xref: /linux/kernel/fork.c (revision 962fad301c33dec69324dc2d9320fd84a119a24c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
129 
130 static const char * const resident_page_types[] = {
131 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136 
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138 
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
140 
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 	return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148 
149 int nr_processes(void)
150 {
151 	int cpu;
152 	int total = 0;
153 
154 	for_each_possible_cpu(cpu)
155 		total += per_cpu(process_counts, cpu);
156 
157 	return total;
158 }
159 
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163 
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166 
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171 
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 	kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177 
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179 
180 /*
181  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182  * kmemcache based allocator.
183  */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185 
186 #ifdef CONFIG_VMAP_STACK
187 /*
188  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189  * flush.  Try to minimize the number of calls by caching stacks.
190  */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193 
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 	int i;
198 
199 	for (i = 0; i < NR_CACHED_STACKS; i++) {
200 		struct vm_struct *vm_stack = cached_vm_stacks[i];
201 
202 		if (!vm_stack)
203 			continue;
204 
205 		vfree(vm_stack->addr);
206 		cached_vm_stacks[i] = NULL;
207 	}
208 
209 	return 0;
210 }
211 #endif
212 
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 	void *stack;
217 	int i;
218 
219 	for (i = 0; i < NR_CACHED_STACKS; i++) {
220 		struct vm_struct *s;
221 
222 		s = this_cpu_xchg(cached_stacks[i], NULL);
223 
224 		if (!s)
225 			continue;
226 
227 		/* Clear the KASAN shadow of the stack. */
228 		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229 
230 		/* Clear stale pointers from reused stack. */
231 		memset(s->addr, 0, THREAD_SIZE);
232 
233 		tsk->stack_vm_area = s;
234 		tsk->stack = s->addr;
235 		return s->addr;
236 	}
237 
238 	/*
239 	 * Allocated stacks are cached and later reused by new threads,
240 	 * so memcg accounting is performed manually on assigning/releasing
241 	 * stacks to tasks. Drop __GFP_ACCOUNT.
242 	 */
243 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
244 				     VMALLOC_START, VMALLOC_END,
245 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
246 				     PAGE_KERNEL,
247 				     0, node, __builtin_return_address(0));
248 
249 	/*
250 	 * We can't call find_vm_area() in interrupt context, and
251 	 * free_thread_stack() can be called in interrupt context,
252 	 * so cache the vm_struct.
253 	 */
254 	if (stack) {
255 		tsk->stack_vm_area = find_vm_area(stack);
256 		tsk->stack = stack;
257 	}
258 	return stack;
259 #else
260 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 					     THREAD_SIZE_ORDER);
262 
263 	if (likely(page)) {
264 		tsk->stack = kasan_reset_tag(page_address(page));
265 		return tsk->stack;
266 	}
267 	return NULL;
268 #endif
269 }
270 
271 static inline void free_thread_stack(struct task_struct *tsk)
272 {
273 #ifdef CONFIG_VMAP_STACK
274 	struct vm_struct *vm = task_stack_vm_area(tsk);
275 
276 	if (vm) {
277 		int i;
278 
279 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
280 			memcg_kmem_uncharge_page(vm->pages[i], 0);
281 
282 		for (i = 0; i < NR_CACHED_STACKS; i++) {
283 			if (this_cpu_cmpxchg(cached_stacks[i],
284 					NULL, tsk->stack_vm_area) != NULL)
285 				continue;
286 
287 			return;
288 		}
289 
290 		vfree_atomic(tsk->stack);
291 		return;
292 	}
293 #endif
294 
295 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
296 }
297 # else
298 static struct kmem_cache *thread_stack_cache;
299 
300 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
301 						  int node)
302 {
303 	unsigned long *stack;
304 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
305 	stack = kasan_reset_tag(stack);
306 	tsk->stack = stack;
307 	return stack;
308 }
309 
310 static void free_thread_stack(struct task_struct *tsk)
311 {
312 	kmem_cache_free(thread_stack_cache, tsk->stack);
313 }
314 
315 void thread_stack_cache_init(void)
316 {
317 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
318 					THREAD_SIZE, THREAD_SIZE, 0, 0,
319 					THREAD_SIZE, NULL);
320 	BUG_ON(thread_stack_cache == NULL);
321 }
322 # endif
323 #endif
324 
325 /* SLAB cache for signal_struct structures (tsk->signal) */
326 static struct kmem_cache *signal_cachep;
327 
328 /* SLAB cache for sighand_struct structures (tsk->sighand) */
329 struct kmem_cache *sighand_cachep;
330 
331 /* SLAB cache for files_struct structures (tsk->files) */
332 struct kmem_cache *files_cachep;
333 
334 /* SLAB cache for fs_struct structures (tsk->fs) */
335 struct kmem_cache *fs_cachep;
336 
337 /* SLAB cache for vm_area_struct structures */
338 static struct kmem_cache *vm_area_cachep;
339 
340 /* SLAB cache for mm_struct structures (tsk->mm) */
341 static struct kmem_cache *mm_cachep;
342 
343 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
344 {
345 	struct vm_area_struct *vma;
346 
347 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
348 	if (vma)
349 		vma_init(vma, mm);
350 	return vma;
351 }
352 
353 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
354 {
355 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
356 
357 	if (new) {
358 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
359 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
360 		/*
361 		 * orig->shared.rb may be modified concurrently, but the clone
362 		 * will be reinitialized.
363 		 */
364 		*new = data_race(*orig);
365 		INIT_LIST_HEAD(&new->anon_vma_chain);
366 		new->vm_next = new->vm_prev = NULL;
367 	}
368 	return new;
369 }
370 
371 void vm_area_free(struct vm_area_struct *vma)
372 {
373 	kmem_cache_free(vm_area_cachep, vma);
374 }
375 
376 static void account_kernel_stack(struct task_struct *tsk, int account)
377 {
378 	void *stack = task_stack_page(tsk);
379 	struct vm_struct *vm = task_stack_vm_area(tsk);
380 
381 
382 	/* All stack pages are in the same node. */
383 	if (vm)
384 		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
385 				      account * (THREAD_SIZE / 1024));
386 	else
387 		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
388 				      account * (THREAD_SIZE / 1024));
389 }
390 
391 static int memcg_charge_kernel_stack(struct task_struct *tsk)
392 {
393 #ifdef CONFIG_VMAP_STACK
394 	struct vm_struct *vm = task_stack_vm_area(tsk);
395 	int ret;
396 
397 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
398 
399 	if (vm) {
400 		int i;
401 
402 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
403 
404 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
405 			/*
406 			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
407 			 * pointer is NULL, and memcg_kmem_uncharge_page() in
408 			 * free_thread_stack() will ignore this page.
409 			 */
410 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
411 						     0);
412 			if (ret)
413 				return ret;
414 		}
415 	}
416 #endif
417 	return 0;
418 }
419 
420 static void release_task_stack(struct task_struct *tsk)
421 {
422 	if (WARN_ON(tsk->state != TASK_DEAD))
423 		return;  /* Better to leak the stack than to free prematurely */
424 
425 	account_kernel_stack(tsk, -1);
426 	free_thread_stack(tsk);
427 	tsk->stack = NULL;
428 #ifdef CONFIG_VMAP_STACK
429 	tsk->stack_vm_area = NULL;
430 #endif
431 }
432 
433 #ifdef CONFIG_THREAD_INFO_IN_TASK
434 void put_task_stack(struct task_struct *tsk)
435 {
436 	if (refcount_dec_and_test(&tsk->stack_refcount))
437 		release_task_stack(tsk);
438 }
439 #endif
440 
441 void free_task(struct task_struct *tsk)
442 {
443 	scs_release(tsk);
444 
445 #ifndef CONFIG_THREAD_INFO_IN_TASK
446 	/*
447 	 * The task is finally done with both the stack and thread_info,
448 	 * so free both.
449 	 */
450 	release_task_stack(tsk);
451 #else
452 	/*
453 	 * If the task had a separate stack allocation, it should be gone
454 	 * by now.
455 	 */
456 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
457 #endif
458 	rt_mutex_debug_task_free(tsk);
459 	ftrace_graph_exit_task(tsk);
460 	arch_release_task_struct(tsk);
461 	if (tsk->flags & PF_KTHREAD)
462 		free_kthread_struct(tsk);
463 	free_task_struct(tsk);
464 }
465 EXPORT_SYMBOL(free_task);
466 
467 #ifdef CONFIG_MMU
468 static __latent_entropy int dup_mmap(struct mm_struct *mm,
469 					struct mm_struct *oldmm)
470 {
471 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
472 	struct rb_node **rb_link, *rb_parent;
473 	int retval;
474 	unsigned long charge;
475 	LIST_HEAD(uf);
476 
477 	uprobe_start_dup_mmap();
478 	if (mmap_write_lock_killable(oldmm)) {
479 		retval = -EINTR;
480 		goto fail_uprobe_end;
481 	}
482 	flush_cache_dup_mm(oldmm);
483 	uprobe_dup_mmap(oldmm, mm);
484 	/*
485 	 * Not linked in yet - no deadlock potential:
486 	 */
487 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
488 
489 	/* No ordering required: file already has been exposed. */
490 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
491 
492 	mm->total_vm = oldmm->total_vm;
493 	mm->data_vm = oldmm->data_vm;
494 	mm->exec_vm = oldmm->exec_vm;
495 	mm->stack_vm = oldmm->stack_vm;
496 
497 	rb_link = &mm->mm_rb.rb_node;
498 	rb_parent = NULL;
499 	pprev = &mm->mmap;
500 	retval = ksm_fork(mm, oldmm);
501 	if (retval)
502 		goto out;
503 	retval = khugepaged_fork(mm, oldmm);
504 	if (retval)
505 		goto out;
506 
507 	prev = NULL;
508 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
509 		struct file *file;
510 
511 		if (mpnt->vm_flags & VM_DONTCOPY) {
512 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
513 			continue;
514 		}
515 		charge = 0;
516 		/*
517 		 * Don't duplicate many vmas if we've been oom-killed (for
518 		 * example)
519 		 */
520 		if (fatal_signal_pending(current)) {
521 			retval = -EINTR;
522 			goto out;
523 		}
524 		if (mpnt->vm_flags & VM_ACCOUNT) {
525 			unsigned long len = vma_pages(mpnt);
526 
527 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
528 				goto fail_nomem;
529 			charge = len;
530 		}
531 		tmp = vm_area_dup(mpnt);
532 		if (!tmp)
533 			goto fail_nomem;
534 		retval = vma_dup_policy(mpnt, tmp);
535 		if (retval)
536 			goto fail_nomem_policy;
537 		tmp->vm_mm = mm;
538 		retval = dup_userfaultfd(tmp, &uf);
539 		if (retval)
540 			goto fail_nomem_anon_vma_fork;
541 		if (tmp->vm_flags & VM_WIPEONFORK) {
542 			/*
543 			 * VM_WIPEONFORK gets a clean slate in the child.
544 			 * Don't prepare anon_vma until fault since we don't
545 			 * copy page for current vma.
