1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/syscall_user_dispatch.h> 57 #include <linux/jiffies.h> 58 #include <linux/futex.h> 59 #include <linux/compat.h> 60 #include <linux/kthread.h> 61 #include <linux/task_io_accounting_ops.h> 62 #include <linux/rcupdate.h> 63 #include <linux/ptrace.h> 64 #include <linux/mount.h> 65 #include <linux/audit.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/proc_fs.h> 69 #include <linux/profile.h> 70 #include <linux/rmap.h> 71 #include <linux/ksm.h> 72 #include <linux/acct.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/tsacct_kern.h> 75 #include <linux/cn_proc.h> 76 #include <linux/freezer.h> 77 #include <linux/delayacct.h> 78 #include <linux/taskstats_kern.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 #include <linux/stackprotector.h> 101 #include <linux/user_events.h> 102 #include <linux/iommu.h> 103 #include <linux/rseq.h> 104 #include <uapi/linux/pidfd.h> 105 #include <linux/pidfs.h> 106 107 #include <asm/pgalloc.h> 108 #include <linux/uaccess.h> 109 #include <asm/mmu_context.h> 110 #include <asm/cacheflush.h> 111 #include <asm/tlbflush.h> 112 113 #include <trace/events/sched.h> 114 115 #define CREATE_TRACE_POINTS 116 #include <trace/events/task.h> 117 118 /* 119 * Minimum number of threads to boot the kernel 120 */ 121 #define MIN_THREADS 20 122 123 /* 124 * Maximum number of threads 125 */ 126 #define MAX_THREADS FUTEX_TID_MASK 127 128 /* 129 * Protected counters by write_lock_irq(&tasklist_lock) 130 */ 131 unsigned long total_forks; /* Handle normal Linux uptimes. */ 132 int nr_threads; /* The idle threads do not count.. */ 133 134 static int max_threads; /* tunable limit on nr_threads */ 135 136 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 137 138 static const char * const resident_page_types[] = { 139 NAMED_ARRAY_INDEX(MM_FILEPAGES), 140 NAMED_ARRAY_INDEX(MM_ANONPAGES), 141 NAMED_ARRAY_INDEX(MM_SWAPENTS), 142 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 143 }; 144 145 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 146 147 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 148 149 #ifdef CONFIG_PROVE_RCU 150 int lockdep_tasklist_lock_is_held(void) 151 { 152 return lockdep_is_held(&tasklist_lock); 153 } 154 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 155 #endif /* #ifdef CONFIG_PROVE_RCU */ 156 157 int nr_processes(void) 158 { 159 int cpu; 160 int total = 0; 161 162 for_each_possible_cpu(cpu) 163 total += per_cpu(process_counts, cpu); 164 165 return total; 166 } 167 168 void __weak arch_release_task_struct(struct task_struct *tsk) 169 { 170 } 171 172 static struct kmem_cache *task_struct_cachep; 173 174 static inline struct task_struct *alloc_task_struct_node(int node) 175 { 176 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 177 } 178 179 static inline void free_task_struct(struct task_struct *tsk) 180 { 181 kmem_cache_free(task_struct_cachep, tsk); 182 } 183 184 /* 185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 186 * kmemcache based allocator. 187 */ 188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 189 190 # ifdef CONFIG_VMAP_STACK 191 /* 192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 193 * flush. Try to minimize the number of calls by caching stacks. 194 */ 195 #define NR_CACHED_STACKS 2 196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 197 198 struct vm_stack { 199 struct rcu_head rcu; 200 struct vm_struct *stack_vm_area; 201 }; 202 203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 204 { 205 unsigned int i; 206 207 for (i = 0; i < NR_CACHED_STACKS; i++) { 208 struct vm_struct *tmp = NULL; 209 210 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 211 return true; 212 } 213 return false; 214 } 215 216 static void thread_stack_free_rcu(struct rcu_head *rh) 217 { 218 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 219 220 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 221 return; 222 223 vfree(vm_stack); 224 } 225 226 static void thread_stack_delayed_free(struct task_struct *tsk) 227 { 228 struct vm_stack *vm_stack = tsk->stack; 229 230 vm_stack->stack_vm_area = tsk->stack_vm_area; 231 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 232 } 233 234 static int free_vm_stack_cache(unsigned int cpu) 235 { 236 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 237 int i; 238 239 for (i = 0; i < NR_CACHED_STACKS; i++) { 240 struct vm_struct *vm_stack = cached_vm_stacks[i]; 241 242 if (!vm_stack) 243 continue; 244 245 vfree(vm_stack->addr); 246 cached_vm_stacks[i] = NULL; 247 } 248 249 return 0; 250 } 251 252 static int memcg_charge_kernel_stack(struct vm_struct *vm) 253 { 254 int i; 255 int ret; 256 int nr_charged = 0; 257 258 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 259 260 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 261 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 262 if (ret) 263 goto err; 264 nr_charged++; 265 } 266 return 0; 267 err: 268 for (i = 0; i < nr_charged; i++) 269 memcg_kmem_uncharge_page(vm->pages[i], 0); 270 return ret; 271 } 272 273 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 274 { 275 struct vm_struct *vm; 276 void *stack; 277 int i; 278 279 for (i = 0; i < NR_CACHED_STACKS; i++) { 280 struct vm_struct *s; 281 282 s = this_cpu_xchg(cached_stacks[i], NULL); 283 284 if (!s) 285 continue; 286 287 /* Reset stack metadata. */ 288 kasan_unpoison_range(s->addr, THREAD_SIZE); 289 290 stack = kasan_reset_tag(s->addr); 291 292 /* Clear stale pointers from reused stack. */ 293 memset(stack, 0, THREAD_SIZE); 294 295 if (memcg_charge_kernel_stack(s)) { 296 vfree(s->addr); 297 return -ENOMEM; 298 } 299 300 tsk->stack_vm_area = s; 301 tsk->stack = stack; 302 return 0; 303 } 304 305 /* 306 * Allocated stacks are cached and later reused by new threads, 307 * so memcg accounting is performed manually on assigning/releasing 308 * stacks to tasks. Drop __GFP_ACCOUNT. 309 */ 310 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 311 VMALLOC_START, VMALLOC_END, 312 THREADINFO_GFP & ~__GFP_ACCOUNT, 313 PAGE_KERNEL, 314 0, node, __builtin_return_address(0)); 315 if (!stack) 316 return -ENOMEM; 317 318 vm = find_vm_area(stack); 319 if (memcg_charge_kernel_stack(vm)) { 320 vfree(stack); 321 return -ENOMEM; 322 } 323 /* 324 * We can't call find_vm_area() in interrupt context, and 325 * free_thread_stack() can be called in interrupt context, 326 * so cache the vm_struct. 327 */ 328 tsk->stack_vm_area = vm; 329 stack = kasan_reset_tag(stack); 330 tsk->stack = stack; 331 return 0; 332 } 333 334 static void free_thread_stack(struct task_struct *tsk) 335 { 336 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 337 thread_stack_delayed_free(tsk); 338 339 tsk->stack = NULL; 340 tsk->stack_vm_area = NULL; 341 } 342 343 # else /* !CONFIG_VMAP_STACK */ 344 345 static void thread_stack_free_rcu(struct rcu_head *rh) 346 { 347 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 348 } 349 350 static void thread_stack_delayed_free(struct task_struct *tsk) 351 { 352 struct rcu_head *rh = tsk->stack; 353 354 call_rcu(rh, thread_stack_free_rcu); 355 } 356 357 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 358 { 359 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 360 THREAD_SIZE_ORDER); 361 362 if (likely(page)) { 363 tsk->stack = kasan_reset_tag(page_address(page)); 364 return 0; 365 } 366 return -ENOMEM; 367 } 368 369 static void free_thread_stack(struct task_struct *tsk) 370 { 371 thread_stack_delayed_free(tsk); 372 tsk->stack = NULL; 373 } 374 375 # endif /* CONFIG_VMAP_STACK */ 376 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 377 378 static struct kmem_cache *thread_stack_cache; 379 380 static void thread_stack_free_rcu(struct rcu_head *rh) 381 { 382 kmem_cache_free(thread_stack_cache, rh); 383 } 384 385 static void thread_stack_delayed_free(struct task_struct *tsk) 386 { 387 struct rcu_head *rh = tsk->stack; 388 389 call_rcu(rh, thread_stack_free_rcu); 390 } 391 392 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 393 { 394 unsigned long *stack; 395 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 396 stack = kasan_reset_tag(stack); 397 tsk->stack = stack; 398 return stack ? 0 : -ENOMEM; 399 } 400 401 static void free_thread_stack(struct task_struct *tsk) 402 { 403 thread_stack_delayed_free(tsk); 404 tsk->stack = NULL; 405 } 406 407 void thread_stack_cache_init(void) 408 { 409 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 410 THREAD_SIZE, THREAD_SIZE, 0, 0, 411 THREAD_SIZE, NULL); 412 BUG_ON(thread_stack_cache == NULL); 413 } 414 415 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 416 417 /* SLAB cache for signal_struct structures (tsk->signal) */ 418 static struct kmem_cache *signal_cachep; 419 420 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 421 struct kmem_cache *sighand_cachep; 422 423 /* SLAB cache for files_struct structures (tsk->files) */ 424 struct kmem_cache *files_cachep; 425 426 /* SLAB cache for fs_struct structures (tsk->fs) */ 427 struct kmem_cache *fs_cachep; 428 429 /* SLAB cache for vm_area_struct structures */ 430 static struct kmem_cache *vm_area_cachep; 431 432 /* SLAB cache for mm_struct structures (tsk->mm) */ 433 static struct kmem_cache *mm_cachep; 434 435 #ifdef CONFIG_PER_VMA_LOCK 436 437 /* SLAB cache for vm_area_struct.lock */ 438 static struct kmem_cache *vma_lock_cachep; 439 440 static bool vma_lock_alloc(struct vm_area_struct *vma) 441 { 442 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 443 if (!vma->vm_lock) 444 return false; 445 446 init_rwsem(&vma->vm_lock->lock); 447 vma->vm_lock_seq = -1; 448 449 return true; 450 } 451 452 static inline void vma_lock_free(struct vm_area_struct *vma) 453 { 454 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 455 } 456 457 #else /* CONFIG_PER_VMA_LOCK */ 458 459 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 460 static inline void vma_lock_free(struct vm_area_struct *vma) {} 461 462 #endif /* CONFIG_PER_VMA_LOCK */ 463 464 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 465 { 466 struct vm_area_struct *vma; 467 468 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 469 if (!vma) 470 return NULL; 471 472 vma_init(vma, mm); 473 if (!vma_lock_alloc(vma)) { 474 kmem_cache_free(vm_area_cachep, vma); 475 return NULL; 476 } 477 478 return vma; 479 } 480 481 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 482 { 483 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 484 485 if (!new) 486 return NULL; 487 488 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 489 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 490 /* 491 * orig->shared.rb may be modified concurrently, but the clone 492 * will be reinitialized. 