1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 109 #include <asm/pgalloc.h> 110 #include <linux/uaccess.h> 111 #include <asm/mmu_context.h> 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 115 /* For dup_mmap(). */ 116 #include "../mm/internal.h" 117 118 #include <trace/events/sched.h> 119 120 #define CREATE_TRACE_POINTS 121 #include <trace/events/task.h> 122 123 #include <kunit/visibility.h> 124 125 /* 126 * Minimum number of threads to boot the kernel 127 */ 128 #define MIN_THREADS 20 129 130 /* 131 * Maximum number of threads 132 */ 133 #define MAX_THREADS FUTEX_TID_MASK 134 135 /* 136 * Protected counters by write_lock_irq(&tasklist_lock) 137 */ 138 unsigned long total_forks; /* Handle normal Linux uptimes. */ 139 int nr_threads; /* The idle threads do not count.. */ 140 141 static int max_threads; /* tunable limit on nr_threads */ 142 143 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 144 145 static const char * const resident_page_types[] = { 146 NAMED_ARRAY_INDEX(MM_FILEPAGES), 147 NAMED_ARRAY_INDEX(MM_ANONPAGES), 148 NAMED_ARRAY_INDEX(MM_SWAPENTS), 149 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 150 }; 151 152 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 153 154 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 155 156 #ifdef CONFIG_PROVE_RCU 157 int lockdep_tasklist_lock_is_held(void) 158 { 159 return lockdep_is_held(&tasklist_lock); 160 } 161 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 162 #endif /* #ifdef CONFIG_PROVE_RCU */ 163 164 int nr_processes(void) 165 { 166 int cpu; 167 int total = 0; 168 169 for_each_possible_cpu(cpu) 170 total += per_cpu(process_counts, cpu); 171 172 return total; 173 } 174 175 void __weak arch_release_task_struct(struct task_struct *tsk) 176 { 177 } 178 179 static struct kmem_cache *task_struct_cachep; 180 181 static inline struct task_struct *alloc_task_struct_node(int node) 182 { 183 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 184 } 185 186 static inline void free_task_struct(struct task_struct *tsk) 187 { 188 kmem_cache_free(task_struct_cachep, tsk); 189 } 190 191 #ifdef CONFIG_VMAP_STACK 192 /* 193 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 194 * flush. Try to minimize the number of calls by caching stacks. 195 */ 196 #define NR_CACHED_STACKS 2 197 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 198 /* 199 * Allocated stacks are cached and later reused by new threads, so memcg 200 * accounting is performed by the code assigning/releasing stacks to tasks. 201 * We need a zeroed memory without __GFP_ACCOUNT. 202 */ 203 #define GFP_VMAP_STACK (GFP_KERNEL | __GFP_ZERO) 204 205 struct vm_stack { 206 struct rcu_head rcu; 207 struct vm_struct *stack_vm_area; 208 }; 209 210 static bool try_release_thread_stack_to_cache(struct vm_struct *vm_area) 211 { 212 unsigned int i; 213 214 for (i = 0; i < NR_CACHED_STACKS; i++) { 215 struct vm_struct *tmp = NULL; 216 217 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm_area)) 218 return true; 219 } 220 return false; 221 } 222 223 static void thread_stack_free_rcu(struct rcu_head *rh) 224 { 225 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 226 struct vm_struct *vm_area = vm_stack->stack_vm_area; 227 228 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 229 return; 230 231 vfree(vm_area->addr); 232 } 233 234 static void thread_stack_delayed_free(struct task_struct *tsk) 235 { 236 struct vm_stack *vm_stack = tsk->stack; 237 238 vm_stack->stack_vm_area = tsk->stack_vm_area; 239 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 240 } 241 242 static int free_vm_stack_cache(unsigned int cpu) 243 { 244 struct vm_struct **cached_vm_stack_areas = per_cpu_ptr(cached_stacks, cpu); 245 int i; 246 247 for (i = 0; i < NR_CACHED_STACKS; i++) { 248 struct vm_struct *vm_area = cached_vm_stack_areas[i]; 249 250 if (!vm_area) 251 continue; 252 253 vfree(vm_area->addr); 254 cached_vm_stack_areas[i] = NULL; 255 } 256 257 return 0; 258 } 259 260 static int memcg_charge_kernel_stack(struct vm_struct *vm_area) 261 { 262 int i; 263 int ret; 264 int nr_charged = 0; 265 266 BUG_ON(vm_area->nr_pages != THREAD_SIZE / PAGE_SIZE); 267 268 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 269 ret = memcg_kmem_charge_page(vm_area->pages[i], GFP_KERNEL, 0); 270 if (ret) 271 goto err; 272 nr_charged++; 273 } 274 return 0; 275 err: 276 for (i = 0; i < nr_charged; i++) 277 memcg_kmem_uncharge_page(vm_area->pages[i], 0); 278 return ret; 279 } 280 281 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 282 { 283 struct vm_struct *vm_area; 284 void *stack; 285 int i; 286 287 for (i = 0; i < NR_CACHED_STACKS; i++) { 288 vm_area = this_cpu_xchg(cached_stacks[i], NULL); 289 if (!vm_area) 290 continue; 291 292 /* Reset stack metadata. */ 293 kasan_unpoison_range(vm_area->addr, THREAD_SIZE); 294 295 stack = kasan_reset_tag(vm_area->addr); 296 297 /* Clear stale pointers from reused stack. */ 298 memset(stack, 0, THREAD_SIZE); 299 300 if (memcg_charge_kernel_stack(vm_area)) { 301 vfree(vm_area->addr); 302 return -ENOMEM; 303 } 304 305 tsk->stack_vm_area = vm_area; 306 tsk->stack = stack; 307 return 0; 308 } 309 310 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN, 311 GFP_VMAP_STACK, 312 node, __builtin_return_address(0)); 313 if (!stack) 314 return -ENOMEM; 315 316 vm_area = find_vm_area(stack); 317 if (memcg_charge_kernel_stack(vm_area)) { 318 vfree(stack); 319 return -ENOMEM; 320 } 321 /* 322 * We can't call find_vm_area() in interrupt context, and 323 * free_thread_stack() can be called in interrupt context, 324 * so cache the vm_struct. 325 */ 326 tsk->stack_vm_area = vm_area; 327 stack = kasan_reset_tag(stack); 328 tsk->stack = stack; 329 return 0; 330 } 331 332 static void free_thread_stack(struct task_struct *tsk) 333 { 334 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 335 thread_stack_delayed_free(tsk); 336 337 tsk->stack = NULL; 338 tsk->stack_vm_area = NULL; 339 } 340 341 #else /* !CONFIG_VMAP_STACK */ 342 343 /* 344 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 345 * kmemcache based allocator. 346 */ 347 #if THREAD_SIZE >= PAGE_SIZE 348 349 static void thread_stack_free_rcu(struct rcu_head *rh) 350 { 351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 352 } 353 354 static void thread_stack_delayed_free(struct task_struct *tsk) 355 { 356 struct rcu_head *rh = tsk->stack; 357 358 call_rcu(rh, thread_stack_free_rcu); 359 } 360 361 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 362 { 363 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 364 THREAD_SIZE_ORDER); 365 366 if (likely(page)) { 367 tsk->stack = kasan_reset_tag(page_address(page)); 368 return 0; 369 } 370 return -ENOMEM; 371 } 372 373 static void free_thread_stack(struct task_struct *tsk) 374 { 375 thread_stack_delayed_free(tsk); 376 tsk->stack = NULL; 377 } 378 379 #else /* !(THREAD_SIZE >= PAGE_SIZE) */ 380 381 static struct kmem_cache *thread_stack_cache; 382 383 static void thread_stack_free_rcu(struct rcu_head *rh) 384 { 385 kmem_cache_free(thread_stack_cache, rh); 386 } 387 388 static void thread_stack_delayed_free(struct task_struct *tsk) 389 { 390 struct rcu_head *rh = tsk->stack; 391 392 call_rcu(rh, thread_stack_free_rcu); 393 } 394 395 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 396 { 397 unsigned long *stack; 398 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 399 stack = kasan_reset_tag(stack); 400 tsk->stack = stack; 401 return stack ? 0 : -ENOMEM; 402 } 403 404 static void free_thread_stack(struct task_struct *tsk) 405 { 406 thread_stack_delayed_free(tsk); 407 tsk->stack = NULL; 408 } 409 410 void thread_stack_cache_init(void) 411 { 412 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 413 THREAD_SIZE, THREAD_SIZE, 0, 0, 414 THREAD_SIZE, NULL); 415 BUG_ON(thread_stack_cache == NULL); 416 } 417 418 #endif /* THREAD_SIZE >= PAGE_SIZE */ 419 #endif /* CONFIG_VMAP_STACK */ 420 421 /* SLAB cache for signal_struct structures (tsk->signal) */ 422 static struct kmem_cache *signal_cachep; 423 424 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 425 struct kmem_cache *sighand_cachep; 426 427 /* SLAB cache for files_struct structures (tsk->files) */ 428 struct kmem_cache *files_cachep; 429 430 /* SLAB cache for fs_struct structures (tsk->fs) */ 431 struct kmem_cache *fs_cachep; 432 433 /* SLAB cache for mm_struct structures (tsk->mm) */ 434 static struct kmem_cache *mm_cachep; 435 436 static void account_kernel_stack(struct task_struct *tsk, int account) 437 { 438 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 439 struct vm_struct *vm_area = task_stack_vm_area(tsk); 440 int i; 441 442 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 443 mod_lruvec_page_state(vm_area->pages[i], NR_KERNEL_STACK_KB, 444 account * (PAGE_SIZE / 1024)); 445 } else { 446 void *stack = task_stack_page(tsk); 447 448 /* All stack pages are in the same node. */ 449 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 450 account * (THREAD_SIZE / 1024)); 451 } 452 } 453 454 void exit_task_stack_account(struct task_struct *tsk) 455 { 456 account_kernel_stack(tsk, -1); 457 458 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 459 struct vm_struct *vm_area; 460 int i; 461 462 vm_area = task_stack_vm_area(tsk); 463 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 464 memcg_kmem_uncharge_page(vm_area->pages[i], 0); 465 } 466 } 467 468 static void release_task_stack(struct task_struct *tsk) 469 { 470 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 471 return; /* Better to leak the stack than to free prematurely */ 472 473 free_thread_stack(tsk); 474 } 475 476 #ifdef CONFIG_THREAD_INFO_IN_TASK 477 void put_task_stack(struct task_struct *tsk) 478 { 479 if (refcount_dec_and_test(&tsk->stack_refcount)) 480 release_task_stack(tsk); 481 } 482 #endif 483 484 void free_task(struct task_struct *tsk) 485 { 486 #ifdef CONFIG_SECCOMP 487 WARN_ON_ONCE(tsk->seccomp.filter); 488 #endif 489 release_user_cpus_ptr(tsk); 490 scs_release(tsk); 491 492 #ifndef CONFIG_THREAD_INFO_IN_TASK 493 /* 494 * The task is finally done with both the stack and thread_info, 495 * so free both. 496 */ 497 release_task_stack(tsk); 498 #else 499 /* 500 * If the task had a separate stack allocation, it should be gone 501 * by now. 502 */ 503 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 504 #endif 505 rt_mutex_debug_task_free(tsk); 506 ftrace_graph_exit_task(tsk); 507 arch_release_task_struct(tsk); 508 if (tsk->flags & PF_KTHREAD) 509 free_kthread_struct(tsk); 510 bpf_task_storage_free(tsk); 511 free_task_struct(tsk); 512 } 513 EXPORT_SYMBOL(free_task); 514 515 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 516 { 517 struct file *exe_file; 518 519 exe_file = get_mm_exe_file(oldmm); 520 RCU_INIT_POINTER(mm->exe_file, exe_file); 521 /* 522 * We depend on the oldmm having properly denied write access to the 523 * exe_file already. 