1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 108 #include <asm/pgalloc.h> 109 #include <linux/uaccess.h> 110 #include <asm/mmu_context.h> 111 #include <asm/cacheflush.h> 112 #include <asm/tlbflush.h> 113 114 #include <trace/events/sched.h> 115 116 #define CREATE_TRACE_POINTS 117 #include <trace/events/task.h> 118 119 #include <kunit/visibility.h> 120 121 /* 122 * Minimum number of threads to boot the kernel 123 */ 124 #define MIN_THREADS 20 125 126 /* 127 * Maximum number of threads 128 */ 129 #define MAX_THREADS FUTEX_TID_MASK 130 131 /* 132 * Protected counters by write_lock_irq(&tasklist_lock) 133 */ 134 unsigned long total_forks; /* Handle normal Linux uptimes. */ 135 int nr_threads; /* The idle threads do not count.. */ 136 137 static int max_threads; /* tunable limit on nr_threads */ 138 139 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 140 141 static const char * const resident_page_types[] = { 142 NAMED_ARRAY_INDEX(MM_FILEPAGES), 143 NAMED_ARRAY_INDEX(MM_ANONPAGES), 144 NAMED_ARRAY_INDEX(MM_SWAPENTS), 145 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 146 }; 147 148 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 149 150 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 151 152 #ifdef CONFIG_PROVE_RCU 153 int lockdep_tasklist_lock_is_held(void) 154 { 155 return lockdep_is_held(&tasklist_lock); 156 } 157 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 158 #endif /* #ifdef CONFIG_PROVE_RCU */ 159 160 int nr_processes(void) 161 { 162 int cpu; 163 int total = 0; 164 165 for_each_possible_cpu(cpu) 166 total += per_cpu(process_counts, cpu); 167 168 return total; 169 } 170 171 void __weak arch_release_task_struct(struct task_struct *tsk) 172 { 173 } 174 175 static struct kmem_cache *task_struct_cachep; 176 177 static inline struct task_struct *alloc_task_struct_node(int node) 178 { 179 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 180 } 181 182 static inline void free_task_struct(struct task_struct *tsk) 183 { 184 kmem_cache_free(task_struct_cachep, tsk); 185 } 186 187 /* 188 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 189 * kmemcache based allocator. 190 */ 191 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 192 193 # ifdef CONFIG_VMAP_STACK 194 /* 195 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 196 * flush. Try to minimize the number of calls by caching stacks. 197 */ 198 #define NR_CACHED_STACKS 2 199 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 200 201 struct vm_stack { 202 struct rcu_head rcu; 203 struct vm_struct *stack_vm_area; 204 }; 205 206 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 207 { 208 unsigned int i; 209 210 for (i = 0; i < NR_CACHED_STACKS; i++) { 211 struct vm_struct *tmp = NULL; 212 213 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 214 return true; 215 } 216 return false; 217 } 218 219 static void thread_stack_free_rcu(struct rcu_head *rh) 220 { 221 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 222 223 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 224 return; 225 226 vfree(vm_stack); 227 } 228 229 static void thread_stack_delayed_free(struct task_struct *tsk) 230 { 231 struct vm_stack *vm_stack = tsk->stack; 232 233 vm_stack->stack_vm_area = tsk->stack_vm_area; 234 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 235 } 236 237 static int free_vm_stack_cache(unsigned int cpu) 238 { 239 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 240 int i; 241 242 for (i = 0; i < NR_CACHED_STACKS; i++) { 243 struct vm_struct *vm_stack = cached_vm_stacks[i]; 244 245 if (!vm_stack) 246 continue; 247 248 vfree(vm_stack->addr); 249 cached_vm_stacks[i] = NULL; 250 } 251 252 return 0; 253 } 254 255 static int memcg_charge_kernel_stack(struct vm_struct *vm) 256 { 257 int i; 258 int ret; 259 int nr_charged = 0; 260 261 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 262 263 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 264 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 265 if (ret) 266 goto err; 267 nr_charged++; 268 } 269 return 0; 270 err: 271 for (i = 0; i < nr_charged; i++) 272 memcg_kmem_uncharge_page(vm->pages[i], 0); 273 return ret; 274 } 275 276 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 277 { 278 struct vm_struct *vm; 279 void *stack; 280 int i; 281 282 for (i = 0; i < NR_CACHED_STACKS; i++) { 283 struct vm_struct *s; 284 285 s = this_cpu_xchg(cached_stacks[i], NULL); 286 287 if (!s) 288 continue; 289 290 /* Reset stack metadata. */ 291 kasan_unpoison_range(s->addr, THREAD_SIZE); 292 293 stack = kasan_reset_tag(s->addr); 294 295 /* Clear stale pointers from reused stack. */ 296 memset(stack, 0, THREAD_SIZE); 297 298 if (memcg_charge_kernel_stack(s)) { 299 vfree(s->addr); 300 return -ENOMEM; 301 } 302 303 tsk->stack_vm_area = s; 304 tsk->stack = stack; 305 return 0; 306 } 307 308 /* 309 * Allocated stacks are cached and later reused by new threads, 310 * so memcg accounting is performed manually on assigning/releasing 311 * stacks to tasks. Drop __GFP_ACCOUNT. 312 */ 313 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 314 VMALLOC_START, VMALLOC_END, 315 THREADINFO_GFP & ~__GFP_ACCOUNT, 316 PAGE_KERNEL, 317 0, node, __builtin_return_address(0)); 318 if (!stack) 319 return -ENOMEM; 320 321 vm = find_vm_area(stack); 322 if (memcg_charge_kernel_stack(vm)) { 323 vfree(stack); 324 return -ENOMEM; 325 } 326 /* 327 * We can't call find_vm_area() in interrupt context, and 328 * free_thread_stack() can be called in interrupt context, 329 * so cache the vm_struct. 330 */ 331 tsk->stack_vm_area = vm; 332 stack = kasan_reset_tag(stack); 333 tsk->stack = stack; 334 return 0; 335 } 336 337 static void free_thread_stack(struct task_struct *tsk) 338 { 339 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 340 thread_stack_delayed_free(tsk); 341 342 tsk->stack = NULL; 343 tsk->stack_vm_area = NULL; 344 } 345 346 # else /* !CONFIG_VMAP_STACK */ 347 348 static void thread_stack_free_rcu(struct rcu_head *rh) 349 { 350 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 351 } 352 353 static void thread_stack_delayed_free(struct task_struct *tsk) 354 { 355 struct rcu_head *rh = tsk->stack; 356 357 call_rcu(rh, thread_stack_free_rcu); 358 } 359 360 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 361 { 362 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 363 THREAD_SIZE_ORDER); 364 365 if (likely(page)) { 366 tsk->stack = kasan_reset_tag(page_address(page)); 367 return 0; 368 } 369 return -ENOMEM; 370 } 371 372 static void free_thread_stack(struct task_struct *tsk) 373 { 374 thread_stack_delayed_free(tsk); 375 tsk->stack = NULL; 376 } 377 378 # endif /* CONFIG_VMAP_STACK */ 379 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 380 381 static struct kmem_cache *thread_stack_cache; 382 383 static void thread_stack_free_rcu(struct rcu_head *rh) 384 { 385 kmem_cache_free(thread_stack_cache, rh); 386 } 387 388 static void thread_stack_delayed_free(struct task_struct *tsk) 389 { 390 struct rcu_head *rh = tsk->stack; 391 392 call_rcu(rh, thread_stack_free_rcu); 393 } 394 395 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 396 { 397 unsigned long *stack; 398 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 399 stack = kasan_reset_tag(stack); 400 tsk->stack = stack; 401 return stack ? 0 : -ENOMEM; 402 } 403 404 static void free_thread_stack(struct task_struct *tsk) 405 { 406 thread_stack_delayed_free(tsk); 407 tsk->stack = NULL; 408 } 409 410 void thread_stack_cache_init(void) 411 { 412 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 413 THREAD_SIZE, THREAD_SIZE, 0, 0, 414 THREAD_SIZE, NULL); 415 BUG_ON(thread_stack_cache == NULL); 416 } 417 418 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 419 420 /* SLAB cache for signal_struct structures (tsk->signal) */ 421 static struct kmem_cache *signal_cachep; 422 423 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 424 struct kmem_cache *sighand_cachep; 425 426 /* SLAB cache for files_struct structures (tsk->files) */ 427 struct kmem_cache *files_cachep; 428 429 /* SLAB cache for fs_struct structures (tsk->fs) */ 430 struct kmem_cache *fs_cachep; 431 432 /* SLAB cache for vm_area_struct structures */ 433 static struct kmem_cache *vm_area_cachep; 434 435 /* SLAB cache for mm_struct structures (tsk->mm) */ 436 static struct kmem_cache *mm_cachep; 437 438 #ifdef CONFIG_PER_VMA_LOCK 439 440 /* SLAB cache for vm_area_struct.lock */ 441 static struct kmem_cache *vma_lock_cachep; 442 443 static bool vma_lock_alloc(struct vm_area_struct *vma) 444 { 445 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 446 if (!vma->vm_lock) 447 return false; 448 449 init_rwsem(&vma->vm_lock->lock); 450 vma->vm_lock_seq = -1; 451 452 return true; 453 } 454 455 static inline void vma_lock_free(struct vm_area_struct *vma) 456 { 457 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 458 } 459 460 #else /* CONFIG_PER_VMA_LOCK */ 461 462 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 463 static inline void vma_lock_free(struct vm_area_struct *vma) {} 464 465 #endif /* CONFIG_PER_VMA_LOCK */ 466 467 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 468 { 469 struct vm_area_struct *vma; 470 471 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 472 if (!vma) 473 return NULL; 474 475 vma_init(vma, mm); 476 if (!vma_lock_alloc(vma)) { 477 kmem_cache_free(vm_area_cachep, vma); 478 return NULL; 479 } 480 481 return vma; 482 } 483 484 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 485 { 486 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 487 488 if (!new) 489 return NULL; 490 491 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 492 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 493 /* 494 * orig->shared.rb may be modified concurrently, but the clone 495 * will be reinitialized. 496 */ 497 data_race(memcpy(new, orig, sizeof(*new))); 498 if (!vma_lock_alloc(new)) { 499 kmem_cache_free(vm_area_cachep, new); 500 return NULL; 501 } 502 INIT_LIST_HEAD(&new->anon_vma_chain); 503 vma_numab_state_init(new); 504 dup_anon_vma_name(orig, new); 505 506 return new; 507 } 508 509 void __vm_area_free(struct vm_area_struct *vma) 510 { 511 vma_numab_state_free(vma); 512 free_anon_vma_name(vma); 513 vma_lock_free(vma); 514 kmem_cache_free(vm_area_cachep, vma); 515 } 516 517 #ifdef CONFIG_PER_VMA_LOCK 518 static void vm_area_free_rcu_cb(struct rcu_head *head) 519 { 520 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 521 vm_rcu); 522 523 /* The vma should not be locked while being destroyed. */ 524 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 525 __vm_area_free(vma); 526 } 527 #endif 528 529 void vm_area_free(struct vm_area_struct *vma) 530 { 531 #ifdef CONFIG_PER_VMA_LOCK 532 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 533 #else 534 __vm_area_free(vma); 535 #endif 536 } 537 538 static void account_kernel_stack(struct task_struct *tsk, int account) 539 { 540 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 541 struct vm_struct *vm = task_stack_vm_area(tsk); 542 int i; 543 544 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 545 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 546 account * (PAGE_SIZE / 1024)); 547 } else { 548 void *stack = task_stack_page(tsk); 549 550 /* All stack pages are in the same node. */ 551 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 552 account * (THREAD_SIZE / 1024)); 553 } 554 } 555 556 void exit_task_stack_account(struct task_struct *tsk) 557 { 558 account_kernel_stack(tsk, -1); 559 560 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 