xref: /linux/kernel/fork.c (revision 8b4a40809e5330c9da5d20107d693d92d73b31dc)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 #include <linux/tty.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/mmu_context.h>
58 #include <asm/cacheflush.h>
59 #include <asm/tlbflush.h>
60 
61 /*
62  * Protected counters by write_lock_irq(&tasklist_lock)
63  */
64 unsigned long total_forks;	/* Handle normal Linux uptimes. */
65 int nr_threads; 		/* The idle threads do not count.. */
66 
67 int max_threads;		/* tunable limit on nr_threads */
68 
69 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
70 
71 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
72 
73 int nr_processes(void)
74 {
75 	int cpu;
76 	int total = 0;
77 
78 	for_each_online_cpu(cpu)
79 		total += per_cpu(process_counts, cpu);
80 
81 	return total;
82 }
83 
84 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
85 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
86 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
87 static struct kmem_cache *task_struct_cachep;
88 #endif
89 
90 /* SLAB cache for signal_struct structures (tsk->signal) */
91 static struct kmem_cache *signal_cachep;
92 
93 /* SLAB cache for sighand_struct structures (tsk->sighand) */
94 struct kmem_cache *sighand_cachep;
95 
96 /* SLAB cache for files_struct structures (tsk->files) */
97 struct kmem_cache *files_cachep;
98 
99 /* SLAB cache for fs_struct structures (tsk->fs) */
100 struct kmem_cache *fs_cachep;
101 
102 /* SLAB cache for vm_area_struct structures */
103 struct kmem_cache *vm_area_cachep;
104 
105 /* SLAB cache for mm_struct structures (tsk->mm) */
106 static struct kmem_cache *mm_cachep;
107 
108 void free_task(struct task_struct *tsk)
109 {
110 	free_thread_info(tsk->stack);
111 	rt_mutex_debug_task_free(tsk);
112 	free_task_struct(tsk);
113 }
114 EXPORT_SYMBOL(free_task);
115 
116 void __put_task_struct(struct task_struct *tsk)
117 {
118 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
119 	WARN_ON(atomic_read(&tsk->usage));
120 	WARN_ON(tsk == current);
121 
122 	security_task_free(tsk);
123 	free_uid(tsk->user);
124 	put_group_info(tsk->group_info);
125 	delayacct_tsk_free(tsk);
126 
127 	if (!profile_handoff_task(tsk))
128 		free_task(tsk);
129 }
130 
131 void __init fork_init(unsigned long mempages)
132 {
133 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
134 #ifndef ARCH_MIN_TASKALIGN
135 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
136 #endif
137 	/* create a slab on which task_structs can be allocated */
138 	task_struct_cachep =
139 		kmem_cache_create("task_struct", sizeof(struct task_struct),
140 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
141 #endif
142 
143 	/*
144 	 * The default maximum number of threads is set to a safe
145 	 * value: the thread structures can take up at most half
146 	 * of memory.
147 	 */
148 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
149 
150 	/*
151 	 * we need to allow at least 20 threads to boot a system
152 	 */
153 	if(max_threads < 20)
154 		max_threads = 20;
155 
156 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
157 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
158 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
159 		init_task.signal->rlim[RLIMIT_NPROC];
160 }
161 
162 static struct task_struct *dup_task_struct(struct task_struct *orig)
163 {
164 	struct task_struct *tsk;
165 	struct thread_info *ti;
166 
167 	prepare_to_copy(orig);
168 
169 	tsk = alloc_task_struct();
170 	if (!tsk)
171 		return NULL;
172 
173 	ti = alloc_thread_info(tsk);
174 	if (!ti) {
175 		free_task_struct(tsk);
176 		return NULL;
177 	}
178 
179 	*tsk = *orig;
180 	tsk->stack = ti;
181 	setup_thread_stack(tsk, orig);
182 
183 #ifdef CONFIG_CC_STACKPROTECTOR
184 	tsk->stack_canary = get_random_int();
185 #endif
186 
187 	/* One for us, one for whoever does the "release_task()" (usually parent) */
188 	atomic_set(&tsk->usage,2);
189 	atomic_set(&tsk->fs_excl, 0);
190 #ifdef CONFIG_BLK_DEV_IO_TRACE
191 	tsk->btrace_seq = 0;
192 #endif
193 	tsk->splice_pipe = NULL;
194 	return tsk;
195 }
196 
197 #ifdef CONFIG_MMU
198 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
199 {
200 	struct vm_area_struct *mpnt, *tmp, **pprev;
201 	struct rb_node **rb_link, *rb_parent;
202 	int retval;
203 	unsigned long charge;
204 	struct mempolicy *pol;
205 
206 	down_write(&oldmm->mmap_sem);
207 	flush_cache_dup_mm(oldmm);
208 	/*
209 	 * Not linked in yet - no deadlock potential:
210 	 */
211 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
212 
213 	mm->locked_vm = 0;
214 	mm->mmap = NULL;
215 	mm->mmap_cache = NULL;
216 	mm->free_area_cache = oldmm->mmap_base;
217 	mm->cached_hole_size = ~0UL;
218 	mm->map_count = 0;
219 	cpus_clear(mm->cpu_vm_mask);
220 	mm->mm_rb = RB_ROOT;
221 	rb_link = &mm->mm_rb.rb_node;
222 	rb_parent = NULL;
223 	pprev = &mm->mmap;
224 
225 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
226 		struct file *file;
227 
228 		if (mpnt->vm_flags & VM_DONTCOPY) {
229 			long pages = vma_pages(mpnt);
230 			mm->total_vm -= pages;
231 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
232 								-pages);
233 			continue;
234 		}
235 		charge = 0;
236 		if (mpnt->vm_flags & VM_ACCOUNT) {
237 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
238 			if (security_vm_enough_memory(len))
239 				goto fail_nomem;
240 			charge = len;
241 		}
242 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
243 		if (!tmp)
244 			goto fail_nomem;
245 		*tmp = *mpnt;
246 		pol = mpol_copy(vma_policy(mpnt));
247 		retval = PTR_ERR(pol);
248 		if (IS_ERR(pol))
249 			goto fail_nomem_policy;
250 		vma_set_policy(tmp, pol);
251 		tmp->vm_flags &= ~VM_LOCKED;
252 		tmp->vm_mm = mm;
253 		tmp->vm_next = NULL;
254 		anon_vma_link(tmp);
255 		file = tmp->vm_file;
256 		if (file) {
257 			struct inode *inode = file->f_path.dentry->d_inode;
258 			get_file(file);
259 			if (tmp->vm_flags & VM_DENYWRITE)
260 				atomic_dec(&inode->i_writecount);
261 
262 			/* insert tmp into the share list, just after mpnt */
263 			spin_lock(&file->f_mapping->i_mmap_lock);
264 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
265 			flush_dcache_mmap_lock(file->f_mapping);
266 			vma_prio_tree_add(tmp, mpnt);
267 			flush_dcache_mmap_unlock(file->f_mapping);
268 			spin_unlock(&file->f_mapping->i_mmap_lock);
269 		}
270 
271 		/*
272 		 * Link in the new vma and copy the page table entries.
