xref: /linux/kernel/fork.c (revision 93d546399c2b7d66a54d5fbd5eee17de19246bf6)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/acct.h>
53 #include <linux/tsacct_kern.h>
54 #include <linux/cn_proc.h>
55 #include <linux/freezer.h>
56 #include <linux/delayacct.h>
57 #include <linux/taskstats_kern.h>
58 #include <linux/random.h>
59 #include <linux/tty.h>
60 #include <linux/proc_fs.h>
61 #include <linux/blkdev.h>
62 #include <trace/sched.h>
63 
64 #include <asm/pgtable.h>
65 #include <asm/pgalloc.h>
66 #include <asm/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/cacheflush.h>
69 #include <asm/tlbflush.h>
70 
71 /*
72  * Protected counters by write_lock_irq(&tasklist_lock)
73  */
74 unsigned long total_forks;	/* Handle normal Linux uptimes. */
75 int nr_threads; 		/* The idle threads do not count.. */
76 
77 int max_threads;		/* tunable limit on nr_threads */
78 
79 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
80 
81 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
82 
83 int nr_processes(void)
84 {
85 	int cpu;
86 	int total = 0;
87 
88 	for_each_online_cpu(cpu)
89 		total += per_cpu(process_counts, cpu);
90 
91 	return total;
92 }
93 
94 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
95 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
96 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
97 static struct kmem_cache *task_struct_cachep;
98 #endif
99 
100 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
101 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
102 {
103 #ifdef CONFIG_DEBUG_STACK_USAGE
104 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
105 #else
106 	gfp_t mask = GFP_KERNEL;
107 #endif
108 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
109 }
110 
111 static inline void free_thread_info(struct thread_info *ti)
112 {
113 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
114 }
115 #endif
116 
117 /* SLAB cache for signal_struct structures (tsk->signal) */
118 static struct kmem_cache *signal_cachep;
119 
120 /* SLAB cache for sighand_struct structures (tsk->sighand) */
121 struct kmem_cache *sighand_cachep;
122 
123 /* SLAB cache for files_struct structures (tsk->files) */
124 struct kmem_cache *files_cachep;
125 
126 /* SLAB cache for fs_struct structures (tsk->fs) */
127 struct kmem_cache *fs_cachep;
128 
129 /* SLAB cache for vm_area_struct structures */
130 struct kmem_cache *vm_area_cachep;
131 
132 /* SLAB cache for mm_struct structures (tsk->mm) */
133 static struct kmem_cache *mm_cachep;
134 
135 void free_task(struct task_struct *tsk)
136 {
137 	prop_local_destroy_single(&tsk->dirties);
138 	free_thread_info(tsk->stack);
139 	rt_mutex_debug_task_free(tsk);
140 	free_task_struct(tsk);
141 }
142 EXPORT_SYMBOL(free_task);
143 
144 void __put_task_struct(struct task_struct *tsk)
145 {
146 	WARN_ON(!tsk->exit_state);
147 	WARN_ON(atomic_read(&tsk->usage));
148 	WARN_ON(tsk == current);
149 
150 	security_task_free(tsk);
151 	free_uid(tsk->user);
152 	put_group_info(tsk->group_info);
153 	delayacct_tsk_free(tsk);
154 
155 	if (!profile_handoff_task(tsk))
156 		free_task(tsk);
157 }
158 
159 /*
160  * macro override instead of weak attribute alias, to workaround
161  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
162  */
163 #ifndef arch_task_cache_init
164 #define arch_task_cache_init()
165 #endif
166 
167 void __init fork_init(unsigned long mempages)
168 {
169 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
170 #ifndef ARCH_MIN_TASKALIGN
171 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
172 #endif
173 	/* create a slab on which task_structs can be allocated */
174 	task_struct_cachep =
175 		kmem_cache_create("task_struct", sizeof(struct task_struct),
176 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
177 #endif
178 
179 	/* do the arch specific task caches init */
180 	arch_task_cache_init();
181 
182 	/*
183 	 * The default maximum number of threads is set to a safe
184 	 * value: the thread structures can take up at most half
185 	 * of memory.
186 	 */
187 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
188 
189 	/*
190 	 * we need to allow at least 20 threads to boot a system
191 	 */
192 	if(max_threads < 20)
193 		max_threads = 20;
194 
195 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
196 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
197 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
198 		init_task.signal->rlim[RLIMIT_NPROC];
199 }
200 
201 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
202 					       struct task_struct *src)
203 {
204 	*dst = *src;
205 	return 0;
206 }
207 
208 static struct task_struct *dup_task_struct(struct task_struct *orig)
209 {
210 	struct task_struct *tsk;
211 	struct thread_info *ti;
212 	int err;
213 
214 	prepare_to_copy(orig);
215 
216 	tsk = alloc_task_struct();
217 	if (!tsk)
218 		return NULL;
219 
220 	ti = alloc_thread_info(tsk);
221 	if (!ti) {
222 		free_task_struct(tsk);
223 		return NULL;
224 	}
225 
226  	err = arch_dup_task_struct(tsk, orig);
227 	if (err)
228 		goto out;
229 
230 	tsk->stack = ti;
231 
232 	err = prop_local_init_single(&tsk->dirties);
233 	if (err)
234 		goto out;
235 
236 	setup_thread_stack(tsk, orig);
237 
238 #ifdef CONFIG_CC_STACKPROTECTOR
239 	tsk->stack_canary = get_random_int();
240 #endif
241 
242 	/* One for us, one for whoever does the "release_task()" (usually parent) */
243 	atomic_set(&tsk->usage,2);
244 	atomic_set(&tsk->fs_excl, 0);
245 #ifdef CONFIG_BLK_DEV_IO_TRACE
246 	tsk->btrace_seq = 0;
247 #endif
248 	tsk->splice_pipe = NULL;
249 	return tsk;
250 
251 out:
252 	free_thread_info(ti);
253 	free_task_struct(tsk);
254 	return NULL;
255 }
256 
257 #ifdef CONFIG_MMU
258 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
259 {
260 	struct vm_area_struct *mpnt, *tmp, **pprev;
261 	struct rb_node **rb_link, *rb_parent;
262 	int retval;
263 	unsigned long charge;
264 	struct mempolicy *pol;
265 
266 	down_write(&oldmm->mmap_sem);
267 	flush_cache_dup_mm(oldmm);
268 	/*
269 	 * Not linked in yet - no deadlock potential:
270 	 */
