xref: /linux/kernel/fork.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 
68 #include <asm/pgtable.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/cacheflush.h>
73 #include <asm/tlbflush.h>
74 
75 #include <trace/events/sched.h>
76 
77 /*
78  * Protected counters by write_lock_irq(&tasklist_lock)
79  */
80 unsigned long total_forks;	/* Handle normal Linux uptimes. */
81 int nr_threads; 		/* The idle threads do not count.. */
82 
83 int max_threads;		/* tunable limit on nr_threads */
84 
85 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
86 
87 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
88 
89 int nr_processes(void)
90 {
91 	int cpu;
92 	int total = 0;
93 
94 	for_each_online_cpu(cpu)
95 		total += per_cpu(process_counts, cpu);
96 
97 	return total;
98 }
99 
100 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
101 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
102 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
103 static struct kmem_cache *task_struct_cachep;
104 #endif
105 
106 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
107 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
108 {
109 #ifdef CONFIG_DEBUG_STACK_USAGE
110 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
111 #else
112 	gfp_t mask = GFP_KERNEL;
113 #endif
114 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
115 }
116 
117 static inline void free_thread_info(struct thread_info *ti)
118 {
119 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
120 }
121 #endif
122 
123 /* SLAB cache for signal_struct structures (tsk->signal) */
124 static struct kmem_cache *signal_cachep;
125 
126 /* SLAB cache for sighand_struct structures (tsk->sighand) */
127 struct kmem_cache *sighand_cachep;
128 
129 /* SLAB cache for files_struct structures (tsk->files) */
130 struct kmem_cache *files_cachep;
131 
132 /* SLAB cache for fs_struct structures (tsk->fs) */
133 struct kmem_cache *fs_cachep;
134 
135 /* SLAB cache for vm_area_struct structures */
136 struct kmem_cache *vm_area_cachep;
137 
138 /* SLAB cache for mm_struct structures (tsk->mm) */
139 static struct kmem_cache *mm_cachep;
140 
141 static void account_kernel_stack(struct thread_info *ti, int account)
142 {
143 	struct zone *zone = page_zone(virt_to_page(ti));
144 
145 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
146 }
147 
148 void free_task(struct task_struct *tsk)
149 {
150 	prop_local_destroy_single(&tsk->dirties);
151 	account_kernel_stack(tsk->stack, -1);
152 	free_thread_info(tsk->stack);
153 	rt_mutex_debug_task_free(tsk);
154 	ftrace_graph_exit_task(tsk);
155 	free_task_struct(tsk);
156 }
157 EXPORT_SYMBOL(free_task);
158 
159 void __put_task_struct(struct task_struct *tsk)
160 {
161 	WARN_ON(!tsk->exit_state);
162 	WARN_ON(atomic_read(&tsk->usage));
163 	WARN_ON(tsk == current);
164 
165 	exit_creds(tsk);
166 	delayacct_tsk_free(tsk);
167 
168 	if (!profile_handoff_task(tsk))
169 		free_task(tsk);
170 }
171 
172 /*
173  * macro override instead of weak attribute alias, to workaround
174  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
175  */
176 #ifndef arch_task_cache_init
177 #define arch_task_cache_init()
178 #endif
179 
180 void __init fork_init(unsigned long mempages)
181 {
182 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
183 #ifndef ARCH_MIN_TASKALIGN
184 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
185 #endif
186 	/* create a slab on which task_structs can be allocated */
187 	task_struct_cachep =
188 		kmem_cache_create("task_struct", sizeof(struct task_struct),
189 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
190 #endif
191 
192 	/* do the arch specific task caches init */
193 	arch_task_cache_init();
194 
195 	/*
196 	 * The default maximum number of threads is set to a safe
197 	 * value: the thread structures can take up at most half
198 	 * of memory.
199 	 */
200 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
201 
202 	/*
203 	 * we need to allow at least 20 threads to boot a system
204 	 */
205 	if(max_threads < 20)
206 		max_threads = 20;
207 
208 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
209 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
210 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
211 		init_task.signal->rlim[RLIMIT_NPROC];
212 }
213 
214 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
215 					       struct task_struct *src)
216 {
217 	*dst = *src;
218 	return 0;
219 }
220 
221 static struct task_struct *dup_task_struct(struct task_struct *orig)
222 {
223 	struct task_struct *tsk;
224 	struct thread_info *ti;
225 	unsigned long *stackend;
226 
227 	int err;
228 
229 	prepare_to_copy(orig);
230 
231 	tsk = alloc_task_struct();
232 	if (!tsk)
233 		return NULL;
234 
235 	ti = alloc_thread_info(tsk);
236 	if (!ti) {
237 		free_task_struct(tsk);
238 		return NULL;
239 	}
240 
241  	err = arch_dup_task_struct(tsk, orig);
242 	if (err)
243 		goto out;
244 
245 	tsk->stack = ti;
246 
247 	err = prop_local_init_single(&tsk->dirties);
248 	if (err)
249 		goto out;
250 
251 	setup_thread_stack(tsk, orig);
252 	stackend = end_of_stack(tsk);
253 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
254 
255 #ifdef CONFIG_CC_STACKPROTECTOR
256 	tsk->stack_canary = get_random_int();
257 #endif
258 
259 	/* One for us, one for whoever does the "release_task()" (usually parent) */
260 	atomic_set(&tsk->usage,2);
261 	atomic_set(&tsk->fs_excl, 0);
262 #ifdef CONFIG_BLK_DEV_IO_TRACE
263 	tsk->btrace_seq = 0;
264 #endif
265 	tsk->splice_pipe = NULL;
266 
267 	account_kernel_stack(ti, 1);
268 
269 	return tsk;
270 
271 out:
272 	free_thread_info(ti);
273 	free_task_struct(tsk);
274 	return NULL;
275 }
276 
277 #ifdef CONFIG_MMU
278 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
279 {
280 	struct vm_area_struct *mpnt, *tmp, **pprev;
281 	struct rb_node **rb_link, *rb_parent;
282 	int retval;
283 	unsigned long charge;
284 	struct mempolicy *pol;