524 */ 525 if (exe_file && exe_file_deny_write_access(exe_file)) 526 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); 527 } 528 529 #ifdef CONFIG_MMU 530 static inline int mm_alloc_pgd(struct mm_struct *mm) 531 { 532 mm->pgd = pgd_alloc(mm); 533 if (unlikely(!mm->pgd)) 534 return -ENOMEM; 535 return 0; 536 } 537 538 static inline void mm_free_pgd(struct mm_struct *mm) 539 { 540 pgd_free(mm, mm->pgd); 541 } 542 #else 543 #define mm_alloc_pgd(mm) (0) 544 #define mm_free_pgd(mm) 545 #endif /* CONFIG_MMU */ 546 547 #ifdef CONFIG_MM_ID 548 static DEFINE_IDA(mm_ida); 549 550 static inline int mm_alloc_id(struct mm_struct *mm) 551 { 552 int ret; 553 554 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL); 555 if (ret < 0) 556 return ret; 557 mm->mm_id = ret; 558 return 0; 559 } 560 561 static inline void mm_free_id(struct mm_struct *mm) 562 { 563 const mm_id_t id = mm->mm_id; 564 565 mm->mm_id = MM_ID_DUMMY; 566 if (id == MM_ID_DUMMY) 567 return; 568 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX)) 569 return; 570 ida_free(&mm_ida, id); 571 } 572 #else /* !CONFIG_MM_ID */ 573 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; } 574 static inline void mm_free_id(struct mm_struct *mm) {} 575 #endif /* CONFIG_MM_ID */ 576 577 static void check_mm(struct mm_struct *mm) 578 { 579 int i; 580 581 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 582 "Please make sure 'struct resident_page_types[]' is updated as well"); 583 584 for (i = 0; i < NR_MM_COUNTERS; i++) { 585 long x = percpu_counter_sum(&mm->rss_stat[i]); 586 587 if (unlikely(x)) 588 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 589 mm, resident_page_types[i], x); 590 } 591 592 if (mm_pgtables_bytes(mm)) 593 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 594 mm_pgtables_bytes(mm)); 595 596 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 597 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 598 #endif 599 } 600 601 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 602 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 603 604 static void do_check_lazy_tlb(void *arg) 605 { 606 struct mm_struct *mm = arg; 607 608 WARN_ON_ONCE(current->active_mm == mm); 609 } 610 611 static void do_shoot_lazy_tlb(void *arg) 612 { 613 struct mm_struct *mm = arg; 614 615 if (current->active_mm == mm) { 616 WARN_ON_ONCE(current->mm); 617 current->active_mm = &init_mm; 618 switch_mm(mm, &init_mm, current); 619 } 620 } 621 622 static void cleanup_lazy_tlbs(struct mm_struct *mm) 623 { 624 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 625 /* 626 * In this case, lazy tlb mms are refounted and would not reach 627 * __mmdrop until all CPUs have switched away and mmdrop()ed. 628 */ 629 return; 630 } 631 632 /* 633 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 634 * requires lazy mm users to switch to another mm when the refcount 635 * drops to zero, before the mm is freed. This requires IPIs here to 636 * switch kernel threads to init_mm. 637 * 638 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 639 * switch with the final userspace teardown TLB flush which leaves the 640 * mm lazy on this CPU but no others, reducing the need for additional 641 * IPIs here. There are cases where a final IPI is still required here, 642 * such as the final mmdrop being performed on a different CPU than the 643 * one exiting, or kernel threads using the mm when userspace exits. 644 * 645 * IPI overheads have not found to be expensive, but they could be 646 * reduced in a number of possible ways, for example (roughly 647 * increasing order of complexity): 648 * - The last lazy reference created by exit_mm() could instead switch 649 * to init_mm, however it's probable this will run on the same CPU 650 * immediately afterwards, so this may not reduce IPIs much. 651 * - A batch of mms requiring IPIs could be gathered and freed at once. 652 * - CPUs store active_mm where it can be remotely checked without a 653 * lock, to filter out false-positives in the cpumask. 654 * - After mm_users or mm_count reaches zero, switching away from the 655 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 656 * with some batching or delaying of the final IPIs. 657 * - A delayed freeing and RCU-like quiescing sequence based on mm 658 * switching to avoid IPIs completely. 659 */ 660 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 661 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 662 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 663 } 664 665 /* 666 * Called when the last reference to the mm 667 * is dropped: either by a lazy thread or by 668 * mmput. Free the page directory and the mm. 669 */ 670 void __mmdrop(struct mm_struct *mm) 671 { 672 BUG_ON(mm == &init_mm); 673 WARN_ON_ONCE(mm == current->mm); 674 675 /* Ensure no CPUs are using this as their lazy tlb mm */ 676 cleanup_lazy_tlbs(mm); 677 678 WARN_ON_ONCE(mm == current->active_mm); 679 mm_free_pgd(mm); 680 mm_free_id(mm); 681 destroy_context(mm); 682 mmu_notifier_subscriptions_destroy(mm); 683 check_mm(mm); 684 put_user_ns(mm->user_ns); 685 mm_pasid_drop(mm); 686 mm_destroy_cid(mm); 687 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 688 689 free_mm(mm); 690 } 691 EXPORT_SYMBOL_GPL(__mmdrop); 692 693 static void mmdrop_async_fn(struct work_struct *work) 694 { 695 struct mm_struct *mm; 696 697 mm = container_of(work, struct mm_struct, async_put_work); 698 __mmdrop(mm); 699 } 700 701 static void mmdrop_async(struct mm_struct *mm) 702 { 703 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 704 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 705 schedule_work(&mm->async_put_work); 706 } 707 } 708 709 static inline void free_signal_struct(struct signal_struct *sig) 710 { 711 taskstats_tgid_free(sig); 712 sched_autogroup_exit(sig); 713 /* 714 * __mmdrop is not safe to call from softirq context on x86 due to 715 * pgd_dtor so postpone it to the async context 716 */ 717 if (sig->oom_mm) 718 mmdrop_async(sig->oom_mm); 719 kmem_cache_free(signal_cachep, sig); 720 } 721 722 static inline void put_signal_struct(struct signal_struct *sig) 723 { 724 if (refcount_dec_and_test(&sig->sigcnt)) 725 free_signal_struct(sig); 726 } 727 728 void __put_task_struct(struct task_struct *tsk) 729 { 730 WARN_ON(!tsk->exit_state); 731 WARN_ON(refcount_read(&tsk->usage)); 732 WARN_ON(tsk == current); 733 734 sched_ext_free(tsk); 735 io_uring_free(tsk); 736 cgroup_free(tsk); 737 task_numa_free(tsk, true); 738 security_task_free(tsk); 739 exit_creds(tsk); 740 delayacct_tsk_free(tsk); 741 put_signal_struct(tsk->signal); 742 sched_core_free(tsk); 743 free_task(tsk); 744 } 745 EXPORT_SYMBOL_GPL(__put_task_struct); 746 747 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 748 { 749 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 750 751 __put_task_struct(task); 752 } 753 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 754 755 void __init __weak arch_task_cache_init(void) { } 756 757 /* 758 * set_max_threads 759 */ 760 static void __init set_max_threads(unsigned int max_threads_suggested) 761 { 762 u64 threads; 763 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 764 765 /* 766 * The number of threads shall be limited such that the thread 767 * structures may only consume a small part of the available memory. 768 */ 769 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 770 threads = MAX_THREADS; 771 else 772 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 773 (u64) THREAD_SIZE * 8UL); 774 775 if (threads > max_threads_suggested) 776 threads = max_threads_suggested; 777 778 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 779 } 780 781 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 782 /* Initialized by the architecture: */ 783 int arch_task_struct_size __read_mostly; 784 #endif 785 786 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 787 { 788 /* Fetch thread_struct whitelist for the architecture. */ 789 arch_thread_struct_whitelist(offset, size); 790 791 /* 792 * Handle zero-sized whitelist or empty thread_struct, otherwise 793 * adjust offset to position of thread_struct in task_struct. 794 */ 795 if (unlikely(*size == 0)) 796 *offset = 0; 797 else 798 *offset += offsetof(struct task_struct, thread); 799 } 800 801 void __init fork_init(void) 802 { 803 int i; 804 #ifndef ARCH_MIN_TASKALIGN 805 #define ARCH_MIN_TASKALIGN 0 806 #endif 807 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 808 unsigned long useroffset, usersize; 809 810 /* create a slab on which task_structs can be allocated */ 811 task_struct_whitelist(&useroffset, &usersize); 812 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 813 arch_task_struct_size, align, 814 SLAB_PANIC|SLAB_ACCOUNT, 815 useroffset, usersize, NULL); 816 817 /* do the arch specific task caches init */ 818 arch_task_cache_init(); 819 820 set_max_threads(MAX_THREADS); 821 822 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 823 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 824 init_task.signal->rlim[RLIMIT_SIGPENDING] = 825 init_task.signal->rlim[RLIMIT_NPROC]; 826 827 for (i = 0; i < UCOUNT_COUNTS; i++) 828 init_user_ns.ucount_max[i] = max_threads/2; 829 830 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 831 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 832 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 833 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 834 835 #ifdef CONFIG_VMAP_STACK 836 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 837 NULL, free_vm_stack_cache); 838 #endif 839 840 scs_init(); 841 842 lockdep_init_task(&init_task); 843 uprobes_init(); 844 } 845 846 int __weak arch_dup_task_struct(struct task_struct *dst, 847 struct task_struct *src) 848 { 849 *dst = *src; 850 return 0; 851 } 852 853 void set_task_stack_end_magic(struct task_struct *tsk) 854 { 855 unsigned long *stackend; 856 857 stackend = end_of_stack(tsk); 858 *stackend = STACK_END_MAGIC; /* for overflow detection */ 859 } 860 861 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 862 { 863 struct task_struct *tsk; 864 int err; 865 866 if (node == NUMA_NO_NODE) 867 node = tsk_fork_get_node(orig); 868 tsk = alloc_task_struct_node(node); 869 if (!tsk) 870 return NULL; 871 872 err = arch_dup_task_struct(tsk, orig); 873 if (err) 874 goto free_tsk; 875 876 err = alloc_thread_stack_node(tsk, node); 877 if (err) 878 goto free_tsk; 879 880 #ifdef CONFIG_THREAD_INFO_IN_TASK 881 refcount_set(&tsk->stack_refcount, 1); 882 #endif 883 account_kernel_stack(tsk, 1); 884 885 err = scs_prepare(tsk, node); 886 if (err) 887 goto free_stack; 888 889 #ifdef CONFIG_SECCOMP 890 /* 891 * We must handle setting up seccomp filters once we're under 892 * the sighand lock in case orig has changed between now and 893 * then. Until then, filter must be NULL to avoid messing up 894 * the usage counts on the error path calling free_task. 895 */ 896 tsk->seccomp.filter = NULL; 897 #endif 898 899 setup_thread_stack(tsk, orig); 900 clear_user_return_notifier(tsk); 901 clear_tsk_need_resched(tsk); 902 set_task_stack_end_magic(tsk); 903 clear_syscall_work_syscall_user_dispatch(tsk); 904 905 #ifdef CONFIG_STACKPROTECTOR 906 tsk->stack_canary = get_random_canary(); 907 #endif 908 if (orig->cpus_ptr == &orig->cpus_mask) 909 tsk->cpus_ptr = &tsk->cpus_mask; 910 dup_user_cpus_ptr(tsk, orig, node); 911 912 /* 913 * One for the user space visible state that goes away when reaped. 