271 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
272 
273 	mm->locked_vm = 0;
274 	mm->mmap = NULL;
275 	mm->mmap_cache = NULL;
276 	mm->free_area_cache = oldmm->mmap_base;
277 	mm->cached_hole_size = ~0UL;
278 	mm->map_count = 0;
279 	cpus_clear(mm->cpu_vm_mask);
280 	mm->mm_rb = RB_ROOT;
281 	rb_link = &mm->mm_rb.rb_node;
282 	rb_parent = NULL;
283 	pprev = &mm->mmap;
284 
285 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
286 		struct file *file;
287 
288 		if (mpnt->vm_flags & VM_DONTCOPY) {
289 			long pages = vma_pages(mpnt);
290 			mm->total_vm -= pages;
291 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
292 								-pages);
293 			continue;
294 		}
295 		charge = 0;
296 		if (mpnt->vm_flags & VM_ACCOUNT) {
297 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
298 			if (security_vm_enough_memory(len))
299 				goto fail_nomem;
300 			charge = len;
301 		}
302 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
303 		if (!tmp)
304 			goto fail_nomem;
305 		*tmp = *mpnt;
306 		pol = mpol_dup(vma_policy(mpnt));
307 		retval = PTR_ERR(pol);
308 		if (IS_ERR(pol))
309 			goto fail_nomem_policy;
310 		vma_set_policy(tmp, pol);
311 		tmp->vm_flags &= ~VM_LOCKED;
312 		tmp->vm_mm = mm;
313 		tmp->vm_next = NULL;
314 		anon_vma_link(tmp);
315 		file = tmp->vm_file;
316 		if (file) {
317 			struct inode *inode = file->f_path.dentry->d_inode;
318 			struct address_space *mapping = file->f_mapping;
319 
320 			get_file(file);
321 			if (tmp->vm_flags & VM_DENYWRITE)
322 				atomic_dec(&inode->i_writecount);
323 			spin_lock(&mapping->i_mmap_lock);
324 			if (tmp->vm_flags & VM_SHARED)
325 				mapping->i_mmap_writable++;
326 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
327 			flush_dcache_mmap_lock(mapping);
328 			/* insert tmp into the share list, just after mpnt */
329 			vma_prio_tree_add(tmp, mpnt);
330 			flush_dcache_mmap_unlock(mapping);
331 			spin_unlock(&mapping->i_mmap_lock);
332 		}
333 
334 		/*
335 		 * Clear hugetlb-related page reserves for children. This only
336 		 * affects MAP_PRIVATE mappings. Faults generated by the child
337 		 * are not guaranteed to succeed, even if read-only
338 		 */
339 		if (is_vm_hugetlb_page(tmp))
340 			reset_vma_resv_huge_pages(tmp);
341 
342 		/*
343 		 * Link in the new vma and copy the page table entries.
344 		 */
345 		*pprev = tmp;
346 		pprev = &tmp->vm_next;
347 
348 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
349 		rb_link = &tmp->vm_rb.rb_right;
350 		rb_parent = &tmp->vm_rb;
351 
352 		mm->map_count++;
353 		retval = copy_page_range(mm, oldmm, mpnt);
354 
355 		if (tmp->vm_ops && tmp->vm_ops->open)
356 			tmp->vm_ops->open(tmp);
357 
358 		if (retval)
359 			goto out;
360 	}
361 	/* a new mm has just been created */
362 	arch_dup_mmap(oldmm, mm);
363 	retval = 0;
364 out:
365 	up_write(&mm->mmap_sem);
366 	flush_tlb_mm(oldmm);
367 	up_write(&oldmm->mmap_sem);
368 	return retval;
369 fail_nomem_policy:
370 	kmem_cache_free(vm_area_cachep, tmp);
371 fail_nomem:
372 	retval = -ENOMEM;
373 	vm_unacct_memory(charge);
374 	goto out;
375 }
376 
377 static inline int mm_alloc_pgd(struct mm_struct * mm)
378 {
379 	mm->pgd = pgd_alloc(mm);
380 	if (unlikely(!mm->pgd))
381 		return -ENOMEM;
382 	return 0;
383 }
384 
385 static inline void mm_free_pgd(struct mm_struct * mm)
386 {
387 	pgd_free(mm, mm->pgd);
388 }
389 #else
390 #define dup_mmap(mm, oldmm)	(0)
391 #define mm_alloc_pgd(mm)	(0)
392 #define mm_free_pgd(mm)
393 #endif /* CONFIG_MMU */
394 
395 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
396 
397 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
398 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
399 
400 #include <linux/init_task.h>
401 
402 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
403 {
404 	atomic_set(&mm->mm_users, 1);
405 	atomic_set(&mm->mm_count, 1);
406 	init_rwsem(&mm->mmap_sem);
407 	INIT_LIST_HEAD(&mm->mmlist);
408 	mm->flags = (current->mm) ? current->mm->flags
409 				  : MMF_DUMP_FILTER_DEFAULT;
410 	mm->core_state = NULL;
411 	mm->nr_ptes = 0;
412 	set_mm_counter(mm, file_rss, 0);
413 	set_mm_counter(mm, anon_rss, 0);
414 	spin_lock_init(&mm->page_table_lock);
415 	rwlock_init(&mm->ioctx_list_lock);
416 	mm->ioctx_list = NULL;
417 	mm->free_area_cache = TASK_UNMAPPED_BASE;
418 	mm->cached_hole_size = ~0UL;
419 	mm_init_owner(mm, p);
420 
421 	if (likely(!mm_alloc_pgd(mm))) {
422 		mm->def_flags = 0;
423 		mmu_notifier_mm_init(mm);
424 		return mm;
425 	}
426 
427 	free_mm(mm);
428 	return NULL;
429 }
430 
431 /*
432  * Allocate and initialize an mm_struct.
433  */
434 struct mm_struct * mm_alloc(void)
435 {
436 	struct mm_struct * mm;
437 
438 	mm = allocate_mm();
439 	if (mm) {
440 		memset(mm, 0, sizeof(*mm));
441 		mm = mm_init(mm, current);
442 	}
443 	return mm;
444 }
445 
446 /*
447  * Called when the last reference to the mm
448  * is dropped: either by a lazy thread or by
449  * mmput. Free the page directory and the mm.
450  */
451 void __mmdrop(struct mm_struct *mm)
452 {
453 	BUG_ON(mm == &init_mm);
454 	mm_free_pgd(mm);
455 	destroy_context(mm);
456 	mmu_notifier_mm_destroy(mm);
457 	free_mm(mm);
458 }
459 EXPORT_SYMBOL_GPL(__mmdrop);
460 
461 /*
462  * Decrement the use count and release all resources for an mm.
463  */
464 void mmput(struct mm_struct *mm)
465 {
466 	might_sleep();
467 
468 	if (atomic_dec_and_test(&mm->mm_users)) {
469 		exit_aio(mm);
470 		exit_mmap(mm);
471 		set_mm_exe_file(mm, NULL);
472 		if (!list_empty(&mm->mmlist)) {
473 			spin_lock(&mmlist_lock);
474 			list_del(&mm->mmlist);
475 			spin_unlock(&mmlist_lock);
476 		}
477 		put_swap_token(mm);
478 		mmdrop(mm);
479 	}
480 }
481 EXPORT_SYMBOL_GPL(mmput);
482 
483 /**
484  * get_task_mm - acquire a reference to the task's mm
485  *
486  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
487  * this kernel workthread has transiently adopted a user mm with use_mm,
488  * to do its AIO) is not set and if so returns a reference to it, after
489  * bumping up the use count.  User must release the mm via mmput()
490  * after use.  Typically used by /proc and ptrace.