493 */ 494 data_race(memcpy(new, orig, sizeof(*new))); 495 if (!vma_lock_alloc(new)) { 496 kmem_cache_free(vm_area_cachep, new); 497 return NULL; 498 } 499 INIT_LIST_HEAD(&new->anon_vma_chain); 500 vma_numab_state_init(new); 501 dup_anon_vma_name(orig, new); 502 503 return new; 504 } 505 506 void __vm_area_free(struct vm_area_struct *vma) 507 { 508 vma_numab_state_free(vma); 509 free_anon_vma_name(vma); 510 vma_lock_free(vma); 511 kmem_cache_free(vm_area_cachep, vma); 512 } 513 514 #ifdef CONFIG_PER_VMA_LOCK 515 static void vm_area_free_rcu_cb(struct rcu_head *head) 516 { 517 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 518 vm_rcu); 519 520 /* The vma should not be locked while being destroyed. */ 521 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 522 __vm_area_free(vma); 523 } 524 #endif 525 526 void vm_area_free(struct vm_area_struct *vma) 527 { 528 #ifdef CONFIG_PER_VMA_LOCK 529 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 530 #else 531 __vm_area_free(vma); 532 #endif 533 } 534 535 static void account_kernel_stack(struct task_struct *tsk, int account) 536 { 537 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 538 struct vm_struct *vm = task_stack_vm_area(tsk); 539 int i; 540 541 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 542 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 543 account * (PAGE_SIZE / 1024)); 544 } else { 545 void *stack = task_stack_page(tsk); 546 547 /* All stack pages are in the same node. */ 548 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 549 account * (THREAD_SIZE / 1024)); 550 } 551 } 552 553 void exit_task_stack_account(struct task_struct *tsk) 554 { 555 account_kernel_stack(tsk, -1); 556 557 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 558 struct vm_struct *vm; 559 int i; 560 561 vm = task_stack_vm_area(tsk); 562 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 563 memcg_kmem_uncharge_page(vm->pages[i], 0); 564 } 565 } 566 567 static void release_task_stack(struct task_struct *tsk) 568 { 569 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 570 return; /* Better to leak the stack than to free prematurely */ 571 572 free_thread_stack(tsk); 573 } 574 575 #ifdef CONFIG_THREAD_INFO_IN_TASK 576 void put_task_stack(struct task_struct *tsk) 577 { 578 if (refcount_dec_and_test(&tsk->stack_refcount)) 579 release_task_stack(tsk); 580 } 581 #endif 582 583 void free_task(struct task_struct *tsk) 584 { 585 #ifdef CONFIG_SECCOMP 586 WARN_ON_ONCE(tsk->seccomp.filter); 587 #endif 588 release_user_cpus_ptr(tsk); 589 scs_release(tsk); 590 591 #ifndef CONFIG_THREAD_INFO_IN_TASK 592 /* 593 * The task is finally done with both the stack and thread_info, 594 * so free both. 595 */ 596 release_task_stack(tsk); 597 #else 598 /* 599 * If the task had a separate stack allocation, it should be gone 600 * by now. 601 */ 602 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 603 #endif 604 rt_mutex_debug_task_free(tsk); 605 ftrace_graph_exit_task(tsk); 606 arch_release_task_struct(tsk); 607 if (tsk->flags & PF_KTHREAD) 608 free_kthread_struct(tsk); 609 bpf_task_storage_free(tsk); 610 free_task_struct(tsk); 611 } 612 EXPORT_SYMBOL(free_task); 613 614 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 615 { 616 struct file *exe_file; 617 618 exe_file = get_mm_exe_file(oldmm); 619 RCU_INIT_POINTER(mm->exe_file, exe_file); 620 /* 621 * We depend on the oldmm having properly denied write access to the 622 * exe_file already. 623 */ 624 if (exe_file && deny_write_access(exe_file)) 625 pr_warn_once("deny_write_access() failed in %s\n", __func__); 626 } 627 628 #ifdef CONFIG_MMU 629 static __latent_entropy int dup_mmap(struct mm_struct *mm, 630 struct mm_struct *oldmm) 631 { 632 struct vm_area_struct *mpnt, *tmp; 633 int retval; 634 unsigned long charge = 0; 635 LIST_HEAD(uf); 636 VMA_ITERATOR(vmi, mm, 0); 637 638 uprobe_start_dup_mmap(); 639 if (mmap_write_lock_killable(oldmm)) { 640 retval = -EINTR; 641 goto fail_uprobe_end; 642 } 643 flush_cache_dup_mm(oldmm); 644 uprobe_dup_mmap(oldmm, mm); 645 /* 646 * Not linked in yet - no deadlock potential: 647 */ 648 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 649 650 /* No ordering required: file already has been exposed. */ 651 dup_mm_exe_file(mm, oldmm); 652 653 mm->total_vm = oldmm->total_vm; 654 mm->data_vm = oldmm->data_vm; 655 mm->exec_vm = oldmm->exec_vm; 656 mm->stack_vm = oldmm->stack_vm; 657 658 retval = ksm_fork(mm, oldmm); 659 if (retval) 660 goto out; 661 khugepaged_fork(mm, oldmm); 662 663 /* Use __mt_dup() to efficiently build an identical maple tree. */ 664 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 665 if (unlikely(retval)) 666 goto out; 667 668 mt_clear_in_rcu(vmi.mas.tree); 669 for_each_vma(vmi, mpnt) { 670 struct file *file; 671 672 vma_start_write(mpnt); 673 if (mpnt->vm_flags & VM_DONTCOPY) { 674 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 675 mpnt->vm_end, GFP_KERNEL); 676 if (retval) 677 goto loop_out; 678 679 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 680 continue; 681 } 682 charge = 0; 683 /* 684 * Don't duplicate many vmas if we've been oom-killed (for 685 * example) 686 */ 687 if (fatal_signal_pending(current)) { 688 retval = -EINTR; 689 goto loop_out; 690 } 691 if (mpnt->vm_flags & VM_ACCOUNT) { 692 unsigned long len = vma_pages(mpnt); 693 694 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 695 goto fail_nomem; 696 charge = len; 697 } 698 tmp = vm_area_dup(mpnt); 699 if (!tmp) 700 goto fail_nomem; 701 retval = vma_dup_policy(mpnt, tmp); 702 if (retval) 703 goto fail_nomem_policy; 704 tmp->vm_mm = mm; 705 retval = dup_userfaultfd(tmp, &uf); 706 if (retval) 707 goto fail_nomem_anon_vma_fork; 708 if (tmp->vm_flags & VM_WIPEONFORK) { 709 /* 710 * VM_WIPEONFORK gets a clean slate in the child. 711 * Don't prepare anon_vma until fault since we don't 712 * copy page for current vma. 713 */ 714 tmp->anon_vma = NULL; 715 } else if (anon_vma_fork(tmp, mpnt)) 716 goto fail_nomem_anon_vma_fork; 717 vm_flags_clear(tmp, VM_LOCKED_MASK); 718 /* 719 * Copy/update hugetlb private vma information. 720 */ 721 if (is_vm_hugetlb_page(tmp)) 722 hugetlb_dup_vma_private(tmp); 723 724 /* 725 * Link the vma into the MT. After using __mt_dup(), memory 726 * allocation is not necessary here, so it cannot fail. 727 */ 728 vma_iter_bulk_store(&vmi, tmp); 729 730 mm->map_count++; 731 732 if (tmp->vm_ops && tmp->vm_ops->open) 733 tmp->vm_ops->open(tmp); 734 735 file = tmp->vm_file; 736 if (file) { 737 struct address_space *mapping = file->f_mapping; 738 739 get_file(file); 740 i_mmap_lock_write(mapping); 741 if (vma_is_shared_maywrite(tmp)) 742 mapping_allow_writable(mapping); 743 flush_dcache_mmap_lock(mapping); 744 /* insert tmp into the share list, just after mpnt */ 745 vma_interval_tree_insert_after(tmp, mpnt, 746 &mapping->i_mmap); 747 flush_dcache_mmap_unlock(mapping); 748 i_mmap_unlock_write(mapping); 749 } 750 751 if (!(tmp->vm_flags & VM_WIPEONFORK)) 752 retval = copy_page_range(tmp, mpnt); 753 754 if (retval) { 755 mpnt = vma_next(&vmi); 756 goto loop_out; 757 } 758 } 759 /* a new mm has just been created */ 760 retval = arch_dup_mmap(oldmm, mm); 761 loop_out: 762 vma_iter_free(&vmi); 763 if (!retval) { 764 mt_set_in_rcu(vmi.mas.tree); 765 } else if (mpnt) { 766 /* 767 * The entire maple tree has already been duplicated. If the 768 * mmap duplication fails, mark the failure point with 769 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 770 * stop releasing VMAs that have not been duplicated after this 771 * point. 772 */ 773 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 774 mas_store(&vmi.mas, XA_ZERO_ENTRY); 775 } 776 out: 777 mmap_write_unlock(mm); 778 flush_tlb_mm(oldmm); 779 mmap_write_unlock(oldmm); 780 dup_userfaultfd_complete(&uf); 781 fail_uprobe_end: 782 uprobe_end_dup_mmap(); 783 return retval; 784 785 fail_nomem_anon_vma_fork: 786 mpol_put(vma_policy(tmp)); 787 fail_nomem_policy: 788 vm_area_free(tmp); 789 fail_nomem: 790 retval = -ENOMEM; 791 vm_unacct_memory(charge); 792 goto loop_out; 793 } 794 795 static inline int mm_alloc_pgd(struct mm_struct *mm) 796 { 797 mm->pgd = pgd_alloc(mm); 798 if (unlikely(!mm->pgd)) 799 return -ENOMEM; 800 return 0; 801 } 802 803 static inline void mm_free_pgd(struct mm_struct *mm) 804 { 805 pgd_free(mm, mm->pgd); 806 } 807 #else 808 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 809 { 810 mmap_write_lock(oldmm); 811 dup_mm_exe_file(mm, oldmm); 812 mmap_write_unlock(oldmm); 813 return 0; 814 } 815 #define mm_alloc_pgd(mm) (0) 816 #define mm_free_pgd(mm) 817 #endif /* CONFIG_MMU */ 818 819 static void check_mm(struct mm_struct *mm) 820 { 821 int i; 822 823 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 824 "Please make sure 'struct resident_page_types[]' is updated as well"); 825 826 for (i = 0; i < NR_MM_COUNTERS; i++) { 827 long x = percpu_counter_sum(&mm->rss_stat[i]); 828 829 if (unlikely(x)) 830 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 831 mm, resident_page_types[i], x); 832 } 833 834 if (mm_pgtables_bytes(mm)) 835 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 836 mm_pgtables_bytes(mm)); 837 838 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 839 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 840 #endif 841 } 842 843 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 844 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 845 846 static void do_check_lazy_tlb(void *arg) 847 { 848 struct mm_struct *mm = arg; 849 850 WARN_ON_ONCE(current->active_mm == mm); 851 } 852 853 static void do_shoot_lazy_tlb(void *arg) 854 { 855 struct mm_struct *mm = arg; 856 857 if (current->active_mm == mm) { 858 WARN_ON_ONCE(current->mm); 859 current->active_mm = &init_mm; 860 switch_mm(mm, &init_mm, current); 861 } 862 } 863 864 static void cleanup_lazy_tlbs(struct mm_struct *mm) 865 { 866 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 867 /* 868 * In this case, lazy tlb mms are refounted and would not reach 869 * __mmdrop until all CPUs have switched away and mmdrop()ed. 870 */ 871 return; 872 } 873 874 /* 875 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 876 * requires lazy mm users to switch to another mm when the refcount 877 * drops to zero, before the mm is freed. This requires IPIs here to 878 * switch kernel threads to init_mm. 879 * 880 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 881 * switch with the final userspace teardown TLB flush which leaves the 882 * mm lazy on this CPU but no others, reducing the need for additional 883 * IPIs here. There are cases where a final IPI is still required here, 884 * such as the final mmdrop being performed on a different CPU than the 885 * one exiting, or kernel threads using the mm when userspace exits. 886 * 887 * IPI overheads have not found to be expensive, but they could be 888 * reduced in a number of possible ways, for example (roughly 889 * increasing order of complexity): 890 * - The last lazy reference created by exit_mm() could instead switch 891 * to init_mm, however it's probable this will run on the same CPU 892 * immediately afterwards, so this may not reduce IPIs much. 893 * - A batch of mms requiring IPIs could be gathered and freed at once. 894 * - CPUs store active_mm where it can be remotely checked without a 895 * lock, to filter out false-positives in the cpumask. 896 * - After mm_users or mm_count reaches zero, switching away from the 897 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 898 * with some batching or delaying of the final IPIs. 899 * - A delayed freeing and RCU-like quiescing sequence based on mm 900 * switching to avoid IPIs completely. 