xref: /linux/kernel/fork.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
75 
76 #include <trace/events/sched.h>
77 
78 /*
79  * Protected counters by write_lock_irq(&tasklist_lock)
80  */
81 unsigned long total_forks;	/* Handle normal Linux uptimes. */
82 int nr_threads; 		/* The idle threads do not count.. */
83 
84 int max_threads;		/* tunable limit on nr_threads */
85 
86 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87 
88 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
89 
90 #ifdef CONFIG_PROVE_RCU
91 int lockdep_tasklist_lock_is_held(void)
92 {
93 	return lockdep_is_held(&tasklist_lock);
94 }
95 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
96 #endif /* #ifdef CONFIG_PROVE_RCU */
97 
98 int nr_processes(void)
99 {
100 	int cpu;
101 	int total = 0;
102 
103 	for_each_possible_cpu(cpu)
104 		total += per_cpu(process_counts, cpu);
105 
106 	return total;
107 }
108 
109 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
110 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
111 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
112 static struct kmem_cache *task_struct_cachep;
113 #endif
114 
115 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
116 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
117 {
118 #ifdef CONFIG_DEBUG_STACK_USAGE
119 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
120 #else
121 	gfp_t mask = GFP_KERNEL;
122 #endif
123 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
124 }
125 
126 static inline void free_thread_info(struct thread_info *ti)
127 {
128 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
129 }
130 #endif
131 
132 /* SLAB cache for signal_struct structures (tsk->signal) */
133 static struct kmem_cache *signal_cachep;
134 
135 /* SLAB cache for sighand_struct structures (tsk->sighand) */
136 struct kmem_cache *sighand_cachep;
137 
138 /* SLAB cache for files_struct structures (tsk->files) */
139 struct kmem_cache *files_cachep;
140 
141 /* SLAB cache for fs_struct structures (tsk->fs) */
142 struct kmem_cache *fs_cachep;
143 
144 /* SLAB cache for vm_area_struct structures */
145 struct kmem_cache *vm_area_cachep;
146 
147 /* SLAB cache for mm_struct structures (tsk->mm) */
148 static struct kmem_cache *mm_cachep;
149 
150 static void account_kernel_stack(struct thread_info *ti, int account)
151 {
152 	struct zone *zone = page_zone(virt_to_page(ti));
153 
154 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
155 }
156 
157 void free_task(struct task_struct *tsk)
158 {
159 	prop_local_destroy_single(&tsk->dirties);
160 	account_kernel_stack(tsk->stack, -1);
161 	free_thread_info(tsk->stack);
162 	rt_mutex_debug_task_free(tsk);
163 	ftrace_graph_exit_task(tsk);
164 	free_task_struct(tsk);
165 }
166 EXPORT_SYMBOL(free_task);
167 
168 void __put_task_struct(struct task_struct *tsk)
169 {
170 	WARN_ON(!tsk->exit_state);
171 	WARN_ON(atomic_read(&tsk->usage));
172 	WARN_ON(tsk == current);
173 
174 	exit_creds(tsk);
175 	delayacct_tsk_free(tsk);
176 
177 	if (!profile_handoff_task(tsk))
178 		free_task(tsk);
179 }
180 
181 /*
182  * macro override instead of weak attribute alias, to workaround
183  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
184  */
185 #ifndef arch_task_cache_init
186 #define arch_task_cache_init()
187 #endif
188 
189 void __init fork_init(unsigned long mempages)
190 {
191 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
192 #ifndef ARCH_MIN_TASKALIGN
193 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
194 #endif
195 	/* create a slab on which task_structs can be allocated */
196 	task_struct_cachep =
197 		kmem_cache_create("task_struct", sizeof(struct task_struct),
198 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
199 #endif
200 
201 	/* do the arch specific task caches init */
202 	arch_task_cache_init();
203 
204 	/*
205 	 * The default maximum number of threads is set to a safe
206 	 * value: the thread structures can take up at most half
207 	 * of memory.
208 	 */
209 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
210 
211 	/*
212 	 * we need to allow at least 20 threads to boot a system
213 	 */
214 	if(max_threads < 20)
215 		max_threads = 20;
216 
217 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
218 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
219 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
220 		init_task.signal->rlim[RLIMIT_NPROC];
221 }
222 
223 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
224 					       struct task_struct *src)
225 {
226 	*dst = *src;
227 	return 0;
228 }
229 
230 static struct task_struct *dup_task_struct(struct task_struct *orig)
231 {
232 	struct task_struct *tsk;
233 	struct thread_info *ti;
234 	unsigned long *stackend;
235 
236 	int err;
237 
238 	prepare_to_copy(orig);
239 
240 	tsk = alloc_task_struct();
241 	if (!tsk)
242 		return NULL;
243 
244 	ti = alloc_thread_info(tsk);
245 	if (!ti) {
246 		free_task_struct(tsk);
247 		return NULL;
248 	}
249 
250  	err = arch_dup_task_struct(tsk, orig);
251 	if (err)
252 		goto out;
253 
254 	tsk->stack = ti;
255 
256 	err = prop_local_init_single(&tsk->dirties);
257 	if (err)
258 		goto out;
259 
260 	setup_thread_stack(tsk, orig);
261 	clear_user_return_notifier(tsk);
262 	stackend = end_of_stack(tsk);
263 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
264 
265 #ifdef CONFIG_CC_STACKPROTECTOR
266 	tsk->stack_canary = get_random_int();
267 #endif
268 
269 	/* One for us, one for whoever does the "release_task()" (usually parent) */
270 	atomic_set(&tsk->usage,2);
271 	atomic_set(&tsk->fs_excl, 0);
272 #ifdef CONFIG_BLK_DEV_IO_TRACE
273 	tsk->btrace_seq = 0;
274 #endif
275 	tsk->splice_pipe = NULL;
276 
277 	account_kernel_stack(ti, 1);
278 
279 	return tsk;
280 
281 out:
282 	free_thread_info(ti);
283 	free_task_struct(tsk);
284 	return NULL;
285 }
286 
287 #ifdef CONFIG_MMU
288 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
289 {