561 struct vm_struct *vm; 562 int i; 563 564 vm = task_stack_vm_area(tsk); 565 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 566 memcg_kmem_uncharge_page(vm->pages[i], 0); 567 } 568 } 569 570 static void release_task_stack(struct task_struct *tsk) 571 { 572 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 573 return; /* Better to leak the stack than to free prematurely */ 574 575 free_thread_stack(tsk); 576 } 577 578 #ifdef CONFIG_THREAD_INFO_IN_TASK 579 void put_task_stack(struct task_struct *tsk) 580 { 581 if (refcount_dec_and_test(&tsk->stack_refcount)) 582 release_task_stack(tsk); 583 } 584 #endif 585 586 void free_task(struct task_struct *tsk) 587 { 588 #ifdef CONFIG_SECCOMP 589 WARN_ON_ONCE(tsk->seccomp.filter); 590 #endif 591 release_user_cpus_ptr(tsk); 592 scs_release(tsk); 593 594 #ifndef CONFIG_THREAD_INFO_IN_TASK 595 /* 596 * The task is finally done with both the stack and thread_info, 597 * so free both. 598 */ 599 release_task_stack(tsk); 600 #else 601 /* 602 * If the task had a separate stack allocation, it should be gone 603 * by now. 604 */ 605 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 606 #endif 607 rt_mutex_debug_task_free(tsk); 608 ftrace_graph_exit_task(tsk); 609 arch_release_task_struct(tsk); 610 if (tsk->flags & PF_KTHREAD) 611 free_kthread_struct(tsk); 612 bpf_task_storage_free(tsk); 613 free_task_struct(tsk); 614 } 615 EXPORT_SYMBOL(free_task); 616 617 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 618 { 619 struct file *exe_file; 620 621 exe_file = get_mm_exe_file(oldmm); 622 RCU_INIT_POINTER(mm->exe_file, exe_file); 623 } 624 625 #ifdef CONFIG_MMU 626 static __latent_entropy int dup_mmap(struct mm_struct *mm, 627 struct mm_struct *oldmm) 628 { 629 struct vm_area_struct *mpnt, *tmp; 630 int retval; 631 unsigned long charge = 0; 632 LIST_HEAD(uf); 633 VMA_ITERATOR(vmi, mm, 0); 634 635 uprobe_start_dup_mmap(); 636 if (mmap_write_lock_killable(oldmm)) { 637 retval = -EINTR; 638 goto fail_uprobe_end; 639 } 640 flush_cache_dup_mm(oldmm); 641 uprobe_dup_mmap(oldmm, mm); 642 /* 643 * Not linked in yet - no deadlock potential: 644 */ 645 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 646 647 /* No ordering required: file already has been exposed. */ 648 dup_mm_exe_file(mm, oldmm); 649 650 mm->total_vm = oldmm->total_vm; 651 mm->data_vm = oldmm->data_vm; 652 mm->exec_vm = oldmm->exec_vm; 653 mm->stack_vm = oldmm->stack_vm; 654 655 retval = ksm_fork(mm, oldmm); 656 if (retval) 657 goto out; 658 khugepaged_fork(mm, oldmm); 659 660 /* Use __mt_dup() to efficiently build an identical maple tree. */ 661 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 662 if (unlikely(retval)) 663 goto out; 664 665 mt_clear_in_rcu(vmi.mas.tree); 666 for_each_vma(vmi, mpnt) { 667 struct file *file; 668 669 vma_start_write(mpnt); 670 if (mpnt->vm_flags & VM_DONTCOPY) { 671 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 672 mpnt->vm_end, GFP_KERNEL); 673 if (retval) 674 goto loop_out; 675 676 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 677 continue; 678 } 679 charge = 0; 680 /* 681 * Don't duplicate many vmas if we've been oom-killed (for 682 * example) 683 */ 684 if (fatal_signal_pending(current)) { 685 retval = -EINTR; 686 goto loop_out; 687 } 688 if (mpnt->vm_flags & VM_ACCOUNT) { 689 unsigned long len = vma_pages(mpnt); 690 691 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 692 goto fail_nomem; 693 charge = len; 694 } 695 tmp = vm_area_dup(mpnt); 696 if (!tmp) 697 goto fail_nomem; 698 retval = vma_dup_policy(mpnt, tmp); 699 if (retval) 700 goto fail_nomem_policy; 701 tmp->vm_mm = mm; 702 retval = dup_userfaultfd(tmp, &uf); 703 if (retval) 704 goto fail_nomem_anon_vma_fork; 705 if (tmp->vm_flags & VM_WIPEONFORK) { 706 /* 707 * VM_WIPEONFORK gets a clean slate in the child. 708 * Don't prepare anon_vma until fault since we don't 709 * copy page for current vma. 710 */ 711 tmp->anon_vma = NULL; 712 } else if (anon_vma_fork(tmp, mpnt)) 713 goto fail_nomem_anon_vma_fork; 714 vm_flags_clear(tmp, VM_LOCKED_MASK); 715 /* 716 * Copy/update hugetlb private vma information. 717 */ 718 if (is_vm_hugetlb_page(tmp)) 719 hugetlb_dup_vma_private(tmp); 720 721 /* 722 * Link the vma into the MT. After using __mt_dup(), memory 723 * allocation is not necessary here, so it cannot fail. 724 */ 725 vma_iter_bulk_store(&vmi, tmp); 726 727 mm->map_count++; 728 729 if (tmp->vm_ops && tmp->vm_ops->open) 730 tmp->vm_ops->open(tmp); 731 732 file = tmp->vm_file; 733 if (file) { 734 struct address_space *mapping = file->f_mapping; 735 736 get_file(file); 737 i_mmap_lock_write(mapping); 738 if (vma_is_shared_maywrite(tmp)) 739 mapping_allow_writable(mapping); 740 flush_dcache_mmap_lock(mapping); 741 /* insert tmp into the share list, just after mpnt */ 742 vma_interval_tree_insert_after(tmp, mpnt, 743 &mapping->i_mmap); 744 flush_dcache_mmap_unlock(mapping); 745 i_mmap_unlock_write(mapping); 746 } 747 748 if (!(tmp->vm_flags & VM_WIPEONFORK)) 749 retval = copy_page_range(tmp, mpnt); 750 751 if (retval) { 752 mpnt = vma_next(&vmi); 753 goto loop_out; 754 } 755 } 756 /* a new mm has just been created */ 757 retval = arch_dup_mmap(oldmm, mm); 758 loop_out: 759 vma_iter_free(&vmi); 760 if (!retval) { 761 mt_set_in_rcu(vmi.mas.tree); 762 } else if (mpnt) { 763 /* 764 * The entire maple tree has already been duplicated. If the 765 * mmap duplication fails, mark the failure point with 766 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 767 * stop releasing VMAs that have not been duplicated after this 768 * point. 769 */ 770 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 771 mas_store(&vmi.mas, XA_ZERO_ENTRY); 772 } 773 out: 774 mmap_write_unlock(mm); 775 flush_tlb_mm(oldmm); 776 mmap_write_unlock(oldmm); 777 dup_userfaultfd_complete(&uf); 778 fail_uprobe_end: 779 uprobe_end_dup_mmap(); 780 return retval; 781 782 fail_nomem_anon_vma_fork: 783 mpol_put(vma_policy(tmp)); 784 fail_nomem_policy: 785 vm_area_free(tmp); 786 fail_nomem: 787 retval = -ENOMEM; 788 vm_unacct_memory(charge); 789 goto loop_out; 790 } 791 792 static inline int mm_alloc_pgd(struct mm_struct *mm) 793 { 794 mm->pgd = pgd_alloc(mm); 795 if (unlikely(!mm->pgd)) 796 return -ENOMEM; 797 return 0; 798 } 799 800 static inline void mm_free_pgd(struct mm_struct *mm) 801 { 802 pgd_free(mm, mm->pgd); 803 } 804 #else 805 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 806 { 807 mmap_write_lock(oldmm); 808 dup_mm_exe_file(mm, oldmm); 809 mmap_write_unlock(oldmm); 810 return 0; 811 } 812 #define mm_alloc_pgd(mm) (0) 813 #define mm_free_pgd(mm) 814 #endif /* CONFIG_MMU */ 815 816 static void check_mm(struct mm_struct *mm) 817 { 818 int i; 819 820 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 821 "Please make sure 'struct resident_page_types[]' is updated as well"); 822 823 for (i = 0; i < NR_MM_COUNTERS; i++) { 824 long x = percpu_counter_sum(&mm->rss_stat[i]); 825 826 if (unlikely(x)) 827 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 828 mm, resident_page_types[i], x); 829 } 830 831 if (mm_pgtables_bytes(mm)) 832 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 833 mm_pgtables_bytes(mm)); 834 835 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 836 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 837 #endif 838 } 839 840 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 841 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 842 843 static void do_check_lazy_tlb(void *arg) 844 { 845 struct mm_struct *mm = arg; 846 847 WARN_ON_ONCE(current->active_mm == mm); 848 } 849 850 static void do_shoot_lazy_tlb(void *arg) 851 { 852 struct mm_struct *mm = arg; 853 854 if (current->active_mm == mm) { 855 WARN_ON_ONCE(current->mm); 856 current->active_mm = &init_mm; 857 switch_mm(mm, &init_mm, current); 858 } 859 } 860 861 static void cleanup_lazy_tlbs(struct mm_struct *mm) 862 { 863 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 864 /* 865 * In this case, lazy tlb mms are refounted and would not reach 866 * __mmdrop until all CPUs have switched away and mmdrop()ed. 867 */ 868 return; 869 } 870 871 /* 872 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 873 * requires lazy mm users to switch to another mm when the refcount 874 * drops to zero, before the mm is freed. This requires IPIs here to 875 * switch kernel threads to init_mm. 876 * 877 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 878 * switch with the final userspace teardown TLB flush which leaves the 879 * mm lazy on this CPU but no others, reducing the need for additional 880 * IPIs here. There are cases where a final IPI is still required here, 881 * such as the final mmdrop being performed on a different CPU than the 882 * one exiting, or kernel threads using the mm when userspace exits. 883 * 884 * IPI overheads have not found to be expensive, but they could be 885 * reduced in a number of possible ways, for example (roughly 886 * increasing order of complexity): 887 * - The last lazy reference created by exit_mm() could instead switch 888 * to init_mm, however it's probable this will run on the same CPU 889 * immediately afterwards, so this may not reduce IPIs much. 890 * - A batch of mms requiring IPIs could be gathered and freed at once. 891 * - CPUs store active_mm where it can be remotely checked without a 892 * lock, to filter out false-positives in the cpumask. 893 * - After mm_users or mm_count reaches zero, switching away from the 894 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 895 * with some batching or delaying of the final IPIs. 896 * - A delayed freeing and RCU-like quiescing sequence based on mm 897 * switching to avoid IPIs completely. 898 */ 899 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 900 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 901 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 902 } 903 904 /* 905 * Called when the last reference to the mm 906 * is dropped: either by a lazy thread or by 907 * mmput. Free the page directory and the mm. 908 */ 909 void __mmdrop(struct mm_struct *mm) 910 { 911 BUG_ON(mm == &init_mm); 912 WARN_ON_ONCE(mm == current->mm); 913 914 /* Ensure no CPUs are using this as their lazy tlb mm */ 915 cleanup_lazy_tlbs(mm); 916 917 WARN_ON_ONCE(mm == current->active_mm); 918 mm_free_pgd(mm); 919 destroy_context(mm); 920 mmu_notifier_subscriptions_destroy(mm); 921 check_mm(mm); 922 put_user_ns(mm->user_ns); 923 mm_pasid_drop(mm); 924 mm_destroy_cid(mm); 925 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 926 927 free_mm(mm); 928 } 929 EXPORT_SYMBOL_GPL(__mmdrop); 930 931 static void mmdrop_async_fn(struct work_struct *work) 932 { 933 struct mm_struct *mm; 934 935 mm = container_of(work, struct mm_struct, async_put_work); 936 __mmdrop(mm); 937 } 938 939 static void mmdrop_async(struct mm_struct *mm) 940 { 941 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 942 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 943 schedule_work(&mm->async_put_work); 944 } 945 } 946 947 static inline void free_signal_struct(struct signal_struct *sig) 948 { 949 taskstats_tgid_free(sig); 950 sched_autogroup_exit(sig); 951 /* 952 * __mmdrop is not safe to call from softirq context on x86 due to 953 * pgd_dtor so postpone it to the async context 954 */ 955 if (sig->oom_mm) 956 mmdrop_async(sig->oom_mm); 957 kmem_cache_free(signal_cachep, sig); 958 } 959 960 static inline void put_signal_struct(struct signal_struct *sig) 961 { 962 if (refcount_dec_and_test(&sig->sigcnt)) 963 free_signal_struct(sig); 964 } 965 966 void __put_task_struct(struct task_struct *tsk) 967 { 968 WARN_ON(!tsk->exit_state); 969 WARN_ON(refcount_read(&tsk->usage)); 970 WARN_ON(tsk == current); 971 972 io_uring_free(tsk); 973 cgroup_free(tsk); 974 task_numa_free(tsk, true); 975 security_task_free(tsk); 976 exit_creds(tsk); 977 delayacct_tsk_free(tsk); 978 put_signal_struct(tsk->signal); 979 sched_core_free(tsk); 980 free_task(tsk); 981 } 982 EXPORT_SYMBOL_GPL(__put_task_struct); 983 984 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 985 { 986 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 987 988 __put_task_struct(task); 989 } 990 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 991 992 void __init __weak arch_task_cache_init(void) { } 993 994 /* 995 * set_max_threads 996 */ 997 static void __init set_max_threads(unsigned int max_threads_suggested) 998 { 999 u64 threads; 1000 unsigned long nr_pages = PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size()); 1001 1002 /* 1003 * The number of threads shall be limited such that the thread 1004 * structures may only consume a small part of the available memory. 