901 */ 902 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 903 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 904 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 905 } 906 907 /* 908 * Called when the last reference to the mm 909 * is dropped: either by a lazy thread or by 910 * mmput. Free the page directory and the mm. 911 */ 912 void __mmdrop(struct mm_struct *mm) 913 { 914 BUG_ON(mm == &init_mm); 915 WARN_ON_ONCE(mm == current->mm); 916 917 /* Ensure no CPUs are using this as their lazy tlb mm */ 918 cleanup_lazy_tlbs(mm); 919 920 WARN_ON_ONCE(mm == current->active_mm); 921 mm_free_pgd(mm); 922 destroy_context(mm); 923 mmu_notifier_subscriptions_destroy(mm); 924 check_mm(mm); 925 put_user_ns(mm->user_ns); 926 mm_pasid_drop(mm); 927 mm_destroy_cid(mm); 928 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 929 930 free_mm(mm); 931 } 932 EXPORT_SYMBOL_GPL(__mmdrop); 933 934 static void mmdrop_async_fn(struct work_struct *work) 935 { 936 struct mm_struct *mm; 937 938 mm = container_of(work, struct mm_struct, async_put_work); 939 __mmdrop(mm); 940 } 941 942 static void mmdrop_async(struct mm_struct *mm) 943 { 944 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 945 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 946 schedule_work(&mm->async_put_work); 947 } 948 } 949 950 static inline void free_signal_struct(struct signal_struct *sig) 951 { 952 taskstats_tgid_free(sig); 953 sched_autogroup_exit(sig); 954 /* 955 * __mmdrop is not safe to call from softirq context on x86 due to 956 * pgd_dtor so postpone it to the async context 957 */ 958 if (sig->oom_mm) 959 mmdrop_async(sig->oom_mm); 960 kmem_cache_free(signal_cachep, sig); 961 } 962 963 static inline void put_signal_struct(struct signal_struct *sig) 964 { 965 if (refcount_dec_and_test(&sig->sigcnt)) 966 free_signal_struct(sig); 967 } 968 969 void __put_task_struct(struct task_struct *tsk) 970 { 971 WARN_ON(!tsk->exit_state); 972 WARN_ON(refcount_read(&tsk->usage)); 973 WARN_ON(tsk == current); 974 975 io_uring_free(tsk); 976 cgroup_free(tsk); 977 task_numa_free(tsk, true); 978 security_task_free(tsk); 979 exit_creds(tsk); 980 delayacct_tsk_free(tsk); 981 put_signal_struct(tsk->signal); 982 sched_core_free(tsk); 983 free_task(tsk); 984 } 985 EXPORT_SYMBOL_GPL(__put_task_struct); 986 987 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 988 { 989 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 990 991 __put_task_struct(task); 992 } 993 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 994 995 void __init __weak arch_task_cache_init(void) { } 996 997 /* 998 * set_max_threads 999 */ 1000 static void set_max_threads(unsigned int max_threads_suggested) 1001 { 1002 u64 threads; 1003 unsigned long nr_pages = totalram_pages(); 1004 1005 /* 1006 * The number of threads shall be limited such that the thread 1007 * structures may only consume a small part of the available memory. 1008 */ 1009 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1010 threads = MAX_THREADS; 1011 else 1012 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1013 (u64) THREAD_SIZE * 8UL); 1014 1015 if (threads > max_threads_suggested) 1016 threads = max_threads_suggested; 1017 1018 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1019 } 1020 1021 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1022 /* Initialized by the architecture: */ 1023 int arch_task_struct_size __read_mostly; 1024 #endif 1025 1026 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1027 { 1028 /* Fetch thread_struct whitelist for the architecture. */ 1029 arch_thread_struct_whitelist(offset, size); 1030 1031 /* 1032 * Handle zero-sized whitelist or empty thread_struct, otherwise 1033 * adjust offset to position of thread_struct in task_struct. 1034 */ 1035 if (unlikely(*size == 0)) 1036 *offset = 0; 1037 else 1038 *offset += offsetof(struct task_struct, thread); 1039 } 1040 1041 void __init fork_init(void) 1042 { 1043 int i; 1044 #ifndef ARCH_MIN_TASKALIGN 1045 #define ARCH_MIN_TASKALIGN 0 1046 #endif 1047 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1048 unsigned long useroffset, usersize; 1049 1050 /* create a slab on which task_structs can be allocated */ 1051 task_struct_whitelist(&useroffset, &usersize); 1052 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1053 arch_task_struct_size, align, 1054 SLAB_PANIC|SLAB_ACCOUNT, 1055 useroffset, usersize, NULL); 1056 1057 /* do the arch specific task caches init */ 1058 arch_task_cache_init(); 1059 1060 set_max_threads(MAX_THREADS); 1061 1062 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1063 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1064 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1065 init_task.signal->rlim[RLIMIT_NPROC]; 1066 1067 for (i = 0; i < UCOUNT_COUNTS; i++) 1068 init_user_ns.ucount_max[i] = max_threads/2; 1069 1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1071 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1074 1075 #ifdef CONFIG_VMAP_STACK 1076 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1077 NULL, free_vm_stack_cache); 1078 #endif 1079 1080 scs_init(); 1081 1082 lockdep_init_task(&init_task); 1083 uprobes_init(); 1084 } 1085 1086 int __weak arch_dup_task_struct(struct task_struct *dst, 1087 struct task_struct *src) 1088 { 1089 *dst = *src; 1090 return 0; 1091 } 1092 1093 void set_task_stack_end_magic(struct task_struct *tsk) 1094 { 1095 unsigned long *stackend; 1096 1097 stackend = end_of_stack(tsk); 1098 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1099 } 1100 1101 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1102 { 1103 struct task_struct *tsk; 1104 int err; 1105 1106 if (node == NUMA_NO_NODE) 1107 node = tsk_fork_get_node(orig); 1108 tsk = alloc_task_struct_node(node); 1109 if (!tsk) 1110 return NULL; 1111 1112 err = arch_dup_task_struct(tsk, orig); 1113 if (err) 1114 goto free_tsk; 1115 1116 err = alloc_thread_stack_node(tsk, node); 1117 if (err) 1118 goto free_tsk; 1119 1120 #ifdef CONFIG_THREAD_INFO_IN_TASK 1121 refcount_set(&tsk->stack_refcount, 1); 1122 #endif 1123 account_kernel_stack(tsk, 1); 1124 1125 err = scs_prepare(tsk, node); 1126 if (err) 1127 goto free_stack; 1128 1129 #ifdef CONFIG_SECCOMP 1130 /* 1131 * We must handle setting up seccomp filters once we're under 1132 * the sighand lock in case orig has changed between now and 1133 * then. Until then, filter must be NULL to avoid messing up 1134 * the usage counts on the error path calling free_task. 1135 */ 1136 tsk->seccomp.filter = NULL; 1137 #endif 1138 1139 setup_thread_stack(tsk, orig); 1140 clear_user_return_notifier(tsk); 1141 clear_tsk_need_resched(tsk); 1142 set_task_stack_end_magic(tsk); 1143 clear_syscall_work_syscall_user_dispatch(tsk); 1144 1145 #ifdef CONFIG_STACKPROTECTOR 1146 tsk->stack_canary = get_random_canary(); 1147 #endif 1148 if (orig->cpus_ptr == &orig->cpus_mask) 1149 tsk->cpus_ptr = &tsk->cpus_mask; 1150 dup_user_cpus_ptr(tsk, orig, node); 1151 1152 /* 1153 * One for the user space visible state that goes away when reaped. 1154 * One for the scheduler. 1155 */ 1156 refcount_set(&tsk->rcu_users, 2); 1157 /* One for the rcu users */ 1158 refcount_set(&tsk->usage, 1); 1159 #ifdef CONFIG_BLK_DEV_IO_TRACE 1160 tsk->btrace_seq = 0; 1161 #endif 1162 tsk->splice_pipe = NULL; 1163 tsk->task_frag.page = NULL; 1164 tsk->wake_q.next = NULL; 1165 tsk->worker_private = NULL; 1166 1167 kcov_task_init(tsk); 1168 kmsan_task_create(tsk); 1169 kmap_local_fork(tsk); 1170 1171 #ifdef CONFIG_FAULT_INJECTION 1172 tsk->fail_nth = 0; 1173 #endif 1174 1175 #ifdef CONFIG_BLK_CGROUP 1176 tsk->throttle_disk = NULL; 1177 tsk->use_memdelay = 0; 1178 #endif 1179 1180 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1181 tsk->pasid_activated = 0; 1182 #endif 1183 1184 #ifdef CONFIG_MEMCG 1185 tsk->active_memcg = NULL; 1186 #endif 1187 1188 #ifdef CONFIG_CPU_SUP_INTEL 1189 tsk->reported_split_lock = 0; 1190 #endif 1191 1192 #ifdef CONFIG_SCHED_MM_CID 1193 tsk->mm_cid = -1; 1194 tsk->last_mm_cid = -1; 1195 tsk->mm_cid_active = 0; 1196 tsk->migrate_from_cpu = -1; 1197 #endif 1198 return tsk; 1199 1200 free_stack: 1201 exit_task_stack_account(tsk); 1202 free_thread_stack(tsk); 1203 free_tsk: 1204 free_task_struct(tsk); 1205 return NULL; 1206 } 1207 1208 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1209 1210 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1211 1212 static int __init coredump_filter_setup(char *s) 1213 { 1214 default_dump_filter = 1215 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1216 MMF_DUMP_FILTER_MASK; 1217 return 1; 1218 } 1219 1220 __setup("coredump_filter=", coredump_filter_setup); 1221 1222 #include <linux/init_task.h> 1223 1224 static void mm_init_aio(struct mm_struct *mm) 1225 { 1226 #ifdef CONFIG_AIO 1227 spin_lock_init(&mm->ioctx_lock); 1228 mm->ioctx_table = NULL; 1229 #endif 1230 } 1231 1232 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1233 struct task_struct *p) 1234 { 1235 #ifdef CONFIG_MEMCG 1236 if (mm->owner == p) 1237 WRITE_ONCE(mm->owner, NULL); 1238 #endif 1239 } 1240 1241 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1242 { 1243 #ifdef CONFIG_MEMCG 1244 mm->owner = p; 1245 #endif 1246 } 1247 1248 static void mm_init_uprobes_state(struct mm_struct *mm) 1249 { 1250 #ifdef CONFIG_UPROBES 1251 mm->uprobes_state.xol_area = NULL; 1252 #endif 1253 } 1254 1255 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1256 struct user_namespace *user_ns) 1257 { 1258 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1259 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1260 atomic_set(&mm->mm_users, 1); 1261 atomic_set(&mm->mm_count, 1); 1262 seqcount_init(&mm->write_protect_seq); 1263 mmap_init_lock(mm); 1264 INIT_LIST_HEAD(&mm->mmlist); 1265 #ifdef CONFIG_PER_VMA_LOCK 1266 mm->mm_lock_seq = 0; 1267 #endif 1268 mm_pgtables_bytes_init(mm); 1269 mm->map_count = 0; 1270 mm->locked_vm = 0; 1271 atomic64_set(&mm->pinned_vm, 0); 1272 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1273 spin_lock_init(&mm->page_table_lock); 1274 spin_lock_init(&mm->arg_lock); 1275 mm_init_cpumask(mm); 1276 mm_init_aio(mm); 1277 mm_init_owner(mm, p); 1278 mm_pasid_init(mm); 1279 RCU_INIT_POINTER(mm->exe_file, NULL); 1280 mmu_notifier_subscriptions_init(mm); 1281 init_tlb_flush_pending(mm); 1282 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1283 mm->pmd_huge_pte = NULL; 1284 #endif 1285 mm_init_uprobes_state(mm); 1286 hugetlb_count_init(mm); 1287 1288 if (current->mm) { 1289 mm->flags = mmf_init_flags(current->mm->flags); 1290 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1291 } else { 1292 mm->flags = default_dump_filter; 1293 mm->def_flags = 0; 1294 } 1295 1296 if (mm_alloc_pgd(mm)) 1297 goto fail_nopgd; 1298 1299 if (init_new_context(p, mm)) 1300 goto fail_nocontext; 1301 1302 if (mm_alloc_cid(mm)) 1303 goto fail_cid; 1304 1305 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1306 NR_MM_COUNTERS)) 1307 goto fail_pcpu; 1308 1309 mm->user_ns = get_user_ns(user_ns); 1310 lru_gen_init_mm(mm); 1311 return mm; 1312 1313 fail_pcpu: 1314 mm_destroy_cid(mm); 1315 fail_cid: 1316 destroy_context(mm); 1317 fail_nocontext: 1318 mm_free_pgd(mm); 1319 fail_nopgd: 1320 free_mm(mm); 1321 return NULL; 1322 } 1323 1324 /* 1325 * Allocate and initialize an mm_struct. 1326 */ 1327 struct mm_struct *mm_alloc(void) 1328 { 1329 struct mm_struct *mm; 1330 1331 mm = allocate_mm(); 1332 if (!mm) 1333 return NULL; 1334 1335 memset(mm, 0, sizeof(*mm)); 1336 return mm_init(mm, current, current_user_ns()); 1337 } 1338 1339 static inline void __mmput(struct mm_struct *mm) 1340 { 1341 VM_BUG_ON(atomic_read(&mm->mm_users)); 1342 1343 uprobe_clear_state(mm); 1344 exit_aio(mm); 1345 ksm_exit(mm); 1346 khugepaged_exit(mm); /* must run before exit_mmap */ 1347 exit_mmap(mm); 1348 mm_put_huge_zero_folio(mm); 1349 set_mm_exe_file(mm, NULL); 1350 if (!list_empty(&mm->mmlist)) { 1351 spin_lock(&mmlist_lock); 1352 list_del(&mm->mmlist); 1353 spin_unlock(&mmlist_lock); 1354 } 1355 if (mm->binfmt) 1356 module_put(mm->binfmt->module); 1357 lru_gen_del_mm(mm); 1358 mmdrop(mm); 1359 } 1360 1361 /* 1362 * Decrement the use count and release all resources for an mm. 1363 */ 1364 void mmput(struct mm_struct *mm) 1365 { 1366 might_sleep(); 1367 1368 if (atomic_dec_and_test(&mm->mm_users)) 1369 __mmput(mm); 1370 } 1371 EXPORT_SYMBOL_GPL(mmput); 1372 1373 #ifdef CONFIG_MMU 1374 static void mmput_async_fn(struct work_struct *work) 1375 { 1376 struct mm_struct *mm = container_of(work, struct mm_struct, 1377 async_put_work); 1378 1379 __mmput(mm); 1380 } 1381 1382 void mmput_async(struct mm_struct *mm) 1383 { 1384 if (atomic_dec_and_test(&mm->mm_users)) { 1385 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1386 schedule_work(&mm->async_put_work); 1387 } 1388 } 1389 EXPORT_SYMBOL_GPL(mmput_async); 1390 #endif 1391 1392 /** 1393 * set_mm_exe_file - change a reference to the mm's executable file 1394 * @mm: The mm to change. 