273 		 */
274 		*pprev = tmp;
275 		pprev = &tmp->vm_next;
276 
277 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
278 		rb_link = &tmp->vm_rb.rb_right;
279 		rb_parent = &tmp->vm_rb;
280 
281 		mm->map_count++;
282 		retval = copy_page_range(mm, oldmm, mpnt);
283 
284 		if (tmp->vm_ops && tmp->vm_ops->open)
285 			tmp->vm_ops->open(tmp);
286 
287 		if (retval)
288 			goto out;
289 	}
290 	/* a new mm has just been created */
291 	arch_dup_mmap(oldmm, mm);
292 	retval = 0;
293 out:
294 	up_write(&mm->mmap_sem);
295 	flush_tlb_mm(oldmm);
296 	up_write(&oldmm->mmap_sem);
297 	return retval;
298 fail_nomem_policy:
299 	kmem_cache_free(vm_area_cachep, tmp);
300 fail_nomem:
301 	retval = -ENOMEM;
302 	vm_unacct_memory(charge);
303 	goto out;
304 }
305 
306 static inline int mm_alloc_pgd(struct mm_struct * mm)
307 {
308 	mm->pgd = pgd_alloc(mm);
309 	if (unlikely(!mm->pgd))
310 		return -ENOMEM;
311 	return 0;
312 }
313 
314 static inline void mm_free_pgd(struct mm_struct * mm)
315 {
316 	pgd_free(mm->pgd);
317 }
318 #else
319 #define dup_mmap(mm, oldmm)	(0)
320 #define mm_alloc_pgd(mm)	(0)
321 #define mm_free_pgd(mm)
322 #endif /* CONFIG_MMU */
323 
324  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
325 
326 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
327 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
328 
329 #include <linux/init_task.h>
330 
331 static struct mm_struct * mm_init(struct mm_struct * mm)
332 {
333 	atomic_set(&mm->mm_users, 1);
334 	atomic_set(&mm->mm_count, 1);
335 	init_rwsem(&mm->mmap_sem);
336 	INIT_LIST_HEAD(&mm->mmlist);
337 	mm->core_waiters = 0;
338 	mm->nr_ptes = 0;
339 	set_mm_counter(mm, file_rss, 0);
340 	set_mm_counter(mm, anon_rss, 0);
341 	spin_lock_init(&mm->page_table_lock);
342 	rwlock_init(&mm->ioctx_list_lock);
343 	mm->ioctx_list = NULL;
344 	mm->free_area_cache = TASK_UNMAPPED_BASE;
345 	mm->cached_hole_size = ~0UL;
346 
347 	if (likely(!mm_alloc_pgd(mm))) {
348 		mm->def_flags = 0;
349 		return mm;
350 	}
351 	free_mm(mm);
352 	return NULL;
353 }
354 
355 /*
356  * Allocate and initialize an mm_struct.
357  */
358 struct mm_struct * mm_alloc(void)
359 {
360 	struct mm_struct * mm;
361 
362 	mm = allocate_mm();
363 	if (mm) {
364 		memset(mm, 0, sizeof(*mm));
365 		mm = mm_init(mm);
366 	}
367 	return mm;
368 }
369 
370 /*
371  * Called when the last reference to the mm
372  * is dropped: either by a lazy thread or by
373  * mmput. Free the page directory and the mm.
374  */
375 void fastcall __mmdrop(struct mm_struct *mm)
376 {
377 	BUG_ON(mm == &init_mm);
378 	mm_free_pgd(mm);
379 	destroy_context(mm);
380 	free_mm(mm);
381 }
382 
383 /*
384  * Decrement the use count and release all resources for an mm.
385  */
386 void mmput(struct mm_struct *mm)
387 {
388 	might_sleep();
389 
390 	if (atomic_dec_and_test(&mm->mm_users)) {
391 		exit_aio(mm);
392 		exit_mmap(mm);
393 		if (!list_empty(&mm->mmlist)) {
394 			spin_lock(&mmlist_lock);
395 			list_del(&mm->mmlist);
396 			spin_unlock(&mmlist_lock);
397 		}
398 		put_swap_token(mm);
399 		mmdrop(mm);
400 	}
401 }
402 EXPORT_SYMBOL_GPL(mmput);
403 
404 /**
405  * get_task_mm - acquire a reference to the task's mm
406  *
407  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
408  * this kernel workthread has transiently adopted a user mm with use_mm,
409  * to do its AIO) is not set and if so returns a reference to it, after
410  * bumping up the use count.  User must release the mm via mmput()
411  * after use.  Typically used by /proc and ptrace.
412  */
413 struct mm_struct *get_task_mm(struct task_struct *task)
414 {
415 	struct mm_struct *mm;
416 
417 	task_lock(task);
418 	mm = task->mm;
419 	if (mm) {
420 		if (task->flags & PF_BORROWED_MM)
421 			mm = NULL;
422 		else
423 			atomic_inc(&mm->mm_users);
424 	}
425 	task_unlock(task);
426 	return mm;
427 }
428 EXPORT_SYMBOL_GPL(get_task_mm);
429 
430 /* Please note the differences between mmput and mm_release.
431  * mmput is called whenever we stop holding onto a mm_struct,
432  * error success whatever.
433  *
434  * mm_release is called after a mm_struct has been removed
435  * from the current process.
436  *
437  * This difference is important for error handling, when we
438  * only half set up a mm_struct for a new process and need to restore
439  * the old one.  Because we mmput the new mm_struct before
440  * restoring the old one. . .
441  * Eric Biederman 10 January 1998
442  */
443 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
444 {
445 	struct completion *vfork_done = tsk->vfork_done;
446 
447 	/* Get rid of any cached register state */
448 	deactivate_mm(tsk, mm);
449 
450 	/* notify parent sleeping on vfork() */
451 	if (vfork_done) {
452 		tsk->vfork_done = NULL;
453 		complete(vfork_done);
454 	}
455 
456 	/*
457 	 * If we're exiting normally, clear a user-space tid field if
458 	 * requested.  We leave this alone when dying by signal, to leave
459 	 * the value intact in a core dump, and to save the unnecessary
460 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
461 	 */
462 	if (tsk->clear_child_tid
463 	    && !(tsk->flags & PF_SIGNALED)
464 	    && atomic_read(&mm->mm_users) > 1) {
465 		u32 __user * tidptr = tsk->clear_child_tid;
466 		tsk->clear_child_tid = NULL;
467 
468 		/*
469 		 * We don't check the error code - if userspace has
470 		 * not set up a proper pointer then tough luck.