290 	struct vm_area_struct *mpnt, *tmp, **pprev;
291 	struct rb_node **rb_link, *rb_parent;
292 	int retval;
293 	unsigned long charge;
294 	struct mempolicy *pol;
295 
296 	down_write(&oldmm->mmap_sem);
297 	flush_cache_dup_mm(oldmm);
298 	/*
299 	 * Not linked in yet - no deadlock potential:
300 	 */
301 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
302 
303 	mm->locked_vm = 0;
304 	mm->mmap = NULL;
305 	mm->mmap_cache = NULL;
306 	mm->free_area_cache = oldmm->mmap_base;
307 	mm->cached_hole_size = ~0UL;
308 	mm->map_count = 0;
309 	cpumask_clear(mm_cpumask(mm));
310 	mm->mm_rb = RB_ROOT;
311 	rb_link = &mm->mm_rb.rb_node;
312 	rb_parent = NULL;
313 	pprev = &mm->mmap;
314 	retval = ksm_fork(mm, oldmm);
315 	if (retval)
316 		goto out;
317 
318 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
319 		struct file *file;
320 
321 		if (mpnt->vm_flags & VM_DONTCOPY) {
322 			long pages = vma_pages(mpnt);
323 			mm->total_vm -= pages;
324 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
325 								-pages);
326 			continue;
327 		}
328 		charge = 0;
329 		if (mpnt->vm_flags & VM_ACCOUNT) {
330 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
331 			if (security_vm_enough_memory(len))
332 				goto fail_nomem;
333 			charge = len;
334 		}
335 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
336 		if (!tmp)
337 			goto fail_nomem;
338 		*tmp = *mpnt;
339 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
340 		pol = mpol_dup(vma_policy(mpnt));
341 		retval = PTR_ERR(pol);
342 		if (IS_ERR(pol))
343 			goto fail_nomem_policy;
344 		vma_set_policy(tmp, pol);
345 		if (anon_vma_fork(tmp, mpnt))
346 			goto fail_nomem_anon_vma_fork;
347 		tmp->vm_flags &= ~VM_LOCKED;
348 		tmp->vm_mm = mm;
349 		tmp->vm_next = NULL;
350 		file = tmp->vm_file;
351 		if (file) {
352 			struct inode *inode = file->f_path.dentry->d_inode;
353 			struct address_space *mapping = file->f_mapping;
354 
355 			get_file(file);
356 			if (tmp->vm_flags & VM_DENYWRITE)
357 				atomic_dec(&inode->i_writecount);
358 			spin_lock(&mapping->i_mmap_lock);
359 			if (tmp->vm_flags & VM_SHARED)
360 				mapping->i_mmap_writable++;
361 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
362 			flush_dcache_mmap_lock(mapping);
363 			/* insert tmp into the share list, just after mpnt */
364 			vma_prio_tree_add(tmp, mpnt);
365 			flush_dcache_mmap_unlock(mapping);
366 			spin_unlock(&mapping->i_mmap_lock);
367 		}
368 
369 		/*
370 		 * Clear hugetlb-related page reserves for children. This only
371 		 * affects MAP_PRIVATE mappings. Faults generated by the child
372 		 * are not guaranteed to succeed, even if read-only
373 		 */
374 		if (is_vm_hugetlb_page(tmp))
375 			reset_vma_resv_huge_pages(tmp);
376 
377 		/*
378 		 * Link in the new vma and copy the page table entries.
379 		 */
380 		*pprev = tmp;
381 		pprev = &tmp->vm_next;
382 
383 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
384 		rb_link = &tmp->vm_rb.rb_right;
385 		rb_parent = &tmp->vm_rb;
386 
387 		mm->map_count++;
388 		retval = copy_page_range(mm, oldmm, mpnt);
389 
390 		if (tmp->vm_ops && tmp->vm_ops->open)
391 			tmp->vm_ops->open(tmp);
392 
393 		if (retval)
394 			goto out;
395 	}
396 	/* a new mm has just been created */
397 	arch_dup_mmap(oldmm, mm);
398 	retval = 0;
399 out:
400 	up_write(&mm->mmap_sem);
401 	flush_tlb_mm(oldmm);
402 	up_write(&oldmm->mmap_sem);
403 	return retval;
404 fail_nomem_anon_vma_fork:
405 	mpol_put(pol);
406 fail_nomem_policy:
407 	kmem_cache_free(vm_area_cachep, tmp);
408 fail_nomem:
409 	retval = -ENOMEM;
410 	vm_unacct_memory(charge);
411 	goto out;
412 }
413 
414 static inline int mm_alloc_pgd(struct mm_struct * mm)
415 {
416 	mm->pgd = pgd_alloc(mm);
417 	if (unlikely(!mm->pgd))
418 		return -ENOMEM;
419 	return 0;
420 }
421 
422 static inline void mm_free_pgd(struct mm_struct * mm)
423 {
424 	pgd_free(mm, mm->pgd);
425 }
426 #else
427 #define dup_mmap(mm, oldmm)	(0)
428 #define mm_alloc_pgd(mm)	(0)
429 #define mm_free_pgd(mm)
430 #endif /* CONFIG_MMU */
431 
432 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
433 
434 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
435 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
436 
437 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
438 
439 static int __init coredump_filter_setup(char *s)
440 {
441 	default_dump_filter =
442 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
443 		MMF_DUMP_FILTER_MASK;
444 	return 1;
445 }
446 
447 __setup("coredump_filter=", coredump_filter_setup);
448 
449 #include <linux/init_task.h>
450 
451 static void mm_init_aio(struct mm_struct *mm)
452 {
453 #ifdef CONFIG_AIO
454 	spin_lock_init(&mm->ioctx_lock);
455 	INIT_HLIST_HEAD(&mm->ioctx_list);
456 #endif
457 }
458 
459 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
460 {
461 	atomic_set(&mm->mm_users, 1);
462 	atomic_set(&mm->mm_count, 1);
463 	init_rwsem(&mm->mmap_sem);
464 	INIT_LIST_HEAD(&mm->mmlist);
465 	mm->flags = (current->mm) ?
466 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
467 	mm->core_state = NULL;
468 	mm->nr_ptes = 0;
469 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
470 	spin_lock_init(&mm->page_table_lock);
471 	mm->free_area_cache = TASK_UNMAPPED_BASE;
472 	mm->cached_hole_size = ~0UL;
473 	mm_init_aio(mm);
474 	mm_init_owner(mm, p);
475 
476 	if (likely(!mm_alloc_pgd(mm))) {
477 		mm->def_flags = 0;
478 		mmu_notifier_mm_init(mm);
479 		return mm;
480 	}
481 
482 	free_mm(mm);
483 	return NULL;
484 }
485 
486 /*
487  * Allocate and initialize an mm_struct.
488  */
489 struct mm_struct * mm_alloc(void)
490 {
491 	struct mm_struct * mm;
492 
493 	mm = allocate_mm();
494 	if (mm) {
495 		memset(mm, 0, sizeof(*mm));
496 		mm = mm_init(mm, current);
497 	}
498 	return mm;
499 }
500 
501 /*
502  * Called when the last reference to the mm
503  * is dropped: either by a lazy thread or by
504  * mmput. Free the page directory and the mm.
