident_page_types[i], x);
831 	}
832 
833 	if (mm_pgtables_bytes(mm))
834 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
835 				mm_pgtables_bytes(mm));
836 
837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
838 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
839 #endif
840 }
841 
842 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
843 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
844 
845 static void do_check_lazy_tlb(void *arg)
846 {
847 	struct mm_struct *mm = arg;
848 
849 	WARN_ON_ONCE(current->active_mm == mm);
850 }
851 
852 static void do_shoot_lazy_tlb(void *arg)
853 {
854 	struct mm_struct *mm = arg;
855 
856 	if (current->active_mm == mm) {
857 		WARN_ON_ONCE(current->mm);
858 		current->active_mm = &init_mm;
859 		switch_mm(mm, &init_mm, current);
860 	}
861 }
862 
863 static void cleanup_lazy_tlbs(struct mm_struct *mm)
864 {
865 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
866 		/*
867 		 * In this case, lazy tlb mms are refounted and would not reach
868 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
869 		 */
870 		return;
871 	}
872 
873 	/*
874 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
875 	 * requires lazy mm users to switch to another mm when the refcount
876 	 * drops to zero, before the mm is freed. This requires IPIs here to
877 	 * switch kernel threads to init_mm.
878 	 *
879 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
880 	 * switch with the final userspace teardown TLB flush which leaves the
881 	 * mm lazy on this CPU but no others, reducing the need for additional
882 	 * IPIs here. There are cases where a final IPI is still required here,
883 	 * such as the final mmdrop being performed on a different CPU than the
884 	 * one exiting, or kernel threads using the mm when userspace exits.
885 	 *
886 	 * IPI overheads have not found to be expensive, but they could be
887 	 * reduced in a number of possible ways, for example (roughly
888 	 * increasing order of complexity):
889 	 * - The last lazy reference created by exit_mm() could instead switch
890 	 *   to init_mm, however it's probable this will run on the same CPU
891 	 *   immediately afterwards, so this may not reduce IPIs much.
892 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
893 	 * - CPUs store active_mm where it can be remotely checked without a
894 	 *   lock, to filter out false-positives in the cpumask.
895 	 * - After mm_users or mm_count reaches zero, switching away from the
896 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
897 	 *   with some batching or delaying of the final IPIs.
898 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
899 	 *   switching to avoid IPIs completely.
900 	 */
901 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
902 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
903 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
904 }
905 
906 /*
907  * Called when the last reference to the mm
908  * is dropped: either by a lazy thread or by
909  * mmput. Free the page directory and the mm.
910  */
911 void __mmdrop(struct mm_struct *mm)
912 {
913 	BUG_ON(mm == &init_mm);
914 	WARN_ON_ONCE(mm == current->mm);
915 
916 	/* Ensure no CPUs are using this as their lazy tlb mm */
917 	cleanup_lazy_tlbs(mm);
918 
919 	WARN_ON_ONCE(mm == current->active_mm);
920 	mm_free_pgd(mm);
921 	destroy_context(mm);
922 	mmu_notifier_subscriptions_destroy(mm);
923 	check_mm(mm);
924 	put_user_ns(mm->user_ns);
925 	mm_pasid_drop(mm);
926 	mm_destroy_cid(mm);
927 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
928 
929 	free_mm(mm);
930 }
931 EXPORT_SYMBOL_GPL(__mmdrop);
932 
933 static void mmdrop_async_fn(struct work_struct *work)
934 {
935 	struct mm_struct *mm;
936 
937 	mm = container_of(work, struct mm_struct, async_put_work);
938 	__mmdrop(mm);
939 }
940 
941 static void mmdrop_async(struct mm_struct *mm)
942 {
943 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
944 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
945 		schedule_work(&mm->async_put_work);
946 	}
947 }
948 
949 static inline void free_signal_struct(struct signal_struct *sig)
950 {
951 	taskstats_tgid_free(sig);
952 	sched_autogroup_exit(sig);
953 	/*
954 	 * __mmdrop is not safe to call from softirq context on x86 due to
955 	 * pgd_dtor so postpone it to the async context
956 	 */
957 	if (sig->oom_mm)
958 		mmdrop_async(sig->oom_mm);
959 	kmem_cache_free(signal_cachep, sig);
960 }
961 
962 static inline void put_signal_struct(struct signal_struct *sig)
963 {
964 	if (refcount_dec_and_test(&sig->sigcnt))
965 		free_signal_struct(sig);
966 }
967 
968 void __put_task_struct(struct task_struct *tsk)
969 {
970 	WARN_ON(!tsk->exit_state);
971 	WARN_ON(refcount_read(&tsk->usage));
972 	WARN_ON(tsk == current);
973 
974 	io_uring_free(tsk);
975 	cgroup_free(tsk);
976 	task_numa_free(tsk, true);
977 	security_task_free(tsk);
978 	exit_creds(tsk);
979 	delayacct_tsk_free(tsk);
980 	put_signal_struct(tsk->signal);
981 	sched_core_free(tsk);
982 	free_task(tsk);
983 }
984 EXPORT_SYMBOL_GPL(__put_task_struct);
985 
986 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
987 {
988 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
989 
990 	__put_task_struct(task);
991 }
992 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
993 
994 void __init __weak arch_task_cache_init(void) { }
995 
996 /*
997  * set_max_threads
998  */
999 static void set_max_threads(unsigned int max_threads_suggested)
1000 {
1001 	u64 threads;
1002 	unsigned long nr_pages = totalram_pages();
1003 
1004 	/*
1005 	 * The number of threads shall be limited such that the thread
1006 	 * structures may only consume a small part of the available memory.
1007 	 */
1008 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1009 		threads = MAX_THREADS;
1010 	else
1011 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1012 				    (u64) THREAD_SIZE * 8UL);
1013 
1014 	if (threads > max_threads_suggested)
1015 		threads = max_threads_suggested;
1016 
1017 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1018 }
1019 
1020 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1021 /* Initialized by the architecture: */
1022 int arch_task_struct_size __read_mostly;
1023 #endif
1024 
1025 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1026 {
1027 	/* Fetch thread_struct whitelist for the architecture. */
1028 	arch_thread_struct_whitelist(offset, size);
1029 
1030 	/*
1031 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1032 	 * adjust offset to position of thread_struct in task_struct.
1033 	 */
1034 	if (unlikely(*size == 0))
1035 		*offset = 0;
1036 	else
1037 		*offset += offsetof(struct task_struct, thread);
1038 }
1039 
1040 void __init fork_init(void)
1041 {
1042 	int i;
1043 #ifndef ARCH_MIN_TASKALIGN
1044 #define ARCH_MIN_TASKALIGN	0
1045 #endif
1046 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1047 	unsigned long useroffset, usersize;
1048 
1049 	/* create a slab on which task_structs can be allocated */
1050 	task_struct_whitelist(&useroffset, &usersize);
1051 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1052 			arch_task_struct_size, align,
1053 			SLAB_PANIC|SLAB_ACCOUNT,
1054 			useroffset, usersize, NULL);
1055 
1056 	/* do the arch specific task caches init */
1057 	arch_task_cache_init();
1058 
1059 	set_max_threads(MAX_THREADS);
1060 
1061 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1062 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1063 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1064 		init_task.signal->rlim[RLIMIT_NPROC];
1065 
1066 	for (i = 0; i < UCOUNT_COUNTS; i++)
1067 		init_user_ns.ucount_max[i] = max_threads/2;
1068 
1069 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1070 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1071 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1072 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1073 
1074 #ifdef CONFIG_VMAP_STACK
1075 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1076 			  NULL, free_vm_stack_cache);
1077 #endif
1078 
1079 	scs_init();
1080 
1081 	lockdep_init_task(&init_task);
1082 	uprobes_init();
1083 }
1084 
1085 int __weak arch_dup_task_struct(struct task_struct *dst,
1086 					       struct task_struct *src)
1087 {
1088 	*dst = *src;
1089 	return 0;
1090 }
1091 
1092 void set_task_stack_end_magic(struct task_struct *tsk)
1093 {
1094 	unsigned long *stackend;
1095 
1096 	stackend = end_of_stack(tsk);
1097 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1098 }
1099 
1100 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1101 {
1102 	struct task_struct *tsk;
1103 	int err;
1104 
1105 	if (node == NUMA_NO_NODE)
1106 		node = tsk_fork_get_node(orig);
1107 	tsk = alloc_task_struct_node(node);
1108 	if (!tsk)
1109 		return NULL;
1110 
1111 	err = arch_dup_task_struct(tsk, orig);
1112 	if (err)
1113 		goto free_tsk;
1114 
1115 	err = alloc_thread_stack_node(tsk, node);
1116 	if (err)
1117 		goto free_tsk;
1118 
1119 #ifdef CONFIG_THREAD_INFO_IN_TASK
1120 	refcount_set(&tsk->stack_refcount, 1);
1121 #endif
1122 	account_kernel_stack(tsk, 1);
1123 
1124 	err = scs_prepare(tsk, node);
1125 	if (err)
1126 		goto free_stack;
1127 
1128 #ifdef CONFIG_SECCOMP
1129 	/*
1130 	 * We must handle setting up seccomp filters once we're under
1131 	 * the sighand lock in case orig has changed between now and
1132 	 * then. Until then, filter must be NULL to avoid messing up
1133 	 * the usage counts on the error path calling free_task.
1134 	 */
1135 	tsk->seccomp.filter = NULL;
1136 #endif
1137 
1138 	setup_thread_stack(tsk, orig);
1139 	clear_user_return_notifier(tsk);
1140 	clear_tsk_need_resched(tsk);
1141 	set_task_stack_end_magic(tsk);
1142 	clear_syscall_work_syscall_user_dispatch(tsk);
1143 
1144 #ifdef CONFIG_STACKPROTECTOR
1145 	tsk->stack_canary = get_random_canary();
1146 #endif
1147 	if (orig->cpus_ptr == &orig->cpus_mask)
1148 		tsk->cpus_ptr = &tsk->cpus_mask;
1149 	dup_user_cpus_ptr(tsk, orig, node);
1150 
1151 	/*
1152 	 * One for the user space visible state that goes away when reaped.
1153 	 * One for the scheduler.
