xref: /linux/kernel/fork.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 
115 #include <trace/events/sched.h>
116 
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
119 
120 #include <kunit/visibility.h>
121 
122 /*
123  * Minimum number of threads to boot the kernel
124  */
125 #define MIN_THREADS 20
126 
127 /*
128  * Maximum number of threads
129  */
130 #define MAX_THREADS FUTEX_TID_MASK
131 
132 /*
133  * Protected counters by write_lock_irq(&tasklist_lock)
134  */
135 unsigned long total_forks;	/* Handle normal Linux uptimes. */
136 int nr_threads;			/* The idle threads do not count.. */
137 
138 static int max_threads;		/* tunable limit on nr_threads */
139 
140 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
141 
142 static const char * const resident_page_types[] = {
143 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
144 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
145 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
146 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148 
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150 
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
152 
153 #ifdef CONFIG_PROVE_RCU
154 int lockdep_tasklist_lock_is_held(void)
155 {
156 	return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160 
161 int nr_processes(void)
162 {
163 	int cpu;
164 	int total = 0;
165 
166 	for_each_possible_cpu(cpu)
167 		total += per_cpu(process_counts, cpu);
168 
169 	return total;
170 }
171 
172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175 
176 static struct kmem_cache *task_struct_cachep;
177 
178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182 
183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185 	kmem_cache_free(task_struct_cachep, tsk);
186 }
187 
188 /*
189  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190  * kmemcache based allocator.
191  */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193 
194 #  ifdef CONFIG_VMAP_STACK
195 /*
196  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197  * flush.  Try to minimize the number of calls by caching stacks.
198  */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201 
202 struct vm_stack {
203 	struct rcu_head rcu;
204 	struct vm_struct *stack_vm_area;
205 };
206 
207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209 	unsigned int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *tmp = NULL;
213 
214 		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215 			return true;
216 	}
217 	return false;
218 }
219 
220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223 
224 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225 		return;
226 
227 	vfree(vm_stack);
228 }
229 
230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232 	struct vm_stack *vm_stack = tsk->stack;
233 
234 	vm_stack->stack_vm_area = tsk->stack_vm_area;
235 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237 
238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241 	int i;
242 
243 	for (i = 0; i < NR_CACHED_STACKS; i++) {
244 		struct vm_struct *vm_stack = cached_vm_stacks[i];
245 
246 		if (!vm_stack)
247 			continue;
248 
249 		vfree(vm_stack->addr);
250 		cached_vm_stacks[i] = NULL;
251 	}
252 
253 	return 0;
254 }
255 
256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258 	int i;
259 	int ret;
260 	int nr_charged = 0;
261 
262 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263 
264 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 		if (ret)
267 			goto err;
268 		nr_charged++;
269 	}
270 	return 0;
271 err:
272 	for (i = 0; i < nr_charged; i++)
273 		memcg_kmem_uncharge_page(vm->pages[i], 0);
274 	return ret;
275 }
276 
277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 {
279 	struct vm_struct *vm;
280 	void *stack;
281 	int i;
282 
283 	for (i = 0; i < NR_CACHED_STACKS; i++) {
284 		struct vm_struct *s;
285 
286 		s = this_cpu_xchg(cached_stacks[i], NULL);
287 
288 		if (!s)
289 			continue;
290 
291 		/* Reset stack metadata. */
292 		kasan_unpoison_range(s->addr, THREAD_SIZE);
293 
294 		stack = kasan_reset_tag(s->addr);
295 
296 		/* Clear stale pointers from reused stack. */
297 		memset(stack, 0, THREAD_SIZE);
298 
299 		if (memcg_charge_kernel_stack(s)) {
300 			vfree(s->addr);
301 			return -ENOMEM;
302 		}
303 
304 		tsk->stack_vm_area = s;
305 		tsk->stack = stack;
306 		return 0;
307 	}
308 
309 	/*
310 	 * Allocated stacks are cached and later reused by new threads,
311 	 * so memcg accounting is performed manually on assigning/releasing
312 	 * stacks to tasks. Drop __GFP_ACCOUNT.
313 	 */
314 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
315 				     VMALLOC_START, VMALLOC_END,
316 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
317 				     PAGE_KERNEL,
318 				     0, node, __builtin_return_address(0));
319 	if (!stack)
320 		return -ENOMEM;
321 
322 	vm = find_vm_area(stack);
323 	if (memcg_charge_kernel_stack(vm)) {
324 		vfree(stack);
325 		return -ENOMEM;
326 	}
327 	/*
328 	 * We can't call find_vm_area() in interrupt context, and
329 	 * free_thread_stack() can be called in interrupt context,
330 	 * so cache the vm_struct.
331 	 */
332 	tsk->stack_vm_area = vm;
333 	stack = kasan_reset_tag(stack);
334 	tsk->stack = stack;
335 	return 0;
336 }
337 
338 static void free_thread_stack(struct task_struct *tsk)
339 {
340 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
341 		thread_stack_delayed_free(tsk);
342 
343 	tsk->stack = NULL;
344 	tsk->stack_vm_area = NULL;
345 }
346 
347 #  else /* !CONFIG_VMAP_STACK */
348 
349 static void thread_stack_free_rcu(struct rcu_head *rh)
350 {
351 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352 }
353 
354 static void thread_stack_delayed_free(struct task_struct *tsk)
355 {
356 	struct rcu_head *rh = tsk->stack;
357 
358 	call_rcu(rh, thread_stack_free_rcu);
359 }
360 
361 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
362 {
363 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
364 					     THREAD_SIZE_ORDER);
365 
366 	if (likely(page)) {
367 		tsk->stack = kasan_reset_tag(page_address(page));
368 		return 0;
369 	}
370 	return -ENOMEM;
371 }
372 
373 static void free_thread_stack(struct task_struct *tsk)
374 {
375 	thread_stack_delayed_free(tsk);
376 	tsk->stack = NULL;
377 }
378 
379 #  endif /* CONFIG_VMAP_STACK */
380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
381 
382 static struct kmem_cache *thread_stack_cache;
383 
384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386 	kmem_cache_free(thread_stack_cache, rh);
387 }
388 
389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391 	struct rcu_head *rh = tsk->stack;
392 
393 	call_rcu(rh, thread_stack_free_rcu);
394 }
395 
396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398 	unsigned long *stack;
399 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 	stack = kasan_reset_tag(stack);
401 	tsk->stack = stack;
402 	return stack ? 0 : -ENOMEM;
403 }
404 
405 static void free_thread_stack(struct task_struct *tsk)
406 {
407 	thread_stack_delayed_free(tsk);
408 	tsk->stack = NULL;
409 }
410 
411 void thread_stack_cache_init(void)
412 {
413 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 					THREAD_SIZE, THREAD_SIZE, 0, 0,
415 					THREAD_SIZE, NULL);
416 	BUG_ON(thread_stack_cache == NULL);
417 }
418 
419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
420 
421 /* SLAB cache for signal_struct structures (tsk->signal) */
422 static struct kmem_cache *signal_cachep;
423 
424 /* SLAB cache for sighand_struct structures (tsk->sighand) */
425 struct kmem_cache *sighand_cachep;
426 
427 /* SLAB cache for files_struct structures (tsk->files) */
428 struct kmem_cache *files_cachep;
429 
430 /* SLAB cache for fs_struct structures (tsk->fs) */
431 struct kmem_cache *fs_cachep;
432 
433 /* SLAB cache for vm_area_struct structures */
434 static struct kmem_cache *vm_area_cachep;
435 
436 /* SLAB cache for mm_struct structures (tsk->mm) */
437 static struct kmem_cache *mm_cachep;
438 
439 #ifdef CONFIG_PER_VMA_LOCK
440 
441 /* SLAB cache for vm_area_struct.lock */
442 static struct kmem_cache *vma_lock_cachep;
443 
444 static bool vma_lock_alloc(struct vm_area_struct *vma)
445 {
446 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
447 	if (!vma->vm_lock)
448 		return false;
449 
450 	init_rwsem(&vma->vm_lock->lock);
451 	vma->vm_lock_seq = -1;
452 
453 	return true;
454 }
455 
456 static inline void vma_lock_free(struct vm_area_struct *vma)
457 {
458 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
459 }
460 
461 #else /* CONFIG_PER_VMA_LOCK */
462 
463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
464 static inline void vma_lock_free(struct vm_area_struct *vma) {}
465 
466 #endif /* CONFIG_PER_VMA_LOCK */
467 
468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
469 {
470 	struct vm_area_struct *vma;
471 
472 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
473 	if (!vma)
474 		return NULL;
475 
476 	vma_init(vma, mm);
477 	if (!vma_lock_alloc(vma)) {
478 		kmem_cache_free(vm_area_cachep, vma);
479 		return NULL;
480 	}
481 
482 	return vma;
483 }
484 
485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
486 {
487 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
488 
489 	if (!new)
490 		return NULL;
491 
492 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
493 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
494 	/*
495 	 * orig->shared.rb may be modified concurrently, but the clone
496 	 * will be reinitialized.
497 	 */
498 	data_race(memcpy(new, orig, sizeof(*new)));
499 	if (!vma_lock_alloc(new)) {
500 		kmem_cache_free(vm_area_cachep, new);
501 		return NULL;
502 	}
503 	INIT_LIST_HEAD(&new->anon_vma_chain);
504 	vma_numab_state_init(new);
505 	dup_anon_vma_name(orig, new);
506 
507 	return new;
508 }
509 
510 void __vm_area_free(struct vm_area_struct *vma)
511 {
512 	vma_numab_state_free(vma);
513 	free_anon_vma_name(vma);
514 	vma_lock_free(vma);
515 	kmem_cache_free(vm_area_cachep, vma);
516 }
517 
518 #ifdef CONFIG_PER_VMA_LOCK
519 static void vm_area_free_rcu_cb(struct rcu_head *head)
520 {
521 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
522 						  vm_rcu);
523 
524 	/* The vma should not be locked while being destroyed. */
525 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
526 	__vm_area_free(vma);
527 }
528 #endif
529 
530 void vm_area_free(struct vm_area_struct *vma)
531 {
532 #ifdef CONFIG_PER_VMA_LOCK
533 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
534 #else
535 	__vm_area_free(vma);
536 #endif
537 }
538 
539 static void account_kernel_stack(struct task_struct *tsk, int account)
540 {
541 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
542 		struct vm_struct *vm = task_stack_vm_area(tsk);
543 		int i;
544 
545 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
546 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
547 					      account * (PAGE_SIZE / 1024));
548 	} else {
549 		void *stack = task_stack_page(tsk);
550 
551 		/* All stack pages are in the same node. */
552 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
553 				      account * (THREAD_SIZE / 1024));
554 	}
555 }
556 
557 void exit_task_stack_account(struct task_struct *tsk)
558 {
559 	account_kernel_stack(tsk, -1);
560 
561 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
562 		struct vm_struct *vm;
563 		int i;
564 
565 		vm = task_stack_vm_area(tsk);
566 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
567 			memcg_kmem_uncharge_page(vm->pages[i], 0);
568 	}
569 }
570 
571 static void release_task_stack(struct task_struct *tsk)
572 {
573 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
574 		return;  /* Better to leak the stack than to free prematurely */
575 
576 	free_thread_stack(tsk);
577 }
578 
579 #ifdef CONFIG_THREAD_INFO_IN_TASK
580 void put_task_stack(struct task_struct *tsk)
581 {
582 	if (refcount_dec_and_test(&tsk->stack_refcount))
583 		release_task_stack(tsk);
584 }
585 #endif
586 
587 void free_task(struct task_struct *tsk)
588 {
589 #ifdef CONFIG_SECCOMP
590 	WARN_ON_ONCE(tsk->seccomp.filter);
591 #endif
592 	release_user_cpus_ptr(tsk);
593 	scs_release(tsk);
594 
595 #ifndef CONFIG_THREAD_INFO_IN_TASK
596 	/*
597 	 * The task is finally done with both the stack and thread_info,
598 	 * so free both.
