1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 #include <linux/sched/mm.h> 101 102 #include <asm/pgalloc.h> 103 #include <linux/uaccess.h> 104 #include <asm/mmu_context.h> 105 #include <asm/cacheflush.h> 106 #include <asm/tlbflush.h> 107 108 #include <trace/events/sched.h> 109 110 #define CREATE_TRACE_POINTS 111 #include <trace/events/task.h> 112 113 /* 114 * Minimum number of threads to boot the kernel 115 */ 116 #define MIN_THREADS 20 117 118 /* 119 * Maximum number of threads 120 */ 121 #define MAX_THREADS FUTEX_TID_MASK 122 123 /* 124 * Protected counters by write_lock_irq(&tasklist_lock) 125 */ 126 unsigned long total_forks; /* Handle normal Linux uptimes. */ 127 int nr_threads; /* The idle threads do not count.. */ 128 129 static int max_threads; /* tunable limit on nr_threads */ 130 131 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 132 133 static const char * const resident_page_types[] = { 134 NAMED_ARRAY_INDEX(MM_FILEPAGES), 135 NAMED_ARRAY_INDEX(MM_ANONPAGES), 136 NAMED_ARRAY_INDEX(MM_SWAPENTS), 137 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 138 }; 139 140 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 141 142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 143 144 #ifdef CONFIG_PROVE_RCU 145 int lockdep_tasklist_lock_is_held(void) 146 { 147 return lockdep_is_held(&tasklist_lock); 148 } 149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 150 #endif /* #ifdef CONFIG_PROVE_RCU */ 151 152 int nr_processes(void) 153 { 154 int cpu; 155 int total = 0; 156 157 for_each_possible_cpu(cpu) 158 total += per_cpu(process_counts, cpu); 159 160 return total; 161 } 162 163 void __weak arch_release_task_struct(struct task_struct *tsk) 164 { 165 } 166 167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 168 static struct kmem_cache *task_struct_cachep; 169 170 static inline struct task_struct *alloc_task_struct_node(int node) 171 { 172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 173 } 174 175 static inline void free_task_struct(struct task_struct *tsk) 176 { 177 kmem_cache_free(task_struct_cachep, tsk); 178 } 179 #endif 180 181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 182 183 /* 184 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 185 * kmemcache based allocator. 186 */ 187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 188 189 # ifdef CONFIG_VMAP_STACK 190 /* 191 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 192 * flush. Try to minimize the number of calls by caching stacks. 193 */ 194 #define NR_CACHED_STACKS 2 195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 196 197 struct vm_stack { 198 struct rcu_head rcu; 199 struct vm_struct *stack_vm_area; 200 }; 201 202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 203 { 204 unsigned int i; 205 206 for (i = 0; i < NR_CACHED_STACKS; i++) { 207 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 208 continue; 209 return true; 210 } 211 return false; 212 } 213 214 static void thread_stack_free_rcu(struct rcu_head *rh) 215 { 216 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 217 218 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 219 return; 220 221 vfree(vm_stack); 222 } 223 224 static void thread_stack_delayed_free(struct task_struct *tsk) 225 { 226 struct vm_stack *vm_stack = tsk->stack; 227 228 vm_stack->stack_vm_area = tsk->stack_vm_area; 229 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 230 } 231 232 static int free_vm_stack_cache(unsigned int cpu) 233 { 234 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 235 int i; 236 237 for (i = 0; i < NR_CACHED_STACKS; i++) { 238 struct vm_struct *vm_stack = cached_vm_stacks[i]; 239 240 if (!vm_stack) 241 continue; 242 243 vfree(vm_stack->addr); 244 cached_vm_stacks[i] = NULL; 245 } 246 247 return 0; 248 } 249 250 static int memcg_charge_kernel_stack(struct vm_struct *vm) 251 { 252 int i; 253 int ret; 254 255 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 256 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 257 258 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 259 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 260 if (ret) 261 goto err; 262 } 263 return 0; 264 err: 265 /* 266 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 267 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 268 * ignore this page. 269 */ 270 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 271 memcg_kmem_uncharge_page(vm->pages[i], 0); 272 return ret; 273 } 274 275 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 276 { 277 struct vm_struct *vm; 278 void *stack; 279 int i; 280 281 for (i = 0; i < NR_CACHED_STACKS; i++) { 282 struct vm_struct *s; 283 284 s = this_cpu_xchg(cached_stacks[i], NULL); 285 286 if (!s) 287 continue; 288 289 /* Reset stack metadata. */ 290 kasan_unpoison_range(s->addr, THREAD_SIZE); 291 292 stack = kasan_reset_tag(s->addr); 293 294 /* Clear stale pointers from reused stack. */ 295 memset(stack, 0, THREAD_SIZE); 296 297 if (memcg_charge_kernel_stack(s)) { 298 vfree(s->addr); 299 return -ENOMEM; 300 } 301 302 tsk->stack_vm_area = s; 303 tsk->stack = stack; 304 return 0; 305 } 306 307 /* 308 * Allocated stacks are cached and later reused by new threads, 309 * so memcg accounting is performed manually on assigning/releasing 310 * stacks to tasks. Drop __GFP_ACCOUNT. 311 */ 312 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 313 VMALLOC_START, VMALLOC_END, 314 THREADINFO_GFP & ~__GFP_ACCOUNT, 315 PAGE_KERNEL, 316 0, node, __builtin_return_address(0)); 317 if (!stack) 318 return -ENOMEM; 319 320 vm = find_vm_area(stack); 321 if (memcg_charge_kernel_stack(vm)) { 322 vfree(stack); 323 return -ENOMEM; 324 } 325 /* 326 * We can't call find_vm_area() in interrupt context, and 327 * free_thread_stack() can be called in interrupt context, 328 * so cache the vm_struct. 329 */ 330 tsk->stack_vm_area = vm; 331 stack = kasan_reset_tag(stack); 332 tsk->stack = stack; 333 return 0; 334 } 335 336 static void free_thread_stack(struct task_struct *tsk) 337 { 338 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 339 thread_stack_delayed_free(tsk); 340 341 tsk->stack = NULL; 342 tsk->stack_vm_area = NULL; 343 } 344 345 # else /* !CONFIG_VMAP_STACK */ 346 347 static void thread_stack_free_rcu(struct rcu_head *rh) 348 { 349 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 350 } 351 352 static void thread_stack_delayed_free(struct task_struct *tsk) 353 { 354 struct rcu_head *rh = tsk->stack; 355 356 call_rcu(rh, thread_stack_free_rcu); 357 } 358 359 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 360 { 361 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 362 THREAD_SIZE_ORDER); 363 364 if (likely(page)) { 365 tsk->stack = kasan_reset_tag(page_address(page)); 366 return 0; 367 } 368 return -ENOMEM; 369 } 370 371 static void free_thread_stack(struct task_struct *tsk) 372 { 373 thread_stack_delayed_free(tsk); 374 tsk->stack = NULL; 375 } 376 377 # endif /* CONFIG_VMAP_STACK */ 378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 379 380 static struct kmem_cache *thread_stack_cache; 381 382 static void thread_stack_free_rcu(struct rcu_head *rh) 383 { 384 kmem_cache_free(thread_stack_cache, rh); 385 } 386 387 static void thread_stack_delayed_free(struct task_struct *tsk) 388 { 389 struct rcu_head *rh = tsk->stack; 390 391 call_rcu(rh, thread_stack_free_rcu); 392 } 393 394 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 395 { 396 unsigned long *stack; 397 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 398 stack = kasan_reset_tag(stack); 399 tsk->stack = stack; 400 return stack ? 0 : -ENOMEM; 401 } 402 403 static void free_thread_stack(struct task_struct *tsk) 404 { 405 thread_stack_delayed_free(tsk); 406 tsk->stack = NULL; 407 } 408 409 void thread_stack_cache_init(void) 410 { 411 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 412 THREAD_SIZE, THREAD_SIZE, 0, 0, 413 THREAD_SIZE, NULL); 414 BUG_ON(thread_stack_cache == NULL); 415 } 416 417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 418 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 419 420 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 421 { 422 unsigned long *stack; 423 424 stack = arch_alloc_thread_stack_node(tsk, node); 425 tsk->stack = stack; 426 return stack ? 0 : -ENOMEM; 427 } 428 429 static void free_thread_stack(struct task_struct *tsk) 430 { 431 arch_free_thread_stack(tsk); 432 tsk->stack = NULL; 433 } 434 435 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 436 437 /* SLAB cache for signal_struct structures (tsk->signal) */ 438 static struct kmem_cache *signal_cachep; 439 440 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 441 struct kmem_cache *sighand_cachep; 442 443 /* SLAB cache for files_struct structures (tsk->files) */ 444 struct kmem_cache *files_cachep; 445 446 /* SLAB cache for fs_struct structures (tsk->fs) */ 447 struct kmem_cache *fs_cachep; 448 449 /* SLAB cache for vm_area_struct structures */ 450 static struct kmem_cache *vm_area_cachep; 451 452 /* SLAB cache for mm_struct structures (tsk->mm) */ 453 static struct kmem_cache *mm_cachep; 454 455 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 456 { 457 struct vm_area_struct *vma; 458 459 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 460 if (vma) 461 vma_init(vma, mm); 462 return vma; 463 } 464 465 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 466 { 467 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 468 469 if (new) { 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 471 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 472 /* 473 * orig->shared.rb may be modified concurrently, but the clone 474 * will be reinitialized. 475 */ 476 *new = data_race(*orig); 477 INIT_LIST_HEAD(&new->anon_vma_chain); 478 dup_anon_vma_name(orig, new); 479 } 480 return new; 481 } 482 483 void vm_area_free(struct vm_area_struct *vma) 484 { 485 free_anon_vma_name(vma); 486 kmem_cache_free(vm_area_cachep, vma); 487 } 488 489 static void account_kernel_stack(struct task_struct *tsk, int account) 490 { 491 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 492 struct vm_struct *vm = task_stack_vm_area(tsk); 493 int i; 494 495 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 496 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 497 account * (PAGE_SIZE / 1024)); 498 } else { 499 void *stack = task_stack_page(tsk); 500 501 /* All stack pages are in the same node. */ 502 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 503 account * (THREAD_SIZE / 1024)); 504 } 505 } 506 507 void exit_task_stack_account(struct task_struct *tsk) 508 { 509 account_kernel_stack(tsk, -1); 510 511 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 512 struct vm_struct *vm; 513 int i; 514 515 vm = task_stack_vm_area(tsk); 516 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 517 memcg_kmem_uncharge_page(vm->pages[i], 0); 518 } 519 } 520 521 static void release_task_stack(struct task_struct *tsk) 522 { 523 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 524 return; /* Better to leak the stack than to free prematurely */ 525 526 free_thread_stack(tsk); 527 } 528 529 #ifdef CONFIG_THREAD_INFO_IN_TASK 530 void put_task_stack(struct task_struct *tsk) 531 { 532 if (refcount_dec_and_test(&tsk->stack_refcount)) 533 release_task_stack(tsk); 534 } 535 #endif 536 537 void free_task(struct task_struct *tsk) 538 { 539 release_user_cpus_ptr(tsk); 540 scs_release(tsk); 541 542 #ifndef CONFIG_THREAD_INFO_IN_TASK 543 /* 544 * The task is finally done with both the stack and thread_info, 545 * so free both. 546 */ 547 release_task_stack(tsk); 548 #else 549 /* 550 * If the task had a separate stack allocation, it should be gone 551 * by now. 552 */ 553 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 554 #endif 555 rt_mutex_debug_task_free(tsk); 556 ftrace_graph_exit_task(tsk); 557 arch_release_task_struct(tsk); 558 if (tsk->flags & PF_KTHREAD) 559 free_kthread_struct(tsk); 560 free_task_struct(tsk); 561 } 562 EXPORT_SYMBOL(free_task); 563 564 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 565 { 566 struct file *exe_file; 567 568 exe_file = get_mm_exe_file(oldmm); 569 RCU_INIT_POINTER(mm->exe_file, exe_file); 570 /* 571 * We depend on the oldmm having properly denied write access to the 572 * exe_file already. 