491  */
492 struct mm_struct *get_task_mm(struct task_struct *task)
493 {
494 	struct mm_struct *mm;
495 
496 	task_lock(task);
497 	mm = task->mm;
498 	if (mm) {
499 		if (task->flags & PF_KTHREAD)
500 			mm = NULL;
501 		else
502 			atomic_inc(&mm->mm_users);
503 	}
504 	task_unlock(task);
505 	return mm;
506 }
507 EXPORT_SYMBOL_GPL(get_task_mm);
508 
509 /* Please note the differences between mmput and mm_release.
510  * mmput is called whenever we stop holding onto a mm_struct,
511  * error success whatever.
512  *
513  * mm_release is called after a mm_struct has been removed
514  * from the current process.
515  *
516  * This difference is important for error handling, when we
517  * only half set up a mm_struct for a new process and need to restore
518  * the old one.  Because we mmput the new mm_struct before
519  * restoring the old one. . .
520  * Eric Biederman 10 January 1998
521  */
522 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
523 {
524 	struct completion *vfork_done = tsk->vfork_done;
525 
526 	/* Get rid of any futexes when releasing the mm */
527 #ifdef CONFIG_FUTEX
528 	if (unlikely(tsk->robust_list))
529 		exit_robust_list(tsk);
530 #ifdef CONFIG_COMPAT
531 	if (unlikely(tsk->compat_robust_list))
532 		compat_exit_robust_list(tsk);
533 #endif
534 #endif
535 
536 	/* Get rid of any cached register state */
537 	deactivate_mm(tsk, mm);
538 
539 	/* notify parent sleeping on vfork() */
540 	if (vfork_done) {
541 		tsk->vfork_done = NULL;
542 		complete(vfork_done);
543 	}
544 
545 	/*
546 	 * If we're exiting normally, clear a user-space tid field if
547 	 * requested.  We leave this alone when dying by signal, to leave
548 	 * the value intact in a core dump, and to save the unnecessary
549 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
550 	 */
551 	if (tsk->clear_child_tid
552 	    && !(tsk->flags & PF_SIGNALED)
553 	    && atomic_read(&mm->mm_users) > 1) {
554 		u32 __user * tidptr = tsk->clear_child_tid;
555 		tsk->clear_child_tid = NULL;
556 
557 		/*
558 		 * We don't check the error code - if userspace has
559 		 * not set up a proper pointer then tough luck.
560 		 */
561 		put_user(0, tidptr);
562 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
563 	}
564 }
565 
566 /*
567  * Allocate a new mm structure and copy contents from the
568  * mm structure of the passed in task structure.
569  */
570 struct mm_struct *dup_mm(struct task_struct *tsk)
571 {
572 	struct mm_struct *mm, *oldmm = current->mm;
573 	int err;
574 
575 	if (!oldmm)
576 		return NULL;
577 
578 	mm = allocate_mm();
579 	if (!mm)
580 		goto fail_nomem;
581 
582 	memcpy(mm, oldmm, sizeof(*mm));
583 
584 	/* Initializing for Swap token stuff */
585 	mm->token_priority = 0;
586 	mm->last_interval = 0;
587 
588 	if (!mm_init(mm, tsk))
589 		goto fail_nomem;
590 
591 	if (init_new_context(tsk, mm))
592 		goto fail_nocontext;
593 
594 	dup_mm_exe_file(oldmm, mm);
595 
596 	err = dup_mmap(mm, oldmm);
597 	if (err)
598 		goto free_pt;
599 
600 	mm->hiwater_rss = get_mm_rss(mm);
601 	mm->hiwater_vm = mm->total_vm;
602 
603 	return mm;
604 
605 free_pt:
606 	mmput(mm);
607 
608 fail_nomem:
609 	return NULL;
610 
611 fail_nocontext:
612 	/*
613 	 * If init_new_context() failed, we cannot use mmput() to free the mm
614 	 * because it calls destroy_context()
615 	 */
616 	mm_free_pgd(mm);
617 	free_mm(mm);
618 	return NULL;
619 }
620 
621 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
622 {
623 	struct mm_struct * mm, *oldmm;
624 	int retval;
625 
626 	tsk->min_flt = tsk->maj_flt = 0;
627 	tsk->nvcsw = tsk->nivcsw = 0;
628 
629 	tsk->mm = NULL;
630 	tsk->active_mm = NULL;
631 
632 	/*
633 	 * Are we cloning a kernel thread?
634 	 *
635 	 * We need to steal a active VM for that..
636 	 */
637 	oldmm = current->mm;
638 	if (!oldmm)
639 		return 0;
640 
641 	if (clone_flags & CLONE_VM) {
642 		atomic_inc(&oldmm->mm_users);
643 		mm = oldmm;
644 		goto good_mm;
645 	}
646 
647 	retval = -ENOMEM;
648 	mm = dup_mm(tsk);
649 	if (!mm)
650 		goto fail_nomem;
651 
652 good_mm:
653 	/* Initializing for Swap token stuff */
654 	mm->token_priority = 0;
655 	mm->last_interval = 0;
656 
657 	tsk->mm = mm;
658 	tsk->active_mm = mm;
659 	return 0;
660 
661 fail_nomem:
662 	return retval;
663 }
664 
665 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
666 {
667 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
668 	/* We don't need to lock fs - think why ;-) */
669 	if (fs) {
670 		atomic_set(&fs->count, 1);
671 		rwlock_init(&fs->lock);
672 		fs->umask = old->umask;
673 		read_lock(&old->lock);
674 		fs->root = old->root;
675 		path_get(&old->root);
676 		fs->pwd = old->pwd;
677 		path_get(&old->pwd);
678 		read_unlock(&old->lock);
679 	}
680 	return fs;
681 }
682 
683 struct fs_struct *copy_fs_struct(struct fs_struct *old)
684 {
685 	return __copy_fs_struct(old);
686 }
687 
688 EXPORT_SYMBOL_GPL(copy_fs_struct);
689 
690 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
691 {
692 	if (clone_flags & CLONE_FS) {
693 		atomic_inc(&current->fs->count);
694 		return 0;
695 	}
696 	tsk->fs = __copy_fs_struct(current->fs);
697 	if (!tsk->fs)
698 		return -ENOMEM;
699 	return 0;
700 }
701 
702 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
703 {
704 	struct files_struct *oldf, *newf;
705 	int error = 0;
706 
707 	/*
708 	 * A background process may not have any files ...