471 		 */
472 		put_user(0, tidptr);
473 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
474 	}
475 }
476 
477 /*
478  * Allocate a new mm structure and copy contents from the
479  * mm structure of the passed in task structure.
480  */
481 static struct mm_struct *dup_mm(struct task_struct *tsk)
482 {
483 	struct mm_struct *mm, *oldmm = current->mm;
484 	int err;
485 
486 	if (!oldmm)
487 		return NULL;
488 
489 	mm = allocate_mm();
490 	if (!mm)
491 		goto fail_nomem;
492 
493 	memcpy(mm, oldmm, sizeof(*mm));
494 
495 	/* Initializing for Swap token stuff */
496 	mm->token_priority = 0;
497 	mm->last_interval = 0;
498 
499 	if (!mm_init(mm))
500 		goto fail_nomem;
501 
502 	if (init_new_context(tsk, mm))
503 		goto fail_nocontext;
504 
505 	err = dup_mmap(mm, oldmm);
506 	if (err)
507 		goto free_pt;
508 
509 	mm->hiwater_rss = get_mm_rss(mm);
510 	mm->hiwater_vm = mm->total_vm;
511 
512 	return mm;
513 
514 free_pt:
515 	mmput(mm);
516 
517 fail_nomem:
518 	return NULL;
519 
520 fail_nocontext:
521 	/*
522 	 * If init_new_context() failed, we cannot use mmput() to free the mm
523 	 * because it calls destroy_context()
524 	 */
525 	mm_free_pgd(mm);
526 	free_mm(mm);
527 	return NULL;
528 }
529 
530 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
531 {
532 	struct mm_struct * mm, *oldmm;
533 	int retval;
534 
535 	tsk->min_flt = tsk->maj_flt = 0;
536 	tsk->nvcsw = tsk->nivcsw = 0;
537 
538 	tsk->mm = NULL;
539 	tsk->active_mm = NULL;
540 
541 	/*
542 	 * Are we cloning a kernel thread?
543 	 *
544 	 * We need to steal a active VM for that..
545 	 */
546 	oldmm = current->mm;
547 	if (!oldmm)
548 		return 0;
549 
550 	if (clone_flags & CLONE_VM) {
551 		atomic_inc(&oldmm->mm_users);
552 		mm = oldmm;
553 		goto good_mm;
554 	}
555 
556 	retval = -ENOMEM;
557 	mm = dup_mm(tsk);
558 	if (!mm)
559 		goto fail_nomem;
560 
561 good_mm:
562 	/* Initializing for Swap token stuff */
563 	mm->token_priority = 0;
564 	mm->last_interval = 0;
565 
566 	tsk->mm = mm;
567 	tsk->active_mm = mm;
568 	return 0;
569 
570 fail_nomem:
571 	return retval;
572 }
573 
574 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
575 {
576 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
577 	/* We don't need to lock fs - think why ;-) */
578 	if (fs) {
579 		atomic_set(&fs->count, 1);
580 		rwlock_init(&fs->lock);
581 		fs->umask = old->umask;
582 		read_lock(&old->lock);
583 		fs->rootmnt = mntget(old->rootmnt);
584 		fs->root = dget(old->root);
585 		fs->pwdmnt = mntget(old->pwdmnt);
586 		fs->pwd = dget(old->pwd);
587 		if (old->altroot) {
588 			fs->altrootmnt = mntget(old->altrootmnt);
589 			fs->altroot = dget(old->altroot);
590 		} else {
591 			fs->altrootmnt = NULL;
592 			fs->altroot = NULL;
593 		}
594 		read_unlock(&old->lock);
595 	}
596 	return fs;
597 }
598 
599 struct fs_struct *copy_fs_struct(struct fs_struct *old)
600 {
601 	return __copy_fs_struct(old);
602 }
603 
604 EXPORT_SYMBOL_GPL(copy_fs_struct);
605 
606 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
607 {
608 	if (clone_flags & CLONE_FS) {
609 		atomic_inc(&current->fs->count);
610 		return 0;
611 	}
612 	tsk->fs = __copy_fs_struct(current->fs);
613 	if (!tsk->fs)
614 		return -ENOMEM;
615 	return 0;
616 }
617 
618 static int count_open_files(struct fdtable *fdt)
619 {
620 	int size = fdt->max_fds;
621 	int i;
622 
623 	/* Find the last open fd */
624 	for (i = size/(8*sizeof(long)); i > 0; ) {
625 		if (fdt->open_fds->fds_bits[--i])
626 			break;
627 	}
628 	i = (i+1) * 8 * sizeof(long);
629 	return i;
630 }
631 
632 static struct files_struct *alloc_files(void)
633 {
634 	struct files_struct *newf;
635 	struct fdtable *fdt;
636 
637 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
638 	if (!newf)
639 		goto out;
640 
641 	atomic_set(&newf->count, 1);
642 
643 	spin_lock_init(&newf->file_lock);
644 	newf->next_fd = 0;
645 	fdt = &newf->fdtab;
646 	fdt->max_fds = NR_OPEN_DEFAULT;
647 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
648 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
649 	fdt->fd = &newf->fd_array[0];
650 	INIT_RCU_HEAD(&fdt->rcu);
651 	fdt->next = NULL;
652 	rcu_assign_pointer(newf->fdt, fdt);
653 out:
654 	return newf;
655 }
656 
657 /*
658  * Allocate a new files structure and copy contents from the
659  * passed in files structure.
660  * errorp will be valid only when the returned files_struct is NULL.
661  */
662 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
663 {
664 	struct files_struct *newf;
665 	struct file **old_fds, **new_fds;
666 	int open_files, size, i;
667 	struct fdtable *old_fdt, *new_fdt;
668 
669 	*errorp = -ENOMEM;
670 	newf = alloc_files();
671 	if (!newf)
672 		goto out;
673 
674 	spin_lock(&oldf->file_lock);
675 	old_fdt = files_fdtable(oldf);
676 	new_fdt = files_fdtable(newf);
677 	open_files = count_open_files(old_fdt);
678 
679 	/*
680 	 * Check whether we need to allocate a larger fd array and fd set.
681 	 * Note: we're not a clone task, so the open count won't change.
682 	 */
683 	if (open_files > new_fdt->max_fds) {
684 		new_fdt->max_fds = 0;
685 		spin_unlock(&oldf->file_lock);
686 		spin_lock(&newf->file_lock);
687 		*errorp = expand_files(newf, open_files-1);
688 		spin_unlock(&newf->file_lock);
689 		if (*errorp < 0)
690 			goto out_release;
691 		new_fdt = files_fdtable(newf);
692 		/*
693 		 * Reacquire the oldf lock and a pointer to its fd table
694 		 * who knows it may have a new bigger fd table. We need
695 		 * the latest pointer.