573 */ 574 if (exe_file && deny_write_access(exe_file)) 575 pr_warn_once("deny_write_access() failed in %s\n", __func__); 576 } 577 578 #ifdef CONFIG_MMU 579 static __latent_entropy int dup_mmap(struct mm_struct *mm, 580 struct mm_struct *oldmm) 581 { 582 struct vm_area_struct *mpnt, *tmp; 583 int retval; 584 unsigned long charge = 0; 585 LIST_HEAD(uf); 586 MA_STATE(old_mas, &oldmm->mm_mt, 0, 0); 587 MA_STATE(mas, &mm->mm_mt, 0, 0); 588 589 uprobe_start_dup_mmap(); 590 if (mmap_write_lock_killable(oldmm)) { 591 retval = -EINTR; 592 goto fail_uprobe_end; 593 } 594 flush_cache_dup_mm(oldmm); 595 uprobe_dup_mmap(oldmm, mm); 596 /* 597 * Not linked in yet - no deadlock potential: 598 */ 599 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 600 601 /* No ordering required: file already has been exposed. */ 602 dup_mm_exe_file(mm, oldmm); 603 604 mm->total_vm = oldmm->total_vm; 605 mm->data_vm = oldmm->data_vm; 606 mm->exec_vm = oldmm->exec_vm; 607 mm->stack_vm = oldmm->stack_vm; 608 609 retval = ksm_fork(mm, oldmm); 610 if (retval) 611 goto out; 612 khugepaged_fork(mm, oldmm); 613 614 retval = mas_expected_entries(&mas, oldmm->map_count); 615 if (retval) 616 goto out; 617 618 mas_for_each(&old_mas, mpnt, ULONG_MAX) { 619 struct file *file; 620 621 if (mpnt->vm_flags & VM_DONTCOPY) { 622 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 623 continue; 624 } 625 charge = 0; 626 /* 627 * Don't duplicate many vmas if we've been oom-killed (for 628 * example) 629 */ 630 if (fatal_signal_pending(current)) { 631 retval = -EINTR; 632 goto loop_out; 633 } 634 if (mpnt->vm_flags & VM_ACCOUNT) { 635 unsigned long len = vma_pages(mpnt); 636 637 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 638 goto fail_nomem; 639 charge = len; 640 } 641 tmp = vm_area_dup(mpnt); 642 if (!tmp) 643 goto fail_nomem; 644 retval = vma_dup_policy(mpnt, tmp); 645 if (retval) 646 goto fail_nomem_policy; 647 tmp->vm_mm = mm; 648 retval = dup_userfaultfd(tmp, &uf); 649 if (retval) 650 goto fail_nomem_anon_vma_fork; 651 if (tmp->vm_flags & VM_WIPEONFORK) { 652 /* 653 * VM_WIPEONFORK gets a clean slate in the child. 654 * Don't prepare anon_vma until fault since we don't 655 * copy page for current vma. 656 */ 657 tmp->anon_vma = NULL; 658 } else if (anon_vma_fork(tmp, mpnt)) 659 goto fail_nomem_anon_vma_fork; 660 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 661 file = tmp->vm_file; 662 if (file) { 663 struct address_space *mapping = file->f_mapping; 664 665 get_file(file); 666 i_mmap_lock_write(mapping); 667 if (tmp->vm_flags & VM_SHARED) 668 mapping_allow_writable(mapping); 669 flush_dcache_mmap_lock(mapping); 670 /* insert tmp into the share list, just after mpnt */ 671 vma_interval_tree_insert_after(tmp, mpnt, 672 &mapping->i_mmap); 673 flush_dcache_mmap_unlock(mapping); 674 i_mmap_unlock_write(mapping); 675 } 676 677 /* 678 * Copy/update hugetlb private vma information. 679 */ 680 if (is_vm_hugetlb_page(tmp)) 681 hugetlb_dup_vma_private(tmp); 682 683 /* Link the vma into the MT */ 684 mas.index = tmp->vm_start; 685 mas.last = tmp->vm_end - 1; 686 mas_store(&mas, tmp); 687 if (mas_is_err(&mas)) 688 goto fail_nomem_mas_store; 689 690 mm->map_count++; 691 if (!(tmp->vm_flags & VM_WIPEONFORK)) 692 retval = copy_page_range(tmp, mpnt); 693 694 if (tmp->vm_ops && tmp->vm_ops->open) 695 tmp->vm_ops->open(tmp); 696 697 if (retval) 698 goto loop_out; 699 } 700 /* a new mm has just been created */ 701 retval = arch_dup_mmap(oldmm, mm); 702 loop_out: 703 mas_destroy(&mas); 704 out: 705 mmap_write_unlock(mm); 706 flush_tlb_mm(oldmm); 707 mmap_write_unlock(oldmm); 708 dup_userfaultfd_complete(&uf); 709 fail_uprobe_end: 710 uprobe_end_dup_mmap(); 711 return retval; 712 713 fail_nomem_mas_store: 714 unlink_anon_vmas(tmp); 715 fail_nomem_anon_vma_fork: 716 mpol_put(vma_policy(tmp)); 717 fail_nomem_policy: 718 vm_area_free(tmp); 719 fail_nomem: 720 retval = -ENOMEM; 721 vm_unacct_memory(charge); 722 goto loop_out; 723 } 724 725 static inline int mm_alloc_pgd(struct mm_struct *mm) 726 { 727 mm->pgd = pgd_alloc(mm); 728 if (unlikely(!mm->pgd)) 729 return -ENOMEM; 730 return 0; 731 } 732 733 static inline void mm_free_pgd(struct mm_struct *mm) 734 { 735 pgd_free(mm, mm->pgd); 736 } 737 #else 738 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 739 { 740 mmap_write_lock(oldmm); 741 dup_mm_exe_file(mm, oldmm); 742 mmap_write_unlock(oldmm); 743 return 0; 744 } 745 #define mm_alloc_pgd(mm) (0) 746 #define mm_free_pgd(mm) 747 #endif /* CONFIG_MMU */ 748 749 static void check_mm(struct mm_struct *mm) 750 { 751 int i; 752 753 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 754 "Please make sure 'struct resident_page_types[]' is updated as well"); 755 756 for (i = 0; i < NR_MM_COUNTERS; i++) { 757 long x = atomic_long_read(&mm->rss_stat.count[i]); 758 759 if (unlikely(x)) 760 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 761 mm, resident_page_types[i], x); 762 } 763 764 if (mm_pgtables_bytes(mm)) 765 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 766 mm_pgtables_bytes(mm)); 767 768 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 769 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 770 #endif 771 } 772 773 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 774 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 775 776 /* 777 * Called when the last reference to the mm 778 * is dropped: either by a lazy thread or by 779 * mmput. Free the page directory and the mm. 780 */ 781 void __mmdrop(struct mm_struct *mm) 782 { 783 BUG_ON(mm == &init_mm); 784 WARN_ON_ONCE(mm == current->mm); 785 WARN_ON_ONCE(mm == current->active_mm); 786 mm_free_pgd(mm); 787 destroy_context(mm); 788 mmu_notifier_subscriptions_destroy(mm); 789 check_mm(mm); 790 put_user_ns(mm->user_ns); 791 mm_pasid_drop(mm); 792 free_mm(mm); 793 } 794 EXPORT_SYMBOL_GPL(__mmdrop); 795 796 static void mmdrop_async_fn(struct work_struct *work) 797 { 798 struct mm_struct *mm; 799 800 mm = container_of(work, struct mm_struct, async_put_work); 801 __mmdrop(mm); 802 } 803 804 static void mmdrop_async(struct mm_struct *mm) 805 { 806 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 807 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 808 schedule_work(&mm->async_put_work); 809 } 810 } 811 812 static inline void free_signal_struct(struct signal_struct *sig) 813 { 814 taskstats_tgid_free(sig); 815 sched_autogroup_exit(sig); 816 /* 817 * __mmdrop is not safe to call from softirq context on x86 due to 818 * pgd_dtor so postpone it to the async context 819 */ 820 if (sig->oom_mm) 821 mmdrop_async(sig->oom_mm); 822 kmem_cache_free(signal_cachep, sig); 823 } 824 825 static inline void put_signal_struct(struct signal_struct *sig) 826 { 827 if (refcount_dec_and_test(&sig->sigcnt)) 828 free_signal_struct(sig); 829 } 830 831 void __put_task_struct(struct task_struct *tsk) 832 { 833 WARN_ON(!tsk->exit_state); 834 WARN_ON(refcount_read(&tsk->usage)); 835 WARN_ON(tsk == current); 836 837 io_uring_free(tsk); 838 cgroup_free(tsk); 839 task_numa_free(tsk, true); 840 security_task_free(tsk); 841 bpf_task_storage_free(tsk); 842 exit_creds(tsk); 843 delayacct_tsk_free(tsk); 844 put_signal_struct(tsk->signal); 845 sched_core_free(tsk); 846 free_task(tsk); 847 } 848 EXPORT_SYMBOL_GPL(__put_task_struct); 849 850 void __init __weak arch_task_cache_init(void) { } 851 852 /* 853 * set_max_threads 854 */ 855 static void set_max_threads(unsigned int max_threads_suggested) 856 { 857 u64 threads; 858 unsigned long nr_pages = totalram_pages(); 859 860 /* 861 * The number of threads shall be limited such that the thread 862 * structures may only consume a small part of the available memory. 863 */ 864 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 865 threads = MAX_THREADS; 866 else 867 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 868 (u64) THREAD_SIZE * 8UL); 869 870 if (threads > max_threads_suggested) 871 threads = max_threads_suggested; 872 873 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 874 } 875 876 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 877 /* Initialized by the architecture: */ 878 int arch_task_struct_size __read_mostly; 879 #endif 880 881 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 882 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 883 { 884 /* Fetch thread_struct whitelist for the architecture. */ 885 arch_thread_struct_whitelist(offset, size); 886 887 /* 888 * Handle zero-sized whitelist or empty thread_struct, otherwise 889 * adjust offset to position of thread_struct in task_struct. 