546 			 */
547 			tmp->anon_vma = NULL;
548 		} else if (anon_vma_fork(tmp, mpnt))
549 			goto fail_nomem_anon_vma_fork;
550 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
551 		file = tmp->vm_file;
552 		if (file) {
553 			struct inode *inode = file_inode(file);
554 			struct address_space *mapping = file->f_mapping;
555 
556 			get_file(file);
557 			if (tmp->vm_flags & VM_DENYWRITE)
558 				atomic_dec(&inode->i_writecount);
559 			i_mmap_lock_write(mapping);
560 			if (tmp->vm_flags & VM_SHARED)
561 				atomic_inc(&mapping->i_mmap_writable);
562 			flush_dcache_mmap_lock(mapping);
563 			/* insert tmp into the share list, just after mpnt */
564 			vma_interval_tree_insert_after(tmp, mpnt,
565 					&mapping->i_mmap);
566 			flush_dcache_mmap_unlock(mapping);
567 			i_mmap_unlock_write(mapping);
568 		}
569 
570 		/*
571 		 * Clear hugetlb-related page reserves for children. This only
572 		 * affects MAP_PRIVATE mappings. Faults generated by the child
573 		 * are not guaranteed to succeed, even if read-only
574 		 */
575 		if (is_vm_hugetlb_page(tmp))
576 			reset_vma_resv_huge_pages(tmp);
577 
578 		/*
579 		 * Link in the new vma and copy the page table entries.
580 		 */
581 		*pprev = tmp;
582 		pprev = &tmp->vm_next;
583 		tmp->vm_prev = prev;
584 		prev = tmp;
585 
586 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
587 		rb_link = &tmp->vm_rb.rb_right;
588 		rb_parent = &tmp->vm_rb;
589 
590 		mm->map_count++;
591 		if (!(tmp->vm_flags & VM_WIPEONFORK))
592 			retval = copy_page_range(mm, oldmm, mpnt);
593 
594 		if (tmp->vm_ops && tmp->vm_ops->open)
595 			tmp->vm_ops->open(tmp);
596 
597 		if (retval)
598 			goto out;
599 	}
600 	/* a new mm has just been created */
601 	retval = arch_dup_mmap(oldmm, mm);
602 out:
603 	mmap_write_unlock(mm);
604 	flush_tlb_mm(oldmm);
605 	mmap_write_unlock(oldmm);
606 	dup_userfaultfd_complete(&uf);
607 fail_uprobe_end:
608 	uprobe_end_dup_mmap();
609 	return retval;
610 fail_nomem_anon_vma_fork:
611 	mpol_put(vma_policy(tmp));
612 fail_nomem_policy:
613 	vm_area_free(tmp);
614 fail_nomem:
615 	retval = -ENOMEM;
616 	vm_unacct_memory(charge);
617 	goto out;
618 }
619 
620 static inline int mm_alloc_pgd(struct mm_struct *mm)
621 {
622 	mm->pgd = pgd_alloc(mm);
623 	if (unlikely(!mm->pgd))
624 		return -ENOMEM;
625 	return 0;
626 }
627 
628 static inline void mm_free_pgd(struct mm_struct *mm)
629 {
630 	pgd_free(mm, mm->pgd);
631 }
632 #else
633 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
634 {
635 	mmap_write_lock(oldmm);
636 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
637 	mmap_write_unlock(oldmm);
638 	return 0;
639 }
640 #define mm_alloc_pgd(mm)	(0)
641 #define mm_free_pgd(mm)
642 #endif /* CONFIG_MMU */
643 
644 static void check_mm(struct mm_struct *mm)
645 {
646 	int i;
647 
648 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
649 			 "Please make sure 'struct resident_page_types[]' is updated as well");
650 
651 	for (i = 0; i < NR_MM_COUNTERS; i++) {
652 		long x = atomic_long_read(&mm->rss_stat.count[i]);
653 
654 		if (unlikely(x))
655 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
656 				 mm, resident_page_types[i], x);
657 	}
658 
659 	if (mm_pgtables_bytes(mm))
660 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
661 				mm_pgtables_bytes(mm));
662 
663 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
664 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
665 #endif
666 }
667 
668 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
669 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
670 
671 /*
672  * Called when the last reference to the mm
673  * is dropped: either by a lazy thread or by
674  * mmput. Free the page directory and the mm.
675  */
676 void __mmdrop(struct mm_struct *mm)
677 {
678 	BUG_ON(mm == &init_mm);
679 	WARN_ON_ONCE(mm == current->mm);
680 	WARN_ON_ONCE(mm == current->active_mm);
681 	mm_free_pgd(mm);
682 	destroy_context(mm);
683 	mmu_notifier_subscriptions_destroy(mm);
684 	check_mm(mm);
685 	put_user_ns(mm->user_ns);
686 	free_mm(mm);
687 }
688 EXPORT_SYMBOL_GPL(__mmdrop);
689 
690 static void mmdrop_async_fn(struct work_struct *work)
691 {
692 	struct mm_struct *mm;
693 
694 	mm = container_of(work, struct mm_struct, async_put_work);
695 	__mmdrop(mm);
696 }
697 
698 static void mmdrop_async(struct mm_struct *mm)
699 {
700 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
701 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
702 		schedule_work(&mm->async_put_work);
703 	}
704 }
705 
706 static inline void free_signal_struct(struct signal_struct *sig)
707 {
708 	taskstats_tgid_free(sig);
709 	sched_autogroup_exit(sig);
710 	/*
711 	 * __mmdrop is not safe to call from softirq context on x86 due to
712 	 * pgd_dtor so postpone it to the async context
713 	 */
714 	if (sig->oom_mm)
715 		mmdrop_async(sig->oom_mm);
716 	kmem_cache_free(signal_cachep, sig);
717 }
718 
719 static inline void put_signal_struct(struct signal_struct *sig)
720 {
721 	if (refcount_dec_and_test(&sig->sigcnt))
722 		free_signal_struct(sig);
723 }
724 
725 void __put_task_struct(struct task_struct *tsk)
726 {
727 	WARN_ON(!tsk->exit_state);
728 	WARN_ON(refcount_read(&tsk->usage));
729 	WARN_ON(tsk == current);
730 
731 	cgroup_free(tsk);
732 	task_numa_free(tsk, true);
733 	security_task_free(tsk);
734 	exit_creds(tsk);
735 	delayacct_tsk_free(tsk);
736 	put_signal_struct(tsk->signal);
737 
738 	if (!profile_handoff_task(tsk))
739 		free_task(tsk);
740 }
741 EXPORT_SYMBOL_GPL(__put_task_struct);
742 
743 void __init __weak arch_task_cache_init(void) { }
744 
745 /*
746  * set_max_threads
747  */
748 static void set_max_threads(unsigned int max_threads_suggested)
749 {
750 	u64 threads;
751 	unsigned long nr_pages = totalram_pages();
752 
753 	/*
754 	 * The number of threads shall be limited such that the thread
755 	 * structures may only consume a small part of the available memory.
756 	 */
757 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
758 		threads = MAX_THREADS;
759 	else
760 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
761 				    (u64) THREAD_SIZE * 8UL);
762 
763 	if (threads > max_threads_suggested)
764 		threads = max_threads_suggested;
765 
766 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
767 }
768 
769 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
770 /* Initialized by the architecture: */
771 int arch_task_struct_size __read_mostly;
772 #endif
773 
774 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
775 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
776 {
777 	/* Fetch thread_struct whitelist for the architecture. */
778 	arch_thread_struct_whitelist(offset, size);
779 
780 	/*
781 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
782 	 * adjust offset to position of thread_struct in task_struct.
783 	 */
784 	if (unlikely(*size == 0))
785 		*offset = 0;
786 	else
787 		*offset += offsetof(struct task_struct, thread);
788 }
789 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
790 
791 void __init fork_init(void)
792 {
793 	int i;
794 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
795 #ifndef ARCH_MIN_TASKALIGN
796 #define ARCH_MIN_TASKALIGN	0
797 #endif
798 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
799 	unsigned long useroffset, usersize;
800 
801 	/* create a slab on which task_structs can be allocated */
802 	task_struct_whitelist(&useroffset, &usersize);
803 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
804 			arch_task_struct_size, align,
805 			SLAB_PANIC|SLAB_ACCOUNT,
806 			useroffset, usersize, NULL);
807 #endif
808 
809 	/* do the arch specific task caches init */
810 	arch_task_cache_init();
811 
812 	set_max_threads(MAX_THREADS);
813 
814 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
815 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
816 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
817 		init_task.signal->rlim[RLIMIT_NPROC];
818 
819 	for (i = 0; i < UCOUNT_COUNTS; i++) {
820 		init_user_ns.ucount_max[i] = max_threads/2;
821 	}
822 
823 #ifdef CONFIG_VMAP_STACK
824 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
825 			  NULL, free_vm_stack_cache);
826 #endif
827 
828 	scs_init();
829 
830 	lockdep_init_task(&init_task);
831 	uprobes_init();
832 }
833 
834 int __weak arch_dup_task_struct(struct task_struct *dst,
835 					       struct task_struct *src)
836 {
837 	*dst = *src;
838 	return 0;
839 }
840 
841 void set_task_stack_end_magic(struct task_struct *tsk)
842 {
843 	unsigned long *stackend;
844 
845 	stackend = end_of_stack(tsk);
846 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
847 }
848 
849 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
850 {
851 	struct task_struct *tsk;
852 	unsigned long *stack;
853 	struct vm_struct *stack_vm_area __maybe_unused;
854 	int err;
855 
856 	if (node == NUMA_NO_NODE)
857 		node = tsk_fork_get_node(orig);
858 	tsk = alloc_task_struct_node(node);
859 	if (!tsk)
860 		return NULL;
861 
862 	stack = alloc_thread_stack_node(tsk, node);
863 	if (!stack)
864 		goto free_tsk;
865 
866 	if (memcg_charge_kernel_stack(tsk))
867 		goto free_stack;
868 
869 	stack_vm_area = task_stack_vm_area(tsk);
870 
871 	err = arch_dup_task_struct(tsk, orig);
872 
873 	/*
874 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
875 	 * sure they're properly initialized before using any stack-related
876 	 * functions again.
877 	 */
878 	tsk->stack = stack;
879 #ifdef CONFIG_VMAP_STACK
880 	tsk->stack_vm_area = stack_vm_area;
881 #endif
882 #ifdef CONFIG_THREAD_INFO_IN_TASK
883 	refcount_set(&tsk->stack_refcount, 1);
884 #endif
885 
886 	if (err)
887 		goto free_stack;
888 
889 	err = scs_prepare(tsk, node);
890 	if (err)
891 		goto free_stack;
892 
893 #ifdef CONFIG_SECCOMP
894 	/*
895 	 * We must handle setting up seccomp filters once we're under
896 	 * the sighand lock in case orig has changed between now and
897 	 * then. Until then, filter must be NULL to avoid messing up
898 	 * the usage counts on the error path calling free_task.
899 	 */
900 	tsk->seccomp.filter = NULL;
901 #endif
902 
903 	setup_thread_stack(tsk, orig);
904 	clear_user_return_notifier(tsk);
905 	clear_tsk_need_resched(tsk);
906 	set_task_stack_end_magic(tsk);
907 
908 #ifdef CONFIG_STACKPROTECTOR
909 	tsk->stack_canary = get_random_canary();
910 #endif
911 	if (orig->cpus_ptr == &orig->cpus_mask)
912 		tsk->cpus_ptr = &tsk->cpus_mask;
913 
914 	/*
915 	 * One for the user space visible state that goes away when reaped.
916 	 * One for the scheduler.