599 	 */
600 	release_task_stack(tsk);
601 #else
602 	/*
603 	 * If the task had a separate stack allocation, it should be gone
604 	 * by now.
605 	 */
606 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
607 #endif
608 	rt_mutex_debug_task_free(tsk);
609 	ftrace_graph_exit_task(tsk);
610 	arch_release_task_struct(tsk);
611 	if (tsk->flags & PF_KTHREAD)
612 		free_kthread_struct(tsk);
613 	bpf_task_storage_free(tsk);
614 	free_task_struct(tsk);
615 }
616 EXPORT_SYMBOL(free_task);
617 
618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
619 {
620 	struct file *exe_file;
621 
622 	exe_file = get_mm_exe_file(oldmm);
623 	RCU_INIT_POINTER(mm->exe_file, exe_file);
624 	/*
625 	 * We depend on the oldmm having properly denied write access to the
626 	 * exe_file already.
627 	 */
628 	if (exe_file && deny_write_access(exe_file))
629 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
630 }
631 
632 #ifdef CONFIG_MMU
633 static __latent_entropy int dup_mmap(struct mm_struct *mm,
634 					struct mm_struct *oldmm)
635 {
636 	struct vm_area_struct *mpnt, *tmp;
637 	int retval;
638 	unsigned long charge = 0;
639 	LIST_HEAD(uf);
640 	VMA_ITERATOR(vmi, mm, 0);
641 
642 	uprobe_start_dup_mmap();
643 	if (mmap_write_lock_killable(oldmm)) {
644 		retval = -EINTR;
645 		goto fail_uprobe_end;
646 	}
647 	flush_cache_dup_mm(oldmm);
648 	uprobe_dup_mmap(oldmm, mm);
649 	/*
650 	 * Not linked in yet - no deadlock potential:
651 	 */
652 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
653 
654 	/* No ordering required: file already has been exposed. */
655 	dup_mm_exe_file(mm, oldmm);
656 
657 	mm->total_vm = oldmm->total_vm;
658 	mm->data_vm = oldmm->data_vm;
659 	mm->exec_vm = oldmm->exec_vm;
660 	mm->stack_vm = oldmm->stack_vm;
661 
662 	/* Use __mt_dup() to efficiently build an identical maple tree. */
663 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
664 	if (unlikely(retval))
665 		goto out;
666 
667 	mt_clear_in_rcu(vmi.mas.tree);
668 	for_each_vma(vmi, mpnt) {
669 		struct file *file;
670 
671 		vma_start_write(mpnt);
672 		if (mpnt->vm_flags & VM_DONTCOPY) {
673 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
674 						    mpnt->vm_end, GFP_KERNEL);
675 			if (retval)
676 				goto loop_out;
677 
678 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
679 			continue;
680 		}
681 		charge = 0;
682 		/*
683 		 * Don't duplicate many vmas if we've been oom-killed (for
684 		 * example)
685 		 */
686 		if (fatal_signal_pending(current)) {
687 			retval = -EINTR;
688 			goto loop_out;
689 		}
690 		if (mpnt->vm_flags & VM_ACCOUNT) {
691 			unsigned long len = vma_pages(mpnt);
692 
693 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
694 				goto fail_nomem;
695 			charge = len;
696 		}
697 		tmp = vm_area_dup(mpnt);
698 		if (!tmp)
699 			goto fail_nomem;
700 		retval = vma_dup_policy(mpnt, tmp);
701 		if (retval)
702 			goto fail_nomem_policy;
703 		tmp->vm_mm = mm;
704 		retval = dup_userfaultfd(tmp, &uf);
705 		if (retval)
706 			goto fail_nomem_anon_vma_fork;
707 		if (tmp->vm_flags & VM_WIPEONFORK) {
708 			/*
709 			 * VM_WIPEONFORK gets a clean slate in the child.
710 			 * Don't prepare anon_vma until fault since we don't
711 			 * copy page for current vma.
712 			 */
713 			tmp->anon_vma = NULL;
714 		} else if (anon_vma_fork(tmp, mpnt))
715 			goto fail_nomem_anon_vma_fork;
716 		vm_flags_clear(tmp, VM_LOCKED_MASK);
717 		/*
718 		 * Copy/update hugetlb private vma information.
719 		 */
720 		if (is_vm_hugetlb_page(tmp))
721 			hugetlb_dup_vma_private(tmp);
722 
723 		/*
724 		 * Link the vma into the MT. After using __mt_dup(), memory
725 		 * allocation is not necessary here, so it cannot fail.
726 		 */
727 		vma_iter_bulk_store(&vmi, tmp);
728 
729 		mm->map_count++;
730 
731 		if (tmp->vm_ops && tmp->vm_ops->open)
732 			tmp->vm_ops->open(tmp);
733 
734 		file = tmp->vm_file;
735 		if (file) {
736 			struct address_space *mapping = file->f_mapping;
737 
738 			get_file(file);
739 			i_mmap_lock_write(mapping);
740 			if (vma_is_shared_maywrite(tmp))
741 				mapping_allow_writable(mapping);
742 			flush_dcache_mmap_lock(mapping);
743 			/* insert tmp into the share list, just after mpnt */
744 			vma_interval_tree_insert_after(tmp, mpnt,
745 					&mapping->i_mmap);
746 			flush_dcache_mmap_unlock(mapping);
747 			i_mmap_unlock_write(mapping);
748 		}
749 
750 		if (!(tmp->vm_flags & VM_WIPEONFORK))
751 			retval = copy_page_range(tmp, mpnt);
752 
753 		if (retval) {
754 			mpnt = vma_next(&vmi);
755 			goto loop_out;
756 		}
757 	}
758 	/* a new mm has just been created */
759 	retval = arch_dup_mmap(oldmm, mm);
760 loop_out:
761 	vma_iter_free(&vmi);
762 	if (!retval) {
763 		mt_set_in_rcu(vmi.mas.tree);
764 		ksm_fork(mm, oldmm);
765 		khugepaged_fork(mm, oldmm);
766 	} else if (mpnt) {
767 		/*
768 		 * The entire maple tree has already been duplicated. If the
769 		 * mmap duplication fails, mark the failure point with
770 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
771 		 * stop releasing VMAs that have not been duplicated after this
772 		 * point.
773 		 */
774 		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
775 		mas_store(&vmi.mas, XA_ZERO_ENTRY);
776 	}
777 out:
778 	mmap_write_unlock(mm);
779 	flush_tlb_mm(oldmm);
780 	mmap_write_unlock(oldmm);
781 	if (!retval)
782 		dup_userfaultfd_complete(&uf);
783 	else
784 		dup_userfaultfd_fail(&uf);
785 fail_uprobe_end:
786 	uprobe_end_dup_mmap();
787 	return retval;
788 
789 fail_nomem_anon_vma_fork:
790 	mpol_put(vma_policy(tmp));
791 fail_nomem_policy:
792 	vm_area_free(tmp);
793 fail_nomem:
794 	retval = -ENOMEM;
795 	vm_unacct_memory(charge);
796 	goto loop_out;
797 }
798 
799 static inline int mm_alloc_pgd(struct mm_struct *mm)
800 {
801 	mm->pgd = pgd_alloc(mm);
802 	if (unlikely(!mm->pgd))
803 		return -ENOMEM;
804 	return 0;
805 }
806 
807 static inline void mm_free_pgd(struct mm_struct *mm)
808 {
809 	pgd_free(mm, mm->pgd);
810 }
811 #else
812 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
813 {
814 	mmap_write_lock(oldmm);
815 	dup_mm_exe_file(mm, oldmm);
816 	mmap_write_unlock(oldmm);
817 	return 0;
818 }
819 #define mm_alloc_pgd(mm)	(0)
820 #define mm_free_pgd(mm)
821 #endif /* CONFIG_MMU */
822 
823 static void check_mm(struct mm_struct *mm)
824 {
825 	int i;
826 
827 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
828 			 "Please make sure 'struct resident_page_types[]' is updated as well");
829 
830 	for (i = 0; i < NR_MM_COUNTERS; i++) {
831 		long x = percpu_counter_sum(&mm->rss_stat[i]);
832 
833 		if (unlikely(x))
834 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
835 				 mm, resident_page_types[i], x);
836 	}
837 
838 	if (mm_pgtables_bytes(mm))
839 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
840 				mm_pgtables_bytes(mm));
841 
842 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
843 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
844 #endif
845 }
846 
847 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
848 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
849 
850 static void do_check_lazy_tlb(void *arg)
851 {
852 	struct mm_struct *mm = arg;
853 
854 	WARN_ON_ONCE(current->active_mm == mm);
855 }
856 
857 static void do_shoot_lazy_tlb(void *arg)
858 {
859 	struct mm_struct *mm = arg;
860 
861 	if (current->active_mm == mm) {
862 		WARN_ON_ONCE(current->mm);
863 		current->active_mm = &init_mm;
864 		switch_mm(mm, &init_mm, current);
865 	}
866 }
867 
868 static void cleanup_lazy_tlbs(struct mm_struct *mm)
869 {
870 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
871 		/*
872 		 * In this case, lazy tlb mms are refounted and would not reach
873 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
874 		 */
875 		return;
876 	}
877 
878 	/*
879 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
880 	 * requires lazy mm users to switch to another mm when the refcount
881 	 * drops to zero, before the mm is freed. This requires IPIs here to
882 	 * switch kernel threads to init_mm.
883 	 *
884 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
885 	 * switch with the final userspace teardown TLB flush which leaves the
886 	 * mm lazy on this CPU but no others, reducing the need for additional
887 	 * IPIs here. There are cases where a final IPI is still required here,
888 	 * such as the final mmdrop being performed on a different CPU than the
889 	 * one exiting, or kernel threads using the mm when userspace exits.
890 	 *
891 	 * IPI overheads have not found to be expensive, but they could be
892 	 * reduced in a number of possible ways, for example (roughly
893 	 * increasing order of complexity):
894 	 * - The last lazy reference created by exit_mm() could instead switch
895 	 *   to init_mm, however it's probable this will run on the same CPU
896 	 *   immediately afterwards, so this may not reduce IPIs much.
897 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
898 	 * - CPUs store active_mm where it can be remotely checked without a
899 	 *   lock, to filter out false-positives in the cpumask.
900 	 * - After mm_users or mm_count reaches zero, switching away from the
901 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
902 	 *   with some batching or delaying of the final IPIs.