709 	 */
710 	oldf = current->files;
711 	if (!oldf)
712 		goto out;
713 
714 	if (clone_flags & CLONE_FILES) {
715 		atomic_inc(&oldf->count);
716 		goto out;
717 	}
718 
719 	newf = dup_fd(oldf, &error);
720 	if (!newf)
721 		goto out;
722 
723 	tsk->files = newf;
724 	error = 0;
725 out:
726 	return error;
727 }
728 
729 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
730 {
731 #ifdef CONFIG_BLOCK
732 	struct io_context *ioc = current->io_context;
733 
734 	if (!ioc)
735 		return 0;
736 	/*
737 	 * Share io context with parent, if CLONE_IO is set
738 	 */
739 	if (clone_flags & CLONE_IO) {
740 		tsk->io_context = ioc_task_link(ioc);
741 		if (unlikely(!tsk->io_context))
742 			return -ENOMEM;
743 	} else if (ioprio_valid(ioc->ioprio)) {
744 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
745 		if (unlikely(!tsk->io_context))
746 			return -ENOMEM;
747 
748 		tsk->io_context->ioprio = ioc->ioprio;
749 	}
750 #endif
751 	return 0;
752 }
753 
754 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
755 {
756 	struct sighand_struct *sig;
757 
758 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
759 		atomic_inc(&current->sighand->count);
760 		return 0;
761 	}
762 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
763 	rcu_assign_pointer(tsk->sighand, sig);
764 	if (!sig)
765 		return -ENOMEM;
766 	atomic_set(&sig->count, 1);
767 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
768 	return 0;
769 }
770 
771 void __cleanup_sighand(struct sighand_struct *sighand)
772 {
773 	if (atomic_dec_and_test(&sighand->count))
774 		kmem_cache_free(sighand_cachep, sighand);
775 }
776 
777 
778 /*
779  * Initialize POSIX timer handling for a thread group.
780  */
781 static void posix_cpu_timers_init_group(struct signal_struct *sig)
782 {
783 	/* Thread group counters. */
784 	thread_group_cputime_init(sig);
785 
786 	/* Expiration times and increments. */
787 	sig->it_virt_expires = cputime_zero;
788 	sig->it_virt_incr = cputime_zero;
789 	sig->it_prof_expires = cputime_zero;
790 	sig->it_prof_incr = cputime_zero;
791 
792 	/* Cached expiration times. */
793 	sig->cputime_expires.prof_exp = cputime_zero;
794 	sig->cputime_expires.virt_exp = cputime_zero;
795 	sig->cputime_expires.sched_exp = 0;
796 
797 	/* The timer lists. */
798 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
799 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
800 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
801 }
802 
803 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
804 {
805 	struct signal_struct *sig;
806 	int ret;
807 
808 	if (clone_flags & CLONE_THREAD) {
809 		ret = thread_group_cputime_clone_thread(current);
810 		if (likely(!ret)) {
811 			atomic_inc(&current->signal->count);
812 			atomic_inc(&current->signal->live);
813 		}
814 		return ret;
815 	}
816 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
817 	tsk->signal = sig;
818 	if (!sig)
819 		return -ENOMEM;
820 
821 	ret = copy_thread_group_keys(tsk);
822 	if (ret < 0) {
823 		kmem_cache_free(signal_cachep, sig);
824 		return ret;
825 	}
826 
827 	atomic_set(&sig->count, 1);
828 	atomic_set(&sig->live, 1);
829 	init_waitqueue_head(&sig->wait_chldexit);
830 	sig->flags = 0;
831 	sig->group_exit_code = 0;
832 	sig->group_exit_task = NULL;
833 	sig->group_stop_count = 0;
834 	sig->curr_target = tsk;
835 	init_sigpending(&sig->shared_pending);
836 	INIT_LIST_HEAD(&sig->posix_timers);
837 
838 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
839 	sig->it_real_incr.tv64 = 0;
840 	sig->real_timer.function = it_real_fn;
841 
842 	sig->leader = 0;	/* session leadership doesn't inherit */
843 	sig->tty_old_pgrp = NULL;
844 	sig->tty = NULL;
845 
846 	sig->cutime = sig->cstime = cputime_zero;
847 	sig->gtime = cputime_zero;
848 	sig->cgtime = cputime_zero;
849 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
850 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
851 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
852 	task_io_accounting_init(&sig->ioac);
853 	taskstats_tgid_init(sig);
854 
855 	task_lock(current->group_leader);
856 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
857 	task_unlock(current->group_leader);
858 
859 	posix_cpu_timers_init_group(sig);
860 
861 	acct_init_pacct(&sig->pacct);
862 
863 	tty_audit_fork(sig);
864 
865 	return 0;
866 }
867 
868 void __cleanup_signal(struct signal_struct *sig)
869 {
870 	thread_group_cputime_free(sig);
871 	exit_thread_group_keys(sig);
872 	tty_kref_put(sig->tty);
873 	kmem_cache_free(signal_cachep, sig);
874 }
875 
876 static void cleanup_signal(struct task_struct *tsk)
877 {
878 	struct signal_struct *sig = tsk->signal;
879 
880 	atomic_dec(&sig->live);
881 
882 	if (atomic_dec_and_test(&sig->count))
883 		__cleanup_signal(sig);
884 }
885 
886 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
887 {
888 	unsigned long new_flags = p->flags;
889 
890 	new_flags &= ~PF_SUPERPRIV;
891 	new_flags |= PF_FORKNOEXEC;
892 	new_flags |= PF_STARTING;
893 	p->flags = new_flags;
894 	clear_freeze_flag(p);
895 }
896 
897 asmlinkage long sys_set_tid_address(int __user *tidptr)
898 {
899 	current->clear_child_tid = tidptr;
900 
901 	return task_pid_vnr(current);
902 }
903 
904 static void rt_mutex_init_task(struct task_struct *p)
905 {
906 	spin_lock_init(&p->pi_lock);
907 #ifdef CONFIG_RT_MUTEXES
908 	plist_head_init(&p->pi_waiters, &p->pi_lock);
909 	p->pi_blocked_on = NULL;
910 #endif
911 }
912 
913 #ifdef CONFIG_MM_OWNER
914 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
915 {
916 	mm->owner = p;
917 }
918 #endif /* CONFIG_MM_OWNER */
919 
920 /*
921  * Initialize POSIX timer handling for a single task.
922  */
923 static void posix_cpu_timers_init(struct task_struct *tsk)
924 {
925 	tsk->cputime_expires.prof_exp = cputime_zero;
926 	tsk->cputime_expires.virt_exp = cputime_zero;
927 	tsk->cputime_expires.sched_exp = 0;
928 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
929 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
930 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
931 }
932 
933 /*
934  * This creates a new process as a copy of the old one,
935  * but does not actually start it yet.
