xref: /linux/kernel/fork.c (revision 80bab43f6f235664fff2d3518b3901ba9c4ac5a3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/kstack_erase.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 #include <linux/unwind_deferred.h>
109 
110 #include <asm/pgalloc.h>
111 #include <linux/uaccess.h>
112 #include <asm/mmu_context.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115 
116 /* For dup_mmap(). */
117 #include "../mm/internal.h"
118 
119 #include <trace/events/sched.h>
120 
121 #define CREATE_TRACE_POINTS
122 #include <trace/events/task.h>
123 
124 #include <kunit/visibility.h>
125 
126 /*
127  * Minimum number of threads to boot the kernel
128  */
129 #define MIN_THREADS 20
130 
131 /*
132  * Maximum number of threads
133  */
134 #define MAX_THREADS FUTEX_TID_MASK
135 
136 /*
137  * Protected counters by write_lock_irq(&tasklist_lock)
138  */
139 unsigned long total_forks;	/* Handle normal Linux uptimes. */
140 int nr_threads;			/* The idle threads do not count.. */
141 
142 static int max_threads;		/* tunable limit on nr_threads */
143 
144 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
145 
146 static const char * const resident_page_types[] = {
147 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
148 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
149 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
150 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
151 };
152 
153 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
154 
155 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
156 
157 #ifdef CONFIG_PROVE_RCU
158 int lockdep_tasklist_lock_is_held(void)
159 {
160 	return lockdep_is_held(&tasklist_lock);
161 }
162 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
163 #endif /* #ifdef CONFIG_PROVE_RCU */
164 
165 int nr_processes(void)
166 {
167 	int cpu;
168 	int total = 0;
169 
170 	for_each_possible_cpu(cpu)
171 		total += per_cpu(process_counts, cpu);
172 
173 	return total;
174 }
175 
176 void __weak arch_release_task_struct(struct task_struct *tsk)
177 {
178 }
179 
180 static struct kmem_cache *task_struct_cachep;
181 
182 static inline struct task_struct *alloc_task_struct_node(int node)
183 {
184 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
185 }
186 
187 static inline void free_task_struct(struct task_struct *tsk)
188 {
189 	kmem_cache_free(task_struct_cachep, tsk);
190 }
191 
192 #ifdef CONFIG_VMAP_STACK
193 /*
194  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
195  * flush.  Try to minimize the number of calls by caching stacks.
196  */
197 #define NR_CACHED_STACKS 2
198 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
199 /*
200  * Allocated stacks are cached and later reused by new threads, so memcg
201  * accounting is performed by the code assigning/releasing stacks to tasks.
202  * We need a zeroed memory without __GFP_ACCOUNT.
203  */
204 #define GFP_VMAP_STACK (GFP_KERNEL | __GFP_ZERO)
205 
206 struct vm_stack {
207 	struct rcu_head rcu;
208 	struct vm_struct *stack_vm_area;
209 };
210 
211 static struct vm_struct *alloc_thread_stack_node_from_cache(struct task_struct *tsk, int node)
212 {
213 	struct vm_struct *vm_area;
214 	unsigned int i;
215 
216 	/*
217 	 * If the node has memory, we are guaranteed the stacks are backed by local pages.
218 	 * Otherwise the pages are arbitrary.
219 	 *
220 	 * Note that depending on cpuset it is possible we will get migrated to a different
221 	 * node immediately after allocating here, so this does *not* guarantee locality for
222 	 * arbitrary callers.
223 	 */
224 	scoped_guard(preempt) {
225 		if (node != NUMA_NO_NODE && numa_node_id() != node)
226 			return NULL;
227 
228 		for (i = 0; i < NR_CACHED_STACKS; i++) {
229 			vm_area = this_cpu_xchg(cached_stacks[i], NULL);
230 			if (vm_area)
231 				return vm_area;
232 		}
233 	}
234 
235 	return NULL;
236 }
237 
238 static bool try_release_thread_stack_to_cache(struct vm_struct *vm_area)
239 {
240 	unsigned int i;
241 	int nid;
242 
243 	/*
244 	 * Don't cache stacks if any of the pages don't match the local domain, unless
245 	 * there is no local memory to begin with.
246 	 *
247 	 * Note that lack of local memory does not automatically mean it makes no difference
248 	 * performance-wise which other domain backs the stack. In this case we are merely
249 	 * trying to avoid constantly going to vmalloc.
250 	 */
251 	scoped_guard(preempt) {
252 		nid = numa_node_id();
253 		if (node_state(nid, N_MEMORY)) {
254 			for (i = 0; i < vm_area->nr_pages; i++) {
255 				struct page *page = vm_area->pages[i];
256 				if (page_to_nid(page) != nid)
257 					return false;
258 			}
259 		}
260 
261 		for (i = 0; i < NR_CACHED_STACKS; i++) {
262 			struct vm_struct *tmp = NULL;
263 
264 			if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm_area))
265 				return true;
266 		}
267 	}
268 	return false;
269 }
270 
271 static void thread_stack_free_rcu(struct rcu_head *rh)
272 {
273 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
274 	struct vm_struct *vm_area = vm_stack->stack_vm_area;
275 
276 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
277 		return;
278 
279 	vfree(vm_area->addr);
280 }
281 
282 static void thread_stack_delayed_free(struct task_struct *tsk)
283 {
284 	struct vm_stack *vm_stack = tsk->stack;
285 
286 	vm_stack->stack_vm_area = tsk->stack_vm_area;
287 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
288 }
289 
290 static int free_vm_stack_cache(unsigned int cpu)
291 {
292 	struct vm_struct **cached_vm_stack_areas = per_cpu_ptr(cached_stacks, cpu);
293 	int i;
294 
295 	for (i = 0; i < NR_CACHED_STACKS; i++) {
296 		struct vm_struct *vm_area = cached_vm_stack_areas[i];
297 
298 		if (!vm_area)
299 			continue;
300 
301 		vfree(vm_area->addr);
302 		cached_vm_stack_areas[i] = NULL;
303 	}
304 
305 	return 0;
306 }
307 
308 static int memcg_charge_kernel_stack(struct vm_struct *vm_area)
309 {
310 	int i;
311 	int ret;
312 	int nr_charged = 0;
313 
314 	BUG_ON(vm_area->nr_pages != THREAD_SIZE / PAGE_SIZE);
315 
316 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
317 		ret = memcg_kmem_charge_page(vm_area->pages[i], GFP_KERNEL, 0);
318 		if (ret)
319 			goto err;
320 		nr_charged++;
321 	}
322 	return 0;
323 err:
324 	for (i = 0; i < nr_charged; i++)
325 		memcg_kmem_uncharge_page(vm_area->pages[i], 0);
326 	return ret;
327 }
328 
329 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
330 {
331 	struct vm_struct *vm_area;
332 	void *stack;
333 
334 	vm_area = alloc_thread_stack_node_from_cache(tsk, node);
335 	if (vm_area) {
336 		if (memcg_charge_kernel_stack(vm_area)) {
337 			vfree(vm_area->addr);
338 			return -ENOMEM;
339 		}
340 
341 		/* Reset stack metadata. */
342 		kasan_unpoison_range(vm_area->addr, THREAD_SIZE);
343 
344 		stack = kasan_reset_tag(vm_area->addr);
345 
346 		/* Clear stale pointers from reused stack. */
347 		memset(stack, 0, THREAD_SIZE);
348 
349 		tsk->stack_vm_area = vm_area;
350 		tsk->stack = stack;
351 		return 0;
352 	}
353 
354 	stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN,
355 				     GFP_VMAP_STACK,
356 				     node, __builtin_return_address(0));
357 	if (!stack)
358 		return -ENOMEM;
359 
360 	vm_area = find_vm_area(stack);
361 	if (memcg_charge_kernel_stack(vm_area)) {
362 		vfree(stack);
363 		return -ENOMEM;
364 	}
365 	/*
366 	 * We can't call find_vm_area() in interrupt context, and
367 	 * free_thread_stack() can be called in interrupt context,
368 	 * so cache the vm_struct.
369 	 */
370 	tsk->stack_vm_area = vm_area;
371 	stack = kasan_reset_tag(stack);
372 	tsk->stack = stack;
373 	return 0;
374 }
375 
376 static void free_thread_stack(struct task_struct *tsk)
377 {
378 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
379 		thread_stack_delayed_free(tsk);
380 
381 	tsk->stack = NULL;
382 	tsk->stack_vm_area = NULL;
383 }
384 
385 #else /* !CONFIG_VMAP_STACK */
386 
387 /*
388  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
389  * kmemcache based allocator.
390  */
391 #if THREAD_SIZE >= PAGE_SIZE
392 
393 static void thread_stack_free_rcu(struct rcu_head *rh)
394 {
395 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
396 }
397 
398 static void thread_stack_delayed_free(struct task_struct *tsk)
399 {
400 	struct rcu_head *rh = tsk->stack;
401 
402 	call_rcu(rh, thread_stack_free_rcu);
403 }
404 
405 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
406 {
407 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
408 					     THREAD_SIZE_ORDER);
409 
410 	if (likely(page)) {
411 		tsk->stack = kasan_reset_tag(page_address(page));
412 		return 0;
413 	}
414 	return -ENOMEM;
415 }
416 
417 static void free_thread_stack(struct task_struct *tsk)
418 {
419 	thread_stack_delayed_free(tsk);
420 	tsk->stack = NULL;
421 }
422 
423 #else /* !(THREAD_SIZE >= PAGE_SIZE) */
424 
425 static struct kmem_cache *thread_stack_cache;
426 
427 static void thread_stack_free_rcu(struct rcu_head *rh)
428 {
429 	kmem_cache_free(thread_stack_cache, rh);
430 }
431 
432 static void thread_stack_delayed_free(struct task_struct *tsk)
433 {
434 	struct rcu_head *rh = tsk->stack;
435 
436 	call_rcu(rh, thread_stack_free_rcu);
437 }
438 
439 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
440 {
441 	unsigned long *stack;
442 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
443 	stack = kasan_reset_tag(stack);
444 	tsk->stack = stack;
445 	return stack ? 0 : -ENOMEM;
446 }
447 
448 static void free_thread_stack(struct task_struct *tsk)
449 {
450 	thread_stack_delayed_free(tsk);
451 	tsk->stack = NULL;
452 }
453 
454 void thread_stack_cache_init(void)
455 {
456 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
457 					THREAD_SIZE, THREAD_SIZE, 0, 0,
458 					THREAD_SIZE, NULL);
459 	BUG_ON(thread_stack_cache == NULL);
460 }
461 
462 #endif /* THREAD_SIZE >= PAGE_SIZE */
463 #endif /* CONFIG_VMAP_STACK */
464 
465 /* SLAB cache for signal_struct structures (tsk->signal) */
466 static struct kmem_cache *signal_cachep;
467 
468 /* SLAB cache for sighand_struct structures (tsk->sighand) */
469 struct kmem_cache *sighand_cachep;
470 
471 /* SLAB cache for files_struct structures (tsk->files) */
472 struct kmem_cache *files_cachep;
473 
474 /* SLAB cache for fs_struct structures (tsk->fs) */
475 struct kmem_cache *fs_cachep;
476 
477 /* SLAB cache for mm_struct structures (tsk->mm) */
478 static struct kmem_cache *mm_cachep;
479 
480 static void account_kernel_stack(struct task_struct *tsk, int account)
481 {
482 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
483 		struct vm_struct *vm_area = task_stack_vm_area(tsk);
484 		int i;
485 
486 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
487 			mod_lruvec_page_state(vm_area->pages[i], NR_KERNEL_STACK_KB,
488 					      account * (PAGE_SIZE / 1024));
489 	} else {
490 		void *stack = task_stack_page(tsk);
491 
492 		/* All stack pages are in the same node. */
493 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
494 				      account * (THREAD_SIZE / 1024));
495 	}
496 }
497 
498 void exit_task_stack_account(struct task_struct *tsk)
499 {
500 	account_kernel_stack(tsk, -1);
501 
502 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
503 		struct vm_struct *vm_area;
504 		int i;
505 
506 		vm_area = task_stack_vm_area(tsk);
507 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
508 			memcg_kmem_uncharge_page(vm_area->pages[i], 0);
509 	}
510 }
511 
512 static void release_task_stack(struct task_struct *tsk)
513 {
514 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
515 		return;  /* Better to leak the stack than to free prematurely */
516 
517 	free_thread_stack(tsk);
518 }
519 
520 #ifdef CONFIG_THREAD_INFO_IN_TASK
521 void put_task_stack(struct task_struct *tsk)
522 {
523 	if (refcount_dec_and_test(&tsk->stack_refcount))
524 		release_task_stack(tsk);
525 }
526 #endif
527 
528 void free_task(struct task_struct *tsk)
529 {
530 #ifdef CONFIG_SECCOMP
531 	WARN_ON_ONCE(tsk->seccomp.filter);
532 #endif
533 	release_user_cpus_ptr(tsk);
534 	scs_release(tsk);
535 
536 #ifndef CONFIG_THREAD_INFO_IN_TASK
537 	/*
538 	 * The task is finally done with both the stack and thread_info,
539 	 * so free both.