917 	 */
918 	refcount_set(&tsk->rcu_users, 2);
919 	/* One for the rcu users */
920 	refcount_set(&tsk->usage, 1);
921 #ifdef CONFIG_BLK_DEV_IO_TRACE
922 	tsk->btrace_seq = 0;
923 #endif
924 	tsk->splice_pipe = NULL;
925 	tsk->task_frag.page = NULL;
926 	tsk->wake_q.next = NULL;
927 
928 	account_kernel_stack(tsk, 1);
929 
930 	kcov_task_init(tsk);
931 
932 #ifdef CONFIG_FAULT_INJECTION
933 	tsk->fail_nth = 0;
934 #endif
935 
936 #ifdef CONFIG_BLK_CGROUP
937 	tsk->throttle_queue = NULL;
938 	tsk->use_memdelay = 0;
939 #endif
940 
941 #ifdef CONFIG_MEMCG
942 	tsk->active_memcg = NULL;
943 #endif
944 	return tsk;
945 
946 free_stack:
947 	free_thread_stack(tsk);
948 free_tsk:
949 	free_task_struct(tsk);
950 	return NULL;
951 }
952 
953 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
954 
955 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
956 
957 static int __init coredump_filter_setup(char *s)
958 {
959 	default_dump_filter =
960 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
961 		MMF_DUMP_FILTER_MASK;
962 	return 1;
963 }
964 
965 __setup("coredump_filter=", coredump_filter_setup);
966 
967 #include <linux/init_task.h>
968 
969 static void mm_init_aio(struct mm_struct *mm)
970 {
971 #ifdef CONFIG_AIO
972 	spin_lock_init(&mm->ioctx_lock);
973 	mm->ioctx_table = NULL;
974 #endif
975 }
976 
977 static __always_inline void mm_clear_owner(struct mm_struct *mm,
978 					   struct task_struct *p)
979 {
980 #ifdef CONFIG_MEMCG
981 	if (mm->owner == p)
982 		WRITE_ONCE(mm->owner, NULL);
983 #endif
984 }
985 
986 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
987 {
988 #ifdef CONFIG_MEMCG
989 	mm->owner = p;
990 #endif
991 }
992 
993 static void mm_init_uprobes_state(struct mm_struct *mm)
994 {
995 #ifdef CONFIG_UPROBES
996 	mm->uprobes_state.xol_area = NULL;
997 #endif
998 }
999 
1000 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1001 	struct user_namespace *user_ns)
1002 {
1003 	mm->mmap = NULL;
1004 	mm->mm_rb = RB_ROOT;
1005 	mm->vmacache_seqnum = 0;
1006 	atomic_set(&mm->mm_users, 1);
1007 	atomic_set(&mm->mm_count, 1);
1008 	mmap_init_lock(mm);
1009 	INIT_LIST_HEAD(&mm->mmlist);
1010 	mm->core_state = NULL;
1011 	mm_pgtables_bytes_init(mm);
1012 	mm->map_count = 0;
1013 	mm->locked_vm = 0;
1014 	atomic64_set(&mm->pinned_vm, 0);
1015 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1016 	spin_lock_init(&mm->page_table_lock);
1017 	spin_lock_init(&mm->arg_lock);
1018 	mm_init_cpumask(mm);
1019 	mm_init_aio(mm);
1020 	mm_init_owner(mm, p);
1021 	RCU_INIT_POINTER(mm->exe_file, NULL);
1022 	mmu_notifier_subscriptions_init(mm);
1023 	init_tlb_flush_pending(mm);
1024 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1025 	mm->pmd_huge_pte = NULL;
1026 #endif
1027 	mm_init_uprobes_state(mm);
1028 
1029 	if (current->mm) {
1030 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1031 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1032 	} else {
1033 		mm->flags = default_dump_filter;
1034 		mm->def_flags = 0;
1035 	}
1036 
1037 	if (mm_alloc_pgd(mm))
1038 		goto fail_nopgd;
1039 
1040 	if (init_new_context(p, mm))
1041 		goto fail_nocontext;
1042 
1043 	mm->user_ns = get_user_ns(user_ns);
1044 	return mm;
1045 
1046 fail_nocontext:
1047 	mm_free_pgd(mm);
1048 fail_nopgd:
1049 	free_mm(mm);
1050 	return NULL;
1051 }
1052 
1053 /*
1054  * Allocate and initialize an mm_struct.
1055  */
1056 struct mm_struct *mm_alloc(void)
1057 {
1058 	struct mm_struct *mm;
1059 
1060 	mm = allocate_mm();
1061 	if (!mm)
1062 		return NULL;
1063 
1064 	memset(mm, 0, sizeof(*mm));
1065 	return mm_init(mm, current, current_user_ns());
1066 }
1067 
1068 static inline void __mmput(struct mm_struct *mm)
1069 {
1070 	VM_BUG_ON(atomic_read(&mm->mm_users));
1071 
1072 	uprobe_clear_state(mm);
1073 	exit_aio(mm);
1074 	ksm_exit(mm);
1075 	khugepaged_exit(mm); /* must run before exit_mmap */
1076 	exit_mmap(mm);
1077 	mm_put_huge_zero_page(mm);
1078 	set_mm_exe_file(mm, NULL);
1079 	if (!list_empty(&mm->mmlist)) {
1080 		spin_lock(&mmlist_lock);
1081 		list_del(&mm->mmlist);
1082 		spin_unlock(&mmlist_lock);
1083 	}
1084 	if (mm->binfmt)
1085 		module_put(mm->binfmt->module);
1086 	mmdrop(mm);
1087 }
1088 
1089 /*
1090  * Decrement the use count and release all resources for an mm.
1091  */
1092 void mmput(struct mm_struct *mm)
1093 {
1094 	might_sleep();
1095 
1096 	if (atomic_dec_and_test(&mm->mm_users))
1097 		__mmput(mm);
1098 }
1099 EXPORT_SYMBOL_GPL(mmput);
1100 
1101 #ifdef CONFIG_MMU
1102 static void mmput_async_fn(struct work_struct *work)
1103 {
1104 	struct mm_struct *mm = container_of(work, struct mm_struct,
1105 					    async_put_work);
1106 
1107 	__mmput(mm);
1108 }
1109 
1110 void mmput_async(struct mm_struct *mm)
1111 {
1112 	if (atomic_dec_and_test(&mm->mm_users)) {
1113 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1114 		schedule_work(&mm->async_put_work);
1115 	}
1116 }
1117 #endif
1118 
1119 /**
1120  * set_mm_exe_file - change a reference to the mm's executable file
1121  *
1122  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1123  *
1124  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1125  * invocations: in mmput() nobody alive left, in execve task is single
1126  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1127  * mm->exe_file, but does so without using set_mm_exe_file() in order
1128  * to do avoid the need for any locks.
1129  */
1130 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1131 {
1132 	struct file *old_exe_file;
1133 
1134 	/*
1135 	 * It is safe to dereference the exe_file without RCU as
1136 	 * this function is only called if nobody else can access
1137 	 * this mm -- see comment above for justification.
1138 	 */
1139 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1140 
1141 	if (new_exe_file)
1142 		get_file(new_exe_file);
1143 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1144 	if (old_exe_file)
1145 		fput(old_exe_file);
1146 }
1147 
1148 /**
1149  * get_mm_exe_file - acquire a reference to the mm's executable file
1150  *
1151  * Returns %NULL if mm has no associated executable file.
1152  * User must release file via fput().
1153  */
1154 struct file *get_mm_exe_file(struct mm_struct *mm)
1155 {
1156 	struct file *exe_file;
1157 
1158 	rcu_read_lock();
1159 	exe_file = rcu_dereference(mm->exe_file);
1160 	if (exe_file && !get_file_rcu(exe_file))
1161 		exe_file = NULL;
1162 	rcu_read_unlock();
1163 	return exe_file;
1164 }
1165 EXPORT_SYMBOL(get_mm_exe_file);
1166 
1167 /**
1168  * get_task_exe_file - acquire a reference to the task's executable file
1169  *
1170  * Returns %NULL if task's mm (if any) has no associated executable file or
1171  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1172  * User must release file via fput().
1173  */
1174 struct file *get_task_exe_file(struct task_struct *task)
1175 {
1176 	struct file *exe_file = NULL;
1177 	struct mm_struct *mm;
1178 
1179 	task_lock(task);
1180 	mm = task->mm;
1181 	if (mm) {
1182 		if (!(task->flags & PF_KTHREAD))
1183 			exe_file = get_mm_exe_file(mm);
1184 	}
1185 	task_unlock(task);
1186 	return exe_file;
1187 }
1188 EXPORT_SYMBOL(get_task_exe_file);
1189 
1190 /**
1191  * get_task_mm - acquire a reference to the task's mm
1192  *
1193  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1194  * this kernel workthread has transiently adopted a user mm with use_mm,
1195  * to do its AIO) is not set and if so returns a reference to it, after
1196  * bumping up the use count.  User must release the mm via mmput()
1197  * after use.  Typically used by /proc and ptrace.
1198  */
1199 struct mm_struct *get_task_mm(struct task_struct *task)
1200 {
1201 	struct mm_struct *mm;
1202 
1203 	task_lock(task);
1204 	mm = task->mm;
1205 	if (mm) {
1206 		if (task->flags & PF_KTHREAD)
1207 			mm = NULL;
1208 		else
1209 			mmget(mm);
1210 	}
1211 	task_unlock(task);
1212 	return mm;
1213 }
1214 EXPORT_SYMBOL_GPL(get_task_mm);
1215 
1216 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1217 {
1218 	struct mm_struct *mm;
1219 	int err;
1220 
1221 	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1222 	if (err)
1223 		return ERR_PTR(err);
1224 
1225 	mm = get_task_mm(task);
1226 	if (mm && mm != current->mm &&
1227 			!ptrace_may_access(task, mode)) {
1228 		mmput(mm);
1229 		mm = ERR_PTR(-EACCES);
1230 	}
1231 	mutex_unlock(&task->signal->exec_update_mutex);
1232 
1233 	return mm;
1234 }
1235 
1236 static void complete_vfork_done(struct task_struct *tsk)
1237 {
1238 	struct completion *vfork;
1239 
1240 	task_lock(tsk);
1241 	vfork = tsk->vfork_done;
1242 	if (likely(vfork)) {
1243 		tsk->vfork_done = NULL;
1244 		complete(vfork);
1245 	}
1246 	task_unlock(tsk);
1247 }
1248 
1249 static int wait_for_vfork_done(struct task_struct *child,
1250 				struct completion *vfork)
1251 {
1252 	int killed;
1253 
1254 	freezer_do_not_count();
1255 	cgroup_enter_frozen();
1256 	killed = wait_for_completion_killable(vfork);
1257 	cgroup_leave_frozen(false);
1258 	freezer_count();
1259 
1260 	if (killed) {
1261 		task_lock(child);
1262 		child->vfork_done = NULL;
1263 		task_unlock(child);
1264 	}
1265 
1266 	put_task_struct(child);
1267 	return killed;
1268 }
1269 
1270 /* Please note the differences between mmput and mm_release.
1271  * mmput is called whenever we stop holding onto a mm_struct,
1272  * error success whatever.
1273  *
1274  * mm_release is called after a mm_struct has been removed
1275  * from the current process.
1276  *
1277  * This difference is important for error handling, when we
1278  * only half set up a mm_struct for a new process and need to restore
1279  * the old one.  Because we mmput the new mm_struct before
1280  * restoring the old one. . .
1281  * Eric Biederman 10 January 1998
1282  */
1283 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1284 {
1285 	uprobe_free_utask(tsk);
1286 
1287 	/* Get rid of any cached register state */
1288 	deactivate_mm(tsk, mm);
1289 
1290 	/*
1291 	 * Signal userspace if we're not exiting with a core dump
1292 	 * because we want to leave the value intact for debugging
1293 	 * purposes.