505  */
506 void __mmdrop(struct mm_struct *mm)
507 {
508 	BUG_ON(mm == &init_mm);
509 	mm_free_pgd(mm);
510 	destroy_context(mm);
511 	mmu_notifier_mm_destroy(mm);
512 	free_mm(mm);
513 }
514 EXPORT_SYMBOL_GPL(__mmdrop);
515 
516 /*
517  * Decrement the use count and release all resources for an mm.
518  */
519 void mmput(struct mm_struct *mm)
520 {
521 	might_sleep();
522 
523 	if (atomic_dec_and_test(&mm->mm_users)) {
524 		exit_aio(mm);
525 		ksm_exit(mm);
526 		exit_mmap(mm);
527 		set_mm_exe_file(mm, NULL);
528 		if (!list_empty(&mm->mmlist)) {
529 			spin_lock(&mmlist_lock);
530 			list_del(&mm->mmlist);
531 			spin_unlock(&mmlist_lock);
532 		}
533 		put_swap_token(mm);
534 		if (mm->binfmt)
535 			module_put(mm->binfmt->module);
536 		mmdrop(mm);
537 	}
538 }
539 EXPORT_SYMBOL_GPL(mmput);
540 
541 /**
542  * get_task_mm - acquire a reference to the task's mm
543  *
544  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
545  * this kernel workthread has transiently adopted a user mm with use_mm,
546  * to do its AIO) is not set and if so returns a reference to it, after
547  * bumping up the use count.  User must release the mm via mmput()
548  * after use.  Typically used by /proc and ptrace.
549  */
550 struct mm_struct *get_task_mm(struct task_struct *task)
551 {
552 	struct mm_struct *mm;
553 
554 	task_lock(task);
555 	mm = task->mm;
556 	if (mm) {
557 		if (task->flags & PF_KTHREAD)
558 			mm = NULL;
559 		else
560 			atomic_inc(&mm->mm_users);
561 	}
562 	task_unlock(task);
563 	return mm;
564 }
565 EXPORT_SYMBOL_GPL(get_task_mm);
566 
567 /* Please note the differences between mmput and mm_release.
568  * mmput is called whenever we stop holding onto a mm_struct,
569  * error success whatever.
570  *
571  * mm_release is called after a mm_struct has been removed
572  * from the current process.
573  *
574  * This difference is important for error handling, when we
575  * only half set up a mm_struct for a new process and need to restore
576  * the old one.  Because we mmput the new mm_struct before
577  * restoring the old one. . .
578  * Eric Biederman 10 January 1998
579  */
580 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
581 {
582 	struct completion *vfork_done = tsk->vfork_done;
583 
584 	/* Get rid of any futexes when releasing the mm */
585 #ifdef CONFIG_FUTEX
586 	if (unlikely(tsk->robust_list)) {
587 		exit_robust_list(tsk);
588 		tsk->robust_list = NULL;
589 	}
590 #ifdef CONFIG_COMPAT
591 	if (unlikely(tsk->compat_robust_list)) {
592 		compat_exit_robust_list(tsk);
593 		tsk->compat_robust_list = NULL;
594 	}
595 #endif
596 	if (unlikely(!list_empty(&tsk->pi_state_list)))
597 		exit_pi_state_list(tsk);
598 #endif
599 
600 	/* Get rid of any cached register state */
601 	deactivate_mm(tsk, mm);
602 
603 	/* notify parent sleeping on vfork() */
604 	if (vfork_done) {
605 		tsk->vfork_done = NULL;
606 		complete(vfork_done);
607 	}
608 
609 	/*
610 	 * If we're exiting normally, clear a user-space tid field if
611 	 * requested.  We leave this alone when dying by signal, to leave
612 	 * the value intact in a core dump, and to save the unnecessary
613 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
614 	 */
615 	if (tsk->clear_child_tid) {
616 		if (!(tsk->flags & PF_SIGNALED) &&
617 		    atomic_read(&mm->mm_users) > 1) {
618 			/*
619 			 * We don't check the error code - if userspace has
620 			 * not set up a proper pointer then tough luck.
621 			 */
622 			put_user(0, tsk->clear_child_tid);
623 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
624 					1, NULL, NULL, 0);
625 		}
626 		tsk->clear_child_tid = NULL;
627 	}
628 }
629 
630 /*
631  * Allocate a new mm structure and copy contents from the
632  * mm structure of the passed in task structure.
633  */
634 struct mm_struct *dup_mm(struct task_struct *tsk)
635 {
636 	struct mm_struct *mm, *oldmm = current->mm;
637 	int err;
638 
639 	if (!oldmm)
640 		return NULL;
641 
642 	mm = allocate_mm();
643 	if (!mm)
644 		goto fail_nomem;
645 
646 	memcpy(mm, oldmm, sizeof(*mm));
647 
648 	/* Initializing for Swap token stuff */
649 	mm->token_priority = 0;
650 	mm->last_interval = 0;
651 
652 	if (!mm_init(mm, tsk))
653 		goto fail_nomem;
654 
655 	if (init_new_context(tsk, mm))
656 		goto fail_nocontext;
657 
658 	dup_mm_exe_file(oldmm, mm);
659 
660 	err = dup_mmap(mm, oldmm);
661 	if (err)
662 		goto free_pt;
663 
664 	mm->hiwater_rss = get_mm_rss(mm);
665 	mm->hiwater_vm = mm->total_vm;
666 
667 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
668 		goto free_pt;
669 
670 	return mm;
671 
672 free_pt:
673 	/* don't put binfmt in mmput, we haven't got module yet */
674 	mm->binfmt = NULL;
675 	mmput(mm);
676 
677 fail_nomem:
678 	return NULL;
679 
680 fail_nocontext:
681 	/*
682 	 * If init_new_context() failed, we cannot use mmput() to free the mm
683 	 * because it calls destroy_context()
684 	 */
685 	mm_free_pgd(mm);
686 	free_mm(mm);
687 	return NULL;
688 }
689 
690 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
691 {
692 	struct mm_struct * mm, *oldmm;
693 	int retval;
694 
695 	tsk->min_flt = tsk->maj_flt = 0;
696 	tsk->nvcsw = tsk->nivcsw = 0;
697 #ifdef CONFIG_DETECT_HUNG_TASK
698 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
699 #endif
700 
701 	tsk->mm = NULL;
702 	tsk->active_mm = NULL;
703 
704 	/*
705 	 * Are we cloning a kernel thread?
706 	 *
707 	 * We need to steal a active VM for that..