285 
286 	down_write(&oldmm->mmap_sem);
287 	flush_cache_dup_mm(oldmm);
288 	/*
289 	 * Not linked in yet - no deadlock potential:
290 	 */
291 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
292 
293 	mm->locked_vm = 0;
294 	mm->mmap = NULL;
295 	mm->mmap_cache = NULL;
296 	mm->free_area_cache = oldmm->mmap_base;
297 	mm->cached_hole_size = ~0UL;
298 	mm->map_count = 0;
299 	cpumask_clear(mm_cpumask(mm));
300 	mm->mm_rb = RB_ROOT;
301 	rb_link = &mm->mm_rb.rb_node;
302 	rb_parent = NULL;
303 	pprev = &mm->mmap;
304 	retval = ksm_fork(mm, oldmm);
305 	if (retval)
306 		goto out;
307 
308 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
309 		struct file *file;
310 
311 		if (mpnt->vm_flags & VM_DONTCOPY) {
312 			long pages = vma_pages(mpnt);
313 			mm->total_vm -= pages;
314 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
315 								-pages);
316 			continue;
317 		}
318 		charge = 0;
319 		if (mpnt->vm_flags & VM_ACCOUNT) {
320 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
321 			if (security_vm_enough_memory(len))
322 				goto fail_nomem;
323 			charge = len;
324 		}
325 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
326 		if (!tmp)
327 			goto fail_nomem;
328 		*tmp = *mpnt;
329 		pol = mpol_dup(vma_policy(mpnt));
330 		retval = PTR_ERR(pol);
331 		if (IS_ERR(pol))
332 			goto fail_nomem_policy;
333 		vma_set_policy(tmp, pol);
334 		tmp->vm_flags &= ~VM_LOCKED;
335 		tmp->vm_mm = mm;
336 		tmp->vm_next = NULL;
337 		anon_vma_link(tmp);
338 		file = tmp->vm_file;
339 		if (file) {
340 			struct inode *inode = file->f_path.dentry->d_inode;
341 			struct address_space *mapping = file->f_mapping;
342 
343 			get_file(file);
344 			if (tmp->vm_flags & VM_DENYWRITE)
345 				atomic_dec(&inode->i_writecount);
346 			spin_lock(&mapping->i_mmap_lock);
347 			if (tmp->vm_flags & VM_SHARED)
348 				mapping->i_mmap_writable++;
349 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
350 			flush_dcache_mmap_lock(mapping);
351 			/* insert tmp into the share list, just after mpnt */
352 			vma_prio_tree_add(tmp, mpnt);
353 			flush_dcache_mmap_unlock(mapping);
354 			spin_unlock(&mapping->i_mmap_lock);
355 		}
356 
357 		/*
358 		 * Clear hugetlb-related page reserves for children. This only
359 		 * affects MAP_PRIVATE mappings. Faults generated by the child
360 		 * are not guaranteed to succeed, even if read-only
361 		 */
362 		if (is_vm_hugetlb_page(tmp))
363 			reset_vma_resv_huge_pages(tmp);
364 
365 		/*
366 		 * Link in the new vma and copy the page table entries.
367 		 */
368 		*pprev = tmp;
369 		pprev = &tmp->vm_next;
370 
371 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
372 		rb_link = &tmp->vm_rb.rb_right;
373 		rb_parent = &tmp->vm_rb;
374 
375 		mm->map_count++;
376 		retval = copy_page_range(mm, oldmm, mpnt);
377 
378 		if (tmp->vm_ops && tmp->vm_ops->open)
379 			tmp->vm_ops->open(tmp);
380 
381 		if (retval)
382 			goto out;
383 	}
384 	/* a new mm has just been created */
385 	arch_dup_mmap(oldmm, mm);
386 	retval = 0;
387 out:
388 	up_write(&mm->mmap_sem);
389 	flush_tlb_mm(oldmm);
390 	up_write(&oldmm->mmap_sem);
391 	return retval;
392 fail_nomem_policy:
393 	kmem_cache_free(vm_area_cachep, tmp);
394 fail_nomem:
395 	retval = -ENOMEM;
396 	vm_unacct_memory(charge);
397 	goto out;
398 }
399 
400 static inline int mm_alloc_pgd(struct mm_struct * mm)
401 {
402 	mm->pgd = pgd_alloc(mm);
403 	if (unlikely(!mm->pgd))
404 		return -ENOMEM;
405 	return 0;
406 }
407 
408 static inline void mm_free_pgd(struct mm_struct * mm)
409 {
410 	pgd_free(mm, mm->pgd);
411 }
412 #else
413 #define dup_mmap(mm, oldmm)	(0)
414 #define mm_alloc_pgd(mm)	(0)
415 #define mm_free_pgd(mm)
416 #endif /* CONFIG_MMU */
417 
418 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
419 
420 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
421 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
422 
423 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
424 
425 static int __init coredump_filter_setup(char *s)
426 {
427 	default_dump_filter =
428 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
429 		MMF_DUMP_FILTER_MASK;
430 	return 1;
431 }
432 
433 __setup("coredump_filter=", coredump_filter_setup);
434 
435 #include <linux/init_task.h>
436 
437 static void mm_init_aio(struct mm_struct *mm)
438 {
439 #ifdef CONFIG_AIO
440 	spin_lock_init(&mm->ioctx_lock);
441 	INIT_HLIST_HEAD(&mm->ioctx_list);
442 #endif
443 }
444 
445 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
446 {
447 	atomic_set(&mm->mm_users, 1);
448 	atomic_set(&mm->mm_count, 1);
449 	init_rwsem(&mm->mmap_sem);
450 	INIT_LIST_HEAD(&mm->mmlist);
451 	mm->flags = (current->mm) ?
452 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
453 	mm->core_state = NULL;
454 	mm->nr_ptes = 0;
455 	set_mm_counter(mm, file_rss, 0);
456 	set_mm_counter(mm, anon_rss, 0);
457 	spin_lock_init(&mm->page_table_lock);
458 	mm->free_area_cache = TASK_UNMAPPED_BASE;
459 	mm->cached_hole_size = ~0UL;
460 	mm_init_aio(mm);
461 	mm_init_owner(mm, p);
462 
463 	if (likely(!mm_alloc_pgd(mm))) {
464 		mm->def_flags = 0;
465 		mmu_notifier_mm_init(mm);
466 		return mm;
467 	}
468 
469 	free_mm(mm);
470 	return NULL;
471 }
472 
473 /*
474  * Allocate and initialize an mm_struct.
475  */
476 struct mm_struct * mm_alloc(void)
477 {
478 	struct mm_struct * mm;
479 
480 	mm = allocate_mm();
481 	if (mm) {
482 		memset(mm, 0, sizeof(*mm));
483 		mm = mm_init(mm, current);
484 	}
485 	return mm;
486 }
487 
488 /*
489  * Called when the last reference to the mm
490  * is dropped: either by a lazy thread or by
491  * mmput. Free the page directory and the mm.
492  */
493 void __mmdrop(struct mm_struct *mm)
494 {
495 	BUG_ON(mm == &init_mm);
496 	mm_free_pgd(mm);
497 	destroy_context(mm);
498 	mmu_notifier_mm_destroy(mm);
499 	free_mm(mm);
500 }
501 EXPORT_SYMBOL_GPL(__mmdrop);
502 
503 /*
504  * Decrement the use count and release all resources for an mm.