1154 	 */
1155 	refcount_set(&tsk->rcu_users, 2);
1156 	/* One for the rcu users */
1157 	refcount_set(&tsk->usage, 1);
1158 #ifdef CONFIG_BLK_DEV_IO_TRACE
1159 	tsk->btrace_seq = 0;
1160 #endif
1161 	tsk->splice_pipe = NULL;
1162 	tsk->task_frag.page = NULL;
1163 	tsk->wake_q.next = NULL;
1164 	tsk->worker_private = NULL;
1165 
1166 	kcov_task_init(tsk);
1167 	kmsan_task_create(tsk);
1168 	kmap_local_fork(tsk);
1169 
1170 #ifdef CONFIG_FAULT_INJECTION
1171 	tsk->fail_nth = 0;
1172 #endif
1173 
1174 #ifdef CONFIG_BLK_CGROUP
1175 	tsk->throttle_disk = NULL;
1176 	tsk->use_memdelay = 0;
1177 #endif
1178 
1179 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1180 	tsk->pasid_activated = 0;
1181 #endif
1182 
1183 #ifdef CONFIG_MEMCG
1184 	tsk->active_memcg = NULL;
1185 #endif
1186 
1187 #ifdef CONFIG_CPU_SUP_INTEL
1188 	tsk->reported_split_lock = 0;
1189 #endif
1190 
1191 #ifdef CONFIG_SCHED_MM_CID
1192 	tsk->mm_cid = -1;
1193 	tsk->last_mm_cid = -1;
1194 	tsk->mm_cid_active = 0;
1195 	tsk->migrate_from_cpu = -1;
1196 #endif
1197 	return tsk;
1198 
1199 free_stack:
1200 	exit_task_stack_account(tsk);
1201 	free_thread_stack(tsk);
1202 free_tsk:
1203 	free_task_struct(tsk);
1204 	return NULL;
1205 }
1206 
1207 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1208 
1209 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1210 
1211 static int __init coredump_filter_setup(char *s)
1212 {
1213 	default_dump_filter =
1214 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1215 		MMF_DUMP_FILTER_MASK;
1216 	return 1;
1217 }
1218 
1219 __setup("coredump_filter=", coredump_filter_setup);
1220 
1221 #include <linux/init_task.h>
1222 
1223 static void mm_init_aio(struct mm_struct *mm)
1224 {
1225 #ifdef CONFIG_AIO
1226 	spin_lock_init(&mm->ioctx_lock);
1227 	mm->ioctx_table = NULL;
1228 #endif
1229 }
1230 
1231 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1232 					   struct task_struct *p)
1233 {
1234 #ifdef CONFIG_MEMCG
1235 	if (mm->owner == p)
1236 		WRITE_ONCE(mm->owner, NULL);
1237 #endif
1238 }
1239 
1240 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1241 {
1242 #ifdef CONFIG_MEMCG
1243 	mm->owner = p;
1244 #endif
1245 }
1246 
1247 static void mm_init_uprobes_state(struct mm_struct *mm)
1248 {
1249 #ifdef CONFIG_UPROBES
1250 	mm->uprobes_state.xol_area = NULL;
1251 #endif
1252 }
1253 
1254 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1255 	struct user_namespace *user_ns)
1256 {
1257 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1258 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1259 	atomic_set(&mm->mm_users, 1);
1260 	atomic_set(&mm->mm_count, 1);
1261 	seqcount_init(&mm->write_protect_seq);
1262 	mmap_init_lock(mm);
1263 	INIT_LIST_HEAD(&mm->mmlist);
1264 #ifdef CONFIG_PER_VMA_LOCK
1265 	mm->mm_lock_seq = 0;
1266 #endif
1267 	mm_pgtables_bytes_init(mm);
1268 	mm->map_count = 0;
1269 	mm->locked_vm = 0;
1270 	atomic64_set(&mm->pinned_vm, 0);
1271 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1272 	spin_lock_init(&mm->page_table_lock);
1273 	spin_lock_init(&mm->arg_lock);
1274 	mm_init_cpumask(mm);
1275 	mm_init_aio(mm);
1276 	mm_init_owner(mm, p);
1277 	mm_pasid_init(mm);
1278 	RCU_INIT_POINTER(mm->exe_file, NULL);
1279 	mmu_notifier_subscriptions_init(mm);
1280 	init_tlb_flush_pending(mm);
1281 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1282 	mm->pmd_huge_pte = NULL;
1283 #endif
1284 	mm_init_uprobes_state(mm);
1285 	hugetlb_count_init(mm);
1286 
1287 	if (current->mm) {
1288 		mm->flags = mmf_init_flags(current->mm->flags);
1289 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1290 	} else {
1291 		mm->flags = default_dump_filter;
1292 		mm->def_flags = 0;
1293 	}
1294 
1295 	if (mm_alloc_pgd(mm))
1296 		goto fail_nopgd;
1297 
1298 	if (init_new_context(p, mm))
1299 		goto fail_nocontext;
1300 
1301 	if (mm_alloc_cid(mm))
1302 		goto fail_cid;
1303 
1304 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1305 				     NR_MM_COUNTERS))
1306 		goto fail_pcpu;
1307 
1308 	mm->user_ns = get_user_ns(user_ns);
1309 	lru_gen_init_mm(mm);
1310 	return mm;
1311 
1312 fail_pcpu:
1313 	mm_destroy_cid(mm);
1314 fail_cid:
1315 	destroy_context(mm);
1316 fail_nocontext:
1317 	mm_free_pgd(mm);
1318 fail_nopgd:
1319 	free_mm(mm);
1320 	return NULL;
1321 }
1322 
1323 /*
1324  * Allocate and initialize an mm_struct.
1325  */
1326 struct mm_struct *mm_alloc(void)
1327 {
1328 	struct mm_struct *mm;
1329 
1330 	mm = allocate_mm();
1331 	if (!mm)
1332 		return NULL;
1333 
1334 	memset(mm, 0, sizeof(*mm));
1335 	return mm_init(mm, current, current_user_ns());
1336 }
1337 
1338 static inline void __mmput(struct mm_struct *mm)
1339 {
1340 	VM_BUG_ON(atomic_read(&mm->mm_users));
1341 
1342 	uprobe_clear_state(mm);
1343 	exit_aio(mm);
1344 	ksm_exit(mm);
1345 	khugepaged_exit(mm); /* must run before exit_mmap */
1346 	exit_mmap(mm);
1347 	mm_put_huge_zero_folio(mm);
1348 	set_mm_exe_file(mm, NULL);
1349 	if (!list_empty(&mm->mmlist)) {
1350 		spin_lock(&mmlist_lock);
1351 		list_del(&mm->mmlist);
1352 		spin_unlock(&mmlist_lock);
1353 	}
1354 	if (mm->binfmt)
1355 		module_put(mm->binfmt->module);
1356 	lru_gen_del_mm(mm);
1357 	mmdrop(mm);
1358 }
1359 
1360 /*
1361  * Decrement the use count and release all resources for an mm.
1362  */
1363 void mmput(struct mm_struct *mm)
1364 {
1365 	might_sleep();
1366 
1367 	if (atomic_dec_and_test(&mm->mm_users))
1368 		__mmput(mm);
1369 }
1370 EXPORT_SYMBOL_GPL(mmput);
1371 
1372 #ifdef CONFIG_MMU
1373 static void mmput_async_fn(struct work_struct *work)
1374 {
1375 	struct mm_struct *mm = container_of(work, struct mm_struct,
1376 					    async_put_work);
1377 
1378 	__mmput(mm);
1379 }
1380 
1381 void mmput_async(struct mm_struct *mm)
1382 {
1383 	if (atomic_dec_and_test(&mm->mm_users)) {
1384 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1385 		schedule_work(&mm->async_put_work);
1386 	}
1387 }
1388 EXPORT_SYMBOL_GPL(mmput_async);
1389 #endif
1390 
1391 /**
1392  * set_mm_exe_file - change a reference to the mm's executable file
1393  * @mm: The mm to change.
1394  * @new_exe_file: The new file to use.
1395  *
1396  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1397  *
1398  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1399  * invocations: in mmput() nobody alive left, in execve it happens before
1400  * the new mm is made visible to anyone.
1401  *
1402  * Can only fail if new_exe_file != NULL.
1403  */
1404 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1405 {
1406 	struct file *old_exe_file;
1407 
1408 	/*
1409 	 * It is safe to dereference the exe_file without RCU as
1410 	 * this function is only called if nobody else can access
1411 	 * this mm -- see comment above for justification.
1412 	 */
1413 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1414 
1415 	if (new_exe_file) {
1416 		/*
1417 		 * We expect the caller (i.e., sys_execve) to already denied
1418 		 * write access, so this is unlikely to fail.
1419 		 */
1420 		if (unlikely(deny_write_access(new_exe_file)))
1421 			return -EACCES;
1422 		get_file(new_exe_file);
1423 	}
1424 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1425 	if (old_exe_file) {
1426 		allow_write_access(old_exe_file);
1427 		fput(old_exe_file);
1428 	}
1429 	return 0;
1430 }
1431 
1432 /**
1433  * replace_mm_exe_file - replace a reference to the mm's executable file
1434  * @mm: The mm to change.
1435  * @new_exe_file: The new file to use.
1436  *
1437  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1438  *
1439  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1440  */
1441 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1442 {
1443 	struct vm_area_struct *vma;
1444 	struct file *old_exe_file;
1445 	int ret = 0;
1446 
1447 	/* Forbid mm->exe_file change if old file still mapped. */
1448 	old_exe_file = get_mm_exe_file(mm);
1449 	if (old_exe_file) {
1450 		VMA_ITERATOR(vmi, mm, 0);
1451 		mmap_read_lock(mm);
1452 		for_each_vma(vmi, vma) {
1453 			if (!vma->vm_file)
1454 				continue;
1455 			if (path_equal(&vma->vm_file->f_path,
1456 				       &old_exe_file->f_path)) {
1457 				ret = -EBUSY;
1458 				break;
1459 			}
1460 		}
1461 		mmap_read_unlock(mm);
1462 		fput(old_exe_file);
1463 		if (ret)
1464 			return ret;
1465 	}
1466 
1467 	ret = deny_write_access(new_exe_file);
1468 	if (ret)
1469 		return -EACCES;
1470 	get_file(new_exe_file);
1471 
1472 	/* set the new file */
1473 	mmap_write_lock(mm);
1474 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1475 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1476 	mmap_write_unlock(mm);
1477 
1478 	if (old_exe_file) {
1479 		allow_write_access(old_exe_file);
1480 		fput(old_exe_file);
1481 	}
1482 	return 0;
1483 }
1484 
1485 /**
1486  * get_mm_exe_file - acquire a reference to the mm's executable file
1487  * @mm: The mm of interest.
1488  *
1489  * Returns %NULL if mm has no associated executable file.