936  *
937  * It copies the registers, and all the appropriate
938  * parts of the process environment (as per the clone
939  * flags). The actual kick-off is left to the caller.
940  */
941 static struct task_struct *copy_process(unsigned long clone_flags,
942 					unsigned long stack_start,
943 					struct pt_regs *regs,
944 					unsigned long stack_size,
945 					int __user *child_tidptr,
946 					struct pid *pid,
947 					int trace)
948 {
949 	int retval;
950 	struct task_struct *p;
951 	int cgroup_callbacks_done = 0;
952 
953 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
954 		return ERR_PTR(-EINVAL);
955 
956 	/*
957 	 * Thread groups must share signals as well, and detached threads
958 	 * can only be started up within the thread group.
959 	 */
960 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
961 		return ERR_PTR(-EINVAL);
962 
963 	/*
964 	 * Shared signal handlers imply shared VM. By way of the above,
965 	 * thread groups also imply shared VM. Blocking this case allows
966 	 * for various simplifications in other code.
967 	 */
968 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
969 		return ERR_PTR(-EINVAL);
970 
971 	retval = security_task_create(clone_flags);
972 	if (retval)
973 		goto fork_out;
974 
975 	retval = -ENOMEM;
976 	p = dup_task_struct(current);
977 	if (!p)
978 		goto fork_out;
979 
980 	rt_mutex_init_task(p);
981 
982 #ifdef CONFIG_PROVE_LOCKING
983 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
984 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
985 #endif
986 	retval = -EAGAIN;
987 	if (atomic_read(&p->user->processes) >=
988 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
989 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
990 		    p->user != current->nsproxy->user_ns->root_user)
991 			goto bad_fork_free;
992 	}
993 
994 	atomic_inc(&p->user->__count);
995 	atomic_inc(&p->user->processes);
996 	get_group_info(p->group_info);
997 
998 	/*
999 	 * If multiple threads are within copy_process(), then this check
1000 	 * triggers too late. This doesn't hurt, the check is only there
1001 	 * to stop root fork bombs.
1002 	 */
1003 	if (nr_threads >= max_threads)
1004 		goto bad_fork_cleanup_count;
1005 
1006 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1007 		goto bad_fork_cleanup_count;
1008 
1009 	if (p->binfmt && !try_module_get(p->binfmt->module))
1010 		goto bad_fork_cleanup_put_domain;
1011 
1012 	p->did_exec = 0;
1013 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1014 	copy_flags(clone_flags, p);
1015 	INIT_LIST_HEAD(&p->children);
1016 	INIT_LIST_HEAD(&p->sibling);
1017 #ifdef CONFIG_PREEMPT_RCU
1018 	p->rcu_read_lock_nesting = 0;
1019 	p->rcu_flipctr_idx = 0;
1020 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1021 	p->vfork_done = NULL;
1022 	spin_lock_init(&p->alloc_lock);
1023 
1024 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1025 	init_sigpending(&p->pending);
1026 
1027 	p->utime = cputime_zero;
1028 	p->stime = cputime_zero;
1029 	p->gtime = cputime_zero;
1030 	p->utimescaled = cputime_zero;
1031 	p->stimescaled = cputime_zero;
1032 	p->prev_utime = cputime_zero;
1033 	p->prev_stime = cputime_zero;
1034 
1035 	p->default_timer_slack_ns = current->timer_slack_ns;
1036 
1037 #ifdef CONFIG_DETECT_SOFTLOCKUP
1038 	p->last_switch_count = 0;
1039 	p->last_switch_timestamp = 0;
1040 #endif
1041 
1042 	task_io_accounting_init(&p->ioac);
1043 	acct_clear_integrals(p);
1044 
1045 	posix_cpu_timers_init(p);
1046 
1047 	p->lock_depth = -1;		/* -1 = no lock */
1048 	do_posix_clock_monotonic_gettime(&p->start_time);
1049 	p->real_start_time = p->start_time;
1050 	monotonic_to_bootbased(&p->real_start_time);
1051 #ifdef CONFIG_SECURITY
1052 	p->security = NULL;
1053 #endif
1054 	p->cap_bset = current->cap_bset;
1055 	p->io_context = NULL;
1056 	p->audit_context = NULL;
1057 	cgroup_fork(p);
1058 #ifdef CONFIG_NUMA
1059 	p->mempolicy = mpol_dup(p->mempolicy);
1060  	if (IS_ERR(p->mempolicy)) {
1061  		retval = PTR_ERR(p->mempolicy);
1062  		p->mempolicy = NULL;
1063  		goto bad_fork_cleanup_cgroup;
1064  	}
1065 	mpol_fix_fork_child_flag(p);
1066 #endif
1067 #ifdef CONFIG_TRACE_IRQFLAGS
1068 	p->irq_events = 0;
1069 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1070 	p->hardirqs_enabled = 1;
1071 #else
1072 	p->hardirqs_enabled = 0;
1073 #endif
1074 	p->hardirq_enable_ip = 0;
1075 	p->hardirq_enable_event = 0;
1076 	p->hardirq_disable_ip = _THIS_IP_;
1077 	p->hardirq_disable_event = 0;
1078 	p->softirqs_enabled = 1;
1079 	p->softirq_enable_ip = _THIS_IP_;
1080 	p->softirq_enable_event = 0;
1081 	p->softirq_disable_ip = 0;
1082 	p->softirq_disable_event = 0;
1083 	p->hardirq_context = 0;
1084 	p->softirq_context = 0;
1085 #endif
1086 #ifdef CONFIG_LOCKDEP
1087 	p->lockdep_depth = 0; /* no locks held yet */
1088 	p->curr_chain_key = 0;
1089 	p->lockdep_recursion = 0;
1090 #endif
1091 
1092 #ifdef CONFIG_DEBUG_MUTEXES
1093 	p->blocked_on = NULL; /* not blocked yet */
1094 #endif
1095 
1096 	/* Perform scheduler related setup. Assign this task to a CPU. */
1097 	sched_fork(p, clone_flags);
1098 
1099 	if ((retval = security_task_alloc(p)))
1100 		goto bad_fork_cleanup_policy;
1101 	if ((retval = audit_alloc(p)))
1102 		goto bad_fork_cleanup_security;
1103 	/* copy all the process information */
1104 	if ((retval = copy_semundo(clone_flags, p)))
1105 		goto bad_fork_cleanup_audit;
1106 	if ((retval = copy_files(clone_flags, p)))
1107 		goto bad_fork_cleanup_semundo;
1108 	if ((retval = copy_fs(clone_flags, p)))
1109 		goto bad_fork_cleanup_files;
1110 	if ((retval = copy_sighand(clone_flags, p)))
1111 		goto bad_fork_cleanup_fs;
1112 	if ((retval = copy_signal(clone_flags, p)))
1113 		goto bad_fork_cleanup_sighand;
1114 	if ((retval = copy_mm(clone_flags, p)))
1115 		goto bad_fork_cleanup_signal;
1116 	if ((retval = copy_keys(clone_flags, p)))
1117 		goto bad_fork_cleanup_mm;
1118 	if ((retval = copy_namespaces(clone_flags, p)))
1119 		goto bad_fork_cleanup_keys;
1120 	if ((retval = copy_io(clone_flags, p)))
1121 		goto bad_fork_cleanup_namespaces;
1122 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1123 	if (retval)
1124 		goto bad_fork_cleanup_io;
1125 
1126 	if (pid != &init_struct_pid) {
1127 		retval = -ENOMEM;
1128 		pid = alloc_pid(task_active_pid_ns(p));
1129 		if (!pid)
1130 			goto bad_fork_cleanup_io;
1131 
1132 		if (clone_flags & CLONE_NEWPID) {
1133 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1134 			if (retval < 0)
1135 				goto bad_fork_free_pid;
1136 		}
1137 	}
1138 
1139 	p->pid = pid_nr(pid);
1140 	p->tgid = p->pid;
1141 	if (clone_flags & CLONE_THREAD)
1142 		p->tgid = current->tgid;
1143 
1144 	if (current->nsproxy != p->nsproxy) {
1145 		retval = ns_cgroup_clone(p, pid);
1146 		if (retval)
1147 			goto bad_fork_free_pid;
1148 	}
1149 
1150 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1151 	/*
1152 	 * Clear TID on mm_release()?