890 */ 891 if (unlikely(*size == 0)) 892 *offset = 0; 893 else 894 *offset += offsetof(struct task_struct, thread); 895 } 896 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 897 898 void __init fork_init(void) 899 { 900 int i; 901 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 902 #ifndef ARCH_MIN_TASKALIGN 903 #define ARCH_MIN_TASKALIGN 0 904 #endif 905 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 906 unsigned long useroffset, usersize; 907 908 /* create a slab on which task_structs can be allocated */ 909 task_struct_whitelist(&useroffset, &usersize); 910 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 911 arch_task_struct_size, align, 912 SLAB_PANIC|SLAB_ACCOUNT, 913 useroffset, usersize, NULL); 914 #endif 915 916 /* do the arch specific task caches init */ 917 arch_task_cache_init(); 918 919 set_max_threads(MAX_THREADS); 920 921 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 922 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 923 init_task.signal->rlim[RLIMIT_SIGPENDING] = 924 init_task.signal->rlim[RLIMIT_NPROC]; 925 926 for (i = 0; i < UCOUNT_COUNTS; i++) 927 init_user_ns.ucount_max[i] = max_threads/2; 928 929 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 930 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 931 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 932 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 933 934 #ifdef CONFIG_VMAP_STACK 935 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 936 NULL, free_vm_stack_cache); 937 #endif 938 939 scs_init(); 940 941 lockdep_init_task(&init_task); 942 uprobes_init(); 943 } 944 945 int __weak arch_dup_task_struct(struct task_struct *dst, 946 struct task_struct *src) 947 { 948 *dst = *src; 949 return 0; 950 } 951 952 void set_task_stack_end_magic(struct task_struct *tsk) 953 { 954 unsigned long *stackend; 955 956 stackend = end_of_stack(tsk); 957 *stackend = STACK_END_MAGIC; /* for overflow detection */ 958 } 959 960 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 961 { 962 struct task_struct *tsk; 963 int err; 964 965 if (node == NUMA_NO_NODE) 966 node = tsk_fork_get_node(orig); 967 tsk = alloc_task_struct_node(node); 968 if (!tsk) 969 return NULL; 970 971 err = arch_dup_task_struct(tsk, orig); 972 if (err) 973 goto free_tsk; 974 975 err = alloc_thread_stack_node(tsk, node); 976 if (err) 977 goto free_tsk; 978 979 #ifdef CONFIG_THREAD_INFO_IN_TASK 980 refcount_set(&tsk->stack_refcount, 1); 981 #endif 982 account_kernel_stack(tsk, 1); 983 984 err = scs_prepare(tsk, node); 985 if (err) 986 goto free_stack; 987 988 #ifdef CONFIG_SECCOMP 989 /* 990 * We must handle setting up seccomp filters once we're under 991 * the sighand lock in case orig has changed between now and 992 * then. Until then, filter must be NULL to avoid messing up 993 * the usage counts on the error path calling free_task. 994 */ 995 tsk->seccomp.filter = NULL; 996 #endif 997 998 setup_thread_stack(tsk, orig); 999 clear_user_return_notifier(tsk); 1000 clear_tsk_need_resched(tsk); 1001 set_task_stack_end_magic(tsk); 1002 clear_syscall_work_syscall_user_dispatch(tsk); 1003 1004 #ifdef CONFIG_STACKPROTECTOR 1005 tsk->stack_canary = get_random_canary(); 1006 #endif 1007 if (orig->cpus_ptr == &orig->cpus_mask) 1008 tsk->cpus_ptr = &tsk->cpus_mask; 1009 dup_user_cpus_ptr(tsk, orig, node); 1010 1011 /* 1012 * One for the user space visible state that goes away when reaped. 1013 * One for the scheduler. 1014 */ 1015 refcount_set(&tsk->rcu_users, 2); 1016 /* One for the rcu users */ 1017 refcount_set(&tsk->usage, 1); 1018 #ifdef CONFIG_BLK_DEV_IO_TRACE 1019 tsk->btrace_seq = 0; 1020 #endif 1021 tsk->splice_pipe = NULL; 1022 tsk->task_frag.page = NULL; 1023 tsk->wake_q.next = NULL; 1024 tsk->worker_private = NULL; 1025 1026 kcov_task_init(tsk); 1027 kmsan_task_create(tsk); 1028 kmap_local_fork(tsk); 1029 1030 #ifdef CONFIG_FAULT_INJECTION 1031 tsk->fail_nth = 0; 1032 #endif 1033 1034 #ifdef CONFIG_BLK_CGROUP 1035 tsk->throttle_queue = NULL; 1036 tsk->use_memdelay = 0; 1037 #endif 1038 1039 #ifdef CONFIG_IOMMU_SVA 1040 tsk->pasid_activated = 0; 1041 #endif 1042 1043 #ifdef CONFIG_MEMCG 1044 tsk->active_memcg = NULL; 1045 #endif 1046 1047 #ifdef CONFIG_CPU_SUP_INTEL 1048 tsk->reported_split_lock = 0; 1049 #endif 1050 1051 return tsk; 1052 1053 free_stack: 1054 exit_task_stack_account(tsk); 1055 free_thread_stack(tsk); 1056 free_tsk: 1057 free_task_struct(tsk); 1058 return NULL; 1059 } 1060 1061 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1062 1063 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1064 1065 static int __init coredump_filter_setup(char *s) 1066 { 1067 default_dump_filter = 1068 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1069 MMF_DUMP_FILTER_MASK; 1070 return 1; 1071 } 1072 1073 __setup("coredump_filter=", coredump_filter_setup); 1074 1075 #include <linux/init_task.h> 1076 1077 static void mm_init_aio(struct mm_struct *mm) 1078 { 1079 #ifdef CONFIG_AIO 1080 spin_lock_init(&mm->ioctx_lock); 1081 mm->ioctx_table = NULL; 1082 #endif 1083 } 1084 1085 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1086 struct task_struct *p) 1087 { 1088 #ifdef CONFIG_MEMCG 1089 if (mm->owner == p) 1090 WRITE_ONCE(mm->owner, NULL); 1091 #endif 1092 } 1093 1094 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1095 { 1096 #ifdef CONFIG_MEMCG 1097 mm->owner = p; 1098 #endif 1099 } 1100 1101 static void mm_init_uprobes_state(struct mm_struct *mm) 1102 { 1103 #ifdef CONFIG_UPROBES 1104 mm->uprobes_state.xol_area = NULL; 1105 #endif 1106 } 1107 1108 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1109 struct user_namespace *user_ns) 1110 { 1111 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1112 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1113 atomic_set(&mm->mm_users, 1); 1114 atomic_set(&mm->mm_count, 1); 1115 seqcount_init(&mm->write_protect_seq); 1116 mmap_init_lock(mm); 1117 INIT_LIST_HEAD(&mm->mmlist); 1118 mm_pgtables_bytes_init(mm); 1119 mm->map_count = 0; 1120 mm->locked_vm = 0; 1121 atomic64_set(&mm->pinned_vm, 0); 1122 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1123 spin_lock_init(&mm->page_table_lock); 1124 spin_lock_init(&mm->arg_lock); 1125 mm_init_cpumask(mm); 1126 mm_init_aio(mm); 1127 mm_init_owner(mm, p); 1128 mm_pasid_init(mm); 1129 RCU_INIT_POINTER(mm->exe_file, NULL); 1130 mmu_notifier_subscriptions_init(mm); 1131 init_tlb_flush_pending(mm); 1132 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1133 mm->pmd_huge_pte = NULL; 1134 #endif 1135 mm_init_uprobes_state(mm); 1136 hugetlb_count_init(mm); 1137 1138 if (current->mm) { 1139 mm->flags = current->mm->flags & MMF_INIT_MASK; 1140 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1141 } else { 1142 mm->flags = default_dump_filter; 1143 mm->def_flags = 0; 1144 } 1145 1146 if (mm_alloc_pgd(mm)) 1147 goto fail_nopgd; 1148 1149 if (init_new_context(p, mm)) 1150 goto fail_nocontext; 1151 1152 mm->user_ns = get_user_ns(user_ns); 1153 lru_gen_init_mm(mm); 1154 return mm; 1155 1156 fail_nocontext: 1157 mm_free_pgd(mm); 1158 fail_nopgd: 1159 free_mm(mm); 1160 return NULL; 1161 } 1162 1163 /* 1164 * Allocate and initialize an mm_struct. 1165 */ 1166 struct mm_struct *mm_alloc(void) 1167 { 1168 struct mm_struct *mm; 1169 1170 mm = allocate_mm(); 1171 if (!mm) 1172 return NULL; 1173 1174 memset(mm, 0, sizeof(*mm)); 1175 return mm_init(mm, current, current_user_ns()); 1176 } 1177 1178 static inline void __mmput(struct mm_struct *mm) 1179 { 1180 VM_BUG_ON(atomic_read(&mm->mm_users)); 1181 1182 uprobe_clear_state(mm); 1183 exit_aio(mm); 1184 ksm_exit(mm); 1185 khugepaged_exit(mm); /* must run before exit_mmap */ 1186 exit_mmap(mm); 1187 mm_put_huge_zero_page(mm); 1188 set_mm_exe_file(mm, NULL); 1189 if (!list_empty(&mm->mmlist)) { 1190 spin_lock(&mmlist_lock); 1191 list_del(&mm->mmlist); 1192 spin_unlock(&mmlist_lock); 1193 } 1194 if (mm->binfmt) 1195 module_put(mm->binfmt->module); 1196 lru_gen_del_mm(mm); 1197 mmdrop(mm); 1198 } 1199 1200 /* 1201 * Decrement the use count and release all resources for an mm. 1202 */ 1203 void mmput(struct mm_struct *mm) 1204 { 1205 might_sleep(); 1206 1207 if (atomic_dec_and_test(&mm->mm_users)) 1208 __mmput(mm); 1209 } 1210 EXPORT_SYMBOL_GPL(mmput); 1211 1212 #ifdef CONFIG_MMU 1213 static void mmput_async_fn(struct work_struct *work) 1214 { 1215 struct mm_struct *mm = container_of(work, struct mm_struct, 1216 async_put_work); 1217 1218 __mmput(mm); 1219 } 1220 1221 void mmput_async(struct mm_struct *mm) 1222 { 1223 if (atomic_dec_and_test(&mm->mm_users)) { 1224 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1225 schedule_work(&mm->async_put_work); 1226 } 1227 } 1228 EXPORT_SYMBOL_GPL(mmput_async); 1229 #endif 1230 1231 /** 1232 * set_mm_exe_file - change a reference to the mm's executable file 1233 * 1234 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1235 * 1236 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1237 * invocations: in mmput() nobody alive left, in execve task is single 1238 * threaded. 1239 * 1240 * Can only fail if new_exe_file != NULL. 1241 */ 1242 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1243 { 1244 struct file *old_exe_file; 1245 1246 /* 1247 * It is safe to dereference the exe_file without RCU as 1248 * this function is only called if nobody else can access 1249 * this mm -- see comment above for justification. 1250 */ 1251 old_exe_file = rcu_dereference_raw(mm->exe_file); 1252 1253 if (new_exe_file) { 1254 /* 1255 * We expect the caller (i.e., sys_execve) to already denied 1256 * write access, so this is unlikely to fail. 1257 */ 1258 if (unlikely(deny_write_access(new_exe_file))) 1259 return -EACCES; 1260 get_file(new_exe_file); 1261 } 1262 rcu_assign_pointer(mm->exe_file, new_exe_file); 1263 if (old_exe_file) { 1264 allow_write_access(old_exe_file); 1265 fput(old_exe_file); 1266 } 1267 return 0; 1268 } 1269 1270 /** 1271 * replace_mm_exe_file - replace a reference to the mm's executable file 1272 * 1273 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1274 * dealing with concurrent invocation and without grabbing the mmap lock in 1275 * write mode. 1276 * 1277 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1278 */ 1279 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1280 { 1281 struct vm_area_struct *vma; 1282 struct file *old_exe_file; 1283 int ret = 0; 1284 1285 /* Forbid mm->exe_file change if old file still mapped. */ 1286 old_exe_file = get_mm_exe_file(mm); 1287 if (old_exe_file) { 1288 VMA_ITERATOR(vmi, mm, 0); 1289 mmap_read_lock(mm); 1290 for_each_vma(vmi, vma) { 1291 if (!vma->vm_file) 1292 continue; 1293 if (path_equal(&vma->vm_file->f_path, 1294 &old_exe_file->f_path)) { 1295 ret = -EBUSY; 1296 break; 1297 } 1298 } 1299 mmap_read_unlock(mm); 1300 fput(old_exe_file); 1301 if (ret) 1302 return ret; 1303 } 1304 1305 /* set the new file, lockless */ 1306 ret = deny_write_access(new_exe_file); 1307 if (ret) 1308 return -EACCES; 1309 get_file(new_exe_file); 1310 1311 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1312 if (old_exe_file) { 1313 /* 1314 * Don't race with dup_mmap() getting the file and disallowing 1315 * write access while someone might open the file writable. 1316 */ 1317 mmap_read_lock(mm); 1318 allow_write_access(old_exe_file); 1319 fput(old_exe_file); 1320 mmap_read_unlock(mm); 1321 } 1322 return 0; 1323 } 1324 1325 /** 1326 * get_mm_exe_file - acquire a reference to the mm's executable file 1327 * 1328 * Returns %NULL if mm has no associated executable file. 1329 * User must release file via fput(). 1330 */ 1331 struct file *get_mm_exe_file(struct mm_struct *mm) 1332 { 1333 struct file *exe_file; 1334 1335 rcu_read_lock(); 1336 exe_file = rcu_dereference(mm->exe_file); 1337 if (exe_file && !get_file_rcu(exe_file)) 1338 exe_file = NULL; 1339 rcu_read_unlock(); 1340 return exe_file; 1341 } 1342 1343 /** 1344 * get_task_exe_file - acquire a reference to the task's executable file 1345 * 1346 * Returns %NULL if task's mm (if any) has no associated executable file or 1347 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1348 * User must release file via fput(). 1349 */ 1350 struct file *get_task_exe_file(struct task_struct *task) 1351 { 1352 struct file *exe_file = NULL; 1353 struct mm_struct *mm; 1354 1355 task_lock(task); 1356 mm = task->mm; 1357 if (mm) { 1358 if (!