914 * One for the scheduler. 915 */ 916 refcount_set(&tsk->rcu_users, 2); 917 /* One for the rcu users */ 918 refcount_set(&tsk->usage, 1); 919 #ifdef CONFIG_BLK_DEV_IO_TRACE 920 tsk->btrace_seq = 0; 921 #endif 922 tsk->splice_pipe = NULL; 923 tsk->task_frag.page = NULL; 924 tsk->wake_q.next = NULL; 925 tsk->worker_private = NULL; 926 927 kcov_task_init(tsk); 928 kmsan_task_create(tsk); 929 kmap_local_fork(tsk); 930 931 #ifdef CONFIG_FAULT_INJECTION 932 tsk->fail_nth = 0; 933 #endif 934 935 #ifdef CONFIG_BLK_CGROUP 936 tsk->throttle_disk = NULL; 937 tsk->use_memdelay = 0; 938 #endif 939 940 #ifdef CONFIG_ARCH_HAS_CPU_PASID 941 tsk->pasid_activated = 0; 942 #endif 943 944 #ifdef CONFIG_MEMCG 945 tsk->active_memcg = NULL; 946 #endif 947 948 #ifdef CONFIG_X86_BUS_LOCK_DETECT 949 tsk->reported_split_lock = 0; 950 #endif 951 952 #ifdef CONFIG_SCHED_MM_CID 953 tsk->mm_cid = -1; 954 tsk->last_mm_cid = -1; 955 tsk->mm_cid_active = 0; 956 tsk->migrate_from_cpu = -1; 957 #endif 958 return tsk; 959 960 free_stack: 961 exit_task_stack_account(tsk); 962 free_thread_stack(tsk); 963 free_tsk: 964 free_task_struct(tsk); 965 return NULL; 966 } 967 968 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 969 970 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 971 972 static int __init coredump_filter_setup(char *s) 973 { 974 default_dump_filter = 975 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 976 MMF_DUMP_FILTER_MASK; 977 return 1; 978 } 979 980 __setup("coredump_filter=", coredump_filter_setup); 981 982 #include <linux/init_task.h> 983 984 static void mm_init_aio(struct mm_struct *mm) 985 { 986 #ifdef CONFIG_AIO 987 spin_lock_init(&mm->ioctx_lock); 988 mm->ioctx_table = NULL; 989 #endif 990 } 991 992 static __always_inline void mm_clear_owner(struct mm_struct *mm, 993 struct task_struct *p) 994 { 995 #ifdef CONFIG_MEMCG 996 if (mm->owner == p) 997 WRITE_ONCE(mm->owner, NULL); 998 #endif 999 } 1000 1001 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1002 { 1003 #ifdef CONFIG_MEMCG 1004 mm->owner = p; 1005 #endif 1006 } 1007 1008 static void mm_init_uprobes_state(struct mm_struct *mm) 1009 { 1010 #ifdef CONFIG_UPROBES 1011 mm->uprobes_state.xol_area = NULL; 1012 #endif 1013 } 1014 1015 static void mmap_init_lock(struct mm_struct *mm) 1016 { 1017 init_rwsem(&mm->mmap_lock); 1018 mm_lock_seqcount_init(mm); 1019 #ifdef CONFIG_PER_VMA_LOCK 1020 rcuwait_init(&mm->vma_writer_wait); 1021 #endif 1022 } 1023 1024 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1025 struct user_namespace *user_ns) 1026 { 1027 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1028 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1029 atomic_set(&mm->mm_users, 1); 1030 atomic_set(&mm->mm_count, 1); 1031 seqcount_init(&mm->write_protect_seq); 1032 mmap_init_lock(mm); 1033 INIT_LIST_HEAD(&mm->mmlist); 1034 mm_pgtables_bytes_init(mm); 1035 mm->map_count = 0; 1036 mm->locked_vm = 0; 1037 atomic64_set(&mm->pinned_vm, 0); 1038 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1039 spin_lock_init(&mm->page_table_lock); 1040 spin_lock_init(&mm->arg_lock); 1041 mm_init_cpumask(mm); 1042 mm_init_aio(mm); 1043 mm_init_owner(mm, p); 1044 mm_pasid_init(mm); 1045 RCU_INIT_POINTER(mm->exe_file, NULL); 1046 mmu_notifier_subscriptions_init(mm); 1047 init_tlb_flush_pending(mm); 1048 futex_mm_init(mm); 1049 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1050 mm->pmd_huge_pte = NULL; 1051 #endif 1052 mm_init_uprobes_state(mm); 1053 hugetlb_count_init(mm); 1054 1055 if (current->mm) { 1056 mm->flags = mmf_init_flags(current->mm->flags); 1057 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1058 } else { 1059 mm->flags = default_dump_filter; 1060 mm->def_flags = 0; 1061 } 1062 1063 if (mm_alloc_pgd(mm)) 1064 goto fail_nopgd; 1065 1066 if (mm_alloc_id(mm)) 1067 goto fail_noid; 1068 1069 if (init_new_context(p, mm)) 1070 goto fail_nocontext; 1071 1072 if (mm_alloc_cid(mm, p)) 1073 goto fail_cid; 1074 1075 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1076 NR_MM_COUNTERS)) 1077 goto fail_pcpu; 1078 1079 mm->user_ns = get_user_ns(user_ns); 1080 lru_gen_init_mm(mm); 1081 return mm; 1082 1083 fail_pcpu: 1084 mm_destroy_cid(mm); 1085 fail_cid: 1086 destroy_context(mm); 1087 fail_nocontext: 1088 mm_free_id(mm); 1089 fail_noid: 1090 mm_free_pgd(mm); 1091 fail_nopgd: 1092 free_mm(mm); 1093 return NULL; 1094 } 1095 1096 /* 1097 * Allocate and initialize an mm_struct. 1098 */ 1099 struct mm_struct *mm_alloc(void) 1100 { 1101 struct mm_struct *mm; 1102 1103 mm = allocate_mm(); 1104 if (!mm) 1105 return NULL; 1106 1107 memset(mm, 0, sizeof(*mm)); 1108 return mm_init(mm, current, current_user_ns()); 1109 } 1110 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1111 1112 static inline void __mmput(struct mm_struct *mm) 1113 { 1114 VM_BUG_ON(atomic_read(&mm->mm_users)); 1115 1116 uprobe_clear_state(mm); 1117 exit_aio(mm); 1118 ksm_exit(mm); 1119 khugepaged_exit(mm); /* must run before exit_mmap */ 1120 exit_mmap(mm); 1121 mm_put_huge_zero_folio(mm); 1122 set_mm_exe_file(mm, NULL); 1123 if (!list_empty(&mm->mmlist)) { 1124 spin_lock(&mmlist_lock); 1125 list_del(&mm->mmlist); 1126 spin_unlock(&mmlist_lock); 1127 } 1128 if (mm->binfmt) 1129 module_put(mm->binfmt->module); 1130 lru_gen_del_mm(mm); 1131 futex_hash_free(mm); 1132 mmdrop(mm); 1133 } 1134 1135 /* 1136 * Decrement the use count and release all resources for an mm. 1137 */ 1138 void mmput(struct mm_struct *mm) 1139 { 1140 might_sleep(); 1141 1142 if (atomic_dec_and_test(&mm->mm_users)) 1143 __mmput(mm); 1144 } 1145 EXPORT_SYMBOL_GPL(mmput); 1146 1147 #ifdef CONFIG_MMU 1148 static void mmput_async_fn(struct work_struct *work) 1149 { 1150 struct mm_struct *mm = container_of(work, struct mm_struct, 1151 async_put_work); 1152 1153 __mmput(mm); 1154 } 1155 1156 void mmput_async(struct mm_struct *mm) 1157 { 1158 if (atomic_dec_and_test(&mm->mm_users)) { 1159 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1160 schedule_work(&mm->async_put_work); 1161 } 1162 } 1163 EXPORT_SYMBOL_GPL(mmput_async); 1164 #endif 1165 1166 /** 1167 * set_mm_exe_file - change a reference to the mm's executable file 1168 * @mm: The mm to change. 1169 * @new_exe_file: The new file to use. 1170 * 1171 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1172 * 1173 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1174 * invocations: in mmput() nobody alive left, in execve it happens before 1175 * the new mm is made visible to anyone. 1176 * 1177 * Can only fail if new_exe_file != NULL. 1178 */ 1179 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1180 { 1181 struct file *old_exe_file; 1182 1183 /* 1184 * It is safe to dereference the exe_file without RCU as 1185 * this function is only called if nobody else can access 1186 * this mm -- see comment above for justification. 1187 */ 1188 old_exe_file = rcu_dereference_raw(mm->exe_file); 1189 1190 if (new_exe_file) { 1191 /* 1192 * We expect the caller (i.e., sys_execve) to already denied 1193 * write access, so this is unlikely to fail. 1194 */ 1195 if (unlikely(exe_file_deny_write_access(new_exe_file))) 1196 return -EACCES; 1197 get_file(new_exe_file); 1198 } 1199 rcu_assign_pointer(mm->exe_file, new_exe_file); 1200 if (old_exe_file) { 1201 exe_file_allow_write_access(old_exe_file); 1202 fput(old_exe_file); 1203 } 1204 return 0; 1205 } 1206 1207 /** 1208 * replace_mm_exe_file - replace a reference to the mm's executable file 1209 * @mm: The mm to change. 1210 * @new_exe_file: The new file to use. 1211 * 1212 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1213 * 1214 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1215 */ 1216 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1217 { 1218 struct vm_area_struct *vma; 1219 struct file *old_exe_file; 1220 int ret = 0; 1221 1222 /* Forbid mm->exe_file change if old file still mapped. */ 1223 old_exe_file = get_mm_exe_file(mm); 1224 if (old_exe_file) { 1225 VMA_ITERATOR(vmi, mm, 0); 1226 mmap_read_lock(mm); 1227 for_each_vma(vmi, vma) { 1228 if (!vma->vm_file) 1229 continue; 1230 if (path_equal(&vma->vm_file->f_path, 1231 &old_exe_file->f_path)) { 1232 ret = -EBUSY; 1233 break; 1234 } 1235 } 1236 mmap_read_unlock(mm); 1237 fput(old_exe_file); 1238 if (ret) 1239 return ret; 1240 } 1241 1242 ret = exe_file_deny_write_access(new_exe_file); 1243 if (ret) 1244 return -EACCES; 1245 get_file(new_exe_file); 1246 1247 /* set the new file */ 1248 mmap_write_lock(mm); 1249 old_exe_file = rcu_dereference_raw(mm->exe_file); 1250 rcu_assign_pointer(mm->exe_file, new_exe_file); 1251 mmap_write_unlock(mm); 1252 1253 if (old_exe_file) { 1254 exe_file_allow_write_access(old_exe_file); 1255 fput(old_exe_file); 1256 } 1257 return 0; 1258 } 1259 1260 /** 1261 * get_mm_exe_file - acquire a reference to the mm's executable file 1262 * @mm: The mm of interest. 1263 * 1264 * Returns %NULL if mm has no associated executable file. 1265 * User must release file via fput(). 1266 */ 1267 struct file *get_mm_exe_file(struct mm_struct *mm) 1268 { 1269 struct file *exe_file; 1270 1271 rcu_read_lock(); 1272 exe_file = get_file_rcu(&mm->exe_file); 1273 rcu_read_unlock(); 1274 return exe_file; 1275 } 1276 1277 /** 1278 * get_task_exe_file - acquire a reference to the task's executable file 1279 * @task: The task. 1280 * 1281 * Returns %NULL if task's mm (if any) has no associated executable file or 1282 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1283 * User must release file via fput(). 1284 */ 1285 struct file *get_task_exe_file(struct task_struct *task) 1286 { 1287 struct file *exe_file = NULL; 1288 struct mm_struct *mm; 1289 1290 if (task->flags & PF_KTHREAD) 1291 return NULL; 1292 1293 task_lock(task); 1294 mm = task->mm; 1295 if (mm) 1296 exe_file = get_mm_exe_file(mm); 1297 task_unlock(task); 1298 return exe_file; 1299 } 1300 1301 /** 1302 * get_task_mm - acquire a reference to the task's mm 1303 * @task: The task. 1304 * 1305 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1306 * this kernel workthread has transiently adopted a user mm with use_mm, 1307 * to do its AIO) is not set and if so returns a reference to it, after 1308 * bumping up the use count. User must release the mm via mmput() 1309 * after use. Typically used by /proc and ptrace. 