1153 	 */
1154 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1155 #ifdef CONFIG_FUTEX
1156 	p->robust_list = NULL;
1157 #ifdef CONFIG_COMPAT
1158 	p->compat_robust_list = NULL;
1159 #endif
1160 	INIT_LIST_HEAD(&p->pi_state_list);
1161 	p->pi_state_cache = NULL;
1162 #endif
1163 	/*
1164 	 * sigaltstack should be cleared when sharing the same VM
1165 	 */
1166 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1167 		p->sas_ss_sp = p->sas_ss_size = 0;
1168 
1169 	/*
1170 	 * Syscall tracing should be turned off in the child regardless
1171 	 * of CLONE_PTRACE.
1172 	 */
1173 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1174 #ifdef TIF_SYSCALL_EMU
1175 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1176 #endif
1177 	clear_all_latency_tracing(p);
1178 
1179 	/* Our parent execution domain becomes current domain
1180 	   These must match for thread signalling to apply */
1181 	p->parent_exec_id = p->self_exec_id;
1182 
1183 	/* ok, now we should be set up.. */
1184 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1185 	p->pdeath_signal = 0;
1186 	p->exit_state = 0;
1187 
1188 	/*
1189 	 * Ok, make it visible to the rest of the system.
1190 	 * We dont wake it up yet.
1191 	 */
1192 	p->group_leader = p;
1193 	INIT_LIST_HEAD(&p->thread_group);
1194 
1195 	/* Now that the task is set up, run cgroup callbacks if
1196 	 * necessary. We need to run them before the task is visible
1197 	 * on the tasklist. */
1198 	cgroup_fork_callbacks(p);
1199 	cgroup_callbacks_done = 1;
1200 
1201 	/* Need tasklist lock for parent etc handling! */
1202 	write_lock_irq(&tasklist_lock);
1203 
1204 	/*
1205 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1206 	 * not be changed, nor will its assigned CPU.
1207 	 *
1208 	 * The cpus_allowed mask of the parent may have changed after it was
1209 	 * copied first time - so re-copy it here, then check the child's CPU
1210 	 * to ensure it is on a valid CPU (and if not, just force it back to
1211 	 * parent's CPU). This avoids alot of nasty races.
1212 	 */
1213 	p->cpus_allowed = current->cpus_allowed;
1214 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1215 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1216 			!cpu_online(task_cpu(p))))
1217 		set_task_cpu(p, smp_processor_id());
1218 
1219 	/* CLONE_PARENT re-uses the old parent */
1220 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1221 		p->real_parent = current->real_parent;
1222 	else
1223 		p->real_parent = current;
1224 
1225 	spin_lock(&current->sighand->siglock);
1226 
1227 	/*
1228 	 * Process group and session signals need to be delivered to just the
1229 	 * parent before the fork or both the parent and the child after the
1230 	 * fork. Restart if a signal comes in before we add the new process to
1231 	 * it's process group.
1232 	 * A fatal signal pending means that current will exit, so the new
1233 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1234  	 */
1235 	recalc_sigpending();
1236 	if (signal_pending(current)) {
1237 		spin_unlock(&current->sighand->siglock);
1238 		write_unlock_irq(&tasklist_lock);
1239 		retval = -ERESTARTNOINTR;
1240 		goto bad_fork_free_pid;
1241 	}
1242 
1243 	if (clone_flags & CLONE_THREAD) {
1244 		p->group_leader = current->group_leader;
1245 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1246 	}
1247 
1248 	if (likely(p->pid)) {
1249 		list_add_tail(&p->sibling, &p->real_parent->children);
1250 		tracehook_finish_clone(p, clone_flags, trace);
1251 
1252 		if (thread_group_leader(p)) {
1253 			if (clone_flags & CLONE_NEWPID)
1254 				p->nsproxy->pid_ns->child_reaper = p;
1255 
1256 			p->signal->leader_pid = pid;
1257 			tty_kref_put(p->signal->tty);
1258 			p->signal->tty = tty_kref_get(current->signal->tty);
1259 			set_task_pgrp(p, task_pgrp_nr(current));
1260 			set_task_session(p, task_session_nr(current));
1261 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1262 			attach_pid(p, PIDTYPE_SID, task_session(current));
1263 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1264 			__get_cpu_var(process_counts)++;
1265 		}
1266 		attach_pid(p, PIDTYPE_PID, pid);
1267 		nr_threads++;
1268 	}
1269 
1270 	total_forks++;
1271 	spin_unlock(&current->sighand->siglock);
1272 	write_unlock_irq(&tasklist_lock);
1273 	proc_fork_connector(p);
1274 	cgroup_post_fork(p);
1275 	return p;
1276 
1277 bad_fork_free_pid:
1278 	if (pid != &init_struct_pid)
1279 		free_pid(pid);
1280 bad_fork_cleanup_io:
1281 	put_io_context(p->io_context);
1282 bad_fork_cleanup_namespaces:
1283 	exit_task_namespaces(p);
1284 bad_fork_cleanup_keys:
1285 	exit_keys(p);
1286 bad_fork_cleanup_mm:
1287 	if (p->mm)
1288 		mmput(p->mm);
1289 bad_fork_cleanup_signal:
1290 	cleanup_signal(p);
1291 bad_fork_cleanup_sighand:
1292 	__cleanup_sighand(p->sighand);
1293 bad_fork_cleanup_fs:
1294 	exit_fs(p); /* blocking */
1295 bad_fork_cleanup_files:
1296 	exit_files(p); /* blocking */
1297 bad_fork_cleanup_semundo:
1298 	exit_sem(p);
1299 bad_fork_cleanup_audit:
1300 	audit_free(p);
1301 bad_fork_cleanup_security:
1302 	security_task_free(p);
1303 bad_fork_cleanup_policy:
1304 #ifdef CONFIG_NUMA
1305 	mpol_put(p->mempolicy);
1306 bad_fork_cleanup_cgroup:
1307 #endif
1308 	cgroup_exit(p, cgroup_callbacks_done);
1309 	delayacct_tsk_free(p);
1310 	if (p->binfmt)
1311 		module_put(p->binfmt->module);
1312 bad_fork_cleanup_put_domain:
1313 	module_put(task_thread_info(p)->exec_domain->module);
1314 bad_fork_cleanup_count:
1315 	put_group_info(p->group_info);
1316 	atomic_dec(&p->user->processes);
1317 	free_uid(p->user);
1318 bad_fork_free:
1319 	free_task(p);
1320 fork_out:
1321 	return ERR_PTR(retval);
1322 }
1323 
1324 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1325 {
1326 	memset(regs, 0, sizeof(struct pt_regs));
1327 	return regs;
1328 }
1329 
1330 struct task_struct * __cpuinit fork_idle(int cpu)
1331 {
1332 	struct task_struct *task;
1333 	struct pt_regs regs;
1334 
1335 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1336 			    &init_struct_pid, 0);
1337 	if (!IS_ERR(task))
1338 		init_idle(task, cpu);
1339 
1340 	return task;
1341 }
1342 
1343 /*
1344  *  Ok, this is the main fork-routine.