1005 */ 1006 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1007 threads = MAX_THREADS; 1008 else 1009 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1010 (u64) THREAD_SIZE * 8UL); 1011 1012 if (threads > max_threads_suggested) 1013 threads = max_threads_suggested; 1014 1015 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1016 } 1017 1018 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1019 /* Initialized by the architecture: */ 1020 int arch_task_struct_size __read_mostly; 1021 #endif 1022 1023 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 1024 { 1025 /* Fetch thread_struct whitelist for the architecture. */ 1026 arch_thread_struct_whitelist(offset, size); 1027 1028 /* 1029 * Handle zero-sized whitelist or empty thread_struct, otherwise 1030 * adjust offset to position of thread_struct in task_struct. 1031 */ 1032 if (unlikely(*size == 0)) 1033 *offset = 0; 1034 else 1035 *offset += offsetof(struct task_struct, thread); 1036 } 1037 1038 void __init fork_init(void) 1039 { 1040 int i; 1041 #ifndef ARCH_MIN_TASKALIGN 1042 #define ARCH_MIN_TASKALIGN 0 1043 #endif 1044 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1045 unsigned long useroffset, usersize; 1046 1047 /* create a slab on which task_structs can be allocated */ 1048 task_struct_whitelist(&useroffset, &usersize); 1049 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1050 arch_task_struct_size, align, 1051 SLAB_PANIC|SLAB_ACCOUNT, 1052 useroffset, usersize, NULL); 1053 1054 /* do the arch specific task caches init */ 1055 arch_task_cache_init(); 1056 1057 set_max_threads(MAX_THREADS); 1058 1059 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1060 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1061 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1062 init_task.signal->rlim[RLIMIT_NPROC]; 1063 1064 for (i = 0; i < UCOUNT_COUNTS; i++) 1065 init_user_ns.ucount_max[i] = max_threads/2; 1066 1067 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1068 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1069 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1071 1072 #ifdef CONFIG_VMAP_STACK 1073 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1074 NULL, free_vm_stack_cache); 1075 #endif 1076 1077 scs_init(); 1078 1079 lockdep_init_task(&init_task); 1080 uprobes_init(); 1081 } 1082 1083 int __weak arch_dup_task_struct(struct task_struct *dst, 1084 struct task_struct *src) 1085 { 1086 *dst = *src; 1087 return 0; 1088 } 1089 1090 void set_task_stack_end_magic(struct task_struct *tsk) 1091 { 1092 unsigned long *stackend; 1093 1094 stackend = end_of_stack(tsk); 1095 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1096 } 1097 1098 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1099 { 1100 struct task_struct *tsk; 1101 int err; 1102 1103 if (node == NUMA_NO_NODE) 1104 node = tsk_fork_get_node(orig); 1105 tsk = alloc_task_struct_node(node); 1106 if (!tsk) 1107 return NULL; 1108 1109 err = arch_dup_task_struct(tsk, orig); 1110 if (err) 1111 goto free_tsk; 1112 1113 err = alloc_thread_stack_node(tsk, node); 1114 if (err) 1115 goto free_tsk; 1116 1117 #ifdef CONFIG_THREAD_INFO_IN_TASK 1118 refcount_set(&tsk->stack_refcount, 1); 1119 #endif 1120 account_kernel_stack(tsk, 1); 1121 1122 err = scs_prepare(tsk, node); 1123 if (err) 1124 goto free_stack; 1125 1126 #ifdef CONFIG_SECCOMP 1127 /* 1128 * We must handle setting up seccomp filters once we're under 1129 * the sighand lock in case orig has changed between now and 1130 * then. Until then, filter must be NULL to avoid messing up 1131 * the usage counts on the error path calling free_task. 1132 */ 1133 tsk->seccomp.filter = NULL; 1134 #endif 1135 1136 setup_thread_stack(tsk, orig); 1137 clear_user_return_notifier(tsk); 1138 clear_tsk_need_resched(tsk); 1139 set_task_stack_end_magic(tsk); 1140 clear_syscall_work_syscall_user_dispatch(tsk); 1141 1142 #ifdef CONFIG_STACKPROTECTOR 1143 tsk->stack_canary = get_random_canary(); 1144 #endif 1145 if (orig->cpus_ptr == &orig->cpus_mask) 1146 tsk->cpus_ptr = &tsk->cpus_mask; 1147 dup_user_cpus_ptr(tsk, orig, node); 1148 1149 /* 1150 * One for the user space visible state that goes away when reaped. 1151 * One for the scheduler. 1152 */ 1153 refcount_set(&tsk->rcu_users, 2); 1154 /* One for the rcu users */ 1155 refcount_set(&tsk->usage, 1); 1156 #ifdef CONFIG_BLK_DEV_IO_TRACE 1157 tsk->btrace_seq = 0; 1158 #endif 1159 tsk->splice_pipe = NULL; 1160 tsk->task_frag.page = NULL; 1161 tsk->wake_q.next = NULL; 1162 tsk->worker_private = NULL; 1163 1164 kcov_task_init(tsk); 1165 kmsan_task_create(tsk); 1166 kmap_local_fork(tsk); 1167 1168 #ifdef CONFIG_FAULT_INJECTION 1169 tsk->fail_nth = 0; 1170 #endif 1171 1172 #ifdef CONFIG_BLK_CGROUP 1173 tsk->throttle_disk = NULL; 1174 tsk->use_memdelay = 0; 1175 #endif 1176 1177 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1178 tsk->pasid_activated = 0; 1179 #endif 1180 1181 #ifdef CONFIG_MEMCG 1182 tsk->active_memcg = NULL; 1183 #endif 1184 1185 #ifdef CONFIG_CPU_SUP_INTEL 1186 tsk->reported_split_lock = 0; 1187 #endif 1188 1189 #ifdef CONFIG_SCHED_MM_CID 1190 tsk->mm_cid = -1; 1191 tsk->last_mm_cid = -1; 1192 tsk->mm_cid_active = 0; 1193 tsk->migrate_from_cpu = -1; 1194 #endif 1195 return tsk; 1196 1197 free_stack: 1198 exit_task_stack_account(tsk); 1199 free_thread_stack(tsk); 1200 free_tsk: 1201 free_task_struct(tsk); 1202 return NULL; 1203 } 1204 1205 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1206 1207 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1208 1209 static int __init coredump_filter_setup(char *s) 1210 { 1211 default_dump_filter = 1212 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1213 MMF_DUMP_FILTER_MASK; 1214 return 1; 1215 } 1216 1217 __setup("coredump_filter=", coredump_filter_setup); 1218 1219 #include <linux/init_task.h> 1220 1221 static void mm_init_aio(struct mm_struct *mm) 1222 { 1223 #ifdef CONFIG_AIO 1224 spin_lock_init(&mm->ioctx_lock); 1225 mm->ioctx_table = NULL; 1226 #endif 1227 } 1228 1229 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1230 struct task_struct *p) 1231 { 1232 #ifdef CONFIG_MEMCG 1233 if (mm->owner == p) 1234 WRITE_ONCE(mm->owner, NULL); 1235 #endif 1236 } 1237 1238 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1239 { 1240 #ifdef CONFIG_MEMCG 1241 mm->owner = p; 1242 #endif 1243 } 1244 1245 static void mm_init_uprobes_state(struct mm_struct *mm) 1246 { 1247 #ifdef CONFIG_UPROBES 1248 mm->uprobes_state.xol_area = NULL; 1249 #endif 1250 } 1251 1252 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1253 struct user_namespace *user_ns) 1254 { 1255 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1256 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1257 atomic_set(&mm->mm_users, 1); 1258 atomic_set(&mm->mm_count, 1); 1259 seqcount_init(&mm->write_protect_seq); 1260 mmap_init_lock(mm); 1261 INIT_LIST_HEAD(&mm->mmlist); 1262 #ifdef CONFIG_PER_VMA_LOCK 1263 mm->mm_lock_seq = 0; 1264 #endif 1265 mm_pgtables_bytes_init(mm); 1266 mm->map_count = 0; 1267 mm->locked_vm = 0; 1268 atomic64_set(&mm->pinned_vm, 0); 1269 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1270 spin_lock_init(&mm->page_table_lock); 1271 spin_lock_init(&mm->arg_lock); 1272 mm_init_cpumask(mm); 1273 mm_init_aio(mm); 1274 mm_init_owner(mm, p); 1275 mm_pasid_init(mm); 1276 RCU_INIT_POINTER(mm->exe_file, NULL); 1277 mmu_notifier_subscriptions_init(mm); 1278 init_tlb_flush_pending(mm); 1279 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1280 mm->pmd_huge_pte = NULL; 1281 #endif 1282 mm_init_uprobes_state(mm); 1283 hugetlb_count_init(mm); 1284 1285 if (current->mm) { 1286 mm->flags = mmf_init_flags(current->mm->flags); 1287 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1288 } else { 1289 mm->flags = default_dump_filter; 1290 mm->def_flags = 0; 1291 } 1292 1293 if (mm_alloc_pgd(mm)) 1294 goto fail_nopgd; 1295 1296 if (init_new_context(p, mm)) 1297 goto fail_nocontext; 1298 1299 if (mm_alloc_cid(mm)) 1300 goto fail_cid; 1301 1302 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1303 NR_MM_COUNTERS)) 1304 goto fail_pcpu; 1305 1306 mm->user_ns = get_user_ns(user_ns); 1307 lru_gen_init_mm(mm); 1308 return mm; 1309 1310 fail_pcpu: 1311 mm_destroy_cid(mm); 1312 fail_cid: 1313 destroy_context(mm); 1314 fail_nocontext: 1315 mm_free_pgd(mm); 1316 fail_nopgd: 1317 free_mm(mm); 1318 return NULL; 1319 } 1320 1321 /* 1322 * Allocate and initialize an mm_struct. 1323 */ 1324 struct mm_struct *mm_alloc(void) 1325 { 1326 struct mm_struct *mm; 1327 1328 mm = allocate_mm(); 1329 if (!mm) 1330 return NULL; 1331 1332 memset(mm, 0, sizeof(*mm)); 1333 return mm_init(mm, current, current_user_ns()); 1334 } 1335 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1336 1337 static inline void __mmput(struct mm_struct *mm) 1338 { 1339 VM_BUG_ON(atomic_read(&mm->mm_users)); 1340 1341 uprobe_clear_state(mm); 1342 exit_aio(mm); 1343 ksm_exit(mm); 1344 khugepaged_exit(mm); /* must run before exit_mmap */ 1345 exit_mmap(mm); 1346 mm_put_huge_zero_folio(mm); 1347 set_mm_exe_file(mm, NULL); 1348 if (!list_empty(&mm->mmlist)) { 1349 spin_lock(&mmlist_lock); 1350 list_del(&mm->mmlist); 1351 spin_unlock(&mmlist_lock); 1352 } 1353 if (mm->binfmt) 1354 module_put(mm->binfmt->module); 1355 lru_gen_del_mm(mm); 1356 mmdrop(mm); 1357 } 1358 1359 /* 1360 * Decrement the use count and release all resources for an mm. 1361 */ 1362 void mmput(struct mm_struct *mm) 1363 { 1364 might_sleep(); 1365 1366 if (atomic_dec_and_test(&mm->mm_users)) 1367 __mmput(mm); 1368 } 1369 EXPORT_SYMBOL_GPL(mmput); 1370 1371 #ifdef CONFIG_MMU 1372 static void mmput_async_fn(struct work_struct *work) 1373 { 1374 struct mm_struct *mm = container_of(work, struct mm_struct, 1375 async_put_work); 1376 1377 __mmput(mm); 1378 } 1379 1380 void mmput_async(struct mm_struct *mm) 1381 { 1382 if (atomic_dec_and_test(&mm->mm_users)) { 1383 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1384 schedule_work(&mm->async_put_work); 1385 } 1386 } 1387 EXPORT_SYMBOL_GPL(mmput_async); 1388 #endif 1389 1390 /** 1391 * set_mm_exe_file - change a reference to the mm's executable file 1392 * @mm: The mm to change. 1393 * @new_exe_file: The new file to use. 1394 * 1395 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1396 * 1397 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1398 * invocations: in mmput() nobody alive left, in execve it happens before 1399 * the new mm is made visible to anyone. 