1294 	 */
1295 	if (tsk->clear_child_tid) {
1296 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1297 		    atomic_read(&mm->mm_users) > 1) {
1298 			/*
1299 			 * We don't check the error code - if userspace has
1300 			 * not set up a proper pointer then tough luck.
1301 			 */
1302 			put_user(0, tsk->clear_child_tid);
1303 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1304 					1, NULL, NULL, 0, 0);
1305 		}
1306 		tsk->clear_child_tid = NULL;
1307 	}
1308 
1309 	/*
1310 	 * All done, finally we can wake up parent and return this mm to him.
1311 	 * Also kthread_stop() uses this completion for synchronization.
1312 	 */
1313 	if (tsk->vfork_done)
1314 		complete_vfork_done(tsk);
1315 }
1316 
1317 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1318 {
1319 	futex_exit_release(tsk);
1320 	mm_release(tsk, mm);
1321 }
1322 
1323 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1324 {
1325 	futex_exec_release(tsk);
1326 	mm_release(tsk, mm);
1327 }
1328 
1329 /**
1330  * dup_mm() - duplicates an existing mm structure
1331  * @tsk: the task_struct with which the new mm will be associated.
1332  * @oldmm: the mm to duplicate.
1333  *
1334  * Allocates a new mm structure and duplicates the provided @oldmm structure
1335  * content into it.
1336  *
1337  * Return: the duplicated mm or NULL on failure.
1338  */
1339 static struct mm_struct *dup_mm(struct task_struct *tsk,
1340 				struct mm_struct *oldmm)
1341 {
1342 	struct mm_struct *mm;
1343 	int err;
1344 
1345 	mm = allocate_mm();
1346 	if (!mm)
1347 		goto fail_nomem;
1348 
1349 	memcpy(mm, oldmm, sizeof(*mm));
1350 
1351 	if (!mm_init(mm, tsk, mm->user_ns))
1352 		goto fail_nomem;
1353 
1354 	err = dup_mmap(mm, oldmm);
1355 	if (err)
1356 		goto free_pt;
1357 
1358 	mm->hiwater_rss = get_mm_rss(mm);
1359 	mm->hiwater_vm = mm->total_vm;
1360 
1361 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1362 		goto free_pt;
1363 
1364 	return mm;
1365 
1366 free_pt:
1367 	/* don't put binfmt in mmput, we haven't got module yet */
1368 	mm->binfmt = NULL;
1369 	mm_init_owner(mm, NULL);
1370 	mmput(mm);
1371 
1372 fail_nomem:
1373 	return NULL;
1374 }
1375 
1376 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1377 {
1378 	struct mm_struct *mm, *oldmm;
1379 	int retval;
1380 
1381 	tsk->min_flt = tsk->maj_flt = 0;
1382 	tsk->nvcsw = tsk->nivcsw = 0;
1383 #ifdef CONFIG_DETECT_HUNG_TASK
1384 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1385 	tsk->last_switch_time = 0;
1386 #endif
1387 
1388 	tsk->mm = NULL;
1389 	tsk->active_mm = NULL;
1390 
1391 	/*
1392 	 * Are we cloning a kernel thread?
1393 	 *
1394 	 * We need to steal a active VM for that..
1395 	 */
1396 	oldmm = current->mm;
1397 	if (!oldmm)
1398 		return 0;
1399 
1400 	/* initialize the new vmacache entries */
1401 	vmacache_flush(tsk);
1402 
1403 	if (clone_flags & CLONE_VM) {
1404 		mmget(oldmm);
1405 		mm = oldmm;
1406 		goto good_mm;
1407 	}
1408 
1409 	retval = -ENOMEM;
1410 	mm = dup_mm(tsk, current->mm);
1411 	if (!mm)
1412 		goto fail_nomem;
1413 
1414 good_mm:
1415 	tsk->mm = mm;
1416 	tsk->active_mm = mm;
1417 	return 0;
1418 
1419 fail_nomem:
1420 	return retval;
1421 }
1422 
1423 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1424 {
1425 	struct fs_struct *fs = current->fs;
1426 	if (clone_flags & CLONE_FS) {
1427 		/* tsk->fs is already what we want */
1428 		spin_lock(&fs->lock);
1429 		if (fs->in_exec) {
1430 			spin_unlock(&fs->lock);
1431 			return -EAGAIN;
1432 		}
1433 		fs->users++;
1434 		spin_unlock(&fs->lock);
1435 		return 0;
1436 	}
1437 	tsk->fs = copy_fs_struct(fs);
1438 	if (!tsk->fs)
1439 		return -ENOMEM;
1440 	return 0;
1441 }
1442 
1443 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1444 {
1445 	struct files_struct *oldf, *newf;
1446 	int error = 0;
1447 
1448 	/*
1449 	 * A background process may not have any files ...
1450 	 */
1451 	oldf = current->files;
1452 	if (!oldf)
1453 		goto out;
1454 
1455 	if (clone_flags & CLONE_FILES) {
1456 		atomic_inc(&oldf->count);
1457 		goto out;
1458 	}
1459 
1460 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1461 	if (!newf)
1462 		goto out;
1463 
1464 	tsk->files = newf;
1465 	error = 0;
1466 out:
1467 	return error;
1468 }
1469 
1470 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1471 {
1472 #ifdef CONFIG_BLOCK
1473 	struct io_context *ioc = current->io_context;
1474 	struct io_context *new_ioc;
1475 
1476 	if (!ioc)
1477 		return 0;
1478 	/*
1479 	 * Share io context with parent, if CLONE_IO is set
1480 	 */
1481 	if (clone_flags & CLONE_IO) {
1482 		ioc_task_link(ioc);
1483 		tsk->io_context = ioc;
1484 	} else if (ioprio_valid(ioc->ioprio)) {
1485 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1486 		if (unlikely(!new_ioc))
1487 			return -ENOMEM;
1488 
1489 		new_ioc->ioprio = ioc->ioprio;
1490 		put_io_context(new_ioc);
1491 	}
1492 #endif
1493 	return 0;
1494 }
1495 
1496 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1497 {
1498 	struct sighand_struct *sig;
1499 
1500 	if (clone_flags & CLONE_SIGHAND) {
1501 		refcount_inc(&current->sighand->count);
1502 		return 0;
1503 	}
1504 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1505 	RCU_INIT_POINTER(tsk->sighand, sig);
1506 	if (!sig)
1507 		return -ENOMEM;
1508 
1509 	refcount_set(&sig->count, 1);
1510 	spin_lock_irq(&current->sighand->siglock);
1511 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1512 	spin_unlock_irq(&current->sighand->siglock);
1513 
1514 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1515 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1516 		flush_signal_handlers(tsk, 0);
1517 
1518 	return 0;
1519 }
1520 
1521 void __cleanup_sighand(struct sighand_struct *sighand)
1522 {
1523 	if (refcount_dec_and_test(&sighand->count)) {
1524 		signalfd_cleanup(sighand);
1525 		/*
1526 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1527 		 * without an RCU grace period, see __lock_task_sighand().
1528 		 */
1529 		kmem_cache_free(sighand_cachep, sighand);
1530 	}
1531 }
1532 
1533 /*
1534  * Initialize POSIX timer handling for a thread group.
1535  */
1536 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1537 {
1538 	struct posix_cputimers *pct = &sig->posix_cputimers;
1539 	unsigned long cpu_limit;
1540 
1541 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1542 	posix_cputimers_group_init(pct, cpu_limit);
1543 }
1544 
1545 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1546 {
1547 	struct signal_struct *sig;
1548 
1549 	if (clone_flags & CLONE_THREAD)
1550 		return 0;
1551 
1552 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1553 	tsk->signal = sig;
1554 	if (!sig)
1555 		return -ENOMEM;
1556 
1557 	sig->nr_threads = 1;
1558 	atomic_set(&sig->live, 1);
1559 	refcount_set(&sig->sigcnt, 1);
1560 
1561 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1562 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1563 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1564 
1565 	init_waitqueue_head(&sig->wait_chldexit);
1566 	sig->curr_target = tsk;
1567 	init_sigpending(&sig->shared_pending);
1568 	INIT_HLIST_HEAD(&sig->multiprocess);
1569 	seqlock_init(&sig->stats_lock);
1570 	prev_cputime_init(&sig->prev_cputime);
1571 
1572 #ifdef CONFIG_POSIX_TIMERS
1573 	INIT_LIST_HEAD(&sig->posix_timers);
1574 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1575 	sig->real_timer.function = it_real_fn;
1576 #endif
1577 
1578 	task_lock(current->group_leader);
1579 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1580 	task_unlock(current->group_leader);
1581 
1582 	posix_cpu_timers_init_group(sig);
1583 
1584 	tty_audit_fork(sig);
1585 	sched_autogroup_fork(sig);
1586 
1587 	sig->oom_score_adj = current->signal->oom_score_adj;
1588 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1589 
1590 	mutex_init(&sig->cred_guard_mutex);
1591 	mutex_init(&sig->exec_update_mutex);
1592 
1593 	return 0;
1594 }
1595 
1596 static void copy_seccomp(struct task_struct *p)
1597 {
1598 #ifdef CONFIG_SECCOMP
1599 	/*
1600 	 * Must be called with sighand->lock held, which is common to
1601 	 * all threads in the group. Holding cred_guard_mutex is not
1602 	 * needed because this new task is not yet running and cannot
1603 	 * be racing exec.
1604 	 */
1605 	assert_spin_locked(&current->sighand->siglock);
1606 
1607 	/* Ref-count the new filter user, and assign it. */
1608 	get_seccomp_filter(current);
1609 	p->seccomp = current->seccomp;
1610 
1611 	/*
1612 	 * Explicitly enable no_new_privs here in case it got set
1613 	 * between the task_struct being duplicated and holding the
1614 	 * sighand lock. The seccomp state and nnp must be in sync.
1615 	 */
1616 	if (task_no_new_privs(current))
1617 		task_set_no_new_privs(p);
1618 
1619 	/*
1620 	 * If the parent gained a seccomp mode after copying thread
1621 	 * flags and between before we held the sighand lock, we have
1622 	 * to manually enable the seccomp thread flag here.