540 	 */
541 	release_task_stack(tsk);
542 #else
543 	/*
544 	 * If the task had a separate stack allocation, it should be gone
545 	 * by now.
546 	 */
547 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
548 #endif
549 	rt_mutex_debug_task_free(tsk);
550 	ftrace_graph_exit_task(tsk);
551 	arch_release_task_struct(tsk);
552 	if (tsk->flags & PF_KTHREAD)
553 		free_kthread_struct(tsk);
554 	bpf_task_storage_free(tsk);
555 	free_task_struct(tsk);
556 }
557 EXPORT_SYMBOL(free_task);
558 
559 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
560 {
561 	struct file *exe_file;
562 
563 	exe_file = get_mm_exe_file(oldmm);
564 	RCU_INIT_POINTER(mm->exe_file, exe_file);
565 	/*
566 	 * We depend on the oldmm having properly denied write access to the
567 	 * exe_file already.
568 	 */
569 	if (exe_file && exe_file_deny_write_access(exe_file))
570 		pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
571 }
572 
573 #ifdef CONFIG_MMU
574 static inline int mm_alloc_pgd(struct mm_struct *mm)
575 {
576 	mm->pgd = pgd_alloc(mm);
577 	if (unlikely(!mm->pgd))
578 		return -ENOMEM;
579 	return 0;
580 }
581 
582 static inline void mm_free_pgd(struct mm_struct *mm)
583 {
584 	pgd_free(mm, mm->pgd);
585 }
586 #else
587 #define mm_alloc_pgd(mm)	(0)
588 #define mm_free_pgd(mm)
589 #endif /* CONFIG_MMU */
590 
591 #ifdef CONFIG_MM_ID
592 static DEFINE_IDA(mm_ida);
593 
594 static inline int mm_alloc_id(struct mm_struct *mm)
595 {
596 	int ret;
597 
598 	ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL);
599 	if (ret < 0)
600 		return ret;
601 	mm->mm_id = ret;
602 	return 0;
603 }
604 
605 static inline void mm_free_id(struct mm_struct *mm)
606 {
607 	const mm_id_t id = mm->mm_id;
608 
609 	mm->mm_id = MM_ID_DUMMY;
610 	if (id == MM_ID_DUMMY)
611 		return;
612 	if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX))
613 		return;
614 	ida_free(&mm_ida, id);
615 }
616 #else /* !CONFIG_MM_ID */
617 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; }
618 static inline void mm_free_id(struct mm_struct *mm) {}
619 #endif /* CONFIG_MM_ID */
620 
621 static void check_mm(struct mm_struct *mm)
622 {
623 	int i;
624 
625 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
626 			 "Please make sure 'struct resident_page_types[]' is updated as well");
627 
628 	for (i = 0; i < NR_MM_COUNTERS; i++) {
629 		long x = percpu_counter_sum(&mm->rss_stat[i]);
630 
631 		if (unlikely(x)) {
632 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld Comm:%s Pid:%d\n",
633 				 mm, resident_page_types[i], x,
634 				 current->comm,
635 				 task_pid_nr(current));
636 		}
637 	}
638 
639 	if (mm_pgtables_bytes(mm))
640 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
641 				mm_pgtables_bytes(mm));
642 
643 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
644 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
645 #endif
646 }
647 
648 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
649 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
650 
651 static void do_check_lazy_tlb(void *arg)
652 {
653 	struct mm_struct *mm = arg;
654 
655 	WARN_ON_ONCE(current->active_mm == mm);
656 }
657 
658 static void do_shoot_lazy_tlb(void *arg)
659 {
660 	struct mm_struct *mm = arg;
661 
662 	if (current->active_mm == mm) {
663 		WARN_ON_ONCE(current->mm);
664 		current->active_mm = &init_mm;
665 		switch_mm(mm, &init_mm, current);
666 	}
667 }
668 
669 static void cleanup_lazy_tlbs(struct mm_struct *mm)
670 {
671 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
672 		/*
673 		 * In this case, lazy tlb mms are refounted and would not reach
674 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
675 		 */
676 		return;
677 	}
678 
679 	/*
680 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
681 	 * requires lazy mm users to switch to another mm when the refcount
682 	 * drops to zero, before the mm is freed. This requires IPIs here to
683 	 * switch kernel threads to init_mm.
684 	 *
685 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
686 	 * switch with the final userspace teardown TLB flush which leaves the
687 	 * mm lazy on this CPU but no others, reducing the need for additional
688 	 * IPIs here. There are cases where a final IPI is still required here,
689 	 * such as the final mmdrop being performed on a different CPU than the
690 	 * one exiting, or kernel threads using the mm when userspace exits.
691 	 *
692 	 * IPI overheads have not found to be expensive, but they could be
693 	 * reduced in a number of possible ways, for example (roughly
694 	 * increasing order of complexity):
695 	 * - The last lazy reference created by exit_mm() could instead switch
696 	 *   to init_mm, however it's probable this will run on the same CPU
697 	 *   immediately afterwards, so this may not reduce IPIs much.
698 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
699 	 * - CPUs store active_mm where it can be remotely checked without a
700 	 *   lock, to filter out false-positives in the cpumask.
701 	 * - After mm_users or mm_count reaches zero, switching away from the
702 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
703 	 *   with some batching or delaying of the final IPIs.
704 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
705 	 *   switching to avoid IPIs completely.
706 	 */
707 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
708 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
709 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
710 }
711 
712 /*
713  * Called when the last reference to the mm
714  * is dropped: either by a lazy thread or by
715  * mmput. Free the page directory and the mm.
716  */
717 void __mmdrop(struct mm_struct *mm)
718 {
719 	BUG_ON(mm == &init_mm);
720 	WARN_ON_ONCE(mm == current->mm);
721 
722 	/* Ensure no CPUs are using this as their lazy tlb mm */
723 	cleanup_lazy_tlbs(mm);
724 
725 	WARN_ON_ONCE(mm == current->active_mm);
726 	mm_free_pgd(mm);
727 	mm_free_id(mm);
728 	destroy_context(mm);
729 	mmu_notifier_subscriptions_destroy(mm);
730 	check_mm(mm);
731 	put_user_ns(mm->user_ns);
732 	mm_pasid_drop(mm);
733 	mm_destroy_cid(mm);
734 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
735 
736 	free_mm(mm);
737 }
738 EXPORT_SYMBOL_GPL(__mmdrop);
739 
740 static void mmdrop_async_fn(struct work_struct *work)
741 {
742 	struct mm_struct *mm;
743 
744 	mm = container_of(work, struct mm_struct, async_put_work);
745 	__mmdrop(mm);
746 }
747 
748 static void mmdrop_async(struct mm_struct *mm)
749 {
750 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
751 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
752 		schedule_work(&mm->async_put_work);
753 	}
754 }
755 
756 static inline void free_signal_struct(struct signal_struct *sig)
757 {
758 	taskstats_tgid_free(sig);
759 	sched_autogroup_exit(sig);
760 	/*
761 	 * __mmdrop is not safe to call from softirq context on x86 due to
762 	 * pgd_dtor so postpone it to the async context
763 	 */
764 	if (sig->oom_mm)
765 		mmdrop_async(sig->oom_mm);
766 	kmem_cache_free(signal_cachep, sig);
767 }
768 
769 static inline void put_signal_struct(struct signal_struct *sig)
770 {
771 	if (refcount_dec_and_test(&sig->sigcnt))
772 		free_signal_struct(sig);
773 }
774 
775 void __put_task_struct(struct task_struct *tsk)
776 {
777 	WARN_ON(!tsk->exit_state);
778 	WARN_ON(refcount_read(&tsk->usage));
779 	WARN_ON(tsk == current);
780 
781 	unwind_task_free(tsk);
782 	sched_ext_free(tsk);
783 	io_uring_free(tsk);
784 	cgroup_free(tsk);
785 	task_numa_free(tsk, true);
786 	security_task_free(tsk);
787 	exit_creds(tsk);
788 	delayacct_tsk_free(tsk);
789 	put_signal_struct(tsk->signal);
790 	sched_core_free(tsk);
791 	free_task(tsk);
792 }
793 EXPORT_SYMBOL_GPL(__put_task_struct);
794 
795 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
796 {
797 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
798 
799 	__put_task_struct(task);
800 }
801 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
802 
803 void __init __weak arch_task_cache_init(void) { }
804 
805 /*
806  * set_max_threads
807  */
808 static void __init set_max_threads(unsigned int max_threads_suggested)
809 {
810 	u64 threads;
811 	unsigned long nr_pages = memblock_estimated_nr_free_pages();
812 
813 	/*
814 	 * The number of threads shall be limited such that the thread
815 	 * structures may only consume a small part of the available memory.
816 	 */
817 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
818 		threads = MAX_THREADS;
819 	else
820 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
821 				    (u64) THREAD_SIZE * 8UL);
822 
823 	if (threads > max_threads_suggested)
824 		threads = max_threads_suggested;
825 
826 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
827 }
828 
829 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
830 /* Initialized by the architecture: */
831 int arch_task_struct_size __read_mostly;
832 #endif
833 
834 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
835 {
836 	/* Fetch thread_struct whitelist for the architecture. */
837 	arch_thread_struct_whitelist(offset, size);
838 
839 	/*
840 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
841 	 * adjust offset to position of thread_struct in task_struct.
842 	 */
843 	if (unlikely(*size == 0))
844 		*offset = 0;
845 	else
846 		*offset += offsetof(struct task_struct, thread);
847 }
848 
849 void __init fork_init(void)
850 {
851 	int i;
852 #ifndef ARCH_MIN_TASKALIGN
853 #define ARCH_MIN_TASKALIGN	0
854 #endif
855 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
856 	unsigned long useroffset, usersize;
857 
858 	/* create a slab on which task_structs can be allocated */
859 	task_struct_whitelist(&useroffset, &usersize);
860 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
861 			arch_task_struct_size, align,
862 			SLAB_PANIC|SLAB_ACCOUNT,
863 			useroffset, usersize, NULL);
864 
865 	/* do the arch specific task caches init */
866 	arch_task_cache_init();
867 
868 	set_max_threads(MAX_THREADS);
869 
870 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
871 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
872 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
873 		init_task.signal->rlim[RLIMIT_NPROC];
874 
875 	for (i = 0; i < UCOUNT_COUNTS; i++)
876 		init_user_ns.ucount_max[i] = max_threads/2;
877 
878 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
879 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
880 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
881 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
882 
883 #ifdef CONFIG_VMAP_STACK
884 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
885 			  NULL, free_vm_stack_cache);
886 #endif
887 
888 	scs_init();
889 
890 	lockdep_init_task(&init_task);
891 	uprobes_init();
892 }
893 
894 int __weak arch_dup_task_struct(struct task_struct *dst,
895 					       struct task_struct *src)
896 {
897 	*dst = *src;
898 	return 0;
899 }
900 
901 void set_task_stack_end_magic(struct task_struct *tsk)
902 {
903 	unsigned long *stackend;
904 
905 	stackend = end_of_stack(tsk);
906 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
907 }
908 
909 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
910 {
911 	struct task_struct *tsk;
912 	int err;
913 
914 	if (node == NUMA_NO_NODE)
915 		node = tsk_fork_get_node(orig);
916 	tsk = alloc_task_struct_node(node);
917 	if (!tsk)
918 		return NULL;
919 
920 	err = arch_dup_task_struct(tsk, orig);
921 	if (err)
922 		goto free_tsk;
923 
924 	err = alloc_thread_stack_node(tsk, node);
925 	if (err)
926 		goto free_tsk;
927 
928 #ifdef CONFIG_THREAD_INFO_IN_TASK
929 	refcount_set(&tsk->stack_refcount, 1);
930 #endif
931 	account_kernel_stack(tsk, 1);
932 
933 	err = scs_prepare(tsk, node);
934 	if (err)
935 		goto free_stack;
936 
937 #ifdef CONFIG_SECCOMP
938 	/*
939 	 * We must handle setting up seccomp filters once we're under
940 	 * the sighand lock in case orig has changed between now and
941 	 * then. Until then, filter must be NULL to avoid messing up
942 	 * the usage counts on the error path calling free_task.
943 	 */
944 	tsk->seccomp.filter = NULL;
945 #endif
946 
947 	setup_thread_stack(tsk, orig);
948 	clear_user_return_notifier(tsk);
949 	clear_tsk_need_resched(tsk);
950 	set_task_stack_end_magic(tsk);
951 	clear_syscall_work_syscall_user_dispatch(tsk);
952 
953 #ifdef CONFIG_STACKPROTECTOR
954 	tsk->stack_canary = get_random_canary();
955 #endif
956 	if (orig->cpus_ptr == &orig->cpus_mask)
957 		tsk->cpus_ptr = &tsk->cpus_mask;
958 	dup_user_cpus_ptr(tsk, orig, node);
959 
960 	/*
961 	 * One for the user space visible state that goes away when reaped.