708 	 */
709 	oldmm = current->mm;
710 	if (!oldmm)
711 		return 0;
712 
713 	if (clone_flags & CLONE_VM) {
714 		atomic_inc(&oldmm->mm_users);
715 		mm = oldmm;
716 		goto good_mm;
717 	}
718 
719 	retval = -ENOMEM;
720 	mm = dup_mm(tsk);
721 	if (!mm)
722 		goto fail_nomem;
723 
724 good_mm:
725 	/* Initializing for Swap token stuff */
726 	mm->token_priority = 0;
727 	mm->last_interval = 0;
728 
729 	tsk->mm = mm;
730 	tsk->active_mm = mm;
731 	return 0;
732 
733 fail_nomem:
734 	return retval;
735 }
736 
737 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
738 {
739 	struct fs_struct *fs = current->fs;
740 	if (clone_flags & CLONE_FS) {
741 		/* tsk->fs is already what we want */
742 		write_lock(&fs->lock);
743 		if (fs->in_exec) {
744 			write_unlock(&fs->lock);
745 			return -EAGAIN;
746 		}
747 		fs->users++;
748 		write_unlock(&fs->lock);
749 		return 0;
750 	}
751 	tsk->fs = copy_fs_struct(fs);
752 	if (!tsk->fs)
753 		return -ENOMEM;
754 	return 0;
755 }
756 
757 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
758 {
759 	struct files_struct *oldf, *newf;
760 	int error = 0;
761 
762 	/*
763 	 * A background process may not have any files ...
764 	 */
765 	oldf = current->files;
766 	if (!oldf)
767 		goto out;
768 
769 	if (clone_flags & CLONE_FILES) {
770 		atomic_inc(&oldf->count);
771 		goto out;
772 	}
773 
774 	newf = dup_fd(oldf, &error);
775 	if (!newf)
776 		goto out;
777 
778 	tsk->files = newf;
779 	error = 0;
780 out:
781 	return error;
782 }
783 
784 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
785 {
786 #ifdef CONFIG_BLOCK
787 	struct io_context *ioc = current->io_context;
788 
789 	if (!ioc)
790 		return 0;
791 	/*
792 	 * Share io context with parent, if CLONE_IO is set
793 	 */
794 	if (clone_flags & CLONE_IO) {
795 		tsk->io_context = ioc_task_link(ioc);
796 		if (unlikely(!tsk->io_context))
797 			return -ENOMEM;
798 	} else if (ioprio_valid(ioc->ioprio)) {
799 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
800 		if (unlikely(!tsk->io_context))
801 			return -ENOMEM;
802 
803 		tsk->io_context->ioprio = ioc->ioprio;
804 	}
805 #endif
806 	return 0;
807 }
808 
809 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
810 {
811 	struct sighand_struct *sig;
812 
813 	if (clone_flags & CLONE_SIGHAND) {
814 		atomic_inc(&current->sighand->count);
815 		return 0;
816 	}
817 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
818 	rcu_assign_pointer(tsk->sighand, sig);
819 	if (!sig)
820 		return -ENOMEM;
821 	atomic_set(&sig->count, 1);
822 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
823 	return 0;
824 }
825 
826 void __cleanup_sighand(struct sighand_struct *sighand)
827 {
828 	if (atomic_dec_and_test(&sighand->count))
829 		kmem_cache_free(sighand_cachep, sighand);
830 }
831 
832 
833 /*
834  * Initialize POSIX timer handling for a thread group.
835  */
836 static void posix_cpu_timers_init_group(struct signal_struct *sig)
837 {
838 	unsigned long cpu_limit;
839 
840 	/* Thread group counters. */
841 	thread_group_cputime_init(sig);
842 
843 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
844 	if (cpu_limit != RLIM_INFINITY) {
845 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
846 		sig->cputimer.running = 1;
847 	}
848 
849 	/* The timer lists. */
850 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
851 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
852 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
853 }
854 
855 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
856 {
857 	struct signal_struct *sig;
858 
859 	if (clone_flags & CLONE_THREAD)
860 		return 0;
861 
862 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
863 	tsk->signal = sig;
864 	if (!sig)
865 		return -ENOMEM;
866 
867 	atomic_set(&sig->count, 1);
868 	atomic_set(&sig->live, 1);
869 	init_waitqueue_head(&sig->wait_chldexit);
870 	if (clone_flags & CLONE_NEWPID)
871 		sig->flags |= SIGNAL_UNKILLABLE;
872 	sig->curr_target = tsk;
873 	init_sigpending(&sig->shared_pending);
874 	INIT_LIST_HEAD(&sig->posix_timers);
875 
876 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
877 	sig->real_timer.function = it_real_fn;
878 
879 	task_lock(current->group_leader);
880 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
881 	task_unlock(current->group_leader);
882 
883 	posix_cpu_timers_init_group(sig);
884 
885 	tty_audit_fork(sig);
886 
887 	sig->oom_adj = current->signal->oom_adj;
888 
889 	return 0;
890 }
891 
892 void __cleanup_signal(struct signal_struct *sig)
893 {
894 	thread_group_cputime_free(sig);
895 	tty_kref_put(sig->tty);
896 	kmem_cache_free(signal_cachep, sig);
897 }
898 
899 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
900 {
901 	unsigned long new_flags = p->flags;
902 
903 	new_flags &= ~PF_SUPERPRIV;
904 	new_flags |= PF_FORKNOEXEC;
905 	new_flags |= PF_STARTING;
906 	p->flags = new_flags;
907 	clear_freeze_flag(p);
908 }
909 
910 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
911 {
912 	current->clear_child_tid = tidptr;
913 
914 	return task_pid_vnr(current);
915 }
916 
917 static void rt_mutex_init_task(struct task_struct *p)
918 {
919 	raw_spin_lock_init(&p->pi_lock);
920 #ifdef CONFIG_RT_MUTEXES
921 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
922 	p->pi_blocked_on = NULL;
923 #endif
924 }
925 
926 #ifdef CONFIG_MM_OWNER
927 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
928 {
929 	mm->owner = p;
930 }
931 #endif /* CONFIG_MM_OWNER */
932 
933 /*
934  * Initialize POSIX timer handling for a single task.
935  */
936 static void posix_cpu_timers_init(struct task_struct *tsk)
937 {
938 	tsk->cputime_expires.prof_exp = cputime_zero;
939 	tsk->cputime_expires.virt_exp = cputime_zero;
940 	tsk->cputime_expires.sched_exp = 0;
941 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
942 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
943 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
944 }
945 
946 /*
947  * This creates a new process as a copy of the old one,
948  * but does not actually start it yet.
949  *
950  * It copies the registers, and all the appropriate
951  * parts of the process environment (as per the clone
952  * flags). The actual kick-off is left to the caller.