(task->flags & PF_KTHREAD)) 1359 exe_file = get_mm_exe_file(mm); 1360 } 1361 task_unlock(task); 1362 return exe_file; 1363 } 1364 1365 /** 1366 * get_task_mm - acquire a reference to the task's mm 1367 * 1368 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1369 * this kernel workthread has transiently adopted a user mm with use_mm, 1370 * to do its AIO) is not set and if so returns a reference to it, after 1371 * bumping up the use count. User must release the mm via mmput() 1372 * after use. Typically used by /proc and ptrace. 1373 */ 1374 struct mm_struct *get_task_mm(struct task_struct *task) 1375 { 1376 struct mm_struct *mm; 1377 1378 task_lock(task); 1379 mm = task->mm; 1380 if (mm) { 1381 if (task->flags & PF_KTHREAD) 1382 mm = NULL; 1383 else 1384 mmget(mm); 1385 } 1386 task_unlock(task); 1387 return mm; 1388 } 1389 EXPORT_SYMBOL_GPL(get_task_mm); 1390 1391 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1392 { 1393 struct mm_struct *mm; 1394 int err; 1395 1396 err = down_read_killable(&task->signal->exec_update_lock); 1397 if (err) 1398 return ERR_PTR(err); 1399 1400 mm = get_task_mm(task); 1401 if (mm && mm != current->mm && 1402 !ptrace_may_access(task, mode)) { 1403 mmput(mm); 1404 mm = ERR_PTR(-EACCES); 1405 } 1406 up_read(&task->signal->exec_update_lock); 1407 1408 return mm; 1409 } 1410 1411 static void complete_vfork_done(struct task_struct *tsk) 1412 { 1413 struct completion *vfork; 1414 1415 task_lock(tsk); 1416 vfork = tsk->vfork_done; 1417 if (likely(vfork)) { 1418 tsk->vfork_done = NULL; 1419 complete(vfork); 1420 } 1421 task_unlock(tsk); 1422 } 1423 1424 static int wait_for_vfork_done(struct task_struct *child, 1425 struct completion *vfork) 1426 { 1427 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1428 int killed; 1429 1430 cgroup_enter_frozen(); 1431 killed = wait_for_completion_state(vfork, state); 1432 cgroup_leave_frozen(false); 1433 1434 if (killed) { 1435 task_lock(child); 1436 child->vfork_done = NULL; 1437 task_unlock(child); 1438 } 1439 1440 put_task_struct(child); 1441 return killed; 1442 } 1443 1444 /* Please note the differences between mmput and mm_release. 1445 * mmput is called whenever we stop holding onto a mm_struct, 1446 * error success whatever. 1447 * 1448 * mm_release is called after a mm_struct has been removed 1449 * from the current process. 1450 * 1451 * This difference is important for error handling, when we 1452 * only half set up a mm_struct for a new process and need to restore 1453 * the old one. Because we mmput the new mm_struct before 1454 * restoring the old one. . . 1455 * Eric Biederman 10 January 1998 1456 */ 1457 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1458 { 1459 uprobe_free_utask(tsk); 1460 1461 /* Get rid of any cached register state */ 1462 deactivate_mm(tsk, mm); 1463 1464 /* 1465 * Signal userspace if we're not exiting with a core dump 1466 * because we want to leave the value intact for debugging 1467 * purposes. 1468 */ 1469 if (tsk->clear_child_tid) { 1470 if (atomic_read(&mm->mm_users) > 1) { 1471 /* 1472 * We don't check the error code - if userspace has 1473 * not set up a proper pointer then tough luck. 1474 */ 1475 put_user(0, tsk->clear_child_tid); 1476 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1477 1, NULL, NULL, 0, 0); 1478 } 1479 tsk->clear_child_tid = NULL; 1480 } 1481 1482 /* 1483 * All done, finally we can wake up parent and return this mm to him. 1484 * Also kthread_stop() uses this completion for synchronization. 1485 */ 1486 if (tsk->vfork_done) 1487 complete_vfork_done(tsk); 1488 } 1489 1490 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1491 { 1492 futex_exit_release(tsk); 1493 mm_release(tsk, mm); 1494 } 1495 1496 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1497 { 1498 futex_exec_release(tsk); 1499 mm_release(tsk, mm); 1500 } 1501 1502 /** 1503 * dup_mm() - duplicates an existing mm structure 1504 * @tsk: the task_struct with which the new mm will be associated. 1505 * @oldmm: the mm to duplicate. 1506 * 1507 * Allocates a new mm structure and duplicates the provided @oldmm structure 1508 * content into it. 1509 * 1510 * Return: the duplicated mm or NULL on failure. 1511 */ 1512 static struct mm_struct *dup_mm(struct task_struct *tsk, 1513 struct mm_struct *oldmm) 1514 { 1515 struct mm_struct *mm; 1516 int err; 1517 1518 mm = allocate_mm(); 1519 if (!mm) 1520 goto fail_nomem; 1521 1522 memcpy(mm, oldmm, sizeof(*mm)); 1523 1524 if (!mm_init(mm, tsk, mm->user_ns)) 1525 goto fail_nomem; 1526 1527 err = dup_mmap(mm, oldmm); 1528 if (err) 1529 goto free_pt; 1530 1531 mm->hiwater_rss = get_mm_rss(mm); 1532 mm->hiwater_vm = mm->total_vm; 1533 1534 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1535 goto free_pt; 1536 1537 return mm; 1538 1539 free_pt: 1540 /* don't put binfmt in mmput, we haven't got module yet */ 1541 mm->binfmt = NULL; 1542 mm_init_owner(mm, NULL); 1543 mmput(mm); 1544 1545 fail_nomem: 1546 return NULL; 1547 } 1548 1549 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1550 { 1551 struct mm_struct *mm, *oldmm; 1552 1553 tsk->min_flt = tsk->maj_flt = 0; 1554 tsk->nvcsw = tsk->nivcsw = 0; 1555 #ifdef CONFIG_DETECT_HUNG_TASK 1556 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1557 tsk->last_switch_time = 0; 1558 #endif 1559 1560 tsk->mm = NULL; 1561 tsk->active_mm = NULL; 1562 1563 /* 1564 * Are we cloning a kernel thread? 1565 * 1566 * We need to steal a active VM for that.. 1567 */ 1568 oldmm = current->mm; 1569 if (!oldmm) 1570 return 0; 1571 1572 if (clone_flags & CLONE_VM) { 1573 mmget(oldmm); 1574 mm = oldmm; 1575 } else { 1576 mm = dup_mm(tsk, current->mm); 1577 if (!mm) 1578 return -ENOMEM; 1579 } 1580 1581 tsk->mm = mm; 1582 tsk->active_mm = mm; 1583 return 0; 1584 } 1585 1586 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1587 { 1588 struct fs_struct *fs = current->fs; 1589 if (clone_flags & CLONE_FS) { 1590 /* tsk->fs is already what we want */ 1591 spin_lock(&fs->lock); 1592 if (fs->in_exec) { 1593 spin_unlock(&fs->lock); 1594 return -EAGAIN; 1595 } 1596 fs->users++; 1597 spin_unlock(&fs->lock); 1598 return 0; 1599 } 1600 tsk->fs = copy_fs_struct(fs); 1601 if (!tsk->fs) 1602 return -ENOMEM; 1603 return 0; 1604 } 1605 1606 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1607 { 1608 struct files_struct *oldf, *newf; 1609 int error = 0; 1610 1611 /* 1612 * A background process may not have any files ... 1613 */ 1614 oldf = current->files; 1615 if (!oldf) 1616 goto out; 1617 1618 if (clone_flags & CLONE_FILES) { 1619 atomic_inc(&oldf->count); 1620 goto out; 1621 } 1622 1623 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1624 if (!newf) 1625 goto out; 1626 1627 tsk->files = newf; 1628 error = 0; 1629 out: 1630 return error; 1631 } 1632 1633 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1634 { 1635 struct sighand_struct *sig; 1636 1637 if (clone_flags & CLONE_SIGHAND) { 1638 refcount_inc(¤t->sighand->count); 1639 return 0; 1640 } 1641 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1642 RCU_INIT_POINTER(tsk->sighand, sig); 1643 if (!sig) 1644 return -ENOMEM; 1645 1646 refcount_set(&sig->count, 1); 1647 spin_lock_irq(¤t->sighand->siglock); 1648 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1649 spin_unlock_irq(¤t->sighand->siglock); 1650 1651 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1652 if (clone_flags & CLONE_CLEAR_SIGHAND) 1653 flush_signal_handlers(tsk, 0); 1654 1655 return 0; 1656 } 1657 1658 void __cleanup_sighand(struct sighand_struct *sighand) 1659 { 1660 if (refcount_dec_and_test(&sighand->count)) { 1661 signalfd_cleanup(sighand); 1662 /* 1663 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1664 * without an RCU grace period, see __lock_task_sighand(). 1665 */ 1666 kmem_cache_free(sighand_cachep, sighand); 1667 } 1668 } 1669 1670 /* 1671 * Initialize POSIX timer handling for a thread group. 1672 */ 1673 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1674 { 1675 struct posix_cputimers *pct = &sig->posix_cputimers; 1676 unsigned long cpu_limit; 1677 1678 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1679 posix_cputimers_group_init(pct, cpu_limit); 1680 } 1681 1682 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1683 { 1684 struct signal_struct *sig; 1685 1686 if (clone_flags & CLONE_THREAD) 1687 return 0; 1688 1689 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1690 tsk->signal = sig; 1691 if (!sig) 1692 return -ENOMEM; 1693 1694 sig->nr_threads = 1; 1695 sig->quick_threads = 1; 1696 atomic_set(&sig->live, 1); 1697 refcount_set(&sig->sigcnt, 1); 1698 1699 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1700 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1701 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1702 1703 init_waitqueue_head(&sig->wait_chldexit); 1704 sig->curr_target = tsk; 1705 init_sigpending(&sig->shared_pending); 1706 INIT_HLIST_HEAD(&sig->multiprocess); 1707 seqlock_init(&sig->stats_lock); 1708 prev_cputime_init(&sig->prev_cputime); 1709 1710 #ifdef CONFIG_POSIX_TIMERS 1711 INIT_LIST_HEAD(&sig->posix_timers); 1712 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1713 sig->real_timer.function = it_real_fn; 1714 #endif 1715 1716 task_lock(current->group_leader); 1717 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1718 task_unlock(current->group_leader); 1719 1720 posix_cpu_timers_init_group(sig); 1721 1722 tty_audit_fork(sig); 1723 sched_autogroup_fork(sig); 1724 1725 sig->oom_score_adj = current->signal->oom_score_adj; 1726 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1727 1728 mutex_init(&sig->cred_guard_mutex); 1729 init_rwsem(&sig->exec_update_lock); 1730 1731 return 0; 1732 } 1733 1734 static void copy_seccomp(struct task_struct *p) 1735 { 1736 #ifdef CONFIG_SECCOMP 1737 /* 1738 * Must be called with sighand->lock held, which is common to 1739 * all threads in the group. Holding cred_guard_mutex is not 1740 * needed because this new task is not yet running and cannot 1741 * be racing exec. 1742 */ 1743 assert_spin_locked(¤t->sighand->siglock); 1744 1745 /* Ref-count the new filter user, and assign it. */ 1746 get_seccomp_filter(current); 1747 p->seccomp = current->seccomp; 1748 1749 /* 1750 * Explicitly enable no_new_privs here in case it got set 1751 * between the task_struct being duplicated and holding the 1752 * sighand lock. The seccomp state and nnp must be in sync. 1753 */ 1754 if (task_no_new_privs(current)) 1755 task_set_no_new_privs(p); 1756 1757 /* 1758 * If the parent gained a seccomp mode after copying thread 1759 * flags and between before we held the sighand lock, we have 1760 * to manually enable the seccomp thread flag here. 1761 */ 1762 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1763 set_task_syscall_work(p, SECCOMP); 1764 #endif 1765 } 1766 1767 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1768 { 1769 current->clear_child_tid = tidptr; 1770 1771 return task_pid_vnr(current); 1772 } 1773 1774 static void rt_mutex_init_task(struct task_struct *p) 1775 { 1776 raw_spin_lock_init(&p->pi_lock); 1777 #ifdef CONFIG_RT_MUTEXES 1778 p->pi_waiters = RB_ROOT_CACHED; 1779 p->pi_top_task = NULL; 1780 p->pi_blocked_on = NULL; 1781 #endif 1782 } 1783 1784 static inline void init_task_pid_links(struct task_struct *task) 1785 { 1786 enum pid_type type; 1787 1788 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1789 INIT_HLIST_NODE(&task->pid_links[type]); 1790 } 1791 1792 static inline void 1793 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1794 { 1795 if (type == PIDTYPE_PID) 1796 task->thread_pid = pid; 1797 else 1798 task->signal->pids[type] = pid; 1799 } 1800 1801 static inline void rcu_copy_process(struct task_struct *p) 1802 { 1803 #ifdef CONFIG_PREEMPT_RCU 1804 p->rcu_read_lock_nesting = 0; 1805 p->rcu_read_unlock_special.s = 0; 1806 p->rcu_blocked_node = NULL; 1807 INIT_LIST_HEAD(&p->rcu_node_entry); 1808 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1809 #ifdef CONFIG_TASKS_RCU 1810 p->rcu_tasks_holdout = false; 1811 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1812 p->rcu_tasks_idle_cpu = -1; 1813 #endif /* #ifdef CONFIG_TASKS_RCU */ 1814 #ifdef CONFIG_TASKS_TRACE_RCU 1815 p->trc_reader_nesting = 0; 1816 p->trc_reader_special.s = 0; 1817 INIT_LIST_HEAD(&p->trc_holdout_list); 1818 INIT_LIST_HEAD(&p->trc_blkd_node); 1819 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1820 } 1821 1822 struct pid *pidfd_pid(const struct file *file) 1823 { 1824 if (file->f_op == &pidfd_fops) 1825 return file->private_data; 1826 1827 return ERR_PTR(-EBADF); 1828 } 1829 1830 static int pidfd_release(struct inode *inode, struct file *file) 1831 { 1832 struct pid *pid = file->private_data; 1833 1834 file->private_data = NULL; 1835 put_pid(pid); 1836 return 0; 1837 } 1838 1839 #ifdef CONFIG_PROC_FS 1840 /** 1841 * pidfd_show_fdinfo - print information about a pidfd 1842 * @m: proc fdinfo file 1843 * @f: file referencing a pidfd 1844 * 1845 * Pid: 1846 * This function will print the pid that a given pidfd refers to in the 1847 * pid namespace of the procfs instance. 1848 * If the pid namespace of the process is not a descendant of the pid 1849 * namespace of the procfs instance 0 will be shown as its pid. This is 1850 * similar to calling getppid() on a process whose parent is outside of 1851 * its pid namespace. 1852 * 1853 * NSpid: 1854 * If pid namespaces are supported then this function will also print 1855 * the pid of a given pidfd refers to for all descendant pid namespaces 1856 * starting from the current pid namespace of the instance, i.e. the 1857 * Pid field and the first entry in the NSpid field will be identical. 1858 * If the pid namespace of the process is not a descendant of the pid 1859 * namespace of the procfs instance 0 will be shown as its first NSpid 1860 * entry and no others will be shown. 1861 * Note that this differs from the Pid and NSpid fields in 1862 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1863 * the pid namespace of the procfs instance. The difference becomes 1864 * obvious when sending around a pidfd between pid namespaces from a 1865 * different branch of the tree, i.e. where no ancestral relation is 1866 * present between the pid namespaces: 1867 * - create two new pid namespaces ns1 and ns2 in the initial pid 1868 * namespace (also take care to create new mount namespaces in the 1869 * new pid namespace and mount procfs) 1870 * - create a process with a pidfd in ns1 1871 * - send pidfd from ns1 to ns2 1872 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1873 * have exactly one entry, which is 0 1874 */ 1875 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1876 { 1877 struct pid *pid = f->private_data; 1878 struct pid_namespace *ns; 1879 pid_t nr = -1; 1880 1881 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1882 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1883 nr = pid_nr_ns(pid, ns); 1884 } 1885 1886 seq_put_decimal_ll(m, "Pid:\t", nr); 1887 1888 #ifdef CONFIG_PID_NS 1889 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1890 if (nr > 0) { 1891 int i; 1892 1893 /* If nr is non-zero it means that 'pid' is valid and that 1894 * ns, i.e. the pid namespace associated with the procfs 1895 * instance, is in the pid namespace hierarchy of pid. 1896 * Start at one below the already printed level. 1897 */ 1898 for (i = ns->level + 1; i <= pid->level; i++) 1899 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1900 } 1901 #endif 1902 seq_putc(m, '\n'); 1903 } 1904 #endif 1905 1906 /* 1907 * Poll support for process exit notification. 1908 */ 1909 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1910 { 1911 struct pid *pid = file->private_data; 1912 __poll_t poll_flags = 0; 1913 1914 poll_wait(file, &pid->wait_pidfd, pts); 1915 1916 /* 1917 * Inform pollers only when the whole thread group exits. 1918 * If the thread group leader exits before all other threads in the 1919 * group, then poll(2) should block, similar to the wait(2) family. 1920 */ 1921 if (thread_group_exited(pid)) 1922 poll_flags = EPOLLIN | EPOLLRDNORM; 1923 1924 return poll_flags; 1925 } 1926 1927 const struct file_operations pidfd_fops = { 1928 .release = pidfd_release, 1929 .poll = pidfd_poll, 1930 #ifdef CONFIG_PROC_FS 1931 .show_fdinfo = pidfd_show_fdinfo, 1932 #endif 1933 }; 1934 1935 static void __delayed_free_task(struct rcu_head *rhp) 1936 { 1937 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1938 1939 free_task(tsk); 1940 } 1941 1942 static __always_inline void delayed_free_task(struct task_struct *tsk) 1943 { 1944 if (IS_ENABLED(CONFIG_MEMCG)) 1945 call_rcu(&tsk->rcu, __delayed_free_task); 1946 else 1947 free_task(tsk); 1948 } 1949 1950 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1951 { 1952 /* Skip if kernel thread */ 1953 if (!tsk->mm) 1954 return; 1955 1956 /* Skip if spawning a thread or using vfork */ 1957 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1958 return; 1959 1960 /* We need to synchronize with __set_oom_adj */ 1961 mutex_lock(&oom_adj_mutex); 1962 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1963 /* Update the values in case they were changed after copy_signal */ 1964 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1965 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1966 mutex_unlock(&oom_adj_mutex); 1967 } 1968 1969 #ifdef CONFIG_RV 1970 static void rv_task_fork(struct task_struct *p) 1971 { 1972 int i; 1973 1974 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 1975 p->rv[i].da_mon.monitoring = false; 1976 } 1977 #else 1978 #define rv_task_fork(p) do {} while (0) 1979 #endif 1980 1981 /* 1982 * This creates a new process as a copy of the old one, 1983 * but does not actually start it yet. 1984 * 1985 * It copies the registers, and all the appropriate 1986 * parts of the process environment (as per the clone 1987 * flags). The actual kick-off is left to the caller. 1988 */ 1989 static __latent_entropy struct task_struct *copy_process( 1990 struct pid *pid, 1991 int trace, 1992 int node, 1993 struct kernel_clone_args *args) 1994 { 1995 int pidfd = -1, retval; 1996 struct task_struct *p; 1997 struct multiprocess_signals delayed; 1998 struct file *pidfile = NULL; 1999 const u64 clone_flags = args->flags; 2000 struct nsproxy *nsp = current->nsproxy; 2001 2002 /* 2003 * Don't allow sharing the root directory with processes in a different 2004 * namespace 2005 */ 2006 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2007 return ERR_PTR(-EINVAL); 2008 2009 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2010 return ERR_PTR(-EINVAL); 2011 2012 /* 2013 * Thread groups must share signals as well, and detached threads 2014 * can only be started up within the thread group. 2015 */ 2016 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2017 return ERR_PTR(-EINVAL); 2018 2019 /* 2020 * Shared signal handlers imply shared VM. By way of the above, 2021 * thread groups also imply shared VM. Blocking this case allows 2022 * for various simplifications in other code. 2023 */ 2024 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2025 return ERR_PTR(-EINVAL); 2026 2027 /* 2028 * Siblings of global init remain as zombies on exit since they are 2029 * not reaped by their parent (swapper). To solve this and to avoid 2030 * multi-rooted process trees, prevent global and container-inits 2031 * from creating siblings. 2032 */ 2033 if ((clone_flags & CLONE_PARENT) && 2034 current->signal->flags & SIGNAL_UNKILLABLE) 2035 return ERR_PTR(-EINVAL); 2036 2037 /* 2038 * If the new process will be in a different pid or user namespace 2039 * do not allow it to share a thread group with the forking task. 2040 */ 2041 if (clone_flags & CLONE_THREAD) { 2042 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2043 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2044 return ERR_PTR(-EINVAL); 2045 } 2046 2047 /* 2048 * If the new process will be in a different time namespace 2049 * do not allow it to share VM or a thread group with the forking task. 2050 */ 2051 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 2052 if (nsp->time_ns != nsp->time_ns_for_children) 2053 return ERR_PTR(-EINVAL); 2054 } 2055 2056 if (clone_flags & CLONE_PIDFD) { 2057 /* 2058 * - CLONE_DETACHED is blocked so that we can potentially 2059 * reuse it later for CLONE_PIDFD. 2060 * - CLONE_THREAD is blocked until someone really needs it. 2061 */ 2062 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2063 return ERR_PTR(-EINVAL); 2064 } 2065 2066 /* 2067 * Force any signals received before this point to be delivered 2068 * before the fork happens. Collect up signals sent to multiple 2069 * processes that happen during the fork and delay them so that 2070 * they appear to happen after the fork. 2071 */ 2072 sigemptyset(&delayed.signal); 2073 INIT_HLIST_NODE(&delayed.node); 2074 2075 spin_lock_irq(¤t->sighand->siglock); 2076 if (!(clone_flags & CLONE_THREAD)) 2077 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2078 recalc_sigpending(); 2079 spin_unlock_irq(¤t->sighand->siglock); 2080 retval = -ERESTARTNOINTR; 2081 if (task_sigpending(current)) 2082 goto fork_out; 2083 2084 retval = -ENOMEM; 2085 p = dup_task_struct(current, node); 2086 if (!p) 2087 goto fork_out; 2088 p->flags &= ~PF_KTHREAD; 2089 if (args->kthread) 2090 p->flags |= PF_KTHREAD; 2091 if (args->io_thread) { 2092 /* 2093 * Mark us an IO worker, and block any signal that isn't 2094 * fatal or STOP 2095 */ 2096 p->flags |= PF_IO_WORKER; 2097 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2098 } 2099 2100 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2101 /* 2102 * Clear TID on mm_release()? 2103 */ 2104 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2105 2106 ftrace_graph_init_task(p); 2107 2108 rt_mutex_init_task(p); 2109 2110 lockdep_assert_irqs_enabled(); 2111 #ifdef CONFIG_PROVE_LOCKING 2112 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2113 #endif 2114 retval = copy_creds(p, clone_flags); 2115 if (retval < 0) 2116 goto bad_fork_free; 2117 2118 retval = -EAGAIN; 2119 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2120 if (p->real_cred->user != INIT_USER && 2121 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2122 goto bad_fork_cleanup_count; 2123 } 2124 current->flags &= ~PF_NPROC_EXCEEDED; 2125 2126 /* 2127 * If multiple threads are within copy_process(), then this check 2128 * triggers too late. This doesn't hurt, the check is only there 2129 * to stop root fork bombs. 