962 	 * One for the scheduler.
963 	 */
964 	refcount_set(&tsk->rcu_users, 2);
965 	/* One for the rcu users */
966 	refcount_set(&tsk->usage, 1);
967 #ifdef CONFIG_BLK_DEV_IO_TRACE
968 	tsk->btrace_seq = 0;
969 #endif
970 	tsk->splice_pipe = NULL;
971 	tsk->task_frag.page = NULL;
972 	tsk->wake_q.next = NULL;
973 	tsk->worker_private = NULL;
974 
975 	kcov_task_init(tsk);
976 	kmsan_task_create(tsk);
977 	kmap_local_fork(tsk);
978 
979 #ifdef CONFIG_FAULT_INJECTION
980 	tsk->fail_nth = 0;
981 #endif
982 
983 #ifdef CONFIG_BLK_CGROUP
984 	tsk->throttle_disk = NULL;
985 	tsk->use_memdelay = 0;
986 #endif
987 
988 #ifdef CONFIG_ARCH_HAS_CPU_PASID
989 	tsk->pasid_activated = 0;
990 #endif
991 
992 #ifdef CONFIG_MEMCG
993 	tsk->active_memcg = NULL;
994 #endif
995 
996 #ifdef CONFIG_X86_BUS_LOCK_DETECT
997 	tsk->reported_split_lock = 0;
998 #endif
999 
1000 #ifdef CONFIG_SCHED_MM_CID
1001 	tsk->mm_cid = -1;
1002 	tsk->last_mm_cid = -1;
1003 	tsk->mm_cid_active = 0;
1004 	tsk->migrate_from_cpu = -1;
1005 #endif
1006 	return tsk;
1007 
1008 free_stack:
1009 	exit_task_stack_account(tsk);
1010 	free_thread_stack(tsk);
1011 free_tsk:
1012 	free_task_struct(tsk);
1013 	return NULL;
1014 }
1015 
1016 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1017 
1018 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1019 
1020 static int __init coredump_filter_setup(char *s)
1021 {
1022 	default_dump_filter =
1023 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1024 		MMF_DUMP_FILTER_MASK;
1025 	return 1;
1026 }
1027 
1028 __setup("coredump_filter=", coredump_filter_setup);
1029 
1030 #include <linux/init_task.h>
1031 
1032 static void mm_init_aio(struct mm_struct *mm)
1033 {
1034 #ifdef CONFIG_AIO
1035 	spin_lock_init(&mm->ioctx_lock);
1036 	mm->ioctx_table = NULL;
1037 #endif
1038 }
1039 
1040 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1041 					   struct task_struct *p)
1042 {
1043 #ifdef CONFIG_MEMCG
1044 	if (mm->owner == p)
1045 		WRITE_ONCE(mm->owner, NULL);
1046 #endif
1047 }
1048 
1049 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1050 {
1051 #ifdef CONFIG_MEMCG
1052 	mm->owner = p;
1053 #endif
1054 }
1055 
1056 static void mm_init_uprobes_state(struct mm_struct *mm)
1057 {
1058 #ifdef CONFIG_UPROBES
1059 	mm->uprobes_state.xol_area = NULL;
1060 	arch_uprobe_init_state(mm);
1061 #endif
1062 }
1063 
1064 static void mmap_init_lock(struct mm_struct *mm)
1065 {
1066 	init_rwsem(&mm->mmap_lock);
1067 	mm_lock_seqcount_init(mm);
1068 #ifdef CONFIG_PER_VMA_LOCK
1069 	rcuwait_init(&mm->vma_writer_wait);
1070 #endif
1071 }
1072 
1073 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1074 	struct user_namespace *user_ns)
1075 {
1076 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1077 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1078 	atomic_set(&mm->mm_users, 1);
1079 	atomic_set(&mm->mm_count, 1);
1080 	seqcount_init(&mm->write_protect_seq);
1081 	mmap_init_lock(mm);
1082 	INIT_LIST_HEAD(&mm->mmlist);
1083 	mm_pgtables_bytes_init(mm);
1084 	mm->map_count = 0;
1085 	mm->locked_vm = 0;
1086 	atomic64_set(&mm->pinned_vm, 0);
1087 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1088 	spin_lock_init(&mm->page_table_lock);
1089 	spin_lock_init(&mm->arg_lock);
1090 	mm_init_cpumask(mm);
1091 	mm_init_aio(mm);
1092 	mm_init_owner(mm, p);
1093 	mm_pasid_init(mm);
1094 	RCU_INIT_POINTER(mm->exe_file, NULL);
1095 	mmu_notifier_subscriptions_init(mm);
1096 	init_tlb_flush_pending(mm);
1097 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1098 	mm->pmd_huge_pte = NULL;
1099 #endif
1100 	mm_init_uprobes_state(mm);
1101 	hugetlb_count_init(mm);
1102 
1103 	mm_flags_clear_all(mm);
1104 	if (current->mm) {
1105 		unsigned long flags = __mm_flags_get_word(current->mm);
1106 
1107 		__mm_flags_set_word(mm, mmf_init_legacy_flags(flags));
1108 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1109 	} else {
1110 		__mm_flags_set_word(mm, default_dump_filter);
1111 		mm->def_flags = 0;
1112 	}
1113 
1114 	if (futex_mm_init(mm))
1115 		goto fail_mm_init;
1116 
1117 	if (mm_alloc_pgd(mm))
1118 		goto fail_nopgd;
1119 
1120 	if (mm_alloc_id(mm))
1121 		goto fail_noid;
1122 
1123 	if (init_new_context(p, mm))
1124 		goto fail_nocontext;
1125 
1126 	if (mm_alloc_cid(mm, p))
1127 		goto fail_cid;
1128 
1129 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1130 				     NR_MM_COUNTERS))
1131 		goto fail_pcpu;
1132 
1133 	mm->user_ns = get_user_ns(user_ns);
1134 	lru_gen_init_mm(mm);
1135 	return mm;
1136 
1137 fail_pcpu:
1138 	mm_destroy_cid(mm);
1139 fail_cid:
1140 	destroy_context(mm);
1141 fail_nocontext:
1142 	mm_free_id(mm);
1143 fail_noid:
1144 	mm_free_pgd(mm);
1145 fail_nopgd:
1146 	futex_hash_free(mm);
1147 fail_mm_init:
1148 	free_mm(mm);
1149 	return NULL;
1150 }
1151 
1152 /*
1153  * Allocate and initialize an mm_struct.
1154  */
1155 struct mm_struct *mm_alloc(void)
1156 {
1157 	struct mm_struct *mm;
1158 
1159 	mm = allocate_mm();
1160 	if (!mm)
1161 		return NULL;
1162 
1163 	memset(mm, 0, sizeof(*mm));
1164 	return mm_init(mm, current, current_user_ns());
1165 }
1166 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1167 
1168 static inline void __mmput(struct mm_struct *mm)
1169 {
1170 	VM_BUG_ON(atomic_read(&mm->mm_users));
1171 
1172 	uprobe_clear_state(mm);
1173 	exit_aio(mm);
1174 	ksm_exit(mm);
1175 	khugepaged_exit(mm); /* must run before exit_mmap */
1176 	exit_mmap(mm);
1177 	mm_put_huge_zero_folio(mm);
1178 	set_mm_exe_file(mm, NULL);
1179 	if (!list_empty(&mm->mmlist)) {
1180 		spin_lock(&mmlist_lock);
1181 		list_del(&mm->mmlist);
1182 		spin_unlock(&mmlist_lock);
1183 	}
1184 	if (mm->binfmt)
1185 		module_put(mm->binfmt->module);
1186 	lru_gen_del_mm(mm);
1187 	futex_hash_free(mm);
1188 	mmdrop(mm);
1189 }
1190 
1191 /*
1192  * Decrement the use count and release all resources for an mm.
1193  */
1194 void mmput(struct mm_struct *mm)
1195 {
1196 	might_sleep();
1197 
1198 	if (atomic_dec_and_test(&mm->mm_users))
1199 		__mmput(mm);
1200 }
1201 EXPORT_SYMBOL_GPL(mmput);
1202 
1203 #if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH)
1204 static void mmput_async_fn(struct work_struct *work)
1205 {
1206 	struct mm_struct *mm = container_of(work, struct mm_struct,
1207 					    async_put_work);
1208 
1209 	__mmput(mm);
1210 }
1211 
1212 void mmput_async(struct mm_struct *mm)
1213 {
1214 	if (atomic_dec_and_test(&mm->mm_users)) {
1215 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1216 		schedule_work(&mm->async_put_work);
1217 	}
1218 }
1219 EXPORT_SYMBOL_GPL(mmput_async);
1220 #endif
1221 
1222 /**
1223  * set_mm_exe_file - change a reference to the mm's executable file
1224  * @mm: The mm to change.
1225  * @new_exe_file: The new file to use.
1226  *
1227  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1228  *
1229  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1230  * invocations: in mmput() nobody alive left, in execve it happens before
1231  * the new mm is made visible to anyone.
1232  *
1233  * Can only fail if new_exe_file != NULL.
1234  */
1235 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1236 {
1237 	struct file *old_exe_file;
1238 
1239 	/*
1240 	 * It is safe to dereference the exe_file without RCU as
1241 	 * this function is only called if nobody else can access
1242 	 * this mm -- see comment above for justification.
1243 	 */
1244 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1245 
1246 	if (new_exe_file) {
1247 		/*
1248 		 * We expect the caller (i.e., sys_execve) to already denied
1249 		 * write access, so this is unlikely to fail.
1250 		 */
1251 		if (unlikely(exe_file_deny_write_access(new_exe_file)))
1252 			return -EACCES;
1253 		get_file(new_exe_file);
1254 	}
1255 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1256 	if (old_exe_file) {
1257 		exe_file_allow_write_access(old_exe_file);
1258 		fput(old_exe_file);
1259 	}
1260 	return 0;
1261 }
1262 
1263 /**
1264  * replace_mm_exe_file - replace a reference to the mm's executable file
1265  * @mm: The mm to change.
1266  * @new_exe_file: The new file to use.
1267  *
1268  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1269  *
1270  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1271  */
1272 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1273 {
1274 	struct vm_area_struct *vma;
1275 	struct file *old_exe_file;
1276 	int ret = 0;
1277 
1278 	/* Forbid mm->exe_file change if old file still mapped. */
1279 	old_exe_file = get_mm_exe_file(mm);
1280 	if (old_exe_file) {
1281 		VMA_ITERATOR(vmi, mm, 0);
1282 		mmap_read_lock(mm);
1283 		for_each_vma(vmi, vma) {
1284 			if (!vma->vm_file)
1285 				continue;
1286 			if (path_equal(&vma->vm_file->f_path,
1287 				       &old_exe_file->f_path)) {
1288 				ret = -EBUSY;
1289 				break;
1290 			}
1291 		}
1292 		mmap_read_unlock(mm);
1293 		fput(old_exe_file);
1294 		if (ret)
1295 			return ret;
1296 	}
1297 
1298 	ret = exe_file_deny_write_access(new_exe_file);
1299 	if (ret)
1300 		return -EACCES;
1301 	get_file(new_exe_file);
1302 
1303 	/* set the new file */
1304 	mmap_write_lock(mm);
1305 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1306 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1307 	mmap_write_unlock(mm);
1308 
1309 	if (old_exe_file) {
1310 		exe_file_allow_write_access(old_exe_file);
1311 		fput(old_exe_file);
1312 	}
1313 	return 0;
1314 }
1315 
1316 /**
1317  * get_mm_exe_file - acquire a reference to the mm's executable file
1318  * @mm: The mm of interest.
1319  *
1320  * Returns %NULL if mm has no associated executable file.
1321  * User must release file via fput().
1322  */
1323 struct file *get_mm_exe_file(struct mm_struct *mm)
1324 {
1325 	struct file *exe_file;
1326 
1327 	rcu_read_lock();
1328 	exe_file = get_file_rcu(&mm->exe_file);
1329 	rcu_read_unlock();
1330 	return exe_file;
1331 }
1332 
1333 /**
1334  * get_task_exe_file - acquire a reference to the task's executable file
1335  * @task: The task.
1336  *
1337  * Returns %NULL if task's mm (if any) has no associated executable file or
1338  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1339  * User must release file via fput().
1340  */
1341 struct file *get_task_exe_file(struct task_struct *task)
1342 {
1343 	struct file *exe_file = NULL;
1344 	struct mm_struct *mm;
1345 
1346 	if (task->flags & PF_KTHREAD)
1347 		return NULL;
1348 
1349 	task_lock(task);
1350 	mm = task->mm;
1351 	if (mm)
1352 		exe_file = get_mm_exe_file(mm);
1353 	task_unlock(task);
1354 	return exe_file;
1355 }
1356 
1357 /**
1358  * get_task_mm - acquire a reference to the task's mm
1359  * @task: The task.