953  */
954 static struct task_struct *copy_process(unsigned long clone_flags,
955 					unsigned long stack_start,
956 					struct pt_regs *regs,
957 					unsigned long stack_size,
958 					int __user *child_tidptr,
959 					struct pid *pid,
960 					int trace)
961 {
962 	int retval;
963 	struct task_struct *p;
964 	int cgroup_callbacks_done = 0;
965 
966 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
967 		return ERR_PTR(-EINVAL);
968 
969 	/*
970 	 * Thread groups must share signals as well, and detached threads
971 	 * can only be started up within the thread group.
972 	 */
973 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
974 		return ERR_PTR(-EINVAL);
975 
976 	/*
977 	 * Shared signal handlers imply shared VM. By way of the above,
978 	 * thread groups also imply shared VM. Blocking this case allows
979 	 * for various simplifications in other code.
980 	 */
981 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
982 		return ERR_PTR(-EINVAL);
983 
984 	/*
985 	 * Siblings of global init remain as zombies on exit since they are
986 	 * not reaped by their parent (swapper). To solve this and to avoid
987 	 * multi-rooted process trees, prevent global and container-inits
988 	 * from creating siblings.
989 	 */
990 	if ((clone_flags & CLONE_PARENT) &&
991 				current->signal->flags & SIGNAL_UNKILLABLE)
992 		return ERR_PTR(-EINVAL);
993 
994 	retval = security_task_create(clone_flags);
995 	if (retval)
996 		goto fork_out;
997 
998 	retval = -ENOMEM;
999 	p = dup_task_struct(current);
1000 	if (!p)
1001 		goto fork_out;
1002 
1003 	ftrace_graph_init_task(p);
1004 
1005 	rt_mutex_init_task(p);
1006 
1007 #ifdef CONFIG_PROVE_LOCKING
1008 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1009 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1010 #endif
1011 	retval = -EAGAIN;
1012 	if (atomic_read(&p->real_cred->user->processes) >=
1013 			task_rlimit(p, RLIMIT_NPROC)) {
1014 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1015 		    p->real_cred->user != INIT_USER)
1016 			goto bad_fork_free;
1017 	}
1018 
1019 	retval = copy_creds(p, clone_flags);
1020 	if (retval < 0)
1021 		goto bad_fork_free;
1022 
1023 	/*
1024 	 * If multiple threads are within copy_process(), then this check
1025 	 * triggers too late. This doesn't hurt, the check is only there
1026 	 * to stop root fork bombs.
1027 	 */
1028 	retval = -EAGAIN;
1029 	if (nr_threads >= max_threads)
1030 		goto bad_fork_cleanup_count;
1031 
1032 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1033 		goto bad_fork_cleanup_count;
1034 
1035 	p->did_exec = 0;
1036 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1037 	copy_flags(clone_flags, p);
1038 	INIT_LIST_HEAD(&p->children);
1039 	INIT_LIST_HEAD(&p->sibling);
1040 	rcu_copy_process(p);
1041 	p->vfork_done = NULL;
1042 	spin_lock_init(&p->alloc_lock);
1043 
1044 	init_sigpending(&p->pending);
1045 
1046 	p->utime = cputime_zero;
1047 	p->stime = cputime_zero;
1048 	p->gtime = cputime_zero;
1049 	p->utimescaled = cputime_zero;
1050 	p->stimescaled = cputime_zero;
1051 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1052 	p->prev_utime = cputime_zero;
1053 	p->prev_stime = cputime_zero;
1054 #endif
1055 #if defined(SPLIT_RSS_COUNTING)
1056 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1057 #endif
1058 
1059 	p->default_timer_slack_ns = current->timer_slack_ns;
1060 
1061 	task_io_accounting_init(&p->ioac);
1062 	acct_clear_integrals(p);
1063 
1064 	posix_cpu_timers_init(p);
1065 
1066 	p->lock_depth = -1;		/* -1 = no lock */
1067 	do_posix_clock_monotonic_gettime(&p->start_time);
1068 	p->real_start_time = p->start_time;
1069 	monotonic_to_bootbased(&p->real_start_time);
1070 	p->io_context = NULL;
1071 	p->audit_context = NULL;
1072 	cgroup_fork(p);
1073 #ifdef CONFIG_NUMA
1074 	p->mempolicy = mpol_dup(p->mempolicy);
1075  	if (IS_ERR(p->mempolicy)) {
1076  		retval = PTR_ERR(p->mempolicy);
1077  		p->mempolicy = NULL;
1078  		goto bad_fork_cleanup_cgroup;
1079  	}
1080 	mpol_fix_fork_child_flag(p);
1081 #endif
1082 #ifdef CONFIG_TRACE_IRQFLAGS
1083 	p->irq_events = 0;
1084 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1085 	p->hardirqs_enabled = 1;
1086 #else
1087 	p->hardirqs_enabled = 0;
1088 #endif
1089 	p->hardirq_enable_ip = 0;
1090 	p->hardirq_enable_event = 0;
1091 	p->hardirq_disable_ip = _THIS_IP_;
1092 	p->hardirq_disable_event = 0;
1093 	p->softirqs_enabled = 1;
1094 	p->softirq_enable_ip = _THIS_IP_;
1095 	p->softirq_enable_event = 0;
1096 	p->softirq_disable_ip = 0;
1097 	p->softirq_disable_event = 0;
1098 	p->hardirq_context = 0;
1099 	p->softirq_context = 0;
1100 #endif
1101 #ifdef CONFIG_LOCKDEP
1102 	p->lockdep_depth = 0; /* no locks held yet */
1103 	p->curr_chain_key = 0;
1104 	p->lockdep_recursion = 0;
1105 #endif
1106 
1107 #ifdef CONFIG_DEBUG_MUTEXES
1108 	p->blocked_on = NULL; /* not blocked yet */
1109 #endif
1110 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1111 	p->memcg_batch.do_batch = 0;
1112 	p->memcg_batch.memcg = NULL;
1113 #endif
1114 
1115 	p->bts = NULL;
1116 
1117 	p->stack_start = stack_start;
1118 
1119 	/* Perform scheduler related setup. Assign this task to a CPU. */
1120 	sched_fork(p, clone_flags);
1121 
1122 	retval = perf_event_init_task(p);
1123 	if (retval)
1124 		goto bad_fork_cleanup_policy;
1125 
1126 	if ((retval = audit_alloc(p)))
1127 		goto bad_fork_cleanup_policy;
1128 	/* copy all the process information */
1129 	if ((retval = copy_semundo(clone_flags, p)))
1130 		goto bad_fork_cleanup_audit;
1131 	if ((retval = copy_files(clone_flags, p)))
1132 		goto bad_fork_cleanup_semundo;
1133 	if ((retval = copy_fs(clone_flags, p)))
1134 		goto bad_fork_cleanup_files;
1135 	if ((retval = copy_sighand(clone_flags, p)))
1136 		goto bad_fork_cleanup_fs;
1137 	if ((retval = copy_signal(clone_flags, p)))
1138 		goto bad_fork_cleanup_sighand;
1139 	if ((retval = copy_mm(clone_flags, p)))
1140 		goto bad_fork_cleanup_signal;
1141 	if ((retval = copy_namespaces(clone_flags, p)))
1142 		goto bad_fork_cleanup_mm;
1143 	if ((retval = copy_io(clone_flags, p)))
1144 		goto bad_fork_cleanup_namespaces;
1145 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1146 	if (retval)
1147 		goto bad_fork_cleanup_io;
1148 
1149 	if (pid != &init_struct_pid) {
1150 		retval = -ENOMEM;
1151 		pid = alloc_pid(p->nsproxy->pid_ns);
1152 		if (!pid)
1153 			goto bad_fork_cleanup_io;
1154 
1155 		if (clone_flags & CLONE_NEWPID) {
1156 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1157 			if (retval < 0)
1158 				goto bad_fork_free_pid;
1159 		}
1160 	}
1161 
1162 	p->pid = pid_nr(pid);
1163 	p->tgid = p->pid;
1164 	if (clone_flags & CLONE_THREAD)
1165 		p->tgid = current->tgid;
1166 
1167 	if (current->nsproxy != p->nsproxy) {
1168 		retval = ns_cgroup_clone(p, pid);
1169 		if (retval)
1170 			goto bad_fork_free_pid;
1171 	}
1172 
1173 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1174 	/*
1175 	 * Clear TID on mm_release()?