1490  * User must release file via fput().
1491  */
1492 struct file *get_mm_exe_file(struct mm_struct *mm)
1493 {
1494 	struct file *exe_file;
1495 
1496 	rcu_read_lock();
1497 	exe_file = get_file_rcu(&mm->exe_file);
1498 	rcu_read_unlock();
1499 	return exe_file;
1500 }
1501 
1502 /**
1503  * get_task_exe_file - acquire a reference to the task's executable file
1504  * @task: The task.
1505  *
1506  * Returns %NULL if task's mm (if any) has no associated executable file or
1507  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1508  * User must release file via fput().
1509  */
1510 struct file *get_task_exe_file(struct task_struct *task)
1511 {
1512 	struct file *exe_file = NULL;
1513 	struct mm_struct *mm;
1514 
1515 	task_lock(task);
1516 	mm = task->mm;
1517 	if (mm) {
1518 		if (!(task->flags & PF_KTHREAD))
1519 			exe_file = get_mm_exe_file(mm);
1520 	}
1521 	task_unlock(task);
1522 	return exe_file;
1523 }
1524 
1525 /**
1526  * get_task_mm - acquire a reference to the task's mm
1527  * @task: The task.
1528  *
1529  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1530  * this kernel workthread has transiently adopted a user mm with use_mm,
1531  * to do its AIO) is not set and if so returns a reference to it, after
1532  * bumping up the use count.  User must release the mm via mmput()
1533  * after use.  Typically used by /proc and ptrace.
1534  */
1535 struct mm_struct *get_task_mm(struct task_struct *task)
1536 {
1537 	struct mm_struct *mm;
1538 
1539 	task_lock(task);
1540 	mm = task->mm;
1541 	if (mm) {
1542 		if (task->flags & PF_KTHREAD)
1543 			mm = NULL;
1544 		else
1545 			mmget(mm);
1546 	}
1547 	task_unlock(task);
1548 	return mm;
1549 }
1550 EXPORT_SYMBOL_GPL(get_task_mm);
1551 
1552 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1553 {
1554 	struct mm_struct *mm;
1555 	int err;
1556 
1557 	err =  down_read_killable(&task->signal->exec_update_lock);
1558 	if (err)
1559 		return ERR_PTR(err);
1560 
1561 	mm = get_task_mm(task);
1562 	if (mm && mm != current->mm &&
1563 			!ptrace_may_access(task, mode)) {
1564 		mmput(mm);
1565 		mm = ERR_PTR(-EACCES);
1566 	}
1567 	up_read(&task->signal->exec_update_lock);
1568 
1569 	return mm;
1570 }
1571 
1572 static void complete_vfork_done(struct task_struct *tsk)
1573 {
1574 	struct completion *vfork;
1575 
1576 	task_lock(tsk);
1577 	vfork = tsk->vfork_done;
1578 	if (likely(vfork)) {
1579 		tsk->vfork_done = NULL;
1580 		complete(vfork);
1581 	}
1582 	task_unlock(tsk);
1583 }
1584 
1585 static int wait_for_vfork_done(struct task_struct *child,
1586 				struct completion *vfork)
1587 {
1588 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1589 	int killed;
1590 
1591 	cgroup_enter_frozen();
1592 	killed = wait_for_completion_state(vfork, state);
1593 	cgroup_leave_frozen(false);
1594 
1595 	if (killed) {
1596 		task_lock(child);
1597 		child->vfork_done = NULL;
1598 		task_unlock(child);
1599 	}
1600 
1601 	put_task_struct(child);
1602 	return killed;
1603 }
1604 
1605 /* Please note the differences between mmput and mm_release.
1606  * mmput is called whenever we stop holding onto a mm_struct,
1607  * error success whatever.
1608  *
1609  * mm_release is called after a mm_struct has been removed
1610  * from the current process.
1611  *
1612  * This difference is important for error handling, when we
1613  * only half set up a mm_struct for a new process and need to restore
1614  * the old one.  Because we mmput the new mm_struct before
1615  * restoring the old one. . .
1616  * Eric Biederman 10 January 1998
1617  */
1618 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1619 {
1620 	uprobe_free_utask(tsk);
1621 
1622 	/* Get rid of any cached register state */
1623 	deactivate_mm(tsk, mm);
1624 
1625 	/*
1626 	 * Signal userspace if we're not exiting with a core dump
1627 	 * because we want to leave the value intact for debugging
1628 	 * purposes.
1629 	 */
1630 	if (tsk->clear_child_tid) {
1631 		if (atomic_read(&mm->mm_users) > 1) {
1632 			/*
1633 			 * We don't check the error code - if userspace has
1634 			 * not set up a proper pointer then tough luck.
1635 			 */
1636 			put_user(0, tsk->clear_child_tid);
1637 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1638 					1, NULL, NULL, 0, 0);
1639 		}
1640 		tsk->clear_child_tid = NULL;
1641 	}
1642 
1643 	/*
1644 	 * All done, finally we can wake up parent and return this mm to him.
1645 	 * Also kthread_stop() uses this completion for synchronization.
1646 	 */
1647 	if (tsk->vfork_done)
1648 		complete_vfork_done(tsk);
1649 }
1650 
1651 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1652 {
1653 	futex_exit_release(tsk);
1654 	mm_release(tsk, mm);
1655 }
1656 
1657 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1658 {
1659 	futex_exec_release(tsk);
1660 	mm_release(tsk, mm);
1661 }
1662 
1663 /**
1664  * dup_mm() - duplicates an existing mm structure
1665  * @tsk: the task_struct with which the new mm will be associated.
1666  * @oldmm: the mm to duplicate.
1667  *
1668  * Allocates a new mm structure and duplicates the provided @oldmm structure
1669  * content into it.
1670  *
1671  * Return: the duplicated mm or NULL on failure.
1672  */
1673 static struct mm_struct *dup_mm(struct task_struct *tsk,
1674 				struct mm_struct *oldmm)
1675 {
1676 	struct mm_struct *mm;
1677 	int err;
1678 
1679 	mm = allocate_mm();
1680 	if (!mm)
1681 		goto fail_nomem;
1682 
1683 	memcpy(mm, oldmm, sizeof(*mm));
1684 
1685 	if (!mm_init(mm, tsk, mm->user_ns))
1686 		goto fail_nomem;
1687 
1688 	err = dup_mmap(mm, oldmm);
1689 	if (err)
1690 		goto free_pt;
1691 
1692 	mm->hiwater_rss = get_mm_rss(mm);
1693 	mm->hiwater_vm = mm->total_vm;
1694 
1695 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1696 		goto free_pt;
1697 
1698 	return mm;
1699 
1700 free_pt:
1701 	/* don't put binfmt in mmput, we haven't got module yet */
1702 	mm->binfmt = NULL;
1703 	mm_init_owner(mm, NULL);
1704 	mmput(mm);
1705 
1706 fail_nomem:
1707 	return NULL;
1708 }
1709 
1710 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1711 {
1712 	struct mm_struct *mm, *oldmm;
1713 
1714 	tsk->min_flt = tsk->maj_flt = 0;
1715 	tsk->nvcsw = tsk->nivcsw = 0;
1716 #ifdef CONFIG_DETECT_HUNG_TASK
1717 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1718 	tsk->last_switch_time = 0;
1719 #endif
1720 
1721 	tsk->mm = NULL;
1722 	tsk->active_mm = NULL;
1723 
1724 	/*
1725 	 * Are we cloning a kernel thread?
1726 	 *
1727 	 * We need to steal a active VM for that..
1728 	 */
1729 	oldmm = current->mm;
1730 	if (!oldmm)
1731 		return 0;
1732 
1733 	if (clone_flags & CLONE_VM) {
1734 		mmget(oldmm);
1735 		mm = oldmm;
1736 	} else {
1737 		mm = dup_mm(tsk, current->mm);
1738 		if (!mm)
1739 			return -ENOMEM;
1740 	}
1741 
1742 	tsk->mm = mm;
1743 	tsk->active_mm = mm;
1744 	sched_mm_cid_fork(tsk);
1745 	return 0;
1746 }
1747 
1748 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1749 {
1750 	struct fs_struct *fs = current->fs;
1751 	if (clone_flags & CLONE_FS) {
1752 		/* tsk->fs is already what we want */
1753 		spin_lock(&fs->lock);
1754 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1755 		if (fs->in_exec) {
1756 			spin_unlock(&fs->lock);
1757 			return -EAGAIN;
1758 		}
1759 		fs->users++;
1760 		spin_unlock(&fs->lock);
1761 		return 0;
1762 	}
1763 	tsk->fs = copy_fs_struct(fs);
1764 	if (!tsk->fs)
1765 		return -ENOMEM;
1766 	return 0;
1767 }
1768 
1769 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1770 		      int no_files)
1771 {
1772 	struct files_struct *oldf, *newf;
1773 	int error = 0;
1774 
1775 	/*
1776 	 * A background process may not have any files ...
1777 	 */
1778 	oldf = current->files;
1779 	if (!oldf)
1780 		goto out;
1781 
1782 	if (no_files) {
1783 		tsk->files = NULL;
1784 		goto out;
1785 	}
1786 
1787 	if (clone_flags & CLONE_FILES) {
1788 		atomic_inc(&oldf->count);
1789 		goto out;
1790 	}
1791 
1792 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1793 	if (!newf)
1794 		goto out;
1795 
1796 	tsk->files = newf;
1797 	error = 0;
1798 out:
1799 	return error;
1800 }
1801 
1802 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1803 {
1804 	struct sighand_struct *sig;
1805 
1806 	if (clone_flags & CLONE_SIGHAND) {
1807 		refcount_inc(&current->sighand->count);
1808 		return 0;
1809 	}
1810 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1811 	RCU_INIT_POINTER(tsk->sighand, sig);
1812 	if (!sig)
1813 		return -ENOMEM;
1814 
1815 	refcount_set(&sig->count, 1);
1816 	spin_lock_irq(&current->sighand->siglock);
1817 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1818 	spin_unlock_irq(&current->sighand->siglock);
1819 
1820 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1821 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1822 		flush_signal_handlers(tsk, 0);
1823 
1824 	return 0;
1825 }
1826 
1827 void __cleanup_sighand(struct sighand_struct *sighand)
1828 {
1829 	if (refcount_dec_and_test(&sighand->count)) {
1830 		signalfd_cleanup(sighand);
1831 		/*
1832 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1833 		 * without an RCU grace period, see __lock_task_sighand().