1360  *
1361  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1362  * this kernel workthread has transiently adopted a user mm with use_mm,
1363  * to do its AIO) is not set and if so returns a reference to it, after
1364  * bumping up the use count.  User must release the mm via mmput()
1365  * after use.  Typically used by /proc and ptrace.
1366  */
1367 struct mm_struct *get_task_mm(struct task_struct *task)
1368 {
1369 	struct mm_struct *mm;
1370 
1371 	if (task->flags & PF_KTHREAD)
1372 		return NULL;
1373 
1374 	task_lock(task);
1375 	mm = task->mm;
1376 	if (mm)
1377 		mmget(mm);
1378 	task_unlock(task);
1379 	return mm;
1380 }
1381 EXPORT_SYMBOL_GPL(get_task_mm);
1382 
1383 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode)
1384 {
1385 	if (mm == current->mm)
1386 		return true;
1387 	if (ptrace_may_access(task, mode))
1388 		return true;
1389 	if ((mode & PTRACE_MODE_READ) && perfmon_capable())
1390 		return true;
1391 	return false;
1392 }
1393 
1394 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1395 {
1396 	struct mm_struct *mm;
1397 	int err;
1398 
1399 	err =  down_read_killable(&task->signal->exec_update_lock);
1400 	if (err)
1401 		return ERR_PTR(err);
1402 
1403 	mm = get_task_mm(task);
1404 	if (!mm) {
1405 		mm = ERR_PTR(-ESRCH);
1406 	} else if (!may_access_mm(mm, task, mode)) {
1407 		mmput(mm);
1408 		mm = ERR_PTR(-EACCES);
1409 	}
1410 	up_read(&task->signal->exec_update_lock);
1411 
1412 	return mm;
1413 }
1414 
1415 static void complete_vfork_done(struct task_struct *tsk)
1416 {
1417 	struct completion *vfork;
1418 
1419 	task_lock(tsk);
1420 	vfork = tsk->vfork_done;
1421 	if (likely(vfork)) {
1422 		tsk->vfork_done = NULL;
1423 		complete(vfork);
1424 	}
1425 	task_unlock(tsk);
1426 }
1427 
1428 static int wait_for_vfork_done(struct task_struct *child,
1429 				struct completion *vfork)
1430 {
1431 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1432 	int killed;
1433 
1434 	cgroup_enter_frozen();
1435 	killed = wait_for_completion_state(vfork, state);
1436 	cgroup_leave_frozen(false);
1437 
1438 	if (killed) {
1439 		task_lock(child);
1440 		child->vfork_done = NULL;
1441 		task_unlock(child);
1442 	}
1443 
1444 	put_task_struct(child);
1445 	return killed;
1446 }
1447 
1448 /* Please note the differences between mmput and mm_release.
1449  * mmput is called whenever we stop holding onto a mm_struct,
1450  * error success whatever.
1451  *
1452  * mm_release is called after a mm_struct has been removed
1453  * from the current process.
1454  *
1455  * This difference is important for error handling, when we
1456  * only half set up a mm_struct for a new process and need to restore
1457  * the old one.  Because we mmput the new mm_struct before
1458  * restoring the old one. . .
1459  * Eric Biederman 10 January 1998
1460  */
1461 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1462 {
1463 	uprobe_free_utask(tsk);
1464 
1465 	/* Get rid of any cached register state */
1466 	deactivate_mm(tsk, mm);
1467 
1468 	/*
1469 	 * Signal userspace if we're not exiting with a core dump
1470 	 * because we want to leave the value intact for debugging
1471 	 * purposes.
1472 	 */
1473 	if (tsk->clear_child_tid) {
1474 		if (atomic_read(&mm->mm_users) > 1) {
1475 			/*
1476 			 * We don't check the error code - if userspace has
1477 			 * not set up a proper pointer then tough luck.
1478 			 */
1479 			put_user(0, tsk->clear_child_tid);
1480 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1481 					1, NULL, NULL, 0, 0);
1482 		}
1483 		tsk->clear_child_tid = NULL;
1484 	}
1485 
1486 	/*
1487 	 * All done, finally we can wake up parent and return this mm to him.
1488 	 * Also kthread_stop() uses this completion for synchronization.
1489 	 */
1490 	if (tsk->vfork_done)
1491 		complete_vfork_done(tsk);
1492 }
1493 
1494 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1495 {
1496 	futex_exit_release(tsk);
1497 	mm_release(tsk, mm);
1498 }
1499 
1500 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1501 {
1502 	futex_exec_release(tsk);
1503 	mm_release(tsk, mm);
1504 }
1505 
1506 /**
1507  * dup_mm() - duplicates an existing mm structure
1508  * @tsk: the task_struct with which the new mm will be associated.
1509  * @oldmm: the mm to duplicate.
1510  *
1511  * Allocates a new mm structure and duplicates the provided @oldmm structure
1512  * content into it.
1513  *
1514  * Return: the duplicated mm or NULL on failure.
1515  */
1516 static struct mm_struct *dup_mm(struct task_struct *tsk,
1517 				struct mm_struct *oldmm)
1518 {
1519 	struct mm_struct *mm;
1520 	int err;
1521 
1522 	mm = allocate_mm();
1523 	if (!mm)
1524 		goto fail_nomem;
1525 
1526 	memcpy(mm, oldmm, sizeof(*mm));
1527 
1528 	if (!mm_init(mm, tsk, mm->user_ns))
1529 		goto fail_nomem;
1530 
1531 	uprobe_start_dup_mmap();
1532 	err = dup_mmap(mm, oldmm);
1533 	if (err)
1534 		goto free_pt;
1535 	uprobe_end_dup_mmap();
1536 
1537 	mm->hiwater_rss = get_mm_rss(mm);
1538 	mm->hiwater_vm = mm->total_vm;
1539 
1540 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1541 		goto free_pt;
1542 
1543 	return mm;
1544 
1545 free_pt:
1546 	/* don't put binfmt in mmput, we haven't got module yet */
1547 	mm->binfmt = NULL;
1548 	mm_init_owner(mm, NULL);
1549 	mmput(mm);
1550 	if (err)
1551 		uprobe_end_dup_mmap();
1552 
1553 fail_nomem:
1554 	return NULL;
1555 }
1556 
1557 static int copy_mm(u64 clone_flags, struct task_struct *tsk)
1558 {
1559 	struct mm_struct *mm, *oldmm;
1560 
1561 	tsk->min_flt = tsk->maj_flt = 0;
1562 	tsk->nvcsw = tsk->nivcsw = 0;
1563 #ifdef CONFIG_DETECT_HUNG_TASK
1564 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1565 	tsk->last_switch_time = 0;
1566 #endif
1567 
1568 	tsk->mm = NULL;
1569 	tsk->active_mm = NULL;
1570 
1571 	/*
1572 	 * Are we cloning a kernel thread?
1573 	 *
1574 	 * We need to steal a active VM for that..
1575 	 */
1576 	oldmm = current->mm;
1577 	if (!oldmm)
1578 		return 0;
1579 
1580 	if (clone_flags & CLONE_VM) {
1581 		mmget(oldmm);
1582 		mm = oldmm;
1583 	} else {
1584 		mm = dup_mm(tsk, current->mm);
1585 		if (!mm)
1586 			return -ENOMEM;
1587 	}
1588 
1589 	tsk->mm = mm;
1590 	tsk->active_mm = mm;
1591 	sched_mm_cid_fork(tsk);
1592 	return 0;
1593 }
1594 
1595 static int copy_fs(u64 clone_flags, struct task_struct *tsk)
1596 {
1597 	struct fs_struct *fs = current->fs;
1598 	if (clone_flags & CLONE_FS) {
1599 		/* tsk->fs is already what we want */
1600 		read_seqlock_excl(&fs->seq);
1601 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1602 		if (fs->in_exec) {
1603 			read_sequnlock_excl(&fs->seq);
1604 			return -EAGAIN;
1605 		}
1606 		fs->users++;
1607 		read_sequnlock_excl(&fs->seq);
1608 		return 0;
1609 	}
1610 	tsk->fs = copy_fs_struct(fs);
1611 	if (!tsk->fs)
1612 		return -ENOMEM;
1613 	return 0;
1614 }
1615 
1616 static int copy_files(u64 clone_flags, struct task_struct *tsk,
1617 		      int no_files)
1618 {
1619 	struct files_struct *oldf, *newf;
1620 
1621 	/*
1622 	 * A background process may not have any files ...
1623 	 */
1624 	oldf = current->files;
1625 	if (!oldf)
1626 		return 0;
1627 
1628 	if (no_files) {
1629 		tsk->files = NULL;
1630 		return 0;
1631 	}
1632 
1633 	if (clone_flags & CLONE_FILES) {
1634 		atomic_inc(&oldf->count);
1635 		return 0;
1636 	}
1637 
1638 	newf = dup_fd(oldf, NULL);
1639 	if (IS_ERR(newf))
1640 		return PTR_ERR(newf);
1641 
1642 	tsk->files = newf;
1643 	return 0;
1644 }
1645 
1646 static int copy_sighand(u64 clone_flags, struct task_struct *tsk)
1647 {
1648 	struct sighand_struct *sig;
1649 
1650 	if (clone_flags & CLONE_SIGHAND) {
1651 		refcount_inc(&current->sighand->count);
1652 		return 0;
1653 	}
1654 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1655 	RCU_INIT_POINTER(tsk->sighand, sig);
1656 	if (!sig)
1657 		return -ENOMEM;
1658 
1659 	refcount_set(&sig->count, 1);
1660 	spin_lock_irq(&current->sighand->siglock);
1661 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1662 	spin_unlock_irq(&current->sighand->siglock);
1663 
1664 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1665 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1666 		flush_signal_handlers(tsk, 0);
1667 
1668 	return 0;
1669 }
1670 
1671 void __cleanup_sighand(struct sighand_struct *sighand)
1672 {
1673 	if (refcount_dec_and_test(&sighand->count)) {
1674 		signalfd_cleanup(sighand);
1675 		/*
1676 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1677 		 * without an RCU grace period, see __lock_task_sighand().
1678 		 */
1679 		kmem_cache_free(sighand_cachep, sighand);
1680 	}
1681 }
1682 
1683 /*
1684  * Initialize POSIX timer handling for a thread group.
1685  */
1686 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1687 {
1688 	struct posix_cputimers *pct = &sig->posix_cputimers;
1689 	unsigned long cpu_limit;
1690 
1691 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1692 	posix_cputimers_group_init(pct, cpu_limit);
1693 }
1694 
1695 static int copy_signal(u64 clone_flags, struct task_struct *tsk)
1696 {
1697 	struct signal_struct *sig;
1698 
1699 	if (clone_flags & CLONE_THREAD)
1700 		return 0;
1701 
1702 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1703 	tsk->signal = sig;
1704 	if (!sig)
1705 		return -ENOMEM;
1706 
1707 	sig->nr_threads = 1;
1708 	sig->quick_threads = 1;
1709 	atomic_set(&sig->live, 1);
1710 	refcount_set(&sig->sigcnt, 1);
1711 
1712 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1713 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1714 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1715 
1716 	init_waitqueue_head(&sig->wait_chldexit);
1717 	sig->curr_target = tsk;
1718 	init_sigpending(&sig->shared_pending);
1719 	INIT_HLIST_HEAD(&sig->multiprocess);
1720 	seqlock_init(&sig->stats_lock);
1721 	prev_cputime_init(&sig->prev_cputime);
1722 
1723 #ifdef CONFIG_POSIX_TIMERS
1724 	INIT_HLIST_HEAD(&sig->posix_timers);
1725 	INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1726 	hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1727 #endif
1728 
1729 	task_lock(current->group_leader);
1730 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1731 	task_unlock(current->group_leader);
1732 
1733 	posix_cpu_timers_init_group(sig);
1734 
1735 	tty_audit_fork(sig);
1736 	sched_autogroup_fork(sig);
1737 
1738 #ifdef CONFIG_CGROUPS
1739 	init_rwsem(&sig->cgroup_threadgroup_rwsem);
1740 #endif
1741 
1742 	sig->oom_score_adj = current->signal->oom_score_adj;
1743 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1744 
1745 	mutex_init(&sig->cred_guard_mutex);
1746 	init_rwsem(&sig->exec_update_lock);
1747 
1748 	return 0;
1749 }
1750 
1751 static void copy_seccomp(struct task_struct *p)
1752 {
1753 #ifdef CONFIG_SECCOMP
1754 	/*
1755 	 * Must be called with sighand->lock held, which is common to
1756 	 * all threads in the group. Holding cred_guard_mutex is not
1757 	 * needed because this new task is not yet running and cannot
1758 	 * be racing exec.