1176 	 */
1177 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1178 #ifdef CONFIG_FUTEX
1179 	p->robust_list = NULL;
1180 #ifdef CONFIG_COMPAT
1181 	p->compat_robust_list = NULL;
1182 #endif
1183 	INIT_LIST_HEAD(&p->pi_state_list);
1184 	p->pi_state_cache = NULL;
1185 #endif
1186 	/*
1187 	 * sigaltstack should be cleared when sharing the same VM
1188 	 */
1189 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1190 		p->sas_ss_sp = p->sas_ss_size = 0;
1191 
1192 	/*
1193 	 * Syscall tracing and stepping should be turned off in the
1194 	 * child regardless of CLONE_PTRACE.
1195 	 */
1196 	user_disable_single_step(p);
1197 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1198 #ifdef TIF_SYSCALL_EMU
1199 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1200 #endif
1201 	clear_all_latency_tracing(p);
1202 
1203 	/* ok, now we should be set up.. */
1204 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1205 	p->pdeath_signal = 0;
1206 	p->exit_state = 0;
1207 
1208 	/*
1209 	 * Ok, make it visible to the rest of the system.
1210 	 * We dont wake it up yet.
1211 	 */
1212 	p->group_leader = p;
1213 	INIT_LIST_HEAD(&p->thread_group);
1214 
1215 	/* Now that the task is set up, run cgroup callbacks if
1216 	 * necessary. We need to run them before the task is visible
1217 	 * on the tasklist. */
1218 	cgroup_fork_callbacks(p);
1219 	cgroup_callbacks_done = 1;
1220 
1221 	/* Need tasklist lock for parent etc handling! */
1222 	write_lock_irq(&tasklist_lock);
1223 
1224 	/* CLONE_PARENT re-uses the old parent */
1225 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1226 		p->real_parent = current->real_parent;
1227 		p->parent_exec_id = current->parent_exec_id;
1228 	} else {
1229 		p->real_parent = current;
1230 		p->parent_exec_id = current->self_exec_id;
1231 	}
1232 
1233 	spin_lock(&current->sighand->siglock);
1234 
1235 	/*
1236 	 * Process group and session signals need to be delivered to just the
1237 	 * parent before the fork or both the parent and the child after the
1238 	 * fork. Restart if a signal comes in before we add the new process to
1239 	 * it's process group.
1240 	 * A fatal signal pending means that current will exit, so the new
1241 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1242  	 */
1243 	recalc_sigpending();
1244 	if (signal_pending(current)) {
1245 		spin_unlock(&current->sighand->siglock);
1246 		write_unlock_irq(&tasklist_lock);
1247 		retval = -ERESTARTNOINTR;
1248 		goto bad_fork_free_pid;
1249 	}
1250 
1251 	if (clone_flags & CLONE_THREAD) {
1252 		atomic_inc(&current->signal->count);
1253 		atomic_inc(&current->signal->live);
1254 		p->group_leader = current->group_leader;
1255 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1256 	}
1257 
1258 	if (likely(p->pid)) {
1259 		tracehook_finish_clone(p, clone_flags, trace);
1260 
1261 		if (thread_group_leader(p)) {
1262 			if (clone_flags & CLONE_NEWPID)
1263 				p->nsproxy->pid_ns->child_reaper = p;
1264 
1265 			p->signal->leader_pid = pid;
1266 			tty_kref_put(p->signal->tty);
1267 			p->signal->tty = tty_kref_get(current->signal->tty);
1268 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1269 			attach_pid(p, PIDTYPE_SID, task_session(current));
1270 			list_add_tail(&p->sibling, &p->real_parent->children);
1271 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1272 			__get_cpu_var(process_counts)++;
1273 		}
1274 		attach_pid(p, PIDTYPE_PID, pid);
1275 		nr_threads++;
1276 	}
1277 
1278 	total_forks++;
1279 	spin_unlock(&current->sighand->siglock);
1280 	write_unlock_irq(&tasklist_lock);
1281 	proc_fork_connector(p);
1282 	cgroup_post_fork(p);
1283 	perf_event_fork(p);
1284 	return p;
1285 
1286 bad_fork_free_pid:
1287 	if (pid != &init_struct_pid)
1288 		free_pid(pid);
1289 bad_fork_cleanup_io:
1290 	if (p->io_context)
1291 		exit_io_context(p);
1292 bad_fork_cleanup_namespaces:
1293 	exit_task_namespaces(p);
1294 bad_fork_cleanup_mm:
1295 	if (p->mm)
1296 		mmput(p->mm);
1297 bad_fork_cleanup_signal:
1298 	if (!(clone_flags & CLONE_THREAD))
1299 		__cleanup_signal(p->signal);
1300 bad_fork_cleanup_sighand:
1301 	__cleanup_sighand(p->sighand);
1302 bad_fork_cleanup_fs:
1303 	exit_fs(p); /* blocking */
1304 bad_fork_cleanup_files:
1305 	exit_files(p); /* blocking */
1306 bad_fork_cleanup_semundo:
1307 	exit_sem(p);
1308 bad_fork_cleanup_audit:
1309 	audit_free(p);
1310 bad_fork_cleanup_policy:
1311 	perf_event_free_task(p);
1312 #ifdef CONFIG_NUMA
1313 	mpol_put(p->mempolicy);
1314 bad_fork_cleanup_cgroup:
1315 #endif
1316 	cgroup_exit(p, cgroup_callbacks_done);
1317 	delayacct_tsk_free(p);
1318 	module_put(task_thread_info(p)->exec_domain->module);
1319 bad_fork_cleanup_count:
1320 	atomic_dec(&p->cred->user->processes);
1321 	exit_creds(p);
1322 bad_fork_free:
1323 	free_task(p);
1324 fork_out:
1325 	return ERR_PTR(retval);
1326 }
1327 
1328 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1329 {
1330 	memset(regs, 0, sizeof(struct pt_regs));
1331 	return regs;
1332 }
1333 
1334 struct task_struct * __cpuinit fork_idle(int cpu)
1335 {
1336 	struct task_struct *task;
1337 	struct pt_regs regs;
1338 
1339 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1340 			    &init_struct_pid, 0);
1341 	if (!IS_ERR(task))
1342 		init_idle(task, cpu);
1343 
1344 	return task;
1345 }
1346 
1347 /*
1348  *  Ok, this is the main fork-routine.