505  */
506 void mmput(struct mm_struct *mm)
507 {
508 	might_sleep();
509 
510 	if (atomic_dec_and_test(&mm->mm_users)) {
511 		exit_aio(mm);
512 		ksm_exit(mm);
513 		exit_mmap(mm);
514 		set_mm_exe_file(mm, NULL);
515 		if (!list_empty(&mm->mmlist)) {
516 			spin_lock(&mmlist_lock);
517 			list_del(&mm->mmlist);
518 			spin_unlock(&mmlist_lock);
519 		}
520 		put_swap_token(mm);
521 		if (mm->binfmt)
522 			module_put(mm->binfmt->module);
523 		mmdrop(mm);
524 	}
525 }
526 EXPORT_SYMBOL_GPL(mmput);
527 
528 /**
529  * get_task_mm - acquire a reference to the task's mm
530  *
531  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
532  * this kernel workthread has transiently adopted a user mm with use_mm,
533  * to do its AIO) is not set and if so returns a reference to it, after
534  * bumping up the use count.  User must release the mm via mmput()
535  * after use.  Typically used by /proc and ptrace.
536  */
537 struct mm_struct *get_task_mm(struct task_struct *task)
538 {
539 	struct mm_struct *mm;
540 
541 	task_lock(task);
542 	mm = task->mm;
543 	if (mm) {
544 		if (task->flags & PF_KTHREAD)
545 			mm = NULL;
546 		else
547 			atomic_inc(&mm->mm_users);
548 	}
549 	task_unlock(task);
550 	return mm;
551 }
552 EXPORT_SYMBOL_GPL(get_task_mm);
553 
554 /* Please note the differences between mmput and mm_release.
555  * mmput is called whenever we stop holding onto a mm_struct,
556  * error success whatever.
557  *
558  * mm_release is called after a mm_struct has been removed
559  * from the current process.
560  *
561  * This difference is important for error handling, when we
562  * only half set up a mm_struct for a new process and need to restore
563  * the old one.  Because we mmput the new mm_struct before
564  * restoring the old one. . .
565  * Eric Biederman 10 January 1998
566  */
567 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
568 {
569 	struct completion *vfork_done = tsk->vfork_done;
570 
571 	/* Get rid of any futexes when releasing the mm */
572 #ifdef CONFIG_FUTEX
573 	if (unlikely(tsk->robust_list)) {
574 		exit_robust_list(tsk);
575 		tsk->robust_list = NULL;
576 	}
577 #ifdef CONFIG_COMPAT
578 	if (unlikely(tsk->compat_robust_list)) {
579 		compat_exit_robust_list(tsk);
580 		tsk->compat_robust_list = NULL;
581 	}
582 #endif
583 	if (unlikely(!list_empty(&tsk->pi_state_list)))
584 		exit_pi_state_list(tsk);
585 #endif
586 
587 	/* Get rid of any cached register state */
588 	deactivate_mm(tsk, mm);
589 
590 	/* notify parent sleeping on vfork() */
591 	if (vfork_done) {
592 		tsk->vfork_done = NULL;
593 		complete(vfork_done);
594 	}
595 
596 	/*
597 	 * If we're exiting normally, clear a user-space tid field if
598 	 * requested.  We leave this alone when dying by signal, to leave
599 	 * the value intact in a core dump, and to save the unnecessary
600 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
601 	 */
602 	if (tsk->clear_child_tid) {
603 		if (!(tsk->flags & PF_SIGNALED) &&
604 		    atomic_read(&mm->mm_users) > 1) {
605 			/*
606 			 * We don't check the error code - if userspace has
607 			 * not set up a proper pointer then tough luck.
608 			 */
609 			put_user(0, tsk->clear_child_tid);
610 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
611 					1, NULL, NULL, 0);
612 		}
613 		tsk->clear_child_tid = NULL;
614 	}
615 }
616 
617 /*
618  * Allocate a new mm structure and copy contents from the
619  * mm structure of the passed in task structure.
620  */
621 struct mm_struct *dup_mm(struct task_struct *tsk)
622 {
623 	struct mm_struct *mm, *oldmm = current->mm;
624 	int err;
625 
626 	if (!oldmm)
627 		return NULL;
628 
629 	mm = allocate_mm();
630 	if (!mm)
631 		goto fail_nomem;
632 
633 	memcpy(mm, oldmm, sizeof(*mm));
634 
635 	/* Initializing for Swap token stuff */
636 	mm->token_priority = 0;
637 	mm->last_interval = 0;
638 
639 	if (!mm_init(mm, tsk))
640 		goto fail_nomem;
641 
642 	if (init_new_context(tsk, mm))
643 		goto fail_nocontext;
644 
645 	dup_mm_exe_file(oldmm, mm);
646 
647 	err = dup_mmap(mm, oldmm);
648 	if (err)
649 		goto free_pt;
650 
651 	mm->hiwater_rss = get_mm_rss(mm);
652 	mm->hiwater_vm = mm->total_vm;
653 
654 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
655 		goto free_pt;
656 
657 	return mm;
658 
659 free_pt:
660 	/* don't put binfmt in mmput, we haven't got module yet */
661 	mm->binfmt = NULL;
662 	mmput(mm);
663 
664 fail_nomem:
665 	return NULL;
666 
667 fail_nocontext:
668 	/*
669 	 * If init_new_context() failed, we cannot use mmput() to free the mm
670 	 * because it calls destroy_context()
671 	 */
672 	mm_free_pgd(mm);
673 	free_mm(mm);
674 	return NULL;
675 }
676 
677 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
678 {
679 	struct mm_struct * mm, *oldmm;
680 	int retval;
681 
682 	tsk->min_flt = tsk->maj_flt = 0;
683 	tsk->nvcsw = tsk->nivcsw = 0;
684 #ifdef CONFIG_DETECT_HUNG_TASK
685 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
686 #endif
687 
688 	tsk->mm = NULL;
689 	tsk->active_mm = NULL;
690 
691 	/*
692 	 * Are we cloning a kernel thread?
693 	 *
694 	 * We need to steal a active VM for that..
695 	 */
696 	oldmm = current->mm;
697 	if (!oldmm)
698 		return 0;
699 
700 	if (clone_flags & CLONE_VM) {
701 		atomic_inc(&oldmm->mm_users);
702 		mm = oldmm;
703 		goto good_mm;
704 	}
705 
706 	retval = -ENOMEM;
707 	mm = dup_mm(tsk);
708 	if (!mm)
709 		goto fail_nomem;
710 
711 good_mm:
712 	/* Initializing for Swap token stuff */
713 	mm->token_priority = 0;
714 	mm->last_interval = 0;
715 
716 	tsk->mm = mm;
717 	tsk->active_mm = mm;
718 	return 0;
719 
720 fail_nomem:
721 	return retval;
722 }
723 
724 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
725 {
726 	struct fs_struct *fs = current->fs;
727 	if (clone_flags & CLONE_FS) {
728 		/* tsk->fs is already what we want */
729 		write_lock(&fs->lock);
730 		if (fs->in_exec) {
731 			write_unlock(&fs->lock);
732 			return -EAGAIN;
733 		}
734 		fs->users++;
735 		write_unlock(&fs->lock);
736 		return 0;
737 	}
738 	tsk->fs = copy_fs_struct(fs);
739 	if (!tsk->fs)
740 		return -ENOMEM;
741 	return 0;
742 }
743 
744 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
745 {
746 	struct files_struct *oldf, *newf;
747 	int error = 0;
748 
749 	/*
750 	 * A background process may not have any files ...