1623 	 */
1624 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1625 		set_tsk_thread_flag(p, TIF_SECCOMP);
1626 #endif
1627 }
1628 
1629 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1630 {
1631 	current->clear_child_tid = tidptr;
1632 
1633 	return task_pid_vnr(current);
1634 }
1635 
1636 static void rt_mutex_init_task(struct task_struct *p)
1637 {
1638 	raw_spin_lock_init(&p->pi_lock);
1639 #ifdef CONFIG_RT_MUTEXES
1640 	p->pi_waiters = RB_ROOT_CACHED;
1641 	p->pi_top_task = NULL;
1642 	p->pi_blocked_on = NULL;
1643 #endif
1644 }
1645 
1646 static inline void init_task_pid_links(struct task_struct *task)
1647 {
1648 	enum pid_type type;
1649 
1650 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1651 		INIT_HLIST_NODE(&task->pid_links[type]);
1652 	}
1653 }
1654 
1655 static inline void
1656 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1657 {
1658 	if (type == PIDTYPE_PID)
1659 		task->thread_pid = pid;
1660 	else
1661 		task->signal->pids[type] = pid;
1662 }
1663 
1664 static inline void rcu_copy_process(struct task_struct *p)
1665 {
1666 #ifdef CONFIG_PREEMPT_RCU
1667 	p->rcu_read_lock_nesting = 0;
1668 	p->rcu_read_unlock_special.s = 0;
1669 	p->rcu_blocked_node = NULL;
1670 	INIT_LIST_HEAD(&p->rcu_node_entry);
1671 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1672 #ifdef CONFIG_TASKS_RCU
1673 	p->rcu_tasks_holdout = false;
1674 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1675 	p->rcu_tasks_idle_cpu = -1;
1676 #endif /* #ifdef CONFIG_TASKS_RCU */
1677 #ifdef CONFIG_TASKS_TRACE_RCU
1678 	p->trc_reader_nesting = 0;
1679 	p->trc_reader_special.s = 0;
1680 	INIT_LIST_HEAD(&p->trc_holdout_list);
1681 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1682 }
1683 
1684 struct pid *pidfd_pid(const struct file *file)
1685 {
1686 	if (file->f_op == &pidfd_fops)
1687 		return file->private_data;
1688 
1689 	return ERR_PTR(-EBADF);
1690 }
1691 
1692 static int pidfd_release(struct inode *inode, struct file *file)
1693 {
1694 	struct pid *pid = file->private_data;
1695 
1696 	file->private_data = NULL;
1697 	put_pid(pid);
1698 	return 0;
1699 }
1700 
1701 #ifdef CONFIG_PROC_FS
1702 /**
1703  * pidfd_show_fdinfo - print information about a pidfd
1704  * @m: proc fdinfo file
1705  * @f: file referencing a pidfd
1706  *
1707  * Pid:
1708  * This function will print the pid that a given pidfd refers to in the
1709  * pid namespace of the procfs instance.
1710  * If the pid namespace of the process is not a descendant of the pid
1711  * namespace of the procfs instance 0 will be shown as its pid. This is
1712  * similar to calling getppid() on a process whose parent is outside of
1713  * its pid namespace.
1714  *
1715  * NSpid:
1716  * If pid namespaces are supported then this function will also print
1717  * the pid of a given pidfd refers to for all descendant pid namespaces
1718  * starting from the current pid namespace of the instance, i.e. the
1719  * Pid field and the first entry in the NSpid field will be identical.
1720  * If the pid namespace of the process is not a descendant of the pid
1721  * namespace of the procfs instance 0 will be shown as its first NSpid
1722  * entry and no others will be shown.
1723  * Note that this differs from the Pid and NSpid fields in
1724  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1725  * the  pid namespace of the procfs instance. The difference becomes
1726  * obvious when sending around a pidfd between pid namespaces from a
1727  * different branch of the tree, i.e. where no ancestoral relation is
1728  * present between the pid namespaces:
1729  * - create two new pid namespaces ns1 and ns2 in the initial pid
1730  *   namespace (also take care to create new mount namespaces in the
1731  *   new pid namespace and mount procfs)
1732  * - create a process with a pidfd in ns1
1733  * - send pidfd from ns1 to ns2
1734  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1735  *   have exactly one entry, which is 0
1736  */
1737 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1738 {
1739 	struct pid *pid = f->private_data;
1740 	struct pid_namespace *ns;
1741 	pid_t nr = -1;
1742 
1743 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1744 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1745 		nr = pid_nr_ns(pid, ns);
1746 	}
1747 
1748 	seq_put_decimal_ll(m, "Pid:\t", nr);
1749 
1750 #ifdef CONFIG_PID_NS
1751 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1752 	if (nr > 0) {
1753 		int i;
1754 
1755 		/* If nr is non-zero it means that 'pid' is valid and that
1756 		 * ns, i.e. the pid namespace associated with the procfs
1757 		 * instance, is in the pid namespace hierarchy of pid.
1758 		 * Start at one below the already printed level.
1759 		 */
1760 		for (i = ns->level + 1; i <= pid->level; i++)
1761 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1762 	}
1763 #endif
1764 	seq_putc(m, '\n');
1765 }
1766 #endif
1767 
1768 /*
1769  * Poll support for process exit notification.
1770  */
1771 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1772 {
1773 	struct pid *pid = file->private_data;
1774 	__poll_t poll_flags = 0;
1775 
1776 	poll_wait(file, &pid->wait_pidfd, pts);
1777 
1778 	/*
1779 	 * Inform pollers only when the whole thread group exits.
1780 	 * If the thread group leader exits before all other threads in the
1781 	 * group, then poll(2) should block, similar to the wait(2) family.
1782 	 */
1783 	if (thread_group_exited(pid))
1784 		poll_flags = EPOLLIN | EPOLLRDNORM;
1785 
1786 	return poll_flags;
1787 }
1788 
1789 const struct file_operations pidfd_fops = {
1790 	.release = pidfd_release,
1791 	.poll = pidfd_poll,
1792 #ifdef CONFIG_PROC_FS
1793 	.show_fdinfo = pidfd_show_fdinfo,
1794 #endif
1795 };
1796 
1797 static void __delayed_free_task(struct rcu_head *rhp)
1798 {
1799 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1800 
1801 	free_task(tsk);
1802 }
1803 
1804 static __always_inline void delayed_free_task(struct task_struct *tsk)
1805 {
1806 	if (IS_ENABLED(CONFIG_MEMCG))
1807 		call_rcu(&tsk->rcu, __delayed_free_task);
1808 	else
1809 		free_task(tsk);
1810 }
1811 
1812 /*
1813  * This creates a new process as a copy of the old one,
1814  * but does not actually start it yet.
1815  *
1816  * It copies the registers, and all the appropriate
1817  * parts of the process environment (as per the clone
1818  * flags). The actual kick-off is left to the caller.
1819  */
1820 static __latent_entropy struct task_struct *copy_process(
1821 					struct pid *pid,
1822 					int trace,
1823 					int node,
1824 					struct kernel_clone_args *args)
1825 {
1826 	int pidfd = -1, retval;
1827 	struct task_struct *p;
1828 	struct multiprocess_signals delayed;
1829 	struct file *pidfile = NULL;
1830 	u64 clone_flags = args->flags;
1831 	struct nsproxy *nsp = current->nsproxy;
1832 
1833 	/*
1834 	 * Don't allow sharing the root directory with processes in a different
1835 	 * namespace
1836 	 */
1837 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1838 		return ERR_PTR(-EINVAL);
1839 
1840 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1841 		return ERR_PTR(-EINVAL);
1842 
1843 	/*
1844 	 * Thread groups must share signals as well, and detached threads
1845 	 * can only be started up within the thread group.
1846 	 */
1847 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1848 		return ERR_PTR(-EINVAL);
1849 
1850 	/*
1851 	 * Shared signal handlers imply shared VM. By way of the above,
1852 	 * thread groups also imply shared VM. Blocking this case allows
1853 	 * for various simplifications in other code.
1854 	 */
1855 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1856 		return ERR_PTR(-EINVAL);
1857 
1858 	/*
1859 	 * Siblings of global init remain as zombies on exit since they are
1860 	 * not reaped by their parent (swapper). To solve this and to avoid
1861 	 * multi-rooted process trees, prevent global and container-inits
1862 	 * from creating siblings.
1863 	 */
1864 	if ((clone_flags & CLONE_PARENT) &&
1865 				current->signal->flags & SIGNAL_UNKILLABLE)
1866 		return ERR_PTR(-EINVAL);
1867 
1868 	/*
1869 	 * If the new process will be in a different pid or user namespace
1870 	 * do not allow it to share a thread group with the forking task.
1871 	 */
1872 	if (clone_flags & CLONE_THREAD) {
1873 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1874 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1875 			return ERR_PTR(-EINVAL);
1876 	}
1877 
1878 	/*
1879 	 * If the new process will be in a different time namespace
1880 	 * do not allow it to share VM or a thread group with the forking task.
1881 	 */
1882 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1883 		if (nsp->time_ns != nsp->time_ns_for_children)
1884 			return ERR_PTR(-EINVAL);
1885 	}
1886 
1887 	if (clone_flags & CLONE_PIDFD) {
1888 		/*
1889 		 * - CLONE_DETACHED is blocked so that we can potentially
1890 		 *   reuse it later for CLONE_PIDFD.
1891 		 * - CLONE_THREAD is blocked until someone really needs it.
1892 		 */
1893 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1894 			return ERR_PTR(-EINVAL);
1895 	}
1896 
1897 	/*
1898 	 * Force any signals received before this point to be delivered
1899 	 * before the fork happens.  Collect up signals sent to multiple
1900 	 * processes that happen during the fork and delay them so that
1901 	 * they appear to happen after the fork.
1902 	 */
1903 	sigemptyset(&delayed.signal);
1904 	INIT_HLIST_NODE(&delayed.node);
1905 
1906 	spin_lock_irq(&current->sighand->siglock);
1907 	if (!(clone_flags & CLONE_THREAD))
1908 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1909 	recalc_sigpending();
1910 	spin_unlock_irq(&current->sighand->siglock);
1911 	retval = -ERESTARTNOINTR;
1912 	if (signal_pending(current))
1913 		goto fork_out;
1914 
1915 	retval = -ENOMEM;
1916 	p = dup_task_struct(current, node);
1917 	if (!p)
1918 		goto fork_out;
1919 
1920 	/*
1921 	 * This _must_ happen before we call free_task(), i.e. before we jump
1922 	 * to any of the bad_fork_* labels. This is to avoid freeing
1923 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1924 	 * kernel threads (PF_KTHREAD).
1925 	 */
1926 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1927 	/*
1928 	 * Clear TID on mm_release()?
1929 	 */
1930 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1931 
1932 	ftrace_graph_init_task(p);
1933 
1934 	rt_mutex_init_task(p);
1935 
1936 	lockdep_assert_irqs_enabled();
1937 #ifdef CONFIG_PROVE_LOCKING
1938 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1939 #endif
1940 	retval = -EAGAIN;
1941 	if (atomic_read(&p->real_cred->user->processes) >=
1942 			task_rlimit(p, RLIMIT_NPROC)) {
1943 		if (p->real_cred->user != INIT_USER &&
1944 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1945 			goto bad_fork_free;
1946 	}
1947 	current->flags &= ~PF_NPROC_EXCEEDED;
1948 
1949 	retval = copy_creds(p, clone_flags);
1950 	if (retval < 0)
1951 		goto bad_fork_free;
1952 
1953 	/*
1954 	 * If multiple threads are within copy_process(), then this check
1955 	 * triggers too late. This doesn't hurt, the check is only there
1956 	 * to stop root fork bombs.