1349  *
1350  * It copies the process, and if successful kick-starts
1351  * it and waits for it to finish using the VM if required.
1352  */
1353 long do_fork(unsigned long clone_flags,
1354 	      unsigned long stack_start,
1355 	      struct pt_regs *regs,
1356 	      unsigned long stack_size,
1357 	      int __user *parent_tidptr,
1358 	      int __user *child_tidptr)
1359 {
1360 	struct task_struct *p;
1361 	int trace = 0;
1362 	long nr;
1363 
1364 	/*
1365 	 * Do some preliminary argument and permissions checking before we
1366 	 * actually start allocating stuff
1367 	 */
1368 	if (clone_flags & CLONE_NEWUSER) {
1369 		if (clone_flags & CLONE_THREAD)
1370 			return -EINVAL;
1371 		/* hopefully this check will go away when userns support is
1372 		 * complete
1373 		 */
1374 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1375 				!capable(CAP_SETGID))
1376 			return -EPERM;
1377 	}
1378 
1379 	/*
1380 	 * We hope to recycle these flags after 2.6.26
1381 	 */
1382 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1383 		static int __read_mostly count = 100;
1384 
1385 		if (count > 0 && printk_ratelimit()) {
1386 			char comm[TASK_COMM_LEN];
1387 
1388 			count--;
1389 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1390 					"clone flags 0x%lx\n",
1391 				get_task_comm(comm, current),
1392 				clone_flags & CLONE_STOPPED);
1393 		}
1394 	}
1395 
1396 	/*
1397 	 * When called from kernel_thread, don't do user tracing stuff.
1398 	 */
1399 	if (likely(user_mode(regs)))
1400 		trace = tracehook_prepare_clone(clone_flags);
1401 
1402 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1403 			 child_tidptr, NULL, trace);
1404 	/*
1405 	 * Do this prior waking up the new thread - the thread pointer
1406 	 * might get invalid after that point, if the thread exits quickly.
1407 	 */
1408 	if (!IS_ERR(p)) {
1409 		struct completion vfork;
1410 
1411 		trace_sched_process_fork(current, p);
1412 
1413 		nr = task_pid_vnr(p);
1414 
1415 		if (clone_flags & CLONE_PARENT_SETTID)
1416 			put_user(nr, parent_tidptr);
1417 
1418 		if (clone_flags & CLONE_VFORK) {
1419 			p->vfork_done = &vfork;
1420 			init_completion(&vfork);
1421 		}
1422 
1423 		audit_finish_fork(p);
1424 		tracehook_report_clone(regs, clone_flags, nr, p);
1425 
1426 		/*
1427 		 * We set PF_STARTING at creation in case tracing wants to
1428 		 * use this to distinguish a fully live task from one that
1429 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1430 		 * clear it and set the child going.
1431 		 */
1432 		p->flags &= ~PF_STARTING;
1433 
1434 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1435 			/*
1436 			 * We'll start up with an immediate SIGSTOP.
1437 			 */
1438 			sigaddset(&p->pending.signal, SIGSTOP);
1439 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1440 			__set_task_state(p, TASK_STOPPED);
1441 		} else {
1442 			wake_up_new_task(p, clone_flags);
1443 		}
1444 
1445 		tracehook_report_clone_complete(trace, regs,
1446 						clone_flags, nr, p);
1447 
1448 		if (clone_flags & CLONE_VFORK) {
1449 			freezer_do_not_count();
1450 			wait_for_completion(&vfork);
1451 			freezer_count();
1452 			tracehook_report_vfork_done(p, nr);
1453 		}
1454 	} else {
1455 		nr = PTR_ERR(p);
1456 	}
1457 	return nr;
1458 }
1459 
1460 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1461 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1462 #endif
1463 
1464 static void sighand_ctor(void *data)
1465 {
1466 	struct sighand_struct *sighand = data;
1467 
1468 	spin_lock_init(&sighand->siglock);
1469 	init_waitqueue_head(&sighand->signalfd_wqh);
1470 }
1471 
1472 void __init proc_caches_init(void)
1473 {
1474 	sighand_cachep = kmem_cache_create("sighand_cache",
1475 			sizeof(struct sighand_struct), 0,
1476 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1477 			SLAB_NOTRACK, sighand_ctor);
1478 	signal_cachep = kmem_cache_create("signal_cache",
1479 			sizeof(struct signal_struct), 0,
1480 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1481 	files_cachep = kmem_cache_create("files_cache",
1482 			sizeof(struct files_struct), 0,
1483 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1484 	fs_cachep = kmem_cache_create("fs_cache",
1485 			sizeof(struct fs_struct), 0,
1486 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1487 	mm_cachep = kmem_cache_create("mm_struct",
1488 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1489 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1490 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1491 	mmap_init();
1492 }
1493 
1494 /*
1495  * Check constraints on flags passed to the unshare system call and
1496  * force unsharing of additional process context as appropriate.
1497  */
1498 static void check_unshare_flags(unsigned long *flags_ptr)
1499 {
1500 	/*
1501 	 * If unsharing a thread from a thread group, must also
1502 	 * unshare vm.
1503 	 */
1504 	if (*flags_ptr & CLONE_THREAD)
1505 		*flags_ptr |= CLONE_VM;
1506 
1507 	/*
1508 	 * If unsharing vm, must also unshare signal handlers.