696 		 */
697 		spin_lock(&oldf->file_lock);
698 		old_fdt = files_fdtable(oldf);
699 	}
700 
701 	old_fds = old_fdt->fd;
702 	new_fds = new_fdt->fd;
703 
704 	memcpy(new_fdt->open_fds->fds_bits,
705 		old_fdt->open_fds->fds_bits, open_files/8);
706 	memcpy(new_fdt->close_on_exec->fds_bits,
707 		old_fdt->close_on_exec->fds_bits, open_files/8);
708 
709 	for (i = open_files; i != 0; i--) {
710 		struct file *f = *old_fds++;
711 		if (f) {
712 			get_file(f);
713 		} else {
714 			/*
715 			 * The fd may be claimed in the fd bitmap but not yet
716 			 * instantiated in the files array if a sibling thread
717 			 * is partway through open().  So make sure that this
718 			 * fd is available to the new process.
719 			 */
720 			FD_CLR(open_files - i, new_fdt->open_fds);
721 		}
722 		rcu_assign_pointer(*new_fds++, f);
723 	}
724 	spin_unlock(&oldf->file_lock);
725 
726 	/* compute the remainder to be cleared */
727 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
728 
729 	/* This is long word aligned thus could use a optimized version */
730 	memset(new_fds, 0, size);
731 
732 	if (new_fdt->max_fds > open_files) {
733 		int left = (new_fdt->max_fds-open_files)/8;
734 		int start = open_files / (8 * sizeof(unsigned long));
735 
736 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
737 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
738 	}
739 
740 	return newf;
741 
742 out_release:
743 	kmem_cache_free(files_cachep, newf);
744 out:
745 	return NULL;
746 }
747 
748 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
749 {
750 	struct files_struct *oldf, *newf;
751 	int error = 0;
752 
753 	/*
754 	 * A background process may not have any files ...
755 	 */
756 	oldf = current->files;
757 	if (!oldf)
758 		goto out;
759 
760 	if (clone_flags & CLONE_FILES) {
761 		atomic_inc(&oldf->count);
762 		goto out;
763 	}
764 
765 	/*
766 	 * Note: we may be using current for both targets (See exec.c)
767 	 * This works because we cache current->files (old) as oldf. Don't
768 	 * break this.
769 	 */
770 	tsk->files = NULL;
771 	newf = dup_fd(oldf, &error);
772 	if (!newf)
773 		goto out;
774 
775 	tsk->files = newf;
776 	error = 0;
777 out:
778 	return error;
779 }
780 
781 /*
782  *	Helper to unshare the files of the current task.
783  *	We don't want to expose copy_files internals to
784  *	the exec layer of the kernel.
785  */
786 
787 int unshare_files(void)
788 {
789 	struct files_struct *files  = current->files;
790 	int rc;
791 
792 	BUG_ON(!files);
793 
794 	/* This can race but the race causes us to copy when we don't
795 	   need to and drop the copy */
796 	if(atomic_read(&files->count) == 1)
797 	{
798 		atomic_inc(&files->count);
799 		return 0;
800 	}
801 	rc = copy_files(0, current);
802 	if(rc)
803 		current->files = files;
804 	return rc;
805 }
806 
807 EXPORT_SYMBOL(unshare_files);
808 
809 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
810 {
811 	struct sighand_struct *sig;
812 
813 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
814 		atomic_inc(&current->sighand->count);
815 		return 0;
816 	}
817 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
818 	rcu_assign_pointer(tsk->sighand, sig);
819 	if (!sig)
820 		return -ENOMEM;
821 	atomic_set(&sig->count, 1);
822 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
823 	return 0;
824 }
825 
826 void __cleanup_sighand(struct sighand_struct *sighand)
827 {
828 	if (atomic_dec_and_test(&sighand->count))
829 		kmem_cache_free(sighand_cachep, sighand);
830 }
831 
832 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
833 {
834 	struct signal_struct *sig;
835 	int ret;
836 
837 	if (clone_flags & CLONE_THREAD) {
838 		atomic_inc(&current->signal->count);
839 		atomic_inc(&current->signal->live);
840 		return 0;
841 	}
842 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
843 	tsk->signal = sig;
844 	if (!sig)
845 		return -ENOMEM;
846 
847 	ret = copy_thread_group_keys(tsk);
848 	if (ret < 0) {
849 		kmem_cache_free(signal_cachep, sig);
850 		return ret;
851 	}
852 
853 	atomic_set(&sig->count, 1);
854 	atomic_set(&sig->live, 1);
855 	init_waitqueue_head(&sig->wait_chldexit);
856 	sig->flags = 0;
857 	sig->group_exit_code = 0;
858 	sig->group_exit_task = NULL;
859 	sig->group_stop_count = 0;
860 	sig->curr_target = NULL;
861 	init_sigpending(&sig->shared_pending);
862 	INIT_LIST_HEAD(&sig->posix_timers);
863 
864 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
865 	sig->it_real_incr.tv64 = 0;
866 	sig->real_timer.function = it_real_fn;
867 	sig->tsk = tsk;
868 
869 	sig->it_virt_expires = cputime_zero;
870 	sig->it_virt_incr = cputime_zero;
871 	sig->it_prof_expires = cputime_zero;
872 	sig->it_prof_incr = cputime_zero;
873 
874 	sig->leader = 0;	/* session leadership doesn't inherit */
875 	sig->tty_old_pgrp = NULL;
876 
877 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
878 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
879 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
880 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
881 	sig->sum_sched_runtime = 0;
882 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
883 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
884 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
885 	taskstats_tgid_init(sig);
886 
887 	task_lock(current->group_leader);
888 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
889 	task_unlock(current->group_leader);
890 
891 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
892 		/*
893 		 * New sole thread in the process gets an expiry time
894 		 * of the whole CPU time limit.