1395 * @new_exe_file: The new file to use. 1396 * 1397 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1398 * 1399 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1400 * invocations: in mmput() nobody alive left, in execve it happens before 1401 * the new mm is made visible to anyone. 1402 * 1403 * Can only fail if new_exe_file != NULL. 1404 */ 1405 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1406 { 1407 struct file *old_exe_file; 1408 1409 /* 1410 * It is safe to dereference the exe_file without RCU as 1411 * this function is only called if nobody else can access 1412 * this mm -- see comment above for justification. 1413 */ 1414 old_exe_file = rcu_dereference_raw(mm->exe_file); 1415 1416 if (new_exe_file) { 1417 /* 1418 * We expect the caller (i.e., sys_execve) to already denied 1419 * write access, so this is unlikely to fail. 1420 */ 1421 if (unlikely(deny_write_access(new_exe_file))) 1422 return -EACCES; 1423 get_file(new_exe_file); 1424 } 1425 rcu_assign_pointer(mm->exe_file, new_exe_file); 1426 if (old_exe_file) { 1427 allow_write_access(old_exe_file); 1428 fput(old_exe_file); 1429 } 1430 return 0; 1431 } 1432 1433 /** 1434 * replace_mm_exe_file - replace a reference to the mm's executable file 1435 * @mm: The mm to change. 1436 * @new_exe_file: The new file to use. 1437 * 1438 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1439 * 1440 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1441 */ 1442 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1443 { 1444 struct vm_area_struct *vma; 1445 struct file *old_exe_file; 1446 int ret = 0; 1447 1448 /* Forbid mm->exe_file change if old file still mapped. */ 1449 old_exe_file = get_mm_exe_file(mm); 1450 if (old_exe_file) { 1451 VMA_ITERATOR(vmi, mm, 0); 1452 mmap_read_lock(mm); 1453 for_each_vma(vmi, vma) { 1454 if (!vma->vm_file) 1455 continue; 1456 if (path_equal(&vma->vm_file->f_path, 1457 &old_exe_file->f_path)) { 1458 ret = -EBUSY; 1459 break; 1460 } 1461 } 1462 mmap_read_unlock(mm); 1463 fput(old_exe_file); 1464 if (ret) 1465 return ret; 1466 } 1467 1468 ret = deny_write_access(new_exe_file); 1469 if (ret) 1470 return -EACCES; 1471 get_file(new_exe_file); 1472 1473 /* set the new file */ 1474 mmap_write_lock(mm); 1475 old_exe_file = rcu_dereference_raw(mm->exe_file); 1476 rcu_assign_pointer(mm->exe_file, new_exe_file); 1477 mmap_write_unlock(mm); 1478 1479 if (old_exe_file) { 1480 allow_write_access(old_exe_file); 1481 fput(old_exe_file); 1482 } 1483 return 0; 1484 } 1485 1486 /** 1487 * get_mm_exe_file - acquire a reference to the mm's executable file 1488 * @mm: The mm of interest. 1489 * 1490 * Returns %NULL if mm has no associated executable file. 1491 * User must release file via fput(). 1492 */ 1493 struct file *get_mm_exe_file(struct mm_struct *mm) 1494 { 1495 struct file *exe_file; 1496 1497 rcu_read_lock(); 1498 exe_file = get_file_rcu(&mm->exe_file); 1499 rcu_read_unlock(); 1500 return exe_file; 1501 } 1502 1503 /** 1504 * get_task_exe_file - acquire a reference to the task's executable file 1505 * @task: The task. 1506 * 1507 * Returns %NULL if task's mm (if any) has no associated executable file or 1508 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1509 * User must release file via fput(). 1510 */ 1511 struct file *get_task_exe_file(struct task_struct *task) 1512 { 1513 struct file *exe_file = NULL; 1514 struct mm_struct *mm; 1515 1516 task_lock(task); 1517 mm = task->mm; 1518 if (mm) { 1519 if (!(task->flags & PF_KTHREAD)) 1520 exe_file = get_mm_exe_file(mm); 1521 } 1522 task_unlock(task); 1523 return exe_file; 1524 } 1525 1526 /** 1527 * get_task_mm - acquire a reference to the task's mm 1528 * @task: The task. 1529 * 1530 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1531 * this kernel workthread has transiently adopted a user mm with use_mm, 1532 * to do its AIO) is not set and if so returns a reference to it, after 1533 * bumping up the use count. User must release the mm via mmput() 1534 * after use. Typically used by /proc and ptrace. 1535 */ 1536 struct mm_struct *get_task_mm(struct task_struct *task) 1537 { 1538 struct mm_struct *mm; 1539 1540 task_lock(task); 1541 mm = task->mm; 1542 if (mm) { 1543 if (task->flags & PF_KTHREAD) 1544 mm = NULL; 1545 else 1546 mmget(mm); 1547 } 1548 task_unlock(task); 1549 return mm; 1550 } 1551 EXPORT_SYMBOL_GPL(get_task_mm); 1552 1553 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1554 { 1555 struct mm_struct *mm; 1556 int err; 1557 1558 err = down_read_killable(&task->signal->exec_update_lock); 1559 if (err) 1560 return ERR_PTR(err); 1561 1562 mm = get_task_mm(task); 1563 if (mm && mm != current->mm && 1564 !ptrace_may_access(task, mode)) { 1565 mmput(mm); 1566 mm = ERR_PTR(-EACCES); 1567 } 1568 up_read(&task->signal->exec_update_lock); 1569 1570 return mm; 1571 } 1572 1573 static void complete_vfork_done(struct task_struct *tsk) 1574 { 1575 struct completion *vfork; 1576 1577 task_lock(tsk); 1578 vfork = tsk->vfork_done; 1579 if (likely(vfork)) { 1580 tsk->vfork_done = NULL; 1581 complete(vfork); 1582 } 1583 task_unlock(tsk); 1584 } 1585 1586 static int wait_for_vfork_done(struct task_struct *child, 1587 struct completion *vfork) 1588 { 1589 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1590 int killed; 1591 1592 cgroup_enter_frozen(); 1593 killed = wait_for_completion_state(vfork, state); 1594 cgroup_leave_frozen(false); 1595 1596 if (killed) { 1597 task_lock(child); 1598 child->vfork_done = NULL; 1599 task_unlock(child); 1600 } 1601 1602 put_task_struct(child); 1603 return killed; 1604 } 1605 1606 /* Please note the differences between mmput and mm_release. 1607 * mmput is called whenever we stop holding onto a mm_struct, 1608 * error success whatever. 1609 * 1610 * mm_release is called after a mm_struct has been removed 1611 * from the current process. 1612 * 1613 * This difference is important for error handling, when we 1614 * only half set up a mm_struct for a new process and need to restore 1615 * the old one. Because we mmput the new mm_struct before 1616 * restoring the old one. . . 1617 * Eric Biederman 10 January 1998 1618 */ 1619 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1620 { 1621 uprobe_free_utask(tsk); 1622 1623 /* Get rid of any cached register state */ 1624 deactivate_mm(tsk, mm); 1625 1626 /* 1627 * Signal userspace if we're not exiting with a core dump 1628 * because we want to leave the value intact for debugging 1629 * purposes. 1630 */ 1631 if (tsk->clear_child_tid) { 1632 if (atomic_read(&mm->mm_users) > 1) { 1633 /* 1634 * We don't check the error code - if userspace has 1635 * not set up a proper pointer then tough luck. 1636 */ 1637 put_user(0, tsk->clear_child_tid); 1638 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1639 1, NULL, NULL, 0, 0); 1640 } 1641 tsk->clear_child_tid = NULL; 1642 } 1643 1644 /* 1645 * All done, finally we can wake up parent and return this mm to him. 1646 * Also kthread_stop() uses this completion for synchronization. 1647 */ 1648 if (tsk->vfork_done) 1649 complete_vfork_done(tsk); 1650 } 1651 1652 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1653 { 1654 futex_exit_release(tsk); 1655 mm_release(tsk, mm); 1656 } 1657 1658 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1659 { 1660 futex_exec_release(tsk); 1661 mm_release(tsk, mm); 1662 } 1663 1664 /** 1665 * dup_mm() - duplicates an existing mm structure 1666 * @tsk: the task_struct with which the new mm will be associated. 1667 * @oldmm: the mm to duplicate. 1668 * 1669 * Allocates a new mm structure and duplicates the provided @oldmm structure 1670 * content into it. 1671 * 1672 * Return: the duplicated mm or NULL on failure. 1673 */ 1674 static struct mm_struct *dup_mm(struct task_struct *tsk, 1675 struct mm_struct *oldmm) 1676 { 1677 struct mm_struct *mm; 1678 int err; 1679 1680 mm = allocate_mm(); 1681 if (!mm) 1682 goto fail_nomem; 1683 1684 memcpy(mm, oldmm, sizeof(*mm)); 1685 1686 if (!mm_init(mm, tsk, mm->user_ns)) 1687 goto fail_nomem; 1688 1689 err = dup_mmap(mm, oldmm); 1690 if (err) 1691 goto free_pt; 1692 1693 mm->hiwater_rss = get_mm_rss(mm); 1694 mm->hiwater_vm = mm->total_vm; 1695 1696 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1697 goto free_pt; 1698 1699 return mm; 1700 1701 free_pt: 1702 /* don't put binfmt in mmput, we haven't got module yet */ 1703 mm->binfmt = NULL; 1704 mm_init_owner(mm, NULL); 1705 mmput(mm); 1706 1707 fail_nomem: 1708 return NULL; 1709 } 1710 1711 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1712 { 1713 struct mm_struct *mm, *oldmm; 1714 1715 tsk->min_flt = tsk->maj_flt = 0; 1716 tsk->nvcsw = tsk->nivcsw = 0; 1717 #ifdef CONFIG_DETECT_HUNG_TASK 1718 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1719 tsk->last_switch_time = 0; 1720 #endif 1721 1722 tsk->mm = NULL; 1723 tsk->active_mm = NULL; 1724 1725 /* 1726 * Are we cloning a kernel thread? 1727 * 1728 * We need to steal a active VM for that.. 1729 */ 1730 oldmm = current->mm; 1731 if (!oldmm) 1732 return 0; 1733 1734 if (clone_flags & CLONE_VM) { 1735 mmget(oldmm); 1736 mm = oldmm; 1737 } else { 1738 mm = dup_mm(tsk, current->mm); 1739 if (!mm) 1740 return -ENOMEM; 1741 } 1742 1743 tsk->mm = mm; 1744 tsk->active_mm = mm; 1745 sched_mm_cid_fork(tsk); 1746 return 0; 1747 } 1748 1749 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1750 { 1751 struct fs_struct *fs = current->fs; 1752 if (clone_flags & CLONE_FS) { 1753 /* tsk->fs is already what we want */ 1754 spin_lock(&fs->lock); 1755 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1756 if (fs->in_exec) { 1757 spin_unlock(&fs->lock); 1758 return -EAGAIN; 1759 } 1760 fs->users++; 1761 spin_unlock(&fs->lock); 1762 return 0; 1763 } 1764 tsk->fs = copy_fs_struct(fs); 1765 if (!tsk->fs) 1766 return -ENOMEM; 1767 return 0; 1768 } 1769 1770 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1771 int no_files) 1772 { 1773 struct files_struct *oldf, *newf; 1774 int error = 0; 1775 1776 /* 1777 * A background process may not have any files ... 1778 */ 1779 oldf = current->files; 1780 if (!oldf) 1781 goto out; 1782 1783 if (no_files) { 1784 tsk->files = NULL; 1785 goto out; 1786 } 1787 1788 if (clone_flags & CLONE_FILES) { 1789 atomic_inc(&oldf->count); 1790 goto out; 1791 } 1792 1793 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1794 if (!newf) 1795 goto out; 1796 1797 tsk->files = newf; 1798 error = 0; 1799 out: 1800 return error; 1801 } 1802 1803 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1804 { 1805 struct sighand_struct *sig; 1806 1807 if (clone_flags & CLONE_SIGHAND) { 1808 refcount_inc(¤t->sighand->count); 1809 return 0; 1810 } 1811 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1812 RCU_INIT_POINTER(tsk->sighand, sig); 1813 if (!sig) 1814 return -ENOMEM; 1815 1816 refcount_set(&sig->count, 1); 1817 spin_lock_irq(¤t->sighand->siglock); 1818 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1819 spin_unlock_irq(¤t->sighand->siglock); 1820 1821 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1822 if (clone_flags & CLONE_CLEAR_SIGHAND) 1823 flush_signal_handlers(tsk, 0); 1824 1825 return 0; 1826 } 1827 1828 void __cleanup_sighand(struct sighand_struct *sighand) 1829 { 1830 if (refcount_dec_and_test(&sighand->count)) { 1831 signalfd_cleanup(sighand); 1832 /* 1833 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1834 * without an RCU grace period, see __lock_task_sighand(). 1835 */ 1836 kmem_cache_free(sighand_cachep, sighand); 1837 } 1838 } 1839 1840 /* 1841 * Initialize POSIX timer handling for a thread group. 