1400 * 1401 * Can only fail if new_exe_file != NULL. 1402 */ 1403 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1404 { 1405 struct file *old_exe_file; 1406 1407 /* 1408 * It is safe to dereference the exe_file without RCU as 1409 * this function is only called if nobody else can access 1410 * this mm -- see comment above for justification. 1411 */ 1412 old_exe_file = rcu_dereference_raw(mm->exe_file); 1413 1414 if (new_exe_file) 1415 get_file(new_exe_file); 1416 rcu_assign_pointer(mm->exe_file, new_exe_file); 1417 if (old_exe_file) 1418 fput(old_exe_file); 1419 return 0; 1420 } 1421 1422 /** 1423 * replace_mm_exe_file - replace a reference to the mm's executable file 1424 * @mm: The mm to change. 1425 * @new_exe_file: The new file to use. 1426 * 1427 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1428 * 1429 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1430 */ 1431 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1432 { 1433 struct vm_area_struct *vma; 1434 struct file *old_exe_file; 1435 int ret = 0; 1436 1437 /* Forbid mm->exe_file change if old file still mapped. */ 1438 old_exe_file = get_mm_exe_file(mm); 1439 if (old_exe_file) { 1440 VMA_ITERATOR(vmi, mm, 0); 1441 mmap_read_lock(mm); 1442 for_each_vma(vmi, vma) { 1443 if (!vma->vm_file) 1444 continue; 1445 if (path_equal(&vma->vm_file->f_path, 1446 &old_exe_file->f_path)) { 1447 ret = -EBUSY; 1448 break; 1449 } 1450 } 1451 mmap_read_unlock(mm); 1452 fput(old_exe_file); 1453 if (ret) 1454 return ret; 1455 } 1456 1457 get_file(new_exe_file); 1458 1459 /* set the new file */ 1460 mmap_write_lock(mm); 1461 old_exe_file = rcu_dereference_raw(mm->exe_file); 1462 rcu_assign_pointer(mm->exe_file, new_exe_file); 1463 mmap_write_unlock(mm); 1464 1465 if (old_exe_file) 1466 fput(old_exe_file); 1467 return 0; 1468 } 1469 1470 /** 1471 * get_mm_exe_file - acquire a reference to the mm's executable file 1472 * @mm: The mm of interest. 1473 * 1474 * Returns %NULL if mm has no associated executable file. 1475 * User must release file via fput(). 1476 */ 1477 struct file *get_mm_exe_file(struct mm_struct *mm) 1478 { 1479 struct file *exe_file; 1480 1481 rcu_read_lock(); 1482 exe_file = get_file_rcu(&mm->exe_file); 1483 rcu_read_unlock(); 1484 return exe_file; 1485 } 1486 1487 /** 1488 * get_task_exe_file - acquire a reference to the task's executable file 1489 * @task: The task. 1490 * 1491 * Returns %NULL if task's mm (if any) has no associated executable file or 1492 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1493 * User must release file via fput(). 1494 */ 1495 struct file *get_task_exe_file(struct task_struct *task) 1496 { 1497 struct file *exe_file = NULL; 1498 struct mm_struct *mm; 1499 1500 task_lock(task); 1501 mm = task->mm; 1502 if (mm) { 1503 if (!(task->flags & PF_KTHREAD)) 1504 exe_file = get_mm_exe_file(mm); 1505 } 1506 task_unlock(task); 1507 return exe_file; 1508 } 1509 1510 /** 1511 * get_task_mm - acquire a reference to the task's mm 1512 * @task: The task. 1513 * 1514 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1515 * this kernel workthread has transiently adopted a user mm with use_mm, 1516 * to do its AIO) is not set and if so returns a reference to it, after 1517 * bumping up the use count. User must release the mm via mmput() 1518 * after use. Typically used by /proc and ptrace. 1519 */ 1520 struct mm_struct *get_task_mm(struct task_struct *task) 1521 { 1522 struct mm_struct *mm; 1523 1524 if (task->flags & PF_KTHREAD) 1525 return NULL; 1526 1527 task_lock(task); 1528 mm = task->mm; 1529 if (mm) 1530 mmget(mm); 1531 task_unlock(task); 1532 return mm; 1533 } 1534 EXPORT_SYMBOL_GPL(get_task_mm); 1535 1536 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1537 { 1538 struct mm_struct *mm; 1539 int err; 1540 1541 err = down_read_killable(&task->signal->exec_update_lock); 1542 if (err) 1543 return ERR_PTR(err); 1544 1545 mm = get_task_mm(task); 1546 if (mm && mm != current->mm && 1547 !ptrace_may_access(task, mode)) { 1548 mmput(mm); 1549 mm = ERR_PTR(-EACCES); 1550 } 1551 up_read(&task->signal->exec_update_lock); 1552 1553 return mm; 1554 } 1555 1556 static void complete_vfork_done(struct task_struct *tsk) 1557 { 1558 struct completion *vfork; 1559 1560 task_lock(tsk); 1561 vfork = tsk->vfork_done; 1562 if (likely(vfork)) { 1563 tsk->vfork_done = NULL; 1564 complete(vfork); 1565 } 1566 task_unlock(tsk); 1567 } 1568 1569 static int wait_for_vfork_done(struct task_struct *child, 1570 struct completion *vfork) 1571 { 1572 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1573 int killed; 1574 1575 cgroup_enter_frozen(); 1576 killed = wait_for_completion_state(vfork, state); 1577 cgroup_leave_frozen(false); 1578 1579 if (killed) { 1580 task_lock(child); 1581 child->vfork_done = NULL; 1582 task_unlock(child); 1583 } 1584 1585 put_task_struct(child); 1586 return killed; 1587 } 1588 1589 /* Please note the differences between mmput and mm_release. 1590 * mmput is called whenever we stop holding onto a mm_struct, 1591 * error success whatever. 1592 * 1593 * mm_release is called after a mm_struct has been removed 1594 * from the current process. 1595 * 1596 * This difference is important for error handling, when we 1597 * only half set up a mm_struct for a new process and need to restore 1598 * the old one. Because we mmput the new mm_struct before 1599 * restoring the old one. . . 1600 * Eric Biederman 10 January 1998 1601 */ 1602 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1603 { 1604 uprobe_free_utask(tsk); 1605 1606 /* Get rid of any cached register state */ 1607 deactivate_mm(tsk, mm); 1608 1609 /* 1610 * Signal userspace if we're not exiting with a core dump 1611 * because we want to leave the value intact for debugging 1612 * purposes. 1613 */ 1614 if (tsk->clear_child_tid) { 1615 if (atomic_read(&mm->mm_users) > 1) { 1616 /* 1617 * We don't check the error code - if userspace has 1618 * not set up a proper pointer then tough luck. 1619 */ 1620 put_user(0, tsk->clear_child_tid); 1621 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1622 1, NULL, NULL, 0, 0); 1623 } 1624 tsk->clear_child_tid = NULL; 1625 } 1626 1627 /* 1628 * All done, finally we can wake up parent and return this mm to him. 1629 * Also kthread_stop() uses this completion for synchronization. 1630 */ 1631 if (tsk->vfork_done) 1632 complete_vfork_done(tsk); 1633 } 1634 1635 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1636 { 1637 futex_exit_release(tsk); 1638 mm_release(tsk, mm); 1639 } 1640 1641 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1642 { 1643 futex_exec_release(tsk); 1644 mm_release(tsk, mm); 1645 } 1646 1647 /** 1648 * dup_mm() - duplicates an existing mm structure 1649 * @tsk: the task_struct with which the new mm will be associated. 1650 * @oldmm: the mm to duplicate. 1651 * 1652 * Allocates a new mm structure and duplicates the provided @oldmm structure 1653 * content into it. 1654 * 1655 * Return: the duplicated mm or NULL on failure. 1656 */ 1657 static struct mm_struct *dup_mm(struct task_struct *tsk, 1658 struct mm_struct *oldmm) 1659 { 1660 struct mm_struct *mm; 1661 int err; 1662 1663 mm = allocate_mm(); 1664 if (!mm) 1665 goto fail_nomem; 1666 1667 memcpy(mm, oldmm, sizeof(*mm)); 1668 1669 if (!mm_init(mm, tsk, mm->user_ns)) 1670 goto fail_nomem; 1671 1672 err = dup_mmap(mm, oldmm); 1673 if (err) 1674 goto free_pt; 1675 1676 mm->hiwater_rss = get_mm_rss(mm); 1677 mm->hiwater_vm = mm->total_vm; 1678 1679 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1680 goto free_pt; 1681 1682 return mm; 1683 1684 free_pt: 1685 /* don't put binfmt in mmput, we haven't got module yet */ 1686 mm->binfmt = NULL; 1687 mm_init_owner(mm, NULL); 1688 mmput(mm); 1689 1690 fail_nomem: 1691 return NULL; 1692 } 1693 1694 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1695 { 1696 struct mm_struct *mm, *oldmm; 1697 1698 tsk->min_flt = tsk->maj_flt = 0; 1699 tsk->nvcsw = tsk->nivcsw = 0; 1700 #ifdef CONFIG_DETECT_HUNG_TASK 1701 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1702 tsk->last_switch_time = 0; 1703 #endif 1704 1705 tsk->mm = NULL; 1706 tsk->active_mm = NULL; 1707 1708 /* 1709 * Are we cloning a kernel thread? 1710 * 1711 * We need to steal a active VM for that.. 1712 */ 1713 oldmm = current->mm; 1714 if (!oldmm) 1715 return 0; 1716 1717 if (clone_flags & CLONE_VM) { 1718 mmget(oldmm); 1719 mm = oldmm; 1720 } else { 1721 mm = dup_mm(tsk, current->mm); 1722 if (!mm) 1723 return -ENOMEM; 1724 } 1725 1726 tsk->mm = mm; 1727 tsk->active_mm = mm; 1728 sched_mm_cid_fork(tsk); 1729 return 0; 1730 } 1731 1732 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1733 { 1734 struct fs_struct *fs = current->fs; 1735 if (clone_flags & CLONE_FS) { 1736 /* tsk->fs is already what we want */ 1737 spin_lock(&fs->lock); 1738 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1739 if (fs->in_exec) { 1740 spin_unlock(&fs->lock); 1741 return -EAGAIN; 1742 } 1743 fs->users++; 1744 spin_unlock(&fs->lock); 1745 return 0; 1746 } 1747 tsk->fs = copy_fs_struct(fs); 1748 if (!tsk->fs) 1749 return -ENOMEM; 1750 return 0; 1751 } 1752 1753 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1754 int no_files) 1755 { 1756 struct files_struct *oldf, *newf; 1757 int error = 0; 1758 1759 /* 1760 * A background process may not have any files ... 1761 */ 1762 oldf = current->files; 1763 if (!oldf) 1764 goto out; 1765 1766 if (no_files) { 1767 tsk->files = NULL; 1768 goto out; 1769 } 1770 1771 if (clone_flags & CLONE_FILES) { 1772 atomic_inc(&oldf->count); 1773 goto out; 1774 } 1775 1776 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1777 if (!newf) 1778 goto out; 1779 1780 tsk->files = newf; 1781 error = 0; 1782 out: 1783 return error; 1784 } 1785 1786 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1787 { 1788 struct sighand_struct *sig; 1789 1790 if (clone_flags & CLONE_SIGHAND) { 1791 refcount_inc(¤t->sighand->count); 1792 return 0; 1793 } 1794 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1795 RCU_INIT_POINTER(tsk->sighand, sig); 1796 if (!sig) 1797 return -ENOMEM; 1798 1799 refcount_set(&sig->count, 1); 1800 spin_lock_irq(¤t->sighand->siglock); 1801 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1802 spin_unlock_irq(¤t->sighand->siglock); 1803 1804 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1805 if (clone_flags & CLONE_CLEAR_SIGHAND) 1806 flush_signal_handlers(tsk, 0); 1807 1808 return 0; 1809 } 1810 1811 void __cleanup_sighand(struct sighand_struct *sighand) 1812 { 1813 if (refcount_dec_and_test(&sighand->count)) { 1814 signalfd_cleanup(sighand); 1815 /* 1816 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1817 * without an RCU grace period, see __lock_task_sighand(). 1818 */ 1819 kmem_cache_free(sighand_cachep, sighand); 1820 } 1821 } 1822 1823 /* 1824 * Initialize POSIX timer handling for a thread group. 