1310 */ 1311 struct mm_struct *get_task_mm(struct task_struct *task) 1312 { 1313 struct mm_struct *mm; 1314 1315 if (task->flags & PF_KTHREAD) 1316 return NULL; 1317 1318 task_lock(task); 1319 mm = task->mm; 1320 if (mm) 1321 mmget(mm); 1322 task_unlock(task); 1323 return mm; 1324 } 1325 EXPORT_SYMBOL_GPL(get_task_mm); 1326 1327 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode) 1328 { 1329 if (mm == current->mm) 1330 return true; 1331 if (ptrace_may_access(task, mode)) 1332 return true; 1333 if ((mode & PTRACE_MODE_READ) && perfmon_capable()) 1334 return true; 1335 return false; 1336 } 1337 1338 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1339 { 1340 struct mm_struct *mm; 1341 int err; 1342 1343 err = down_read_killable(&task->signal->exec_update_lock); 1344 if (err) 1345 return ERR_PTR(err); 1346 1347 mm = get_task_mm(task); 1348 if (!mm) { 1349 mm = ERR_PTR(-ESRCH); 1350 } else if (!may_access_mm(mm, task, mode)) { 1351 mmput(mm); 1352 mm = ERR_PTR(-EACCES); 1353 } 1354 up_read(&task->signal->exec_update_lock); 1355 1356 return mm; 1357 } 1358 1359 static void complete_vfork_done(struct task_struct *tsk) 1360 { 1361 struct completion *vfork; 1362 1363 task_lock(tsk); 1364 vfork = tsk->vfork_done; 1365 if (likely(vfork)) { 1366 tsk->vfork_done = NULL; 1367 complete(vfork); 1368 } 1369 task_unlock(tsk); 1370 } 1371 1372 static int wait_for_vfork_done(struct task_struct *child, 1373 struct completion *vfork) 1374 { 1375 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1376 int killed; 1377 1378 cgroup_enter_frozen(); 1379 killed = wait_for_completion_state(vfork, state); 1380 cgroup_leave_frozen(false); 1381 1382 if (killed) { 1383 task_lock(child); 1384 child->vfork_done = NULL; 1385 task_unlock(child); 1386 } 1387 1388 put_task_struct(child); 1389 return killed; 1390 } 1391 1392 /* Please note the differences between mmput and mm_release. 1393 * mmput is called whenever we stop holding onto a mm_struct, 1394 * error success whatever. 1395 * 1396 * mm_release is called after a mm_struct has been removed 1397 * from the current process. 1398 * 1399 * This difference is important for error handling, when we 1400 * only half set up a mm_struct for a new process and need to restore 1401 * the old one. Because we mmput the new mm_struct before 1402 * restoring the old one. . . 1403 * Eric Biederman 10 January 1998 1404 */ 1405 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1406 { 1407 uprobe_free_utask(tsk); 1408 1409 /* Get rid of any cached register state */ 1410 deactivate_mm(tsk, mm); 1411 1412 /* 1413 * Signal userspace if we're not exiting with a core dump 1414 * because we want to leave the value intact for debugging 1415 * purposes. 1416 */ 1417 if (tsk->clear_child_tid) { 1418 if (atomic_read(&mm->mm_users) > 1) { 1419 /* 1420 * We don't check the error code - if userspace has 1421 * not set up a proper pointer then tough luck. 1422 */ 1423 put_user(0, tsk->clear_child_tid); 1424 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1425 1, NULL, NULL, 0, 0); 1426 } 1427 tsk->clear_child_tid = NULL; 1428 } 1429 1430 /* 1431 * All done, finally we can wake up parent and return this mm to him. 1432 * Also kthread_stop() uses this completion for synchronization. 1433 */ 1434 if (tsk->vfork_done) 1435 complete_vfork_done(tsk); 1436 } 1437 1438 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1439 { 1440 futex_exit_release(tsk); 1441 mm_release(tsk, mm); 1442 } 1443 1444 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1445 { 1446 futex_exec_release(tsk); 1447 mm_release(tsk, mm); 1448 } 1449 1450 /** 1451 * dup_mm() - duplicates an existing mm structure 1452 * @tsk: the task_struct with which the new mm will be associated. 1453 * @oldmm: the mm to duplicate. 1454 * 1455 * Allocates a new mm structure and duplicates the provided @oldmm structure 1456 * content into it. 1457 * 1458 * Return: the duplicated mm or NULL on failure. 1459 */ 1460 static struct mm_struct *dup_mm(struct task_struct *tsk, 1461 struct mm_struct *oldmm) 1462 { 1463 struct mm_struct *mm; 1464 int err; 1465 1466 mm = allocate_mm(); 1467 if (!mm) 1468 goto fail_nomem; 1469 1470 memcpy(mm, oldmm, sizeof(*mm)); 1471 1472 if (!mm_init(mm, tsk, mm->user_ns)) 1473 goto fail_nomem; 1474 1475 uprobe_start_dup_mmap(); 1476 err = dup_mmap(mm, oldmm); 1477 if (err) 1478 goto free_pt; 1479 uprobe_end_dup_mmap(); 1480 1481 mm->hiwater_rss = get_mm_rss(mm); 1482 mm->hiwater_vm = mm->total_vm; 1483 1484 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1485 goto free_pt; 1486 1487 return mm; 1488 1489 free_pt: 1490 /* don't put binfmt in mmput, we haven't got module yet */ 1491 mm->binfmt = NULL; 1492 mm_init_owner(mm, NULL); 1493 mmput(mm); 1494 if (err) 1495 uprobe_end_dup_mmap(); 1496 1497 fail_nomem: 1498 return NULL; 1499 } 1500 1501 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1502 { 1503 struct mm_struct *mm, *oldmm; 1504 1505 tsk->min_flt = tsk->maj_flt = 0; 1506 tsk->nvcsw = tsk->nivcsw = 0; 1507 #ifdef CONFIG_DETECT_HUNG_TASK 1508 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1509 tsk->last_switch_time = 0; 1510 #endif 1511 1512 tsk->mm = NULL; 1513 tsk->active_mm = NULL; 1514 1515 /* 1516 * Are we cloning a kernel thread? 1517 * 1518 * We need to steal a active VM for that.. 1519 */ 1520 oldmm = current->mm; 1521 if (!oldmm) 1522 return 0; 1523 1524 if (clone_flags & CLONE_VM) { 1525 mmget(oldmm); 1526 mm = oldmm; 1527 } else { 1528 mm = dup_mm(tsk, current->mm); 1529 if (!mm) 1530 return -ENOMEM; 1531 } 1532 1533 tsk->mm = mm; 1534 tsk->active_mm = mm; 1535 sched_mm_cid_fork(tsk); 1536 return 0; 1537 } 1538 1539 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1540 { 1541 struct fs_struct *fs = current->fs; 1542 if (clone_flags & CLONE_FS) { 1543 /* tsk->fs is already what we want */ 1544 spin_lock(&fs->lock); 1545 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1546 if (fs->in_exec) { 1547 spin_unlock(&fs->lock); 1548 return -EAGAIN; 1549 } 1550 fs->users++; 1551 spin_unlock(&fs->lock); 1552 return 0; 1553 } 1554 tsk->fs = copy_fs_struct(fs); 1555 if (!tsk->fs) 1556 return -ENOMEM; 1557 return 0; 1558 } 1559 1560 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1561 int no_files) 1562 { 1563 struct files_struct *oldf, *newf; 1564 1565 /* 1566 * A background process may not have any files ... 1567 */ 1568 oldf = current->files; 1569 if (!oldf) 1570 return 0; 1571 1572 if (no_files) { 1573 tsk->files = NULL; 1574 return 0; 1575 } 1576 1577 if (clone_flags & CLONE_FILES) { 1578 atomic_inc(&oldf->count); 1579 return 0; 1580 } 1581 1582 newf = dup_fd(oldf, NULL); 1583 if (IS_ERR(newf)) 1584 return PTR_ERR(newf); 1585 1586 tsk->files = newf; 1587 return 0; 1588 } 1589 1590 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1591 { 1592 struct sighand_struct *sig; 1593 1594 if (clone_flags & CLONE_SIGHAND) { 1595 refcount_inc(¤t->sighand->count); 1596 return 0; 1597 } 1598 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1599 RCU_INIT_POINTER(tsk->sighand, sig); 1600 if (!sig) 1601 return -ENOMEM; 1602 1603 refcount_set(&sig->count, 1); 1604 spin_lock_irq(¤t->sighand->siglock); 1605 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1606 spin_unlock_irq(¤t->sighand->siglock); 1607 1608 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1609 if (clone_flags & CLONE_CLEAR_SIGHAND) 1610 flush_signal_handlers(tsk, 0); 1611 1612 return 0; 1613 } 1614 1615 void __cleanup_sighand(struct sighand_struct *sighand) 1616 { 1617 if (refcount_dec_and_test(&sighand->count)) { 1618 signalfd_cleanup(sighand); 1619 /* 1620 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1621 * without an RCU grace period, see __lock_task_sighand(). 1622 */ 1623 kmem_cache_free(sighand_cachep, sighand); 1624 } 1625 } 1626 1627 /* 1628 * Initialize POSIX timer handling for a thread group. 1629 */ 1630 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1631 { 1632 struct posix_cputimers *pct = &sig->posix_cputimers; 1633 unsigned long cpu_limit; 1634 1635 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1636 posix_cputimers_group_init(pct, cpu_limit); 1637 } 1638 1639 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1640 { 1641 struct signal_struct *sig; 1642 1643 if (clone_flags & CLONE_THREAD) 1644 return 0; 1645 1646 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1647 tsk->signal = sig; 1648 if (!sig) 1649 return -ENOMEM; 1650 1651 sig->nr_threads = 1; 1652 sig->quick_threads = 1; 1653 atomic_set(&sig->live, 1); 1654 refcount_set(&sig->sigcnt, 1); 1655 1656 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1657 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1658 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1659 1660 init_waitqueue_head(&sig->wait_chldexit); 1661 sig->curr_target = tsk; 1662 init_sigpending(&sig->shared_pending); 1663 INIT_HLIST_HEAD(&sig->multiprocess); 1664 seqlock_init(&sig->stats_lock); 1665 prev_cputime_init(&sig->prev_cputime); 1666 1667 #ifdef CONFIG_POSIX_TIMERS 1668 INIT_HLIST_HEAD(&sig->posix_timers); 1669 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1670 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1671 #endif 1672 1673 task_lock(current->group_leader); 1674 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1675 task_unlock(current->group_leader); 1676 1677 posix_cpu_timers_init_group(sig); 1678 1679 tty_audit_fork(sig); 1680 sched_autogroup_fork(sig); 1681 1682 sig->oom_score_adj = current->signal->oom_score_adj; 1683 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1684 1685 mutex_init(&sig->cred_guard_mutex); 1686 init_rwsem(&sig->exec_update_lock); 1687 1688 return 0; 1689 } 1690 1691 static void copy_seccomp(struct task_struct *p) 1692 { 1693 #ifdef CONFIG_SECCOMP 1694 /* 1695 * Must be called with sighand->lock held, which is common to 1696 * all threads in the group. Holding cred_guard_mutex is not 1697 * needed because this new task is not yet running and cannot 1698 * be racing exec. 1699 */ 1700 assert_spin_locked(¤t->sighand->siglock); 1701 1702 /* Ref-count the new filter user, and assign it. */ 1703 get_seccomp_filter(current); 1704 p->seccomp = current->seccomp; 1705 1706 /* 1707 * Explicitly enable no_new_privs here in case it got set 1708 * between the task_struct being duplicated and holding the 1709 * sighand lock. The seccomp state and nnp must be in sync. 1710 */ 1711 if (task_no_new_privs(current)) 1712 task_set_no_new_privs(p); 1713 1714 /* 1715 * If the parent gained a seccomp mode after copying thread 1716 * flags and between before we held the sighand lock, we have 1717 * to manually enable the seccomp thread flag here. 1718 */ 1719 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1720 set_task_syscall_work(p, SECCOMP); 1721 #endif 1722 } 1723 1724 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1725 { 1726 current->clear_child_tid = tidptr; 1727 1728 return task_pid_vnr(current); 1729 } 1730 1731 static void rt_mutex_init_task(struct task_struct *p) 1732 { 1733 raw_spin_lock_init(&p->pi_lock); 1734 #ifdef CONFIG_RT_MUTEXES 1735 p->pi_waiters = RB_ROOT_CACHED; 1736 p->pi_top_task = NULL; 1737 p->pi_blocked_on = NULL; 1738 #endif 1739 } 1740 1741 static inline void init_task_pid_links(struct task_struct *task) 1742 { 1743 enum pid_type type; 1744 1745 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1746 INIT_HLIST_NODE(&task->pid_links[type]); 1747 } 1748 1749 static inline void 1750 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1751 { 1752 if (type == PIDTYPE_PID) 1753 task->thread_pid = pid; 1754 else 1755 task->signal->pids[type] = pid; 1756 } 1757 1758 static inline void rcu_copy_process(struct task_struct *p) 1759 { 1760 #ifdef CONFIG_PREEMPT_RCU 1761 p->rcu_read_lock_nesting = 0; 1762 p->rcu_read_unlock_special.s = 0; 1763 p->rcu_blocked_node = NULL; 1764 INIT_LIST_HEAD(&p->rcu_node_entry); 1765 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1766 #ifdef CONFIG_TASKS_RCU 1767 p->rcu_tasks_holdout = false; 1768 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1769 p->rcu_tasks_idle_cpu = -1; 1770 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1771 #endif /* #ifdef CONFIG_TASKS_RCU */ 1772 #ifdef CONFIG_TASKS_TRACE_RCU 1773 p->trc_reader_nesting = 0; 1774 p->trc_reader_special.s = 0; 1775 INIT_LIST_HEAD(&p->trc_holdout_list); 1776 INIT_LIST_HEAD(&p->trc_blkd_node); 1777 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1778 } 1779 1780 /** 1781 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1782 * @pid: the struct pid for which to create a pidfd 1783 * @flags: flags of the new @pidfd 1784 * @ret_file: return the new pidfs file 1785 * 1786 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1787 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1788 * 1789 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 1790 * task identified by @pid must be a thread-group leader. 1791 * 1792 * If this function returns successfully the caller is responsible to either 1793 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1794 * order to install the pidfd into its file descriptor table or they must use 1795 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1796 * respectively. 1797 * 1798 * This function is useful when a pidfd must already be reserved but there 1799 * might still be points of failure afterwards and the caller wants to ensure 1800 * that no pidfd is leaked into its file descriptor table. 1801 * 1802 * Return: On success, a reserved pidfd is returned from the function and a new 1803 * pidfd file is returned in the last argument to the function. On 1804 * error, a negative error code is returned from the function and the 1805 * last argument remains unchanged. 1806 */ 1807 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file) 1808 { 1809 struct file *pidfs_file; 1810 1811 /* 1812 * PIDFD_STALE is only allowed to be passed if the caller knows 1813 * that @pid is already registered in pidfs and thus 1814 * PIDFD_INFO_EXIT information is guaranteed to be available. 1815 */ 1816 if (!(flags & PIDFD_STALE)) { 1817 /* 1818 * While holding the pidfd waitqueue lock removing the 1819 * task linkage for the thread-group leader pid 1820 * (PIDTYPE_TGID) isn't possible. Thus, if there's still 1821 * task linkage for PIDTYPE_PID not having thread-group 1822 * leader linkage for the pid means it wasn't a 1823 * thread-group leader in the first place. 1824 */ 1825 guard(spinlock_irq)(&pid->wait_pidfd.lock); 1826 1827 /* Task has already been reaped. */ 1828 if (!pid_has_task(pid, PIDTYPE_PID)) 1829 return -ESRCH; 1830 /* 1831 * If this struct pid isn't used as a thread-group 1832 * leader but the caller requested to create a 1833 * thread-group leader pidfd then report ENOENT. 1834 */ 1835 if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID)) 1836 return -ENOENT; 1837 } 1838 1839 CLASS(get_unused_fd, pidfd)(O_CLOEXEC); 1840 if (pidfd < 0) 1841 return pidfd; 1842 1843 pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR); 1844 if (IS_ERR(pidfs_file)) 1845 return PTR_ERR(pidfs_file); 1846 1847 *ret_file = pidfs_file; 1848 return take_fd(pidfd); 1849 } 1850 1851 static void __delayed_free_task(struct rcu_head *rhp) 1852 { 1853 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1854 1855 free_task(tsk); 1856 } 1857 1858 static __always_inline void delayed_free_task(struct task_struct *tsk) 1859 { 1860 if (IS_ENABLED(CONFIG_MEMCG)) 1861 call_rcu(&tsk->rcu, __delayed_free_task); 1862 else 1863 free_task(tsk); 1864 } 1865 1866 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1867 { 1868 /* Skip if kernel thread */ 1869 if (!tsk->mm) 1870 return; 1871 1872 /* Skip if spawning a thread or using vfork */ 1873 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1874 return; 1875 1876 /* We need to synchronize with __set_oom_adj */ 1877 mutex_lock(&oom_adj_mutex); 1878 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1879 /* Update the values in case they were changed after copy_signal */ 1880 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1881 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1882 mutex_unlock(&oom_adj_mutex); 1883 } 1884 1885 #ifdef CONFIG_RV 1886 static void rv_task_fork(struct task_struct *p) 1887 { 1888 int i; 1889 1890 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 1891 p->rv[i].da_mon.monitoring = false; 1892 } 1893 #else 1894 #define rv_task_fork(p) do {} while (0) 1895 #endif 1896 1897 static bool need_futex_hash_allocate_default(u64 clone_flags) 1898 { 1899 if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM)) 1900 return false; 1901 return true; 1902 } 1903 1904 /* 1905 * This creates a new process as a copy of the old one, 1906 * but does not actually start it yet. 1907 * 1908 * It copies the registers, and all the appropriate 1909 * parts of the process environment (as per the clone 1910 * flags). The actual kick-off is left to the caller. 1911 */ 1912 __latent_entropy struct task_struct *copy_process( 1913 struct pid *pid, 1914 int trace, 1915 int node, 1916 struct kernel_clone_args *args) 1917 { 1918 int pidfd = -1, retval; 1919 struct task_struct *p; 1920 struct multiprocess_signals delayed; 1921 struct file *pidfile = NULL; 1922 const u64 clone_flags = args->flags; 1923 struct nsproxy *nsp = current->nsproxy; 1924 1925 /* 1926 * Don't allow sharing the root directory with processes in a different 1927 * namespace 1928 */ 1929 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1930 return ERR_PTR(-EINVAL); 1931 1932 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1933 return ERR_PTR(-EINVAL); 1934 1935 /* 1936 * Thread groups must share signals as well, and detached threads 1937 * can only be started up within the thread group. 1938 */ 1939 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1940 return ERR_PTR(-EINVAL); 1941 1942 /* 1943 * Shared signal handlers imply shared VM. By way of the above, 1944 * thread groups also imply shared VM. Blocking this case allows 1945 * for various simplifications in other code. 1946 */ 1947 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1948 return ERR_PTR(-EINVAL); 1949 1950 /* 1951 * Siblings of global init remain as zombies on exit since they are 1952 * not reaped by their parent (swapper). To solve this and to avoid 1953 * multi-rooted process trees, prevent global and container-inits 1954 * from creating siblings. 1955 */ 1956 if ((clone_flags & CLONE_PARENT) && 1957 current->signal->flags & SIGNAL_UNKILLABLE) 1958 return ERR_PTR(-EINVAL); 1959 1960 /* 1961 * If the new process will be in a different pid or user namespace 1962 * do not allow it to share a thread group with the forking task. 1963 */ 1964 if (clone_flags & CLONE_THREAD) { 1965 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1966 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1967 return ERR_PTR(-EINVAL); 1968 } 1969 1970 if (clone_flags & CLONE_PIDFD) { 1971 /* 1972 * - CLONE_DETACHED is blocked so that we can potentially 1973 * reuse it later for CLONE_PIDFD. 1974 */ 1975 if (clone_flags & CLONE_DETACHED) 1976 return ERR_PTR(-EINVAL); 1977 } 1978 1979 /* 1980 * Force any signals received before this point to be delivered 1981 * before the fork happens. Collect up signals sent to multiple 1982 * processes that happen during the fork and delay them so that 1983 * they appear to happen after the fork. 1984 */ 1985 sigemptyset(&delayed.signal); 1986 INIT_HLIST_NODE(&delayed.node); 1987 1988 spin_lock_irq(¤t->sighand->siglock); 1989 if (!(clone_flags & CLONE_THREAD)) 1990 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1991 recalc_sigpending(); 1992 spin_unlock_irq(¤t->sighand->siglock); 1993 retval = -ERESTARTNOINTR; 1994 if (task_sigpending(current)) 1995 goto fork_out; 1996 1997 retval = -ENOMEM; 1998 p = dup_task_struct(current, node); 1999 if (!p) 2000 goto fork_out; 2001 p->flags &= ~PF_KTHREAD; 2002 if (args->kthread) 2003 p->flags |= PF_KTHREAD; 2004 if (args->user_worker) { 2005 /* 2006 * Mark us a user worker, and block any signal that isn't 2007 * fatal or STOP 2008 */ 2009 p->flags |= PF_USER_WORKER; 2010 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2011 } 2012 if (args->io_thread) 2013 p->flags |= PF_IO_WORKER; 2014 2015 if (args->name) 2016 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2017 2018 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2019 /* 2020 * Clear TID on mm_release()? 2021 */ 2022 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2023 2024 ftrace_graph_init_task(p); 2025 2026 rt_mutex_init_task(p); 2027 2028 lockdep_assert_irqs_enabled(); 2029 #ifdef CONFIG_PROVE_LOCKING 2030 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2031 #endif 2032 retval = copy_creds(p, clone_flags); 2033 if (retval < 0) 2034 goto bad_fork_free; 2035 2036 retval = -EAGAIN; 2037 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2038 if (p->real_cred->user != INIT_USER && 2039 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2040 goto bad_fork_cleanup_count; 2041 } 2042 current->flags &= ~PF_NPROC_EXCEEDED; 2043 2044 /* 2045 * If multiple threads are within copy_process(), then this check 2046 * triggers too late. This doesn't hurt, the check is only there 2047 * to stop root fork bombs. 