1842 */ 1843 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1844 { 1845 struct posix_cputimers *pct = &sig->posix_cputimers; 1846 unsigned long cpu_limit; 1847 1848 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1849 posix_cputimers_group_init(pct, cpu_limit); 1850 } 1851 1852 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1853 { 1854 struct signal_struct *sig; 1855 1856 if (clone_flags & CLONE_THREAD) 1857 return 0; 1858 1859 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1860 tsk->signal = sig; 1861 if (!sig) 1862 return -ENOMEM; 1863 1864 sig->nr_threads = 1; 1865 sig->quick_threads = 1; 1866 atomic_set(&sig->live, 1); 1867 refcount_set(&sig->sigcnt, 1); 1868 1869 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1870 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1871 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1872 1873 init_waitqueue_head(&sig->wait_chldexit); 1874 sig->curr_target = tsk; 1875 init_sigpending(&sig->shared_pending); 1876 INIT_HLIST_HEAD(&sig->multiprocess); 1877 seqlock_init(&sig->stats_lock); 1878 prev_cputime_init(&sig->prev_cputime); 1879 1880 #ifdef CONFIG_POSIX_TIMERS 1881 INIT_LIST_HEAD(&sig->posix_timers); 1882 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1883 sig->real_timer.function = it_real_fn; 1884 #endif 1885 1886 task_lock(current->group_leader); 1887 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1888 task_unlock(current->group_leader); 1889 1890 posix_cpu_timers_init_group(sig); 1891 1892 tty_audit_fork(sig); 1893 sched_autogroup_fork(sig); 1894 1895 sig->oom_score_adj = current->signal->oom_score_adj; 1896 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1897 1898 mutex_init(&sig->cred_guard_mutex); 1899 init_rwsem(&sig->exec_update_lock); 1900 1901 return 0; 1902 } 1903 1904 static void copy_seccomp(struct task_struct *p) 1905 { 1906 #ifdef CONFIG_SECCOMP 1907 /* 1908 * Must be called with sighand->lock held, which is common to 1909 * all threads in the group. Holding cred_guard_mutex is not 1910 * needed because this new task is not yet running and cannot 1911 * be racing exec. 1912 */ 1913 assert_spin_locked(¤t->sighand->siglock); 1914 1915 /* Ref-count the new filter user, and assign it. */ 1916 get_seccomp_filter(current); 1917 p->seccomp = current->seccomp; 1918 1919 /* 1920 * Explicitly enable no_new_privs here in case it got set 1921 * between the task_struct being duplicated and holding the 1922 * sighand lock. The seccomp state and nnp must be in sync. 1923 */ 1924 if (task_no_new_privs(current)) 1925 task_set_no_new_privs(p); 1926 1927 /* 1928 * If the parent gained a seccomp mode after copying thread 1929 * flags and between before we held the sighand lock, we have 1930 * to manually enable the seccomp thread flag here. 1931 */ 1932 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1933 set_task_syscall_work(p, SECCOMP); 1934 #endif 1935 } 1936 1937 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1938 { 1939 current->clear_child_tid = tidptr; 1940 1941 return task_pid_vnr(current); 1942 } 1943 1944 static void rt_mutex_init_task(struct task_struct *p) 1945 { 1946 raw_spin_lock_init(&p->pi_lock); 1947 #ifdef CONFIG_RT_MUTEXES 1948 p->pi_waiters = RB_ROOT_CACHED; 1949 p->pi_top_task = NULL; 1950 p->pi_blocked_on = NULL; 1951 #endif 1952 } 1953 1954 static inline void init_task_pid_links(struct task_struct *task) 1955 { 1956 enum pid_type type; 1957 1958 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1959 INIT_HLIST_NODE(&task->pid_links[type]); 1960 } 1961 1962 static inline void 1963 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1964 { 1965 if (type == PIDTYPE_PID) 1966 task->thread_pid = pid; 1967 else 1968 task->signal->pids[type] = pid; 1969 } 1970 1971 static inline void rcu_copy_process(struct task_struct *p) 1972 { 1973 #ifdef CONFIG_PREEMPT_RCU 1974 p->rcu_read_lock_nesting = 0; 1975 p->rcu_read_unlock_special.s = 0; 1976 p->rcu_blocked_node = NULL; 1977 INIT_LIST_HEAD(&p->rcu_node_entry); 1978 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1979 #ifdef CONFIG_TASKS_RCU 1980 p->rcu_tasks_holdout = false; 1981 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1982 p->rcu_tasks_idle_cpu = -1; 1983 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1984 #endif /* #ifdef CONFIG_TASKS_RCU */ 1985 #ifdef CONFIG_TASKS_TRACE_RCU 1986 p->trc_reader_nesting = 0; 1987 p->trc_reader_special.s = 0; 1988 INIT_LIST_HEAD(&p->trc_holdout_list); 1989 INIT_LIST_HEAD(&p->trc_blkd_node); 1990 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1991 } 1992 1993 /** 1994 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1995 * @pid: the struct pid for which to create a pidfd 1996 * @flags: flags of the new @pidfd 1997 * @ret: Where to return the file for the pidfd. 1998 * 1999 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2000 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2001 * 2002 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2003 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2004 * pidfd file are prepared. 2005 * 2006 * If this function returns successfully the caller is responsible to either 2007 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2008 * order to install the pidfd into its file descriptor table or they must use 2009 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2010 * respectively. 2011 * 2012 * This function is useful when a pidfd must already be reserved but there 2013 * might still be points of failure afterwards and the caller wants to ensure 2014 * that no pidfd is leaked into its file descriptor table. 2015 * 2016 * Return: On success, a reserved pidfd is returned from the function and a new 2017 * pidfd file is returned in the last argument to the function. On 2018 * error, a negative error code is returned from the function and the 2019 * last argument remains unchanged. 2020 */ 2021 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2022 { 2023 int pidfd; 2024 struct file *pidfd_file; 2025 2026 pidfd = get_unused_fd_flags(O_CLOEXEC); 2027 if (pidfd < 0) 2028 return pidfd; 2029 2030 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2031 if (IS_ERR(pidfd_file)) { 2032 put_unused_fd(pidfd); 2033 return PTR_ERR(pidfd_file); 2034 } 2035 /* 2036 * anon_inode_getfile() ignores everything outside of the 2037 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2038 */ 2039 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2040 *ret = pidfd_file; 2041 return pidfd; 2042 } 2043 2044 /** 2045 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2046 * @pid: the struct pid for which to create a pidfd 2047 * @flags: flags of the new @pidfd 2048 * @ret: Where to return the pidfd. 2049 * 2050 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2051 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2052 * 2053 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2054 * task identified by @pid must be a thread-group leader. 2055 * 2056 * If this function returns successfully the caller is responsible to either 2057 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2058 * order to install the pidfd into its file descriptor table or they must use 2059 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2060 * respectively. 2061 * 2062 * This function is useful when a pidfd must already be reserved but there 2063 * might still be points of failure afterwards and the caller wants to ensure 2064 * that no pidfd is leaked into its file descriptor table. 2065 * 2066 * Return: On success, a reserved pidfd is returned from the function and a new 2067 * pidfd file is returned in the last argument to the function. On 2068 * error, a negative error code is returned from the function and the 2069 * last argument remains unchanged. 2070 */ 2071 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2072 { 2073 bool thread = flags & PIDFD_THREAD; 2074 2075 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2076 return -EINVAL; 2077 2078 return __pidfd_prepare(pid, flags, ret); 2079 } 2080 2081 static void __delayed_free_task(struct rcu_head *rhp) 2082 { 2083 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2084 2085 free_task(tsk); 2086 } 2087 2088 static __always_inline void delayed_free_task(struct task_struct *tsk) 2089 { 2090 if (IS_ENABLED(CONFIG_MEMCG)) 2091 call_rcu(&tsk->rcu, __delayed_free_task); 2092 else 2093 free_task(tsk); 2094 } 2095 2096 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2097 { 2098 /* Skip if kernel thread */ 2099 if (!tsk->mm) 2100 return; 2101 2102 /* Skip if spawning a thread or using vfork */ 2103 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2104 return; 2105 2106 /* We need to synchronize with __set_oom_adj */ 2107 mutex_lock(&oom_adj_mutex); 2108 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2109 /* Update the values in case they were changed after copy_signal */ 2110 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2111 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2112 mutex_unlock(&oom_adj_mutex); 2113 } 2114 2115 #ifdef CONFIG_RV 2116 static void rv_task_fork(struct task_struct *p) 2117 { 2118 int i; 2119 2120 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2121 p->rv[i].da_mon.monitoring = false; 2122 } 2123 #else 2124 #define rv_task_fork(p) do {} while (0) 2125 #endif 2126 2127 /* 2128 * This creates a new process as a copy of the old one, 2129 * but does not actually start it yet. 2130 * 2131 * It copies the registers, and all the appropriate 2132 * parts of the process environment (as per the clone 2133 * flags). The actual kick-off is left to the caller. 2134 */ 2135 __latent_entropy struct task_struct *copy_process( 2136 struct pid *pid, 2137 int trace, 2138 int node, 2139 struct kernel_clone_args *args) 2140 { 2141 int pidfd = -1, retval; 2142 struct task_struct *p; 2143 struct multiprocess_signals delayed; 2144 struct file *pidfile = NULL; 2145 const u64 clone_flags = args->flags; 2146 struct nsproxy *nsp = current->nsproxy; 2147 2148 /* 2149 * Don't allow sharing the root directory with processes in a different 2150 * namespace 2151 */ 2152 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2153 return ERR_PTR(-EINVAL); 2154 2155 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2156 return ERR_PTR(-EINVAL); 2157 2158 /* 2159 * Thread groups must share signals as well, and detached threads 2160 * can only be started up within the thread group. 2161 */ 2162 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2163 return ERR_PTR(-EINVAL); 2164 2165 /* 2166 * Shared signal handlers imply shared VM. By way of the above, 2167 * thread groups also imply shared VM. Blocking this case allows 2168 * for various simplifications in other code. 2169 */ 2170 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2171 return ERR_PTR(-EINVAL); 2172 2173 /* 2174 * Siblings of global init remain as zombies on exit since they are 2175 * not reaped by their parent (swapper). To solve this and to avoid 2176 * multi-rooted process trees, prevent global and container-inits 2177 * from creating siblings. 2178 */ 2179 if ((clone_flags & CLONE_PARENT) && 2180 current->signal->flags & SIGNAL_UNKILLABLE) 2181 return ERR_PTR(-EINVAL); 2182 2183 /* 2184 * If the new process will be in a different pid or user namespace 2185 * do not allow it to share a thread group with the forking task. 2186 */ 2187 if (clone_flags & CLONE_THREAD) { 2188 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2189 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2190 return ERR_PTR(-EINVAL); 2191 } 2192 2193 if (clone_flags & CLONE_PIDFD) { 2194 /* 2195 * - CLONE_DETACHED is blocked so that we can potentially 2196 * reuse it later for CLONE_PIDFD. 