2130 */ 2131 retval = -EAGAIN; 2132 if (data_race(nr_threads >= max_threads)) 2133 goto bad_fork_cleanup_count; 2134 2135 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2136 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2137 p->flags |= PF_FORKNOEXEC; 2138 INIT_LIST_HEAD(&p->children); 2139 INIT_LIST_HEAD(&p->sibling); 2140 rcu_copy_process(p); 2141 p->vfork_done = NULL; 2142 spin_lock_init(&p->alloc_lock); 2143 2144 init_sigpending(&p->pending); 2145 2146 p->utime = p->stime = p->gtime = 0; 2147 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2148 p->utimescaled = p->stimescaled = 0; 2149 #endif 2150 prev_cputime_init(&p->prev_cputime); 2151 2152 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2153 seqcount_init(&p->vtime.seqcount); 2154 p->vtime.starttime = 0; 2155 p->vtime.state = VTIME_INACTIVE; 2156 #endif 2157 2158 #ifdef CONFIG_IO_URING 2159 p->io_uring = NULL; 2160 #endif 2161 2162 #if defined(SPLIT_RSS_COUNTING) 2163 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2164 #endif 2165 2166 p->default_timer_slack_ns = current->timer_slack_ns; 2167 2168 #ifdef CONFIG_PSI 2169 p->psi_flags = 0; 2170 #endif 2171 2172 task_io_accounting_init(&p->ioac); 2173 acct_clear_integrals(p); 2174 2175 posix_cputimers_init(&p->posix_cputimers); 2176 2177 p->io_context = NULL; 2178 audit_set_context(p, NULL); 2179 cgroup_fork(p); 2180 if (args->kthread) { 2181 if (!set_kthread_struct(p)) 2182 goto bad_fork_cleanup_delayacct; 2183 } 2184 #ifdef CONFIG_NUMA 2185 p->mempolicy = mpol_dup(p->mempolicy); 2186 if (IS_ERR(p->mempolicy)) { 2187 retval = PTR_ERR(p->mempolicy); 2188 p->mempolicy = NULL; 2189 goto bad_fork_cleanup_delayacct; 2190 } 2191 #endif 2192 #ifdef CONFIG_CPUSETS 2193 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2194 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2195 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2196 #endif 2197 #ifdef CONFIG_TRACE_IRQFLAGS 2198 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2199 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2200 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2201 p->softirqs_enabled = 1; 2202 p->softirq_context = 0; 2203 #endif 2204 2205 p->pagefault_disabled = 0; 2206 2207 #ifdef CONFIG_LOCKDEP 2208 lockdep_init_task(p); 2209 #endif 2210 2211 #ifdef CONFIG_DEBUG_MUTEXES 2212 p->blocked_on = NULL; /* not blocked yet */ 2213 #endif 2214 #ifdef CONFIG_BCACHE 2215 p->sequential_io = 0; 2216 p->sequential_io_avg = 0; 2217 #endif 2218 #ifdef CONFIG_BPF_SYSCALL 2219 RCU_INIT_POINTER(p->bpf_storage, NULL); 2220 p->bpf_ctx = NULL; 2221 #endif 2222 2223 /* Perform scheduler related setup. Assign this task to a CPU. */ 2224 retval = sched_fork(clone_flags, p); 2225 if (retval) 2226 goto bad_fork_cleanup_policy; 2227 2228 retval = perf_event_init_task(p, clone_flags); 2229 if (retval) 2230 goto bad_fork_cleanup_policy; 2231 retval = audit_alloc(p); 2232 if (retval) 2233 goto bad_fork_cleanup_perf; 2234 /* copy all the process information */ 2235 shm_init_task(p); 2236 retval = security_task_alloc(p, clone_flags); 2237 if (retval) 2238 goto bad_fork_cleanup_audit; 2239 retval = copy_semundo(clone_flags, p); 2240 if (retval) 2241 goto bad_fork_cleanup_security; 2242 retval = copy_files(clone_flags, p); 2243 if (retval) 2244 goto bad_fork_cleanup_semundo; 2245 retval = copy_fs(clone_flags, p); 2246 if (retval) 2247 goto bad_fork_cleanup_files; 2248 retval = copy_sighand(clone_flags, p); 2249 if (retval) 2250 goto bad_fork_cleanup_fs; 2251 retval = copy_signal(clone_flags, p); 2252 if (retval) 2253 goto bad_fork_cleanup_sighand; 2254 retval = copy_mm(clone_flags, p); 2255 if (retval) 2256 goto bad_fork_cleanup_signal; 2257 retval = copy_namespaces(clone_flags, p); 2258 if (retval) 2259 goto bad_fork_cleanup_mm; 2260 retval = copy_io(clone_flags, p); 2261 if (retval) 2262 goto bad_fork_cleanup_namespaces; 2263 retval = copy_thread(p, args); 2264 if (retval) 2265 goto bad_fork_cleanup_io; 2266 2267 stackleak_task_init(p); 2268 2269 if (pid != &init_struct_pid) { 2270 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2271 args->set_tid_size); 2272 if (IS_ERR(pid)) { 2273 retval = PTR_ERR(pid); 2274 goto bad_fork_cleanup_thread; 2275 } 2276 } 2277 2278 /* 2279 * This has to happen after we've potentially unshared the file 2280 * descriptor table (so that the pidfd doesn't leak into the child 2281 * if the fd table isn't shared). 2282 */ 2283 if (clone_flags & CLONE_PIDFD) { 2284 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2285 if (retval < 0) 2286 goto bad_fork_free_pid; 2287 2288 pidfd = retval; 2289 2290 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2291 O_RDWR | O_CLOEXEC); 2292 if (IS_ERR(pidfile)) { 2293 put_unused_fd(pidfd); 2294 retval = PTR_ERR(pidfile); 2295 goto bad_fork_free_pid; 2296 } 2297 get_pid(pid); /* held by pidfile now */ 2298 2299 retval = put_user(pidfd, args->pidfd); 2300 if (retval) 2301 goto bad_fork_put_pidfd; 2302 } 2303 2304 #ifdef CONFIG_BLOCK 2305 p->plug = NULL; 2306 #endif 2307 futex_init_task(p); 2308 2309 /* 2310 * sigaltstack should be cleared when sharing the same VM 2311 */ 2312 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2313 sas_ss_reset(p); 2314 2315 /* 2316 * Syscall tracing and stepping should be turned off in the 2317 * child regardless of CLONE_PTRACE. 2318 */ 2319 user_disable_single_step(p); 2320 clear_task_syscall_work(p, SYSCALL_TRACE); 2321 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2322 clear_task_syscall_work(p, SYSCALL_EMU); 2323 #endif 2324 clear_tsk_latency_tracing(p); 2325 2326 /* ok, now we should be set up.. */ 2327 p->pid = pid_nr(pid); 2328 if (clone_flags & CLONE_THREAD) { 2329 p->group_leader = current->group_leader; 2330 p->tgid = current->tgid; 2331 } else { 2332 p->group_leader = p; 2333 p->tgid = p->pid; 2334 } 2335 2336 p->nr_dirtied = 0; 2337 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2338 p->dirty_paused_when = 0; 2339 2340 p->pdeath_signal = 0; 2341 INIT_LIST_HEAD(&p->thread_group); 2342 p->task_works = NULL; 2343 clear_posix_cputimers_work(p); 2344 2345 #ifdef CONFIG_KRETPROBES 2346 p->kretprobe_instances.first = NULL; 2347 #endif 2348 #ifdef CONFIG_RETHOOK 2349 p->rethooks.first = NULL; 2350 #endif 2351 2352 /* 2353 * Ensure that the cgroup subsystem policies allow the new process to be 2354 * forked. It should be noted that the new process's css_set can be changed 2355 * between here and cgroup_post_fork() if an organisation operation is in 2356 * progress. 2357 */ 2358 retval = cgroup_can_fork(p, args); 2359 if (retval) 2360 goto bad_fork_put_pidfd; 2361 2362 /* 2363 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2364 * the new task on the correct runqueue. All this *before* the task 2365 * becomes visible. 2366 * 2367 * This isn't part of ->can_fork() because while the re-cloning is 2368 * cgroup specific, it unconditionally needs to place the task on a 2369 * runqueue. 2370 */ 2371 sched_cgroup_fork(p, args); 2372 2373 /* 2374 * From this point on we must avoid any synchronous user-space 2375 * communication until we take the tasklist-lock. In particular, we do 2376 * not want user-space to be able to predict the process start-time by 2377 * stalling fork(2) after we recorded the start_time but before it is 2378 * visible to the system. 2379 */ 2380 2381 p->start_time = ktime_get_ns(); 2382 p->start_boottime = ktime_get_boottime_ns(); 2383 2384 /* 2385 * Make it visible to the rest of the system, but dont wake it up yet. 2386 * Need tasklist lock for parent etc handling! 2387 */ 2388 write_lock_irq(&tasklist_lock); 2389 2390 /* CLONE_PARENT re-uses the old parent */ 2391 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2392 p->real_parent = current->real_parent; 2393 p->parent_exec_id = current->parent_exec_id; 2394 if (clone_flags & CLONE_THREAD) 2395 p->exit_signal = -1; 2396 else 2397 p->exit_signal = current->group_leader->exit_signal; 2398 } else { 2399 p->real_parent = current; 2400 p->parent_exec_id = current->self_exec_id; 2401 p->exit_signal = args->exit_signal; 2402 } 2403 2404 klp_copy_process(p); 2405 2406 sched_core_fork(p); 2407 2408 spin_lock(¤t->sighand->siglock); 2409 2410 /* 2411 * Copy seccomp details explicitly here, in case they were changed 2412 * before holding sighand lock. 2413 */ 2414 copy_seccomp(p); 2415 2416 rv_task_fork(p); 2417 2418 rseq_fork(p, clone_flags); 2419 2420 /* Don't start children in a dying pid namespace */ 2421 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2422 retval = -ENOMEM; 2423 goto bad_fork_cancel_cgroup; 2424 } 2425 2426 /* Let kill terminate clone/fork in the middle */ 2427 if (fatal_signal_pending(current)) { 2428 retval = -EINTR; 2429 goto bad_fork_cancel_cgroup; 2430 } 2431 2432 init_task_pid_links(p); 2433 if (likely(p->pid)) { 2434 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2435 2436 init_task_pid(p, PIDTYPE_PID, pid); 2437 if (thread_group_leader(p)) { 2438 init_task_pid(p, PIDTYPE_TGID, pid); 2439 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2440 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2441 2442 if (is_child_reaper(pid)) { 2443 ns_of_pid(pid)->child_reaper = p; 2444 p->signal->flags |= SIGNAL_UNKILLABLE; 2445 } 2446 p->signal->shared_pending.signal = delayed.signal; 2447 p->signal->tty = tty_kref_get(current->signal->tty); 2448 /* 2449 * Inherit has_child_subreaper flag under the same 2450 * tasklist_lock with adding child to the process tree 2451 * for propagate_has_child_subreaper optimization. 2452 */ 2453 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2454 p->real_parent->signal->is_child_subreaper; 2455 list_add_tail(&p->sibling, &p->real_parent->children); 2456 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2457 attach_pid(p, PIDTYPE_TGID); 2458 attach_pid(p, PIDTYPE_PGID); 2459 attach_pid(p, PIDTYPE_SID); 2460 __this_cpu_inc(process_counts); 2461 } else { 2462 current->signal->nr_threads++; 2463 current->signal->quick_threads++; 2464 atomic_inc(¤t->signal->live); 2465 refcount_inc(¤t->signal->sigcnt); 2466 task_join_group_stop(p); 2467 list_add_tail_rcu(&p->thread_group, 2468 &p->group_leader->thread_group); 2469 list_add_tail_rcu(&p->thread_node, 2470 &p->signal->thread_head); 2471 } 2472 attach_pid(p, PIDTYPE_PID); 2473 nr_threads++; 2474 } 2475 total_forks++; 2476 hlist_del_init(&delayed.node); 2477 spin_unlock(¤t->sighand->siglock); 2478 syscall_tracepoint_update(p); 2479 write_unlock_irq(&tasklist_lock); 2480 2481 if (pidfile) 2482 fd_install(pidfd, pidfile); 2483 2484 proc_fork_connector(p); 2485 sched_post_fork(p); 2486 cgroup_post_fork(p, args); 2487 perf_event_fork(p); 2488 2489 trace_task_newtask(p, clone_flags); 2490 uprobe_copy_process(p, clone_flags); 2491 2492 copy_oom_score_adj(clone_flags, p); 2493 2494 return p; 2495 2496 bad_fork_cancel_cgroup: 2497 sched_core_free(p); 2498 spin_unlock(¤t->sighand->siglock); 2499 write_unlock_irq(&tasklist_lock); 2500 cgroup_cancel_fork(p, args); 2501 bad_fork_put_pidfd: 2502 if (clone_flags & CLONE_PIDFD) { 2503 fput(pidfile); 2504 put_unused_fd(pidfd); 2505 } 2506 bad_fork_free_pid: 2507 if (pid != &init_struct_pid) 2508 free_pid(pid); 2509 bad_fork_cleanup_thread: 2510 exit_thread(p); 2511 bad_fork_cleanup_io: 2512 if (p->io_context) 2513 exit_io_context(p); 2514 bad_fork_cleanup_namespaces: 2515 exit_task_namespaces(p); 2516 bad_fork_cleanup_mm: 2517 if (p->mm) { 2518 mm_clear_owner(p->mm, p); 2519 mmput(p->mm); 2520 } 2521 bad_fork_cleanup_signal: 2522 if (!