1834 		 */
1835 		kmem_cache_free(sighand_cachep, sighand);
1836 	}
1837 }
1838 
1839 /*
1840  * Initialize POSIX timer handling for a thread group.
1841  */
1842 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1843 {
1844 	struct posix_cputimers *pct = &sig->posix_cputimers;
1845 	unsigned long cpu_limit;
1846 
1847 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1848 	posix_cputimers_group_init(pct, cpu_limit);
1849 }
1850 
1851 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1852 {
1853 	struct signal_struct *sig;
1854 
1855 	if (clone_flags & CLONE_THREAD)
1856 		return 0;
1857 
1858 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1859 	tsk->signal = sig;
1860 	if (!sig)
1861 		return -ENOMEM;
1862 
1863 	sig->nr_threads = 1;
1864 	sig->quick_threads = 1;
1865 	atomic_set(&sig->live, 1);
1866 	refcount_set(&sig->sigcnt, 1);
1867 
1868 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1869 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1870 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1871 
1872 	init_waitqueue_head(&sig->wait_chldexit);
1873 	sig->curr_target = tsk;
1874 	init_sigpending(&sig->shared_pending);
1875 	INIT_HLIST_HEAD(&sig->multiprocess);
1876 	seqlock_init(&sig->stats_lock);
1877 	prev_cputime_init(&sig->prev_cputime);
1878 
1879 #ifdef CONFIG_POSIX_TIMERS
1880 	INIT_LIST_HEAD(&sig->posix_timers);
1881 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1882 	sig->real_timer.function = it_real_fn;
1883 #endif
1884 
1885 	task_lock(current->group_leader);
1886 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1887 	task_unlock(current->group_leader);
1888 
1889 	posix_cpu_timers_init_group(sig);
1890 
1891 	tty_audit_fork(sig);
1892 	sched_autogroup_fork(sig);
1893 
1894 	sig->oom_score_adj = current->signal->oom_score_adj;
1895 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1896 
1897 	mutex_init(&sig->cred_guard_mutex);
1898 	init_rwsem(&sig->exec_update_lock);
1899 
1900 	return 0;
1901 }
1902 
1903 static void copy_seccomp(struct task_struct *p)
1904 {
1905 #ifdef CONFIG_SECCOMP
1906 	/*
1907 	 * Must be called with sighand->lock held, which is common to
1908 	 * all threads in the group. Holding cred_guard_mutex is not
1909 	 * needed because this new task is not yet running and cannot
1910 	 * be racing exec.
1911 	 */
1912 	assert_spin_locked(&current->sighand->siglock);
1913 
1914 	/* Ref-count the new filter user, and assign it. */
1915 	get_seccomp_filter(current);
1916 	p->seccomp = current->seccomp;
1917 
1918 	/*
1919 	 * Explicitly enable no_new_privs here in case it got set
1920 	 * between the task_struct being duplicated and holding the
1921 	 * sighand lock. The seccomp state and nnp must be in sync.
1922 	 */
1923 	if (task_no_new_privs(current))
1924 		task_set_no_new_privs(p);
1925 
1926 	/*
1927 	 * If the parent gained a seccomp mode after copying thread
1928 	 * flags and between before we held the sighand lock, we have
1929 	 * to manually enable the seccomp thread flag here.
1930 	 */
1931 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1932 		set_task_syscall_work(p, SECCOMP);
1933 #endif
1934 }
1935 
1936 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1937 {
1938 	current->clear_child_tid = tidptr;
1939 
1940 	return task_pid_vnr(current);
1941 }
1942 
1943 static void rt_mutex_init_task(struct task_struct *p)
1944 {
1945 	raw_spin_lock_init(&p->pi_lock);
1946 #ifdef CONFIG_RT_MUTEXES
1947 	p->pi_waiters = RB_ROOT_CACHED;
1948 	p->pi_top_task = NULL;
1949 	p->pi_blocked_on = NULL;
1950 #endif
1951 }
1952 
1953 static inline void init_task_pid_links(struct task_struct *task)
1954 {
1955 	enum pid_type type;
1956 
1957 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1958 		INIT_HLIST_NODE(&task->pid_links[type]);
1959 }
1960 
1961 static inline void
1962 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1963 {
1964 	if (type == PIDTYPE_PID)
1965 		task->thread_pid = pid;
1966 	else
1967 		task->signal->pids[type] = pid;
1968 }
1969 
1970 static inline void rcu_copy_process(struct task_struct *p)
1971 {
1972 #ifdef CONFIG_PREEMPT_RCU
1973 	p->rcu_read_lock_nesting = 0;
1974 	p->rcu_read_unlock_special.s = 0;
1975 	p->rcu_blocked_node = NULL;
1976 	INIT_LIST_HEAD(&p->rcu_node_entry);
1977 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1978 #ifdef CONFIG_TASKS_RCU
1979 	p->rcu_tasks_holdout = false;
1980 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1981 	p->rcu_tasks_idle_cpu = -1;
1982 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1983 #endif /* #ifdef CONFIG_TASKS_RCU */
1984 #ifdef CONFIG_TASKS_TRACE_RCU
1985 	p->trc_reader_nesting = 0;
1986 	p->trc_reader_special.s = 0;
1987 	INIT_LIST_HEAD(&p->trc_holdout_list);
1988 	INIT_LIST_HEAD(&p->trc_blkd_node);
1989 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1990 }
1991 
1992 /**
1993  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1994  * @pid:   the struct pid for which to create a pidfd
1995  * @flags: flags of the new @pidfd
1996  * @ret: Where to return the file for the pidfd.
1997  *
1998  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1999  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2000  *
2001  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2002  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2003  * pidfd file are prepared.
2004  *
2005  * If this function returns successfully the caller is responsible to either
2006  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2007  * order to install the pidfd into its file descriptor table or they must use
2008  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2009  * respectively.
2010  *
2011  * This function is useful when a pidfd must already be reserved but there
2012  * might still be points of failure afterwards and the caller wants to ensure
2013  * that no pidfd is leaked into its file descriptor table.
2014  *
2015  * Return: On success, a reserved pidfd is returned from the function and a new
2016  *         pidfd file is returned in the last argument to the function. On
2017  *         error, a negative error code is returned from the function and the
2018  *         last argument remains unchanged.
2019  */
2020 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2021 {
2022 	int pidfd;
2023 	struct file *pidfd_file;
2024 
2025 	pidfd = get_unused_fd_flags(O_CLOEXEC);
2026 	if (pidfd < 0)
2027 		return pidfd;
2028 
2029 	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2030 	if (IS_ERR(pidfd_file)) {
2031 		put_unused_fd(pidfd);
2032 		return PTR_ERR(pidfd_file);
2033 	}
2034 	/*
2035 	 * anon_inode_getfile() ignores everything outside of the
2036 	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2037 	 */
2038 	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2039 	*ret = pidfd_file;
2040 	return pidfd;
2041 }
2042 
2043 /**
2044  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2045  * @pid:   the struct pid for which to create a pidfd
2046  * @flags: flags of the new @pidfd
2047  * @ret: Where to return the pidfd.
2048  *
2049  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2050  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2051  *
2052  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2053  * task identified by @pid must be a thread-group leader.
2054  *
2055  * If this function returns successfully the caller is responsible to either
2056  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2057  * order to install the pidfd into its file descriptor table or they must use
2058  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2059  * respectively.
2060  *
2061  * This function is useful when a pidfd must already be reserved but there
2062  * might still be points of failure afterwards and the caller wants to ensure
2063  * that no pidfd is leaked into its file descriptor table.
2064  *
2065  * Return: On success, a reserved pidfd is returned from the function and a new
2066  *         pidfd file is returned in the last argument to the function. On
2067  *         error, a negative error code is returned from the function and the
2068  *         last argument remains unchanged.
2069  */
2070 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2071 {
2072 	bool thread = flags & PIDFD_THREAD;
2073 
2074 	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2075 		return -EINVAL;
2076 
2077 	return __pidfd_prepare(pid, flags, ret);
2078 }
2079 
2080 static void __delayed_free_task(struct rcu_head *rhp)
2081 {
2082 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2083 
2084 	free_task(tsk);
2085 }
2086 
2087 static __always_inline void delayed_free_task(struct task_struct *tsk)
2088 {
2089 	if (IS_ENABLED(CONFIG_MEMCG))
2090 		call_rcu(&tsk->rcu, __delayed_free_task);
2091 	else
2092 		free_task(tsk);
2093 }
2094 
2095 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2096 {
2097 	/* Skip if kernel thread */
2098 	if (!tsk->mm)
2099 		return;
2100 
2101 	/* Skip if spawning a thread or using vfork */
2102 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2103 		return;
2104 
2105 	/* We need to synchronize with __set_oom_adj */
2106 	mutex_lock(&oom_adj_mutex);
2107 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2108 	/* Update the values in case they were changed after copy_signal */
2109 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2110 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2111 	mutex_unlock(&oom_adj_mutex);
2112 }
2113 
2114 #ifdef CONFIG_RV
2115 static void rv_task_fork(struct task_struct *p)
2116 {
2117 	int i;
2118 
2119 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2120 		p->rv[i].da_mon.monitoring = false;
2121 }
2122 #else
2123 #define rv_task_fork(p) do {} while (0)
2124 #endif
2125 
2126 /*
2127  * This creates a new process as a copy of the old one,
2128  * but does not actually start it yet.
2129  *
2130  * It copies the registers, and all the appropriate
2131  * parts of the process environment (as per the clone
2132  * flags). The actual kick-off is left to the caller.
2133  */
2134 __latent_entropy struct task_struct *copy_process(
2135 					struct pid *pid,
2136 					int trace,
2137 					int node,
2138 					struct kernel_clone_args *args)
2139 {
2140 	int pidfd = -1, retval;
2141 	struct task_struct *p;
2142 	struct multiprocess_signals delayed;
2143 	struct file *pidfile = NULL;
2144 	const u64 clone_flags = args->flags;
2145 	struct nsproxy *nsp = current->nsproxy;
2146 
2147 	/*
2148 	 * Don't allow sharing the root directory with processes in a different
2149 	 * namespace
2150 	 */
2151 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2152 		return ERR_PTR(-EINVAL);
2153 
2154 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2155 		return ERR_PTR(-EINVAL);
2156 
2157 	/*
2158 	 * Thread groups must share signals as well, and detached threads
2159 	 * can only be started up within the thread group.
2160 	 */
2161 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2162 		return ERR_PTR(-EINVAL);
2163 
2164 	/*
2165 	 * Shared signal handlers imply shared VM. By way of the above,
2166 	 * thread groups also imply shared VM. Blocking this case allows
2167 	 * for various simplifications in other code.