2197 */ 2198 if (clone_flags & CLONE_DETACHED) 2199 return ERR_PTR(-EINVAL); 2200 } 2201 2202 /* 2203 * Force any signals received before this point to be delivered 2204 * before the fork happens. Collect up signals sent to multiple 2205 * processes that happen during the fork and delay them so that 2206 * they appear to happen after the fork. 2207 */ 2208 sigemptyset(&delayed.signal); 2209 INIT_HLIST_NODE(&delayed.node); 2210 2211 spin_lock_irq(¤t->sighand->siglock); 2212 if (!(clone_flags & CLONE_THREAD)) 2213 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2214 recalc_sigpending(); 2215 spin_unlock_irq(¤t->sighand->siglock); 2216 retval = -ERESTARTNOINTR; 2217 if (task_sigpending(current)) 2218 goto fork_out; 2219 2220 retval = -ENOMEM; 2221 p = dup_task_struct(current, node); 2222 if (!p) 2223 goto fork_out; 2224 p->flags &= ~PF_KTHREAD; 2225 if (args->kthread) 2226 p->flags |= PF_KTHREAD; 2227 if (args->user_worker) { 2228 /* 2229 * Mark us a user worker, and block any signal that isn't 2230 * fatal or STOP 2231 */ 2232 p->flags |= PF_USER_WORKER; 2233 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2234 } 2235 if (args->io_thread) 2236 p->flags |= PF_IO_WORKER; 2237 2238 if (args->name) 2239 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2240 2241 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2242 /* 2243 * Clear TID on mm_release()? 2244 */ 2245 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2246 2247 ftrace_graph_init_task(p); 2248 2249 rt_mutex_init_task(p); 2250 2251 lockdep_assert_irqs_enabled(); 2252 #ifdef CONFIG_PROVE_LOCKING 2253 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2254 #endif 2255 retval = copy_creds(p, clone_flags); 2256 if (retval < 0) 2257 goto bad_fork_free; 2258 2259 retval = -EAGAIN; 2260 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2261 if (p->real_cred->user != INIT_USER && 2262 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2263 goto bad_fork_cleanup_count; 2264 } 2265 current->flags &= ~PF_NPROC_EXCEEDED; 2266 2267 /* 2268 * If multiple threads are within copy_process(), then this check 2269 * triggers too late. This doesn't hurt, the check is only there 2270 * to stop root fork bombs. 2271 */ 2272 retval = -EAGAIN; 2273 if (data_race(nr_threads >= max_threads)) 2274 goto bad_fork_cleanup_count; 2275 2276 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2277 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2278 p->flags |= PF_FORKNOEXEC; 2279 INIT_LIST_HEAD(&p->children); 2280 INIT_LIST_HEAD(&p->sibling); 2281 rcu_copy_process(p); 2282 p->vfork_done = NULL; 2283 spin_lock_init(&p->alloc_lock); 2284 2285 init_sigpending(&p->pending); 2286 2287 p->utime = p->stime = p->gtime = 0; 2288 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2289 p->utimescaled = p->stimescaled = 0; 2290 #endif 2291 prev_cputime_init(&p->prev_cputime); 2292 2293 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2294 seqcount_init(&p->vtime.seqcount); 2295 p->vtime.starttime = 0; 2296 p->vtime.state = VTIME_INACTIVE; 2297 #endif 2298 2299 #ifdef CONFIG_IO_URING 2300 p->io_uring = NULL; 2301 #endif 2302 2303 p->default_timer_slack_ns = current->timer_slack_ns; 2304 2305 #ifdef CONFIG_PSI 2306 p->psi_flags = 0; 2307 #endif 2308 2309 task_io_accounting_init(&p->ioac); 2310 acct_clear_integrals(p); 2311 2312 posix_cputimers_init(&p->posix_cputimers); 2313 2314 p->io_context = NULL; 2315 audit_set_context(p, NULL); 2316 cgroup_fork(p); 2317 if (args->kthread) { 2318 if (!set_kthread_struct(p)) 2319 goto bad_fork_cleanup_delayacct; 2320 } 2321 #ifdef CONFIG_NUMA 2322 p->mempolicy = mpol_dup(p->mempolicy); 2323 if (IS_ERR(p->mempolicy)) { 2324 retval = PTR_ERR(p->mempolicy); 2325 p->mempolicy = NULL; 2326 goto bad_fork_cleanup_delayacct; 2327 } 2328 #endif 2329 #ifdef CONFIG_CPUSETS 2330 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2331 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2332 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2333 #endif 2334 #ifdef CONFIG_TRACE_IRQFLAGS 2335 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2336 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2337 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2338 p->softirqs_enabled = 1; 2339 p->softirq_context = 0; 2340 #endif 2341 2342 p->pagefault_disabled = 0; 2343 2344 #ifdef CONFIG_LOCKDEP 2345 lockdep_init_task(p); 2346 #endif 2347 2348 #ifdef CONFIG_DEBUG_MUTEXES 2349 p->blocked_on = NULL; /* not blocked yet */ 2350 #endif 2351 #ifdef CONFIG_BCACHE 2352 p->sequential_io = 0; 2353 p->sequential_io_avg = 0; 2354 #endif 2355 #ifdef CONFIG_BPF_SYSCALL 2356 RCU_INIT_POINTER(p->bpf_storage, NULL); 2357 p->bpf_ctx = NULL; 2358 #endif 2359 2360 /* Perform scheduler related setup. Assign this task to a CPU. */ 2361 retval = sched_fork(clone_flags, p); 2362 if (retval) 2363 goto bad_fork_cleanup_policy; 2364 2365 retval = perf_event_init_task(p, clone_flags); 2366 if (retval) 2367 goto bad_fork_cleanup_policy; 2368 retval = audit_alloc(p); 2369 if (retval) 2370 goto bad_fork_cleanup_perf; 2371 /* copy all the process information */ 2372 shm_init_task(p); 2373 retval = security_task_alloc(p, clone_flags); 2374 if (retval) 2375 goto bad_fork_cleanup_audit; 2376 retval = copy_semundo(clone_flags, p); 2377 if (retval) 2378 goto bad_fork_cleanup_security; 2379 retval = copy_files(clone_flags, p, args->no_files); 2380 if (retval) 2381 goto bad_fork_cleanup_semundo; 2382 retval = copy_fs(clone_flags, p); 2383 if (retval) 2384 goto bad_fork_cleanup_files; 2385 retval = copy_sighand(clone_flags, p); 2386 if (retval) 2387 goto bad_fork_cleanup_fs; 2388 retval = copy_signal(clone_flags, p); 2389 if (retval) 2390 goto bad_fork_cleanup_sighand; 2391 retval = copy_mm(clone_flags, p); 2392 if (retval) 2393 goto bad_fork_cleanup_signal; 2394 retval = copy_namespaces(clone_flags, p); 2395 if (retval) 2396 goto bad_fork_cleanup_mm; 2397 retval = copy_io(clone_flags, p); 2398 if (retval) 2399 goto bad_fork_cleanup_namespaces; 2400 retval = copy_thread(p, args); 2401 if (retval) 2402 goto bad_fork_cleanup_io; 2403 2404 stackleak_task_init(p); 2405 2406 if (pid != &init_struct_pid) { 2407 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2408 args->set_tid_size); 2409 if (IS_ERR(pid)) { 2410 retval = PTR_ERR(pid); 2411 goto bad_fork_cleanup_thread; 2412 } 2413 } 2414 2415 /* 2416 * This has to happen after we've potentially unshared the file 2417 * descriptor table (so that the pidfd doesn't leak into the child 2418 * if the fd table isn't shared). 2419 */ 2420 if (clone_flags & CLONE_PIDFD) { 2421 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2422 2423 /* Note that no task has been attached to @pid yet. */ 2424 retval = __pidfd_prepare(pid, flags, &pidfile); 2425 if (retval < 0) 2426 goto bad_fork_free_pid; 2427 pidfd = retval; 2428 2429 retval = put_user(pidfd, args->pidfd); 2430 if (retval) 2431 goto bad_fork_put_pidfd; 2432 } 2433 2434 #ifdef CONFIG_BLOCK 2435 p->plug = NULL; 2436 #endif 2437 futex_init_task(p); 2438 2439 /* 2440 * sigaltstack should be cleared when sharing the same VM 2441 */ 2442 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2443 sas_ss_reset(p); 2444 2445 /* 2446 * Syscall tracing and stepping should be turned off in the 2447 * child regardless of CLONE_PTRACE. 2448 */ 2449 user_disable_single_step(p); 2450 clear_task_syscall_work(p, SYSCALL_TRACE); 2451 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2452 clear_task_syscall_work(p, SYSCALL_EMU); 2453 #endif 2454 clear_tsk_latency_tracing(p); 2455 2456 /* ok, now we should be set up.. */ 2457 p->pid = pid_nr(pid); 2458 if (clone_flags & CLONE_THREAD) { 2459 p->group_leader = current->group_leader; 2460 p->tgid = current->tgid; 2461 } else { 2462 p->group_leader = p; 2463 p->tgid = p->pid; 2464 } 2465 2466 p->nr_dirtied = 0; 2467 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2468 p->dirty_paused_when = 0; 2469 2470 p->pdeath_signal = 0; 2471 p->task_works = NULL; 2472 clear_posix_cputimers_work(p); 2473 2474 #ifdef CONFIG_KRETPROBES 2475 p->kretprobe_instances.first = NULL; 2476 #endif 2477 #ifdef CONFIG_RETHOOK 2478 p->rethooks.first = NULL; 2479 #endif 2480 2481 /* 2482 * Ensure that the cgroup subsystem policies allow the new process to be 2483 * forked. It should be noted that the new process's css_set can be changed 2484 * between here and cgroup_post_fork() if an organisation operation is in 2485 * progress. 2486 */ 2487 retval = cgroup_can_fork(p, args); 2488 if (retval) 2489 goto bad_fork_put_pidfd; 2490 2491 /* 2492 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2493 * the new task on the correct runqueue. All this *before* the task 2494 * becomes visible. 2495 * 2496 * This isn't part of ->can_fork() because while the re-cloning is 2497 * cgroup specific, it unconditionally needs to place the task on a 2498 * runqueue. 2499 */ 2500 sched_cgroup_fork(p, args); 2501 2502 /* 2503 * From this point on we must avoid any synchronous user-space 2504 * communication until we take the tasklist-lock. In particular, we do 2505 * not want user-space to be able to predict the process start-time by 2506 * stalling fork(2) after we recorded the start_time but before it is 2507 * visible to the system. 2508 */ 2509 2510 p->start_time = ktime_get_ns(); 2511 p->start_boottime = ktime_get_boottime_ns(); 2512 2513 /* 2514 * Make it visible to the rest of the system, but dont wake it up yet. 2515 * Need tasklist lock for parent etc handling! 2516 */ 2517 write_lock_irq(&tasklist_lock); 2518 2519 /* CLONE_PARENT re-uses the old parent */ 2520 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2521 p->real_parent = current->real_parent; 2522 p->parent_exec_id = current->parent_exec_id; 2523 if (clone_flags & CLONE_THREAD) 2524 p->exit_signal = -1; 2525 else 2526 p->exit_signal = current->group_leader->exit_signal; 2527 } else { 2528 p->real_parent = current; 2529 p->parent_exec_id = current->self_exec_id; 2530 p->exit_signal = args->exit_signal; 2531 } 2532 2533 klp_copy_process(p); 2534 2535 sched_core_fork(p); 2536 2537 spin_lock(¤t->sighand->siglock); 2538 2539 rv_task_fork(p); 2540 2541 rseq_fork(p, clone_flags); 2542 2543 /* Don't start children in a dying pid namespace */ 2544 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2545 retval = -ENOMEM; 2546 goto bad_fork_cancel_cgroup; 2547 } 2548 2549 /* Let kill terminate clone/fork in the middle */ 2550 if (fatal_signal_pending(current)) { 2551 retval = -EINTR; 2552 goto bad_fork_cancel_cgroup; 2553 } 2554 2555 /* No more failure paths after this point. */ 2556 2557 /* 2558 * Copy seccomp details explicitly here, in case they were changed 2559 * before holding sighand lock. 2560 */ 2561 copy_seccomp(p); 2562 2563 init_task_pid_links(p); 2564 if (likely(p->pid)) { 2565 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2566 2567 init_task_pid(p, PIDTYPE_PID, pid); 2568 if (thread_group_leader(p)) { 2569 init_task_pid(p, PIDTYPE_TGID, pid); 2570 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2571 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2572 2573 if (is_child_reaper(pid)) { 2574 ns_of_pid(pid)->child_reaper = p; 2575 p->signal->flags |= SIGNAL_UNKILLABLE; 2576 } 2577 p->signal->shared_pending.signal = delayed.signal; 2578 p->signal->tty = tty_kref_get(current->signal->tty); 2579 /* 2580 * Inherit has_child_subreaper flag under the same 2581 * tasklist_lock with adding child to the process tree 2582 * for propagate_has_child_subreaper optimization. 