(clone_flags & CLONE_THREAD)) 2523 free_signal_struct(p->signal); 2524 bad_fork_cleanup_sighand: 2525 __cleanup_sighand(p->sighand); 2526 bad_fork_cleanup_fs: 2527 exit_fs(p); /* blocking */ 2528 bad_fork_cleanup_files: 2529 exit_files(p); /* blocking */ 2530 bad_fork_cleanup_semundo: 2531 exit_sem(p); 2532 bad_fork_cleanup_security: 2533 security_task_free(p); 2534 bad_fork_cleanup_audit: 2535 audit_free(p); 2536 bad_fork_cleanup_perf: 2537 perf_event_free_task(p); 2538 bad_fork_cleanup_policy: 2539 lockdep_free_task(p); 2540 #ifdef CONFIG_NUMA 2541 mpol_put(p->mempolicy); 2542 #endif 2543 bad_fork_cleanup_delayacct: 2544 delayacct_tsk_free(p); 2545 bad_fork_cleanup_count: 2546 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2547 exit_creds(p); 2548 bad_fork_free: 2549 WRITE_ONCE(p->__state, TASK_DEAD); 2550 exit_task_stack_account(p); 2551 put_task_stack(p); 2552 delayed_free_task(p); 2553 fork_out: 2554 spin_lock_irq(¤t->sighand->siglock); 2555 hlist_del_init(&delayed.node); 2556 spin_unlock_irq(¤t->sighand->siglock); 2557 return ERR_PTR(retval); 2558 } 2559 2560 static inline void init_idle_pids(struct task_struct *idle) 2561 { 2562 enum pid_type type; 2563 2564 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2565 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2566 init_task_pid(idle, type, &init_struct_pid); 2567 } 2568 } 2569 2570 static int idle_dummy(void *dummy) 2571 { 2572 /* This function is never called */ 2573 return 0; 2574 } 2575 2576 struct task_struct * __init fork_idle(int cpu) 2577 { 2578 struct task_struct *task; 2579 struct kernel_clone_args args = { 2580 .flags = CLONE_VM, 2581 .fn = &idle_dummy, 2582 .fn_arg = NULL, 2583 .kthread = 1, 2584 .idle = 1, 2585 }; 2586 2587 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2588 if (!IS_ERR(task)) { 2589 init_idle_pids(task); 2590 init_idle(task, cpu); 2591 } 2592 2593 return task; 2594 } 2595 2596 struct mm_struct *copy_init_mm(void) 2597 { 2598 return dup_mm(NULL, &init_mm); 2599 } 2600 2601 /* 2602 * This is like kernel_clone(), but shaved down and tailored to just 2603 * creating io_uring workers. It returns a created task, or an error pointer. 2604 * The returned task is inactive, and the caller must fire it up through 2605 * wake_up_new_task(p). All signals are blocked in the created task. 2606 */ 2607 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2608 { 2609 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2610 CLONE_IO; 2611 struct kernel_clone_args args = { 2612 .flags = ((lower_32_bits(flags) | CLONE_VM | 2613 CLONE_UNTRACED) & ~CSIGNAL), 2614 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2615 .fn = fn, 2616 .fn_arg = arg, 2617 .io_thread = 1, 2618 }; 2619 2620 return copy_process(NULL, 0, node, &args); 2621 } 2622 2623 /* 2624 * Ok, this is the main fork-routine. 2625 * 2626 * It copies the process, and if successful kick-starts 2627 * it and waits for it to finish using the VM if required. 2628 * 2629 * args->exit_signal is expected to be checked for sanity by the caller. 2630 */ 2631 pid_t kernel_clone(struct kernel_clone_args *args) 2632 { 2633 u64 clone_flags = args->flags; 2634 struct completion vfork; 2635 struct pid *pid; 2636 struct task_struct *p; 2637 int trace = 0; 2638 pid_t nr; 2639 2640 /* 2641 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2642 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2643 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2644 * field in struct clone_args and it still doesn't make sense to have 2645 * them both point at the same memory location. Performing this check 2646 * here has the advantage that we don't need to have a separate helper 2647 * to check for legacy clone(). 2648 */ 2649 if ((args->flags & CLONE_PIDFD) && 2650 (args->flags & CLONE_PARENT_SETTID) && 2651 (args->pidfd == args->parent_tid)) 2652 return -EINVAL; 2653 2654 /* 2655 * Determine whether and which event to report to ptracer. When 2656 * called from kernel_thread or CLONE_UNTRACED is explicitly 2657 * requested, no event is reported; otherwise, report if the event 2658 * for the type of forking is enabled. 2659 */ 2660 if (!(clone_flags & CLONE_UNTRACED)) { 2661 if (clone_flags & CLONE_VFORK) 2662 trace = PTRACE_EVENT_VFORK; 2663 else if (args->exit_signal != SIGCHLD) 2664 trace = PTRACE_EVENT_CLONE; 2665 else 2666 trace = PTRACE_EVENT_FORK; 2667 2668 if (likely(!ptrace_event_enabled(current, trace))) 2669 trace = 0; 2670 } 2671 2672 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2673 add_latent_entropy(); 2674 2675 if (IS_ERR(p)) 2676 return PTR_ERR(p); 2677 2678 /* 2679 * Do this prior waking up the new thread - the thread pointer 2680 * might get invalid after that point, if the thread exits quickly. 2681 */ 2682 trace_sched_process_fork(current, p); 2683 2684 pid = get_task_pid(p, PIDTYPE_PID); 2685 nr = pid_vnr(pid); 2686 2687 if (clone_flags & CLONE_PARENT_SETTID) 2688 put_user(nr, args->parent_tid); 2689 2690 if (clone_flags & CLONE_VFORK) { 2691 p->vfork_done = &vfork; 2692 init_completion(&vfork); 2693 get_task_struct(p); 2694 } 2695 2696 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2697 /* lock the task to synchronize with memcg migration */ 2698 task_lock(p); 2699 lru_gen_add_mm(p->mm); 2700 task_unlock(p); 2701 } 2702 2703 wake_up_new_task(p); 2704 2705 /* forking complete and child started to run, tell ptracer */ 2706 if (unlikely(trace)) 2707 ptrace_event_pid(trace, pid); 2708 2709 if (clone_flags & CLONE_VFORK) { 2710 if (!wait_for_vfork_done(p, &vfork)) 2711 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2712 } 2713 2714 put_pid(pid); 2715 return nr; 2716 } 2717 2718 /* 2719 * Create a kernel thread. 2720 */ 2721 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2722 { 2723 struct kernel_clone_args args = { 2724 .flags = ((lower_32_bits(flags) | CLONE_VM | 2725 CLONE_UNTRACED) & ~CSIGNAL), 2726 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2727 .fn = fn, 2728 .fn_arg = arg, 2729 .kthread = 1, 2730 }; 2731 2732 return kernel_clone(&args); 2733 } 2734 2735 /* 2736 * Create a user mode thread. 2737 */ 2738 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2739 { 2740 struct kernel_clone_args args = { 2741 .flags = ((lower_32_bits(flags) | CLONE_VM | 2742 CLONE_UNTRACED) & ~CSIGNAL), 2743 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2744 .fn = fn, 2745 .fn_arg = arg, 2746 }; 2747 2748 return kernel_clone(&args); 2749 } 2750 2751 #ifdef __ARCH_WANT_SYS_FORK 2752 SYSCALL_DEFINE0(fork) 2753 { 2754 #ifdef CONFIG_MMU 2755 struct kernel_clone_args args = { 2756 .exit_signal = SIGCHLD, 2757 }; 2758 2759 return kernel_clone(&args); 2760 #else 2761 /* can not support in nommu mode */ 2762 return -EINVAL; 2763 #endif 2764 } 2765 #endif 2766 2767 #ifdef __ARCH_WANT_SYS_VFORK 2768 SYSCALL_DEFINE0(vfork) 2769 { 2770 struct kernel_clone_args args = { 2771 .flags = CLONE_VFORK | CLONE_VM, 2772 .exit_signal = SIGCHLD, 2773 }; 2774 2775 return kernel_clone(&args); 2776 } 2777 #endif 2778 2779 #ifdef __ARCH_WANT_SYS_CLONE 2780 #ifdef CONFIG_CLONE_BACKWARDS 2781 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2782 int __user *, parent_tidptr, 2783 unsigned long, tls, 2784 int __user *, child_tidptr) 2785 #elif defined(CONFIG_CLONE_BACKWARDS2) 2786 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2787 int __user *, parent_tidptr, 2788 int __user *, child_tidptr, 2789 unsigned long, tls) 2790 #elif defined(CONFIG_CLONE_BACKWARDS3) 2791 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2792 int, stack_size, 2793 int __user *, parent_tidptr, 2794 int __user *, child_tidptr, 2795 unsigned long, tls) 2796 #else 2797 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2798 int __user *, parent_tidptr, 2799 int __user *, child_tidptr, 2800 unsigned long, tls) 2801 #endif 2802 { 2803 struct kernel_clone_args args = { 2804 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2805 .pidfd = parent_tidptr, 2806 .child_tid = child_tidptr, 2807 .parent_tid = parent_tidptr, 2808 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2809 .stack = newsp, 2810 .tls = tls, 2811 }; 2812 2813 return kernel_clone(&args); 2814 } 2815 #endif 2816 2817 #ifdef __ARCH_WANT_SYS_CLONE3 2818 2819 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2820 struct clone_args __user *uargs, 2821 size_t usize) 2822 { 2823 int err; 2824 struct clone_args args; 2825 pid_t *kset_tid = kargs->set_tid; 2826 2827 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2828 CLONE_ARGS_SIZE_VER0); 2829 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2830 CLONE_ARGS_SIZE_VER1); 2831 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2832 CLONE_ARGS_SIZE_VER2); 2833 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2834 2835 if (unlikely(usize > PAGE_SIZE)) 2836 return -E2BIG; 2837 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2838 return -EINVAL; 2839 2840 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2841 if (err) 2842 return err; 2843 2844 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2845 return -EINVAL; 2846 2847 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2848 return -EINVAL; 2849 2850 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2851 return -EINVAL; 2852 2853 /* 2854 * Verify that higher 32bits of exit_signal are unset and that 2855 * it is a valid signal 2856 */ 2857 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2858 !valid_signal(args.exit_signal))) 2859 return -EINVAL; 2860 2861 if ((args.flags & CLONE_INTO_CGROUP) && 2862 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2863 return -EINVAL; 2864 2865 *kargs = (struct kernel_clone_args){ 2866 .flags = args.flags, 2867 .pidfd = u64_to_user_ptr(args.pidfd), 2868 .child_tid = u64_to_user_ptr(args.child_tid), 2869 .parent_tid = u64_to_user_ptr(args.parent_tid), 2870 .exit_signal = args.exit_signal, 2871 .stack = args.stack, 2872 .stack_size = args.stack_size, 2873 .tls = args.tls, 2874 .set_tid_size = args.set_tid_size, 2875 .cgroup = args.cgroup, 2876 }; 2877 2878 if (args.set_tid && 2879 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2880 (kargs->set_tid_size * sizeof(pid_t)))) 2881 return -EFAULT; 2882 2883 kargs->set_tid = kset_tid; 2884 2885 return 0; 2886 } 2887 2888 /** 2889 * clone3_stack_valid - check and prepare stack 2890 * @kargs: kernel clone args 2891 * 2892 * Verify that the stack arguments userspace gave us are sane. 2893 * In addition, set the stack direction for userspace since it's easy for us to 2894 * determine. 