903 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
904 	 *   switching to avoid IPIs completely.
905 	 */
906 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
907 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
908 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
909 }
910 
911 /*
912  * Called when the last reference to the mm
913  * is dropped: either by a lazy thread or by
914  * mmput. Free the page directory and the mm.
915  */
916 void __mmdrop(struct mm_struct *mm)
917 {
918 	BUG_ON(mm == &init_mm);
919 	WARN_ON_ONCE(mm == current->mm);
920 
921 	/* Ensure no CPUs are using this as their lazy tlb mm */
922 	cleanup_lazy_tlbs(mm);
923 
924 	WARN_ON_ONCE(mm == current->active_mm);
925 	mm_free_pgd(mm);
926 	destroy_context(mm);
927 	mmu_notifier_subscriptions_destroy(mm);
928 	check_mm(mm);
929 	put_user_ns(mm->user_ns);
930 	mm_pasid_drop(mm);
931 	mm_destroy_cid(mm);
932 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
933 
934 	free_mm(mm);
935 }
936 EXPORT_SYMBOL_GPL(__mmdrop);
937 
938 static void mmdrop_async_fn(struct work_struct *work)
939 {
940 	struct mm_struct *mm;
941 
942 	mm = container_of(work, struct mm_struct, async_put_work);
943 	__mmdrop(mm);
944 }
945 
946 static void mmdrop_async(struct mm_struct *mm)
947 {
948 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
949 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
950 		schedule_work(&mm->async_put_work);
951 	}
952 }
953 
954 static inline void free_signal_struct(struct signal_struct *sig)
955 {
956 	taskstats_tgid_free(sig);
957 	sched_autogroup_exit(sig);
958 	/*
959 	 * __mmdrop is not safe to call from softirq context on x86 due to
960 	 * pgd_dtor so postpone it to the async context
961 	 */
962 	if (sig->oom_mm)
963 		mmdrop_async(sig->oom_mm);
964 	kmem_cache_free(signal_cachep, sig);
965 }
966 
967 static inline void put_signal_struct(struct signal_struct *sig)
968 {
969 	if (refcount_dec_and_test(&sig->sigcnt))
970 		free_signal_struct(sig);
971 }
972 
973 void __put_task_struct(struct task_struct *tsk)
974 {
975 	WARN_ON(!tsk->exit_state);
976 	WARN_ON(refcount_read(&tsk->usage));
977 	WARN_ON(tsk == current);
978 
979 	sched_ext_free(tsk);
980 	io_uring_free(tsk);
981 	cgroup_free(tsk);
982 	task_numa_free(tsk, true);
983 	security_task_free(tsk);
984 	exit_creds(tsk);
985 	delayacct_tsk_free(tsk);
986 	put_signal_struct(tsk->signal);
987 	sched_core_free(tsk);
988 	free_task(tsk);
989 }
990 EXPORT_SYMBOL_GPL(__put_task_struct);
991 
992 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
993 {
994 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
995 
996 	__put_task_struct(task);
997 }
998 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
999 
1000 void __init __weak arch_task_cache_init(void) { }
1001 
1002 /*
1003  * set_max_threads
1004  */
1005 static void __init set_max_threads(unsigned int max_threads_suggested)
1006 {
1007 	u64 threads;
1008 	unsigned long nr_pages = memblock_estimated_nr_free_pages();
1009 
1010 	/*
1011 	 * The number of threads shall be limited such that the thread
1012 	 * structures may only consume a small part of the available memory.
1013 	 */
1014 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1015 		threads = MAX_THREADS;
1016 	else
1017 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1018 				    (u64) THREAD_SIZE * 8UL);
1019 
1020 	if (threads > max_threads_suggested)
1021 		threads = max_threads_suggested;
1022 
1023 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1024 }
1025 
1026 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1027 /* Initialized by the architecture: */
1028 int arch_task_struct_size __read_mostly;
1029 #endif
1030 
1031 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1032 {
1033 	/* Fetch thread_struct whitelist for the architecture. */
1034 	arch_thread_struct_whitelist(offset, size);
1035 
1036 	/*
1037 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1038 	 * adjust offset to position of thread_struct in task_struct.
1039 	 */
1040 	if (unlikely(*size == 0))
1041 		*offset = 0;
1042 	else
1043 		*offset += offsetof(struct task_struct, thread);
1044 }
1045 
1046 void __init fork_init(void)
1047 {
1048 	int i;
1049 #ifndef ARCH_MIN_TASKALIGN
1050 #define ARCH_MIN_TASKALIGN	0
1051 #endif
1052 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1053 	unsigned long useroffset, usersize;
1054 
1055 	/* create a slab on which task_structs can be allocated */
1056 	task_struct_whitelist(&useroffset, &usersize);
1057 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1058 			arch_task_struct_size, align,
1059 			SLAB_PANIC|SLAB_ACCOUNT,
1060 			useroffset, usersize, NULL);
1061 
1062 	/* do the arch specific task caches init */
1063 	arch_task_cache_init();
1064 
1065 	set_max_threads(MAX_THREADS);
1066 
1067 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1068 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1069 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1070 		init_task.signal->rlim[RLIMIT_NPROC];
1071 
1072 	for (i = 0; i < UCOUNT_COUNTS; i++)
1073 		init_user_ns.ucount_max[i] = max_threads/2;
1074 
1075 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1076 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1077 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1078 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1079 
1080 #ifdef CONFIG_VMAP_STACK
1081 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1082 			  NULL, free_vm_stack_cache);
1083 #endif
1084 
1085 	scs_init();
1086 
1087 	lockdep_init_task(&init_task);
1088 	uprobes_init();
1089 }
1090 
1091 int __weak arch_dup_task_struct(struct task_struct *dst,
1092 					       struct task_struct *src)
1093 {
1094 	*dst = *src;
1095 	return 0;
1096 }
1097 
1098 void set_task_stack_end_magic(struct task_struct *tsk)
1099 {
1100 	unsigned long *stackend;
1101 
1102 	stackend = end_of_stack(tsk);
1103 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1104 }
1105 
1106 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1107 {
1108 	struct task_struct *tsk;
1109 	int err;
1110 
1111 	if (node == NUMA_NO_NODE)
1112 		node = tsk_fork_get_node(orig);
1113 	tsk = alloc_task_struct_node(node);
1114 	if (!tsk)
1115 		return NULL;
1116 
1117 	err = arch_dup_task_struct(tsk, orig);
1118 	if (err)
1119 		goto free_tsk;
1120 
1121 	err = alloc_thread_stack_node(tsk, node);
1122 	if (err)
1123 		goto free_tsk;
1124 
1125 #ifdef CONFIG_THREAD_INFO_IN_TASK
1126 	refcount_set(&tsk->stack_refcount, 1);
1127 #endif
1128 	account_kernel_stack(tsk, 1);
1129 
1130 	err = scs_prepare(tsk, node);
1131 	if (err)
1132 		goto free_stack;
1133 
1134 #ifdef CONFIG_SECCOMP
1135 	/*
1136 	 * We must handle setting up seccomp filters once we're under
1137 	 * the sighand lock in case orig has changed between now and
1138 	 * then. Until then, filter must be NULL to avoid messing up
1139 	 * the usage counts on the error path calling free_task.
1140 	 */
1141 	tsk->seccomp.filter = NULL;
1142 #endif
1143 
1144 	setup_thread_stack(tsk, orig);
1145 	clear_user_return_notifier(tsk);
1146 	clear_tsk_need_resched(tsk);
1147 	set_task_stack_end_magic(tsk);
1148 	clear_syscall_work_syscall_user_dispatch(tsk);
1149 
1150 #ifdef CONFIG_STACKPROTECTOR
1151 	tsk->stack_canary = get_random_canary();
1152 #endif
1153 	if (orig->cpus_ptr == &orig->cpus_mask)
1154 		tsk->cpus_ptr = &tsk->cpus_mask;
1155 	dup_user_cpus_ptr(tsk, orig, node);
1156 
1157 	/*
1158 	 * One for the user space visible state that goes away when reaped.
1159 	 * One for the scheduler.
1160 	 */
1161 	refcount_set(&tsk->rcu_users, 2);
1162 	/* One for the rcu users */
1163 	refcount_set(&tsk->usage, 1);
1164 #ifdef CONFIG_BLK_DEV_IO_TRACE
1165 	tsk->btrace_seq = 0;
1166 #endif
1167 	tsk->splice_pipe = NULL;
1168 	tsk->task_frag.page = NULL;
1169 	tsk->wake_q.next = NULL;
1170 	tsk->worker_private = NULL;
1171 
1172 	kcov_task_init(tsk);
1173 	kmsan_task_create(tsk);
1174 	kmap_local_fork(tsk);
1175 
1176 #ifdef CONFIG_FAULT_INJECTION
1177 	tsk->fail_nth = 0;
1178 #endif
1179 
1180 #ifdef CONFIG_BLK_CGROUP
1181 	tsk->throttle_disk = NULL;
1182 	tsk->use_memdelay = 0;
1183 #endif
1184 
1185 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1186 	tsk->pasid_activated = 0;
1187 #endif
1188 
1189 #ifdef CONFIG_MEMCG
1190 	tsk->active_memcg = NULL;
1191 #endif
1192 
1193 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1194 	tsk->reported_split_lock = 0;
1195 #endif
1196 
1197 #ifdef CONFIG_SCHED_MM_CID
1198 	tsk->mm_cid = -1;
1199 	tsk->last_mm_cid = -1;
1200 	tsk->mm_cid_active = 0;
1201 	tsk->migrate_from_cpu = -1;
1202 #endif
1203 	return tsk;
1204 
1205 free_stack:
1206 	exit_task_stack_account(tsk);
1207 	free_thread_stack(tsk);
1208 free_tsk:
1209 	free_task_struct(tsk);
1210 	return NULL;
1211 }
1212 
1213 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1214 
1215 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1216 
1217 static int __init coredump_filter_setup(char *s)
1218 {
1219 	default_dump_filter =
1220 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1221 		MMF_DUMP_FILTER_MASK;
1222 	return 1;
1223 }
1224 
1225 __setup("coredump_filter=", coredump_filter_setup);
1226 
1227 #include <linux/init_task.h>
1228 
1229 static void mm_init_aio(struct mm_struct *mm)
1230 {
1231 #ifdef CONFIG_AIO
1232 	spin_lock_init(&mm->ioctx_lock);
1233 	mm->ioctx_table = NULL;
1234 #endif
1235 }
1236 
1237 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1238 					   struct task_struct *p)
1239 {
1240 #ifdef CONFIG_MEMCG
1241 	if (mm->owner == p)
1242 		WRITE_ONCE(mm->owner, NULL);
1243 #endif
1244 }
1245 
1246 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1247 {
1248 #ifdef CONFIG_MEMCG
1249 	mm->owner = p;
1250 #endif
1251 }
1252 
1253 static void mm_init_uprobes_state(struct mm_struct *mm)
1254 {
1255 #ifdef CONFIG_UPROBES
1256 	mm->uprobes_state.xol_area = NULL;
1257 #endif
1258 }
1259 
1260 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1261 	struct user_namespace *user_ns)
1262 {
1263 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1264 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1265 	atomic_set(&mm->mm_users, 1);
1266 	atomic_set(&mm->mm_count, 1);
1267 	seqcount_init(&mm->write_protect_seq);
1268 	mmap_init_lock(mm);
1269 	INIT_LIST_HEAD(&mm->mmlist);
1270 #ifdef CONFIG_PER_VMA_LOCK
1271 	mm->mm_lock_seq = 0;
1272 #endif
1273 	mm_pgtables_bytes_init(mm);
1274 	mm->map_count = 0;
1275 	mm->locked_vm = 0;
1276 	atomic64_set(&mm->pinned_vm, 0);
1277 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1278 	spin_lock_init(&mm->page_table_lock);
1279 	spin_lock_init(&mm->arg_lock);
1280 	mm_init_cpumask(mm);
1281 	mm_init_aio(mm);
1282 	mm_init_owner(mm, p);
1283 	mm_pasid_init(mm);
1284 	RCU_INIT_POINTER(mm->exe_file, NULL);
1285 	mmu_notifier_subscriptions_init(mm);
1286 	init_tlb_flush_pending(mm);
1287 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1288 	mm->pmd_huge_pte = NULL;
1289 #endif
1290 	mm_init_uprobes_state(mm);
1291 	hugetlb_count_init(mm);
1292 
1293 	if (current->mm) {
1294 		mm->flags = mmf_init_flags(current->mm->flags);
1295 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1296 	} else {
1297 		mm->flags = default_dump_filter;
1298 		mm->def_flags = 0;
1299 	}
1300 
1301 	if (mm_alloc_pgd(mm))
1302 		goto fail_nopgd;
1303 
1304 	if (init_new_context(p, mm))
1305 		goto fail_nocontext;
1306 
1307 	if (mm_alloc_cid(mm, p))
1308 		goto fail_cid;
1309 
1310 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1311 				     NR_MM_COUNTERS))
1312 		goto fail_pcpu;
1313 
1314 	mm->user_ns = get_user_ns(user_ns);
1315 	lru_gen_init_mm(mm);
1316 	return mm;
1317 
1318 fail_pcpu:
1319 	mm_destroy_cid(mm);
1320 fail_cid:
1321 	destroy_context(mm);
1322 fail_nocontext:
1323 	mm_free_pgd(mm);
1324 fail_nopgd:
1325 	free_mm(mm);
1326 	return NULL;
1327 }
1328 
1329 /*
1330  * Allocate and initialize an mm_struct.