751 	 */
752 	oldf = current->files;
753 	if (!oldf)
754 		goto out;
755 
756 	if (clone_flags & CLONE_FILES) {
757 		atomic_inc(&oldf->count);
758 		goto out;
759 	}
760 
761 	newf = dup_fd(oldf, &error);
762 	if (!newf)
763 		goto out;
764 
765 	tsk->files = newf;
766 	error = 0;
767 out:
768 	return error;
769 }
770 
771 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
772 {
773 #ifdef CONFIG_BLOCK
774 	struct io_context *ioc = current->io_context;
775 
776 	if (!ioc)
777 		return 0;
778 	/*
779 	 * Share io context with parent, if CLONE_IO is set
780 	 */
781 	if (clone_flags & CLONE_IO) {
782 		tsk->io_context = ioc_task_link(ioc);
783 		if (unlikely(!tsk->io_context))
784 			return -ENOMEM;
785 	} else if (ioprio_valid(ioc->ioprio)) {
786 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
787 		if (unlikely(!tsk->io_context))
788 			return -ENOMEM;
789 
790 		tsk->io_context->ioprio = ioc->ioprio;
791 	}
792 #endif
793 	return 0;
794 }
795 
796 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
797 {
798 	struct sighand_struct *sig;
799 
800 	if (clone_flags & CLONE_SIGHAND) {
801 		atomic_inc(&current->sighand->count);
802 		return 0;
803 	}
804 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
805 	rcu_assign_pointer(tsk->sighand, sig);
806 	if (!sig)
807 		return -ENOMEM;
808 	atomic_set(&sig->count, 1);
809 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
810 	return 0;
811 }
812 
813 void __cleanup_sighand(struct sighand_struct *sighand)
814 {
815 	if (atomic_dec_and_test(&sighand->count))
816 		kmem_cache_free(sighand_cachep, sighand);
817 }
818 
819 
820 /*
821  * Initialize POSIX timer handling for a thread group.
822  */
823 static void posix_cpu_timers_init_group(struct signal_struct *sig)
824 {
825 	/* Thread group counters. */
826 	thread_group_cputime_init(sig);
827 
828 	/* Expiration times and increments. */
829 	sig->it[CPUCLOCK_PROF].expires = cputime_zero;
830 	sig->it[CPUCLOCK_PROF].incr = cputime_zero;
831 	sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
832 	sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
833 
834 	/* Cached expiration times. */
835 	sig->cputime_expires.prof_exp = cputime_zero;
836 	sig->cputime_expires.virt_exp = cputime_zero;
837 	sig->cputime_expires.sched_exp = 0;
838 
839 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
840 		sig->cputime_expires.prof_exp =
841 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
842 		sig->cputimer.running = 1;
843 	}
844 
845 	/* The timer lists. */
846 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
847 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
848 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
849 }
850 
851 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
852 {
853 	struct signal_struct *sig;
854 
855 	if (clone_flags & CLONE_THREAD)
856 		return 0;
857 
858 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
859 	tsk->signal = sig;
860 	if (!sig)
861 		return -ENOMEM;
862 
863 	atomic_set(&sig->count, 1);
864 	atomic_set(&sig->live, 1);
865 	init_waitqueue_head(&sig->wait_chldexit);
866 	sig->flags = 0;
867 	if (clone_flags & CLONE_NEWPID)
868 		sig->flags |= SIGNAL_UNKILLABLE;
869 	sig->group_exit_code = 0;
870 	sig->group_exit_task = NULL;
871 	sig->group_stop_count = 0;
872 	sig->curr_target = tsk;
873 	init_sigpending(&sig->shared_pending);
874 	INIT_LIST_HEAD(&sig->posix_timers);
875 
876 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
877 	sig->it_real_incr.tv64 = 0;
878 	sig->real_timer.function = it_real_fn;
879 
880 	sig->leader = 0;	/* session leadership doesn't inherit */
881 	sig->tty_old_pgrp = NULL;
882 	sig->tty = NULL;
883 
884 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
885 	sig->gtime = cputime_zero;
886 	sig->cgtime = cputime_zero;
887 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
888 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
889 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
890 	sig->maxrss = sig->cmaxrss = 0;
891 	task_io_accounting_init(&sig->ioac);
892 	sig->sum_sched_runtime = 0;
893 	taskstats_tgid_init(sig);
894 
895 	task_lock(current->group_leader);
896 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
897 	task_unlock(current->group_leader);
898 
899 	posix_cpu_timers_init_group(sig);
900 
901 	acct_init_pacct(&sig->pacct);
902 
903 	tty_audit_fork(sig);
904 
905 	sig->oom_adj = current->signal->oom_adj;
906 
907 	return 0;
908 }
909 
910 void __cleanup_signal(struct signal_struct *sig)
911 {
912 	thread_group_cputime_free(sig);
913 	tty_kref_put(sig->tty);
914 	kmem_cache_free(signal_cachep, sig);
915 }
916 
917 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
918 {
919 	unsigned long new_flags = p->flags;
920 
921 	new_flags &= ~PF_SUPERPRIV;
922 	new_flags |= PF_FORKNOEXEC;
923 	new_flags |= PF_STARTING;
924 	p->flags = new_flags;
925 	clear_freeze_flag(p);
926 }
927 
928 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
929 {
930 	current->clear_child_tid = tidptr;
931 
932 	return task_pid_vnr(current);
933 }
934 
935 static void rt_mutex_init_task(struct task_struct *p)
936 {
937 	spin_lock_init(&p->pi_lock);
938 #ifdef CONFIG_RT_MUTEXES
939 	plist_head_init(&p->pi_waiters, &p->pi_lock);
940 	p->pi_blocked_on = NULL;
941 #endif
942 }
943 
944 #ifdef CONFIG_MM_OWNER
945 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
946 {
947 	mm->owner = p;
948 }
949 #endif /* CONFIG_MM_OWNER */
950 
951 /*
952  * Initialize POSIX timer handling for a single task.
953  */
954 static void posix_cpu_timers_init(struct task_struct *tsk)
955 {
956 	tsk->cputime_expires.prof_exp = cputime_zero;
957 	tsk->cputime_expires.virt_exp = cputime_zero;
958 	tsk->cputime_expires.sched_exp = 0;
959 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
960 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
961 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
962 }
963 
964 /*
965  * This creates a new process as a copy of the old one,
966  * but does not actually start it yet.