1957 	 */
1958 	retval = -EAGAIN;
1959 	if (data_race(nr_threads >= max_threads))
1960 		goto bad_fork_cleanup_count;
1961 
1962 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1963 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1964 	p->flags |= PF_FORKNOEXEC;
1965 	INIT_LIST_HEAD(&p->children);
1966 	INIT_LIST_HEAD(&p->sibling);
1967 	rcu_copy_process(p);
1968 	p->vfork_done = NULL;
1969 	spin_lock_init(&p->alloc_lock);
1970 
1971 	init_sigpending(&p->pending);
1972 
1973 	p->utime = p->stime = p->gtime = 0;
1974 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1975 	p->utimescaled = p->stimescaled = 0;
1976 #endif
1977 	prev_cputime_init(&p->prev_cputime);
1978 
1979 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1980 	seqcount_init(&p->vtime.seqcount);
1981 	p->vtime.starttime = 0;
1982 	p->vtime.state = VTIME_INACTIVE;
1983 #endif
1984 
1985 #if defined(SPLIT_RSS_COUNTING)
1986 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1987 #endif
1988 
1989 	p->default_timer_slack_ns = current->timer_slack_ns;
1990 
1991 #ifdef CONFIG_PSI
1992 	p->psi_flags = 0;
1993 #endif
1994 
1995 	task_io_accounting_init(&p->ioac);
1996 	acct_clear_integrals(p);
1997 
1998 	posix_cputimers_init(&p->posix_cputimers);
1999 
2000 	p->io_context = NULL;
2001 	audit_set_context(p, NULL);
2002 	cgroup_fork(p);
2003 #ifdef CONFIG_NUMA
2004 	p->mempolicy = mpol_dup(p->mempolicy);
2005 	if (IS_ERR(p->mempolicy)) {
2006 		retval = PTR_ERR(p->mempolicy);
2007 		p->mempolicy = NULL;
2008 		goto bad_fork_cleanup_threadgroup_lock;
2009 	}
2010 #endif
2011 #ifdef CONFIG_CPUSETS
2012 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2013 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2014 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2015 #endif
2016 #ifdef CONFIG_TRACE_IRQFLAGS
2017 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2018 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2019 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2020 	p->softirqs_enabled		= 1;
2021 	p->softirq_context		= 0;
2022 #endif
2023 
2024 	p->pagefault_disabled = 0;
2025 
2026 #ifdef CONFIG_LOCKDEP
2027 	lockdep_init_task(p);
2028 #endif
2029 
2030 #ifdef CONFIG_DEBUG_MUTEXES
2031 	p->blocked_on = NULL; /* not blocked yet */
2032 #endif
2033 #ifdef CONFIG_BCACHE
2034 	p->sequential_io	= 0;
2035 	p->sequential_io_avg	= 0;
2036 #endif
2037 
2038 	/* Perform scheduler related setup. Assign this task to a CPU. */
2039 	retval = sched_fork(clone_flags, p);
2040 	if (retval)
2041 		goto bad_fork_cleanup_policy;
2042 
2043 	retval = perf_event_init_task(p);
2044 	if (retval)
2045 		goto bad_fork_cleanup_policy;
2046 	retval = audit_alloc(p);
2047 	if (retval)
2048 		goto bad_fork_cleanup_perf;
2049 	/* copy all the process information */
2050 	shm_init_task(p);
2051 	retval = security_task_alloc(p, clone_flags);
2052 	if (retval)
2053 		goto bad_fork_cleanup_audit;
2054 	retval = copy_semundo(clone_flags, p);
2055 	if (retval)
2056 		goto bad_fork_cleanup_security;
2057 	retval = copy_files(clone_flags, p);
2058 	if (retval)
2059 		goto bad_fork_cleanup_semundo;
2060 	retval = copy_fs(clone_flags, p);
2061 	if (retval)
2062 		goto bad_fork_cleanup_files;
2063 	retval = copy_sighand(clone_flags, p);
2064 	if (retval)
2065 		goto bad_fork_cleanup_fs;
2066 	retval = copy_signal(clone_flags, p);
2067 	if (retval)
2068 		goto bad_fork_cleanup_sighand;
2069 	retval = copy_mm(clone_flags, p);
2070 	if (retval)
2071 		goto bad_fork_cleanup_signal;
2072 	retval = copy_namespaces(clone_flags, p);
2073 	if (retval)
2074 		goto bad_fork_cleanup_mm;
2075 	retval = copy_io(clone_flags, p);
2076 	if (retval)
2077 		goto bad_fork_cleanup_namespaces;
2078 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2079 	if (retval)
2080 		goto bad_fork_cleanup_io;
2081 
2082 	stackleak_task_init(p);
2083 
2084 	if (pid != &init_struct_pid) {
2085 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2086 				args->set_tid_size);
2087 		if (IS_ERR(pid)) {
2088 			retval = PTR_ERR(pid);
2089 			goto bad_fork_cleanup_thread;
2090 		}
2091 	}
2092 
2093 	/*
2094 	 * This has to happen after we've potentially unshared the file
2095 	 * descriptor table (so that the pidfd doesn't leak into the child
2096 	 * if the fd table isn't shared).
2097 	 */
2098 	if (clone_flags & CLONE_PIDFD) {
2099 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2100 		if (retval < 0)
2101 			goto bad_fork_free_pid;
2102 
2103 		pidfd = retval;
2104 
2105 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2106 					      O_RDWR | O_CLOEXEC);
2107 		if (IS_ERR(pidfile)) {
2108 			put_unused_fd(pidfd);
2109 			retval = PTR_ERR(pidfile);
2110 			goto bad_fork_free_pid;
2111 		}
2112 		get_pid(pid);	/* held by pidfile now */
2113 
2114 		retval = put_user(pidfd, args->pidfd);
2115 		if (retval)
2116 			goto bad_fork_put_pidfd;
2117 	}
2118 
2119 #ifdef CONFIG_BLOCK
2120 	p->plug = NULL;
2121 #endif
2122 	futex_init_task(p);
2123 
2124 	/*
2125 	 * sigaltstack should be cleared when sharing the same VM
2126 	 */
2127 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2128 		sas_ss_reset(p);
2129 
2130 	/*
2131 	 * Syscall tracing and stepping should be turned off in the
2132 	 * child regardless of CLONE_PTRACE.
2133 	 */
2134 	user_disable_single_step(p);
2135 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2136 #ifdef TIF_SYSCALL_EMU
2137 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2138 #endif
2139 	clear_tsk_latency_tracing(p);
2140 
2141 	/* ok, now we should be set up.. */
2142 	p->pid = pid_nr(pid);
2143 	if (clone_flags & CLONE_THREAD) {
2144 		p->exit_signal = -1;
2145 		p->group_leader = current->group_leader;
2146 		p->tgid = current->tgid;
2147 	} else {
2148 		if (clone_flags & CLONE_PARENT)
2149 			p->exit_signal = current->group_leader->exit_signal;
2150 		else
2151 			p->exit_signal = args->exit_signal;
2152 		p->group_leader = p;
2153 		p->tgid = p->pid;
2154 	}
2155 
2156 	p->nr_dirtied = 0;
2157 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2158 	p->dirty_paused_when = 0;
2159 
2160 	p->pdeath_signal = 0;
2161 	INIT_LIST_HEAD(&p->thread_group);
2162 	p->task_works = NULL;
2163 
2164 	/*
2165 	 * Ensure that the cgroup subsystem policies allow the new process to be
2166 	 * forked. It should be noted the the new process's css_set can be changed
2167 	 * between here and cgroup_post_fork() if an organisation operation is in
2168 	 * progress.
2169 	 */
2170 	retval = cgroup_can_fork(p, args);
2171 	if (retval)
2172 		goto bad_fork_put_pidfd;
2173 
2174 	/*
2175 	 * From this point on we must avoid any synchronous user-space
2176 	 * communication until we take the tasklist-lock. In particular, we do
2177 	 * not want user-space to be able to predict the process start-time by
2178 	 * stalling fork(2) after we recorded the start_time but before it is
2179 	 * visible to the system.
2180 	 */
2181 
2182 	p->start_time = ktime_get_ns();
2183 	p->start_boottime = ktime_get_boottime_ns();
2184 
2185 	/*
2186 	 * Make it visible to the rest of the system, but dont wake it up yet.
2187 	 * Need tasklist lock for parent etc handling!
2188 	 */
2189 	write_lock_irq(&tasklist_lock);
2190 
2191 	/* CLONE_PARENT re-uses the old parent */
2192 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2193 		p->real_parent = current->real_parent;
2194 		p->parent_exec_id = current->parent_exec_id;
2195 	} else {
2196 		p->real_parent = current;
2197 		p->parent_exec_id = current->self_exec_id;
2198 	}
2199 
2200 	klp_copy_process(p);
2201 
2202 	spin_lock(&current->sighand->siglock);
2203 
2204 	/*
2205 	 * Copy seccomp details explicitly here, in case they were changed
2206 	 * before holding sighand lock.
2207 	 */
2208 	copy_seccomp(p);
2209 
2210 	rseq_fork(p, clone_flags);
2211 
2212 	/* Don't start children in a dying pid namespace */
2213 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2214 		retval = -ENOMEM;
2215 		goto bad_fork_cancel_cgroup;
2216 	}
2217 
2218 	/* Let kill terminate clone/fork in the middle */
2219 	if (fatal_signal_pending(current)) {
2220 		retval = -EINTR;
2221 		goto bad_fork_cancel_cgroup;
2222 	}
2223 
2224 	/* past the last point of failure */
2225 	if (pidfile)
2226 		fd_install(pidfd, pidfile);
2227 
2228 	init_task_pid_links(p);
2229 	if (likely(p->pid)) {
2230 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2231 
2232 		init_task_pid(p, PIDTYPE_PID, pid);
2233 		if (thread_group_leader(p)) {
2234 			init_task_pid(p, PIDTYPE_TGID, pid);
2235 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2236 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2237 
2238 			if (is_child_reaper(pid)) {
2239 				ns_of_pid(pid)->child_reaper = p;
2240 				p->signal->flags |= SIGNAL_UNKILLABLE;
2241 			}
2242 			p->signal->shared_pending.signal = delayed.signal;
2243 			p->signal->tty = tty_kref_get(current->signal->tty);
2244 			/*
2245 			 * Inherit has_child_subreaper flag under the same
2246 			 * tasklist_lock with adding child to the process tree
2247 			 * for propagate_has_child_subreaper optimization.