1825 */ 1826 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1827 { 1828 struct posix_cputimers *pct = &sig->posix_cputimers; 1829 unsigned long cpu_limit; 1830 1831 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1832 posix_cputimers_group_init(pct, cpu_limit); 1833 } 1834 1835 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1836 { 1837 struct signal_struct *sig; 1838 1839 if (clone_flags & CLONE_THREAD) 1840 return 0; 1841 1842 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1843 tsk->signal = sig; 1844 if (!sig) 1845 return -ENOMEM; 1846 1847 sig->nr_threads = 1; 1848 sig->quick_threads = 1; 1849 atomic_set(&sig->live, 1); 1850 refcount_set(&sig->sigcnt, 1); 1851 1852 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1853 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1854 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1855 1856 init_waitqueue_head(&sig->wait_chldexit); 1857 sig->curr_target = tsk; 1858 init_sigpending(&sig->shared_pending); 1859 INIT_HLIST_HEAD(&sig->multiprocess); 1860 seqlock_init(&sig->stats_lock); 1861 prev_cputime_init(&sig->prev_cputime); 1862 1863 #ifdef CONFIG_POSIX_TIMERS 1864 INIT_LIST_HEAD(&sig->posix_timers); 1865 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1866 sig->real_timer.function = it_real_fn; 1867 #endif 1868 1869 task_lock(current->group_leader); 1870 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1871 task_unlock(current->group_leader); 1872 1873 posix_cpu_timers_init_group(sig); 1874 1875 tty_audit_fork(sig); 1876 sched_autogroup_fork(sig); 1877 1878 sig->oom_score_adj = current->signal->oom_score_adj; 1879 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1880 1881 mutex_init(&sig->cred_guard_mutex); 1882 init_rwsem(&sig->exec_update_lock); 1883 1884 return 0; 1885 } 1886 1887 static void copy_seccomp(struct task_struct *p) 1888 { 1889 #ifdef CONFIG_SECCOMP 1890 /* 1891 * Must be called with sighand->lock held, which is common to 1892 * all threads in the group. Holding cred_guard_mutex is not 1893 * needed because this new task is not yet running and cannot 1894 * be racing exec. 1895 */ 1896 assert_spin_locked(¤t->sighand->siglock); 1897 1898 /* Ref-count the new filter user, and assign it. */ 1899 get_seccomp_filter(current); 1900 p->seccomp = current->seccomp; 1901 1902 /* 1903 * Explicitly enable no_new_privs here in case it got set 1904 * between the task_struct being duplicated and holding the 1905 * sighand lock. The seccomp state and nnp must be in sync. 1906 */ 1907 if (task_no_new_privs(current)) 1908 task_set_no_new_privs(p); 1909 1910 /* 1911 * If the parent gained a seccomp mode after copying thread 1912 * flags and between before we held the sighand lock, we have 1913 * to manually enable the seccomp thread flag here. 1914 */ 1915 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1916 set_task_syscall_work(p, SECCOMP); 1917 #endif 1918 } 1919 1920 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1921 { 1922 current->clear_child_tid = tidptr; 1923 1924 return task_pid_vnr(current); 1925 } 1926 1927 static void rt_mutex_init_task(struct task_struct *p) 1928 { 1929 raw_spin_lock_init(&p->pi_lock); 1930 #ifdef CONFIG_RT_MUTEXES 1931 p->pi_waiters = RB_ROOT_CACHED; 1932 p->pi_top_task = NULL; 1933 p->pi_blocked_on = NULL; 1934 #endif 1935 } 1936 1937 static inline void init_task_pid_links(struct task_struct *task) 1938 { 1939 enum pid_type type; 1940 1941 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1942 INIT_HLIST_NODE(&task->pid_links[type]); 1943 } 1944 1945 static inline void 1946 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1947 { 1948 if (type == PIDTYPE_PID) 1949 task->thread_pid = pid; 1950 else 1951 task->signal->pids[type] = pid; 1952 } 1953 1954 static inline void rcu_copy_process(struct task_struct *p) 1955 { 1956 #ifdef CONFIG_PREEMPT_RCU 1957 p->rcu_read_lock_nesting = 0; 1958 p->rcu_read_unlock_special.s = 0; 1959 p->rcu_blocked_node = NULL; 1960 INIT_LIST_HEAD(&p->rcu_node_entry); 1961 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1962 #ifdef CONFIG_TASKS_RCU 1963 p->rcu_tasks_holdout = false; 1964 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1965 p->rcu_tasks_idle_cpu = -1; 1966 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1967 #endif /* #ifdef CONFIG_TASKS_RCU */ 1968 #ifdef CONFIG_TASKS_TRACE_RCU 1969 p->trc_reader_nesting = 0; 1970 p->trc_reader_special.s = 0; 1971 INIT_LIST_HEAD(&p->trc_holdout_list); 1972 INIT_LIST_HEAD(&p->trc_blkd_node); 1973 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1974 } 1975 1976 /** 1977 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1978 * @pid: the struct pid for which to create a pidfd 1979 * @flags: flags of the new @pidfd 1980 * @ret: Where to return the file for the pidfd. 1981 * 1982 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1983 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1984 * 1985 * The helper doesn't perform checks on @pid which makes it useful for pidfds 1986 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 1987 * pidfd file are prepared. 1988 * 1989 * If this function returns successfully the caller is responsible to either 1990 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1991 * order to install the pidfd into its file descriptor table or they must use 1992 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1993 * respectively. 1994 * 1995 * This function is useful when a pidfd must already be reserved but there 1996 * might still be points of failure afterwards and the caller wants to ensure 1997 * that no pidfd is leaked into its file descriptor table. 1998 * 1999 * Return: On success, a reserved pidfd is returned from the function and a new 2000 * pidfd file is returned in the last argument to the function. On 2001 * error, a negative error code is returned from the function and the 2002 * last argument remains unchanged. 2003 */ 2004 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2005 { 2006 int pidfd; 2007 struct file *pidfd_file; 2008 2009 pidfd = get_unused_fd_flags(O_CLOEXEC); 2010 if (pidfd < 0) 2011 return pidfd; 2012 2013 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2014 if (IS_ERR(pidfd_file)) { 2015 put_unused_fd(pidfd); 2016 return PTR_ERR(pidfd_file); 2017 } 2018 /* 2019 * anon_inode_getfile() ignores everything outside of the 2020 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2021 */ 2022 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2023 *ret = pidfd_file; 2024 return pidfd; 2025 } 2026 2027 /** 2028 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2029 * @pid: the struct pid for which to create a pidfd 2030 * @flags: flags of the new @pidfd 2031 * @ret: Where to return the pidfd. 2032 * 2033 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2034 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2035 * 2036 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2037 * task identified by @pid must be a thread-group leader. 2038 * 2039 * If this function returns successfully the caller is responsible to either 2040 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2041 * order to install the pidfd into its file descriptor table or they must use 2042 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2043 * respectively. 2044 * 2045 * This function is useful when a pidfd must already be reserved but there 2046 * might still be points of failure afterwards and the caller wants to ensure 2047 * that no pidfd is leaked into its file descriptor table. 2048 * 2049 * Return: On success, a reserved pidfd is returned from the function and a new 2050 * pidfd file is returned in the last argument to the function. On 2051 * error, a negative error code is returned from the function and the 2052 * last argument remains unchanged. 2053 */ 2054 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2055 { 2056 bool thread = flags & PIDFD_THREAD; 2057 2058 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2059 return -EINVAL; 2060 2061 return __pidfd_prepare(pid, flags, ret); 2062 } 2063 2064 static void __delayed_free_task(struct rcu_head *rhp) 2065 { 2066 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2067 2068 free_task(tsk); 2069 } 2070 2071 static __always_inline void delayed_free_task(struct task_struct *tsk) 2072 { 2073 if (IS_ENABLED(CONFIG_MEMCG)) 2074 call_rcu(&tsk->rcu, __delayed_free_task); 2075 else 2076 free_task(tsk); 2077 } 2078 2079 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2080 { 2081 /* Skip if kernel thread */ 2082 if (!tsk->mm) 2083 return; 2084 2085 /* Skip if spawning a thread or using vfork */ 2086 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2087 return; 2088 2089 /* We need to synchronize with __set_oom_adj */ 2090 mutex_lock(&oom_adj_mutex); 2091 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2092 /* Update the values in case they were changed after copy_signal */ 2093 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2094 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2095 mutex_unlock(&oom_adj_mutex); 2096 } 2097 2098 #ifdef CONFIG_RV 2099 static void rv_task_fork(struct task_struct *p) 2100 { 2101 int i; 2102 2103 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2104 p->rv[i].da_mon.monitoring = false; 2105 } 2106 #else 2107 #define rv_task_fork(p) do {} while (0) 2108 #endif 2109 2110 /* 2111 * This creates a new process as a copy of the old one, 2112 * but does not actually start it yet. 2113 * 2114 * It copies the registers, and all the appropriate 2115 * parts of the process environment (as per the clone 2116 * flags). The actual kick-off is left to the caller. 2117 */ 2118 __latent_entropy struct task_struct *copy_process( 2119 struct pid *pid, 2120 int trace, 2121 int node, 2122 struct kernel_clone_args *args) 2123 { 2124 int pidfd = -1, retval; 2125 struct task_struct *p; 2126 struct multiprocess_signals delayed; 2127 struct file *pidfile = NULL; 2128 const u64 clone_flags = args->flags; 2129 struct nsproxy *nsp = current->nsproxy; 2130 2131 /* 2132 * Don't allow sharing the root directory with processes in a different 2133 * namespace 2134 */ 2135 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2136 return ERR_PTR(-EINVAL); 2137 2138 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2139 return ERR_PTR(-EINVAL); 2140 2141 /* 2142 * Thread groups must share signals as well, and detached threads 2143 * can only be started up within the thread group. 2144 */ 2145 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2146 return ERR_PTR(-EINVAL); 2147 2148 /* 2149 * Shared signal handlers imply shared VM. By way of the above, 2150 * thread groups also imply shared VM. Blocking this case allows 2151 * for various simplifications in other code. 2152 */ 2153 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2154 return ERR_PTR(-EINVAL); 2155 2156 /* 2157 * Siblings of global init remain as zombies on exit since they are 2158 * not reaped by their parent (swapper). To solve this and to avoid 2159 * multi-rooted process trees, prevent global and container-inits 2160 * from creating siblings. 2161 */ 2162 if ((clone_flags & CLONE_PARENT) && 2163 current->signal->flags & SIGNAL_UNKILLABLE) 2164 return ERR_PTR(-EINVAL); 2165 2166 /* 2167 * If the new process will be in a different pid or user namespace 2168 * do not allow it to share a thread group with the forking task. 2169 */ 2170 if (clone_flags & CLONE_THREAD) { 2171 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2172 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2173 return ERR_PTR(-EINVAL); 2174 } 2175 2176 if (clone_flags & CLONE_PIDFD) { 2177 /* 2178 * - CLONE_DETACHED is blocked so that we can potentially 2179 * reuse it later for CLONE_PIDFD. 2180 */ 2181 if (clone_flags & CLONE_DETACHED) 2182 return ERR_PTR(-EINVAL); 2183 } 2184 2185 /* 2186 * Force any signals received before this point to be delivered 2187 * before the fork happens. Collect up signals sent to multiple 2188 * processes that happen during the fork and delay them so that 2189 * they appear to happen after the fork. 2190 */ 2191 sigemptyset(&delayed.signal); 2192 INIT_HLIST_NODE(&delayed.node); 2193 2194 spin_lock_irq(¤t->sighand->siglock); 2195 if (!