967  *
968  * It copies the registers, and all the appropriate
969  * parts of the process environment (as per the clone
970  * flags). The actual kick-off is left to the caller.
971  */
972 static struct task_struct *copy_process(unsigned long clone_flags,
973 					unsigned long stack_start,
974 					struct pt_regs *regs,
975 					unsigned long stack_size,
976 					int __user *child_tidptr,
977 					struct pid *pid,
978 					int trace)
979 {
980 	int retval;
981 	struct task_struct *p;
982 	int cgroup_callbacks_done = 0;
983 
984 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
985 		return ERR_PTR(-EINVAL);
986 
987 	/*
988 	 * Thread groups must share signals as well, and detached threads
989 	 * can only be started up within the thread group.
990 	 */
991 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
992 		return ERR_PTR(-EINVAL);
993 
994 	/*
995 	 * Shared signal handlers imply shared VM. By way of the above,
996 	 * thread groups also imply shared VM. Blocking this case allows
997 	 * for various simplifications in other code.
998 	 */
999 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1000 		return ERR_PTR(-EINVAL);
1001 
1002 	/*
1003 	 * Siblings of global init remain as zombies on exit since they are
1004 	 * not reaped by their parent (swapper). To solve this and to avoid
1005 	 * multi-rooted process trees, prevent global and container-inits
1006 	 * from creating siblings.
1007 	 */
1008 	if ((clone_flags & CLONE_PARENT) &&
1009 				current->signal->flags & SIGNAL_UNKILLABLE)
1010 		return ERR_PTR(-EINVAL);
1011 
1012 	retval = security_task_create(clone_flags);
1013 	if (retval)
1014 		goto fork_out;
1015 
1016 	retval = -ENOMEM;
1017 	p = dup_task_struct(current);
1018 	if (!p)
1019 		goto fork_out;
1020 
1021 	ftrace_graph_init_task(p);
1022 
1023 	rt_mutex_init_task(p);
1024 
1025 #ifdef CONFIG_PROVE_LOCKING
1026 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1027 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1028 #endif
1029 	retval = -EAGAIN;
1030 	if (atomic_read(&p->real_cred->user->processes) >=
1031 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1032 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1033 		    p->real_cred->user != INIT_USER)
1034 			goto bad_fork_free;
1035 	}
1036 
1037 	retval = copy_creds(p, clone_flags);
1038 	if (retval < 0)
1039 		goto bad_fork_free;
1040 
1041 	/*
1042 	 * If multiple threads are within copy_process(), then this check
1043 	 * triggers too late. This doesn't hurt, the check is only there
1044 	 * to stop root fork bombs.
1045 	 */
1046 	retval = -EAGAIN;
1047 	if (nr_threads >= max_threads)
1048 		goto bad_fork_cleanup_count;
1049 
1050 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1051 		goto bad_fork_cleanup_count;
1052 
1053 	p->did_exec = 0;
1054 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1055 	copy_flags(clone_flags, p);
1056 	INIT_LIST_HEAD(&p->children);
1057 	INIT_LIST_HEAD(&p->sibling);
1058 	rcu_copy_process(p);
1059 	p->vfork_done = NULL;
1060 	spin_lock_init(&p->alloc_lock);
1061 
1062 	init_sigpending(&p->pending);
1063 
1064 	p->utime = cputime_zero;
1065 	p->stime = cputime_zero;
1066 	p->gtime = cputime_zero;
1067 	p->utimescaled = cputime_zero;
1068 	p->stimescaled = cputime_zero;
1069 	p->prev_utime = cputime_zero;
1070 	p->prev_stime = cputime_zero;
1071 
1072 	p->default_timer_slack_ns = current->timer_slack_ns;
1073 
1074 	task_io_accounting_init(&p->ioac);
1075 	acct_clear_integrals(p);
1076 
1077 	posix_cpu_timers_init(p);
1078 
1079 	p->lock_depth = -1;		/* -1 = no lock */
1080 	do_posix_clock_monotonic_gettime(&p->start_time);
1081 	p->real_start_time = p->start_time;
1082 	monotonic_to_bootbased(&p->real_start_time);
1083 	p->io_context = NULL;
1084 	p->audit_context = NULL;
1085 	cgroup_fork(p);
1086 #ifdef CONFIG_NUMA
1087 	p->mempolicy = mpol_dup(p->mempolicy);
1088  	if (IS_ERR(p->mempolicy)) {
1089  		retval = PTR_ERR(p->mempolicy);
1090  		p->mempolicy = NULL;
1091  		goto bad_fork_cleanup_cgroup;
1092  	}
1093 	mpol_fix_fork_child_flag(p);
1094 #endif
1095 #ifdef CONFIG_TRACE_IRQFLAGS
1096 	p->irq_events = 0;
1097 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1098 	p->hardirqs_enabled = 1;
1099 #else
1100 	p->hardirqs_enabled = 0;
1101 #endif
1102 	p->hardirq_enable_ip = 0;
1103 	p->hardirq_enable_event = 0;
1104 	p->hardirq_disable_ip = _THIS_IP_;
1105 	p->hardirq_disable_event = 0;
1106 	p->softirqs_enabled = 1;
1107 	p->softirq_enable_ip = _THIS_IP_;
1108 	p->softirq_enable_event = 0;
1109 	p->softirq_disable_ip = 0;
1110 	p->softirq_disable_event = 0;
1111 	p->hardirq_context = 0;
1112 	p->softirq_context = 0;
1113 #endif
1114 #ifdef CONFIG_LOCKDEP
1115 	p->lockdep_depth = 0; /* no locks held yet */
1116 	p->curr_chain_key = 0;
1117 	p->lockdep_recursion = 0;
1118 #endif
1119 
1120 #ifdef CONFIG_DEBUG_MUTEXES
1121 	p->blocked_on = NULL; /* not blocked yet */
1122 #endif
1123 
1124 	p->bts = NULL;
1125 
1126 	p->stack_start = stack_start;
1127 
1128 	/* Perform scheduler related setup. Assign this task to a CPU. */
1129 	sched_fork(p, clone_flags);
1130 
1131 	retval = perf_event_init_task(p);
1132 	if (retval)
1133 		goto bad_fork_cleanup_policy;
1134 
1135 	if ((retval = audit_alloc(p)))
1136 		goto bad_fork_cleanup_policy;
1137 	/* copy all the process information */
1138 	if ((retval = copy_semundo(clone_flags, p)))
1139 		goto bad_fork_cleanup_audit;
1140 	if ((retval = copy_files(clone_flags, p)))
1141 		goto bad_fork_cleanup_semundo;
1142 	if ((retval = copy_fs(clone_flags, p)))
1143 		goto bad_fork_cleanup_files;
1144 	if ((retval = copy_sighand(clone_flags, p)))
1145 		goto bad_fork_cleanup_fs;
1146 	if ((retval = copy_signal(clone_flags, p)))
1147 		goto bad_fork_cleanup_sighand;
1148 	if ((retval = copy_mm(clone_flags, p)))
1149 		goto bad_fork_cleanup_signal;
1150 	if ((retval = copy_namespaces(clone_flags, p)))
1151 		goto bad_fork_cleanup_mm;
1152 	if ((retval = copy_io(clone_flags, p)))
1153 		goto bad_fork_cleanup_namespaces;
1154 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1155 	if (retval)
1156 		goto bad_fork_cleanup_io;
1157 
1158 	if (pid != &init_struct_pid) {
1159 		retval = -ENOMEM;
1160 		pid = alloc_pid(p->nsproxy->pid_ns);
1161 		if (!pid)
1162 			goto bad_fork_cleanup_io;
1163 
1164 		if (clone_flags & CLONE_NEWPID) {
1165 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1166 			if (retval < 0)
1167 				goto bad_fork_free_pid;
1168 		}
1169 	}
1170 
1171 	p->pid = pid_nr(pid);
1172 	p->tgid = p->pid;
1173 	if (clone_flags & CLONE_THREAD)
1174 		p->tgid = current->tgid;
1175 
1176 	if (current->nsproxy != p->nsproxy) {
1177 		retval = ns_cgroup_clone(p, pid);
1178 		if (retval)
1179 			goto bad_fork_free_pid;
1180 	}
1181 
1182 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1183 	/*
1184 	 * Clear TID on mm_release()?