1345  *
1346  * It copies the process, and if successful kick-starts
1347  * it and waits for it to finish using the VM if required.
1348  */
1349 long do_fork(unsigned long clone_flags,
1350 	      unsigned long stack_start,
1351 	      struct pt_regs *regs,
1352 	      unsigned long stack_size,
1353 	      int __user *parent_tidptr,
1354 	      int __user *child_tidptr)
1355 {
1356 	struct task_struct *p;
1357 	int trace = 0;
1358 	long nr;
1359 
1360 	/*
1361 	 * We hope to recycle these flags after 2.6.26
1362 	 */
1363 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1364 		static int __read_mostly count = 100;
1365 
1366 		if (count > 0 && printk_ratelimit()) {
1367 			char comm[TASK_COMM_LEN];
1368 
1369 			count--;
1370 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1371 					"clone flags 0x%lx\n",
1372 				get_task_comm(comm, current),
1373 				clone_flags & CLONE_STOPPED);
1374 		}
1375 	}
1376 
1377 	/*
1378 	 * When called from kernel_thread, don't do user tracing stuff.
1379 	 */
1380 	if (likely(user_mode(regs)))
1381 		trace = tracehook_prepare_clone(clone_flags);
1382 
1383 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1384 			 child_tidptr, NULL, trace);
1385 	/*
1386 	 * Do this prior waking up the new thread - the thread pointer
1387 	 * might get invalid after that point, if the thread exits quickly.
1388 	 */
1389 	if (!IS_ERR(p)) {
1390 		struct completion vfork;
1391 
1392 		trace_sched_process_fork(current, p);
1393 
1394 		nr = task_pid_vnr(p);
1395 
1396 		if (clone_flags & CLONE_PARENT_SETTID)
1397 			put_user(nr, parent_tidptr);
1398 
1399 		if (clone_flags & CLONE_VFORK) {
1400 			p->vfork_done = &vfork;
1401 			init_completion(&vfork);
1402 		}
1403 
1404 		audit_finish_fork(p);
1405 		tracehook_report_clone(trace, regs, clone_flags, nr, p);
1406 
1407 		/*
1408 		 * We set PF_STARTING at creation in case tracing wants to
1409 		 * use this to distinguish a fully live task from one that
1410 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1411 		 * clear it and set the child going.
1412 		 */
1413 		p->flags &= ~PF_STARTING;
1414 
1415 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1416 			/*
1417 			 * We'll start up with an immediate SIGSTOP.
1418 			 */
1419 			sigaddset(&p->pending.signal, SIGSTOP);
1420 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1421 			__set_task_state(p, TASK_STOPPED);
1422 		} else {
1423 			wake_up_new_task(p, clone_flags);
1424 		}
1425 
1426 		tracehook_report_clone_complete(trace, regs,
1427 						clone_flags, nr, p);
1428 
1429 		if (clone_flags & CLONE_VFORK) {
1430 			freezer_do_not_count();
1431 			wait_for_completion(&vfork);
1432 			freezer_count();
1433 			tracehook_report_vfork_done(p, nr);
1434 		}
1435 	} else {
1436 		nr = PTR_ERR(p);
1437 	}
1438 	return nr;
1439 }
1440 
1441 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1442 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1443 #endif
1444 
1445 static void sighand_ctor(void *data)
1446 {
1447 	struct sighand_struct *sighand = data;
1448 
1449 	spin_lock_init(&sighand->siglock);
1450 	init_waitqueue_head(&sighand->signalfd_wqh);
1451 }
1452 
1453 void __init proc_caches_init(void)
1454 {
1455 	sighand_cachep = kmem_cache_create("sighand_cache",
1456 			sizeof(struct sighand_struct), 0,
1457 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1458 			sighand_ctor);
1459 	signal_cachep = kmem_cache_create("signal_cache",
1460 			sizeof(struct signal_struct), 0,
1461 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1462 	files_cachep = kmem_cache_create("files_cache",
1463 			sizeof(struct files_struct), 0,
1464 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1465 	fs_cachep = kmem_cache_create("fs_cache",
1466 			sizeof(struct fs_struct), 0,
1467 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1468 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1469 			sizeof(struct vm_area_struct), 0,
1470 			SLAB_PANIC, NULL);
1471 	mm_cachep = kmem_cache_create("mm_struct",
1472 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1473 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1474 }
1475 
1476 /*
1477  * Check constraints on flags passed to the unshare system call and
1478  * force unsharing of additional process context as appropriate.
1479  */
1480 static void check_unshare_flags(unsigned long *flags_ptr)
1481 {
1482 	/*
1483 	 * If unsharing a thread from a thread group, must also
1484 	 * unshare vm.
1485 	 */
1486 	if (*flags_ptr & CLONE_THREAD)
1487 		*flags_ptr |= CLONE_VM;
1488 
1489 	/*
1490 	 * If unsharing vm, must also unshare signal handlers.