1331  */
1332 struct mm_struct *mm_alloc(void)
1333 {
1334 	struct mm_struct *mm;
1335 
1336 	mm = allocate_mm();
1337 	if (!mm)
1338 		return NULL;
1339 
1340 	memset(mm, 0, sizeof(*mm));
1341 	return mm_init(mm, current, current_user_ns());
1342 }
1343 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1344 
1345 static inline void __mmput(struct mm_struct *mm)
1346 {
1347 	VM_BUG_ON(atomic_read(&mm->mm_users));
1348 
1349 	uprobe_clear_state(mm);
1350 	exit_aio(mm);
1351 	ksm_exit(mm);
1352 	khugepaged_exit(mm); /* must run before exit_mmap */
1353 	exit_mmap(mm);
1354 	mm_put_huge_zero_folio(mm);
1355 	set_mm_exe_file(mm, NULL);
1356 	if (!list_empty(&mm->mmlist)) {
1357 		spin_lock(&mmlist_lock);
1358 		list_del(&mm->mmlist);
1359 		spin_unlock(&mmlist_lock);
1360 	}
1361 	if (mm->binfmt)
1362 		module_put(mm->binfmt->module);
1363 	lru_gen_del_mm(mm);
1364 	mmdrop(mm);
1365 }
1366 
1367 /*
1368  * Decrement the use count and release all resources for an mm.
1369  */
1370 void mmput(struct mm_struct *mm)
1371 {
1372 	might_sleep();
1373 
1374 	if (atomic_dec_and_test(&mm->mm_users))
1375 		__mmput(mm);
1376 }
1377 EXPORT_SYMBOL_GPL(mmput);
1378 
1379 #ifdef CONFIG_MMU
1380 static void mmput_async_fn(struct work_struct *work)
1381 {
1382 	struct mm_struct *mm = container_of(work, struct mm_struct,
1383 					    async_put_work);
1384 
1385 	__mmput(mm);
1386 }
1387 
1388 void mmput_async(struct mm_struct *mm)
1389 {
1390 	if (atomic_dec_and_test(&mm->mm_users)) {
1391 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1392 		schedule_work(&mm->async_put_work);
1393 	}
1394 }
1395 EXPORT_SYMBOL_GPL(mmput_async);
1396 #endif
1397 
1398 /**
1399  * set_mm_exe_file - change a reference to the mm's executable file
1400  * @mm: The mm to change.
1401  * @new_exe_file: The new file to use.
1402  *
1403  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1404  *
1405  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1406  * invocations: in mmput() nobody alive left, in execve it happens before
1407  * the new mm is made visible to anyone.
1408  *
1409  * Can only fail if new_exe_file != NULL.
1410  */
1411 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1412 {
1413 	struct file *old_exe_file;
1414 
1415 	/*
1416 	 * It is safe to dereference the exe_file without RCU as
1417 	 * this function is only called if nobody else can access
1418 	 * this mm -- see comment above for justification.
1419 	 */
1420 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1421 
1422 	if (new_exe_file) {
1423 		/*
1424 		 * We expect the caller (i.e., sys_execve) to already denied
1425 		 * write access, so this is unlikely to fail.
1426 		 */
1427 		if (unlikely(deny_write_access(new_exe_file)))
1428 			return -EACCES;
1429 		get_file(new_exe_file);
1430 	}
1431 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1432 	if (old_exe_file) {
1433 		allow_write_access(old_exe_file);
1434 		fput(old_exe_file);
1435 	}
1436 	return 0;
1437 }
1438 
1439 /**
1440  * replace_mm_exe_file - replace a reference to the mm's executable file
1441  * @mm: The mm to change.
1442  * @new_exe_file: The new file to use.
1443  *
1444  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1445  *
1446  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1447  */
1448 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1449 {
1450 	struct vm_area_struct *vma;
1451 	struct file *old_exe_file;
1452 	int ret = 0;
1453 
1454 	/* Forbid mm->exe_file change if old file still mapped. */
1455 	old_exe_file = get_mm_exe_file(mm);
1456 	if (old_exe_file) {
1457 		VMA_ITERATOR(vmi, mm, 0);
1458 		mmap_read_lock(mm);
1459 		for_each_vma(vmi, vma) {
1460 			if (!vma->vm_file)
1461 				continue;
1462 			if (path_equal(&vma->vm_file->f_path,
1463 				       &old_exe_file->f_path)) {
1464 				ret = -EBUSY;
1465 				break;
1466 			}
1467 		}
1468 		mmap_read_unlock(mm);
1469 		fput(old_exe_file);
1470 		if (ret)
1471 			return ret;
1472 	}
1473 
1474 	ret = deny_write_access(new_exe_file);
1475 	if (ret)
1476 		return -EACCES;
1477 	get_file(new_exe_file);
1478 
1479 	/* set the new file */
1480 	mmap_write_lock(mm);
1481 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1482 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1483 	mmap_write_unlock(mm);
1484 
1485 	if (old_exe_file) {
1486 		allow_write_access(old_exe_file);
1487 		fput(old_exe_file);
1488 	}
1489 	return 0;
1490 }
1491 
1492 /**
1493  * get_mm_exe_file - acquire a reference to the mm's executable file
1494  * @mm: The mm of interest.
1495  *
1496  * Returns %NULL if mm has no associated executable file.
1497  * User must release file via fput().
1498  */
1499 struct file *get_mm_exe_file(struct mm_struct *mm)
1500 {
1501 	struct file *exe_file;
1502 
1503 	rcu_read_lock();
1504 	exe_file = get_file_rcu(&mm->exe_file);
1505 	rcu_read_unlock();
1506 	return exe_file;
1507 }
1508 
1509 /**
1510  * get_task_exe_file - acquire a reference to the task's executable file
1511  * @task: The task.
1512  *
1513  * Returns %NULL if task's mm (if any) has no associated executable file or
1514  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1515  * User must release file via fput().
1516  */
1517 struct file *get_task_exe_file(struct task_struct *task)
1518 {
1519 	struct file *exe_file = NULL;
1520 	struct mm_struct *mm;
1521 
1522 	task_lock(task);
1523 	mm = task->mm;
1524 	if (mm) {
1525 		if (!(task->flags & PF_KTHREAD))
1526 			exe_file = get_mm_exe_file(mm);
1527 	}
1528 	task_unlock(task);
1529 	return exe_file;
1530 }
1531 
1532 /**
1533  * get_task_mm - acquire a reference to the task's mm
1534  * @task: The task.
1535  *
1536  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1537  * this kernel workthread has transiently adopted a user mm with use_mm,
1538  * to do its AIO) is not set and if so returns a reference to it, after
1539  * bumping up the use count.  User must release the mm via mmput()
1540  * after use.  Typically used by /proc and ptrace.
1541  */
1542 struct mm_struct *get_task_mm(struct task_struct *task)
1543 {
1544 	struct mm_struct *mm;
1545 
1546 	if (task->flags & PF_KTHREAD)
1547 		return NULL;
1548 
1549 	task_lock(task);
1550 	mm = task->mm;
1551 	if (mm)
1552 		mmget(mm);
1553 	task_unlock(task);
1554 	return mm;
1555 }
1556 EXPORT_SYMBOL_GPL(get_task_mm);
1557 
1558 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1559 {
1560 	struct mm_struct *mm;
1561 	int err;
1562 
1563 	err =  down_read_killable(&task->signal->exec_update_lock);
1564 	if (err)
1565 		return ERR_PTR(err);
1566 
1567 	mm = get_task_mm(task);
1568 	if (!mm) {
1569 		mm = ERR_PTR(-ESRCH);
1570 	} else if (mm != current->mm && !ptrace_may_access(task, mode)) {
1571 		mmput(mm);
1572 		mm = ERR_PTR(-EACCES);
1573 	}
1574 	up_read(&task->signal->exec_update_lock);
1575 
1576 	return mm;
1577 }
1578 
1579 static void complete_vfork_done(struct task_struct *tsk)
1580 {
1581 	struct completion *vfork;
1582 
1583 	task_lock(tsk);
1584 	vfork = tsk->vfork_done;
1585 	if (likely(vfork)) {
1586 		tsk->vfork_done = NULL;
1587 		complete(vfork);
1588 	}
1589 	task_unlock(tsk);
1590 }
1591 
1592 static int wait_for_vfork_done(struct task_struct *child,
1593 				struct completion *vfork)
1594 {
1595 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1596 	int killed;
1597 
1598 	cgroup_enter_frozen();
1599 	killed = wait_for_completion_state(vfork, state);
1600 	cgroup_leave_frozen(false);
1601 
1602 	if (killed) {
1603 		task_lock(child);
1604 		child->vfork_done = NULL;
1605 		task_unlock(child);
1606 	}
1607 
1608 	put_task_struct(child);
1609 	return killed;
1610 }
1611 
1612 /* Please note the differences between mmput and mm_release.