2248 			 */
2249 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2250 							 p->real_parent->signal->is_child_subreaper;
2251 			list_add_tail(&p->sibling, &p->real_parent->children);
2252 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2253 			attach_pid(p, PIDTYPE_TGID);
2254 			attach_pid(p, PIDTYPE_PGID);
2255 			attach_pid(p, PIDTYPE_SID);
2256 			__this_cpu_inc(process_counts);
2257 		} else {
2258 			current->signal->nr_threads++;
2259 			atomic_inc(&current->signal->live);
2260 			refcount_inc(&current->signal->sigcnt);
2261 			task_join_group_stop(p);
2262 			list_add_tail_rcu(&p->thread_group,
2263 					  &p->group_leader->thread_group);
2264 			list_add_tail_rcu(&p->thread_node,
2265 					  &p->signal->thread_head);
2266 		}
2267 		attach_pid(p, PIDTYPE_PID);
2268 		nr_threads++;
2269 	}
2270 	total_forks++;
2271 	hlist_del_init(&delayed.node);
2272 	spin_unlock(&current->sighand->siglock);
2273 	syscall_tracepoint_update(p);
2274 	write_unlock_irq(&tasklist_lock);
2275 
2276 	proc_fork_connector(p);
2277 	sched_post_fork(p);
2278 	cgroup_post_fork(p, args);
2279 	perf_event_fork(p);
2280 
2281 	trace_task_newtask(p, clone_flags);
2282 	uprobe_copy_process(p, clone_flags);
2283 
2284 	return p;
2285 
2286 bad_fork_cancel_cgroup:
2287 	spin_unlock(&current->sighand->siglock);
2288 	write_unlock_irq(&tasklist_lock);
2289 	cgroup_cancel_fork(p, args);
2290 bad_fork_put_pidfd:
2291 	if (clone_flags & CLONE_PIDFD) {
2292 		fput(pidfile);
2293 		put_unused_fd(pidfd);
2294 	}
2295 bad_fork_free_pid:
2296 	if (pid != &init_struct_pid)
2297 		free_pid(pid);
2298 bad_fork_cleanup_thread:
2299 	exit_thread(p);
2300 bad_fork_cleanup_io:
2301 	if (p->io_context)
2302 		exit_io_context(p);
2303 bad_fork_cleanup_namespaces:
2304 	exit_task_namespaces(p);
2305 bad_fork_cleanup_mm:
2306 	if (p->mm) {
2307 		mm_clear_owner(p->mm, p);
2308 		mmput(p->mm);
2309 	}
2310 bad_fork_cleanup_signal:
2311 	if (!(clone_flags & CLONE_THREAD))
2312 		free_signal_struct(p->signal);
2313 bad_fork_cleanup_sighand:
2314 	__cleanup_sighand(p->sighand);
2315 bad_fork_cleanup_fs:
2316 	exit_fs(p); /* blocking */
2317 bad_fork_cleanup_files:
2318 	exit_files(p); /* blocking */
2319 bad_fork_cleanup_semundo:
2320 	exit_sem(p);
2321 bad_fork_cleanup_security:
2322 	security_task_free(p);
2323 bad_fork_cleanup_audit:
2324 	audit_free(p);
2325 bad_fork_cleanup_perf:
2326 	perf_event_free_task(p);
2327 bad_fork_cleanup_policy:
2328 	lockdep_free_task(p);
2329 #ifdef CONFIG_NUMA
2330 	mpol_put(p->mempolicy);
2331 bad_fork_cleanup_threadgroup_lock:
2332 #endif
2333 	delayacct_tsk_free(p);
2334 bad_fork_cleanup_count:
2335 	atomic_dec(&p->cred->user->processes);
2336 	exit_creds(p);
2337 bad_fork_free:
2338 	p->state = TASK_DEAD;
2339 	put_task_stack(p);
2340 	delayed_free_task(p);
2341 fork_out:
2342 	spin_lock_irq(&current->sighand->siglock);
2343 	hlist_del_init(&delayed.node);
2344 	spin_unlock_irq(&current->sighand->siglock);
2345 	return ERR_PTR(retval);
2346 }
2347 
2348 static inline void init_idle_pids(struct task_struct *idle)
2349 {
2350 	enum pid_type type;
2351 
2352 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2353 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2354 		init_task_pid(idle, type, &init_struct_pid);
2355 	}
2356 }
2357 
2358 struct task_struct *fork_idle(int cpu)
2359 {
2360 	struct task_struct *task;
2361 	struct kernel_clone_args args = {
2362 		.flags = CLONE_VM,
2363 	};
2364 
2365 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2366 	if (!IS_ERR(task)) {
2367 		init_idle_pids(task);
2368 		init_idle(task, cpu);
2369 	}
2370 
2371 	return task;
2372 }
2373 
2374 struct mm_struct *copy_init_mm(void)
2375 {
2376 	return dup_mm(NULL, &init_mm);
2377 }
2378 
2379 /*
2380  *  Ok, this is the main fork-routine.
2381  *
2382  * It copies the process, and if successful kick-starts
2383  * it and waits for it to finish using the VM if required.
2384  *
2385  * args->exit_signal is expected to be checked for sanity by the caller.
2386  */
2387 long _do_fork(struct kernel_clone_args *args)
2388 {
2389 	u64 clone_flags = args->flags;
2390 	struct completion vfork;
2391 	struct pid *pid;
2392 	struct task_struct *p;
2393 	int trace = 0;
2394 	long nr;
2395 
2396 	/*
2397 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2398 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2399 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2400 	 * field in struct clone_args and it still doesn't make sense to have
2401 	 * them both point at the same memory location. Performing this check
2402 	 * here has the advantage that we don't need to have a separate helper
2403 	 * to check for legacy clone().
2404 	 */
2405 	if ((args->flags & CLONE_PIDFD) &&
2406 	    (args->flags & CLONE_PARENT_SETTID) &&
2407 	    (args->pidfd == args->parent_tid))
2408 		return -EINVAL;
2409 
2410 	/*
2411 	 * Determine whether and which event to report to ptracer.  When
2412 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2413 	 * requested, no event is reported; otherwise, report if the event
2414 	 * for the type of forking is enabled.
2415 	 */
2416 	if (!(clone_flags & CLONE_UNTRACED)) {
2417 		if (clone_flags & CLONE_VFORK)
2418 			trace = PTRACE_EVENT_VFORK;
2419 		else if (args->exit_signal != SIGCHLD)
2420 			trace = PTRACE_EVENT_CLONE;
2421 		else
2422 			trace = PTRACE_EVENT_FORK;
2423 
2424 		if (likely(!ptrace_event_enabled(current, trace)))
2425 			trace = 0;
2426 	}
2427 
2428 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2429 	add_latent_entropy();
2430 
2431 	if (IS_ERR(p))
2432 		return PTR_ERR(p);
2433 
2434 	/*
2435 	 * Do this prior waking up the new thread - the thread pointer
2436 	 * might get invalid after that point, if the thread exits quickly.
2437 	 */
2438 	trace_sched_process_fork(current, p);
2439 
2440 	pid = get_task_pid(p, PIDTYPE_PID);
2441 	nr = pid_vnr(pid);
2442 
2443 	if (clone_flags & CLONE_PARENT_SETTID)
2444 		put_user(nr, args->parent_tid);
2445 
2446 	if (clone_flags & CLONE_VFORK) {
2447 		p->vfork_done = &vfork;
2448 		init_completion(&vfork);
2449 		get_task_struct(p);
2450 	}
2451 
2452 	wake_up_new_task(p);
2453 
2454 	/* forking complete and child started to run, tell ptracer */
2455 	if (unlikely(trace))
2456 		ptrace_event_pid(trace, pid);
2457 
2458 	if (clone_flags & CLONE_VFORK) {
2459 		if (!wait_for_vfork_done(p, &vfork))
2460 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2461 	}
2462 
2463 	put_pid(pid);
2464 	return nr;
2465 }
2466 
2467 /*
2468  * Create a kernel thread.
2469  */
2470 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2471 {
2472 	struct kernel_clone_args args = {
2473 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2474 				    CLONE_UNTRACED) & ~CSIGNAL),
2475 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2476 		.stack		= (unsigned long)fn,
2477 		.stack_size	= (unsigned long)arg,
2478 	};
2479 
2480 	return _do_fork(&args);
2481 }
2482 
2483 #ifdef __ARCH_WANT_SYS_FORK
2484 SYSCALL_DEFINE0(fork)
2485 {
2486 #ifdef CONFIG_MMU
2487 	struct kernel_clone_args args = {
2488 		.exit_signal = SIGCHLD,
2489 	};
2490 
2491 	return _do_fork(&args);
2492 #else
2493 	/* can not support in nommu mode */
2494 	return -EINVAL;
2495 #endif
2496 }
2497 #endif
2498 
2499 #ifdef __ARCH_WANT_SYS_VFORK
2500 SYSCALL_DEFINE0(vfork)
2501 {
2502 	struct kernel_clone_args args = {
2503 		.flags		= CLONE_VFORK | CLONE_VM,
2504 		.exit_signal	= SIGCHLD,
2505 	};
2506 
2507 	return _do_fork(&args);
2508 }
2509 #endif
2510 
2511 #ifdef __ARCH_WANT_SYS_CLONE
2512 #ifdef CONFIG_CLONE_BACKWARDS
2513 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2514 		 int __user *, parent_tidptr,
2515 		 unsigned long, tls,
2516 		 int __user *, child_tidptr)
2517 #elif defined(CONFIG_CLONE_BACKWARDS2)
2518 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2519 		 int __user *, parent_tidptr,
2520 		 int __user *, child_tidptr,
2521 		 unsigned long, tls)
2522 #elif defined(CONFIG_CLONE_BACKWARDS3)
2523 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2524 		int, stack_size,
2525 		int __user *, parent_tidptr,
2526 		int __user *, child_tidptr,
2527 		unsigned long, tls)
2528 #else
2529 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2530 		 int __user *, parent_tidptr,
2531 		 int __user *, child_tidptr,
2532 		 unsigned long, tls)
2533 #endif
2534 {
2535 	struct kernel_clone_args args = {
2536 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2537 		.pidfd		= parent_tidptr,
2538 		.child_tid	= child_tidptr,
2539 		.parent_tid	= parent_tidptr,
2540 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2541 		.stack		= newsp,
2542 		.tls		= tls,
2543 	};
2544 
2545 	return _do_fork(&args);
2546 }
2547 #endif
2548 
2549 #ifdef __ARCH_WANT_SYS_CLONE3
2550 
2551 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2552 					      struct clone_args __user *uargs,
2553 					      size_t usize)
2554 {
2555 	int err;
2556 	struct clone_args args;
2557 	pid_t *kset_tid = kargs->set_tid;
2558 
2559 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2560 		     CLONE_ARGS_SIZE_VER0);
2561 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2562 		     CLONE_ARGS_SIZE_VER1);
2563 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2564 		     CLONE_ARGS_SIZE_VER2);
2565 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2566 
2567 	if (unlikely(usize > PAGE_SIZE))
2568 		return -E2BIG;
2569 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2570 		return -EINVAL;
2571 
2572 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2573 	if (err)
2574 		return err;
2575 
2576 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2577 		return -EINVAL;
2578 
2579 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2580 		return -EINVAL;
2581 
2582 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2583 		return -EINVAL;
2584 
2585 	/*
2586 	 * Verify that higher 32bits of exit_signal are unset and that
2587 	 * it is a valid signal
2588 	 */
2589 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2590 		     !valid_signal(args.exit_signal)))
2591 		return -EINVAL;
2592 
2593 	if ((args.flags & CLONE_INTO_CGROUP) &&
2594 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2595 		return -EINVAL;
2596 
2597 	*kargs = (struct kernel_clone_args){
2598 		.flags		= args.flags,
2599 		.pidfd		= u64_to_user_ptr(args.pidfd),
2600 		.child_tid	= u64_to_user_ptr(args.child_tid),
2601 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2602 		.exit_signal	= args.exit_signal,
2603 		.stack		= args.stack,
2604 		.stack_size	= args.stack_size,
2605 		.tls		= args.tls,
2606 		.set_tid_size	= args.set_tid_size,
2607 		.cgroup		= args.cgroup,
2608 	};
2609 
2610 	if (args.set_tid &&
2611 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2612 			(kargs->set_tid_size * sizeof(pid_t))))
2613 		return -EFAULT;
2614 
2615 	kargs->set_tid = kset_tid;
2616 
2617 	return 0;
2618 }
2619 
2620 /**
2621  * clone3_stack_valid - check and prepare stack
2622  * @kargs: kernel clone args
2623  *
2624  * Verify that the stack arguments userspace gave us are sane.
2625  * In addition, set the stack direction for userspace since it's easy for us to
2626  * determine.