2895 */ 2896 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2897 { 2898 if (kargs->stack == 0) { 2899 if (kargs->stack_size > 0) 2900 return false; 2901 } else { 2902 if (kargs->stack_size == 0) 2903 return false; 2904 2905 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2906 return false; 2907 2908 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2909 kargs->stack += kargs->stack_size; 2910 #endif 2911 } 2912 2913 return true; 2914 } 2915 2916 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2917 { 2918 /* Verify that no unknown flags are passed along. */ 2919 if (kargs->flags & 2920 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2921 return false; 2922 2923 /* 2924 * - make the CLONE_DETACHED bit reusable for clone3 2925 * - make the CSIGNAL bits reusable for clone3 2926 */ 2927 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2928 return false; 2929 2930 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2931 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2932 return false; 2933 2934 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2935 kargs->exit_signal) 2936 return false; 2937 2938 if (!clone3_stack_valid(kargs)) 2939 return false; 2940 2941 return true; 2942 } 2943 2944 /** 2945 * clone3 - create a new process with specific properties 2946 * @uargs: argument structure 2947 * @size: size of @uargs 2948 * 2949 * clone3() is the extensible successor to clone()/clone2(). 2950 * It takes a struct as argument that is versioned by its size. 2951 * 2952 * Return: On success, a positive PID for the child process. 2953 * On error, a negative errno number. 2954 */ 2955 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2956 { 2957 int err; 2958 2959 struct kernel_clone_args kargs; 2960 pid_t set_tid[MAX_PID_NS_LEVEL]; 2961 2962 kargs.set_tid = set_tid; 2963 2964 err = copy_clone_args_from_user(&kargs, uargs, size); 2965 if (err) 2966 return err; 2967 2968 if (!clone3_args_valid(&kargs)) 2969 return -EINVAL; 2970 2971 return kernel_clone(&kargs); 2972 } 2973 #endif 2974 2975 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2976 { 2977 struct task_struct *leader, *parent, *child; 2978 int res; 2979 2980 read_lock(&tasklist_lock); 2981 leader = top = top->group_leader; 2982 down: 2983 for_each_thread(leader, parent) { 2984 list_for_each_entry(child, &parent->children, sibling) { 2985 res = visitor(child, data); 2986 if (res) { 2987 if (res < 0) 2988 goto out; 2989 leader = child; 2990 goto down; 2991 } 2992 up: 2993 ; 2994 } 2995 } 2996 2997 if (leader != top) { 2998 child = leader; 2999 parent = child->real_parent; 3000 leader = parent->group_leader; 3001 goto up; 3002 } 3003 out: 3004 read_unlock(&tasklist_lock); 3005 } 3006 3007 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3008 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3009 #endif 3010 3011 static void sighand_ctor(void *data) 3012 { 3013 struct sighand_struct *sighand = data; 3014 3015 spin_lock_init(&sighand->siglock); 3016 init_waitqueue_head(&sighand->signalfd_wqh); 3017 } 3018 3019 void __init proc_caches_init(void) 3020 { 3021 unsigned int mm_size; 3022 3023 sighand_cachep = kmem_cache_create("sighand_cache", 3024 sizeof(struct sighand_struct), 0, 3025 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3026 SLAB_ACCOUNT, sighand_ctor); 3027 signal_cachep = kmem_cache_create("signal_cache", 3028 sizeof(struct signal_struct), 0, 3029 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3030 NULL); 3031 files_cachep = kmem_cache_create("files_cache", 3032 sizeof(struct files_struct), 0, 3033 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3034 NULL); 3035 fs_cachep = kmem_cache_create("fs_cache", 3036 sizeof(struct fs_struct), 0, 3037 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3038 NULL); 3039 3040 /* 3041 * The mm_cpumask is located at the end of mm_struct, and is 3042 * dynamically sized based on the maximum CPU number this system 3043 * can have, taking hotplug into account (nr_cpu_ids). 3044 */ 3045 mm_size = sizeof(struct mm_struct) + cpumask_size(); 3046 3047 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3048 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3049 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3050 offsetof(struct mm_struct, saved_auxv), 3051 sizeof_field(struct mm_struct, saved_auxv), 3052 NULL); 3053 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3054 mmap_init(); 3055 nsproxy_cache_init(); 3056 } 3057 3058 /* 3059 * Check constraints on flags passed to the unshare system call. 3060 */ 3061 static int check_unshare_flags(unsigned long unshare_flags) 3062 { 3063 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3064 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3065 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3066 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3067 CLONE_NEWTIME)) 3068 return -EINVAL; 3069 /* 3070 * Not implemented, but pretend it works if there is nothing 3071 * to unshare. Note that unsharing the address space or the 3072 * signal handlers also need to unshare the signal queues (aka 3073 * CLONE_THREAD). 3074 */ 3075 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3076 if (!thread_group_empty(current)) 3077 return -EINVAL; 3078 } 3079 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3080 if (refcount_read(¤t->sighand->count) > 1) 3081 return -EINVAL; 3082 } 3083 if (unshare_flags & CLONE_VM) { 3084 if (!current_is_single_threaded()) 3085 return -EINVAL; 3086 } 3087 3088 return 0; 3089 } 3090 3091 /* 3092 * Unshare the filesystem structure if it is being shared 3093 */ 3094 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3095 { 3096 struct fs_struct *fs = current->fs; 3097 3098 if (!(unshare_flags & CLONE_FS) || !fs) 3099 return 0; 3100 3101 /* don't need lock here; in the worst case we'll do useless copy */ 3102 if (fs->users == 1) 3103 return 0; 3104 3105 *new_fsp = copy_fs_struct(fs); 3106 if (!*new_fsp) 3107 return -ENOMEM; 3108 3109 return 0; 3110 } 3111 3112 /* 3113 * Unshare file descriptor table if it is being shared 3114 */ 3115 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3116 struct files_struct **new_fdp) 3117 { 3118 struct files_struct *fd = current->files; 3119 int error = 0; 3120 3121 if ((unshare_flags & CLONE_FILES) && 3122 (fd && atomic_read(&fd->count) > 1)) { 3123 *new_fdp = dup_fd(fd, max_fds, &error); 3124 if (!*new_fdp) 3125 return error; 3126 } 3127 3128 return 0; 3129 } 3130 3131 /* 3132 * unshare allows a process to 'unshare' part of the process 3133 * context which was originally shared using clone. copy_* 3134 * functions used by kernel_clone() cannot be used here directly 3135 * because they modify an inactive task_struct that is being 3136 * constructed. Here we are modifying the current, active, 3137 * task_struct. 3138 */ 3139 int ksys_unshare(unsigned long unshare_flags) 3140 { 3141 struct fs_struct *fs, *new_fs = NULL; 3142 struct files_struct *new_fd = NULL; 3143 struct cred *new_cred = NULL; 3144 struct nsproxy *new_nsproxy = NULL; 3145 int do_sysvsem = 0; 3146 int err; 3147 3148 /* 3149 * If unsharing a user namespace must also unshare the thread group 3150 * and unshare the filesystem root and working directories. 3151 */ 3152 if (unshare_flags & CLONE_NEWUSER) 3153 unshare_flags |= CLONE_THREAD | CLONE_FS; 3154 /* 3155 * If unsharing vm, must also unshare signal handlers. 3156 */ 3157 if (unshare_flags & CLONE_VM) 3158 unshare_flags |= CLONE_SIGHAND; 3159 /* 3160 * If unsharing a signal handlers, must also unshare the signal queues. 3161 */ 3162 if (unshare_flags & CLONE_SIGHAND) 3163 unshare_flags |= CLONE_THREAD; 3164 /* 3165 * If unsharing namespace, must also unshare filesystem information. 3166 */ 3167 if (unshare_flags & CLONE_NEWNS) 3168 unshare_flags |= CLONE_FS; 3169 3170 err = check_unshare_flags(unshare_flags); 3171 if (err) 3172 goto bad_unshare_out; 3173 /* 3174 * CLONE_NEWIPC must also detach from the undolist: after switching 3175 * to a new ipc namespace, the semaphore arrays from the old 3176 * namespace are unreachable. 3177 */ 3178 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3179 do_sysvsem = 1; 3180 err = unshare_fs(unshare_flags, &new_fs); 3181 if (err) 3182 goto bad_unshare_out; 3183 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3184 if (err) 3185 goto bad_unshare_cleanup_fs; 3186 err = unshare_userns(unshare_flags, &new_cred); 3187 if (err) 3188 goto bad_unshare_cleanup_fd; 3189 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3190 new_cred, new_fs); 3191 if (err) 3192 goto bad_unshare_cleanup_cred; 3193 3194 if (new_cred) { 3195 err = set_cred_ucounts(new_cred); 3196 if (err) 3197 goto bad_unshare_cleanup_cred; 3198 } 3199 3200 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3201 if (do_sysvsem) { 3202 /* 3203 * CLONE_SYSVSEM is equivalent to sys_exit(). 3204 */ 3205 exit_sem(current); 3206 } 3207 if (unshare_flags & CLONE_NEWIPC) { 3208 /* Orphan segments in old ns (see sem above). */ 3209 exit_shm(current); 3210 shm_init_task(current); 3211 } 3212 3213 if (new_nsproxy) 3214 switch_task_namespaces(current, new_nsproxy); 3215 3216 task_lock(current); 3217 3218 if (new_fs) { 3219 fs = current->fs; 3220 spin_lock(&fs->lock); 3221 current->fs = new_fs; 3222 if (--fs->users) 3223 new_fs = NULL; 3224 else 3225 new_fs = fs; 3226 spin_unlock(&fs->lock); 3227 } 3228 3229 if (new_fd) 3230 swap(current->files, new_fd); 3231 3232 task_unlock(current); 3233 3234 if (new_cred) { 3235 /* Install the new user namespace */ 3236 commit_creds(new_cred); 3237 new_cred = NULL; 3238 } 3239 } 3240 3241 perf_event_namespaces(current); 3242 3243 bad_unshare_cleanup_cred: 3244 if (new_cred) 3245 put_cred(new_cred); 3246 bad_unshare_cleanup_fd: 3247 if (new_fd) 3248 put_files_struct(new_fd); 3249 3250 bad_unshare_cleanup_fs: 3251 if (new_fs) 3252 free_fs_struct(new_fs); 3253 3254 bad_unshare_out: 3255 return err; 3256 } 3257 3258 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3259 { 3260 return ksys_unshare(unshare_flags); 3261 } 3262 3263 /* 3264 * Helper to unshare the files of the current task. 3265 * We don't want to expose copy_files internals to 3266 * the exec layer of the kernel. 3267 */ 3268 3269 int unshare_files(void) 3270 { 3271 struct task_struct *task = current; 3272 struct files_struct *old, *copy = NULL; 3273 int error; 3274 3275 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3276 if (error || !copy) 3277 return error; 3278 3279 old = task->files; 3280 task_lock(task); 3281 task->files = copy; 3282 task_unlock(task); 3283 put_files_struct(old); 3284 return 0; 3285 } 3286 3287 int sysctl_max_threads(struct ctl_table *table, int write, 3288 void *buffer, size_t *lenp, loff_t *ppos) 3289 { 3290 struct ctl_table t; 3291 int ret; 3292 int threads = max_threads; 3293 int min = 1; 3294 int max = MAX_THREADS; 3295 3296 t = *table; 3297 t.data = &threads; 3298 t.extra1 = &min; 3299 t.extra2 = &max; 3300 3301 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3302 if (ret || !write) 3303 return ret; 3304 3305 max_threads = threads; 3306 3307 return 0; 3308 } 3309