2168 	 */
2169 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2170 		return ERR_PTR(-EINVAL);
2171 
2172 	/*
2173 	 * Siblings of global init remain as zombies on exit since they are
2174 	 * not reaped by their parent (swapper). To solve this and to avoid
2175 	 * multi-rooted process trees, prevent global and container-inits
2176 	 * from creating siblings.
2177 	 */
2178 	if ((clone_flags & CLONE_PARENT) &&
2179 				current->signal->flags & SIGNAL_UNKILLABLE)
2180 		return ERR_PTR(-EINVAL);
2181 
2182 	/*
2183 	 * If the new process will be in a different pid or user namespace
2184 	 * do not allow it to share a thread group with the forking task.
2185 	 */
2186 	if (clone_flags & CLONE_THREAD) {
2187 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2188 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2189 			return ERR_PTR(-EINVAL);
2190 	}
2191 
2192 	if (clone_flags & CLONE_PIDFD) {
2193 		/*
2194 		 * - CLONE_DETACHED is blocked so that we can potentially
2195 		 *   reuse it later for CLONE_PIDFD.
2196 		 */
2197 		if (clone_flags & CLONE_DETACHED)
2198 			return ERR_PTR(-EINVAL);
2199 	}
2200 
2201 	/*
2202 	 * Force any signals received before this point to be delivered
2203 	 * before the fork happens.  Collect up signals sent to multiple
2204 	 * processes that happen during the fork and delay them so that
2205 	 * they appear to happen after the fork.
2206 	 */
2207 	sigemptyset(&delayed.signal);
2208 	INIT_HLIST_NODE(&delayed.node);
2209 
2210 	spin_lock_irq(&current->sighand->siglock);
2211 	if (!(clone_flags & CLONE_THREAD))
2212 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2213 	recalc_sigpending();
2214 	spin_unlock_irq(&current->sighand->siglock);
2215 	retval = -ERESTARTNOINTR;
2216 	if (task_sigpending(current))
2217 		goto fork_out;
2218 
2219 	retval = -ENOMEM;
2220 	p = dup_task_struct(current, node);
2221 	if (!p)
2222 		goto fork_out;
2223 	p->flags &= ~PF_KTHREAD;
2224 	if (args->kthread)
2225 		p->flags |= PF_KTHREAD;
2226 	if (args->user_worker) {
2227 		/*
2228 		 * Mark us a user worker, and block any signal that isn't
2229 		 * fatal or STOP
2230 		 */
2231 		p->flags |= PF_USER_WORKER;
2232 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2233 	}
2234 	if (args->io_thread)
2235 		p->flags |= PF_IO_WORKER;
2236 
2237 	if (args->name)
2238 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2239 
2240 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2241 	/*
2242 	 * Clear TID on mm_release()?
2243 	 */
2244 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2245 
2246 	ftrace_graph_init_task(p);
2247 
2248 	rt_mutex_init_task(p);
2249 
2250 	lockdep_assert_irqs_enabled();
2251 #ifdef CONFIG_PROVE_LOCKING
2252 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2253 #endif
2254 	retval = copy_creds(p, clone_flags);
2255 	if (retval < 0)
2256 		goto bad_fork_free;
2257 
2258 	retval = -EAGAIN;
2259 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2260 		if (p->real_cred->user != INIT_USER &&
2261 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2262 			goto bad_fork_cleanup_count;
2263 	}
2264 	current->flags &= ~PF_NPROC_EXCEEDED;
2265 
2266 	/*
2267 	 * If multiple threads are within copy_process(), then this check
2268 	 * triggers too late. This doesn't hurt, the check is only there
2269 	 * to stop root fork bombs.
2270 	 */
2271 	retval = -EAGAIN;
2272 	if (data_race(nr_threads >= max_threads))
2273 		goto bad_fork_cleanup_count;
2274 
2275 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2276 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2277 	p->flags |= PF_FORKNOEXEC;
2278 	INIT_LIST_HEAD(&p->children);
2279 	INIT_LIST_HEAD(&p->sibling);
2280 	rcu_copy_process(p);
2281 	p->vfork_done = NULL;
2282 	spin_lock_init(&p->alloc_lock);
2283 
2284 	init_sigpending(&p->pending);
2285 
2286 	p->utime = p->stime = p->gtime = 0;
2287 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2288 	p->utimescaled = p->stimescaled = 0;
2289 #endif
2290 	prev_cputime_init(&p->prev_cputime);
2291 
2292 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2293 	seqcount_init(&p->vtime.seqcount);
2294 	p->vtime.starttime = 0;
2295 	p->vtime.state = VTIME_INACTIVE;
2296 #endif
2297 
2298 #ifdef CONFIG_IO_URING
2299 	p->io_uring = NULL;
2300 #endif
2301 
2302 	p->default_timer_slack_ns = current->timer_slack_ns;
2303 
2304 #ifdef CONFIG_PSI
2305 	p->psi_flags = 0;
2306 #endif
2307 
2308 	task_io_accounting_init(&p->ioac);
2309 	acct_clear_integrals(p);
2310 
2311 	posix_cputimers_init(&p->posix_cputimers);
2312 
2313 	p->io_context = NULL;
2314 	audit_set_context(p, NULL);
2315 	cgroup_fork(p);
2316 	if (args->kthread) {
2317 		if (!set_kthread_struct(p))
2318 			goto bad_fork_cleanup_delayacct;
2319 	}
2320 #ifdef CONFIG_NUMA
2321 	p->mempolicy = mpol_dup(p->mempolicy);
2322 	if (IS_ERR(p->mempolicy)) {
2323 		retval = PTR_ERR(p->mempolicy);
2324 		p->mempolicy = NULL;
2325 		goto bad_fork_cleanup_delayacct;
2326 	}
2327 #endif
2328 #ifdef CONFIG_CPUSETS
2329 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2330 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2331 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2332 #endif
2333 #ifdef CONFIG_TRACE_IRQFLAGS
2334 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2335 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2336 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2337 	p->softirqs_enabled		= 1;
2338 	p->softirq_context		= 0;
2339 #endif
2340 
2341 	p->pagefault_disabled = 0;
2342 
2343 #ifdef CONFIG_LOCKDEP
2344 	lockdep_init_task(p);
2345 #endif
2346 
2347 #ifdef CONFIG_DEBUG_MUTEXES
2348 	p->blocked_on = NULL; /* not blocked yet */
2349 #endif
2350 #ifdef CONFIG_BCACHE
2351 	p->sequential_io	= 0;
2352 	p->sequential_io_avg	= 0;
2353 #endif
2354 #ifdef CONFIG_BPF_SYSCALL
2355 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2356 	p->bpf_ctx = NULL;
2357 #endif
2358 	p->bpf_net_context =  NULL;
2359 
2360 	/* Perform scheduler related setup. Assign this task to a CPU. */
2361 	retval = sched_fork(clone_flags, p);
2362 	if (retval)
2363 		goto bad_fork_cleanup_policy;
2364 
2365 	retval = perf_event_init_task(p, clone_flags);
2366 	if (retval)
2367 		goto bad_fork_cleanup_policy;
2368 	retval = audit_alloc(p);
2369 	if (retval)
2370 		goto bad_fork_cleanup_perf;
2371 	/* copy all the process information */
2372 	shm_init_task(p);
2373 	retval = security_task_alloc(p, clone_flags);
2374 	if (retval)
2375 		goto bad_fork_cleanup_audit;
2376 	retval = copy_semundo(clone_flags, p);
2377 	if (retval)
2378 		goto bad_fork_cleanup_security;
2379 	retval = copy_files(clone_flags, p, args->no_files);
2380 	if (retval)
2381 		goto bad_fork_cleanup_semundo;
2382 	retval = copy_fs(clone_flags, p);
2383 	if (retval)
2384 		goto bad_fork_cleanup_files;
2385 	retval = copy_sighand(clone_flags, p);
2386 	if (retval)
2387 		goto bad_fork_cleanup_fs;
2388 	retval = copy_signal(clone_flags, p);
2389 	if (retval)
2390 		goto bad_fork_cleanup_sighand;
2391 	retval = copy_mm(clone_flags, p);
2392 	if (retval)
2393 		goto bad_fork_cleanup_signal;
2394 	retval = copy_namespaces(clone_flags, p);
2395 	if (retval)
2396 		goto bad_fork_cleanup_mm;
2397 	retval = copy_io(clone_flags, p);
2398 	if (retval)
2399 		goto bad_fork_cleanup_namespaces;
2400 	retval = copy_thread(p, args);
2401 	if (retval)
2402 		goto bad_fork_cleanup_io;
2403 
2404 	stackleak_task_init(p);
2405 
2406 	if (pid != &init_struct_pid) {
2407 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2408 				args->set_tid_size);
2409 		if (IS_ERR(pid)) {
2410 			retval = PTR_ERR(pid);
2411 			goto bad_fork_cleanup_thread;
2412 		}
2413 	}
2414 
2415 	/*
2416 	 * This has to happen after we've potentially unshared the file
2417 	 * descriptor table (so that the pidfd doesn't leak into the child
2418 	 * if the fd table isn't shared).
2419 	 */
2420 	if (clone_flags & CLONE_PIDFD) {
2421 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2422 
2423 		/* Note that no task has been attached to @pid yet. */
2424 		retval = __pidfd_prepare(pid, flags, &pidfile);
2425 		if (retval < 0)
2426 			goto bad_fork_free_pid;
2427 		pidfd = retval;
2428 
2429 		retval = put_user(pidfd, args->pidfd);
2430 		if (retval)
2431 			goto bad_fork_put_pidfd;
2432 	}
2433 
2434 #ifdef CONFIG_BLOCK
2435 	p->plug = NULL;
2436 #endif
2437 	futex_init_task(p);
2438 
2439 	/*
2440 	 * sigaltstack should be cleared when sharing the same VM
2441 	 */
2442 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2443 		sas_ss_reset(p);
2444 
2445 	/*
2446 	 * Syscall tracing and stepping should be turned off in the
2447 	 * child regardless of CLONE_PTRACE.