2627  */
2628 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2629 {
2630 	if (kargs->stack == 0) {
2631 		if (kargs->stack_size > 0)
2632 			return false;
2633 	} else {
2634 		if (kargs->stack_size == 0)
2635 			return false;
2636 
2637 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2638 			return false;
2639 
2640 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2641 		kargs->stack += kargs->stack_size;
2642 #endif
2643 	}
2644 
2645 	return true;
2646 }
2647 
2648 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2649 {
2650 	/* Verify that no unknown flags are passed along. */
2651 	if (kargs->flags &
2652 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2653 		return false;
2654 
2655 	/*
2656 	 * - make the CLONE_DETACHED bit reuseable for clone3
2657 	 * - make the CSIGNAL bits reuseable for clone3
2658 	 */
2659 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2660 		return false;
2661 
2662 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2663 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2664 		return false;
2665 
2666 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2667 	    kargs->exit_signal)
2668 		return false;
2669 
2670 	if (!clone3_stack_valid(kargs))
2671 		return false;
2672 
2673 	return true;
2674 }
2675 
2676 /**
2677  * clone3 - create a new process with specific properties
2678  * @uargs: argument structure
2679  * @size:  size of @uargs
2680  *
2681  * clone3() is the extensible successor to clone()/clone2().
2682  * It takes a struct as argument that is versioned by its size.
2683  *
2684  * Return: On success, a positive PID for the child process.
2685  *         On error, a negative errno number.
2686  */
2687 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2688 {
2689 	int err;
2690 
2691 	struct kernel_clone_args kargs;
2692 	pid_t set_tid[MAX_PID_NS_LEVEL];
2693 
2694 	kargs.set_tid = set_tid;
2695 
2696 	err = copy_clone_args_from_user(&kargs, uargs, size);
2697 	if (err)
2698 		return err;
2699 
2700 	if (!clone3_args_valid(&kargs))
2701 		return -EINVAL;
2702 
2703 	return _do_fork(&kargs);
2704 }
2705 #endif
2706 
2707 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2708 {
2709 	struct task_struct *leader, *parent, *child;
2710 	int res;
2711 
2712 	read_lock(&tasklist_lock);
2713 	leader = top = top->group_leader;
2714 down:
2715 	for_each_thread(leader, parent) {
2716 		list_for_each_entry(child, &parent->children, sibling) {
2717 			res = visitor(child, data);
2718 			if (res) {
2719 				if (res < 0)
2720 					goto out;
2721 				leader = child;
2722 				goto down;
2723 			}
2724 up:
2725 			;
2726 		}
2727 	}
2728 
2729 	if (leader != top) {
2730 		child = leader;
2731 		parent = child->real_parent;
2732 		leader = parent->group_leader;
2733 		goto up;
2734 	}
2735 out:
2736 	read_unlock(&tasklist_lock);
2737 }
2738 
2739 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2740 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2741 #endif
2742 
2743 static void sighand_ctor(void *data)
2744 {
2745 	struct sighand_struct *sighand = data;
2746 
2747 	spin_lock_init(&sighand->siglock);
2748 	init_waitqueue_head(&sighand->signalfd_wqh);
2749 }
2750 
2751 void __init proc_caches_init(void)
2752 {
2753 	unsigned int mm_size;
2754 
2755 	sighand_cachep = kmem_cache_create("sighand_cache",
2756 			sizeof(struct sighand_struct), 0,
2757 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2758 			SLAB_ACCOUNT, sighand_ctor);
2759 	signal_cachep = kmem_cache_create("signal_cache",
2760 			sizeof(struct signal_struct), 0,
2761 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2762 			NULL);
2763 	files_cachep = kmem_cache_create("files_cache",
2764 			sizeof(struct files_struct), 0,
2765 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2766 			NULL);
2767 	fs_cachep = kmem_cache_create("fs_cache",
2768 			sizeof(struct fs_struct), 0,
2769 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2770 			NULL);
2771 
2772 	/*
2773 	 * The mm_cpumask is located at the end of mm_struct, and is
2774 	 * dynamically sized based on the maximum CPU number this system
2775 	 * can have, taking hotplug into account (nr_cpu_ids).
2776 	 */
2777 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2778 
2779 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2780 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2781 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2782 			offsetof(struct mm_struct, saved_auxv),
2783 			sizeof_field(struct mm_struct, saved_auxv),
2784 			NULL);
2785 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2786 	mmap_init();
2787 	nsproxy_cache_init();
2788 }
2789 
2790 /*
2791  * Check constraints on flags passed to the unshare system call.
2792  */
2793 static int check_unshare_flags(unsigned long unshare_flags)
2794 {
2795 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2796 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2797 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2798 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2799 				CLONE_NEWTIME))
2800 		return -EINVAL;
2801 	/*
2802 	 * Not implemented, but pretend it works if there is nothing
2803 	 * to unshare.  Note that unsharing the address space or the
2804 	 * signal handlers also need to unshare the signal queues (aka
2805 	 * CLONE_THREAD).
2806 	 */
2807 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2808 		if (!thread_group_empty(current))
2809 			return -EINVAL;
2810 	}
2811 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2812 		if (refcount_read(&current->sighand->count) > 1)
2813 			return -EINVAL;
2814 	}
2815 	if (unshare_flags & CLONE_VM) {
2816 		if (!current_is_single_threaded())
2817 			return -EINVAL;
2818 	}
2819 
2820 	return 0;
2821 }
2822 
2823 /*
2824  * Unshare the filesystem structure if it is being shared
2825  */
2826 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2827 {
2828 	struct fs_struct *fs = current->fs;
2829 
2830 	if (!(unshare_flags & CLONE_FS) || !fs)
2831 		return 0;
2832 
2833 	/* don't need lock here; in the worst case we'll do useless copy */
2834 	if (fs->users == 1)
2835 		return 0;
2836 
2837 	*new_fsp = copy_fs_struct(fs);
2838 	if (!*new_fsp)
2839 		return -ENOMEM;
2840 
2841 	return 0;
2842 }
2843 
2844 /*
2845  * Unshare file descriptor table if it is being shared
2846  */
2847 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2848 	       struct files_struct **new_fdp)
2849 {
2850 	struct files_struct *fd = current->files;
2851 	int error = 0;
2852 
2853 	if ((unshare_flags & CLONE_FILES) &&
2854 	    (fd && atomic_read(&fd->count) > 1)) {
2855 		*new_fdp = dup_fd(fd, max_fds, &error);
2856 		if (!*new_fdp)
2857 			return error;
2858 	}
2859 
2860 	return 0;
2861 }
2862 
2863 /*
2864  * unshare allows a process to 'unshare' part of the process
2865  * context which was originally shared using clone.  copy_*
2866  * functions used by _do_fork() cannot be used here directly
2867  * because they modify an inactive task_struct that is being
2868  * constructed. Here we are modifying the current, active,
2869  * task_struct.
2870  */
2871 int ksys_unshare(unsigned long unshare_flags)
2872 {
2873 	struct fs_struct *fs, *new_fs = NULL;
2874 	struct files_struct *fd, *new_fd = NULL;
2875 	struct cred *new_cred = NULL;
2876 	struct nsproxy *new_nsproxy = NULL;
2877 	int do_sysvsem = 0;
2878 	int err;
2879 
2880 	/*
2881 	 * If unsharing a user namespace must also unshare the thread group
2882 	 * and unshare the filesystem root and working directories.
2883 	 */
2884 	if (unshare_flags & CLONE_NEWUSER)
2885 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2886 	/*
2887 	 * If unsharing vm, must also unshare signal handlers.
2888 	 */
2889 	if (unshare_flags & CLONE_VM)
2890 		unshare_flags |= CLONE_SIGHAND;
2891 	/*
2892 	 * If unsharing a signal handlers, must also unshare the signal queues.
2893 	 */
2894 	if (unshare_flags & CLONE_SIGHAND)
2895 		unshare_flags |= CLONE_THREAD;
2896 	/*
2897 	 * If unsharing namespace, must also unshare filesystem information.
2898 	 */
2899 	if (unshare_flags & CLONE_NEWNS)
2900 		unshare_flags |= CLONE_FS;
2901 
2902 	err = check_unshare_flags(unshare_flags);
2903 	if (err)
2904 		goto bad_unshare_out;
2905 	/*
2906 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2907 	 * to a new ipc namespace, the semaphore arrays from the old
2908 	 * namespace are unreachable.
2909 	 */
2910 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2911 		do_sysvsem = 1;
2912 	err = unshare_fs(unshare_flags, &new_fs);
2913 	if (err)
2914 		goto bad_unshare_out;
2915 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2916 	if (err)
2917 		goto bad_unshare_cleanup_fs;
2918 	err = unshare_userns(unshare_flags, &new_cred);
2919 	if (err)
2920 		goto bad_unshare_cleanup_fd;
2921 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2922 					 new_cred, new_fs);
2923 	if (err)
2924 		goto bad_unshare_cleanup_cred;
2925 
2926 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2927 		if (do_sysvsem) {
2928 			/*
2929 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2930 			 */
2931 			exit_sem(current);
2932 		}
2933 		if (unshare_flags & CLONE_NEWIPC) {
2934 			/* Orphan segments in old ns (see sem above). */
2935 			exit_shm(current);
2936 			shm_init_task(current);
2937 		}
2938 
2939 		if (new_nsproxy)
2940 			switch_task_namespaces(current, new_nsproxy);
2941 
2942 		task_lock(current);
2943 
2944 		if (new_fs) {
2945 			fs = current->fs;
2946 			spin_lock(&fs->lock);
2947 			current->fs = new_fs;
2948 			if (--fs->users)
2949 				new_fs = NULL;
2950 			else
2951 				new_fs = fs;
2952 			spin_unlock(&fs->lock);
2953 		}
2954 
2955 		if (new_fd) {
2956 			fd = current->files;
2957 			current->files = new_fd;
2958 			new_fd = fd;
2959 		}
2960 
2961 		task_unlock(current);
2962 
2963 		if (new_cred) {
2964 			/* Install the new user namespace */
2965 			commit_creds(new_cred);
2966 			new_cred = NULL;
2967 		}
2968 	}
2969 
2970 	perf_event_namespaces(current);
2971 
2972 bad_unshare_cleanup_cred:
2973 	if (new_cred)
2974 		put_cred(new_cred);
2975 bad_unshare_cleanup_fd:
2976 	if (new_fd)
2977 		put_files_struct(new_fd);
2978 
2979 bad_unshare_cleanup_fs:
2980 	if (new_fs)
2981 		free_fs_struct(new_fs);
2982 
2983 bad_unshare_out:
2984 	return err;
2985 }
2986 
2987 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2988 {
2989 	return ksys_unshare(unshare_flags);
2990 }
2991 
2992 /*
2993  *	Helper to unshare the files of the current task.
2994  *	We don't want to expose copy_files internals to
2995  *	the exec layer of the kernel.
2996  */
2997 
2998 int unshare_files(struct files_struct **displaced)
2999 {
3000 	struct task_struct *task = current;
3001 	struct files_struct *copy = NULL;
3002 	int error;
3003 
3004 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3005 	if (error || !copy) {
3006 		*displaced = NULL;
3007 		return error;
3008 	}
3009 	*displaced = task->files;
3010 	task_lock(task);
3011 	task->files = copy;
3012 	task_unlock(task);
3013 	return 0;
3014 }
3015 
3016 int sysctl_max_threads(struct ctl_table *table, int write,
3017 		       void __user *buffer, size_t *lenp, loff_t *ppos)
3018 {
3019 	struct ctl_table t;
3020 	int ret;
3021 	int threads = max_threads;
3022 	int min = 1;
3023 	int max = MAX_THREADS;
3024 
3025 	t = *table;
3026 	t.data = &threads;
3027 	t.extra1 = &min;
3028 	t.extra2 = &max;
3029 
3030 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3031 	if (ret || !write)
3032 		return ret;
3033 
3034 	max_threads = threads;
3035 
3036 	return 0;
3037 }
3038