2048 */ 2049 retval = -EAGAIN; 2050 if (data_race(nr_threads >= max_threads)) 2051 goto bad_fork_cleanup_count; 2052 2053 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2054 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2055 p->flags |= PF_FORKNOEXEC; 2056 INIT_LIST_HEAD(&p->children); 2057 INIT_LIST_HEAD(&p->sibling); 2058 rcu_copy_process(p); 2059 p->vfork_done = NULL; 2060 spin_lock_init(&p->alloc_lock); 2061 2062 init_sigpending(&p->pending); 2063 2064 p->utime = p->stime = p->gtime = 0; 2065 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2066 p->utimescaled = p->stimescaled = 0; 2067 #endif 2068 prev_cputime_init(&p->prev_cputime); 2069 2070 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2071 seqcount_init(&p->vtime.seqcount); 2072 p->vtime.starttime = 0; 2073 p->vtime.state = VTIME_INACTIVE; 2074 #endif 2075 2076 #ifdef CONFIG_IO_URING 2077 p->io_uring = NULL; 2078 #endif 2079 2080 p->default_timer_slack_ns = current->timer_slack_ns; 2081 2082 #ifdef CONFIG_PSI 2083 p->psi_flags = 0; 2084 #endif 2085 2086 task_io_accounting_init(&p->ioac); 2087 acct_clear_integrals(p); 2088 2089 posix_cputimers_init(&p->posix_cputimers); 2090 tick_dep_init_task(p); 2091 2092 p->io_context = NULL; 2093 audit_set_context(p, NULL); 2094 cgroup_fork(p); 2095 if (args->kthread) { 2096 if (!set_kthread_struct(p)) 2097 goto bad_fork_cleanup_delayacct; 2098 } 2099 #ifdef CONFIG_NUMA 2100 p->mempolicy = mpol_dup(p->mempolicy); 2101 if (IS_ERR(p->mempolicy)) { 2102 retval = PTR_ERR(p->mempolicy); 2103 p->mempolicy = NULL; 2104 goto bad_fork_cleanup_delayacct; 2105 } 2106 #endif 2107 #ifdef CONFIG_CPUSETS 2108 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2109 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2110 #endif 2111 #ifdef CONFIG_TRACE_IRQFLAGS 2112 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2113 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2114 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2115 p->softirqs_enabled = 1; 2116 p->softirq_context = 0; 2117 #endif 2118 2119 p->pagefault_disabled = 0; 2120 2121 #ifdef CONFIG_LOCKDEP 2122 lockdep_init_task(p); 2123 #endif 2124 2125 #ifdef CONFIG_DEBUG_MUTEXES 2126 p->blocked_on = NULL; /* not blocked yet */ 2127 #endif 2128 #ifdef CONFIG_BCACHE 2129 p->sequential_io = 0; 2130 p->sequential_io_avg = 0; 2131 #endif 2132 #ifdef CONFIG_BPF_SYSCALL 2133 RCU_INIT_POINTER(p->bpf_storage, NULL); 2134 p->bpf_ctx = NULL; 2135 #endif 2136 2137 /* Perform scheduler related setup. Assign this task to a CPU. */ 2138 retval = sched_fork(clone_flags, p); 2139 if (retval) 2140 goto bad_fork_cleanup_policy; 2141 2142 retval = perf_event_init_task(p, clone_flags); 2143 if (retval) 2144 goto bad_fork_sched_cancel_fork; 2145 retval = audit_alloc(p); 2146 if (retval) 2147 goto bad_fork_cleanup_perf; 2148 /* copy all the process information */ 2149 shm_init_task(p); 2150 retval = security_task_alloc(p, clone_flags); 2151 if (retval) 2152 goto bad_fork_cleanup_audit; 2153 retval = copy_semundo(clone_flags, p); 2154 if (retval) 2155 goto bad_fork_cleanup_security; 2156 retval = copy_files(clone_flags, p, args->no_files); 2157 if (retval) 2158 goto bad_fork_cleanup_semundo; 2159 retval = copy_fs(clone_flags, p); 2160 if (retval) 2161 goto bad_fork_cleanup_files; 2162 retval = copy_sighand(clone_flags, p); 2163 if (retval) 2164 goto bad_fork_cleanup_fs; 2165 retval = copy_signal(clone_flags, p); 2166 if (retval) 2167 goto bad_fork_cleanup_sighand; 2168 retval = copy_mm(clone_flags, p); 2169 if (retval) 2170 goto bad_fork_cleanup_signal; 2171 retval = copy_namespaces(clone_flags, p); 2172 if (retval) 2173 goto bad_fork_cleanup_mm; 2174 retval = copy_io(clone_flags, p); 2175 if (retval) 2176 goto bad_fork_cleanup_namespaces; 2177 retval = copy_thread(p, args); 2178 if (retval) 2179 goto bad_fork_cleanup_io; 2180 2181 stackleak_task_init(p); 2182 2183 if (pid != &init_struct_pid) { 2184 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2185 args->set_tid_size); 2186 if (IS_ERR(pid)) { 2187 retval = PTR_ERR(pid); 2188 goto bad_fork_cleanup_thread; 2189 } 2190 } 2191 2192 /* 2193 * This has to happen after we've potentially unshared the file 2194 * descriptor table (so that the pidfd doesn't leak into the child 2195 * if the fd table isn't shared). 2196 */ 2197 if (clone_flags & CLONE_PIDFD) { 2198 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2199 2200 /* 2201 * Note that no task has been attached to @pid yet indicate 2202 * that via CLONE_PIDFD. 2203 */ 2204 retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile); 2205 if (retval < 0) 2206 goto bad_fork_free_pid; 2207 pidfd = retval; 2208 2209 retval = put_user(pidfd, args->pidfd); 2210 if (retval) 2211 goto bad_fork_put_pidfd; 2212 } 2213 2214 #ifdef CONFIG_BLOCK 2215 p->plug = NULL; 2216 #endif 2217 futex_init_task(p); 2218 2219 /* 2220 * sigaltstack should be cleared when sharing the same VM 2221 */ 2222 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2223 sas_ss_reset(p); 2224 2225 /* 2226 * Syscall tracing and stepping should be turned off in the 2227 * child regardless of CLONE_PTRACE. 2228 */ 2229 user_disable_single_step(p); 2230 clear_task_syscall_work(p, SYSCALL_TRACE); 2231 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2232 clear_task_syscall_work(p, SYSCALL_EMU); 2233 #endif 2234 clear_tsk_latency_tracing(p); 2235 2236 /* ok, now we should be set up.. */ 2237 p->pid = pid_nr(pid); 2238 if (clone_flags & CLONE_THREAD) { 2239 p->group_leader = current->group_leader; 2240 p->tgid = current->tgid; 2241 } else { 2242 p->group_leader = p; 2243 p->tgid = p->pid; 2244 } 2245 2246 p->nr_dirtied = 0; 2247 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2248 p->dirty_paused_when = 0; 2249 2250 p->pdeath_signal = 0; 2251 p->task_works = NULL; 2252 clear_posix_cputimers_work(p); 2253 2254 #ifdef CONFIG_KRETPROBES 2255 p->kretprobe_instances.first = NULL; 2256 #endif 2257 #ifdef CONFIG_RETHOOK 2258 p->rethooks.first = NULL; 2259 #endif 2260 2261 /* 2262 * Ensure that the cgroup subsystem policies allow the new process to be 2263 * forked. It should be noted that the new process's css_set can be changed 2264 * between here and cgroup_post_fork() if an organisation operation is in 2265 * progress. 2266 */ 2267 retval = cgroup_can_fork(p, args); 2268 if (retval) 2269 goto bad_fork_put_pidfd; 2270 2271 /* 2272 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2273 * the new task on the correct runqueue. All this *before* the task 2274 * becomes visible. 2275 * 2276 * This isn't part of ->can_fork() because while the re-cloning is 2277 * cgroup specific, it unconditionally needs to place the task on a 2278 * runqueue. 2279 */ 2280 retval = sched_cgroup_fork(p, args); 2281 if (retval) 2282 goto bad_fork_cancel_cgroup; 2283 2284 /* 2285 * Allocate a default futex hash for the user process once the first 2286 * thread spawns. 2287 */ 2288 if (need_futex_hash_allocate_default(clone_flags)) { 2289 retval = futex_hash_allocate_default(); 2290 if (retval) 2291 goto bad_fork_core_free; 2292 /* 2293 * If we fail beyond this point we don't free the allocated 2294 * futex hash map. We assume that another thread will be created 2295 * and makes use of it. The hash map will be freed once the main 2296 * thread terminates. 2297 */ 2298 } 2299 /* 2300 * From this point on we must avoid any synchronous user-space 2301 * communication until we take the tasklist-lock. In particular, we do 2302 * not want user-space to be able to predict the process start-time by 2303 * stalling fork(2) after we recorded the start_time but before it is 2304 * visible to the system. 2305 */ 2306 2307 p->start_time = ktime_get_ns(); 2308 p->start_boottime = ktime_get_boottime_ns(); 2309 2310 /* 2311 * Make it visible to the rest of the system, but dont wake it up yet. 2312 * Need tasklist lock for parent etc handling! 2313 */ 2314 write_lock_irq(&tasklist_lock); 2315 2316 /* CLONE_PARENT re-uses the old parent */ 2317 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2318 p->real_parent = current->real_parent; 2319 p->parent_exec_id = current->parent_exec_id; 2320 if (clone_flags & CLONE_THREAD) 2321 p->exit_signal = -1; 2322 else 2323 p->exit_signal = current->group_leader->exit_signal; 2324 } else { 2325 p->real_parent = current; 2326 p->parent_exec_id = current->self_exec_id; 2327 p->exit_signal = args->exit_signal; 2328 } 2329 2330 klp_copy_process(p); 2331 2332 sched_core_fork(p); 2333 2334 spin_lock(¤t->sighand->siglock); 2335 2336 rv_task_fork(p); 2337 2338 rseq_fork(p, clone_flags); 2339 2340 /* Don't start children in a dying pid namespace */ 2341 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2342 retval = -ENOMEM; 2343 goto bad_fork_core_free; 2344 } 2345 2346 /* Let kill terminate clone/fork in the middle */ 2347 if (fatal_signal_pending(current)) { 2348 retval = -EINTR; 2349 goto bad_fork_core_free; 2350 } 2351 2352 /* No more failure paths after this point. */ 2353 2354 /* 2355 * Copy seccomp details explicitly here, in case they were changed 2356 * before holding sighand lock. 2357 */ 2358 copy_seccomp(p); 2359 2360 init_task_pid_links(p); 2361 if (likely(p->pid)) { 2362 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2363 2364 init_task_pid(p, PIDTYPE_PID, pid); 2365 if (thread_group_leader(p)) { 2366 init_task_pid(p, PIDTYPE_TGID, pid); 2367 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2368 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2369 2370 if (is_child_reaper(pid)) { 2371 ns_of_pid(pid)->child_reaper = p; 2372 p->signal->flags |= SIGNAL_UNKILLABLE; 2373 } 2374 p->signal->shared_pending.signal = delayed.signal; 2375 p->signal->tty = tty_kref_get(current->signal->tty); 2376 /* 2377 * Inherit has_child_subreaper flag under the same 2378 * tasklist_lock with adding child to the process tree 2379 * for propagate_has_child_subreaper optimization. 2380 */ 2381 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2382 p->real_parent->signal->is_child_subreaper; 2383 list_add_tail(&p->sibling, &p->real_parent->children); 2384 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2385 attach_pid(p, PIDTYPE_TGID); 2386 attach_pid(p, PIDTYPE_PGID); 2387 attach_pid(p, PIDTYPE_SID); 2388 __this_cpu_inc(process_counts); 2389 } else { 2390 current->signal->nr_threads++; 2391 current->signal->quick_threads++; 2392 atomic_inc(¤t->signal->live); 2393 refcount_inc(¤t->signal->sigcnt); 2394 task_join_group_stop(p); 2395 list_add_tail_rcu(&p->thread_node, 2396 &p->signal->thread_head); 2397 } 2398 attach_pid(p, PIDTYPE_PID); 2399 nr_threads++; 2400 } 2401 total_forks++; 2402 hlist_del_init(&delayed.node); 2403 spin_unlock(¤t->sighand->siglock); 2404 syscall_tracepoint_update(p); 2405 write_unlock_irq(&tasklist_lock); 2406 2407 if (pidfile) 2408 fd_install(pidfd, pidfile); 2409 2410 proc_fork_connector(p); 2411 sched_post_fork(p); 2412 cgroup_post_fork(p, args); 2413 perf_event_fork(p); 2414 2415 trace_task_newtask(p, clone_flags); 2416 uprobe_copy_process(p, clone_flags); 2417 user_events_fork(p, clone_flags); 2418 2419 copy_oom_score_adj(clone_flags, p); 2420 2421 return p; 2422 2423 bad_fork_core_free: 2424 sched_core_free(p); 2425 spin_unlock(¤t->sighand->siglock); 2426 write_unlock_irq(&tasklist_lock); 2427 bad_fork_cancel_cgroup: 2428 cgroup_cancel_fork(p, args); 2429 bad_fork_put_pidfd: 2430 if (clone_flags & CLONE_PIDFD) { 2431 fput(pidfile); 2432 put_unused_fd(pidfd); 2433 } 2434 bad_fork_free_pid: 2435 if (pid != &init_struct_pid) 2436 free_pid(pid); 2437 bad_fork_cleanup_thread: 2438 exit_thread(p); 2439 bad_fork_cleanup_io: 2440 if (p->io_context) 2441 exit_io_context(p); 2442 bad_fork_cleanup_namespaces: 2443 exit_task_namespaces(p); 2444 bad_fork_cleanup_mm: 2445 if (p->mm) { 2446 mm_clear_owner(p->mm, p); 2447 mmput(p->mm); 2448 } 2449 bad_fork_cleanup_signal: 2450 if (!