2448 	 */
2449 	user_disable_single_step(p);
2450 	clear_task_syscall_work(p, SYSCALL_TRACE);
2451 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2452 	clear_task_syscall_work(p, SYSCALL_EMU);
2453 #endif
2454 	clear_tsk_latency_tracing(p);
2455 
2456 	/* ok, now we should be set up.. */
2457 	p->pid = pid_nr(pid);
2458 	if (clone_flags & CLONE_THREAD) {
2459 		p->group_leader = current->group_leader;
2460 		p->tgid = current->tgid;
2461 	} else {
2462 		p->group_leader = p;
2463 		p->tgid = p->pid;
2464 	}
2465 
2466 	p->nr_dirtied = 0;
2467 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2468 	p->dirty_paused_when = 0;
2469 
2470 	p->pdeath_signal = 0;
2471 	p->task_works = NULL;
2472 	clear_posix_cputimers_work(p);
2473 
2474 #ifdef CONFIG_KRETPROBES
2475 	p->kretprobe_instances.first = NULL;
2476 #endif
2477 #ifdef CONFIG_RETHOOK
2478 	p->rethooks.first = NULL;
2479 #endif
2480 
2481 	/*
2482 	 * Ensure that the cgroup subsystem policies allow the new process to be
2483 	 * forked. It should be noted that the new process's css_set can be changed
2484 	 * between here and cgroup_post_fork() if an organisation operation is in
2485 	 * progress.
2486 	 */
2487 	retval = cgroup_can_fork(p, args);
2488 	if (retval)
2489 		goto bad_fork_put_pidfd;
2490 
2491 	/*
2492 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2493 	 * the new task on the correct runqueue. All this *before* the task
2494 	 * becomes visible.
2495 	 *
2496 	 * This isn't part of ->can_fork() because while the re-cloning is
2497 	 * cgroup specific, it unconditionally needs to place the task on a
2498 	 * runqueue.
2499 	 */
2500 	sched_cgroup_fork(p, args);
2501 
2502 	/*
2503 	 * From this point on we must avoid any synchronous user-space
2504 	 * communication until we take the tasklist-lock. In particular, we do
2505 	 * not want user-space to be able to predict the process start-time by
2506 	 * stalling fork(2) after we recorded the start_time but before it is
2507 	 * visible to the system.
2508 	 */
2509 
2510 	p->start_time = ktime_get_ns();
2511 	p->start_boottime = ktime_get_boottime_ns();
2512 
2513 	/*
2514 	 * Make it visible to the rest of the system, but dont wake it up yet.
2515 	 * Need tasklist lock for parent etc handling!
2516 	 */
2517 	write_lock_irq(&tasklist_lock);
2518 
2519 	/* CLONE_PARENT re-uses the old parent */
2520 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2521 		p->real_parent = current->real_parent;
2522 		p->parent_exec_id = current->parent_exec_id;
2523 		if (clone_flags & CLONE_THREAD)
2524 			p->exit_signal = -1;
2525 		else
2526 			p->exit_signal = current->group_leader->exit_signal;
2527 	} else {
2528 		p->real_parent = current;
2529 		p->parent_exec_id = current->self_exec_id;
2530 		p->exit_signal = args->exit_signal;
2531 	}
2532 
2533 	klp_copy_process(p);
2534 
2535 	sched_core_fork(p);
2536 
2537 	spin_lock(&current->sighand->siglock);
2538 
2539 	rv_task_fork(p);
2540 
2541 	rseq_fork(p, clone_flags);
2542 
2543 	/* Don't start children in a dying pid namespace */
2544 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2545 		retval = -ENOMEM;
2546 		goto bad_fork_cancel_cgroup;
2547 	}
2548 
2549 	/* Let kill terminate clone/fork in the middle */
2550 	if (fatal_signal_pending(current)) {
2551 		retval = -EINTR;
2552 		goto bad_fork_cancel_cgroup;
2553 	}
2554 
2555 	/* No more failure paths after this point. */
2556 
2557 	/*
2558 	 * Copy seccomp details explicitly here, in case they were changed
2559 	 * before holding sighand lock.
2560 	 */
2561 	copy_seccomp(p);
2562 
2563 	init_task_pid_links(p);
2564 	if (likely(p->pid)) {
2565 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2566 
2567 		init_task_pid(p, PIDTYPE_PID, pid);
2568 		if (thread_group_leader(p)) {
2569 			init_task_pid(p, PIDTYPE_TGID, pid);
2570 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2571 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2572 
2573 			if (is_child_reaper(pid)) {
2574 				ns_of_pid(pid)->child_reaper = p;
2575 				p->signal->flags |= SIGNAL_UNKILLABLE;
2576 			}
2577 			p->signal->shared_pending.signal = delayed.signal;
2578 			p->signal->tty = tty_kref_get(current->signal->tty);
2579 			/*
2580 			 * Inherit has_child_subreaper flag under the same
2581 			 * tasklist_lock with adding child to the process tree
2582 			 * for propagate_has_child_subreaper optimization.
2583 			 */
2584 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2585 							 p->real_parent->signal->is_child_subreaper;
2586 			list_add_tail(&p->sibling, &p->real_parent->children);
2587 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2588 			attach_pid(p, PIDTYPE_TGID);
2589 			attach_pid(p, PIDTYPE_PGID);
2590 			attach_pid(p, PIDTYPE_SID);
2591 			__this_cpu_inc(process_counts);
2592 		} else {
2593 			current->signal->nr_threads++;
2594 			current->signal->quick_threads++;
2595 			atomic_inc(&current->signal->live);
2596 			refcount_inc(&current->signal->sigcnt);
2597 			task_join_group_stop(p);
2598 			list_add_tail_rcu(&p->thread_node,
2599 					  &p->signal->thread_head);
2600 		}
2601 		attach_pid(p, PIDTYPE_PID);
2602 		nr_threads++;
2603 	}
2604 	total_forks++;
2605 	hlist_del_init(&delayed.node);
2606 	spin_unlock(&current->sighand->siglock);
2607 	syscall_tracepoint_update(p);
2608 	write_unlock_irq(&tasklist_lock);
2609 
2610 	if (pidfile)
2611 		fd_install(pidfd, pidfile);
2612 
2613 	proc_fork_connector(p);
2614 	sched_post_fork(p);
2615 	cgroup_post_fork(p, args);
2616 	perf_event_fork(p);
2617 
2618 	trace_task_newtask(p, clone_flags);
2619 	uprobe_copy_process(p, clone_flags);
2620 	user_events_fork(p, clone_flags);
2621 
2622 	copy_oom_score_adj(clone_flags, p);
2623 
2624 	return p;
2625 
2626 bad_fork_cancel_cgroup:
2627 	sched_core_free(p);
2628 	spin_unlock(&current->sighand->siglock);
2629 	write_unlock_irq(&tasklist_lock);
2630 	cgroup_cancel_fork(p, args);
2631 bad_fork_put_pidfd:
2632 	if (clone_flags & CLONE_PIDFD) {
2633 		fput(pidfile);
2634 		put_unused_fd(pidfd);
2635 	}
2636 bad_fork_free_pid:
2637 	if (pid != &init_struct_pid)
2638 		free_pid(pid);
2639 bad_fork_cleanup_thread:
2640 	exit_thread(p);
2641 bad_fork_cleanup_io:
2642 	if (p->io_context)
2643 		exit_io_context(p);
2644 bad_fork_cleanup_namespaces:
2645 	exit_task_namespaces(p);
2646 bad_fork_cleanup_mm:
2647 	if (p->mm) {
2648 		mm_clear_owner(p->mm, p);
2649 		mmput(p->mm);
2650 	}
2651 bad_fork_cleanup_signal:
2652 	if (!(clone_flags & CLONE_THREAD))
2653 		free_signal_struct(p->signal);
2654 bad_fork_cleanup_sighand:
2655 	__cleanup_sighand(p->sighand);
2656 bad_fork_cleanup_fs:
2657 	exit_fs(p); /* blocking */
2658 bad_fork_cleanup_files:
2659 	exit_files(p); /* blocking */
2660 bad_fork_cleanup_semundo:
2661 	exit_sem(p);
2662 bad_fork_cleanup_security:
2663 	security_task_free(p);
2664 bad_fork_cleanup_audit:
2665 	audit_free(p);
2666 bad_fork_cleanup_perf:
2667 	perf_event_free_task(p);
2668 bad_fork_cleanup_policy:
2669 	lockdep_free_task(p);
2670 #ifdef CONFIG_NUMA
2671 	mpol_put(p->mempolicy);
2672 #endif
2673 bad_fork_cleanup_delayacct:
2674 	delayacct_tsk_free(p);
2675 bad_fork_cleanup_count:
2676 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2677 	exit_creds(p);
2678 bad_fork_free:
2679 	WRITE_ONCE(p->__state, TASK_DEAD);
2680 	exit_task_stack_account(p);
2681 	put_task_stack(p);
2682 	delayed_free_task(p);
2683 fork_out:
2684 	spin_lock_irq(&current->sighand->siglock);
2685 	hlist_del_init(&delayed.node);
2686 	spin_unlock_irq(&current->sighand->siglock);
2687 	return ERR_PTR(retval);
2688 }
2689 
2690 static inline void init_idle_pids(struct task_struct *idle)
2691 {
2692 	enum pid_type type;
2693 
2694 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2695 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2696 		init_task_pid(idle, type, &init_struct_pid);
2697 	}
2698 }
2699 
2700 static int idle_dummy(void *dummy)
2701 {
2702 	/* This function is never called */
2703 	return 0;
2704 }
2705 
2706 struct task_struct * __init fork_idle(int cpu)
2707 {
2708 	struct task_struct *task;
2709 	struct kernel_clone_args args = {
2710 		.flags		= CLONE_VM,
2711 		.fn		= &idle_dummy,
2712 		.fn_arg		= NULL,
2713 		.kthread	= 1,
2714 		.idle		= 1,
2715 	};
2716 
2717 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2718 	if (!IS_ERR(task)) {
2719 		init_idle_pids(task);
2720 		init_idle(task, cpu);
2721 	}
2722 
2723 	return task;
2724 }
2725 
2726 /*
2727  * This is like kernel_clone(), but shaved down and tailored to just
2728  * creating io_uring workers. It returns a created task, or an error pointer.
2729  * The returned task is inactive, and the caller must fire it up through
2730  * wake_up_new_task(p). All signals are blocked in the created task.
2731  */
2732 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2733 {
2734 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2735 				CLONE_IO;
2736 	struct kernel_clone_args args = {
2737 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2738 				    CLONE_UNTRACED) & ~CSIGNAL),
2739 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2740 		.fn		= fn,
2741 		.fn_arg		= arg,
2742 		.io_thread	= 1,
2743 		.user_worker	= 1,
2744 	};
2745 
2746 	return copy_process(NULL, 0, node, &args);
2747 }
2748 
2749 /*
2750  *  Ok, this is the main fork-routine.