1185 	 */
1186 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1187 #ifdef CONFIG_FUTEX
1188 	p->robust_list = NULL;
1189 #ifdef CONFIG_COMPAT
1190 	p->compat_robust_list = NULL;
1191 #endif
1192 	INIT_LIST_HEAD(&p->pi_state_list);
1193 	p->pi_state_cache = NULL;
1194 #endif
1195 	/*
1196 	 * sigaltstack should be cleared when sharing the same VM
1197 	 */
1198 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1199 		p->sas_ss_sp = p->sas_ss_size = 0;
1200 
1201 	/*
1202 	 * Syscall tracing should be turned off in the child regardless
1203 	 * of CLONE_PTRACE.
1204 	 */
1205 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1206 #ifdef TIF_SYSCALL_EMU
1207 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1208 #endif
1209 	clear_all_latency_tracing(p);
1210 
1211 	/* ok, now we should be set up.. */
1212 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1213 	p->pdeath_signal = 0;
1214 	p->exit_state = 0;
1215 
1216 	/*
1217 	 * Ok, make it visible to the rest of the system.
1218 	 * We dont wake it up yet.
1219 	 */
1220 	p->group_leader = p;
1221 	INIT_LIST_HEAD(&p->thread_group);
1222 
1223 	/* Now that the task is set up, run cgroup callbacks if
1224 	 * necessary. We need to run them before the task is visible
1225 	 * on the tasklist. */
1226 	cgroup_fork_callbacks(p);
1227 	cgroup_callbacks_done = 1;
1228 
1229 	/* Need tasklist lock for parent etc handling! */
1230 	write_lock_irq(&tasklist_lock);
1231 
1232 	/*
1233 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1234 	 * not be changed, nor will its assigned CPU.
1235 	 *
1236 	 * The cpus_allowed mask of the parent may have changed after it was
1237 	 * copied first time - so re-copy it here, then check the child's CPU
1238 	 * to ensure it is on a valid CPU (and if not, just force it back to
1239 	 * parent's CPU). This avoids alot of nasty races.
1240 	 */
1241 	p->cpus_allowed = current->cpus_allowed;
1242 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1243 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1244 			!cpu_online(task_cpu(p))))
1245 		set_task_cpu(p, smp_processor_id());
1246 
1247 	/* CLONE_PARENT re-uses the old parent */
1248 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1249 		p->real_parent = current->real_parent;
1250 		p->parent_exec_id = current->parent_exec_id;
1251 	} else {
1252 		p->real_parent = current;
1253 		p->parent_exec_id = current->self_exec_id;
1254 	}
1255 
1256 	spin_lock(&current->sighand->siglock);
1257 
1258 	/*
1259 	 * Process group and session signals need to be delivered to just the
1260 	 * parent before the fork or both the parent and the child after the
1261 	 * fork. Restart if a signal comes in before we add the new process to
1262 	 * it's process group.
1263 	 * A fatal signal pending means that current will exit, so the new
1264 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1265  	 */
1266 	recalc_sigpending();
1267 	if (signal_pending(current)) {
1268 		spin_unlock(&current->sighand->siglock);
1269 		write_unlock_irq(&tasklist_lock);
1270 		retval = -ERESTARTNOINTR;
1271 		goto bad_fork_free_pid;
1272 	}
1273 
1274 	if (clone_flags & CLONE_THREAD) {
1275 		atomic_inc(&current->signal->count);
1276 		atomic_inc(&current->signal->live);
1277 		p->group_leader = current->group_leader;
1278 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1279 	}
1280 
1281 	if (likely(p->pid)) {
1282 		list_add_tail(&p->sibling, &p->real_parent->children);
1283 		tracehook_finish_clone(p, clone_flags, trace);
1284 
1285 		if (thread_group_leader(p)) {
1286 			if (clone_flags & CLONE_NEWPID)
1287 				p->nsproxy->pid_ns->child_reaper = p;
1288 
1289 			p->signal->leader_pid = pid;
1290 			tty_kref_put(p->signal->tty);
1291 			p->signal->tty = tty_kref_get(current->signal->tty);
1292 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1293 			attach_pid(p, PIDTYPE_SID, task_session(current));
1294 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1295 			__get_cpu_var(process_counts)++;
1296 		}
1297 		attach_pid(p, PIDTYPE_PID, pid);
1298 		nr_threads++;
1299 	}
1300 
1301 	total_forks++;
1302 	spin_unlock(&current->sighand->siglock);
1303 	write_unlock_irq(&tasklist_lock);
1304 	proc_fork_connector(p);
1305 	cgroup_post_fork(p);
1306 	perf_event_fork(p);
1307 	return p;
1308 
1309 bad_fork_free_pid:
1310 	if (pid != &init_struct_pid)
1311 		free_pid(pid);
1312 bad_fork_cleanup_io:
1313 	put_io_context(p->io_context);
1314 bad_fork_cleanup_namespaces:
1315 	exit_task_namespaces(p);
1316 bad_fork_cleanup_mm:
1317 	if (p->mm)
1318 		mmput(p->mm);
1319 bad_fork_cleanup_signal:
1320 	if (!(clone_flags & CLONE_THREAD))
1321 		__cleanup_signal(p->signal);
1322 bad_fork_cleanup_sighand:
1323 	__cleanup_sighand(p->sighand);
1324 bad_fork_cleanup_fs:
1325 	exit_fs(p); /* blocking */
1326 bad_fork_cleanup_files:
1327 	exit_files(p); /* blocking */
1328 bad_fork_cleanup_semundo:
1329 	exit_sem(p);
1330 bad_fork_cleanup_audit:
1331 	audit_free(p);
1332 bad_fork_cleanup_policy:
1333 	perf_event_free_task(p);
1334 #ifdef CONFIG_NUMA
1335 	mpol_put(p->mempolicy);
1336 bad_fork_cleanup_cgroup:
1337 #endif
1338 	cgroup_exit(p, cgroup_callbacks_done);
1339 	delayacct_tsk_free(p);
1340 	module_put(task_thread_info(p)->exec_domain->module);
1341 bad_fork_cleanup_count:
1342 	atomic_dec(&p->cred->user->processes);
1343 	exit_creds(p);
1344 bad_fork_free:
1345 	free_task(p);
1346 fork_out:
1347 	return ERR_PTR(retval);
1348 }
1349 
1350 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1351 {
1352 	memset(regs, 0, sizeof(struct pt_regs));
1353 	return regs;
1354 }
1355 
1356 struct task_struct * __cpuinit fork_idle(int cpu)
1357 {
1358 	struct task_struct *task;
1359 	struct pt_regs regs;
1360 
1361 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1362 			    &init_struct_pid, 0);
1363 	if (!IS_ERR(task))
1364 		init_idle(task, cpu);
1365 
1366 	return task;
1367 }
1368 
1369 /*
1370  *  Ok, this is the main fork-routine.