895 		 */
896 		tsk->it_prof_expires =
897 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
898 	}
899 	acct_init_pacct(&sig->pacct);
900 
901 	tty_audit_fork(sig);
902 
903 	return 0;
904 }
905 
906 void __cleanup_signal(struct signal_struct *sig)
907 {
908 	exit_thread_group_keys(sig);
909 	kmem_cache_free(signal_cachep, sig);
910 }
911 
912 static inline void cleanup_signal(struct task_struct *tsk)
913 {
914 	struct signal_struct *sig = tsk->signal;
915 
916 	atomic_dec(&sig->live);
917 
918 	if (atomic_dec_and_test(&sig->count))
919 		__cleanup_signal(sig);
920 }
921 
922 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
923 {
924 	unsigned long new_flags = p->flags;
925 
926 	new_flags &= ~PF_SUPERPRIV;
927 	new_flags |= PF_FORKNOEXEC;
928 	if (!(clone_flags & CLONE_PTRACE))
929 		p->ptrace = 0;
930 	p->flags = new_flags;
931 }
932 
933 asmlinkage long sys_set_tid_address(int __user *tidptr)
934 {
935 	current->clear_child_tid = tidptr;
936 
937 	return current->pid;
938 }
939 
940 static inline void rt_mutex_init_task(struct task_struct *p)
941 {
942 	spin_lock_init(&p->pi_lock);
943 #ifdef CONFIG_RT_MUTEXES
944 	plist_head_init(&p->pi_waiters, &p->pi_lock);
945 	p->pi_blocked_on = NULL;
946 #endif
947 }
948 
949 /*
950  * This creates a new process as a copy of the old one,
951  * but does not actually start it yet.
952  *
953  * It copies the registers, and all the appropriate
954  * parts of the process environment (as per the clone
955  * flags). The actual kick-off is left to the caller.
956  */
957 static struct task_struct *copy_process(unsigned long clone_flags,
958 					unsigned long stack_start,
959 					struct pt_regs *regs,
960 					unsigned long stack_size,
961 					int __user *parent_tidptr,
962 					int __user *child_tidptr,
963 					struct pid *pid)
964 {
965 	int retval;
966 	struct task_struct *p = NULL;
967 
968 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
969 		return ERR_PTR(-EINVAL);
970 
971 	/*
972 	 * Thread groups must share signals as well, and detached threads
973 	 * can only be started up within the thread group.
974 	 */
975 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
976 		return ERR_PTR(-EINVAL);
977 
978 	/*
979 	 * Shared signal handlers imply shared VM. By way of the above,
980 	 * thread groups also imply shared VM. Blocking this case allows
981 	 * for various simplifications in other code.
982 	 */
983 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
984 		return ERR_PTR(-EINVAL);
985 
986 	retval = security_task_create(clone_flags);
987 	if (retval)
988 		goto fork_out;
989 
990 	retval = -ENOMEM;
991 	p = dup_task_struct(current);
992 	if (!p)
993 		goto fork_out;
994 
995 	rt_mutex_init_task(p);
996 
997 #ifdef CONFIG_TRACE_IRQFLAGS
998 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
999 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1000 #endif
1001 	retval = -EAGAIN;
1002 	if (atomic_read(&p->user->processes) >=
1003 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1004 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1005 		    p->user != current->nsproxy->user_ns->root_user)
1006 			goto bad_fork_free;
1007 	}
1008 
1009 	atomic_inc(&p->user->__count);
1010 	atomic_inc(&p->user->processes);
1011 	get_group_info(p->group_info);
1012 
1013 	/*
1014 	 * If multiple threads are within copy_process(), then this check
1015 	 * triggers too late. This doesn't hurt, the check is only there
1016 	 * to stop root fork bombs.
1017 	 */
1018 	if (nr_threads >= max_threads)
1019 		goto bad_fork_cleanup_count;
1020 
1021 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1022 		goto bad_fork_cleanup_count;
1023 
1024 	if (p->binfmt && !try_module_get(p->binfmt->module))
1025 		goto bad_fork_cleanup_put_domain;
1026 
1027 	p->did_exec = 0;
1028 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1029 	copy_flags(clone_flags, p);
1030 	p->pid = pid_nr(pid);
1031 	retval = -EFAULT;
1032 	if (clone_flags & CLONE_PARENT_SETTID)
1033 		if (put_user(p->pid, parent_tidptr))
1034 			goto bad_fork_cleanup_delays_binfmt;
1035 
1036 	INIT_LIST_HEAD(&p->children);
1037 	INIT_LIST_HEAD(&p->sibling);
1038 	p->vfork_done = NULL;
1039 	spin_lock_init(&p->alloc_lock);
1040 
1041 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1042 	init_sigpending(&p->pending);
1043 
1044 	p->utime = cputime_zero;
1045 	p->stime = cputime_zero;
1046 
1047 #ifdef CONFIG_TASK_XACCT
1048 	p->rchar = 0;		/* I/O counter: bytes read */
1049 	p->wchar = 0;		/* I/O counter: bytes written */
1050 	p->syscr = 0;		/* I/O counter: read syscalls */
1051 	p->syscw = 0;		/* I/O counter: write syscalls */
1052 #endif
1053 	task_io_accounting_init(p);
1054 	acct_clear_integrals(p);
1055 
1056  	p->it_virt_expires = cputime_zero;
1057 	p->it_prof_expires = cputime_zero;
1058  	p->it_sched_expires = 0;
1059  	INIT_LIST_HEAD(&p->cpu_timers[0]);
1060  	INIT_LIST_HEAD(&p->cpu_timers[1]);
1061  	INIT_LIST_HEAD(&p->cpu_timers[2]);
1062 
1063 	p->lock_depth = -1;		/* -1 = no lock */
1064 	do_posix_clock_monotonic_gettime(&p->start_time);
1065 	p->real_start_time = p->start_time;
1066 	monotonic_to_bootbased(&p->real_start_time);
1067 	p->security = NULL;
1068 	p->io_context = NULL;
1069 	p->io_wait = NULL;
1070 	p->audit_context = NULL;
1071 	cpuset_fork(p);
1072 #ifdef CONFIG_NUMA
1073  	p->mempolicy = mpol_copy(p->mempolicy);
1074  	if (IS_ERR(p->mempolicy)) {
1075  		retval = PTR_ERR(p->mempolicy);
1076  		p->mempolicy = NULL;
1077  		goto bad_fork_cleanup_cpuset;
1078  	}
1079 	mpol_fix_fork_child_flag(p);
1080 #endif
1081 #ifdef CONFIG_TRACE_IRQFLAGS
1082 	p->irq_events = 0;
1083 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1084 	p->hardirqs_enabled = 1;
1085 #else
1086 	p->hardirqs_enabled = 0;
1087 #endif
1088 	p->hardirq_enable_ip = 0;
1089 	p->hardirq_enable_event = 0;
1090 	p->hardirq_disable_ip = _THIS_IP_;
1091 	p->hardirq_disable_event = 0;
1092 	p->softirqs_enabled = 1;
1093 	p->softirq_enable_ip = _THIS_IP_;
1094 	p->softirq_enable_event = 0;
1095 	p->softirq_disable_ip = 0;
1096 	p->softirq_disable_event = 0;
1097 	p->hardirq_context = 0;
1098 	p->softirq_context = 0;
1099 #endif
1100 #ifdef CONFIG_LOCKDEP
1101 	p->lockdep_depth = 0; /* no locks held yet */
1102 	p->curr_chain_key = 0;
1103 	p->lockdep_recursion = 0;
1104 #endif
1105 
1106 #ifdef CONFIG_DEBUG_MUTEXES
1107 	p->blocked_on = NULL; /* not blocked yet */
1108 #endif
1109 
1110 	p->tgid = p->pid;
1111 	if (clone_flags & CLONE_THREAD)
1112 		p->tgid = current->tgid;
1113 
1114 	if ((retval = security_task_alloc(p)))
1115 		goto bad_fork_cleanup_policy;
1116 	if ((retval = audit_alloc(p)))
1117 		goto bad_fork_cleanup_security;
1118 	/* copy all the process information */
1119 	if ((retval = copy_semundo(clone_flags, p)))
1120 		goto bad_fork_cleanup_audit;
1121 	if ((retval = copy_files(clone_flags, p)))
1122 		goto bad_fork_cleanup_semundo;
1123 	if ((retval = copy_fs(clone_flags, p)))
1124 		goto bad_fork_cleanup_files;
1125 	if ((retval = copy_sighand(clone_flags, p)))
1126 		goto bad_fork_cleanup_fs;
1127 	if ((retval = copy_signal(clone_flags, p)))
1128 		goto bad_fork_cleanup_sighand;
1129 	if ((retval = copy_mm(clone_flags, p)))
1130 		goto bad_fork_cleanup_signal;
1131 	if ((retval = copy_keys(clone_flags, p)))
1132 		goto bad_fork_cleanup_mm;
1133 	if ((retval = copy_namespaces(clone_flags, p)))
1134 		goto bad_fork_cleanup_keys;
1135 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1136 	if (retval)
1137 		goto bad_fork_cleanup_namespaces;
1138 
1139 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1140 	/*
1141 	 * Clear TID on mm_release()?