1759 	 */
1760 	assert_spin_locked(&current->sighand->siglock);
1761 
1762 	/* Ref-count the new filter user, and assign it. */
1763 	get_seccomp_filter(current);
1764 	p->seccomp = current->seccomp;
1765 
1766 	/*
1767 	 * Explicitly enable no_new_privs here in case it got set
1768 	 * between the task_struct being duplicated and holding the
1769 	 * sighand lock. The seccomp state and nnp must be in sync.
1770 	 */
1771 	if (task_no_new_privs(current))
1772 		task_set_no_new_privs(p);
1773 
1774 	/*
1775 	 * If the parent gained a seccomp mode after copying thread
1776 	 * flags and between before we held the sighand lock, we have
1777 	 * to manually enable the seccomp thread flag here.
1778 	 */
1779 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1780 		set_task_syscall_work(p, SECCOMP);
1781 #endif
1782 }
1783 
1784 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1785 {
1786 	current->clear_child_tid = tidptr;
1787 
1788 	return task_pid_vnr(current);
1789 }
1790 
1791 static void rt_mutex_init_task(struct task_struct *p)
1792 {
1793 	raw_spin_lock_init(&p->pi_lock);
1794 #ifdef CONFIG_RT_MUTEXES
1795 	p->pi_waiters = RB_ROOT_CACHED;
1796 	p->pi_top_task = NULL;
1797 	p->pi_blocked_on = NULL;
1798 #endif
1799 }
1800 
1801 static inline void init_task_pid_links(struct task_struct *task)
1802 {
1803 	enum pid_type type;
1804 
1805 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1806 		INIT_HLIST_NODE(&task->pid_links[type]);
1807 }
1808 
1809 static inline void
1810 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1811 {
1812 	if (type == PIDTYPE_PID)
1813 		task->thread_pid = pid;
1814 	else
1815 		task->signal->pids[type] = pid;
1816 }
1817 
1818 static inline void rcu_copy_process(struct task_struct *p)
1819 {
1820 #ifdef CONFIG_PREEMPT_RCU
1821 	p->rcu_read_lock_nesting = 0;
1822 	p->rcu_read_unlock_special.s = 0;
1823 	p->rcu_blocked_node = NULL;
1824 	INIT_LIST_HEAD(&p->rcu_node_entry);
1825 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1826 #ifdef CONFIG_TASKS_RCU
1827 	p->rcu_tasks_holdout = false;
1828 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1829 	p->rcu_tasks_idle_cpu = -1;
1830 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1831 #endif /* #ifdef CONFIG_TASKS_RCU */
1832 #ifdef CONFIG_TASKS_TRACE_RCU
1833 	p->trc_reader_nesting = 0;
1834 	p->trc_reader_special.s = 0;
1835 	INIT_LIST_HEAD(&p->trc_holdout_list);
1836 	INIT_LIST_HEAD(&p->trc_blkd_node);
1837 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1838 }
1839 
1840 /**
1841  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1842  * @pid:   the struct pid for which to create a pidfd
1843  * @flags: flags of the new @pidfd
1844  * @ret_file: return the new pidfs file
1845  *
1846  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1847  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1848  *
1849  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
1850  * task identified by @pid must be a thread-group leader.
1851  *
1852  * If this function returns successfully the caller is responsible to either
1853  * call fd_install() passing the returned pidfd and pidfd file as arguments in
1854  * order to install the pidfd into its file descriptor table or they must use
1855  * put_unused_fd() and fput() on the returned pidfd and pidfd file
1856  * respectively.
1857  *
1858  * This function is useful when a pidfd must already be reserved but there
1859  * might still be points of failure afterwards and the caller wants to ensure
1860  * that no pidfd is leaked into its file descriptor table.
1861  *
1862  * Return: On success, a reserved pidfd is returned from the function and a new
1863  *         pidfd file is returned in the last argument to the function. On
1864  *         error, a negative error code is returned from the function and the
1865  *         last argument remains unchanged.
1866  */
1867 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file)
1868 {
1869 	struct file *pidfs_file;
1870 
1871 	/*
1872 	 * PIDFD_STALE is only allowed to be passed if the caller knows
1873 	 * that @pid is already registered in pidfs and thus
1874 	 * PIDFD_INFO_EXIT information is guaranteed to be available.
1875 	 */
1876 	if (!(flags & PIDFD_STALE)) {
1877 		/*
1878 		 * While holding the pidfd waitqueue lock removing the
1879 		 * task linkage for the thread-group leader pid
1880 		 * (PIDTYPE_TGID) isn't possible. Thus, if there's still
1881 		 * task linkage for PIDTYPE_PID not having thread-group
1882 		 * leader linkage for the pid means it wasn't a
1883 		 * thread-group leader in the first place.
1884 		 */
1885 		guard(spinlock_irq)(&pid->wait_pidfd.lock);
1886 
1887 		/* Task has already been reaped. */
1888 		if (!pid_has_task(pid, PIDTYPE_PID))
1889 			return -ESRCH;
1890 		/*
1891 		 * If this struct pid isn't used as a thread-group
1892 		 * leader but the caller requested to create a
1893 		 * thread-group leader pidfd then report ENOENT.
1894 		 */
1895 		if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID))
1896 			return -ENOENT;
1897 	}
1898 
1899 	CLASS(get_unused_fd, pidfd)(O_CLOEXEC);
1900 	if (pidfd < 0)
1901 		return pidfd;
1902 
1903 	pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR);
1904 	if (IS_ERR(pidfs_file))
1905 		return PTR_ERR(pidfs_file);
1906 
1907 	*ret_file = pidfs_file;
1908 	return take_fd(pidfd);
1909 }
1910 
1911 static void __delayed_free_task(struct rcu_head *rhp)
1912 {
1913 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1914 
1915 	free_task(tsk);
1916 }
1917 
1918 static __always_inline void delayed_free_task(struct task_struct *tsk)
1919 {
1920 	if (IS_ENABLED(CONFIG_MEMCG))
1921 		call_rcu(&tsk->rcu, __delayed_free_task);
1922 	else
1923 		free_task(tsk);
1924 }
1925 
1926 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1927 {
1928 	/* Skip if kernel thread */
1929 	if (!tsk->mm)
1930 		return;
1931 
1932 	/* Skip if spawning a thread or using vfork */
1933 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1934 		return;
1935 
1936 	/* We need to synchronize with __set_oom_adj */
1937 	mutex_lock(&oom_adj_mutex);
1938 	mm_flags_set(MMF_MULTIPROCESS, tsk->mm);
1939 	/* Update the values in case they were changed after copy_signal */
1940 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1941 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1942 	mutex_unlock(&oom_adj_mutex);
1943 }
1944 
1945 #ifdef CONFIG_RV
1946 static void rv_task_fork(struct task_struct *p)
1947 {
1948 	memset(&p->rv, 0, sizeof(p->rv));
1949 }
1950 #else
1951 #define rv_task_fork(p) do {} while (0)
1952 #endif
1953 
1954 static bool need_futex_hash_allocate_default(u64 clone_flags)
1955 {
1956 	if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM))
1957 		return false;
1958 	return true;
1959 }
1960 
1961 /*
1962  * This creates a new process as a copy of the old one,
1963  * but does not actually start it yet.
1964  *
1965  * It copies the registers, and all the appropriate
1966  * parts of the process environment (as per the clone
1967  * flags). The actual kick-off is left to the caller.
1968  */
1969 __latent_entropy struct task_struct *copy_process(
1970 					struct pid *pid,
1971 					int trace,
1972 					int node,
1973 					struct kernel_clone_args *args)
1974 {
1975 	int pidfd = -1, retval;
1976 	struct task_struct *p;
1977 	struct multiprocess_signals delayed;
1978 	struct file *pidfile = NULL;
1979 	const u64 clone_flags = args->flags;
1980 	struct nsproxy *nsp = current->nsproxy;
1981 
1982 	/*
1983 	 * Don't allow sharing the root directory with processes in a different
1984 	 * namespace
1985 	 */
1986 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1987 		return ERR_PTR(-EINVAL);
1988 
1989 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1990 		return ERR_PTR(-EINVAL);
1991 
1992 	/*
1993 	 * Thread groups must share signals as well, and detached threads
1994 	 * can only be started up within the thread group.
1995 	 */
1996 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1997 		return ERR_PTR(-EINVAL);
1998 
1999 	/*
2000 	 * Shared signal handlers imply shared VM. By way of the above,
2001 	 * thread groups also imply shared VM. Blocking this case allows
2002 	 * for various simplifications in other code.
2003 	 */
2004 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2005 		return ERR_PTR(-EINVAL);
2006 
2007 	/*
2008 	 * Siblings of global init remain as zombies on exit since they are
2009 	 * not reaped by their parent (swapper). To solve this and to avoid
2010 	 * multi-rooted process trees, prevent global and container-inits
2011 	 * from creating siblings.
2012 	 */
2013 	if ((clone_flags & CLONE_PARENT) &&
2014 				current->signal->flags & SIGNAL_UNKILLABLE)
2015 		return ERR_PTR(-EINVAL);
2016 
2017 	/*
2018 	 * If the new process will be in a different pid or user namespace
2019 	 * do not allow it to share a thread group with the forking task.
2020 	 */
2021 	if (clone_flags & CLONE_THREAD) {
2022 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2023 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2024 			return ERR_PTR(-EINVAL);
2025 	}
2026 
2027 	if (clone_flags & CLONE_PIDFD) {
2028 		/*
2029 		 * - CLONE_DETACHED is blocked so that we can potentially
2030 		 *   reuse it later for CLONE_PIDFD.
2031 		 */
2032 		if (clone_flags & CLONE_DETACHED)
2033 			return ERR_PTR(-EINVAL);
2034 	}
2035 
2036 	/*
2037 	 * Force any signals received before this point to be delivered
2038 	 * before the fork happens.  Collect up signals sent to multiple
2039 	 * processes that happen during the fork and delay them so that
2040 	 * they appear to happen after the fork.
2041 	 */
2042 	sigemptyset(&delayed.signal);
2043 	INIT_HLIST_NODE(&delayed.node);
2044 
2045 	spin_lock_irq(&current->sighand->siglock);
2046 	if (!(clone_flags & CLONE_THREAD))
2047 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2048 	recalc_sigpending();
2049 	spin_unlock_irq(&current->sighand->siglock);
2050 	retval = -ERESTARTNOINTR;
2051 	if (task_sigpending(current))
2052 		goto fork_out;
2053 
2054 	retval = -ENOMEM;
2055 	p = dup_task_struct(current, node);
2056 	if (!p)
2057 		goto fork_out;
2058 	p->flags &= ~PF_KTHREAD;
2059 	if (args->kthread)
2060 		p->flags |= PF_KTHREAD;
2061 	if (args->user_worker) {
2062 		/*
2063 		 * Mark us a user worker, and block any signal that isn't
2064 		 * fatal or STOP
2065 		 */
2066 		p->flags |= PF_USER_WORKER;
2067 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2068 	}
2069 	if (args->io_thread)
2070 		p->flags |= PF_IO_WORKER;
2071 
2072 	if (args->name)
2073 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2074 
2075 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2076 	/*
2077 	 * Clear TID on mm_release()?
2078 	 */
2079 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2080 
2081 	ftrace_graph_init_task(p);
2082 
2083 	rt_mutex_init_task(p);
2084 
2085 	lockdep_assert_irqs_enabled();
2086 #ifdef CONFIG_PROVE_LOCKING
2087 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2088 #endif
2089 	retval = copy_creds(p, clone_flags);
2090 	if (retval < 0)
2091 		goto bad_fork_free;
2092 
2093 	retval = -EAGAIN;
2094 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2095 		if (p->real_cred->user != INIT_USER &&
2096 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2097 			goto bad_fork_cleanup_count;
2098 	}
2099 	current->flags &= ~PF_NPROC_EXCEEDED;
2100 
2101 	/*
2102 	 * If multiple threads are within copy_process(), then this check
2103 	 * triggers too late. This doesn't hurt, the check is only there
2104 	 * to stop root fork bombs.