1371  *
1372  * It copies the process, and if successful kick-starts
1373  * it and waits for it to finish using the VM if required.
1374  */
1375 long do_fork(unsigned long clone_flags,
1376 	      unsigned long stack_start,
1377 	      struct pt_regs *regs,
1378 	      unsigned long stack_size,
1379 	      int __user *parent_tidptr,
1380 	      int __user *child_tidptr)
1381 {
1382 	struct task_struct *p;
1383 	int trace = 0;
1384 	long nr;
1385 
1386 	/*
1387 	 * Do some preliminary argument and permissions checking before we
1388 	 * actually start allocating stuff
1389 	 */
1390 	if (clone_flags & CLONE_NEWUSER) {
1391 		if (clone_flags & CLONE_THREAD)
1392 			return -EINVAL;
1393 		/* hopefully this check will go away when userns support is
1394 		 * complete
1395 		 */
1396 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1397 				!capable(CAP_SETGID))
1398 			return -EPERM;
1399 	}
1400 
1401 	/*
1402 	 * We hope to recycle these flags after 2.6.26
1403 	 */
1404 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1405 		static int __read_mostly count = 100;
1406 
1407 		if (count > 0 && printk_ratelimit()) {
1408 			char comm[TASK_COMM_LEN];
1409 
1410 			count--;
1411 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1412 					"clone flags 0x%lx\n",
1413 				get_task_comm(comm, current),
1414 				clone_flags & CLONE_STOPPED);
1415 		}
1416 	}
1417 
1418 	/*
1419 	 * When called from kernel_thread, don't do user tracing stuff.
1420 	 */
1421 	if (likely(user_mode(regs)))
1422 		trace = tracehook_prepare_clone(clone_flags);
1423 
1424 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1425 			 child_tidptr, NULL, trace);
1426 	/*
1427 	 * Do this prior waking up the new thread - the thread pointer
1428 	 * might get invalid after that point, if the thread exits quickly.
1429 	 */
1430 	if (!IS_ERR(p)) {
1431 		struct completion vfork;
1432 
1433 		trace_sched_process_fork(current, p);
1434 
1435 		nr = task_pid_vnr(p);
1436 
1437 		if (clone_flags & CLONE_PARENT_SETTID)
1438 			put_user(nr, parent_tidptr);
1439 
1440 		if (clone_flags & CLONE_VFORK) {
1441 			p->vfork_done = &vfork;
1442 			init_completion(&vfork);
1443 		}
1444 
1445 		audit_finish_fork(p);
1446 		tracehook_report_clone(regs, clone_flags, nr, p);
1447 
1448 		/*
1449 		 * We set PF_STARTING at creation in case tracing wants to
1450 		 * use this to distinguish a fully live task from one that
1451 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1452 		 * clear it and set the child going.
1453 		 */
1454 		p->flags &= ~PF_STARTING;
1455 
1456 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1457 			/*
1458 			 * We'll start up with an immediate SIGSTOP.
1459 			 */
1460 			sigaddset(&p->pending.signal, SIGSTOP);
1461 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1462 			__set_task_state(p, TASK_STOPPED);
1463 		} else {
1464 			wake_up_new_task(p, clone_flags);
1465 		}
1466 
1467 		tracehook_report_clone_complete(trace, regs,
1468 						clone_flags, nr, p);
1469 
1470 		if (clone_flags & CLONE_VFORK) {
1471 			freezer_do_not_count();
1472 			wait_for_completion(&vfork);
1473 			freezer_count();
1474 			tracehook_report_vfork_done(p, nr);
1475 		}
1476 	} else {
1477 		nr = PTR_ERR(p);
1478 	}
1479 	return nr;
1480 }
1481 
1482 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1483 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1484 #endif
1485 
1486 static void sighand_ctor(void *data)
1487 {
1488 	struct sighand_struct *sighand = data;
1489 
1490 	spin_lock_init(&sighand->siglock);
1491 	init_waitqueue_head(&sighand->signalfd_wqh);
1492 }
1493 
1494 void __init proc_caches_init(void)
1495 {
1496 	sighand_cachep = kmem_cache_create("sighand_cache",
1497 			sizeof(struct sighand_struct), 0,
1498 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1499 			SLAB_NOTRACK, sighand_ctor);
1500 	signal_cachep = kmem_cache_create("signal_cache",
1501 			sizeof(struct signal_struct), 0,
1502 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1503 	files_cachep = kmem_cache_create("files_cache",
1504 			sizeof(struct files_struct), 0,
1505 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1506 	fs_cachep = kmem_cache_create("fs_cache",
1507 			sizeof(struct fs_struct), 0,
1508 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1509 	mm_cachep = kmem_cache_create("mm_struct",
1510 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1511 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1512 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1513 	mmap_init();
1514 }
1515 
1516 /*
1517  * Check constraints on flags passed to the unshare system call and
1518  * force unsharing of additional process context as appropriate.
1519  */
1520 static void check_unshare_flags(unsigned long *flags_ptr)
1521 {
1522 	/*
1523 	 * If unsharing a thread from a thread group, must also
1524 	 * unshare vm.
1525 	 */
1526 	if (*flags_ptr & CLONE_THREAD)
1527 		*flags_ptr |= CLONE_VM;
1528 
1529 	/*
1530 	 * If unsharing vm, must also unshare signal handlers.