(clone_flags & CLONE_THREAD)) 2196 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2197 recalc_sigpending(); 2198 spin_unlock_irq(¤t->sighand->siglock); 2199 retval = -ERESTARTNOINTR; 2200 if (task_sigpending(current)) 2201 goto fork_out; 2202 2203 retval = -ENOMEM; 2204 p = dup_task_struct(current, node); 2205 if (!p) 2206 goto fork_out; 2207 p->flags &= ~PF_KTHREAD; 2208 if (args->kthread) 2209 p->flags |= PF_KTHREAD; 2210 if (args->user_worker) { 2211 /* 2212 * Mark us a user worker, and block any signal that isn't 2213 * fatal or STOP 2214 */ 2215 p->flags |= PF_USER_WORKER; 2216 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2217 } 2218 if (args->io_thread) 2219 p->flags |= PF_IO_WORKER; 2220 2221 if (args->name) 2222 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2223 2224 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2225 /* 2226 * Clear TID on mm_release()? 2227 */ 2228 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2229 2230 ftrace_graph_init_task(p); 2231 2232 rt_mutex_init_task(p); 2233 2234 lockdep_assert_irqs_enabled(); 2235 #ifdef CONFIG_PROVE_LOCKING 2236 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2237 #endif 2238 retval = copy_creds(p, clone_flags); 2239 if (retval < 0) 2240 goto bad_fork_free; 2241 2242 retval = -EAGAIN; 2243 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2244 if (p->real_cred->user != INIT_USER && 2245 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2246 goto bad_fork_cleanup_count; 2247 } 2248 current->flags &= ~PF_NPROC_EXCEEDED; 2249 2250 /* 2251 * If multiple threads are within copy_process(), then this check 2252 * triggers too late. This doesn't hurt, the check is only there 2253 * to stop root fork bombs. 2254 */ 2255 retval = -EAGAIN; 2256 if (data_race(nr_threads >= max_threads)) 2257 goto bad_fork_cleanup_count; 2258 2259 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2260 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2261 p->flags |= PF_FORKNOEXEC; 2262 INIT_LIST_HEAD(&p->children); 2263 INIT_LIST_HEAD(&p->sibling); 2264 rcu_copy_process(p); 2265 p->vfork_done = NULL; 2266 spin_lock_init(&p->alloc_lock); 2267 2268 init_sigpending(&p->pending); 2269 2270 p->utime = p->stime = p->gtime = 0; 2271 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2272 p->utimescaled = p->stimescaled = 0; 2273 #endif 2274 prev_cputime_init(&p->prev_cputime); 2275 2276 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2277 seqcount_init(&p->vtime.seqcount); 2278 p->vtime.starttime = 0; 2279 p->vtime.state = VTIME_INACTIVE; 2280 #endif 2281 2282 #ifdef CONFIG_IO_URING 2283 p->io_uring = NULL; 2284 #endif 2285 2286 p->default_timer_slack_ns = current->timer_slack_ns; 2287 2288 #ifdef CONFIG_PSI 2289 p->psi_flags = 0; 2290 #endif 2291 2292 task_io_accounting_init(&p->ioac); 2293 acct_clear_integrals(p); 2294 2295 posix_cputimers_init(&p->posix_cputimers); 2296 2297 p->io_context = NULL; 2298 audit_set_context(p, NULL); 2299 cgroup_fork(p); 2300 if (args->kthread) { 2301 if (!set_kthread_struct(p)) 2302 goto bad_fork_cleanup_delayacct; 2303 } 2304 #ifdef CONFIG_NUMA 2305 p->mempolicy = mpol_dup(p->mempolicy); 2306 if (IS_ERR(p->mempolicy)) { 2307 retval = PTR_ERR(p->mempolicy); 2308 p->mempolicy = NULL; 2309 goto bad_fork_cleanup_delayacct; 2310 } 2311 #endif 2312 #ifdef CONFIG_CPUSETS 2313 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2314 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2315 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2316 #endif 2317 #ifdef CONFIG_TRACE_IRQFLAGS 2318 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2319 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2320 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2321 p->softirqs_enabled = 1; 2322 p->softirq_context = 0; 2323 #endif 2324 2325 p->pagefault_disabled = 0; 2326 2327 #ifdef CONFIG_LOCKDEP 2328 lockdep_init_task(p); 2329 #endif 2330 2331 #ifdef CONFIG_DEBUG_MUTEXES 2332 p->blocked_on = NULL; /* not blocked yet */ 2333 #endif 2334 #ifdef CONFIG_BCACHE 2335 p->sequential_io = 0; 2336 p->sequential_io_avg = 0; 2337 #endif 2338 #ifdef CONFIG_BPF_SYSCALL 2339 RCU_INIT_POINTER(p->bpf_storage, NULL); 2340 p->bpf_ctx = NULL; 2341 #endif 2342 2343 /* Perform scheduler related setup. Assign this task to a CPU. */ 2344 retval = sched_fork(clone_flags, p); 2345 if (retval) 2346 goto bad_fork_cleanup_policy; 2347 2348 retval = perf_event_init_task(p, clone_flags); 2349 if (retval) 2350 goto bad_fork_cleanup_policy; 2351 retval = audit_alloc(p); 2352 if (retval) 2353 goto bad_fork_cleanup_perf; 2354 /* copy all the process information */ 2355 shm_init_task(p); 2356 retval = security_task_alloc(p, clone_flags); 2357 if (retval) 2358 goto bad_fork_cleanup_audit; 2359 retval = copy_semundo(clone_flags, p); 2360 if (retval) 2361 goto bad_fork_cleanup_security; 2362 retval = copy_files(clone_flags, p, args->no_files); 2363 if (retval) 2364 goto bad_fork_cleanup_semundo; 2365 retval = copy_fs(clone_flags, p); 2366 if (retval) 2367 goto bad_fork_cleanup_files; 2368 retval = copy_sighand(clone_flags, p); 2369 if (retval) 2370 goto bad_fork_cleanup_fs; 2371 retval = copy_signal(clone_flags, p); 2372 if (retval) 2373 goto bad_fork_cleanup_sighand; 2374 retval = copy_mm(clone_flags, p); 2375 if (retval) 2376 goto bad_fork_cleanup_signal; 2377 retval = copy_namespaces(clone_flags, p); 2378 if (retval) 2379 goto bad_fork_cleanup_mm; 2380 retval = copy_io(clone_flags, p); 2381 if (retval) 2382 goto bad_fork_cleanup_namespaces; 2383 retval = copy_thread(p, args); 2384 if (retval) 2385 goto bad_fork_cleanup_io; 2386 2387 stackleak_task_init(p); 2388 2389 if (pid != &init_struct_pid) { 2390 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2391 args->set_tid_size); 2392 if (IS_ERR(pid)) { 2393 retval = PTR_ERR(pid); 2394 goto bad_fork_cleanup_thread; 2395 } 2396 } 2397 2398 /* 2399 * This has to happen after we've potentially unshared the file 2400 * descriptor table (so that the pidfd doesn't leak into the child 2401 * if the fd table isn't shared). 2402 */ 2403 if (clone_flags & CLONE_PIDFD) { 2404 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2405 2406 /* Note that no task has been attached to @pid yet. */ 2407 retval = __pidfd_prepare(pid, flags, &pidfile); 2408 if (retval < 0) 2409 goto bad_fork_free_pid; 2410 pidfd = retval; 2411 2412 retval = put_user(pidfd, args->pidfd); 2413 if (retval) 2414 goto bad_fork_put_pidfd; 2415 } 2416 2417 #ifdef CONFIG_BLOCK 2418 p->plug = NULL; 2419 #endif 2420 futex_init_task(p); 2421 2422 /* 2423 * sigaltstack should be cleared when sharing the same VM 2424 */ 2425 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2426 sas_ss_reset(p); 2427 2428 /* 2429 * Syscall tracing and stepping should be turned off in the 2430 * child regardless of CLONE_PTRACE. 2431 */ 2432 user_disable_single_step(p); 2433 clear_task_syscall_work(p, SYSCALL_TRACE); 2434 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2435 clear_task_syscall_work(p, SYSCALL_EMU); 2436 #endif 2437 clear_tsk_latency_tracing(p); 2438 2439 /* ok, now we should be set up.. */ 2440 p->pid = pid_nr(pid); 2441 if (clone_flags & CLONE_THREAD) { 2442 p->group_leader = current->group_leader; 2443 p->tgid = current->tgid; 2444 } else { 2445 p->group_leader = p; 2446 p->tgid = p->pid; 2447 } 2448 2449 p->nr_dirtied = 0; 2450 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2451 p->dirty_paused_when = 0; 2452 2453 p->pdeath_signal = 0; 2454 p->task_works = NULL; 2455 clear_posix_cputimers_work(p); 2456 2457 #ifdef CONFIG_KRETPROBES 2458 p->kretprobe_instances.first = NULL; 2459 #endif 2460 #ifdef CONFIG_RETHOOK 2461 p->rethooks.first = NULL; 2462 #endif 2463 2464 /* 2465 * Ensure that the cgroup subsystem policies allow the new process to be 2466 * forked. It should be noted that the new process's css_set can be changed 2467 * between here and cgroup_post_fork() if an organisation operation is in 2468 * progress. 2469 */ 2470 retval = cgroup_can_fork(p, args); 2471 if (retval) 2472 goto bad_fork_put_pidfd; 2473 2474 /* 2475 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2476 * the new task on the correct runqueue. All this *before* the task 2477 * becomes visible. 2478 * 2479 * This isn't part of ->can_fork() because while the re-cloning is 2480 * cgroup specific, it unconditionally needs to place the task on a 2481 * runqueue. 2482 */ 2483 sched_cgroup_fork(p, args); 2484 2485 /* 2486 * From this point on we must avoid any synchronous user-space 2487 * communication until we take the tasklist-lock. In particular, we do 2488 * not want user-space to be able to predict the process start-time by 2489 * stalling fork(2) after we recorded the start_time but before it is 2490 * visible to the system. 2491 */ 2492 2493 p->start_time = ktime_get_ns(); 2494 p->start_boottime = ktime_get_boottime_ns(); 2495 2496 /* 2497 * Make it visible to the rest of the system, but dont wake it up yet. 2498 * Need tasklist lock for parent etc handling! 2499 */ 2500 write_lock_irq(&tasklist_lock); 2501 2502 /* CLONE_PARENT re-uses the old parent */ 2503 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2504 p->real_parent = current->real_parent; 2505 p->parent_exec_id = current->parent_exec_id; 2506 if (clone_flags & CLONE_THREAD) 2507 p->exit_signal = -1; 2508 else 2509 p->exit_signal = current->group_leader->exit_signal; 2510 } else { 2511 p->real_parent = current; 2512 p->parent_exec_id = current->self_exec_id; 2513 p->exit_signal = args->exit_signal; 2514 } 2515 2516 klp_copy_process(p); 2517 2518 sched_core_fork(p); 2519 2520 spin_lock(¤t->sighand->siglock); 2521 2522 rv_task_fork(p); 2523 2524 rseq_fork(p, clone_flags); 2525 2526 /* Don't start children in a dying pid namespace */ 2527 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2528 retval = -ENOMEM; 2529 goto bad_fork_cancel_cgroup; 2530 } 2531 2532 /* Let kill terminate clone/fork in the middle */ 2533 if (fatal_signal_pending(current)) { 2534 retval = -EINTR; 2535 goto bad_fork_cancel_cgroup; 2536 } 2537 2538 /* No more failure paths after this point. */ 2539 2540 /* 2541 * Copy seccomp details explicitly here, in case they were changed 2542 * before holding sighand lock. 2543 */ 2544 copy_seccomp(p); 2545 2546 init_task_pid_links(p); 2547 if (likely(p->pid)) { 2548 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2549 2550 init_task_pid(p, PIDTYPE_PID, pid); 2551 if (thread_group_leader(p)) { 2552 init_task_pid(p, PIDTYPE_TGID, pid); 2553 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2554 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2555 2556 if (is_child_reaper(pid)) { 2557 ns_of_pid(pid)->child_reaper = p; 2558 p->signal->flags |= SIGNAL_UNKILLABLE; 2559 } 2560 p->signal->shared_pending.signal = delayed.signal; 2561 p->signal->tty = tty_kref_get(current->signal->tty); 2562 /* 2563 * Inherit has_child_subreaper flag under the same 2564 * tasklist_lock with adding child to the process tree 2565 * for propagate_has_child_subreaper optimization. 