2751  *
2752  * It copies the process, and if successful kick-starts
2753  * it and waits for it to finish using the VM if required.
2754  *
2755  * args->exit_signal is expected to be checked for sanity by the caller.
2756  */
2757 pid_t kernel_clone(struct kernel_clone_args *args)
2758 {
2759 	u64 clone_flags = args->flags;
2760 	struct completion vfork;
2761 	struct pid *pid;
2762 	struct task_struct *p;
2763 	int trace = 0;
2764 	pid_t nr;
2765 
2766 	/*
2767 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2768 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2769 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2770 	 * field in struct clone_args and it still doesn't make sense to have
2771 	 * them both point at the same memory location. Performing this check
2772 	 * here has the advantage that we don't need to have a separate helper
2773 	 * to check for legacy clone().
2774 	 */
2775 	if ((clone_flags & CLONE_PIDFD) &&
2776 	    (clone_flags & CLONE_PARENT_SETTID) &&
2777 	    (args->pidfd == args->parent_tid))
2778 		return -EINVAL;
2779 
2780 	/*
2781 	 * Determine whether and which event to report to ptracer.  When
2782 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2783 	 * requested, no event is reported; otherwise, report if the event
2784 	 * for the type of forking is enabled.
2785 	 */
2786 	if (!(clone_flags & CLONE_UNTRACED)) {
2787 		if (clone_flags & CLONE_VFORK)
2788 			trace = PTRACE_EVENT_VFORK;
2789 		else if (args->exit_signal != SIGCHLD)
2790 			trace = PTRACE_EVENT_CLONE;
2791 		else
2792 			trace = PTRACE_EVENT_FORK;
2793 
2794 		if (likely(!ptrace_event_enabled(current, trace)))
2795 			trace = 0;
2796 	}
2797 
2798 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2799 	add_latent_entropy();
2800 
2801 	if (IS_ERR(p))
2802 		return PTR_ERR(p);
2803 
2804 	/*
2805 	 * Do this prior waking up the new thread - the thread pointer
2806 	 * might get invalid after that point, if the thread exits quickly.
2807 	 */
2808 	trace_sched_process_fork(current, p);
2809 
2810 	pid = get_task_pid(p, PIDTYPE_PID);
2811 	nr = pid_vnr(pid);
2812 
2813 	if (clone_flags & CLONE_PARENT_SETTID)
2814 		put_user(nr, args->parent_tid);
2815 
2816 	if (clone_flags & CLONE_VFORK) {
2817 		p->vfork_done = &vfork;
2818 		init_completion(&vfork);
2819 		get_task_struct(p);
2820 	}
2821 
2822 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2823 		/* lock the task to synchronize with memcg migration */
2824 		task_lock(p);
2825 		lru_gen_add_mm(p->mm);
2826 		task_unlock(p);
2827 	}
2828 
2829 	wake_up_new_task(p);
2830 
2831 	/* forking complete and child started to run, tell ptracer */
2832 	if (unlikely(trace))
2833 		ptrace_event_pid(trace, pid);
2834 
2835 	if (clone_flags & CLONE_VFORK) {
2836 		if (!wait_for_vfork_done(p, &vfork))
2837 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2838 	}
2839 
2840 	put_pid(pid);
2841 	return nr;
2842 }
2843 
2844 /*
2845  * Create a kernel thread.
2846  */
2847 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2848 		    unsigned long flags)
2849 {
2850 	struct kernel_clone_args args = {
2851 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2852 				    CLONE_UNTRACED) & ~CSIGNAL),
2853 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2854 		.fn		= fn,
2855 		.fn_arg		= arg,
2856 		.name		= name,
2857 		.kthread	= 1,
2858 	};
2859 
2860 	return kernel_clone(&args);
2861 }
2862 
2863 /*
2864  * Create a user mode thread.
2865  */
2866 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2867 {
2868 	struct kernel_clone_args args = {
2869 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2870 				    CLONE_UNTRACED) & ~CSIGNAL),
2871 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2872 		.fn		= fn,
2873 		.fn_arg		= arg,
2874 	};
2875 
2876 	return kernel_clone(&args);
2877 }
2878 
2879 #ifdef __ARCH_WANT_SYS_FORK
2880 SYSCALL_DEFINE0(fork)
2881 {
2882 #ifdef CONFIG_MMU
2883 	struct kernel_clone_args args = {
2884 		.exit_signal = SIGCHLD,
2885 	};
2886 
2887 	return kernel_clone(&args);
2888 #else
2889 	/* can not support in nommu mode */
2890 	return -EINVAL;
2891 #endif
2892 }
2893 #endif
2894 
2895 #ifdef __ARCH_WANT_SYS_VFORK
2896 SYSCALL_DEFINE0(vfork)
2897 {
2898 	struct kernel_clone_args args = {
2899 		.flags		= CLONE_VFORK | CLONE_VM,
2900 		.exit_signal	= SIGCHLD,
2901 	};
2902 
2903 	return kernel_clone(&args);
2904 }
2905 #endif
2906 
2907 #ifdef __ARCH_WANT_SYS_CLONE
2908 #ifdef CONFIG_CLONE_BACKWARDS
2909 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2910 		 int __user *, parent_tidptr,
2911 		 unsigned long, tls,
2912 		 int __user *, child_tidptr)
2913 #elif defined(CONFIG_CLONE_BACKWARDS2)
2914 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2915 		 int __user *, parent_tidptr,
2916 		 int __user *, child_tidptr,
2917 		 unsigned long, tls)
2918 #elif defined(CONFIG_CLONE_BACKWARDS3)
2919 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2920 		int, stack_size,
2921 		int __user *, parent_tidptr,
2922 		int __user *, child_tidptr,
2923 		unsigned long, tls)
2924 #else
2925 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2926 		 int __user *, parent_tidptr,
2927 		 int __user *, child_tidptr,
2928 		 unsigned long, tls)
2929 #endif
2930 {
2931 	struct kernel_clone_args args = {
2932 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2933 		.pidfd		= parent_tidptr,
2934 		.child_tid	= child_tidptr,
2935 		.parent_tid	= parent_tidptr,
2936 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2937 		.stack		= newsp,
2938 		.tls		= tls,
2939 	};
2940 
2941 	return kernel_clone(&args);
2942 }
2943 #endif
2944 
2945 #ifdef __ARCH_WANT_SYS_CLONE3
2946 
2947 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2948 					      struct clone_args __user *uargs,
2949 					      size_t usize)
2950 {
2951 	int err;
2952 	struct clone_args args;
2953 	pid_t *kset_tid = kargs->set_tid;
2954 
2955 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2956 		     CLONE_ARGS_SIZE_VER0);
2957 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2958 		     CLONE_ARGS_SIZE_VER1);
2959 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2960 		     CLONE_ARGS_SIZE_VER2);
2961 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2962 
2963 	if (unlikely(usize > PAGE_SIZE))
2964 		return -E2BIG;
2965 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2966 		return -EINVAL;
2967 
2968 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2969 	if (err)
2970 		return err;
2971 
2972 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2973 		return -EINVAL;
2974 
2975 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2976 		return -EINVAL;
2977 
2978 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2979 		return -EINVAL;
2980 
2981 	/*
2982 	 * Verify that higher 32bits of exit_signal are unset and that
2983 	 * it is a valid signal
2984 	 */
2985 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2986 		     !valid_signal(args.exit_signal)))
2987 		return -EINVAL;
2988 
2989 	if ((args.flags & CLONE_INTO_CGROUP) &&
2990 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2991 		return -EINVAL;
2992 
2993 	*kargs = (struct kernel_clone_args){
2994 		.flags		= args.flags,
2995 		.pidfd		= u64_to_user_ptr(args.pidfd),
2996 		.child_tid	= u64_to_user_ptr(args.child_tid),
2997 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2998 		.exit_signal	= args.exit_signal,
2999 		.stack		= args.stack,
3000 		.stack_size	= args.stack_size,
3001 		.tls		= args.tls,
3002 		.set_tid_size	= args.set_tid_size,
3003 		.cgroup		= args.cgroup,
3004 	};
3005 
3006 	if (args.set_tid &&
3007 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3008 			(kargs->set_tid_size * sizeof(pid_t))))
3009 		return -EFAULT;
3010 
3011 	kargs->set_tid = kset_tid;
3012 
3013 	return 0;
3014 }
3015 
3016 /**
3017  * clone3_stack_valid - check and prepare stack
3018  * @kargs: kernel clone args
3019  *
3020  * Verify that the stack arguments userspace gave us are sane.
3021  * In addition, set the stack direction for userspace since it's easy for us to
3022  * determine.
3023  */
3024 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3025 {
3026 	if (kargs->stack == 0) {
3027 		if (kargs->stack_size > 0)
3028 			return false;
3029 	} else {
3030 		if (kargs->stack_size == 0)
3031 			return false;
3032 
3033 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3034 			return false;
3035 
3036 #if !defined(CONFIG_STACK_GROWSUP)
3037 		kargs->stack += kargs->stack_size;
3038 #endif
3039 	}
3040 
3041 	return true;
3042 }
3043 
3044 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3045 {
3046 	/* Verify that no unknown flags are passed along. */
3047 	if (kargs->flags &
3048 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3049 		return false;
3050 
3051 	/*
3052 	 * - make the CLONE_DETACHED bit reusable for clone3
3053 	 * - make the CSIGNAL bits reusable for clone3
3054 	 */
3055 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3056 		return false;
3057 
3058 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3059 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3060 		return false;
3061 
3062 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3063 	    kargs->exit_signal)
3064 		return false;
3065 
3066 	if (!clone3_stack_valid(kargs))
3067 		return false;
3068 
3069 	return true;
3070 }
3071 
3072 /**
3073  * sys_clone3 - create a new process with specific properties
3074  * @uargs: argument structure
3075  * @size:  size of @uargs
3076  *
3077  * clone3() is the extensible successor to clone()/clone2().
3078  * It takes a struct as argument that is versioned by its size.
3079  *
3080  * Return: On success, a positive PID for the child process.
3081  *         On error, a negative errno number.