1509 	 */
1510 	if (*flags_ptr & CLONE_VM)
1511 		*flags_ptr |= CLONE_SIGHAND;
1512 
1513 	/*
1514 	 * If unsharing signal handlers and the task was created
1515 	 * using CLONE_THREAD, then must unshare the thread
1516 	 */
1517 	if ((*flags_ptr & CLONE_SIGHAND) &&
1518 	    (atomic_read(&current->signal->count) > 1))
1519 		*flags_ptr |= CLONE_THREAD;
1520 
1521 	/*
1522 	 * If unsharing namespace, must also unshare filesystem information.
1523 	 */
1524 	if (*flags_ptr & CLONE_NEWNS)
1525 		*flags_ptr |= CLONE_FS;
1526 }
1527 
1528 /*
1529  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1530  */
1531 static int unshare_thread(unsigned long unshare_flags)
1532 {
1533 	if (unshare_flags & CLONE_THREAD)
1534 		return -EINVAL;
1535 
1536 	return 0;
1537 }
1538 
1539 /*
1540  * Unshare the filesystem structure if it is being shared
1541  */
1542 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1543 {
1544 	struct fs_struct *fs = current->fs;
1545 
1546 	if (!(unshare_flags & CLONE_FS) || !fs)
1547 		return 0;
1548 
1549 	/* don't need lock here; in the worst case we'll do useless copy */
1550 	if (fs->users == 1)
1551 		return 0;
1552 
1553 	*new_fsp = copy_fs_struct(fs);
1554 	if (!*new_fsp)
1555 		return -ENOMEM;
1556 
1557 	return 0;
1558 }
1559 
1560 /*
1561  * Unsharing of sighand is not supported yet
1562  */
1563 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1564 {
1565 	struct sighand_struct *sigh = current->sighand;
1566 
1567 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1568 		return -EINVAL;
1569 	else
1570 		return 0;
1571 }
1572 
1573 /*
1574  * Unshare vm if it is being shared
1575  */
1576 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1577 {
1578 	struct mm_struct *mm = current->mm;
1579 
1580 	if ((unshare_flags & CLONE_VM) &&
1581 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1582 		return -EINVAL;
1583 	}
1584 
1585 	return 0;
1586 }
1587 
1588 /*
1589  * Unshare file descriptor table if it is being shared
1590  */
1591 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1592 {
1593 	struct files_struct *fd = current->files;
1594 	int error = 0;
1595 
1596 	if ((unshare_flags & CLONE_FILES) &&
1597 	    (fd && atomic_read(&fd->count) > 1)) {
1598 		*new_fdp = dup_fd(fd, &error);
1599 		if (!*new_fdp)
1600 			return error;
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 /*
1607  * unshare allows a process to 'unshare' part of the process
1608  * context which was originally shared using clone.  copy_*
1609  * functions used by do_fork() cannot be used here directly
1610  * because they modify an inactive task_struct that is being
1611  * constructed. Here we are modifying the current, active,
1612  * task_struct.
1613  */
1614 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1615 {
1616 	int err = 0;
1617 	struct fs_struct *fs, *new_fs = NULL;
1618 	struct sighand_struct *new_sigh = NULL;
1619 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1620 	struct files_struct *fd, *new_fd = NULL;
1621 	struct nsproxy *new_nsproxy = NULL;
1622 	int do_sysvsem = 0;
1623 
1624 	check_unshare_flags(&unshare_flags);
1625 
1626 	/* Return -EINVAL for all unsupported flags */
1627 	err = -EINVAL;
1628 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1629 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1630 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1631 		goto bad_unshare_out;
1632 
1633 	/*
1634 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1635 	 * to a new ipc namespace, the semaphore arrays from the old
1636 	 * namespace are unreachable.
1637 	 */
1638 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1639 		do_sysvsem = 1;
1640 	if ((err = unshare_thread(unshare_flags)))
1641 		goto bad_unshare_out;
1642 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1643 		goto bad_unshare_cleanup_thread;
1644 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1645 		goto bad_unshare_cleanup_fs;
1646 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1647 		goto bad_unshare_cleanup_sigh;
1648 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1649 		goto bad_unshare_cleanup_vm;
1650 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1651 			new_fs)))
1652 		goto bad_unshare_cleanup_fd;
1653 
1654 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1655 		if (do_sysvsem) {
1656 			/*
1657 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1658 			 */
1659 			exit_sem(current);
1660 		}
1661 
1662 		if (new_nsproxy) {
1663 			switch_task_namespaces(current, new_nsproxy);
1664 			new_nsproxy = NULL;
1665 		}
1666 
1667 		task_lock(current);
1668 
1669 		if (new_fs) {
1670 			fs = current->fs;
1671 			write_lock(&fs->lock);
1672 			current->fs = new_fs;
1673 			if (--fs->users)
1674 				new_fs = NULL;
1675 			else
1676 				new_fs = fs;
1677 			write_unlock(&fs->lock);
1678 		}
1679 
1680 		if (new_mm) {
1681 			mm = current->mm;
1682 			active_mm = current->active_mm;
1683 			current->mm = new_mm;
1684 			current->active_mm = new_mm;
1685 			activate_mm(active_mm, new_mm);
1686 			new_mm = mm;
1687 		}
1688 
1689 		if (new_fd) {
1690 			fd = current->files;
1691 			current->files = new_fd;
1692 			new_fd = fd;
1693 		}
1694 
1695 		task_unlock(current);
1696 	}
1697 
1698 	if (new_nsproxy)
1699 		put_nsproxy(new_nsproxy);
1700 
1701 bad_unshare_cleanup_fd:
1702 	if (new_fd)
1703 		put_files_struct(new_fd);
1704 
1705 bad_unshare_cleanup_vm:
1706 	if (new_mm)
1707 		mmput(new_mm);
1708 
1709 bad_unshare_cleanup_sigh:
1710 	if (new_sigh)
1711 		if (atomic_dec_and_test(&new_sigh->count))
1712 			kmem_cache_free(sighand_cachep, new_sigh);
1713 
1714 bad_unshare_cleanup_fs:
1715 	if (new_fs)
1716 		free_fs_struct(new_fs);
1717 
1718 bad_unshare_cleanup_thread:
1719 bad_unshare_out:
1720 	return err;
1721 }
1722 
1723 /*
1724  *	Helper to unshare the files of the current task.
1725  *	We don't want to expose copy_files internals to
1726  *	the exec layer of the kernel.
1727  */
1728 
1729 int unshare_files(struct files_struct **displaced)
1730 {
1731 	struct task_struct *task = current;
1732 	struct files_struct *copy = NULL;
1733 	int error;
1734 
1735 	error = unshare_fd(CLONE_FILES, &copy);
1736 	if (error || !copy) {
1737 		*displaced = NULL;
1738 		return error;
1739 	}
1740 	*displaced = task->files;
1741 	task_lock(task);
1742 	task->files = copy;
1743 	task_unlock(task);
1744 	return 0;
1745 }
1746