2566 */ 2567 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2568 p->real_parent->signal->is_child_subreaper; 2569 list_add_tail(&p->sibling, &p->real_parent->children); 2570 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2571 attach_pid(p, PIDTYPE_TGID); 2572 attach_pid(p, PIDTYPE_PGID); 2573 attach_pid(p, PIDTYPE_SID); 2574 __this_cpu_inc(process_counts); 2575 } else { 2576 current->signal->nr_threads++; 2577 current->signal->quick_threads++; 2578 atomic_inc(¤t->signal->live); 2579 refcount_inc(¤t->signal->sigcnt); 2580 task_join_group_stop(p); 2581 list_add_tail_rcu(&p->thread_node, 2582 &p->signal->thread_head); 2583 } 2584 attach_pid(p, PIDTYPE_PID); 2585 nr_threads++; 2586 } 2587 total_forks++; 2588 hlist_del_init(&delayed.node); 2589 spin_unlock(¤t->sighand->siglock); 2590 syscall_tracepoint_update(p); 2591 write_unlock_irq(&tasklist_lock); 2592 2593 if (pidfile) 2594 fd_install(pidfd, pidfile); 2595 2596 proc_fork_connector(p); 2597 sched_post_fork(p); 2598 cgroup_post_fork(p, args); 2599 perf_event_fork(p); 2600 2601 trace_task_newtask(p, clone_flags); 2602 uprobe_copy_process(p, clone_flags); 2603 user_events_fork(p, clone_flags); 2604 2605 copy_oom_score_adj(clone_flags, p); 2606 2607 return p; 2608 2609 bad_fork_cancel_cgroup: 2610 sched_core_free(p); 2611 spin_unlock(¤t->sighand->siglock); 2612 write_unlock_irq(&tasklist_lock); 2613 cgroup_cancel_fork(p, args); 2614 bad_fork_put_pidfd: 2615 if (clone_flags & CLONE_PIDFD) { 2616 fput(pidfile); 2617 put_unused_fd(pidfd); 2618 } 2619 bad_fork_free_pid: 2620 if (pid != &init_struct_pid) 2621 free_pid(pid); 2622 bad_fork_cleanup_thread: 2623 exit_thread(p); 2624 bad_fork_cleanup_io: 2625 if (p->io_context) 2626 exit_io_context(p); 2627 bad_fork_cleanup_namespaces: 2628 exit_task_namespaces(p); 2629 bad_fork_cleanup_mm: 2630 if (p->mm) { 2631 mm_clear_owner(p->mm, p); 2632 mmput(p->mm); 2633 } 2634 bad_fork_cleanup_signal: 2635 if (!(clone_flags & CLONE_THREAD)) 2636 free_signal_struct(p->signal); 2637 bad_fork_cleanup_sighand: 2638 __cleanup_sighand(p->sighand); 2639 bad_fork_cleanup_fs: 2640 exit_fs(p); /* blocking */ 2641 bad_fork_cleanup_files: 2642 exit_files(p); /* blocking */ 2643 bad_fork_cleanup_semundo: 2644 exit_sem(p); 2645 bad_fork_cleanup_security: 2646 security_task_free(p); 2647 bad_fork_cleanup_audit: 2648 audit_free(p); 2649 bad_fork_cleanup_perf: 2650 perf_event_free_task(p); 2651 bad_fork_cleanup_policy: 2652 lockdep_free_task(p); 2653 #ifdef CONFIG_NUMA 2654 mpol_put(p->mempolicy); 2655 #endif 2656 bad_fork_cleanup_delayacct: 2657 delayacct_tsk_free(p); 2658 bad_fork_cleanup_count: 2659 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2660 exit_creds(p); 2661 bad_fork_free: 2662 WRITE_ONCE(p->__state, TASK_DEAD); 2663 exit_task_stack_account(p); 2664 put_task_stack(p); 2665 delayed_free_task(p); 2666 fork_out: 2667 spin_lock_irq(¤t->sighand->siglock); 2668 hlist_del_init(&delayed.node); 2669 spin_unlock_irq(¤t->sighand->siglock); 2670 return ERR_PTR(retval); 2671 } 2672 2673 static inline void init_idle_pids(struct task_struct *idle) 2674 { 2675 enum pid_type type; 2676 2677 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2678 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2679 init_task_pid(idle, type, &init_struct_pid); 2680 } 2681 } 2682 2683 static int idle_dummy(void *dummy) 2684 { 2685 /* This function is never called */ 2686 return 0; 2687 } 2688 2689 struct task_struct * __init fork_idle(int cpu) 2690 { 2691 struct task_struct *task; 2692 struct kernel_clone_args args = { 2693 .flags = CLONE_VM, 2694 .fn = &idle_dummy, 2695 .fn_arg = NULL, 2696 .kthread = 1, 2697 .idle = 1, 2698 }; 2699 2700 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2701 if (!IS_ERR(task)) { 2702 init_idle_pids(task); 2703 init_idle(task, cpu); 2704 } 2705 2706 return task; 2707 } 2708 2709 /* 2710 * This is like kernel_clone(), but shaved down and tailored to just 2711 * creating io_uring workers. It returns a created task, or an error pointer. 2712 * The returned task is inactive, and the caller must fire it up through 2713 * wake_up_new_task(p). All signals are blocked in the created task. 2714 */ 2715 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2716 { 2717 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2718 CLONE_IO; 2719 struct kernel_clone_args args = { 2720 .flags = ((lower_32_bits(flags) | CLONE_VM | 2721 CLONE_UNTRACED) & ~CSIGNAL), 2722 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2723 .fn = fn, 2724 .fn_arg = arg, 2725 .io_thread = 1, 2726 .user_worker = 1, 2727 }; 2728 2729 return copy_process(NULL, 0, node, &args); 2730 } 2731 2732 /* 2733 * Ok, this is the main fork-routine. 2734 * 2735 * It copies the process, and if successful kick-starts 2736 * it and waits for it to finish using the VM if required. 2737 * 2738 * args->exit_signal is expected to be checked for sanity by the caller. 2739 */ 2740 pid_t kernel_clone(struct kernel_clone_args *args) 2741 { 2742 u64 clone_flags = args->flags; 2743 struct completion vfork; 2744 struct pid *pid; 2745 struct task_struct *p; 2746 int trace = 0; 2747 pid_t nr; 2748 2749 /* 2750 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2751 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2752 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2753 * field in struct clone_args and it still doesn't make sense to have 2754 * them both point at the same memory location. Performing this check 2755 * here has the advantage that we don't need to have a separate helper 2756 * to check for legacy clone(). 2757 */ 2758 if ((clone_flags & CLONE_PIDFD) && 2759 (clone_flags & CLONE_PARENT_SETTID) && 2760 (args->pidfd == args->parent_tid)) 2761 return -EINVAL; 2762 2763 /* 2764 * Determine whether and which event to report to ptracer. When 2765 * called from kernel_thread or CLONE_UNTRACED is explicitly 2766 * requested, no event is reported; otherwise, report if the event 2767 * for the type of forking is enabled. 2768 */ 2769 if (!(clone_flags & CLONE_UNTRACED)) { 2770 if (clone_flags & CLONE_VFORK) 2771 trace = PTRACE_EVENT_VFORK; 2772 else if (args->exit_signal != SIGCHLD) 2773 trace = PTRACE_EVENT_CLONE; 2774 else 2775 trace = PTRACE_EVENT_FORK; 2776 2777 if (likely(!ptrace_event_enabled(current, trace))) 2778 trace = 0; 2779 } 2780 2781 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2782 add_latent_entropy(); 2783 2784 if (IS_ERR(p)) 2785 return PTR_ERR(p); 2786 2787 /* 2788 * Do this prior waking up the new thread - the thread pointer 2789 * might get invalid after that point, if the thread exits quickly. 2790 */ 2791 trace_sched_process_fork(current, p); 2792 2793 pid = get_task_pid(p, PIDTYPE_PID); 2794 nr = pid_vnr(pid); 2795 2796 if (clone_flags & CLONE_PARENT_SETTID) 2797 put_user(nr, args->parent_tid); 2798 2799 if (clone_flags & CLONE_VFORK) { 2800 p->vfork_done = &vfork; 2801 init_completion(&vfork); 2802 get_task_struct(p); 2803 } 2804 2805 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2806 /* lock the task to synchronize with memcg migration */ 2807 task_lock(p); 2808 lru_gen_add_mm(p->mm); 2809 task_unlock(p); 2810 } 2811 2812 wake_up_new_task(p); 2813 2814 /* forking complete and child started to run, tell ptracer */ 2815 if (unlikely(trace)) 2816 ptrace_event_pid(trace, pid); 2817 2818 if (clone_flags & CLONE_VFORK) { 2819 if (!wait_for_vfork_done(p, &vfork)) 2820 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2821 } 2822 2823 put_pid(pid); 2824 return nr; 2825 } 2826 2827 /* 2828 * Create a kernel thread. 2829 */ 2830 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2831 unsigned long flags) 2832 { 2833 struct kernel_clone_args args = { 2834 .flags = ((lower_32_bits(flags) | CLONE_VM | 2835 CLONE_UNTRACED) & ~CSIGNAL), 2836 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2837 .fn = fn, 2838 .fn_arg = arg, 2839 .name = name, 2840 .kthread = 1, 2841 }; 2842 2843 return kernel_clone(&args); 2844 } 2845 2846 /* 2847 * Create a user mode thread. 2848 */ 2849 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2850 { 2851 struct kernel_clone_args args = { 2852 .flags = ((lower_32_bits(flags) | CLONE_VM | 2853 CLONE_UNTRACED) & ~CSIGNAL), 2854 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2855 .fn = fn, 2856 .fn_arg = arg, 2857 }; 2858 2859 return kernel_clone(&args); 2860 } 2861 2862 #ifdef __ARCH_WANT_SYS_FORK 2863 SYSCALL_DEFINE0(fork) 2864 { 2865 #ifdef CONFIG_MMU 2866 struct kernel_clone_args args = { 2867 .exit_signal = SIGCHLD, 2868 }; 2869 2870 return kernel_clone(&args); 2871 #else 2872 /* can not support in nommu mode */ 2873 return -EINVAL; 2874 #endif 2875 } 2876 #endif 2877 2878 #ifdef __ARCH_WANT_SYS_VFORK 2879 SYSCALL_DEFINE0(vfork) 2880 { 2881 struct kernel_clone_args args = { 2882 .flags = CLONE_VFORK | CLONE_VM, 2883 .exit_signal = SIGCHLD, 2884 }; 2885 2886 return kernel_clone(&args); 2887 } 2888 #endif 2889 2890 #ifdef __ARCH_WANT_SYS_CLONE 2891 #ifdef CONFIG_CLONE_BACKWARDS 2892 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2893 int __user *, parent_tidptr, 2894 unsigned long, tls, 2895 int __user *, child_tidptr) 2896 #elif defined(CONFIG_CLONE_BACKWARDS2) 2897 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2898 int __user *, parent_tidptr, 2899 int __user *, child_tidptr, 2900 unsigned long, tls) 2901 #elif defined(CONFIG_CLONE_BACKWARDS3) 2902 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2903 int, stack_size, 2904 int __user *, parent_tidptr, 2905 int __user *, child_tidptr, 2906 unsigned long, tls) 2907 #else 2908 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2909 int __user *, parent_tidptr, 2910 int __user *, child_tidptr, 2911 unsigned long, tls) 2912 #endif 2913 { 2914 struct kernel_clone_args args = { 2915 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2916 .pidfd = parent_tidptr, 2917 .child_tid = child_tidptr, 2918 .parent_tid = parent_tidptr, 2919 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2920 .stack = newsp, 2921 .tls = tls, 2922 }; 2923 2924 return kernel_clone(&args); 2925 } 2926 #endif 2927 2928 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2929 struct clone_args __user *uargs, 2930 size_t usize) 2931 { 2932 int err; 2933 struct clone_args args; 2934 pid_t *kset_tid = kargs->set_tid; 2935 2936 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2937 CLONE_ARGS_SIZE_VER0); 2938 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2939 CLONE_ARGS_SIZE_VER1); 2940 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2941 CLONE_ARGS_SIZE_VER2); 2942 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2943 2944 if (unlikely(usize > PAGE_SIZE)) 2945 return -E2BIG; 2946 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2947 return -EINVAL; 2948 2949 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2950 if (err) 2951 return err; 2952 2953 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2954 return -EINVAL; 2955 2956 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2957 return -EINVAL; 2958 2959 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2960 return -EINVAL; 2961 2962 /* 2963 * Verify that higher 32bits of exit_signal are unset and that 2964 * it is a valid signal 2965 */ 2966 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2967 !valid_signal(args.exit_signal))) 2968 return -EINVAL; 2969 2970 if ((args.flags & CLONE_INTO_CGROUP) && 2971 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2972 return -EINVAL; 2973 2974 *kargs = (struct kernel_clone_args){ 2975 .flags = args.flags, 2976 .pidfd = u64_to_user_ptr(args.pidfd), 2977 .child_tid = u64_to_user_ptr(args.child_tid), 2978 .parent_tid = u64_to_user_ptr(args.parent_tid), 2979 .exit_signal = args.exit_signal, 2980 .stack = args.stack, 2981 .stack_size = args.stack_size, 2982 .tls = args.tls, 2983 .set_tid_size = args.set_tid_size, 2984 .cgroup = args.cgroup, 2985 }; 2986 2987 if (args.set_tid && 2988 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2989 (kargs->set_tid_size * sizeof(pid_t)))) 2990 return -EFAULT; 2991 2992 kargs->set_tid = kset_tid; 2993 2994 return 0; 2995 } 2996 2997 /** 2998 * clone3_stack_valid - check and prepare stack 2999 * @kargs: kernel clone args 3000 * 3001 * Verify that the stack arguments userspace gave us are sane. 3002 * In addition, set the stack direction for userspace since it's easy for us to 3003 * determine. 