3082  */
3083 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3084 {
3085 	int err;
3086 
3087 	struct kernel_clone_args kargs;
3088 	pid_t set_tid[MAX_PID_NS_LEVEL];
3089 
3090 	kargs.set_tid = set_tid;
3091 
3092 	err = copy_clone_args_from_user(&kargs, uargs, size);
3093 	if (err)
3094 		return err;
3095 
3096 	if (!clone3_args_valid(&kargs))
3097 		return -EINVAL;
3098 
3099 	return kernel_clone(&kargs);
3100 }
3101 #endif
3102 
3103 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3104 {
3105 	struct task_struct *leader, *parent, *child;
3106 	int res;
3107 
3108 	read_lock(&tasklist_lock);
3109 	leader = top = top->group_leader;
3110 down:
3111 	for_each_thread(leader, parent) {
3112 		list_for_each_entry(child, &parent->children, sibling) {
3113 			res = visitor(child, data);
3114 			if (res) {
3115 				if (res < 0)
3116 					goto out;
3117 				leader = child;
3118 				goto down;
3119 			}
3120 up:
3121 			;
3122 		}
3123 	}
3124 
3125 	if (leader != top) {
3126 		child = leader;
3127 		parent = child->real_parent;
3128 		leader = parent->group_leader;
3129 		goto up;
3130 	}
3131 out:
3132 	read_unlock(&tasklist_lock);
3133 }
3134 
3135 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3136 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3137 #endif
3138 
3139 static void sighand_ctor(void *data)
3140 {
3141 	struct sighand_struct *sighand = data;
3142 
3143 	spin_lock_init(&sighand->siglock);
3144 	init_waitqueue_head(&sighand->signalfd_wqh);
3145 }
3146 
3147 void __init mm_cache_init(void)
3148 {
3149 	unsigned int mm_size;
3150 
3151 	/*
3152 	 * The mm_cpumask is located at the end of mm_struct, and is
3153 	 * dynamically sized based on the maximum CPU number this system
3154 	 * can have, taking hotplug into account (nr_cpu_ids).
3155 	 */
3156 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3157 
3158 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3159 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3160 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3161 			offsetof(struct mm_struct, saved_auxv),
3162 			sizeof_field(struct mm_struct, saved_auxv),
3163 			NULL);
3164 }
3165 
3166 void __init proc_caches_init(void)
3167 {
3168 	sighand_cachep = kmem_cache_create("sighand_cache",
3169 			sizeof(struct sighand_struct), 0,
3170 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3171 			SLAB_ACCOUNT, sighand_ctor);
3172 	signal_cachep = kmem_cache_create("signal_cache",
3173 			sizeof(struct signal_struct), 0,
3174 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3175 			NULL);
3176 	files_cachep = kmem_cache_create("files_cache",
3177 			sizeof(struct files_struct), 0,
3178 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3179 			NULL);
3180 	fs_cachep = kmem_cache_create("fs_cache",
3181 			sizeof(struct fs_struct), 0,
3182 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3183 			NULL);
3184 
3185 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3186 #ifdef CONFIG_PER_VMA_LOCK
3187 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3188 #endif
3189 	mmap_init();
3190 	nsproxy_cache_init();
3191 }
3192 
3193 /*
3194  * Check constraints on flags passed to the unshare system call.
3195  */
3196 static int check_unshare_flags(unsigned long unshare_flags)
3197 {
3198 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3199 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3200 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3201 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3202 				CLONE_NEWTIME))
3203 		return -EINVAL;
3204 	/*
3205 	 * Not implemented, but pretend it works if there is nothing
3206 	 * to unshare.  Note that unsharing the address space or the
3207 	 * signal handlers also need to unshare the signal queues (aka
3208 	 * CLONE_THREAD).
3209 	 */
3210 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3211 		if (!thread_group_empty(current))
3212 			return -EINVAL;
3213 	}
3214 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3215 		if (refcount_read(&current->sighand->count) > 1)
3216 			return -EINVAL;
3217 	}
3218 	if (unshare_flags & CLONE_VM) {
3219 		if (!current_is_single_threaded())
3220 			return -EINVAL;
3221 	}
3222 
3223 	return 0;
3224 }
3225 
3226 /*
3227  * Unshare the filesystem structure if it is being shared
3228  */
3229 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3230 {
3231 	struct fs_struct *fs = current->fs;
3232 
3233 	if (!(unshare_flags & CLONE_FS) || !fs)
3234 		return 0;
3235 
3236 	/* don't need lock here; in the worst case we'll do useless copy */
3237 	if (fs->users == 1)
3238 		return 0;
3239 
3240 	*new_fsp = copy_fs_struct(fs);
3241 	if (!*new_fsp)
3242 		return -ENOMEM;
3243 
3244 	return 0;
3245 }
3246 
3247 /*
3248  * Unshare file descriptor table if it is being shared
3249  */
3250 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3251 	       struct files_struct **new_fdp)
3252 {
3253 	struct files_struct *fd = current->files;
3254 	int error = 0;
3255 
3256 	if ((unshare_flags & CLONE_FILES) &&
3257 	    (fd && atomic_read(&fd->count) > 1)) {
3258 		*new_fdp = dup_fd(fd, max_fds, &error);
3259 		if (!*new_fdp)
3260 			return error;
3261 	}
3262 
3263 	return 0;
3264 }
3265 
3266 /*
3267  * unshare allows a process to 'unshare' part of the process
3268  * context which was originally shared using clone.  copy_*
3269  * functions used by kernel_clone() cannot be used here directly
3270  * because they modify an inactive task_struct that is being
3271  * constructed. Here we are modifying the current, active,
3272  * task_struct.
3273  */
3274 int ksys_unshare(unsigned long unshare_flags)
3275 {
3276 	struct fs_struct *fs, *new_fs = NULL;
3277 	struct files_struct *new_fd = NULL;
3278 	struct cred *new_cred = NULL;
3279 	struct nsproxy *new_nsproxy = NULL;
3280 	int do_sysvsem = 0;
3281 	int err;
3282 
3283 	/*
3284 	 * If unsharing a user namespace must also unshare the thread group
3285 	 * and unshare the filesystem root and working directories.
3286 	 */
3287 	if (unshare_flags & CLONE_NEWUSER)
3288 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3289 	/*
3290 	 * If unsharing vm, must also unshare signal handlers.
3291 	 */
3292 	if (unshare_flags & CLONE_VM)
3293 		unshare_flags |= CLONE_SIGHAND;
3294 	/*
3295 	 * If unsharing a signal handlers, must also unshare the signal queues.
3296 	 */
3297 	if (unshare_flags & CLONE_SIGHAND)
3298 		unshare_flags |= CLONE_THREAD;
3299 	/*
3300 	 * If unsharing namespace, must also unshare filesystem information.
3301 	 */
3302 	if (unshare_flags & CLONE_NEWNS)
3303 		unshare_flags |= CLONE_FS;
3304 
3305 	err = check_unshare_flags(unshare_flags);
3306 	if (err)
3307 		goto bad_unshare_out;
3308 	/*
3309 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3310 	 * to a new ipc namespace, the semaphore arrays from the old
3311 	 * namespace are unreachable.
3312 	 */
3313 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3314 		do_sysvsem = 1;
3315 	err = unshare_fs(unshare_flags, &new_fs);
3316 	if (err)
3317 		goto bad_unshare_out;
3318 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3319 	if (err)
3320 		goto bad_unshare_cleanup_fs;
3321 	err = unshare_userns(unshare_flags, &new_cred);
3322 	if (err)
3323 		goto bad_unshare_cleanup_fd;
3324 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3325 					 new_cred, new_fs);
3326 	if (err)
3327 		goto bad_unshare_cleanup_cred;
3328 
3329 	if (new_cred) {
3330 		err = set_cred_ucounts(new_cred);
3331 		if (err)
3332 			goto bad_unshare_cleanup_cred;
3333 	}
3334 
3335 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3336 		if (do_sysvsem) {
3337 			/*
3338 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3339 			 */
3340 			exit_sem(current);
3341 		}
3342 		if (unshare_flags & CLONE_NEWIPC) {
3343 			/* Orphan segments in old ns (see sem above). */
3344 			exit_shm(current);
3345 			shm_init_task(current);
3346 		}
3347 
3348 		if (new_nsproxy)
3349 			switch_task_namespaces(current, new_nsproxy);
3350 
3351 		task_lock(current);
3352 
3353 		if (new_fs) {
3354 			fs = current->fs;
3355 			spin_lock(&fs->lock);
3356 			current->fs = new_fs;
3357 			if (--fs->users)
3358 				new_fs = NULL;
3359 			else
3360 				new_fs = fs;
3361 			spin_unlock(&fs->lock);
3362 		}
3363 
3364 		if (new_fd)
3365 			swap(current->files, new_fd);
3366 
3367 		task_unlock(current);
3368 
3369 		if (new_cred) {
3370 			/* Install the new user namespace */
3371 			commit_creds(new_cred);
3372 			new_cred = NULL;
3373 		}
3374 	}
3375 
3376 	perf_event_namespaces(current);
3377 
3378 bad_unshare_cleanup_cred:
3379 	if (new_cred)
3380 		put_cred(new_cred);
3381 bad_unshare_cleanup_fd:
3382 	if (new_fd)
3383 		put_files_struct(new_fd);
3384 
3385 bad_unshare_cleanup_fs:
3386 	if (new_fs)
3387 		free_fs_struct(new_fs);
3388 
3389 bad_unshare_out:
3390 	return err;
3391 }
3392 
3393 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3394 {
3395 	return ksys_unshare(unshare_flags);
3396 }
3397 
3398 /*
3399  *	Helper to unshare the files of the current task.
3400  *	We don't want to expose copy_files internals to
3401  *	the exec layer of the kernel.
3402  */
3403 
3404 int unshare_files(void)
3405 {
3406 	struct task_struct *task = current;
3407 	struct files_struct *old, *copy = NULL;
3408 	int error;
3409 
3410 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3411 	if (error || !copy)
3412 		return error;
3413 
3414 	old = task->files;
3415 	task_lock(task);
3416 	task->files = copy;
3417 	task_unlock(task);
3418 	put_files_struct(old);
3419 	return 0;
3420 }
3421 
3422 int sysctl_max_threads(struct ctl_table *table, int write,
3423 		       void *buffer, size_t *lenp, loff_t *ppos)
3424 {
3425 	struct ctl_table t;
3426 	int ret;
3427 	int threads = max_threads;
3428 	int min = 1;
3429 	int max = MAX_THREADS;
3430 
3431 	t = *table;
3432 	t.data = &threads;
3433 	t.extra1 = &min;
3434 	t.extra2 = &max;
3435 
3436 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3437 	if (ret || !write)
3438 		return ret;
3439 
3440 	max_threads = threads;
3441 
3442 	return 0;
3443 }
3444