1491 	 */
1492 	if (*flags_ptr & CLONE_VM)
1493 		*flags_ptr |= CLONE_SIGHAND;
1494 
1495 	/*
1496 	 * If unsharing signal handlers and the task was created
1497 	 * using CLONE_THREAD, then must unshare the thread
1498 	 */
1499 	if ((*flags_ptr & CLONE_SIGHAND) &&
1500 	    (atomic_read(&current->signal->count) > 1))
1501 		*flags_ptr |= CLONE_THREAD;
1502 
1503 	/*
1504 	 * If unsharing namespace, must also unshare filesystem information.
1505 	 */
1506 	if (*flags_ptr & CLONE_NEWNS)
1507 		*flags_ptr |= CLONE_FS;
1508 }
1509 
1510 /*
1511  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1512  */
1513 static int unshare_thread(unsigned long unshare_flags)
1514 {
1515 	if (unshare_flags & CLONE_THREAD)
1516 		return -EINVAL;
1517 
1518 	return 0;
1519 }
1520 
1521 /*
1522  * Unshare the filesystem structure if it is being shared
1523  */
1524 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1525 {
1526 	struct fs_struct *fs = current->fs;
1527 
1528 	if ((unshare_flags & CLONE_FS) &&
1529 	    (fs && atomic_read(&fs->count) > 1)) {
1530 		*new_fsp = __copy_fs_struct(current->fs);
1531 		if (!*new_fsp)
1532 			return -ENOMEM;
1533 	}
1534 
1535 	return 0;
1536 }
1537 
1538 /*
1539  * Unsharing of sighand is not supported yet
1540  */
1541 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1542 {
1543 	struct sighand_struct *sigh = current->sighand;
1544 
1545 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1546 		return -EINVAL;
1547 	else
1548 		return 0;
1549 }
1550 
1551 /*
1552  * Unshare vm if it is being shared
1553  */
1554 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1555 {
1556 	struct mm_struct *mm = current->mm;
1557 
1558 	if ((unshare_flags & CLONE_VM) &&
1559 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1560 		return -EINVAL;
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 /*
1567  * Unshare file descriptor table if it is being shared
1568  */
1569 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1570 {
1571 	struct files_struct *fd = current->files;
1572 	int error = 0;
1573 
1574 	if ((unshare_flags & CLONE_FILES) &&
1575 	    (fd && atomic_read(&fd->count) > 1)) {
1576 		*new_fdp = dup_fd(fd, &error);
1577 		if (!*new_fdp)
1578 			return error;
1579 	}
1580 
1581 	return 0;
1582 }
1583 
1584 /*
1585  * unshare allows a process to 'unshare' part of the process
1586  * context which was originally shared using clone.  copy_*
1587  * functions used by do_fork() cannot be used here directly
1588  * because they modify an inactive task_struct that is being
1589  * constructed. Here we are modifying the current, active,
1590  * task_struct.
1591  */
1592 asmlinkage long sys_unshare(unsigned long unshare_flags)
1593 {
1594 	int err = 0;
1595 	struct fs_struct *fs, *new_fs = NULL;
1596 	struct sighand_struct *new_sigh = NULL;
1597 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1598 	struct files_struct *fd, *new_fd = NULL;
1599 	struct nsproxy *new_nsproxy = NULL;
1600 	int do_sysvsem = 0;
1601 
1602 	check_unshare_flags(&unshare_flags);
1603 
1604 	/* Return -EINVAL for all unsupported flags */
1605 	err = -EINVAL;
1606 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1607 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1608 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1609 				CLONE_NEWNET))
1610 		goto bad_unshare_out;
1611 
1612 	/*
1613 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1614 	 * to a new ipc namespace, the semaphore arrays from the old
1615 	 * namespace are unreachable.
1616 	 */
1617 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1618 		do_sysvsem = 1;
1619 	if ((err = unshare_thread(unshare_flags)))
1620 		goto bad_unshare_out;
1621 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1622 		goto bad_unshare_cleanup_thread;
1623 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1624 		goto bad_unshare_cleanup_fs;
1625 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1626 		goto bad_unshare_cleanup_sigh;
1627 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1628 		goto bad_unshare_cleanup_vm;
1629 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1630 			new_fs)))
1631 		goto bad_unshare_cleanup_fd;
1632 
1633 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1634 		if (do_sysvsem) {
1635 			/*
1636 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1637 			 */
1638 			exit_sem(current);
1639 		}
1640 
1641 		if (new_nsproxy) {
1642 			switch_task_namespaces(current, new_nsproxy);
1643 			new_nsproxy = NULL;
1644 		}
1645 
1646 		task_lock(current);
1647 
1648 		if (new_fs) {
1649 			fs = current->fs;
1650 			current->fs = new_fs;
1651 			new_fs = fs;
1652 		}
1653 
1654 		if (new_mm) {
1655 			mm = current->mm;
1656 			active_mm = current->active_mm;
1657 			current->mm = new_mm;
1658 			current->active_mm = new_mm;
1659 			activate_mm(active_mm, new_mm);
1660 			new_mm = mm;
1661 		}
1662 
1663 		if (new_fd) {
1664 			fd = current->files;
1665 			current->files = new_fd;
1666 			new_fd = fd;
1667 		}
1668 
1669 		task_unlock(current);
1670 	}
1671 
1672 	if (new_nsproxy)
1673 		put_nsproxy(new_nsproxy);
1674 
1675 bad_unshare_cleanup_fd:
1676 	if (new_fd)
1677 		put_files_struct(new_fd);
1678 
1679 bad_unshare_cleanup_vm:
1680 	if (new_mm)
1681 		mmput(new_mm);
1682 
1683 bad_unshare_cleanup_sigh:
1684 	if (new_sigh)
1685 		if (atomic_dec_and_test(&new_sigh->count))
1686 			kmem_cache_free(sighand_cachep, new_sigh);
1687 
1688 bad_unshare_cleanup_fs:
1689 	if (new_fs)
1690 		put_fs_struct(new_fs);
1691 
1692 bad_unshare_cleanup_thread:
1693 bad_unshare_out:
1694 	return err;
1695 }
1696 
1697 /*
1698  *	Helper to unshare the files of the current task.
1699  *	We don't want to expose copy_files internals to
1700  *	the exec layer of the kernel.
1701  */
1702 
1703 int unshare_files(struct files_struct **displaced)
1704 {
1705 	struct task_struct *task = current;
1706 	struct files_struct *copy = NULL;
1707 	int error;
1708 
1709 	error = unshare_fd(CLONE_FILES, &copy);
1710 	if (error || !copy) {
1711 		*displaced = NULL;
1712 		return error;
1713 	}
1714 	*displaced = task->files;
1715 	task_lock(task);
1716 	task->files = copy;
1717 	task_unlock(task);
1718 	return 0;
1719 }
1720