1613  * mmput is called whenever we stop holding onto a mm_struct,
1614  * error success whatever.
1615  *
1616  * mm_release is called after a mm_struct has been removed
1617  * from the current process.
1618  *
1619  * This difference is important for error handling, when we
1620  * only half set up a mm_struct for a new process and need to restore
1621  * the old one.  Because we mmput the new mm_struct before
1622  * restoring the old one. . .
1623  * Eric Biederman 10 January 1998
1624  */
1625 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1626 {
1627 	uprobe_free_utask(tsk);
1628 
1629 	/* Get rid of any cached register state */
1630 	deactivate_mm(tsk, mm);
1631 
1632 	/*
1633 	 * Signal userspace if we're not exiting with a core dump
1634 	 * because we want to leave the value intact for debugging
1635 	 * purposes.
1636 	 */
1637 	if (tsk->clear_child_tid) {
1638 		if (atomic_read(&mm->mm_users) > 1) {
1639 			/*
1640 			 * We don't check the error code - if userspace has
1641 			 * not set up a proper pointer then tough luck.
1642 			 */
1643 			put_user(0, tsk->clear_child_tid);
1644 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1645 					1, NULL, NULL, 0, 0);
1646 		}
1647 		tsk->clear_child_tid = NULL;
1648 	}
1649 
1650 	/*
1651 	 * All done, finally we can wake up parent and return this mm to him.
1652 	 * Also kthread_stop() uses this completion for synchronization.
1653 	 */
1654 	if (tsk->vfork_done)
1655 		complete_vfork_done(tsk);
1656 }
1657 
1658 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1659 {
1660 	futex_exit_release(tsk);
1661 	mm_release(tsk, mm);
1662 }
1663 
1664 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1665 {
1666 	futex_exec_release(tsk);
1667 	mm_release(tsk, mm);
1668 }
1669 
1670 /**
1671  * dup_mm() - duplicates an existing mm structure
1672  * @tsk: the task_struct with which the new mm will be associated.
1673  * @oldmm: the mm to duplicate.
1674  *
1675  * Allocates a new mm structure and duplicates the provided @oldmm structure
1676  * content into it.
1677  *
1678  * Return: the duplicated mm or NULL on failure.
1679  */
1680 static struct mm_struct *dup_mm(struct task_struct *tsk,
1681 				struct mm_struct *oldmm)
1682 {
1683 	struct mm_struct *mm;
1684 	int err;
1685 
1686 	mm = allocate_mm();
1687 	if (!mm)
1688 		goto fail_nomem;
1689 
1690 	memcpy(mm, oldmm, sizeof(*mm));
1691 
1692 	if (!mm_init(mm, tsk, mm->user_ns))
1693 		goto fail_nomem;
1694 
1695 	err = dup_mmap(mm, oldmm);
1696 	if (err)
1697 		goto free_pt;
1698 
1699 	mm->hiwater_rss = get_mm_rss(mm);
1700 	mm->hiwater_vm = mm->total_vm;
1701 
1702 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1703 		goto free_pt;
1704 
1705 	return mm;
1706 
1707 free_pt:
1708 	/* don't put binfmt in mmput, we haven't got module yet */
1709 	mm->binfmt = NULL;
1710 	mm_init_owner(mm, NULL);
1711 	mmput(mm);
1712 
1713 fail_nomem:
1714 	return NULL;
1715 }
1716 
1717 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1718 {
1719 	struct mm_struct *mm, *oldmm;
1720 
1721 	tsk->min_flt = tsk->maj_flt = 0;
1722 	tsk->nvcsw = tsk->nivcsw = 0;
1723 #ifdef CONFIG_DETECT_HUNG_TASK
1724 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1725 	tsk->last_switch_time = 0;
1726 #endif
1727 
1728 	tsk->mm = NULL;
1729 	tsk->active_mm = NULL;
1730 
1731 	/*
1732 	 * Are we cloning a kernel thread?
1733 	 *
1734 	 * We need to steal a active VM for that..
1735 	 */
1736 	oldmm = current->mm;
1737 	if (!oldmm)
1738 		return 0;
1739 
1740 	if (clone_flags & CLONE_VM) {
1741 		mmget(oldmm);
1742 		mm = oldmm;
1743 	} else {
1744 		mm = dup_mm(tsk, current->mm);
1745 		if (!mm)
1746 			return -ENOMEM;
1747 	}
1748 
1749 	tsk->mm = mm;
1750 	tsk->active_mm = mm;
1751 	sched_mm_cid_fork(tsk);
1752 	return 0;
1753 }
1754 
1755 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1756 {
1757 	struct fs_struct *fs = current->fs;
1758 	if (clone_flags & CLONE_FS) {
1759 		/* tsk->fs is already what we want */
1760 		spin_lock(&fs->lock);
1761 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1762 		if (fs->in_exec) {
1763 			spin_unlock(&fs->lock);
1764 			return -EAGAIN;
1765 		}
1766 		fs->users++;
1767 		spin_unlock(&fs->lock);
1768 		return 0;
1769 	}
1770 	tsk->fs = copy_fs_struct(fs);
1771 	if (!tsk->fs)
1772 		return -ENOMEM;
1773 	return 0;
1774 }
1775 
1776 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1777 		      int no_files)
1778 {
1779 	struct files_struct *oldf, *newf;
1780 
1781 	/*
1782 	 * A background process may not have any files ...
1783 	 */
1784 	oldf = current->files;
1785 	if (!oldf)
1786 		return 0;
1787 
1788 	if (no_files) {
1789 		tsk->files = NULL;
1790 		return 0;
1791 	}
1792 
1793 	if (clone_flags & CLONE_FILES) {
1794 		atomic_inc(&oldf->count);
1795 		return 0;
1796 	}
1797 
1798 	newf = dup_fd(oldf, NULL);
1799 	if (IS_ERR(newf))
1800 		return PTR_ERR(newf);
1801 
1802 	tsk->files = newf;
1803 	return 0;
1804 }
1805 
1806 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1807 {
1808 	struct sighand_struct *sig;
1809 
1810 	if (clone_flags & CLONE_SIGHAND) {
1811 		refcount_inc(&current->sighand->count);
1812 		return 0;
1813 	}
1814 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1815 	RCU_INIT_POINTER(tsk->sighand, sig);
1816 	if (!sig)
1817 		return -ENOMEM;
1818 
1819 	refcount_set(&sig->count, 1);
1820 	spin_lock_irq(&current->sighand->siglock);
1821 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1822 	spin_unlock_irq(&current->sighand->siglock);
1823 
1824 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1825 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1826 		flush_signal_handlers(tsk, 0);
1827 
1828 	return 0;
1829 }
1830 
1831 void __cleanup_sighand(struct sighand_struct *sighand)
1832 {
1833 	if (refcount_dec_and_test(&sighand->count)) {
1834 		signalfd_cleanup(sighand);
1835 		/*
1836 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1837 		 * without an RCU grace period, see __lock_task_sighand().
1838 		 */
1839 		kmem_cache_free(sighand_cachep, sighand);
1840 	}
1841 }
1842 
1843 /*
1844  * Initialize POSIX timer handling for a thread group.
1845  */
1846 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1847 {
1848 	struct posix_cputimers *pct = &sig->posix_cputimers;
1849 	unsigned long cpu_limit;
1850 
1851 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1852 	posix_cputimers_group_init(pct, cpu_limit);
1853 }
1854 
1855 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1856 {
1857 	struct signal_struct *sig;
1858 
1859 	if (clone_flags & CLONE_THREAD)
1860 		return 0;
1861 
1862 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1863 	tsk->signal = sig;
1864 	if (!sig)
1865 		return -ENOMEM;
1866 
1867 	sig->nr_threads = 1;
1868 	sig->quick_threads = 1;
1869 	atomic_set(&sig->live, 1);
1870 	refcount_set(&sig->sigcnt, 1);
1871 
1872 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1873 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1874 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1875 
1876 	init_waitqueue_head(&sig->wait_chldexit);
1877 	sig->curr_target = tsk;
1878 	init_sigpending(&sig->shared_pending);
1879 	INIT_HLIST_HEAD(&sig->multiprocess);
1880 	seqlock_init(&sig->stats_lock);
1881 	prev_cputime_init(&sig->prev_cputime);
1882 
1883 #ifdef CONFIG_POSIX_TIMERS
1884 	INIT_HLIST_HEAD(&sig->posix_timers);
1885 	INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1886 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1887 	sig->real_timer.function = it_real_fn;
1888 #endif
1889 
1890 	task_lock(current->group_leader);
1891 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1892 	task_unlock(current->group_leader);
1893 
1894 	posix_cpu_timers_init_group(sig);
1895 
1896 	tty_audit_fork(sig);
1897 	sched_autogroup_fork(sig);
1898 
1899 	sig->oom_score_adj = current->signal->oom_score_adj;
1900 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1901 
1902 	mutex_init(&sig->cred_guard_mutex);
1903 	init_rwsem(&sig->exec_update_lock);
1904 
1905 	return 0;
1906 }
1907 
1908 static void copy_seccomp(struct task_struct *p)
1909 {
1910 #ifdef CONFIG_SECCOMP
1911 	/*
1912 	 * Must be called with sighand->lock held, which is common to
1913 	 * all threads in the group. Holding cred_guard_mutex is not
1914 	 * needed because this new task is not yet running and cannot
1915 	 * be racing exec.
1916 	 */
1917 	assert_spin_locked(&current->sighand->siglock);
1918 
1919 	/* Ref-count the new filter user, and assign it. */
1920 	get_seccomp_filter(current);
1921 	p->seccomp = current->seccomp;
1922 
1923 	/*
1924 	 * Explicitly enable no_new_privs here in case it got set
1925 	 * between the task_struct being duplicated and holding the
1926 	 * sighand lock. The seccomp state and nnp must be in sync.
1927 	 */
1928 	if (task_no_new_privs(current))
1929 		task_set_no_new_privs(p);
1930 
1931 	/*
1932 	 * If the parent gained a seccomp mode after copying thread
1933 	 * flags and between before we held the sighand lock, we have
1934 	 * to manually enable the seccomp thread flag here.