(clone_flags & CLONE_THREAD)) 2451 free_signal_struct(p->signal); 2452 bad_fork_cleanup_sighand: 2453 __cleanup_sighand(p->sighand); 2454 bad_fork_cleanup_fs: 2455 exit_fs(p); /* blocking */ 2456 bad_fork_cleanup_files: 2457 exit_files(p); /* blocking */ 2458 bad_fork_cleanup_semundo: 2459 exit_sem(p); 2460 bad_fork_cleanup_security: 2461 security_task_free(p); 2462 bad_fork_cleanup_audit: 2463 audit_free(p); 2464 bad_fork_cleanup_perf: 2465 perf_event_free_task(p); 2466 bad_fork_sched_cancel_fork: 2467 sched_cancel_fork(p); 2468 bad_fork_cleanup_policy: 2469 lockdep_free_task(p); 2470 #ifdef CONFIG_NUMA 2471 mpol_put(p->mempolicy); 2472 #endif 2473 bad_fork_cleanup_delayacct: 2474 delayacct_tsk_free(p); 2475 bad_fork_cleanup_count: 2476 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2477 exit_creds(p); 2478 bad_fork_free: 2479 WRITE_ONCE(p->__state, TASK_DEAD); 2480 exit_task_stack_account(p); 2481 put_task_stack(p); 2482 delayed_free_task(p); 2483 fork_out: 2484 spin_lock_irq(¤t->sighand->siglock); 2485 hlist_del_init(&delayed.node); 2486 spin_unlock_irq(¤t->sighand->siglock); 2487 return ERR_PTR(retval); 2488 } 2489 2490 static inline void init_idle_pids(struct task_struct *idle) 2491 { 2492 enum pid_type type; 2493 2494 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2495 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2496 init_task_pid(idle, type, &init_struct_pid); 2497 } 2498 } 2499 2500 static int idle_dummy(void *dummy) 2501 { 2502 /* This function is never called */ 2503 return 0; 2504 } 2505 2506 struct task_struct * __init fork_idle(int cpu) 2507 { 2508 struct task_struct *task; 2509 struct kernel_clone_args args = { 2510 .flags = CLONE_VM, 2511 .fn = &idle_dummy, 2512 .fn_arg = NULL, 2513 .kthread = 1, 2514 .idle = 1, 2515 }; 2516 2517 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2518 if (!IS_ERR(task)) { 2519 init_idle_pids(task); 2520 init_idle(task, cpu); 2521 } 2522 2523 return task; 2524 } 2525 2526 /* 2527 * This is like kernel_clone(), but shaved down and tailored to just 2528 * creating io_uring workers. It returns a created task, or an error pointer. 2529 * The returned task is inactive, and the caller must fire it up through 2530 * wake_up_new_task(p). All signals are blocked in the created task. 2531 */ 2532 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2533 { 2534 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2535 CLONE_IO; 2536 struct kernel_clone_args args = { 2537 .flags = ((lower_32_bits(flags) | CLONE_VM | 2538 CLONE_UNTRACED) & ~CSIGNAL), 2539 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2540 .fn = fn, 2541 .fn_arg = arg, 2542 .io_thread = 1, 2543 .user_worker = 1, 2544 }; 2545 2546 return copy_process(NULL, 0, node, &args); 2547 } 2548 2549 /* 2550 * Ok, this is the main fork-routine. 2551 * 2552 * It copies the process, and if successful kick-starts 2553 * it and waits for it to finish using the VM if required. 2554 * 2555 * args->exit_signal is expected to be checked for sanity by the caller. 2556 */ 2557 pid_t kernel_clone(struct kernel_clone_args *args) 2558 { 2559 u64 clone_flags = args->flags; 2560 struct completion vfork; 2561 struct pid *pid; 2562 struct task_struct *p; 2563 int trace = 0; 2564 pid_t nr; 2565 2566 /* 2567 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2568 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2569 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2570 * field in struct clone_args and it still doesn't make sense to have 2571 * them both point at the same memory location. Performing this check 2572 * here has the advantage that we don't need to have a separate helper 2573 * to check for legacy clone(). 2574 */ 2575 if ((clone_flags & CLONE_PIDFD) && 2576 (clone_flags & CLONE_PARENT_SETTID) && 2577 (args->pidfd == args->parent_tid)) 2578 return -EINVAL; 2579 2580 /* 2581 * Determine whether and which event to report to ptracer. When 2582 * called from kernel_thread or CLONE_UNTRACED is explicitly 2583 * requested, no event is reported; otherwise, report if the event 2584 * for the type of forking is enabled. 2585 */ 2586 if (!(clone_flags & CLONE_UNTRACED)) { 2587 if (clone_flags & CLONE_VFORK) 2588 trace = PTRACE_EVENT_VFORK; 2589 else if (args->exit_signal != SIGCHLD) 2590 trace = PTRACE_EVENT_CLONE; 2591 else 2592 trace = PTRACE_EVENT_FORK; 2593 2594 if (likely(!ptrace_event_enabled(current, trace))) 2595 trace = 0; 2596 } 2597 2598 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2599 add_latent_entropy(); 2600 2601 if (IS_ERR(p)) 2602 return PTR_ERR(p); 2603 2604 /* 2605 * Do this prior waking up the new thread - the thread pointer 2606 * might get invalid after that point, if the thread exits quickly. 2607 */ 2608 trace_sched_process_fork(current, p); 2609 2610 pid = get_task_pid(p, PIDTYPE_PID); 2611 nr = pid_vnr(pid); 2612 2613 if (clone_flags & CLONE_PARENT_SETTID) 2614 put_user(nr, args->parent_tid); 2615 2616 if (clone_flags & CLONE_VFORK) { 2617 p->vfork_done = &vfork; 2618 init_completion(&vfork); 2619 get_task_struct(p); 2620 } 2621 2622 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2623 /* lock the task to synchronize with memcg migration */ 2624 task_lock(p); 2625 lru_gen_add_mm(p->mm); 2626 task_unlock(p); 2627 } 2628 2629 wake_up_new_task(p); 2630 2631 /* forking complete and child started to run, tell ptracer */ 2632 if (unlikely(trace)) 2633 ptrace_event_pid(trace, pid); 2634 2635 if (clone_flags & CLONE_VFORK) { 2636 if (!wait_for_vfork_done(p, &vfork)) 2637 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2638 } 2639 2640 put_pid(pid); 2641 return nr; 2642 } 2643 2644 /* 2645 * Create a kernel thread. 2646 */ 2647 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2648 unsigned long flags) 2649 { 2650 struct kernel_clone_args args = { 2651 .flags = ((lower_32_bits(flags) | CLONE_VM | 2652 CLONE_UNTRACED) & ~CSIGNAL), 2653 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2654 .fn = fn, 2655 .fn_arg = arg, 2656 .name = name, 2657 .kthread = 1, 2658 }; 2659 2660 return kernel_clone(&args); 2661 } 2662 2663 /* 2664 * Create a user mode thread. 2665 */ 2666 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2667 { 2668 struct kernel_clone_args args = { 2669 .flags = ((lower_32_bits(flags) | CLONE_VM | 2670 CLONE_UNTRACED) & ~CSIGNAL), 2671 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2672 .fn = fn, 2673 .fn_arg = arg, 2674 }; 2675 2676 return kernel_clone(&args); 2677 } 2678 2679 #ifdef __ARCH_WANT_SYS_FORK 2680 SYSCALL_DEFINE0(fork) 2681 { 2682 #ifdef CONFIG_MMU 2683 struct kernel_clone_args args = { 2684 .exit_signal = SIGCHLD, 2685 }; 2686 2687 return kernel_clone(&args); 2688 #else 2689 /* can not support in nommu mode */ 2690 return -EINVAL; 2691 #endif 2692 } 2693 #endif 2694 2695 #ifdef __ARCH_WANT_SYS_VFORK 2696 SYSCALL_DEFINE0(vfork) 2697 { 2698 struct kernel_clone_args args = { 2699 .flags = CLONE_VFORK | CLONE_VM, 2700 .exit_signal = SIGCHLD, 2701 }; 2702 2703 return kernel_clone(&args); 2704 } 2705 #endif 2706 2707 #ifdef __ARCH_WANT_SYS_CLONE 2708 #ifdef CONFIG_CLONE_BACKWARDS 2709 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2710 int __user *, parent_tidptr, 2711 unsigned long, tls, 2712 int __user *, child_tidptr) 2713 #elif defined(CONFIG_CLONE_BACKWARDS2) 2714 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2715 int __user *, parent_tidptr, 2716 int __user *, child_tidptr, 2717 unsigned long, tls) 2718 #elif defined(CONFIG_CLONE_BACKWARDS3) 2719 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2720 int, stack_size, 2721 int __user *, parent_tidptr, 2722 int __user *, child_tidptr, 2723 unsigned long, tls) 2724 #else 2725 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2726 int __user *, parent_tidptr, 2727 int __user *, child_tidptr, 2728 unsigned long, tls) 2729 #endif 2730 { 2731 struct kernel_clone_args args = { 2732 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2733 .pidfd = parent_tidptr, 2734 .child_tid = child_tidptr, 2735 .parent_tid = parent_tidptr, 2736 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2737 .stack = newsp, 2738 .tls = tls, 2739 }; 2740 2741 return kernel_clone(&args); 2742 } 2743 #endif 2744 2745 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2746 struct clone_args __user *uargs, 2747 size_t usize) 2748 { 2749 int err; 2750 struct clone_args args; 2751 pid_t *kset_tid = kargs->set_tid; 2752 2753 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2754 CLONE_ARGS_SIZE_VER0); 2755 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2756 CLONE_ARGS_SIZE_VER1); 2757 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2758 CLONE_ARGS_SIZE_VER2); 2759 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2760 2761 if (unlikely(usize > PAGE_SIZE)) 2762 return -E2BIG; 2763 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2764 return -EINVAL; 2765 2766 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2767 if (err) 2768 return err; 2769 2770 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2771 return -EINVAL; 2772 2773 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2774 return -EINVAL; 2775 2776 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2777 return -EINVAL; 2778 2779 /* 2780 * Verify that higher 32bits of exit_signal are unset and that 2781 * it is a valid signal 2782 */ 2783 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2784 !valid_signal(args.exit_signal))) 2785 return -EINVAL; 2786 2787 if ((args.flags & CLONE_INTO_CGROUP) && 2788 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2789 return -EINVAL; 2790 2791 *kargs = (struct kernel_clone_args){ 2792 .flags = args.flags, 2793 .pidfd = u64_to_user_ptr(args.pidfd), 2794 .child_tid = u64_to_user_ptr(args.child_tid), 2795 .parent_tid = u64_to_user_ptr(args.parent_tid), 2796 .exit_signal = args.exit_signal, 2797 .stack = args.stack, 2798 .stack_size = args.stack_size, 2799 .tls = args.tls, 2800 .set_tid_size = args.set_tid_size, 2801 .cgroup = args.cgroup, 2802 }; 2803 2804 if (args.set_tid && 2805 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2806 (kargs->set_tid_size * sizeof(pid_t)))) 2807 return -EFAULT; 2808 2809 kargs->set_tid = kset_tid; 2810 2811 return 0; 2812 } 2813 2814 /** 2815 * clone3_stack_valid - check and prepare stack 2816 * @kargs: kernel clone args 2817 * 2818 * Verify that the stack arguments userspace gave us are sane. 2819 * In addition, set the stack direction for userspace since it's easy for us to 2820 * determine. 