3004 */ 3005 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3006 { 3007 if (kargs->stack == 0) { 3008 if (kargs->stack_size > 0) 3009 return false; 3010 } else { 3011 if (kargs->stack_size == 0) 3012 return false; 3013 3014 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3015 return false; 3016 3017 #if !defined(CONFIG_STACK_GROWSUP) 3018 kargs->stack += kargs->stack_size; 3019 #endif 3020 } 3021 3022 return true; 3023 } 3024 3025 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3026 { 3027 /* Verify that no unknown flags are passed along. */ 3028 if (kargs->flags & 3029 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3030 return false; 3031 3032 /* 3033 * - make the CLONE_DETACHED bit reusable for clone3 3034 * - make the CSIGNAL bits reusable for clone3 3035 */ 3036 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3037 return false; 3038 3039 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3040 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3041 return false; 3042 3043 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3044 kargs->exit_signal) 3045 return false; 3046 3047 if (!clone3_stack_valid(kargs)) 3048 return false; 3049 3050 return true; 3051 } 3052 3053 /** 3054 * sys_clone3 - create a new process with specific properties 3055 * @uargs: argument structure 3056 * @size: size of @uargs 3057 * 3058 * clone3() is the extensible successor to clone()/clone2(). 3059 * It takes a struct as argument that is versioned by its size. 3060 * 3061 * Return: On success, a positive PID for the child process. 3062 * On error, a negative errno number. 3063 */ 3064 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3065 { 3066 int err; 3067 3068 struct kernel_clone_args kargs; 3069 pid_t set_tid[MAX_PID_NS_LEVEL]; 3070 3071 #ifdef __ARCH_BROKEN_SYS_CLONE3 3072 #warning clone3() entry point is missing, please fix 3073 return -ENOSYS; 3074 #endif 3075 3076 kargs.set_tid = set_tid; 3077 3078 err = copy_clone_args_from_user(&kargs, uargs, size); 3079 if (err) 3080 return err; 3081 3082 if (!clone3_args_valid(&kargs)) 3083 return -EINVAL; 3084 3085 return kernel_clone(&kargs); 3086 } 3087 3088 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3089 { 3090 struct task_struct *leader, *parent, *child; 3091 int res; 3092 3093 read_lock(&tasklist_lock); 3094 leader = top = top->group_leader; 3095 down: 3096 for_each_thread(leader, parent) { 3097 list_for_each_entry(child, &parent->children, sibling) { 3098 res = visitor(child, data); 3099 if (res) { 3100 if (res < 0) 3101 goto out; 3102 leader = child; 3103 goto down; 3104 } 3105 up: 3106 ; 3107 } 3108 } 3109 3110 if (leader != top) { 3111 child = leader; 3112 parent = child->real_parent; 3113 leader = parent->group_leader; 3114 goto up; 3115 } 3116 out: 3117 read_unlock(&tasklist_lock); 3118 } 3119 3120 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3121 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3122 #endif 3123 3124 static void sighand_ctor(void *data) 3125 { 3126 struct sighand_struct *sighand = data; 3127 3128 spin_lock_init(&sighand->siglock); 3129 init_waitqueue_head(&sighand->signalfd_wqh); 3130 } 3131 3132 void __init mm_cache_init(void) 3133 { 3134 unsigned int mm_size; 3135 3136 /* 3137 * The mm_cpumask is located at the end of mm_struct, and is 3138 * dynamically sized based on the maximum CPU number this system 3139 * can have, taking hotplug into account (nr_cpu_ids). 3140 */ 3141 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3142 3143 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3144 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3145 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3146 offsetof(struct mm_struct, saved_auxv), 3147 sizeof_field(struct mm_struct, saved_auxv), 3148 NULL); 3149 } 3150 3151 void __init proc_caches_init(void) 3152 { 3153 sighand_cachep = kmem_cache_create("sighand_cache", 3154 sizeof(struct sighand_struct), 0, 3155 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3156 SLAB_ACCOUNT, sighand_ctor); 3157 signal_cachep = kmem_cache_create("signal_cache", 3158 sizeof(struct signal_struct), 0, 3159 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3160 NULL); 3161 files_cachep = kmem_cache_create("files_cache", 3162 sizeof(struct files_struct), 0, 3163 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3164 NULL); 3165 fs_cachep = kmem_cache_create("fs_cache", 3166 sizeof(struct fs_struct), 0, 3167 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3168 NULL); 3169 3170 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3171 #ifdef CONFIG_PER_VMA_LOCK 3172 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3173 #endif 3174 mmap_init(); 3175 nsproxy_cache_init(); 3176 } 3177 3178 /* 3179 * Check constraints on flags passed to the unshare system call. 3180 */ 3181 static int check_unshare_flags(unsigned long unshare_flags) 3182 { 3183 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3184 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3185 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3186 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3187 CLONE_NEWTIME)) 3188 return -EINVAL; 3189 /* 3190 * Not implemented, but pretend it works if there is nothing 3191 * to unshare. Note that unsharing the address space or the 3192 * signal handlers also need to unshare the signal queues (aka 3193 * CLONE_THREAD). 3194 */ 3195 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3196 if (!thread_group_empty(current)) 3197 return -EINVAL; 3198 } 3199 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3200 if (refcount_read(¤t->sighand->count) > 1) 3201 return -EINVAL; 3202 } 3203 if (unshare_flags & CLONE_VM) { 3204 if (!current_is_single_threaded()) 3205 return -EINVAL; 3206 } 3207 3208 return 0; 3209 } 3210 3211 /* 3212 * Unshare the filesystem structure if it is being shared 3213 */ 3214 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3215 { 3216 struct fs_struct *fs = current->fs; 3217 3218 if (!(unshare_flags & CLONE_FS) || !fs) 3219 return 0; 3220 3221 /* don't need lock here; in the worst case we'll do useless copy */ 3222 if (fs->users == 1) 3223 return 0; 3224 3225 *new_fsp = copy_fs_struct(fs); 3226 if (!*new_fsp) 3227 return -ENOMEM; 3228 3229 return 0; 3230 } 3231 3232 /* 3233 * Unshare file descriptor table if it is being shared 3234 */ 3235 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3236 struct files_struct **new_fdp) 3237 { 3238 struct files_struct *fd = current->files; 3239 int error = 0; 3240 3241 if ((unshare_flags & CLONE_FILES) && 3242 (fd && atomic_read(&fd->count) > 1)) { 3243 *new_fdp = dup_fd(fd, max_fds, &error); 3244 if (!*new_fdp) 3245 return error; 3246 } 3247 3248 return 0; 3249 } 3250 3251 /* 3252 * unshare allows a process to 'unshare' part of the process 3253 * context which was originally shared using clone. copy_* 3254 * functions used by kernel_clone() cannot be used here directly 3255 * because they modify an inactive task_struct that is being 3256 * constructed. Here we are modifying the current, active, 3257 * task_struct. 3258 */ 3259 int ksys_unshare(unsigned long unshare_flags) 3260 { 3261 struct fs_struct *fs, *new_fs = NULL; 3262 struct files_struct *new_fd = NULL; 3263 struct cred *new_cred = NULL; 3264 struct nsproxy *new_nsproxy = NULL; 3265 int do_sysvsem = 0; 3266 int err; 3267 3268 /* 3269 * If unsharing a user namespace must also unshare the thread group 3270 * and unshare the filesystem root and working directories. 3271 */ 3272 if (unshare_flags & CLONE_NEWUSER) 3273 unshare_flags |= CLONE_THREAD | CLONE_FS; 3274 /* 3275 * If unsharing vm, must also unshare signal handlers. 3276 */ 3277 if (unshare_flags & CLONE_VM) 3278 unshare_flags |= CLONE_SIGHAND; 3279 /* 3280 * If unsharing a signal handlers, must also unshare the signal queues. 3281 */ 3282 if (unshare_flags & CLONE_SIGHAND) 3283 unshare_flags |= CLONE_THREAD; 3284 /* 3285 * If unsharing namespace, must also unshare filesystem information. 3286 */ 3287 if (unshare_flags & CLONE_NEWNS) 3288 unshare_flags |= CLONE_FS; 3289 3290 err = check_unshare_flags(unshare_flags); 3291 if (err) 3292 goto bad_unshare_out; 3293 /* 3294 * CLONE_NEWIPC must also detach from the undolist: after switching 3295 * to a new ipc namespace, the semaphore arrays from the old 3296 * namespace are unreachable. 3297 */ 3298 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3299 do_sysvsem = 1; 3300 err = unshare_fs(unshare_flags, &new_fs); 3301 if (err) 3302 goto bad_unshare_out; 3303 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3304 if (err) 3305 goto bad_unshare_cleanup_fs; 3306 err = unshare_userns(unshare_flags, &new_cred); 3307 if (err) 3308 goto bad_unshare_cleanup_fd; 3309 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3310 new_cred, new_fs); 3311 if (err) 3312 goto bad_unshare_cleanup_cred; 3313 3314 if (new_cred) { 3315 err = set_cred_ucounts(new_cred); 3316 if (err) 3317 goto bad_unshare_cleanup_cred; 3318 } 3319 3320 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3321 if (do_sysvsem) { 3322 /* 3323 * CLONE_SYSVSEM is equivalent to sys_exit(). 3324 */ 3325 exit_sem(current); 3326 } 3327 if (unshare_flags & CLONE_NEWIPC) { 3328 /* Orphan segments in old ns (see sem above). */ 3329 exit_shm(current); 3330 shm_init_task(current); 3331 } 3332 3333 if (new_nsproxy) 3334 switch_task_namespaces(current, new_nsproxy); 3335 3336 task_lock(current); 3337 3338 if (new_fs) { 3339 fs = current->fs; 3340 spin_lock(&fs->lock); 3341 current->fs = new_fs; 3342 if (--fs->users) 3343 new_fs = NULL; 3344 else 3345 new_fs = fs; 3346 spin_unlock(&fs->lock); 3347 } 3348 3349 if (new_fd) 3350 swap(current->files, new_fd); 3351 3352 task_unlock(current); 3353 3354 if (new_cred) { 3355 /* Install the new user namespace */ 3356 commit_creds(new_cred); 3357 new_cred = NULL; 3358 } 3359 } 3360 3361 perf_event_namespaces(current); 3362 3363 bad_unshare_cleanup_cred: 3364 if (new_cred) 3365 put_cred(new_cred); 3366 bad_unshare_cleanup_fd: 3367 if (new_fd) 3368 put_files_struct(new_fd); 3369 3370 bad_unshare_cleanup_fs: 3371 if (new_fs) 3372 free_fs_struct(new_fs); 3373 3374 bad_unshare_out: 3375 return err; 3376 } 3377 3378 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3379 { 3380 return ksys_unshare(unshare_flags); 3381 } 3382 3383 /* 3384 * Helper to unshare the files of the current task. 3385 * We don't want to expose copy_files internals to 3386 * the exec layer of the kernel. 3387 */ 3388 3389 int unshare_files(void) 3390 { 3391 struct task_struct *task = current; 3392 struct files_struct *old, *copy = NULL; 3393 int error; 3394 3395 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3396 if (error || !copy) 3397 return error; 3398 3399 old = task->files; 3400 task_lock(task); 3401 task->files = copy; 3402 task_unlock(task); 3403 put_files_struct(old); 3404 return 0; 3405 } 3406 3407 int sysctl_max_threads(const struct ctl_table *table, int write, 3408 void *buffer, size_t *lenp, loff_t *ppos) 3409 { 3410 struct ctl_table t; 3411 int ret; 3412 int threads = max_threads; 3413 int min = 1; 3414 int max = MAX_THREADS; 3415 3416 t = *table; 3417 t.data = &threads; 3418 t.extra1 = &min; 3419 t.extra2 = &max; 3420 3421 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3422 if (ret || !write) 3423 return ret; 3424 3425 max_threads = threads; 3426 3427 return 0; 3428 } 3429