1935 	 */
1936 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1937 		set_task_syscall_work(p, SECCOMP);
1938 #endif
1939 }
1940 
1941 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1942 {
1943 	current->clear_child_tid = tidptr;
1944 
1945 	return task_pid_vnr(current);
1946 }
1947 
1948 static void rt_mutex_init_task(struct task_struct *p)
1949 {
1950 	raw_spin_lock_init(&p->pi_lock);
1951 #ifdef CONFIG_RT_MUTEXES
1952 	p->pi_waiters = RB_ROOT_CACHED;
1953 	p->pi_top_task = NULL;
1954 	p->pi_blocked_on = NULL;
1955 #endif
1956 }
1957 
1958 static inline void init_task_pid_links(struct task_struct *task)
1959 {
1960 	enum pid_type type;
1961 
1962 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1963 		INIT_HLIST_NODE(&task->pid_links[type]);
1964 }
1965 
1966 static inline void
1967 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1968 {
1969 	if (type == PIDTYPE_PID)
1970 		task->thread_pid = pid;
1971 	else
1972 		task->signal->pids[type] = pid;
1973 }
1974 
1975 static inline void rcu_copy_process(struct task_struct *p)
1976 {
1977 #ifdef CONFIG_PREEMPT_RCU
1978 	p->rcu_read_lock_nesting = 0;
1979 	p->rcu_read_unlock_special.s = 0;
1980 	p->rcu_blocked_node = NULL;
1981 	INIT_LIST_HEAD(&p->rcu_node_entry);
1982 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1983 #ifdef CONFIG_TASKS_RCU
1984 	p->rcu_tasks_holdout = false;
1985 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1986 	p->rcu_tasks_idle_cpu = -1;
1987 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1988 #endif /* #ifdef CONFIG_TASKS_RCU */
1989 #ifdef CONFIG_TASKS_TRACE_RCU
1990 	p->trc_reader_nesting = 0;
1991 	p->trc_reader_special.s = 0;
1992 	INIT_LIST_HEAD(&p->trc_holdout_list);
1993 	INIT_LIST_HEAD(&p->trc_blkd_node);
1994 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1995 }
1996 
1997 /**
1998  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1999  * @pid:   the struct pid for which to create a pidfd
2000  * @flags: flags of the new @pidfd
2001  * @ret: Where to return the file for the pidfd.
2002  *
2003  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2004  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2005  *
2006  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2007  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2008  * pidfd file are prepared.
2009  *
2010  * If this function returns successfully the caller is responsible to either
2011  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2012  * order to install the pidfd into its file descriptor table or they must use
2013  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2014  * respectively.
2015  *
2016  * This function is useful when a pidfd must already be reserved but there
2017  * might still be points of failure afterwards and the caller wants to ensure
2018  * that no pidfd is leaked into its file descriptor table.
2019  *
2020  * Return: On success, a reserved pidfd is returned from the function and a new
2021  *         pidfd file is returned in the last argument to the function. On
2022  *         error, a negative error code is returned from the function and the
2023  *         last argument remains unchanged.
2024  */
2025 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2026 {
2027 	int pidfd;
2028 	struct file *pidfd_file;
2029 
2030 	pidfd = get_unused_fd_flags(O_CLOEXEC);
2031 	if (pidfd < 0)
2032 		return pidfd;
2033 
2034 	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2035 	if (IS_ERR(pidfd_file)) {
2036 		put_unused_fd(pidfd);
2037 		return PTR_ERR(pidfd_file);
2038 	}
2039 	/*
2040 	 * anon_inode_getfile() ignores everything outside of the
2041 	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2042 	 */
2043 	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2044 	*ret = pidfd_file;
2045 	return pidfd;
2046 }
2047 
2048 /**
2049  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2050  * @pid:   the struct pid for which to create a pidfd
2051  * @flags: flags of the new @pidfd
2052  * @ret: Where to return the pidfd.
2053  *
2054  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2055  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2056  *
2057  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2058  * task identified by @pid must be a thread-group leader.
2059  *
2060  * If this function returns successfully the caller is responsible to either
2061  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2062  * order to install the pidfd into its file descriptor table or they must use
2063  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2064  * respectively.
2065  *
2066  * This function is useful when a pidfd must already be reserved but there
2067  * might still be points of failure afterwards and the caller wants to ensure
2068  * that no pidfd is leaked into its file descriptor table.
2069  *
2070  * Return: On success, a reserved pidfd is returned from the function and a new
2071  *         pidfd file is returned in the last argument to the function. On
2072  *         error, a negative error code is returned from the function and the
2073  *         last argument remains unchanged.
2074  */
2075 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2076 {
2077 	bool thread = flags & PIDFD_THREAD;
2078 
2079 	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2080 		return -EINVAL;
2081 
2082 	return __pidfd_prepare(pid, flags, ret);
2083 }
2084 
2085 static void __delayed_free_task(struct rcu_head *rhp)
2086 {
2087 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2088 
2089 	free_task(tsk);
2090 }
2091 
2092 static __always_inline void delayed_free_task(struct task_struct *tsk)
2093 {
2094 	if (IS_ENABLED(CONFIG_MEMCG))
2095 		call_rcu(&tsk->rcu, __delayed_free_task);
2096 	else
2097 		free_task(tsk);
2098 }
2099 
2100 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2101 {
2102 	/* Skip if kernel thread */
2103 	if (!tsk->mm)
2104 		return;
2105 
2106 	/* Skip if spawning a thread or using vfork */
2107 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2108 		return;
2109 
2110 	/* We need to synchronize with __set_oom_adj */
2111 	mutex_lock(&oom_adj_mutex);
2112 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2113 	/* Update the values in case they were changed after copy_signal */
2114 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2115 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2116 	mutex_unlock(&oom_adj_mutex);
2117 }
2118 
2119 #ifdef CONFIG_RV
2120 static void rv_task_fork(struct task_struct *p)
2121 {
2122 	int i;
2123 
2124 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2125 		p->rv[i].da_mon.monitoring = false;
2126 }
2127 #else
2128 #define rv_task_fork(p) do {} while (0)
2129 #endif
2130 
2131 /*
2132  * This creates a new process as a copy of the old one,
2133  * but does not actually start it yet.
2134  *
2135  * It copies the registers, and all the appropriate
2136  * parts of the process environment (as per the clone
2137  * flags). The actual kick-off is left to the caller.
2138  */
2139 __latent_entropy struct task_struct *copy_process(
2140 					struct pid *pid,
2141 					int trace,
2142 					int node,
2143 					struct kernel_clone_args *args)
2144 {
2145 	int pidfd = -1, retval;
2146 	struct task_struct *p;
2147 	struct multiprocess_signals delayed;
2148 	struct file *pidfile = NULL;
2149 	const u64 clone_flags = args->flags;
2150 	struct nsproxy *nsp = current->nsproxy;
2151 
2152 	/*
2153 	 * Don't allow sharing the root directory with processes in a different
2154 	 * namespace
2155 	 */
2156 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2157 		return ERR_PTR(-EINVAL);
2158 
2159 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2160 		return ERR_PTR(-EINVAL);
2161 
2162 	/*
2163 	 * Thread groups must share signals as well, and detached threads
2164 	 * can only be started up within the thread group.
2165 	 */
2166 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2167 		return ERR_PTR(-EINVAL);
2168 
2169 	/*
2170 	 * Shared signal handlers imply shared VM. By way of the above,
2171 	 * thread groups also imply shared VM. Blocking this case allows
2172 	 * for various simplifications in other code.
2173 	 */
2174 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2175 		return ERR_PTR(-EINVAL);
2176 
2177 	/*
2178 	 * Siblings of global init remain as zombies on exit since they are
2179 	 * not reaped by their parent (swapper). To solve this and to avoid
2180 	 * multi-rooted process trees, prevent global and container-inits
2181 	 * from creating siblings.
2182 	 */
2183 	if ((clone_flags & CLONE_PARENT) &&
2184 				current->signal->flags & SIGNAL_UNKILLABLE)
2185 		return ERR_PTR(-EINVAL);
2186 
2187 	/*
2188 	 * If the new process will be in a different pid or user namespace
2189 	 * do not allow it to share a thread group with the forking task.
2190 	 */
2191 	if (clone_flags & CLONE_THREAD) {
2192 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2193 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2194 			return ERR_PTR(-EINVAL);
2195 	}
2196 
2197 	if (clone_flags & CLONE_PIDFD) {
2198 		/*
2199 		 * - CLONE_DETACHED is blocked so that we can potentially
2200 		 *   reuse it later for CLONE_PIDFD.
2201 		 */
2202 		if (clone_flags & CLONE_DETACHED)
2203 			return ERR_PTR(-EINVAL);
2204 	}
2205 
2206 	/*
2207 	 * Force any signals received before this point to be delivered
2208 	 * before the fork happens.  Collect up signals sent to multiple
2209 	 * processes that happen during the fork and delay them so that
2210 	 * they appear to happen after the fork.
2211 	 */
2212 	sigemptyset(&delayed.signal);
2213 	INIT_HLIST_NODE(&delayed.node);
2214 
2215 	spin_lock_irq(&current->sighand->siglock);
2216 	if (!(clone_flags & CLONE_THREAD))
2217 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2218 	recalc_sigpending();
2219 	spin_unlock_irq(&current->sighand->siglock);
2220 	retval = -ERESTARTNOINTR;
2221 	if (task_sigpending(current))
2222 		goto fork_out;
2223 
2224 	retval = -ENOMEM;
2225 	p = dup_task_struct(current, node);
2226 	if (!p)
2227 		goto fork_out;
2228 	p->flags &= ~PF_KTHREAD;
2229 	if (args->kthread)
2230 		p->flags |= PF_KTHREAD;
2231 	if (args->user_worker) {
2232 		/*
2233 		 * Mark us a user worker, and block any signal that isn't
2234 		 * fatal or STOP
2235 		 */
2236 		p->flags |= PF_USER_WORKER;
2237 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2238 	}
2239 	if (args->io_thread)
2240 		p->flags |= PF_IO_WORKER;
2241 
2242 	if (args->name)
2243 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2244 
2245 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2246 	/*
2247 	 * Clear TID on mm_release()?
2248 	 */
2249 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2250 
2251 	ftrace_graph_init_task(p);
2252 
2253 	rt_mutex_init_task(p);
2254 
2255 	lockdep_assert_irqs_enabled();
2256 #ifdef CONFIG_PROVE_LOCKING
2257 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2258 #endif
2259 	retval = copy_creds(p, clone_flags);
2260 	if (retval < 0)
2261 		goto bad_fork_free;
2262 
2263 	retval = -EAGAIN;
2264 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2265 		if (p->real_cred->user != INIT_USER &&
2266 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2267 			goto bad_fork_cleanup_count;
2268 	}
2269 	current->flags &= ~PF_NPROC_EXCEEDED;
2270 
2271 	/*
2272 	 * If multiple threads are within copy_process(), then this check
2273 	 * triggers too late. This doesn't hurt, the check is only there
2274 	 * to stop root fork bombs.