2105 	 */
2106 	retval = -EAGAIN;
2107 	if (data_race(nr_threads >= max_threads))
2108 		goto bad_fork_cleanup_count;
2109 
2110 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2111 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2112 	p->flags |= PF_FORKNOEXEC;
2113 	INIT_LIST_HEAD(&p->children);
2114 	INIT_LIST_HEAD(&p->sibling);
2115 	rcu_copy_process(p);
2116 	p->vfork_done = NULL;
2117 	spin_lock_init(&p->alloc_lock);
2118 
2119 	init_sigpending(&p->pending);
2120 
2121 	p->utime = p->stime = p->gtime = 0;
2122 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2123 	p->utimescaled = p->stimescaled = 0;
2124 #endif
2125 	prev_cputime_init(&p->prev_cputime);
2126 
2127 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2128 	seqcount_init(&p->vtime.seqcount);
2129 	p->vtime.starttime = 0;
2130 	p->vtime.state = VTIME_INACTIVE;
2131 #endif
2132 
2133 #ifdef CONFIG_IO_URING
2134 	p->io_uring = NULL;
2135 #endif
2136 
2137 	p->default_timer_slack_ns = current->timer_slack_ns;
2138 
2139 #ifdef CONFIG_PSI
2140 	p->psi_flags = 0;
2141 #endif
2142 
2143 	task_io_accounting_init(&p->ioac);
2144 	acct_clear_integrals(p);
2145 
2146 	posix_cputimers_init(&p->posix_cputimers);
2147 	tick_dep_init_task(p);
2148 
2149 	p->io_context = NULL;
2150 	audit_set_context(p, NULL);
2151 	cgroup_fork(p);
2152 	if (args->kthread) {
2153 		if (!set_kthread_struct(p))
2154 			goto bad_fork_cleanup_delayacct;
2155 	}
2156 #ifdef CONFIG_NUMA
2157 	p->mempolicy = mpol_dup(p->mempolicy);
2158 	if (IS_ERR(p->mempolicy)) {
2159 		retval = PTR_ERR(p->mempolicy);
2160 		p->mempolicy = NULL;
2161 		goto bad_fork_cleanup_delayacct;
2162 	}
2163 #endif
2164 #ifdef CONFIG_CPUSETS
2165 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2166 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2167 #endif
2168 #ifdef CONFIG_TRACE_IRQFLAGS
2169 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2170 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2171 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2172 	p->softirqs_enabled		= 1;
2173 	p->softirq_context		= 0;
2174 #endif
2175 
2176 	p->pagefault_disabled = 0;
2177 
2178 	lockdep_init_task(p);
2179 
2180 	p->blocked_on = NULL; /* not blocked yet */
2181 
2182 #ifdef CONFIG_BCACHE
2183 	p->sequential_io	= 0;
2184 	p->sequential_io_avg	= 0;
2185 #endif
2186 #ifdef CONFIG_BPF_SYSCALL
2187 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2188 	p->bpf_ctx = NULL;
2189 #endif
2190 
2191 	unwind_task_init(p);
2192 
2193 	/* Perform scheduler related setup. Assign this task to a CPU. */
2194 	retval = sched_fork(clone_flags, p);
2195 	if (retval)
2196 		goto bad_fork_cleanup_policy;
2197 
2198 	retval = perf_event_init_task(p, clone_flags);
2199 	if (retval)
2200 		goto bad_fork_sched_cancel_fork;
2201 	retval = audit_alloc(p);
2202 	if (retval)
2203 		goto bad_fork_cleanup_perf;
2204 	/* copy all the process information */
2205 	shm_init_task(p);
2206 	retval = security_task_alloc(p, clone_flags);
2207 	if (retval)
2208 		goto bad_fork_cleanup_audit;
2209 	retval = copy_semundo(clone_flags, p);
2210 	if (retval)
2211 		goto bad_fork_cleanup_security;
2212 	retval = copy_files(clone_flags, p, args->no_files);
2213 	if (retval)
2214 		goto bad_fork_cleanup_semundo;
2215 	retval = copy_fs(clone_flags, p);
2216 	if (retval)
2217 		goto bad_fork_cleanup_files;
2218 	retval = copy_sighand(clone_flags, p);
2219 	if (retval)
2220 		goto bad_fork_cleanup_fs;
2221 	retval = copy_signal(clone_flags, p);
2222 	if (retval)
2223 		goto bad_fork_cleanup_sighand;
2224 	retval = copy_mm(clone_flags, p);
2225 	if (retval)
2226 		goto bad_fork_cleanup_signal;
2227 	retval = copy_namespaces(clone_flags, p);
2228 	if (retval)
2229 		goto bad_fork_cleanup_mm;
2230 	retval = copy_io(clone_flags, p);
2231 	if (retval)
2232 		goto bad_fork_cleanup_namespaces;
2233 	retval = copy_thread(p, args);
2234 	if (retval)
2235 		goto bad_fork_cleanup_io;
2236 
2237 	stackleak_task_init(p);
2238 
2239 	if (pid != &init_struct_pid) {
2240 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2241 				args->set_tid_size);
2242 		if (IS_ERR(pid)) {
2243 			retval = PTR_ERR(pid);
2244 			goto bad_fork_cleanup_thread;
2245 		}
2246 	}
2247 
2248 	/*
2249 	 * This has to happen after we've potentially unshared the file
2250 	 * descriptor table (so that the pidfd doesn't leak into the child
2251 	 * if the fd table isn't shared).
2252 	 */
2253 	if (clone_flags & CLONE_PIDFD) {
2254 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2255 
2256 		/*
2257 		 * Note that no task has been attached to @pid yet indicate
2258 		 * that via CLONE_PIDFD.
2259 		 */
2260 		retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile);
2261 		if (retval < 0)
2262 			goto bad_fork_free_pid;
2263 		pidfd = retval;
2264 
2265 		retval = put_user(pidfd, args->pidfd);
2266 		if (retval)
2267 			goto bad_fork_put_pidfd;
2268 	}
2269 
2270 #ifdef CONFIG_BLOCK
2271 	p->plug = NULL;
2272 #endif
2273 	futex_init_task(p);
2274 
2275 	/*
2276 	 * sigaltstack should be cleared when sharing the same VM
2277 	 */
2278 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2279 		sas_ss_reset(p);
2280 
2281 	/*
2282 	 * Syscall tracing and stepping should be turned off in the
2283 	 * child regardless of CLONE_PTRACE.
2284 	 */
2285 	user_disable_single_step(p);
2286 	clear_task_syscall_work(p, SYSCALL_TRACE);
2287 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2288 	clear_task_syscall_work(p, SYSCALL_EMU);
2289 #endif
2290 	clear_tsk_latency_tracing(p);
2291 
2292 	/* ok, now we should be set up.. */
2293 	p->pid = pid_nr(pid);
2294 	if (clone_flags & CLONE_THREAD) {
2295 		p->group_leader = current->group_leader;
2296 		p->tgid = current->tgid;
2297 	} else {
2298 		p->group_leader = p;
2299 		p->tgid = p->pid;
2300 	}
2301 
2302 	p->nr_dirtied = 0;
2303 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2304 	p->dirty_paused_when = 0;
2305 
2306 	p->pdeath_signal = 0;
2307 	p->task_works = NULL;
2308 	clear_posix_cputimers_work(p);
2309 
2310 #ifdef CONFIG_KRETPROBES
2311 	p->kretprobe_instances.first = NULL;
2312 #endif
2313 #ifdef CONFIG_RETHOOK
2314 	p->rethooks.first = NULL;
2315 #endif
2316 
2317 	/*
2318 	 * Ensure that the cgroup subsystem policies allow the new process to be
2319 	 * forked. It should be noted that the new process's css_set can be changed
2320 	 * between here and cgroup_post_fork() if an organisation operation is in
2321 	 * progress.
2322 	 */
2323 	retval = cgroup_can_fork(p, args);
2324 	if (retval)
2325 		goto bad_fork_put_pidfd;
2326 
2327 	/*
2328 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2329 	 * the new task on the correct runqueue. All this *before* the task
2330 	 * becomes visible.
2331 	 *
2332 	 * This isn't part of ->can_fork() because while the re-cloning is
2333 	 * cgroup specific, it unconditionally needs to place the task on a
2334 	 * runqueue.
2335 	 */
2336 	retval = sched_cgroup_fork(p, args);
2337 	if (retval)
2338 		goto bad_fork_cancel_cgroup;
2339 
2340 	/*
2341 	 * Allocate a default futex hash for the user process once the first
2342 	 * thread spawns.
2343 	 */
2344 	if (need_futex_hash_allocate_default(clone_flags)) {
2345 		retval = futex_hash_allocate_default();
2346 		if (retval)
2347 			goto bad_fork_cancel_cgroup;
2348 		/*
2349 		 * If we fail beyond this point we don't free the allocated
2350 		 * futex hash map. We assume that another thread will be created
2351 		 * and makes use of it. The hash map will be freed once the main
2352 		 * thread terminates.
2353 		 */
2354 	}
2355 	/*
2356 	 * From this point on we must avoid any synchronous user-space
2357 	 * communication until we take the tasklist-lock. In particular, we do
2358 	 * not want user-space to be able to predict the process start-time by
2359 	 * stalling fork(2) after we recorded the start_time but before it is
2360 	 * visible to the system.
2361 	 */
2362 
2363 	p->start_time = ktime_get_ns();
2364 	p->start_boottime = ktime_get_boottime_ns();
2365 
2366 	/*
2367 	 * Make it visible to the rest of the system, but dont wake it up yet.
2368 	 * Need tasklist lock for parent etc handling!
2369 	 */
2370 	write_lock_irq(&tasklist_lock);
2371 
2372 	/* CLONE_PARENT re-uses the old parent */
2373 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2374 		p->real_parent = current->real_parent;
2375 		p->parent_exec_id = current->parent_exec_id;
2376 		if (clone_flags & CLONE_THREAD)
2377 			p->exit_signal = -1;
2378 		else
2379 			p->exit_signal = current->group_leader->exit_signal;
2380 	} else {
2381 		p->real_parent = current;
2382 		p->parent_exec_id = current->self_exec_id;
2383 		p->exit_signal = args->exit_signal;
2384 	}
2385 
2386 	klp_copy_process(p);
2387 
2388 	sched_core_fork(p);
2389 
2390 	spin_lock(&current->sighand->siglock);
2391 
2392 	rv_task_fork(p);
2393 
2394 	rseq_fork(p, clone_flags);
2395 
2396 	/* Don't start children in a dying pid namespace */
2397 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2398 		retval = -ENOMEM;
2399 		goto bad_fork_core_free;
2400 	}
2401 
2402 	/* Let kill terminate clone/fork in the middle */
2403 	if (fatal_signal_pending(current)) {
2404 		retval = -EINTR;
2405 		goto bad_fork_core_free;
2406 	}
2407 
2408 	/* No more failure paths after this point. */
2409 
2410 	/*
2411 	 * Copy seccomp details explicitly here, in case they were changed
2412 	 * before holding sighand lock.
2413 	 */
2414 	copy_seccomp(p);
2415 
2416 	init_task_pid_links(p);
2417 	if (likely(p->pid)) {
2418 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2419 
2420 		init_task_pid(p, PIDTYPE_PID, pid);
2421 		if (thread_group_leader(p)) {
2422 			init_task_pid(p, PIDTYPE_TGID, pid);
2423 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2424 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2425 
2426 			if (is_child_reaper(pid)) {
2427 				ns_of_pid(pid)->child_reaper = p;
2428 				p->signal->flags |= SIGNAL_UNKILLABLE;
2429 			}
2430 			p->signal->shared_pending.signal = delayed.signal;
2431 			p->signal->tty = tty_kref_get(current->signal->tty);
2432 			/*
2433 			 * Inherit has_child_subreaper flag under the same
2434 			 * tasklist_lock with adding child to the process tree
2435 			 * for propagate_has_child_subreaper optimization.