1142 	 */
1143 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1144 	p->robust_list = NULL;
1145 #ifdef CONFIG_COMPAT
1146 	p->compat_robust_list = NULL;
1147 #endif
1148 	INIT_LIST_HEAD(&p->pi_state_list);
1149 	p->pi_state_cache = NULL;
1150 
1151 	/*
1152 	 * sigaltstack should be cleared when sharing the same VM
1153 	 */
1154 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1155 		p->sas_ss_sp = p->sas_ss_size = 0;
1156 
1157 	/*
1158 	 * Syscall tracing should be turned off in the child regardless
1159 	 * of CLONE_PTRACE.
1160 	 */
1161 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1162 #ifdef TIF_SYSCALL_EMU
1163 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1164 #endif
1165 
1166 	/* Our parent execution domain becomes current domain
1167 	   These must match for thread signalling to apply */
1168 	p->parent_exec_id = p->self_exec_id;
1169 
1170 	/* ok, now we should be set up.. */
1171 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1172 	p->pdeath_signal = 0;
1173 	p->exit_state = 0;
1174 
1175 	/*
1176 	 * Ok, make it visible to the rest of the system.
1177 	 * We dont wake it up yet.
1178 	 */
1179 	p->group_leader = p;
1180 	INIT_LIST_HEAD(&p->thread_group);
1181 	INIT_LIST_HEAD(&p->ptrace_children);
1182 	INIT_LIST_HEAD(&p->ptrace_list);
1183 
1184 	/* Perform scheduler related setup. Assign this task to a CPU. */
1185 	sched_fork(p, clone_flags);
1186 
1187 	/* Need tasklist lock for parent etc handling! */
1188 	write_lock_irq(&tasklist_lock);
1189 
1190 	/* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1191 	p->ioprio = current->ioprio;
1192 
1193 	/*
1194 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1195 	 * not be changed, nor will its assigned CPU.
1196 	 *
1197 	 * The cpus_allowed mask of the parent may have changed after it was
1198 	 * copied first time - so re-copy it here, then check the child's CPU
1199 	 * to ensure it is on a valid CPU (and if not, just force it back to
1200 	 * parent's CPU). This avoids alot of nasty races.
1201 	 */
1202 	p->cpus_allowed = current->cpus_allowed;
1203 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1204 			!cpu_online(task_cpu(p))))
1205 		set_task_cpu(p, smp_processor_id());
1206 
1207 	/* CLONE_PARENT re-uses the old parent */
1208 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1209 		p->real_parent = current->real_parent;
1210 	else
1211 		p->real_parent = current;
1212 	p->parent = p->real_parent;
1213 
1214 	spin_lock(&current->sighand->siglock);
1215 
1216 	/*
1217 	 * Process group and session signals need to be delivered to just the
1218 	 * parent before the fork or both the parent and the child after the
1219 	 * fork. Restart if a signal comes in before we add the new process to
1220 	 * it's process group.
1221 	 * A fatal signal pending means that current will exit, so the new
1222 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1223  	 */
1224  	recalc_sigpending();
1225 	if (signal_pending(current)) {
1226 		spin_unlock(&current->sighand->siglock);
1227 		write_unlock_irq(&tasklist_lock);
1228 		retval = -ERESTARTNOINTR;
1229 		goto bad_fork_cleanup_namespaces;
1230 	}
1231 
1232 	if (clone_flags & CLONE_THREAD) {
1233 		p->group_leader = current->group_leader;
1234 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1235 
1236 		if (!cputime_eq(current->signal->it_virt_expires,
1237 				cputime_zero) ||
1238 		    !cputime_eq(current->signal->it_prof_expires,
1239 				cputime_zero) ||
1240 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1241 		    !list_empty(&current->signal->cpu_timers[0]) ||
1242 		    !list_empty(&current->signal->cpu_timers[1]) ||
1243 		    !list_empty(&current->signal->cpu_timers[2])) {
1244 			/*
1245 			 * Have child wake up on its first tick to check
1246 			 * for process CPU timers.