2275 	 */
2276 	retval = -EAGAIN;
2277 	if (data_race(nr_threads >= max_threads))
2278 		goto bad_fork_cleanup_count;
2279 
2280 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2281 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2282 	p->flags |= PF_FORKNOEXEC;
2283 	INIT_LIST_HEAD(&p->children);
2284 	INIT_LIST_HEAD(&p->sibling);
2285 	rcu_copy_process(p);
2286 	p->vfork_done = NULL;
2287 	spin_lock_init(&p->alloc_lock);
2288 
2289 	init_sigpending(&p->pending);
2290 
2291 	p->utime = p->stime = p->gtime = 0;
2292 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2293 	p->utimescaled = p->stimescaled = 0;
2294 #endif
2295 	prev_cputime_init(&p->prev_cputime);
2296 
2297 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2298 	seqcount_init(&p->vtime.seqcount);
2299 	p->vtime.starttime = 0;
2300 	p->vtime.state = VTIME_INACTIVE;
2301 #endif
2302 
2303 #ifdef CONFIG_IO_URING
2304 	p->io_uring = NULL;
2305 #endif
2306 
2307 	p->default_timer_slack_ns = current->timer_slack_ns;
2308 
2309 #ifdef CONFIG_PSI
2310 	p->psi_flags = 0;
2311 #endif
2312 
2313 	task_io_accounting_init(&p->ioac);
2314 	acct_clear_integrals(p);
2315 
2316 	posix_cputimers_init(&p->posix_cputimers);
2317 	tick_dep_init_task(p);
2318 
2319 	p->io_context = NULL;
2320 	audit_set_context(p, NULL);
2321 	cgroup_fork(p);
2322 	if (args->kthread) {
2323 		if (!set_kthread_struct(p))
2324 			goto bad_fork_cleanup_delayacct;
2325 	}
2326 #ifdef CONFIG_NUMA
2327 	p->mempolicy = mpol_dup(p->mempolicy);
2328 	if (IS_ERR(p->mempolicy)) {
2329 		retval = PTR_ERR(p->mempolicy);
2330 		p->mempolicy = NULL;
2331 		goto bad_fork_cleanup_delayacct;
2332 	}
2333 #endif
2334 #ifdef CONFIG_CPUSETS
2335 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2336 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2337 #endif
2338 #ifdef CONFIG_TRACE_IRQFLAGS
2339 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2340 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2341 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2342 	p->softirqs_enabled		= 1;
2343 	p->softirq_context		= 0;
2344 #endif
2345 
2346 	p->pagefault_disabled = 0;
2347 
2348 #ifdef CONFIG_LOCKDEP
2349 	lockdep_init_task(p);
2350 #endif
2351 
2352 #ifdef CONFIG_DEBUG_MUTEXES
2353 	p->blocked_on = NULL; /* not blocked yet */
2354 #endif
2355 #ifdef CONFIG_BCACHE
2356 	p->sequential_io	= 0;
2357 	p->sequential_io_avg	= 0;
2358 #endif
2359 #ifdef CONFIG_BPF_SYSCALL
2360 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2361 	p->bpf_ctx = NULL;
2362 #endif
2363 
2364 	/* Perform scheduler related setup. Assign this task to a CPU. */
2365 	retval = sched_fork(clone_flags, p);
2366 	if (retval)
2367 		goto bad_fork_cleanup_policy;
2368 
2369 	retval = perf_event_init_task(p, clone_flags);
2370 	if (retval)
2371 		goto bad_fork_sched_cancel_fork;
2372 	retval = audit_alloc(p);
2373 	if (retval)
2374 		goto bad_fork_cleanup_perf;
2375 	/* copy all the process information */
2376 	shm_init_task(p);
2377 	retval = security_task_alloc(p, clone_flags);
2378 	if (retval)
2379 		goto bad_fork_cleanup_audit;
2380 	retval = copy_semundo(clone_flags, p);
2381 	if (retval)
2382 		goto bad_fork_cleanup_security;
2383 	retval = copy_files(clone_flags, p, args->no_files);
2384 	if (retval)
2385 		goto bad_fork_cleanup_semundo;
2386 	retval = copy_fs(clone_flags, p);
2387 	if (retval)
2388 		goto bad_fork_cleanup_files;
2389 	retval = copy_sighand(clone_flags, p);
2390 	if (retval)
2391 		goto bad_fork_cleanup_fs;
2392 	retval = copy_signal(clone_flags, p);
2393 	if (retval)
2394 		goto bad_fork_cleanup_sighand;
2395 	retval = copy_mm(clone_flags, p);
2396 	if (retval)
2397 		goto bad_fork_cleanup_signal;
2398 	retval = copy_namespaces(clone_flags, p);
2399 	if (retval)
2400 		goto bad_fork_cleanup_mm;
2401 	retval = copy_io(clone_flags, p);
2402 	if (retval)
2403 		goto bad_fork_cleanup_namespaces;
2404 	retval = copy_thread(p, args);
2405 	if (retval)
2406 		goto bad_fork_cleanup_io;
2407 
2408 	stackleak_task_init(p);
2409 
2410 	if (pid != &init_struct_pid) {
2411 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2412 				args->set_tid_size);
2413 		if (IS_ERR(pid)) {
2414 			retval = PTR_ERR(pid);
2415 			goto bad_fork_cleanup_thread;
2416 		}
2417 	}
2418 
2419 	/*
2420 	 * This has to happen after we've potentially unshared the file
2421 	 * descriptor table (so that the pidfd doesn't leak into the child
2422 	 * if the fd table isn't shared).
2423 	 */
2424 	if (clone_flags & CLONE_PIDFD) {
2425 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2426 
2427 		/* Note that no task has been attached to @pid yet. */
2428 		retval = __pidfd_prepare(pid, flags, &pidfile);
2429 		if (retval < 0)
2430 			goto bad_fork_free_pid;
2431 		pidfd = retval;
2432 
2433 		retval = put_user(pidfd, args->pidfd);
2434 		if (retval)
2435 			goto bad_fork_put_pidfd;
2436 	}
2437 
2438 #ifdef CONFIG_BLOCK
2439 	p->plug = NULL;
2440 #endif
2441 	futex_init_task(p);
2442 
2443 	/*
2444 	 * sigaltstack should be cleared when sharing the same VM
2445 	 */
2446 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2447 		sas_ss_reset(p);
2448 
2449 	/*
2450 	 * Syscall tracing and stepping should be turned off in the
2451 	 * child regardless of CLONE_PTRACE.
2452 	 */
2453 	user_disable_single_step(p);
2454 	clear_task_syscall_work(p, SYSCALL_TRACE);
2455 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2456 	clear_task_syscall_work(p, SYSCALL_EMU);
2457 #endif
2458 	clear_tsk_latency_tracing(p);
2459 
2460 	/* ok, now we should be set up.. */
2461 	p->pid = pid_nr(pid);
2462 	if (clone_flags & CLONE_THREAD) {
2463 		p->group_leader = current->group_leader;
2464 		p->tgid = current->tgid;
2465 	} else {
2466 		p->group_leader = p;
2467 		p->tgid = p->pid;
2468 	}
2469 
2470 	p->nr_dirtied = 0;
2471 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2472 	p->dirty_paused_when = 0;
2473 
2474 	p->pdeath_signal = 0;
2475 	p->task_works = NULL;
2476 	clear_posix_cputimers_work(p);
2477 
2478 #ifdef CONFIG_KRETPROBES
2479 	p->kretprobe_instances.first = NULL;
2480 #endif
2481 #ifdef CONFIG_RETHOOK
2482 	p->rethooks.first = NULL;
2483 #endif
2484 
2485 	/*
2486 	 * Ensure that the cgroup subsystem policies allow the new process to be
2487 	 * forked. It should be noted that the new process's css_set can be changed
2488 	 * between here and cgroup_post_fork() if an organisation operation is in
2489 	 * progress.
2490 	 */
2491 	retval = cgroup_can_fork(p, args);
2492 	if (retval)
2493 		goto bad_fork_put_pidfd;
2494 
2495 	/*
2496 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2497 	 * the new task on the correct runqueue. All this *before* the task
2498 	 * becomes visible.
2499 	 *
2500 	 * This isn't part of ->can_fork() because while the re-cloning is
2501 	 * cgroup specific, it unconditionally needs to place the task on a
2502 	 * runqueue.
2503 	 */
2504 	retval = sched_cgroup_fork(p, args);
2505 	if (retval)
2506 		goto bad_fork_cancel_cgroup;
2507 
2508 	/*
2509 	 * From this point on we must avoid any synchronous user-space
2510 	 * communication until we take the tasklist-lock. In particular, we do
2511 	 * not want user-space to be able to predict the process start-time by
2512 	 * stalling fork(2) after we recorded the start_time but before it is
2513 	 * visible to the system.
2514 	 */
2515 
2516 	p->start_time = ktime_get_ns();
2517 	p->start_boottime = ktime_get_boottime_ns();
2518 
2519 	/*
2520 	 * Make it visible to the rest of the system, but dont wake it up yet.
2521 	 * Need tasklist lock for parent etc handling!
2522 	 */
2523 	write_lock_irq(&tasklist_lock);
2524 
2525 	/* CLONE_PARENT re-uses the old parent */
2526 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2527 		p->real_parent = current->real_parent;
2528 		p->parent_exec_id = current->parent_exec_id;
2529 		if (clone_flags & CLONE_THREAD)
2530 			p->exit_signal = -1;
2531 		else
2532 			p->exit_signal = current->group_leader->exit_signal;
2533 	} else {
2534 		p->real_parent = current;
2535 		p->parent_exec_id = current->self_exec_id;
2536 		p->exit_signal = args->exit_signal;
2537 	}
2538 
2539 	klp_copy_process(p);
2540 
2541 	sched_core_fork(p);
2542 
2543 	spin_lock(&current->sighand->siglock);
2544 
2545 	rv_task_fork(p);
2546 
2547 	rseq_fork(p, clone_flags);
2548 
2549 	/* Don't start children in a dying pid namespace */
2550 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2551 		retval = -ENOMEM;
2552 		goto bad_fork_core_free;
2553 	}
2554 
2555 	/* Let kill terminate clone/fork in the middle */
2556 	if (fatal_signal_pending(current)) {
2557 		retval = -EINTR;
2558 		goto bad_fork_core_free;
2559 	}
2560 
2561 	/* No more failure paths after this point. */
2562 
2563 	/*
2564 	 * Copy seccomp details explicitly here, in case they were changed
2565 	 * before holding sighand lock.
2566 	 */
2567 	copy_seccomp(p);
2568 
2569 	init_task_pid_links(p);
2570 	if (likely(p->pid)) {
2571 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2572 
2573 		init_task_pid(p, PIDTYPE_PID, pid);
2574 		if (thread_group_leader(p)) {
2575 			init_task_pid(p, PIDTYPE_TGID, pid);
2576 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2577 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2578 
2579 			if (is_child_reaper(pid)) {
2580 				ns_of_pid(pid)->child_reaper = p;
2581 				p->signal->flags |= SIGNAL_UNKILLABLE;
2582 			}
2583 			p->signal->shared_pending.signal = delayed.signal;
2584 			p->signal->tty = tty_kref_get(current->signal->tty);
2585 			/*
2586 			 * Inherit has_child_subreaper flag under the same
2587 			 * tasklist_lock with adding child to the process tree
2588 			 * for propagate_has_child_subreaper optimization.