2436 			 */
2437 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2438 							 p->real_parent->signal->is_child_subreaper;
2439 			list_add_tail(&p->sibling, &p->real_parent->children);
2440 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2441 			attach_pid(p, PIDTYPE_TGID);
2442 			attach_pid(p, PIDTYPE_PGID);
2443 			attach_pid(p, PIDTYPE_SID);
2444 			__this_cpu_inc(process_counts);
2445 		} else {
2446 			current->signal->nr_threads++;
2447 			current->signal->quick_threads++;
2448 			atomic_inc(&current->signal->live);
2449 			refcount_inc(&current->signal->sigcnt);
2450 			task_join_group_stop(p);
2451 			list_add_tail_rcu(&p->thread_node,
2452 					  &p->signal->thread_head);
2453 		}
2454 		attach_pid(p, PIDTYPE_PID);
2455 		nr_threads++;
2456 	}
2457 	total_forks++;
2458 	hlist_del_init(&delayed.node);
2459 	spin_unlock(&current->sighand->siglock);
2460 	syscall_tracepoint_update(p);
2461 	write_unlock_irq(&tasklist_lock);
2462 
2463 	if (pidfile)
2464 		fd_install(pidfd, pidfile);
2465 
2466 	proc_fork_connector(p);
2467 	sched_post_fork(p);
2468 	cgroup_post_fork(p, args);
2469 	perf_event_fork(p);
2470 
2471 	trace_task_newtask(p, clone_flags);
2472 	uprobe_copy_process(p, clone_flags);
2473 	user_events_fork(p, clone_flags);
2474 
2475 	copy_oom_score_adj(clone_flags, p);
2476 
2477 	return p;
2478 
2479 bad_fork_core_free:
2480 	sched_core_free(p);
2481 	spin_unlock(&current->sighand->siglock);
2482 	write_unlock_irq(&tasklist_lock);
2483 bad_fork_cancel_cgroup:
2484 	cgroup_cancel_fork(p, args);
2485 bad_fork_put_pidfd:
2486 	if (clone_flags & CLONE_PIDFD) {
2487 		fput(pidfile);
2488 		put_unused_fd(pidfd);
2489 	}
2490 bad_fork_free_pid:
2491 	if (pid != &init_struct_pid)
2492 		free_pid(pid);
2493 bad_fork_cleanup_thread:
2494 	exit_thread(p);
2495 bad_fork_cleanup_io:
2496 	if (p->io_context)
2497 		exit_io_context(p);
2498 bad_fork_cleanup_namespaces:
2499 	exit_task_namespaces(p);
2500 bad_fork_cleanup_mm:
2501 	if (p->mm) {
2502 		mm_clear_owner(p->mm, p);
2503 		mmput(p->mm);
2504 	}
2505 bad_fork_cleanup_signal:
2506 	if (!(clone_flags & CLONE_THREAD))
2507 		free_signal_struct(p->signal);
2508 bad_fork_cleanup_sighand:
2509 	__cleanup_sighand(p->sighand);
2510 bad_fork_cleanup_fs:
2511 	exit_fs(p); /* blocking */
2512 bad_fork_cleanup_files:
2513 	exit_files(p); /* blocking */
2514 bad_fork_cleanup_semundo:
2515 	exit_sem(p);
2516 bad_fork_cleanup_security:
2517 	security_task_free(p);
2518 bad_fork_cleanup_audit:
2519 	audit_free(p);
2520 bad_fork_cleanup_perf:
2521 	perf_event_free_task(p);
2522 bad_fork_sched_cancel_fork:
2523 	sched_cancel_fork(p);
2524 bad_fork_cleanup_policy:
2525 	lockdep_free_task(p);
2526 #ifdef CONFIG_NUMA
2527 	mpol_put(p->mempolicy);
2528 #endif
2529 bad_fork_cleanup_delayacct:
2530 	delayacct_tsk_free(p);
2531 bad_fork_cleanup_count:
2532 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2533 	exit_creds(p);
2534 bad_fork_free:
2535 	WRITE_ONCE(p->__state, TASK_DEAD);
2536 	exit_task_stack_account(p);
2537 	put_task_stack(p);
2538 	delayed_free_task(p);
2539 fork_out:
2540 	spin_lock_irq(&current->sighand->siglock);
2541 	hlist_del_init(&delayed.node);
2542 	spin_unlock_irq(&current->sighand->siglock);
2543 	return ERR_PTR(retval);
2544 }
2545 
2546 static inline void init_idle_pids(struct task_struct *idle)
2547 {
2548 	enum pid_type type;
2549 
2550 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2551 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2552 		init_task_pid(idle, type, &init_struct_pid);
2553 	}
2554 }
2555 
2556 static int idle_dummy(void *dummy)
2557 {
2558 	/* This function is never called */
2559 	return 0;
2560 }
2561 
2562 struct task_struct * __init fork_idle(int cpu)
2563 {
2564 	struct task_struct *task;
2565 	struct kernel_clone_args args = {
2566 		.flags		= CLONE_VM,
2567 		.fn		= &idle_dummy,
2568 		.fn_arg		= NULL,
2569 		.kthread	= 1,
2570 		.idle		= 1,
2571 	};
2572 
2573 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2574 	if (!IS_ERR(task)) {
2575 		init_idle_pids(task);
2576 		init_idle(task, cpu);
2577 	}
2578 
2579 	return task;
2580 }
2581 
2582 /*
2583  * This is like kernel_clone(), but shaved down and tailored to just
2584  * creating io_uring workers. It returns a created task, or an error pointer.
2585  * The returned task is inactive, and the caller must fire it up through
2586  * wake_up_new_task(p). All signals are blocked in the created task.
2587  */
2588 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2589 {
2590 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2591 			      CLONE_IO|CLONE_VM|CLONE_UNTRACED;
2592 	struct kernel_clone_args args = {
2593 		.flags		= flags,
2594 		.fn		= fn,
2595 		.fn_arg		= arg,
2596 		.io_thread	= 1,
2597 		.user_worker	= 1,
2598 	};
2599 
2600 	return copy_process(NULL, 0, node, &args);
2601 }
2602 
2603 /*
2604  *  Ok, this is the main fork-routine.
2605  *
2606  * It copies the process, and if successful kick-starts
2607  * it and waits for it to finish using the VM if required.
2608  *
2609  * args->exit_signal is expected to be checked for sanity by the caller.
2610  */
2611 pid_t kernel_clone(struct kernel_clone_args *args)
2612 {
2613 	u64 clone_flags = args->flags;
2614 	struct completion vfork;
2615 	struct pid *pid;
2616 	struct task_struct *p;
2617 	int trace = 0;
2618 	pid_t nr;
2619 
2620 	/*
2621 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2622 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2623 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2624 	 * field in struct clone_args and it still doesn't make sense to have
2625 	 * them both point at the same memory location. Performing this check
2626 	 * here has the advantage that we don't need to have a separate helper
2627 	 * to check for legacy clone().
2628 	 */
2629 	if ((clone_flags & CLONE_PIDFD) &&
2630 	    (clone_flags & CLONE_PARENT_SETTID) &&
2631 	    (args->pidfd == args->parent_tid))
2632 		return -EINVAL;
2633 
2634 	/*
2635 	 * Determine whether and which event to report to ptracer.  When
2636 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2637 	 * requested, no event is reported; otherwise, report if the event
2638 	 * for the type of forking is enabled.
2639 	 */
2640 	if (!(clone_flags & CLONE_UNTRACED)) {
2641 		if (clone_flags & CLONE_VFORK)
2642 			trace = PTRACE_EVENT_VFORK;
2643 		else if (args->exit_signal != SIGCHLD)
2644 			trace = PTRACE_EVENT_CLONE;
2645 		else
2646 			trace = PTRACE_EVENT_FORK;
2647 
2648 		if (likely(!ptrace_event_enabled(current, trace)))
2649 			trace = 0;
2650 	}
2651 
2652 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2653 	add_latent_entropy();
2654 
2655 	if (IS_ERR(p))
2656 		return PTR_ERR(p);
2657 
2658 	/*
2659 	 * Do this prior waking up the new thread - the thread pointer
2660 	 * might get invalid after that point, if the thread exits quickly.
2661 	 */
2662 	trace_sched_process_fork(current, p);
2663 
2664 	pid = get_task_pid(p, PIDTYPE_PID);
2665 	nr = pid_vnr(pid);
2666 
2667 	if (clone_flags & CLONE_PARENT_SETTID)
2668 		put_user(nr, args->parent_tid);
2669 
2670 	if (clone_flags & CLONE_VFORK) {
2671 		p->vfork_done = &vfork;
2672 		init_completion(&vfork);
2673 		get_task_struct(p);
2674 	}
2675 
2676 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2677 		/* lock the task to synchronize with memcg migration */
2678 		task_lock(p);
2679 		lru_gen_add_mm(p->mm);
2680 		task_unlock(p);
2681 	}
2682 
2683 	wake_up_new_task(p);
2684 
2685 	/* forking complete and child started to run, tell ptracer */
2686 	if (unlikely(trace))
2687 		ptrace_event_pid(trace, pid);
2688 
2689 	if (clone_flags & CLONE_VFORK) {
2690 		if (!wait_for_vfork_done(p, &vfork))
2691 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2692 	}
2693 
2694 	put_pid(pid);
2695 	return nr;
2696 }
2697 
2698 /*
2699  * Create a kernel thread.
2700  */
2701 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2702 		    unsigned long flags)
2703 {
2704 	struct kernel_clone_args args = {
2705 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2706 		.exit_signal	= (flags & CSIGNAL),
2707 		.fn		= fn,
2708 		.fn_arg		= arg,
2709 		.name		= name,
2710 		.kthread	= 1,
2711 	};
2712 
2713 	return kernel_clone(&args);
2714 }
2715 
2716 /*
2717  * Create a user mode thread.
2718  */
2719 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2720 {
2721 	struct kernel_clone_args args = {
2722 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2723 		.exit_signal	= (flags & CSIGNAL),
2724 		.fn		= fn,
2725 		.fn_arg		= arg,
2726 	};
2727 
2728 	return kernel_clone(&args);
2729 }
2730 
2731 #ifdef __ARCH_WANT_SYS_FORK
2732 SYSCALL_DEFINE0(fork)
2733 {
2734 #ifdef CONFIG_MMU
2735 	struct kernel_clone_args args = {
2736 		.exit_signal = SIGCHLD,
2737 	};
2738 
2739 	return kernel_clone(&args);
2740 #else
2741 	/* can not support in nommu mode */
2742 	return -EINVAL;
2743 #endif
2744 }
2745 #endif
2746 
2747 #ifdef __ARCH_WANT_SYS_VFORK
2748 SYSCALL_DEFINE0(vfork)
2749 {
2750 	struct kernel_clone_args args = {
2751 		.flags		= CLONE_VFORK | CLONE_VM,
2752 		.exit_signal	= SIGCHLD,
2753 	};
2754 
2755 	return kernel_clone(&args);
2756 }
2757 #endif
2758 
2759 #ifdef __ARCH_WANT_SYS_CLONE
2760 #ifdef CONFIG_CLONE_BACKWARDS
2761 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2762 		 int __user *, parent_tidptr,
2763 		 unsigned long, tls,
2764 		 int __user *, child_tidptr)
2765 #elif defined(CONFIG_CLONE_BACKWARDS2)
2766 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2767 		 int __user *, parent_tidptr,
2768 		 int __user *, child_tidptr,
2769 		 unsigned long, tls)
2770 #elif defined(CONFIG_CLONE_BACKWARDS3)
2771 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2772 		int, stack_size,
2773 		int __user *, parent_tidptr,
2774 		int __user *, child_tidptr,
2775 		unsigned long, tls)
2776 #else
2777 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2778 		 int __user *, parent_tidptr,
2779 		 int __user *, child_tidptr,
2780 		 unsigned long, tls)
2781 #endif
2782 {
2783 	struct kernel_clone_args args = {
2784 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2785 		.pidfd		= parent_tidptr,
2786 		.child_tid	= child_tidptr,
2787 		.parent_tid	= parent_tidptr,
2788 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2789 		.stack		= newsp,
2790 		.tls		= tls,
2791 	};
2792 
2793 	return kernel_clone(&args);
2794 }
2795 #endif
2796 
2797 static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2798 					      struct clone_args __user *uargs,
2799 					      size_t usize)
2800 {
2801 	int err;
2802 	struct clone_args args;
2803 	pid_t *kset_tid = kargs->set_tid;
2804 
2805 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2806 		     CLONE_ARGS_SIZE_VER0);
2807 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2808 		     CLONE_ARGS_SIZE_VER1);
2809 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2810 		     CLONE_ARGS_SIZE_VER2);
2811 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2812 
2813 	if (unlikely(usize > PAGE_SIZE))
2814 		return -E2BIG;
2815 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2816 		return -EINVAL;
2817 
2818 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2819 	if (err)
2820 		return err;
2821 
2822 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2823 		return -EINVAL;
2824 
2825 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2826 		return -EINVAL;
2827 
2828 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2829 		return -EINVAL;
2830 
2831 	/*
2832 	 * Verify that higher 32bits of exit_signal are unset and that
2833 	 * it is a valid signal
2834 	 */
2835 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2836 		     !valid_signal(args.exit_signal)))
2837 		return -EINVAL;
2838 
2839 	if ((args.flags & CLONE_INTO_CGROUP) &&
2840 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2841 		return -EINVAL;
2842 
2843 	*kargs = (struct kernel_clone_args){
2844 		.flags		= args.flags,
2845 		.pidfd		= u64_to_user_ptr(args.pidfd),
2846 		.child_tid	= u64_to_user_ptr(args.child_tid),
2847 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2848 		.exit_signal	= args.exit_signal,
2849 		.stack		= args.stack,
2850 		.stack_size	= args.stack_size,
2851 		.tls		= args.tls,
2852 		.set_tid_size	= args.set_tid_size,
2853 		.cgroup		= args.cgroup,
2854 	};
2855 
2856 	if (args.set_tid &&
2857 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2858 			(kargs->set_tid_size * sizeof(pid_t))))
2859 		return -EFAULT;
2860 
2861 	kargs->set_tid = kset_tid;
2862 
2863 	return 0;
2864 }
2865 
2866 /**
2867  * clone3_stack_valid - check and prepare stack
2868  * @kargs: kernel clone args
2869  *
2870  * Verify that the stack arguments userspace gave us are sane.
2871  * In addition, set the stack direction for userspace since it's easy for us to
2872  * determine.