1247 			 */
1248 			p->it_prof_expires = jiffies_to_cputime(1);
1249 		}
1250 	}
1251 
1252 	if (likely(p->pid)) {
1253 		add_parent(p);
1254 		if (unlikely(p->ptrace & PT_PTRACED))
1255 			__ptrace_link(p, current->parent);
1256 
1257 		if (thread_group_leader(p)) {
1258 			p->signal->tty = current->signal->tty;
1259 			p->signal->pgrp = process_group(current);
1260 			set_signal_session(p->signal, process_session(current));
1261 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1262 			attach_pid(p, PIDTYPE_SID, task_session(current));
1263 
1264 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1265 			__get_cpu_var(process_counts)++;
1266 		}
1267 		attach_pid(p, PIDTYPE_PID, pid);
1268 		nr_threads++;
1269 	}
1270 
1271 	total_forks++;
1272 	spin_unlock(&current->sighand->siglock);
1273 	write_unlock_irq(&tasklist_lock);
1274 	proc_fork_connector(p);
1275 	return p;
1276 
1277 bad_fork_cleanup_namespaces:
1278 	exit_task_namespaces(p);
1279 bad_fork_cleanup_keys:
1280 	exit_keys(p);
1281 bad_fork_cleanup_mm:
1282 	if (p->mm)
1283 		mmput(p->mm);
1284 bad_fork_cleanup_signal:
1285 	cleanup_signal(p);
1286 bad_fork_cleanup_sighand:
1287 	__cleanup_sighand(p->sighand);
1288 bad_fork_cleanup_fs:
1289 	exit_fs(p); /* blocking */
1290 bad_fork_cleanup_files:
1291 	exit_files(p); /* blocking */
1292 bad_fork_cleanup_semundo:
1293 	exit_sem(p);
1294 bad_fork_cleanup_audit:
1295 	audit_free(p);
1296 bad_fork_cleanup_security:
1297 	security_task_free(p);
1298 bad_fork_cleanup_policy:
1299 #ifdef CONFIG_NUMA
1300 	mpol_free(p->mempolicy);
1301 bad_fork_cleanup_cpuset:
1302 #endif
1303 	cpuset_exit(p);
1304 bad_fork_cleanup_delays_binfmt:
1305 	delayacct_tsk_free(p);
1306 	if (p->binfmt)
1307 		module_put(p->binfmt->module);
1308 bad_fork_cleanup_put_domain:
1309 	module_put(task_thread_info(p)->exec_domain->module);
1310 bad_fork_cleanup_count:
1311 	put_group_info(p->group_info);
1312 	atomic_dec(&p->user->processes);
1313 	free_uid(p->user);
1314 bad_fork_free:
1315 	free_task(p);
1316 fork_out:
1317 	return ERR_PTR(retval);
1318 }
1319 
1320 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1321 {
1322 	memset(regs, 0, sizeof(struct pt_regs));
1323 	return regs;
1324 }
1325 
1326 struct task_struct * __cpuinit fork_idle(int cpu)
1327 {
1328 	struct task_struct *task;
1329 	struct pt_regs regs;
1330 
1331 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL,
1332 				&init_struct_pid);
1333 	if (!IS_ERR(task))
1334 		init_idle(task, cpu);
1335 
1336 	return task;
1337 }
1338 
1339 static inline int fork_traceflag (unsigned clone_flags)
1340 {
1341 	if (clone_flags & CLONE_UNTRACED)
1342 		return 0;
1343 	else if (clone_flags & CLONE_VFORK) {
1344 		if (current->ptrace & PT_TRACE_VFORK)
1345 			return PTRACE_EVENT_VFORK;
1346 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1347 		if (current->ptrace & PT_TRACE_CLONE)
1348 			return PTRACE_EVENT_CLONE;
1349 	} else if (current->ptrace & PT_TRACE_FORK)
1350 		return PTRACE_EVENT_FORK;
1351 
1352 	return 0;
1353 }
1354 
1355 /*
1356  *  Ok, this is the main fork-routine.
1357  *
1358  * It copies the process, and if successful kick-starts
1359  * it and waits for it to finish using the VM if required.
1360  */
1361 long do_fork(unsigned long clone_flags,
1362 	      unsigned long stack_start,
1363 	      struct pt_regs *regs,
1364 	      unsigned long stack_size,
1365 	      int __user *parent_tidptr,
1366 	      int __user *child_tidptr)
1367 {
1368 	struct task_struct *p;
1369 	int trace = 0;
1370 	struct pid *pid = alloc_pid();
1371 	long nr;
1372 
1373 	if (!pid)
1374 		return -EAGAIN;
1375 	nr = pid->nr;
1376 	if (unlikely(current->ptrace)) {
1377 		trace = fork_traceflag (clone_flags);
1378 		if (trace)
1379 			clone_flags |= CLONE_PTRACE;
1380 	}
1381 
1382 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1383 	/*
1384 	 * Do this prior waking up the new thread - the thread pointer
1385 	 * might get invalid after that point, if the thread exits quickly.
1386 	 */
1387 	if (!IS_ERR(p)) {
1388 		struct completion vfork;
1389 
1390 		if (clone_flags & CLONE_VFORK) {
1391 			p->vfork_done = &vfork;
1392 			init_completion(&vfork);
1393 		}
1394 
1395 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1396 			/*
1397 			 * We'll start up with an immediate SIGSTOP.
1398 			 */
1399 			sigaddset(&p->pending.signal, SIGSTOP);
1400 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1401 		}
1402 
1403 		if (!(clone_flags & CLONE_STOPPED))
1404 			wake_up_new_task(p, clone_flags);
1405 		else
1406 			p->state = TASK_STOPPED;
1407 
1408 		if (unlikely (trace)) {
1409 			current->ptrace_message = nr;
1410 			ptrace_notify ((trace << 8) | SIGTRAP);
1411 		}
1412 
1413 		if (clone_flags & CLONE_VFORK) {
1414 			freezer_do_not_count();
1415 			wait_for_completion(&vfork);
1416 			freezer_count();
1417 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1418 				current->ptrace_message = nr;
1419 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1420 			}
1421 		}
1422 	} else {
1423 		free_pid(pid);
1424 		nr = PTR_ERR(p);
1425 	}
1426 	return nr;
1427 }
1428 
1429 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1430 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1431 #endif
1432 
1433 static void sighand_ctor(void *data, struct kmem_cache *cachep,
1434 			unsigned long flags)
1435 {
1436 	struct sighand_struct *sighand = data;
1437 
1438 	spin_lock_init(&sighand->siglock);
1439 	INIT_LIST_HEAD(&sighand->signalfd_list);
1440 }
1441 
1442 void __init proc_caches_init(void)
1443 {
1444 	sighand_cachep = kmem_cache_create("sighand_cache",
1445 			sizeof(struct sighand_struct), 0,
1446 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1447 			sighand_ctor, NULL);
1448 	signal_cachep = kmem_cache_create("signal_cache",
1449 			sizeof(struct signal_struct), 0,
1450 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1451 	files_cachep = kmem_cache_create("files_cache",
1452 			sizeof(struct files_struct), 0,
1453 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1454 	fs_cachep = kmem_cache_create("fs_cache",
1455 			sizeof(struct fs_struct), 0,
1456 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1457 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1458 			sizeof(struct vm_area_struct), 0,
1459 			SLAB_PANIC, NULL, NULL);
1460 	mm_cachep = kmem_cache_create("mm_struct",
1461 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1462 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1463 }
1464 
1465 /*
1466  * Check constraints on flags passed to the unshare system call and
1467  * force unsharing of additional process context as appropriate.