1531 	 */
1532 	if (*flags_ptr & CLONE_VM)
1533 		*flags_ptr |= CLONE_SIGHAND;
1534 
1535 	/*
1536 	 * If unsharing signal handlers and the task was created
1537 	 * using CLONE_THREAD, then must unshare the thread
1538 	 */
1539 	if ((*flags_ptr & CLONE_SIGHAND) &&
1540 	    (atomic_read(&current->signal->count) > 1))
1541 		*flags_ptr |= CLONE_THREAD;
1542 
1543 	/*
1544 	 * If unsharing namespace, must also unshare filesystem information.
1545 	 */
1546 	if (*flags_ptr & CLONE_NEWNS)
1547 		*flags_ptr |= CLONE_FS;
1548 }
1549 
1550 /*
1551  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1552  */
1553 static int unshare_thread(unsigned long unshare_flags)
1554 {
1555 	if (unshare_flags & CLONE_THREAD)
1556 		return -EINVAL;
1557 
1558 	return 0;
1559 }
1560 
1561 /*
1562  * Unshare the filesystem structure if it is being shared
1563  */
1564 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1565 {
1566 	struct fs_struct *fs = current->fs;
1567 
1568 	if (!(unshare_flags & CLONE_FS) || !fs)
1569 		return 0;
1570 
1571 	/* don't need lock here; in the worst case we'll do useless copy */
1572 	if (fs->users == 1)
1573 		return 0;
1574 
1575 	*new_fsp = copy_fs_struct(fs);
1576 	if (!*new_fsp)
1577 		return -ENOMEM;
1578 
1579 	return 0;
1580 }
1581 
1582 /*
1583  * Unsharing of sighand is not supported yet
1584  */
1585 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1586 {
1587 	struct sighand_struct *sigh = current->sighand;
1588 
1589 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1590 		return -EINVAL;
1591 	else
1592 		return 0;
1593 }
1594 
1595 /*
1596  * Unshare vm if it is being shared
1597  */
1598 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1599 {
1600 	struct mm_struct *mm = current->mm;
1601 
1602 	if ((unshare_flags & CLONE_VM) &&
1603 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1604 		return -EINVAL;
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 /*
1611  * Unshare file descriptor table if it is being shared
1612  */
1613 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1614 {
1615 	struct files_struct *fd = current->files;
1616 	int error = 0;
1617 
1618 	if ((unshare_flags & CLONE_FILES) &&
1619 	    (fd && atomic_read(&fd->count) > 1)) {
1620 		*new_fdp = dup_fd(fd, &error);
1621 		if (!*new_fdp)
1622 			return error;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 /*
1629  * unshare allows a process to 'unshare' part of the process
1630  * context which was originally shared using clone.  copy_*
1631  * functions used by do_fork() cannot be used here directly
1632  * because they modify an inactive task_struct that is being
1633  * constructed. Here we are modifying the current, active,
1634  * task_struct.
1635  */
1636 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1637 {
1638 	int err = 0;
1639 	struct fs_struct *fs, *new_fs = NULL;
1640 	struct sighand_struct *new_sigh = NULL;
1641 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1642 	struct files_struct *fd, *new_fd = NULL;
1643 	struct nsproxy *new_nsproxy = NULL;
1644 	int do_sysvsem = 0;
1645 
1646 	check_unshare_flags(&unshare_flags);
1647 
1648 	/* Return -EINVAL for all unsupported flags */
1649 	err = -EINVAL;
1650 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1651 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1652 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1653 		goto bad_unshare_out;
1654 
1655 	/*
1656 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1657 	 * to a new ipc namespace, the semaphore arrays from the old
1658 	 * namespace are unreachable.
1659 	 */
1660 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1661 		do_sysvsem = 1;
1662 	if ((err = unshare_thread(unshare_flags)))
1663 		goto bad_unshare_out;
1664 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1665 		goto bad_unshare_cleanup_thread;
1666 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1667 		goto bad_unshare_cleanup_fs;
1668 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1669 		goto bad_unshare_cleanup_sigh;
1670 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1671 		goto bad_unshare_cleanup_vm;
1672 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1673 			new_fs)))
1674 		goto bad_unshare_cleanup_fd;
1675 
1676 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1677 		if (do_sysvsem) {
1678 			/*
1679 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1680 			 */
1681 			exit_sem(current);
1682 		}
1683 
1684 		if (new_nsproxy) {
1685 			switch_task_namespaces(current, new_nsproxy);
1686 			new_nsproxy = NULL;
1687 		}
1688 
1689 		task_lock(current);
1690 
1691 		if (new_fs) {
1692 			fs = current->fs;
1693 			write_lock(&fs->lock);
1694 			current->fs = new_fs;
1695 			if (--fs->users)
1696 				new_fs = NULL;
1697 			else
1698 				new_fs = fs;
1699 			write_unlock(&fs->lock);
1700 		}
1701 
1702 		if (new_mm) {
1703 			mm = current->mm;
1704 			active_mm = current->active_mm;
1705 			current->mm = new_mm;
1706 			current->active_mm = new_mm;
1707 			activate_mm(active_mm, new_mm);
1708 			new_mm = mm;
1709 		}
1710 
1711 		if (new_fd) {
1712 			fd = current->files;
1713 			current->files = new_fd;
1714 			new_fd = fd;
1715 		}
1716 
1717 		task_unlock(current);
1718 	}
1719 
1720 	if (new_nsproxy)
1721 		put_nsproxy(new_nsproxy);
1722 
1723 bad_unshare_cleanup_fd:
1724 	if (new_fd)
1725 		put_files_struct(new_fd);
1726 
1727 bad_unshare_cleanup_vm:
1728 	if (new_mm)
1729 		mmput(new_mm);
1730 
1731 bad_unshare_cleanup_sigh:
1732 	if (new_sigh)
1733 		if (atomic_dec_and_test(&new_sigh->count))
1734 			kmem_cache_free(sighand_cachep, new_sigh);
1735 
1736 bad_unshare_cleanup_fs:
1737 	if (new_fs)
1738 		free_fs_struct(new_fs);
1739 
1740 bad_unshare_cleanup_thread:
1741 bad_unshare_out:
1742 	return err;
1743 }
1744 
1745 /*
1746  *	Helper to unshare the files of the current task.
1747  *	We don't want to expose copy_files internals to
1748  *	the exec layer of the kernel.
1749  */
1750 
1751 int unshare_files(struct files_struct **displaced)
1752 {
1753 	struct task_struct *task = current;
1754 	struct files_struct *copy = NULL;
1755 	int error;
1756 
1757 	error = unshare_fd(CLONE_FILES, &copy);
1758 	if (error || !copy) {
1759 		*displaced = NULL;
1760 		return error;
1761 	}
1762 	*displaced = task->files;
1763 	task_lock(task);
1764 	task->files = copy;
1765 	task_unlock(task);
1766 	return 0;
1767 }
1768