2583 */ 2584 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2585 p->real_parent->signal->is_child_subreaper; 2586 list_add_tail(&p->sibling, &p->real_parent->children); 2587 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2588 attach_pid(p, PIDTYPE_TGID); 2589 attach_pid(p, PIDTYPE_PGID); 2590 attach_pid(p, PIDTYPE_SID); 2591 __this_cpu_inc(process_counts); 2592 } else { 2593 current->signal->nr_threads++; 2594 current->signal->quick_threads++; 2595 atomic_inc(¤t->signal->live); 2596 refcount_inc(¤t->signal->sigcnt); 2597 task_join_group_stop(p); 2598 list_add_tail_rcu(&p->thread_node, 2599 &p->signal->thread_head); 2600 } 2601 attach_pid(p, PIDTYPE_PID); 2602 nr_threads++; 2603 } 2604 total_forks++; 2605 hlist_del_init(&delayed.node); 2606 spin_unlock(¤t->sighand->siglock); 2607 syscall_tracepoint_update(p); 2608 write_unlock_irq(&tasklist_lock); 2609 2610 if (pidfile) 2611 fd_install(pidfd, pidfile); 2612 2613 proc_fork_connector(p); 2614 sched_post_fork(p); 2615 cgroup_post_fork(p, args); 2616 perf_event_fork(p); 2617 2618 trace_task_newtask(p, clone_flags); 2619 uprobe_copy_process(p, clone_flags); 2620 user_events_fork(p, clone_flags); 2621 2622 copy_oom_score_adj(clone_flags, p); 2623 2624 return p; 2625 2626 bad_fork_cancel_cgroup: 2627 sched_core_free(p); 2628 spin_unlock(¤t->sighand->siglock); 2629 write_unlock_irq(&tasklist_lock); 2630 cgroup_cancel_fork(p, args); 2631 bad_fork_put_pidfd: 2632 if (clone_flags & CLONE_PIDFD) { 2633 fput(pidfile); 2634 put_unused_fd(pidfd); 2635 } 2636 bad_fork_free_pid: 2637 if (pid != &init_struct_pid) 2638 free_pid(pid); 2639 bad_fork_cleanup_thread: 2640 exit_thread(p); 2641 bad_fork_cleanup_io: 2642 if (p->io_context) 2643 exit_io_context(p); 2644 bad_fork_cleanup_namespaces: 2645 exit_task_namespaces(p); 2646 bad_fork_cleanup_mm: 2647 if (p->mm) { 2648 mm_clear_owner(p->mm, p); 2649 mmput(p->mm); 2650 } 2651 bad_fork_cleanup_signal: 2652 if (!(clone_flags & CLONE_THREAD)) 2653 free_signal_struct(p->signal); 2654 bad_fork_cleanup_sighand: 2655 __cleanup_sighand(p->sighand); 2656 bad_fork_cleanup_fs: 2657 exit_fs(p); /* blocking */ 2658 bad_fork_cleanup_files: 2659 exit_files(p); /* blocking */ 2660 bad_fork_cleanup_semundo: 2661 exit_sem(p); 2662 bad_fork_cleanup_security: 2663 security_task_free(p); 2664 bad_fork_cleanup_audit: 2665 audit_free(p); 2666 bad_fork_cleanup_perf: 2667 perf_event_free_task(p); 2668 bad_fork_cleanup_policy: 2669 lockdep_free_task(p); 2670 #ifdef CONFIG_NUMA 2671 mpol_put(p->mempolicy); 2672 #endif 2673 bad_fork_cleanup_delayacct: 2674 delayacct_tsk_free(p); 2675 bad_fork_cleanup_count: 2676 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2677 exit_creds(p); 2678 bad_fork_free: 2679 WRITE_ONCE(p->__state, TASK_DEAD); 2680 exit_task_stack_account(p); 2681 put_task_stack(p); 2682 delayed_free_task(p); 2683 fork_out: 2684 spin_lock_irq(¤t->sighand->siglock); 2685 hlist_del_init(&delayed.node); 2686 spin_unlock_irq(¤t->sighand->siglock); 2687 return ERR_PTR(retval); 2688 } 2689 2690 static inline void init_idle_pids(struct task_struct *idle) 2691 { 2692 enum pid_type type; 2693 2694 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2695 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2696 init_task_pid(idle, type, &init_struct_pid); 2697 } 2698 } 2699 2700 static int idle_dummy(void *dummy) 2701 { 2702 /* This function is never called */ 2703 return 0; 2704 } 2705 2706 struct task_struct * __init fork_idle(int cpu) 2707 { 2708 struct task_struct *task; 2709 struct kernel_clone_args args = { 2710 .flags = CLONE_VM, 2711 .fn = &idle_dummy, 2712 .fn_arg = NULL, 2713 .kthread = 1, 2714 .idle = 1, 2715 }; 2716 2717 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2718 if (!IS_ERR(task)) { 2719 init_idle_pids(task); 2720 init_idle(task, cpu); 2721 } 2722 2723 return task; 2724 } 2725 2726 /* 2727 * This is like kernel_clone(), but shaved down and tailored to just 2728 * creating io_uring workers. It returns a created task, or an error pointer. 2729 * The returned task is inactive, and the caller must fire it up through 2730 * wake_up_new_task(p). All signals are blocked in the created task. 2731 */ 2732 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2733 { 2734 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2735 CLONE_IO; 2736 struct kernel_clone_args args = { 2737 .flags = ((lower_32_bits(flags) | CLONE_VM | 2738 CLONE_UNTRACED) & ~CSIGNAL), 2739 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2740 .fn = fn, 2741 .fn_arg = arg, 2742 .io_thread = 1, 2743 .user_worker = 1, 2744 }; 2745 2746 return copy_process(NULL, 0, node, &args); 2747 } 2748 2749 /* 2750 * Ok, this is the main fork-routine. 2751 * 2752 * It copies the process, and if successful kick-starts 2753 * it and waits for it to finish using the VM if required. 2754 * 2755 * args->exit_signal is expected to be checked for sanity by the caller. 2756 */ 2757 pid_t kernel_clone(struct kernel_clone_args *args) 2758 { 2759 u64 clone_flags = args->flags; 2760 struct completion vfork; 2761 struct pid *pid; 2762 struct task_struct *p; 2763 int trace = 0; 2764 pid_t nr; 2765 2766 /* 2767 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2768 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2769 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2770 * field in struct clone_args and it still doesn't make sense to have 2771 * them both point at the same memory location. Performing this check 2772 * here has the advantage that we don't need to have a separate helper 2773 * to check for legacy clone(). 2774 */ 2775 if ((clone_flags & CLONE_PIDFD) && 2776 (clone_flags & CLONE_PARENT_SETTID) && 2777 (args->pidfd == args->parent_tid)) 2778 return -EINVAL; 2779 2780 /* 2781 * Determine whether and which event to report to ptracer. When 2782 * called from kernel_thread or CLONE_UNTRACED is explicitly 2783 * requested, no event is reported; otherwise, report if the event 2784 * for the type of forking is enabled. 2785 */ 2786 if (!(clone_flags & CLONE_UNTRACED)) { 2787 if (clone_flags & CLONE_VFORK) 2788 trace = PTRACE_EVENT_VFORK; 2789 else if (args->exit_signal != SIGCHLD) 2790 trace = PTRACE_EVENT_CLONE; 2791 else 2792 trace = PTRACE_EVENT_FORK; 2793 2794 if (likely(!ptrace_event_enabled(current, trace))) 2795 trace = 0; 2796 } 2797 2798 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2799 add_latent_entropy(); 2800 2801 if (IS_ERR(p)) 2802 return PTR_ERR(p); 2803 2804 /* 2805 * Do this prior waking up the new thread - the thread pointer 2806 * might get invalid after that point, if the thread exits quickly. 2807 */ 2808 trace_sched_process_fork(current, p); 2809 2810 pid = get_task_pid(p, PIDTYPE_PID); 2811 nr = pid_vnr(pid); 2812 2813 if (clone_flags & CLONE_PARENT_SETTID) 2814 put_user(nr, args->parent_tid); 2815 2816 if (clone_flags & CLONE_VFORK) { 2817 p->vfork_done = &vfork; 2818 init_completion(&vfork); 2819 get_task_struct(p); 2820 } 2821 2822 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2823 /* lock the task to synchronize with memcg migration */ 2824 task_lock(p); 2825 lru_gen_add_mm(p->mm); 2826 task_unlock(p); 2827 } 2828 2829 wake_up_new_task(p); 2830 2831 /* forking complete and child started to run, tell ptracer */ 2832 if (unlikely(trace)) 2833 ptrace_event_pid(trace, pid); 2834 2835 if (clone_flags & CLONE_VFORK) { 2836 if (!wait_for_vfork_done(p, &vfork)) 2837 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2838 } 2839 2840 put_pid(pid); 2841 return nr; 2842 } 2843 2844 /* 2845 * Create a kernel thread. 2846 */ 2847 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2848 unsigned long flags) 2849 { 2850 struct kernel_clone_args args = { 2851 .flags = ((lower_32_bits(flags) | CLONE_VM | 2852 CLONE_UNTRACED) & ~CSIGNAL), 2853 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2854 .fn = fn, 2855 .fn_arg = arg, 2856 .name = name, 2857 .kthread = 1, 2858 }; 2859 2860 return kernel_clone(&args); 2861 } 2862 2863 /* 2864 * Create a user mode thread. 2865 */ 2866 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2867 { 2868 struct kernel_clone_args args = { 2869 .flags = ((lower_32_bits(flags) | CLONE_VM | 2870 CLONE_UNTRACED) & ~CSIGNAL), 2871 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2872 .fn = fn, 2873 .fn_arg = arg, 2874 }; 2875 2876 return kernel_clone(&args); 2877 } 2878 2879 #ifdef __ARCH_WANT_SYS_FORK 2880 SYSCALL_DEFINE0(fork) 2881 { 2882 #ifdef CONFIG_MMU 2883 struct kernel_clone_args args = { 2884 .exit_signal = SIGCHLD, 2885 }; 2886 2887 return kernel_clone(&args); 2888 #else 2889 /* can not support in nommu mode */ 2890 return -EINVAL; 2891 #endif 2892 } 2893 #endif 2894 2895 #ifdef __ARCH_WANT_SYS_VFORK 2896 SYSCALL_DEFINE0(vfork) 2897 { 2898 struct kernel_clone_args args = { 2899 .flags = CLONE_VFORK | CLONE_VM, 2900 .exit_signal = SIGCHLD, 2901 }; 2902 2903 return kernel_clone(&args); 2904 } 2905 #endif 2906 2907 #ifdef __ARCH_WANT_SYS_CLONE 2908 #ifdef CONFIG_CLONE_BACKWARDS 2909 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2910 int __user *, parent_tidptr, 2911 unsigned long, tls, 2912 int __user *, child_tidptr) 2913 #elif defined(CONFIG_CLONE_BACKWARDS2) 2914 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2915 int __user *, parent_tidptr, 2916 int __user *, child_tidptr, 2917 unsigned long, tls) 2918 #elif defined(CONFIG_CLONE_BACKWARDS3) 2919 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2920 int, stack_size, 2921 int __user *, parent_tidptr, 2922 int __user *, child_tidptr, 2923 unsigned long, tls) 2924 #else 2925 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2926 int __user *, parent_tidptr, 2927 int __user *, child_tidptr, 2928 unsigned long, tls) 2929 #endif 2930 { 2931 struct kernel_clone_args args = { 2932 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2933 .pidfd = parent_tidptr, 2934 .child_tid = child_tidptr, 2935 .parent_tid = parent_tidptr, 2936 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2937 .stack = newsp, 2938 .tls = tls, 2939 }; 2940 2941 return kernel_clone(&args); 2942 } 2943 #endif 2944 2945 #ifdef __ARCH_WANT_SYS_CLONE3 2946 2947 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2948 struct clone_args __user *uargs, 2949 size_t usize) 2950 { 2951 int err; 2952 struct clone_args args; 2953 pid_t *kset_tid = kargs->set_tid; 2954 2955 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2956 CLONE_ARGS_SIZE_VER0); 2957 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2958 CLONE_ARGS_SIZE_VER1); 2959 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2960 CLONE_ARGS_SIZE_VER2); 2961 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2962 2963 if (unlikely(usize > PAGE_SIZE)) 2964 return -E2BIG; 2965 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2966 return -EINVAL; 2967 2968 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2969 if (err) 2970 return err; 2971 2972 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2973 return -EINVAL; 2974 2975 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2976 return -EINVAL; 2977 2978 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2979 return -EINVAL; 2980 2981 /* 2982 * Verify that higher 32bits of exit_signal are unset and that 2983 * it is a valid signal 2984 */ 2985 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2986 !valid_signal(args.exit_signal))) 2987 return -EINVAL; 2988 2989 if ((args.flags & CLONE_INTO_CGROUP) && 2990 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2991 return -EINVAL; 2992 2993 *kargs = (struct kernel_clone_args){ 2994 .flags = args.flags, 2995 .pidfd = u64_to_user_ptr(args.pidfd), 2996 .child_tid = u64_to_user_ptr(args.child_tid), 2997 .parent_tid = u64_to_user_ptr(args.parent_tid), 2998 .exit_signal = args.exit_signal, 2999 .stack = args.stack, 3000 .stack_size = args.stack_size, 3001 .tls = args.tls, 3002 .set_tid_size = args.set_tid_size, 3003 .cgroup = args.cgroup, 3004 }; 3005 3006 if (args.set_tid && 3007 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3008 (kargs->set_tid_size * sizeof(pid_t)))) 3009 return -EFAULT; 3010 3011 kargs->set_tid = kset_tid; 3012 3013 return 0; 3014 } 3015 3016 /** 3017 * clone3_stack_valid - check and prepare stack 3018 * @kargs: kernel clone args 3019 * 3020 * Verify that the stack arguments userspace gave us are sane. 3021 * In addition, set the stack direction for userspace since it's easy for us to 3022 * determine. 