2873  */
2874 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2875 {
2876 	if (kargs->stack == 0) {
2877 		if (kargs->stack_size > 0)
2878 			return false;
2879 	} else {
2880 		if (kargs->stack_size == 0)
2881 			return false;
2882 
2883 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2884 			return false;
2885 
2886 #if !defined(CONFIG_STACK_GROWSUP)
2887 		kargs->stack += kargs->stack_size;
2888 #endif
2889 	}
2890 
2891 	return true;
2892 }
2893 
2894 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2895 {
2896 	/* Verify that no unknown flags are passed along. */
2897 	if (kargs->flags &
2898 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2899 		return false;
2900 
2901 	/*
2902 	 * - make the CLONE_DETACHED bit reusable for clone3
2903 	 * - make the CSIGNAL bits reusable for clone3
2904 	 */
2905 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2906 		return false;
2907 
2908 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2909 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2910 		return false;
2911 
2912 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2913 	    kargs->exit_signal)
2914 		return false;
2915 
2916 	if (!clone3_stack_valid(kargs))
2917 		return false;
2918 
2919 	return true;
2920 }
2921 
2922 /**
2923  * sys_clone3 - create a new process with specific properties
2924  * @uargs: argument structure
2925  * @size:  size of @uargs
2926  *
2927  * clone3() is the extensible successor to clone()/clone2().
2928  * It takes a struct as argument that is versioned by its size.
2929  *
2930  * Return: On success, a positive PID for the child process.
2931  *         On error, a negative errno number.
2932  */
2933 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2934 {
2935 	int err;
2936 
2937 	struct kernel_clone_args kargs;
2938 	pid_t set_tid[MAX_PID_NS_LEVEL];
2939 
2940 #ifdef __ARCH_BROKEN_SYS_CLONE3
2941 #warning clone3() entry point is missing, please fix
2942 	return -ENOSYS;
2943 #endif
2944 
2945 	kargs.set_tid = set_tid;
2946 
2947 	err = copy_clone_args_from_user(&kargs, uargs, size);
2948 	if (err)
2949 		return err;
2950 
2951 	if (!clone3_args_valid(&kargs))
2952 		return -EINVAL;
2953 
2954 	return kernel_clone(&kargs);
2955 }
2956 
2957 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2958 {
2959 	struct task_struct *leader, *parent, *child;
2960 	int res;
2961 
2962 	read_lock(&tasklist_lock);
2963 	leader = top = top->group_leader;
2964 down:
2965 	for_each_thread(leader, parent) {
2966 		list_for_each_entry(child, &parent->children, sibling) {
2967 			res = visitor(child, data);
2968 			if (res) {
2969 				if (res < 0)
2970 					goto out;
2971 				leader = child;
2972 				goto down;
2973 			}
2974 up:
2975 			;
2976 		}
2977 	}
2978 
2979 	if (leader != top) {
2980 		child = leader;
2981 		parent = child->real_parent;
2982 		leader = parent->group_leader;
2983 		goto up;
2984 	}
2985 out:
2986 	read_unlock(&tasklist_lock);
2987 }
2988 
2989 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2990 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2991 #endif
2992 
2993 static void sighand_ctor(void *data)
2994 {
2995 	struct sighand_struct *sighand = data;
2996 
2997 	spin_lock_init(&sighand->siglock);
2998 	init_waitqueue_head(&sighand->signalfd_wqh);
2999 }
3000 
3001 void __init mm_cache_init(void)
3002 {
3003 	unsigned int mm_size;
3004 
3005 	/*
3006 	 * The mm_cpumask is located at the end of mm_struct, and is
3007 	 * dynamically sized based on the maximum CPU number this system
3008 	 * can have, taking hotplug into account (nr_cpu_ids).
3009 	 */
3010 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3011 
3012 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3013 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3014 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3015 			offsetof(struct mm_struct, saved_auxv),
3016 			sizeof_field(struct mm_struct, saved_auxv),
3017 			NULL);
3018 }
3019 
3020 void __init proc_caches_init(void)
3021 {
3022 	sighand_cachep = kmem_cache_create("sighand_cache",
3023 			sizeof(struct sighand_struct), 0,
3024 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3025 			SLAB_ACCOUNT, sighand_ctor);
3026 	signal_cachep = kmem_cache_create("signal_cache",
3027 			sizeof(struct signal_struct), 0,
3028 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3029 			NULL);
3030 	files_cachep = kmem_cache_create("files_cache",
3031 			sizeof(struct files_struct), 0,
3032 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3033 			NULL);
3034 	fs_cachep = kmem_cache_create("fs_cache",
3035 			sizeof(struct fs_struct), 0,
3036 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3037 			NULL);
3038 	mmap_init();
3039 	nsproxy_cache_init();
3040 }
3041 
3042 /*
3043  * Check constraints on flags passed to the unshare system call.
3044  */
3045 static int check_unshare_flags(unsigned long unshare_flags)
3046 {
3047 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3048 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3049 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3050 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3051 				CLONE_NEWTIME))
3052 		return -EINVAL;
3053 	/*
3054 	 * Not implemented, but pretend it works if there is nothing
3055 	 * to unshare.  Note that unsharing the address space or the
3056 	 * signal handlers also need to unshare the signal queues (aka
3057 	 * CLONE_THREAD).
3058 	 */
3059 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3060 		if (!thread_group_empty(current))
3061 			return -EINVAL;
3062 	}
3063 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3064 		if (refcount_read(&current->sighand->count) > 1)
3065 			return -EINVAL;
3066 	}
3067 	if (unshare_flags & CLONE_VM) {
3068 		if (!current_is_single_threaded())
3069 			return -EINVAL;
3070 	}
3071 
3072 	return 0;
3073 }
3074 
3075 /*
3076  * Unshare the filesystem structure if it is being shared
3077  */
3078 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3079 {
3080 	struct fs_struct *fs = current->fs;
3081 
3082 	if (!(unshare_flags & CLONE_FS) || !fs)
3083 		return 0;
3084 
3085 	/* don't need lock here; in the worst case we'll do useless copy */
3086 	if (fs->users == 1)
3087 		return 0;
3088 
3089 	*new_fsp = copy_fs_struct(fs);
3090 	if (!*new_fsp)
3091 		return -ENOMEM;
3092 
3093 	return 0;
3094 }
3095 
3096 /*
3097  * Unshare file descriptor table if it is being shared
3098  */
3099 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3100 {
3101 	struct files_struct *fd = current->files;
3102 
3103 	if ((unshare_flags & CLONE_FILES) &&
3104 	    (fd && atomic_read(&fd->count) > 1)) {
3105 		fd = dup_fd(fd, NULL);
3106 		if (IS_ERR(fd))
3107 			return PTR_ERR(fd);
3108 		*new_fdp = fd;
3109 	}
3110 
3111 	return 0;
3112 }
3113 
3114 /*
3115  * unshare allows a process to 'unshare' part of the process
3116  * context which was originally shared using clone.  copy_*
3117  * functions used by kernel_clone() cannot be used here directly
3118  * because they modify an inactive task_struct that is being
3119  * constructed. Here we are modifying the current, active,
3120  * task_struct.
3121  */
3122 int ksys_unshare(unsigned long unshare_flags)
3123 {
3124 	struct fs_struct *fs, *new_fs = NULL;
3125 	struct files_struct *new_fd = NULL;
3126 	struct cred *new_cred = NULL;
3127 	struct nsproxy *new_nsproxy = NULL;
3128 	int do_sysvsem = 0;
3129 	int err;
3130 
3131 	/*
3132 	 * If unsharing a user namespace must also unshare the thread group
3133 	 * and unshare the filesystem root and working directories.
3134 	 */
3135 	if (unshare_flags & CLONE_NEWUSER)
3136 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3137 	/*
3138 	 * If unsharing vm, must also unshare signal handlers.
3139 	 */
3140 	if (unshare_flags & CLONE_VM)
3141 		unshare_flags |= CLONE_SIGHAND;
3142 	/*
3143 	 * If unsharing a signal handlers, must also unshare the signal queues.
3144 	 */
3145 	if (unshare_flags & CLONE_SIGHAND)
3146 		unshare_flags |= CLONE_THREAD;
3147 	/*
3148 	 * If unsharing namespace, must also unshare filesystem information.
3149 	 */
3150 	if (unshare_flags & CLONE_NEWNS)
3151 		unshare_flags |= CLONE_FS;
3152 
3153 	err = check_unshare_flags(unshare_flags);
3154 	if (err)
3155 		goto bad_unshare_out;
3156 	/*
3157 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3158 	 * to a new ipc namespace, the semaphore arrays from the old
3159 	 * namespace are unreachable.
3160 	 */
3161 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3162 		do_sysvsem = 1;
3163 	err = unshare_fs(unshare_flags, &new_fs);
3164 	if (err)
3165 		goto bad_unshare_out;
3166 	err = unshare_fd(unshare_flags, &new_fd);
3167 	if (err)
3168 		goto bad_unshare_cleanup_fs;
3169 	err = unshare_userns(unshare_flags, &new_cred);
3170 	if (err)
3171 		goto bad_unshare_cleanup_fd;
3172 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3173 					 new_cred, new_fs);
3174 	if (err)
3175 		goto bad_unshare_cleanup_cred;
3176 
3177 	if (new_cred) {
3178 		err = set_cred_ucounts(new_cred);
3179 		if (err)
3180 			goto bad_unshare_cleanup_cred;
3181 	}
3182 
3183 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3184 		if (do_sysvsem) {
3185 			/*
3186 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3187 			 */
3188 			exit_sem(current);
3189 		}
3190 		if (unshare_flags & CLONE_NEWIPC) {
3191 			/* Orphan segments in old ns (see sem above). */
3192 			exit_shm(current);
3193 			shm_init_task(current);
3194 		}
3195 
3196 		if (new_nsproxy)
3197 			switch_task_namespaces(current, new_nsproxy);
3198 
3199 		task_lock(current);
3200 
3201 		if (new_fs) {
3202 			fs = current->fs;
3203 			read_seqlock_excl(&fs->seq);
3204 			current->fs = new_fs;
3205 			if (--fs->users)
3206 				new_fs = NULL;
3207 			else
3208 				new_fs = fs;
3209 			read_sequnlock_excl(&fs->seq);
3210 		}
3211 
3212 		if (new_fd)
3213 			swap(current->files, new_fd);
3214 
3215 		task_unlock(current);
3216 
3217 		if (new_cred) {
3218 			/* Install the new user namespace */
3219 			commit_creds(new_cred);
3220 			new_cred = NULL;
3221 		}
3222 	}
3223 
3224 	perf_event_namespaces(current);
3225 
3226 bad_unshare_cleanup_cred:
3227 	if (new_cred)
3228 		put_cred(new_cred);
3229 bad_unshare_cleanup_fd:
3230 	if (new_fd)
3231 		put_files_struct(new_fd);
3232 
3233 bad_unshare_cleanup_fs:
3234 	if (new_fs)
3235 		free_fs_struct(new_fs);
3236 
3237 bad_unshare_out:
3238 	return err;
3239 }
3240 
3241 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3242 {
3243 	return ksys_unshare(unshare_flags);
3244 }
3245 
3246 /*
3247  *	Helper to unshare the files of the current task.
3248  *	We don't want to expose copy_files internals to
3249  *	the exec layer of the kernel.
3250  */
3251 
3252 int unshare_files(void)
3253 {
3254 	struct task_struct *task = current;
3255 	struct files_struct *old, *copy = NULL;
3256 	int error;
3257 
3258 	error = unshare_fd(CLONE_FILES, &copy);
3259 	if (error || !copy)
3260 		return error;
3261 
3262 	old = task->files;
3263 	task_lock(task);
3264 	task->files = copy;
3265 	task_unlock(task);
3266 	put_files_struct(old);
3267 	return 0;
3268 }
3269 
3270 static int sysctl_max_threads(const struct ctl_table *table, int write,
3271 		       void *buffer, size_t *lenp, loff_t *ppos)
3272 {
3273 	struct ctl_table t;
3274 	int ret;
3275 	int threads = max_threads;
3276 	int min = 1;
3277 	int max = MAX_THREADS;
3278 
3279 	t = *table;
3280 	t.data = &threads;
3281 	t.extra1 = &min;
3282 	t.extra2 = &max;
3283 
3284 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3285 	if (ret || !write)
3286 		return ret;
3287 
3288 	max_threads = threads;
3289 
3290 	return 0;
3291 }
3292 
3293 static const struct ctl_table fork_sysctl_table[] = {
3294 	{
3295 		.procname	= "threads-max",
3296 		.data		= NULL,
3297 		.maxlen		= sizeof(int),
3298 		.mode		= 0644,
3299 		.proc_handler	= sysctl_max_threads,
3300 	},
3301 };
3302 
3303 static int __init init_fork_sysctl(void)
3304 {
3305 	register_sysctl_init("kernel", fork_sysctl_table);
3306 	return 0;
3307 }
3308 
3309 subsys_initcall(init_fork_sysctl);
3310