2821 */ 2822 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2823 { 2824 if (kargs->stack == 0) { 2825 if (kargs->stack_size > 0) 2826 return false; 2827 } else { 2828 if (kargs->stack_size == 0) 2829 return false; 2830 2831 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2832 return false; 2833 2834 #if !defined(CONFIG_STACK_GROWSUP) 2835 kargs->stack += kargs->stack_size; 2836 #endif 2837 } 2838 2839 return true; 2840 } 2841 2842 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2843 { 2844 /* Verify that no unknown flags are passed along. */ 2845 if (kargs->flags & 2846 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2847 return false; 2848 2849 /* 2850 * - make the CLONE_DETACHED bit reusable for clone3 2851 * - make the CSIGNAL bits reusable for clone3 2852 */ 2853 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 2854 return false; 2855 2856 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2857 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2858 return false; 2859 2860 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2861 kargs->exit_signal) 2862 return false; 2863 2864 if (!clone3_stack_valid(kargs)) 2865 return false; 2866 2867 return true; 2868 } 2869 2870 /** 2871 * sys_clone3 - create a new process with specific properties 2872 * @uargs: argument structure 2873 * @size: size of @uargs 2874 * 2875 * clone3() is the extensible successor to clone()/clone2(). 2876 * It takes a struct as argument that is versioned by its size. 2877 * 2878 * Return: On success, a positive PID for the child process. 2879 * On error, a negative errno number. 2880 */ 2881 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2882 { 2883 int err; 2884 2885 struct kernel_clone_args kargs; 2886 pid_t set_tid[MAX_PID_NS_LEVEL]; 2887 2888 #ifdef __ARCH_BROKEN_SYS_CLONE3 2889 #warning clone3() entry point is missing, please fix 2890 return -ENOSYS; 2891 #endif 2892 2893 kargs.set_tid = set_tid; 2894 2895 err = copy_clone_args_from_user(&kargs, uargs, size); 2896 if (err) 2897 return err; 2898 2899 if (!clone3_args_valid(&kargs)) 2900 return -EINVAL; 2901 2902 return kernel_clone(&kargs); 2903 } 2904 2905 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2906 { 2907 struct task_struct *leader, *parent, *child; 2908 int res; 2909 2910 read_lock(&tasklist_lock); 2911 leader = top = top->group_leader; 2912 down: 2913 for_each_thread(leader, parent) { 2914 list_for_each_entry(child, &parent->children, sibling) { 2915 res = visitor(child, data); 2916 if (res) { 2917 if (res < 0) 2918 goto out; 2919 leader = child; 2920 goto down; 2921 } 2922 up: 2923 ; 2924 } 2925 } 2926 2927 if (leader != top) { 2928 child = leader; 2929 parent = child->real_parent; 2930 leader = parent->group_leader; 2931 goto up; 2932 } 2933 out: 2934 read_unlock(&tasklist_lock); 2935 } 2936 2937 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2938 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2939 #endif 2940 2941 static void sighand_ctor(void *data) 2942 { 2943 struct sighand_struct *sighand = data; 2944 2945 spin_lock_init(&sighand->siglock); 2946 init_waitqueue_head(&sighand->signalfd_wqh); 2947 } 2948 2949 void __init mm_cache_init(void) 2950 { 2951 unsigned int mm_size; 2952 2953 /* 2954 * The mm_cpumask is located at the end of mm_struct, and is 2955 * dynamically sized based on the maximum CPU number this system 2956 * can have, taking hotplug into account (nr_cpu_ids). 2957 */ 2958 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 2959 2960 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2961 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2962 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2963 offsetof(struct mm_struct, saved_auxv), 2964 sizeof_field(struct mm_struct, saved_auxv), 2965 NULL); 2966 } 2967 2968 void __init proc_caches_init(void) 2969 { 2970 sighand_cachep = kmem_cache_create("sighand_cache", 2971 sizeof(struct sighand_struct), 0, 2972 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2973 SLAB_ACCOUNT, sighand_ctor); 2974 signal_cachep = kmem_cache_create("signal_cache", 2975 sizeof(struct signal_struct), 0, 2976 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2977 NULL); 2978 files_cachep = kmem_cache_create("files_cache", 2979 sizeof(struct files_struct), 0, 2980 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2981 NULL); 2982 fs_cachep = kmem_cache_create("fs_cache", 2983 sizeof(struct fs_struct), 0, 2984 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2985 NULL); 2986 mmap_init(); 2987 nsproxy_cache_init(); 2988 } 2989 2990 /* 2991 * Check constraints on flags passed to the unshare system call. 2992 */ 2993 static int check_unshare_flags(unsigned long unshare_flags) 2994 { 2995 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2996 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2997 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2998 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2999 CLONE_NEWTIME)) 3000 return -EINVAL; 3001 /* 3002 * Not implemented, but pretend it works if there is nothing 3003 * to unshare. Note that unsharing the address space or the 3004 * signal handlers also need to unshare the signal queues (aka 3005 * CLONE_THREAD). 3006 */ 3007 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3008 if (!thread_group_empty(current)) 3009 return -EINVAL; 3010 } 3011 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3012 if (refcount_read(¤t->sighand->count) > 1) 3013 return -EINVAL; 3014 } 3015 if (unshare_flags & CLONE_VM) { 3016 if (!current_is_single_threaded()) 3017 return -EINVAL; 3018 } 3019 3020 return 0; 3021 } 3022 3023 /* 3024 * Unshare the filesystem structure if it is being shared 3025 */ 3026 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3027 { 3028 struct fs_struct *fs = current->fs; 3029 3030 if (!(unshare_flags & CLONE_FS) || !fs) 3031 return 0; 3032 3033 /* don't need lock here; in the worst case we'll do useless copy */ 3034 if (fs->users == 1) 3035 return 0; 3036 3037 *new_fsp = copy_fs_struct(fs); 3038 if (!*new_fsp) 3039 return -ENOMEM; 3040 3041 return 0; 3042 } 3043 3044 /* 3045 * Unshare file descriptor table if it is being shared 3046 */ 3047 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3048 { 3049 struct files_struct *fd = current->files; 3050 3051 if ((unshare_flags & CLONE_FILES) && 3052 (fd && atomic_read(&fd->count) > 1)) { 3053 fd = dup_fd(fd, NULL); 3054 if (IS_ERR(fd)) 3055 return PTR_ERR(fd); 3056 *new_fdp = fd; 3057 } 3058 3059 return 0; 3060 } 3061 3062 /* 3063 * unshare allows a process to 'unshare' part of the process 3064 * context which was originally shared using clone. copy_* 3065 * functions used by kernel_clone() cannot be used here directly 3066 * because they modify an inactive task_struct that is being 3067 * constructed. Here we are modifying the current, active, 3068 * task_struct. 3069 */ 3070 int ksys_unshare(unsigned long unshare_flags) 3071 { 3072 struct fs_struct *fs, *new_fs = NULL; 3073 struct files_struct *new_fd = NULL; 3074 struct cred *new_cred = NULL; 3075 struct nsproxy *new_nsproxy = NULL; 3076 int do_sysvsem = 0; 3077 int err; 3078 3079 /* 3080 * If unsharing a user namespace must also unshare the thread group 3081 * and unshare the filesystem root and working directories. 3082 */ 3083 if (unshare_flags & CLONE_NEWUSER) 3084 unshare_flags |= CLONE_THREAD | CLONE_FS; 3085 /* 3086 * If unsharing vm, must also unshare signal handlers. 3087 */ 3088 if (unshare_flags & CLONE_VM) 3089 unshare_flags |= CLONE_SIGHAND; 3090 /* 3091 * If unsharing a signal handlers, must also unshare the signal queues. 3092 */ 3093 if (unshare_flags & CLONE_SIGHAND) 3094 unshare_flags |= CLONE_THREAD; 3095 /* 3096 * If unsharing namespace, must also unshare filesystem information. 3097 */ 3098 if (unshare_flags & CLONE_NEWNS) 3099 unshare_flags |= CLONE_FS; 3100 3101 err = check_unshare_flags(unshare_flags); 3102 if (err) 3103 goto bad_unshare_out; 3104 /* 3105 * CLONE_NEWIPC must also detach from the undolist: after switching 3106 * to a new ipc namespace, the semaphore arrays from the old 3107 * namespace are unreachable. 3108 */ 3109 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3110 do_sysvsem = 1; 3111 err = unshare_fs(unshare_flags, &new_fs); 3112 if (err) 3113 goto bad_unshare_out; 3114 err = unshare_fd(unshare_flags, &new_fd); 3115 if (err) 3116 goto bad_unshare_cleanup_fs; 3117 err = unshare_userns(unshare_flags, &new_cred); 3118 if (err) 3119 goto bad_unshare_cleanup_fd; 3120 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3121 new_cred, new_fs); 3122 if (err) 3123 goto bad_unshare_cleanup_cred; 3124 3125 if (new_cred) { 3126 err = set_cred_ucounts(new_cred); 3127 if (err) 3128 goto bad_unshare_cleanup_cred; 3129 } 3130 3131 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3132 if (do_sysvsem) { 3133 /* 3134 * CLONE_SYSVSEM is equivalent to sys_exit(). 3135 */ 3136 exit_sem(current); 3137 } 3138 if (unshare_flags & CLONE_NEWIPC) { 3139 /* Orphan segments in old ns (see sem above). */ 3140 exit_shm(current); 3141 shm_init_task(current); 3142 } 3143 3144 if (new_nsproxy) 3145 switch_task_namespaces(current, new_nsproxy); 3146 3147 task_lock(current); 3148 3149 if (new_fs) { 3150 fs = current->fs; 3151 spin_lock(&fs->lock); 3152 current->fs = new_fs; 3153 if (--fs->users) 3154 new_fs = NULL; 3155 else 3156 new_fs = fs; 3157 spin_unlock(&fs->lock); 3158 } 3159 3160 if (new_fd) 3161 swap(current->files, new_fd); 3162 3163 task_unlock(current); 3164 3165 if (new_cred) { 3166 /* Install the new user namespace */ 3167 commit_creds(new_cred); 3168 new_cred = NULL; 3169 } 3170 } 3171 3172 perf_event_namespaces(current); 3173 3174 bad_unshare_cleanup_cred: 3175 if (new_cred) 3176 put_cred(new_cred); 3177 bad_unshare_cleanup_fd: 3178 if (new_fd) 3179 put_files_struct(new_fd); 3180 3181 bad_unshare_cleanup_fs: 3182 if (new_fs) 3183 free_fs_struct(new_fs); 3184 3185 bad_unshare_out: 3186 return err; 3187 } 3188 3189 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3190 { 3191 return ksys_unshare(unshare_flags); 3192 } 3193 3194 /* 3195 * Helper to unshare the files of the current task. 3196 * We don't want to expose copy_files internals to 3197 * the exec layer of the kernel. 3198 */ 3199 3200 int unshare_files(void) 3201 { 3202 struct task_struct *task = current; 3203 struct files_struct *old, *copy = NULL; 3204 int error; 3205 3206 error = unshare_fd(CLONE_FILES, ©); 3207 if (error || !copy) 3208 return error; 3209 3210 old = task->files; 3211 task_lock(task); 3212 task->files = copy; 3213 task_unlock(task); 3214 put_files_struct(old); 3215 return 0; 3216 } 3217 3218 int sysctl_max_threads(const struct ctl_table *table, int write, 3219 void *buffer, size_t *lenp, loff_t *ppos) 3220 { 3221 struct ctl_table t; 3222 int ret; 3223 int threads = max_threads; 3224 int min = 1; 3225 int max = MAX_THREADS; 3226 3227 t = *table; 3228 t.data = &threads; 3229 t.extra1 = &min; 3230 t.extra2 = &max; 3231 3232 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3233 if (ret || !write) 3234 return ret; 3235 3236 max_threads = threads; 3237 3238 return 0; 3239 } 3240