3023 */ 3024 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3025 { 3026 if (kargs->stack == 0) { 3027 if (kargs->stack_size > 0) 3028 return false; 3029 } else { 3030 if (kargs->stack_size == 0) 3031 return false; 3032 3033 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3034 return false; 3035 3036 #if !defined(CONFIG_STACK_GROWSUP) 3037 kargs->stack += kargs->stack_size; 3038 #endif 3039 } 3040 3041 return true; 3042 } 3043 3044 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3045 { 3046 /* Verify that no unknown flags are passed along. */ 3047 if (kargs->flags & 3048 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3049 return false; 3050 3051 /* 3052 * - make the CLONE_DETACHED bit reusable for clone3 3053 * - make the CSIGNAL bits reusable for clone3 3054 */ 3055 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3056 return false; 3057 3058 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3059 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3060 return false; 3061 3062 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3063 kargs->exit_signal) 3064 return false; 3065 3066 if (!clone3_stack_valid(kargs)) 3067 return false; 3068 3069 return true; 3070 } 3071 3072 /** 3073 * sys_clone3 - create a new process with specific properties 3074 * @uargs: argument structure 3075 * @size: size of @uargs 3076 * 3077 * clone3() is the extensible successor to clone()/clone2(). 3078 * It takes a struct as argument that is versioned by its size. 3079 * 3080 * Return: On success, a positive PID for the child process. 3081 * On error, a negative errno number. 3082 */ 3083 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3084 { 3085 int err; 3086 3087 struct kernel_clone_args kargs; 3088 pid_t set_tid[MAX_PID_NS_LEVEL]; 3089 3090 kargs.set_tid = set_tid; 3091 3092 err = copy_clone_args_from_user(&kargs, uargs, size); 3093 if (err) 3094 return err; 3095 3096 if (!clone3_args_valid(&kargs)) 3097 return -EINVAL; 3098 3099 return kernel_clone(&kargs); 3100 } 3101 #endif 3102 3103 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3104 { 3105 struct task_struct *leader, *parent, *child; 3106 int res; 3107 3108 read_lock(&tasklist_lock); 3109 leader = top = top->group_leader; 3110 down: 3111 for_each_thread(leader, parent) { 3112 list_for_each_entry(child, &parent->children, sibling) { 3113 res = visitor(child, data); 3114 if (res) { 3115 if (res < 0) 3116 goto out; 3117 leader = child; 3118 goto down; 3119 } 3120 up: 3121 ; 3122 } 3123 } 3124 3125 if (leader != top) { 3126 child = leader; 3127 parent = child->real_parent; 3128 leader = parent->group_leader; 3129 goto up; 3130 } 3131 out: 3132 read_unlock(&tasklist_lock); 3133 } 3134 3135 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3136 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3137 #endif 3138 3139 static void sighand_ctor(void *data) 3140 { 3141 struct sighand_struct *sighand = data; 3142 3143 spin_lock_init(&sighand->siglock); 3144 init_waitqueue_head(&sighand->signalfd_wqh); 3145 } 3146 3147 void __init mm_cache_init(void) 3148 { 3149 unsigned int mm_size; 3150 3151 /* 3152 * The mm_cpumask is located at the end of mm_struct, and is 3153 * dynamically sized based on the maximum CPU number this system 3154 * can have, taking hotplug into account (nr_cpu_ids). 3155 */ 3156 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3157 3158 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3159 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3160 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3161 offsetof(struct mm_struct, saved_auxv), 3162 sizeof_field(struct mm_struct, saved_auxv), 3163 NULL); 3164 } 3165 3166 void __init proc_caches_init(void) 3167 { 3168 sighand_cachep = kmem_cache_create("sighand_cache", 3169 sizeof(struct sighand_struct), 0, 3170 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3171 SLAB_ACCOUNT, sighand_ctor); 3172 signal_cachep = kmem_cache_create("signal_cache", 3173 sizeof(struct signal_struct), 0, 3174 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3175 NULL); 3176 files_cachep = kmem_cache_create("files_cache", 3177 sizeof(struct files_struct), 0, 3178 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3179 NULL); 3180 fs_cachep = kmem_cache_create("fs_cache", 3181 sizeof(struct fs_struct), 0, 3182 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3183 NULL); 3184 3185 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3186 #ifdef CONFIG_PER_VMA_LOCK 3187 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3188 #endif 3189 mmap_init(); 3190 nsproxy_cache_init(); 3191 } 3192 3193 /* 3194 * Check constraints on flags passed to the unshare system call. 3195 */ 3196 static int check_unshare_flags(unsigned long unshare_flags) 3197 { 3198 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3199 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3200 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3201 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3202 CLONE_NEWTIME)) 3203 return -EINVAL; 3204 /* 3205 * Not implemented, but pretend it works if there is nothing 3206 * to unshare. Note that unsharing the address space or the 3207 * signal handlers also need to unshare the signal queues (aka 3208 * CLONE_THREAD). 3209 */ 3210 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3211 if (!thread_group_empty(current)) 3212 return -EINVAL; 3213 } 3214 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3215 if (refcount_read(¤t->sighand->count) > 1) 3216 return -EINVAL; 3217 } 3218 if (unshare_flags & CLONE_VM) { 3219 if (!current_is_single_threaded()) 3220 return -EINVAL; 3221 } 3222 3223 return 0; 3224 } 3225 3226 /* 3227 * Unshare the filesystem structure if it is being shared 3228 */ 3229 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3230 { 3231 struct fs_struct *fs = current->fs; 3232 3233 if (!(unshare_flags & CLONE_FS) || !fs) 3234 return 0; 3235 3236 /* don't need lock here; in the worst case we'll do useless copy */ 3237 if (fs->users == 1) 3238 return 0; 3239 3240 *new_fsp = copy_fs_struct(fs); 3241 if (!*new_fsp) 3242 return -ENOMEM; 3243 3244 return 0; 3245 } 3246 3247 /* 3248 * Unshare file descriptor table if it is being shared 3249 */ 3250 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3251 struct files_struct **new_fdp) 3252 { 3253 struct files_struct *fd = current->files; 3254 int error = 0; 3255 3256 if ((unshare_flags & CLONE_FILES) && 3257 (fd && atomic_read(&fd->count) > 1)) { 3258 *new_fdp = dup_fd(fd, max_fds, &error); 3259 if (!*new_fdp) 3260 return error; 3261 } 3262 3263 return 0; 3264 } 3265 3266 /* 3267 * unshare allows a process to 'unshare' part of the process 3268 * context which was originally shared using clone. copy_* 3269 * functions used by kernel_clone() cannot be used here directly 3270 * because they modify an inactive task_struct that is being 3271 * constructed. Here we are modifying the current, active, 3272 * task_struct. 3273 */ 3274 int ksys_unshare(unsigned long unshare_flags) 3275 { 3276 struct fs_struct *fs, *new_fs = NULL; 3277 struct files_struct *new_fd = NULL; 3278 struct cred *new_cred = NULL; 3279 struct nsproxy *new_nsproxy = NULL; 3280 int do_sysvsem = 0; 3281 int err; 3282 3283 /* 3284 * If unsharing a user namespace must also unshare the thread group 3285 * and unshare the filesystem root and working directories. 3286 */ 3287 if (unshare_flags & CLONE_NEWUSER) 3288 unshare_flags |= CLONE_THREAD | CLONE_FS; 3289 /* 3290 * If unsharing vm, must also unshare signal handlers. 3291 */ 3292 if (unshare_flags & CLONE_VM) 3293 unshare_flags |= CLONE_SIGHAND; 3294 /* 3295 * If unsharing a signal handlers, must also unshare the signal queues. 3296 */ 3297 if (unshare_flags & CLONE_SIGHAND) 3298 unshare_flags |= CLONE_THREAD; 3299 /* 3300 * If unsharing namespace, must also unshare filesystem information. 3301 */ 3302 if (unshare_flags & CLONE_NEWNS) 3303 unshare_flags |= CLONE_FS; 3304 3305 err = check_unshare_flags(unshare_flags); 3306 if (err) 3307 goto bad_unshare_out; 3308 /* 3309 * CLONE_NEWIPC must also detach from the undolist: after switching 3310 * to a new ipc namespace, the semaphore arrays from the old 3311 * namespace are unreachable. 3312 */ 3313 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3314 do_sysvsem = 1; 3315 err = unshare_fs(unshare_flags, &new_fs); 3316 if (err) 3317 goto bad_unshare_out; 3318 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3319 if (err) 3320 goto bad_unshare_cleanup_fs; 3321 err = unshare_userns(unshare_flags, &new_cred); 3322 if (err) 3323 goto bad_unshare_cleanup_fd; 3324 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3325 new_cred, new_fs); 3326 if (err) 3327 goto bad_unshare_cleanup_cred; 3328 3329 if (new_cred) { 3330 err = set_cred_ucounts(new_cred); 3331 if (err) 3332 goto bad_unshare_cleanup_cred; 3333 } 3334 3335 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3336 if (do_sysvsem) { 3337 /* 3338 * CLONE_SYSVSEM is equivalent to sys_exit(). 3339 */ 3340 exit_sem(current); 3341 } 3342 if (unshare_flags & CLONE_NEWIPC) { 3343 /* Orphan segments in old ns (see sem above). */ 3344 exit_shm(current); 3345 shm_init_task(current); 3346 } 3347 3348 if (new_nsproxy) 3349 switch_task_namespaces(current, new_nsproxy); 3350 3351 task_lock(current); 3352 3353 if (new_fs) { 3354 fs = current->fs; 3355 spin_lock(&fs->lock); 3356 current->fs = new_fs; 3357 if (--fs->users) 3358 new_fs = NULL; 3359 else 3360 new_fs = fs; 3361 spin_unlock(&fs->lock); 3362 } 3363 3364 if (new_fd) 3365 swap(current->files, new_fd); 3366 3367 task_unlock(current); 3368 3369 if (new_cred) { 3370 /* Install the new user namespace */ 3371 commit_creds(new_cred); 3372 new_cred = NULL; 3373 } 3374 } 3375 3376 perf_event_namespaces(current); 3377 3378 bad_unshare_cleanup_cred: 3379 if (new_cred) 3380 put_cred(new_cred); 3381 bad_unshare_cleanup_fd: 3382 if (new_fd) 3383 put_files_struct(new_fd); 3384 3385 bad_unshare_cleanup_fs: 3386 if (new_fs) 3387 free_fs_struct(new_fs); 3388 3389 bad_unshare_out: 3390 return err; 3391 } 3392 3393 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3394 { 3395 return ksys_unshare(unshare_flags); 3396 } 3397 3398 /* 3399 * Helper to unshare the files of the current task. 3400 * We don't want to expose copy_files internals to 3401 * the exec layer of the kernel. 3402 */ 3403 3404 int unshare_files(void) 3405 { 3406 struct task_struct *task = current; 3407 struct files_struct *old, *copy = NULL; 3408 int error; 3409 3410 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3411 if (error || !copy) 3412 return error; 3413 3414 old = task->files; 3415 task_lock(task); 3416 task->files = copy; 3417 task_unlock(task); 3418 put_files_struct(old); 3419 return 0; 3420 } 3421 3422 int sysctl_max_threads(struct ctl_table *table, int write, 3423 void *buffer, size_t *lenp, loff_t *ppos) 3424 { 3425 struct ctl_table t; 3426 int ret; 3427 int threads = max_threads; 3428 int min = 1; 3429 int max = MAX_THREADS; 3430 3431 t = *table; 3432 t.data = &threads; 3433 t.extra1 = &min; 3434 t.extra2 = &max; 3435 3436 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3437 if (ret || !write) 3438 return ret; 3439 3440 max_threads = threads; 3441 3442 return 0; 3443 } 3444