1468  */
1469 static inline void check_unshare_flags(unsigned long *flags_ptr)
1470 {
1471 	/*
1472 	 * If unsharing a thread from a thread group, must also
1473 	 * unshare vm.
1474 	 */
1475 	if (*flags_ptr & CLONE_THREAD)
1476 		*flags_ptr |= CLONE_VM;
1477 
1478 	/*
1479 	 * If unsharing vm, must also unshare signal handlers.
1480 	 */
1481 	if (*flags_ptr & CLONE_VM)
1482 		*flags_ptr |= CLONE_SIGHAND;
1483 
1484 	/*
1485 	 * If unsharing signal handlers and the task was created
1486 	 * using CLONE_THREAD, then must unshare the thread
1487 	 */
1488 	if ((*flags_ptr & CLONE_SIGHAND) &&
1489 	    (atomic_read(&current->signal->count) > 1))
1490 		*flags_ptr |= CLONE_THREAD;
1491 
1492 	/*
1493 	 * If unsharing namespace, must also unshare filesystem information.
1494 	 */
1495 	if (*flags_ptr & CLONE_NEWNS)
1496 		*flags_ptr |= CLONE_FS;
1497 }
1498 
1499 /*
1500  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1501  */
1502 static int unshare_thread(unsigned long unshare_flags)
1503 {
1504 	if (unshare_flags & CLONE_THREAD)
1505 		return -EINVAL;
1506 
1507 	return 0;
1508 }
1509 
1510 /*
1511  * Unshare the filesystem structure if it is being shared
1512  */
1513 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1514 {
1515 	struct fs_struct *fs = current->fs;
1516 
1517 	if ((unshare_flags & CLONE_FS) &&
1518 	    (fs && atomic_read(&fs->count) > 1)) {
1519 		*new_fsp = __copy_fs_struct(current->fs);
1520 		if (!*new_fsp)
1521 			return -ENOMEM;
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 /*
1528  * Unsharing of sighand is not supported yet
1529  */
1530 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1531 {
1532 	struct sighand_struct *sigh = current->sighand;
1533 
1534 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1535 		return -EINVAL;
1536 	else
1537 		return 0;
1538 }
1539 
1540 /*
1541  * Unshare vm if it is being shared
1542  */
1543 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1544 {
1545 	struct mm_struct *mm = current->mm;
1546 
1547 	if ((unshare_flags & CLONE_VM) &&
1548 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1549 		return -EINVAL;
1550 	}
1551 
1552 	return 0;
1553 }
1554 
1555 /*
1556  * Unshare file descriptor table if it is being shared
1557  */
1558 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1559 {
1560 	struct files_struct *fd = current->files;
1561 	int error = 0;
1562 
1563 	if ((unshare_flags & CLONE_FILES) &&
1564 	    (fd && atomic_read(&fd->count) > 1)) {
1565 		*new_fdp = dup_fd(fd, &error);
1566 		if (!*new_fdp)
1567 			return error;
1568 	}
1569 
1570 	return 0;
1571 }
1572 
1573 /*
1574  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1575  * supported yet
1576  */
1577 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1578 {
1579 	if (unshare_flags & CLONE_SYSVSEM)
1580 		return -EINVAL;
1581 
1582 	return 0;
1583 }
1584 
1585 /*
1586  * unshare allows a process to 'unshare' part of the process
1587  * context which was originally shared using clone.  copy_*
1588  * functions used by do_fork() cannot be used here directly
1589  * because they modify an inactive task_struct that is being
1590  * constructed. Here we are modifying the current, active,
1591  * task_struct.
1592  */
1593 asmlinkage long sys_unshare(unsigned long unshare_flags)
1594 {
1595 	int err = 0;
1596 	struct fs_struct *fs, *new_fs = NULL;
1597 	struct sighand_struct *new_sigh = NULL;
1598 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1599 	struct files_struct *fd, *new_fd = NULL;
1600 	struct sem_undo_list *new_ulist = NULL;
1601 	struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1602 
1603 	check_unshare_flags(&unshare_flags);
1604 
1605 	/* Return -EINVAL for all unsupported flags */
1606 	err = -EINVAL;
1607 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1608 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1609 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER))
1610 		goto bad_unshare_out;
1611 
1612 	if ((err = unshare_thread(unshare_flags)))
1613 		goto bad_unshare_out;
1614 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1615 		goto bad_unshare_cleanup_thread;
1616 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1617 		goto bad_unshare_cleanup_fs;
1618 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1619 		goto bad_unshare_cleanup_sigh;
1620 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1621 		goto bad_unshare_cleanup_vm;
1622 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1623 		goto bad_unshare_cleanup_fd;
1624 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1625 			new_fs)))
1626 		goto bad_unshare_cleanup_semundo;
1627 
1628 	if (new_fs ||  new_mm || new_fd || new_ulist || new_nsproxy) {
1629 
1630 		task_lock(current);
1631 
1632 		if (new_nsproxy) {
1633 			old_nsproxy = current->nsproxy;
1634 			current->nsproxy = new_nsproxy;
1635 			new_nsproxy = old_nsproxy;
1636 		}
1637 
1638 		if (new_fs) {
1639 			fs = current->fs;
1640 			current->fs = new_fs;
1641 			new_fs = fs;
1642 		}
1643 
1644 		if (new_mm) {
1645 			mm = current->mm;
1646 			active_mm = current->active_mm;
1647 			current->mm = new_mm;
1648 			current->active_mm = new_mm;
1649 			activate_mm(active_mm, new_mm);
1650 			new_mm = mm;
1651 		}
1652 
1653 		if (new_fd) {
1654 			fd = current->files;
1655 			current->files = new_fd;
1656 			new_fd = fd;
1657 		}
1658 
1659 		task_unlock(current);
1660 	}
1661 
1662 	if (new_nsproxy)
1663 		put_nsproxy(new_nsproxy);
1664 
1665 bad_unshare_cleanup_semundo:
1666 bad_unshare_cleanup_fd:
1667 	if (new_fd)
1668 		put_files_struct(new_fd);
1669 
1670 bad_unshare_cleanup_vm:
1671 	if (new_mm)
1672 		mmput(new_mm);
1673 
1674 bad_unshare_cleanup_sigh:
1675 	if (new_sigh)
1676 		if (atomic_dec_and_test(&new_sigh->count))
1677 			kmem_cache_free(sighand_cachep, new_sigh);
1678 
1679 bad_unshare_cleanup_fs:
1680 	if (new_fs)
1681 		put_fs_struct(new_fs);
1682 
1683 bad_unshare_cleanup_thread:
1684 bad_unshare_out:
1685 	return err;
1686 }
1687