2589 			 */
2590 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2591 							 p->real_parent->signal->is_child_subreaper;
2592 			list_add_tail(&p->sibling, &p->real_parent->children);
2593 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2594 			attach_pid(p, PIDTYPE_TGID);
2595 			attach_pid(p, PIDTYPE_PGID);
2596 			attach_pid(p, PIDTYPE_SID);
2597 			__this_cpu_inc(process_counts);
2598 		} else {
2599 			current->signal->nr_threads++;
2600 			current->signal->quick_threads++;
2601 			atomic_inc(&current->signal->live);
2602 			refcount_inc(&current->signal->sigcnt);
2603 			task_join_group_stop(p);
2604 			list_add_tail_rcu(&p->thread_node,
2605 					  &p->signal->thread_head);
2606 		}
2607 		attach_pid(p, PIDTYPE_PID);
2608 		nr_threads++;
2609 	}
2610 	total_forks++;
2611 	hlist_del_init(&delayed.node);
2612 	spin_unlock(&current->sighand->siglock);
2613 	syscall_tracepoint_update(p);
2614 	write_unlock_irq(&tasklist_lock);
2615 
2616 	if (pidfile)
2617 		fd_install(pidfd, pidfile);
2618 
2619 	proc_fork_connector(p);
2620 	sched_post_fork(p);
2621 	cgroup_post_fork(p, args);
2622 	perf_event_fork(p);
2623 
2624 	trace_task_newtask(p, clone_flags);
2625 	uprobe_copy_process(p, clone_flags);
2626 	user_events_fork(p, clone_flags);
2627 
2628 	copy_oom_score_adj(clone_flags, p);
2629 
2630 	return p;
2631 
2632 bad_fork_core_free:
2633 	sched_core_free(p);
2634 	spin_unlock(&current->sighand->siglock);
2635 	write_unlock_irq(&tasklist_lock);
2636 bad_fork_cancel_cgroup:
2637 	cgroup_cancel_fork(p, args);
2638 bad_fork_put_pidfd:
2639 	if (clone_flags & CLONE_PIDFD) {
2640 		fput(pidfile);
2641 		put_unused_fd(pidfd);
2642 	}
2643 bad_fork_free_pid:
2644 	if (pid != &init_struct_pid)
2645 		free_pid(pid);
2646 bad_fork_cleanup_thread:
2647 	exit_thread(p);
2648 bad_fork_cleanup_io:
2649 	if (p->io_context)
2650 		exit_io_context(p);
2651 bad_fork_cleanup_namespaces:
2652 	exit_task_namespaces(p);
2653 bad_fork_cleanup_mm:
2654 	if (p->mm) {
2655 		mm_clear_owner(p->mm, p);
2656 		mmput(p->mm);
2657 	}
2658 bad_fork_cleanup_signal:
2659 	if (!(clone_flags & CLONE_THREAD))
2660 		free_signal_struct(p->signal);
2661 bad_fork_cleanup_sighand:
2662 	__cleanup_sighand(p->sighand);
2663 bad_fork_cleanup_fs:
2664 	exit_fs(p); /* blocking */
2665 bad_fork_cleanup_files:
2666 	exit_files(p); /* blocking */
2667 bad_fork_cleanup_semundo:
2668 	exit_sem(p);
2669 bad_fork_cleanup_security:
2670 	security_task_free(p);
2671 bad_fork_cleanup_audit:
2672 	audit_free(p);
2673 bad_fork_cleanup_perf:
2674 	perf_event_free_task(p);
2675 bad_fork_sched_cancel_fork:
2676 	sched_cancel_fork(p);
2677 bad_fork_cleanup_policy:
2678 	lockdep_free_task(p);
2679 #ifdef CONFIG_NUMA
2680 	mpol_put(p->mempolicy);
2681 #endif
2682 bad_fork_cleanup_delayacct:
2683 	delayacct_tsk_free(p);
2684 bad_fork_cleanup_count:
2685 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2686 	exit_creds(p);
2687 bad_fork_free:
2688 	WRITE_ONCE(p->__state, TASK_DEAD);
2689 	exit_task_stack_account(p);
2690 	put_task_stack(p);
2691 	delayed_free_task(p);
2692 fork_out:
2693 	spin_lock_irq(&current->sighand->siglock);
2694 	hlist_del_init(&delayed.node);
2695 	spin_unlock_irq(&current->sighand->siglock);
2696 	return ERR_PTR(retval);
2697 }
2698 
2699 static inline void init_idle_pids(struct task_struct *idle)
2700 {
2701 	enum pid_type type;
2702 
2703 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2704 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2705 		init_task_pid(idle, type, &init_struct_pid);
2706 	}
2707 }
2708 
2709 static int idle_dummy(void *dummy)
2710 {
2711 	/* This function is never called */
2712 	return 0;
2713 }
2714 
2715 struct task_struct * __init fork_idle(int cpu)
2716 {
2717 	struct task_struct *task;
2718 	struct kernel_clone_args args = {
2719 		.flags		= CLONE_VM,
2720 		.fn		= &idle_dummy,
2721 		.fn_arg		= NULL,
2722 		.kthread	= 1,
2723 		.idle		= 1,
2724 	};
2725 
2726 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2727 	if (!IS_ERR(task)) {
2728 		init_idle_pids(task);
2729 		init_idle(task, cpu);
2730 	}
2731 
2732 	return task;
2733 }
2734 
2735 /*
2736  * This is like kernel_clone(), but shaved down and tailored to just
2737  * creating io_uring workers. It returns a created task, or an error pointer.
2738  * The returned task is inactive, and the caller must fire it up through
2739  * wake_up_new_task(p). All signals are blocked in the created task.
2740  */
2741 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2742 {
2743 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2744 				CLONE_IO;
2745 	struct kernel_clone_args args = {
2746 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2747 				    CLONE_UNTRACED) & ~CSIGNAL),
2748 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2749 		.fn		= fn,
2750 		.fn_arg		= arg,
2751 		.io_thread	= 1,
2752 		.user_worker	= 1,
2753 	};
2754 
2755 	return copy_process(NULL, 0, node, &args);
2756 }
2757 
2758 /*
2759  *  Ok, this is the main fork-routine.
2760  *
2761  * It copies the process, and if successful kick-starts
2762  * it and waits for it to finish using the VM if required.
2763  *
2764  * args->exit_signal is expected to be checked for sanity by the caller.
2765  */
2766 pid_t kernel_clone(struct kernel_clone_args *args)
2767 {
2768 	u64 clone_flags = args->flags;
2769 	struct completion vfork;
2770 	struct pid *pid;
2771 	struct task_struct *p;
2772 	int trace = 0;
2773 	pid_t nr;
2774 
2775 	/*
2776 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2777 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2778 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2779 	 * field in struct clone_args and it still doesn't make sense to have
2780 	 * them both point at the same memory location. Performing this check
2781 	 * here has the advantage that we don't need to have a separate helper
2782 	 * to check for legacy clone().
2783 	 */
2784 	if ((clone_flags & CLONE_PIDFD) &&
2785 	    (clone_flags & CLONE_PARENT_SETTID) &&
2786 	    (args->pidfd == args->parent_tid))
2787 		return -EINVAL;
2788 
2789 	/*
2790 	 * Determine whether and which event to report to ptracer.  When
2791 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2792 	 * requested, no event is reported; otherwise, report if the event
2793 	 * for the type of forking is enabled.
2794 	 */
2795 	if (!(clone_flags & CLONE_UNTRACED)) {
2796 		if (clone_flags & CLONE_VFORK)
2797 			trace = PTRACE_EVENT_VFORK;
2798 		else if (args->exit_signal != SIGCHLD)
2799 			trace = PTRACE_EVENT_CLONE;
2800 		else
2801 			trace = PTRACE_EVENT_FORK;
2802 
2803 		if (likely(!ptrace_event_enabled(current, trace)))
2804 			trace = 0;
2805 	}
2806 
2807 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2808 	add_latent_entropy();
2809 
2810 	if (IS_ERR(p))
2811 		return PTR_ERR(p);
2812 
2813 	/*
2814 	 * Do this prior waking up the new thread - the thread pointer
2815 	 * might get invalid after that point, if the thread exits quickly.
2816 	 */
2817 	trace_sched_process_fork(current, p);
2818 
2819 	pid = get_task_pid(p, PIDTYPE_PID);
2820 	nr = pid_vnr(pid);
2821 
2822 	if (clone_flags & CLONE_PARENT_SETTID)
2823 		put_user(nr, args->parent_tid);
2824 
2825 	if (clone_flags & CLONE_VFORK) {
2826 		p->vfork_done = &vfork;
2827 		init_completion(&vfork);
2828 		get_task_struct(p);
2829 	}
2830 
2831 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2832 		/* lock the task to synchronize with memcg migration */
2833 		task_lock(p);
2834 		lru_gen_add_mm(p->mm);
2835 		task_unlock(p);
2836 	}
2837 
2838 	wake_up_new_task(p);
2839 
2840 	/* forking complete and child started to run, tell ptracer */
2841 	if (unlikely(trace))
2842 		ptrace_event_pid(trace, pid);
2843 
2844 	if (clone_flags & CLONE_VFORK) {
2845 		if (!wait_for_vfork_done(p, &vfork))
2846 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2847 	}
2848 
2849 	put_pid(pid);
2850 	return nr;
2851 }
2852 
2853 /*
2854  * Create a kernel thread.
2855  */
2856 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2857 		    unsigned long flags)
2858 {
2859 	struct kernel_clone_args args = {
2860 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2861 				    CLONE_UNTRACED) & ~CSIGNAL),
2862 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2863 		.fn		= fn,
2864 		.fn_arg		= arg,
2865 		.name		= name,
2866 		.kthread	= 1,
2867 	};
2868 
2869 	return kernel_clone(&args);
2870 }
2871 
2872 /*
2873  * Create a user mode thread.
2874  */
2875 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2876 {
2877 	struct kernel_clone_args args = {
2878 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2879 				    CLONE_UNTRACED) & ~CSIGNAL),
2880 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2881 		.fn		= fn,
2882 		.fn_arg		= arg,
2883 	};
2884 
2885 	return kernel_clone(&args);
2886 }
2887 
2888 #ifdef __ARCH_WANT_SYS_FORK
2889 SYSCALL_DEFINE0(fork)
2890 {
2891 #ifdef CONFIG_MMU
2892 	struct kernel_clone_args args = {
2893 		.exit_signal = SIGCHLD,
2894 	};
2895 
2896 	return kernel_clone(&args);
2897 #else
2898 	/* can not support in nommu mode */
2899 	return -EINVAL;
2900 #endif
2901 }
2902 #endif
2903 
2904 #ifdef __ARCH_WANT_SYS_VFORK
2905 SYSCALL_DEFINE0(vfork)
2906 {
2907 	struct kernel_clone_args args = {
2908 		.flags		= CLONE_VFORK | CLONE_VM,
2909 		.exit_signal	= SIGCHLD,
2910 	};
2911 
2912 	return kernel_clone(&args);
2913 }
2914 #endif
2915 
2916 #ifdef __ARCH_WANT_SYS_CLONE
2917 #ifdef CONFIG_CLONE_BACKWARDS
2918 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2919 		 int __user *, parent_tidptr,
2920 		 unsigned long, tls,
2921 		 int __user *, child_tidptr)
2922 #elif defined(CONFIG_CLONE_BACKWARDS2)
2923 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2924 		 int __user *, parent_tidptr,
2925 		 int __user *, child_tidptr,
2926 		 unsigned long, tls)
2927 #elif defined(CONFIG_CLONE_BACKWARDS3)
2928 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2929 		int, stack_size,
2930 		int __user *, parent_tidptr,
2931 		int __user *, child_tidptr,
2932 		unsigned long, tls)
2933 #else
2934 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2935 		 int __user *, parent_tidptr,
2936 		 int __user *, child_tidptr,
2937 		 unsigned long, tls)
2938 #endif
2939 {
2940 	struct kernel_clone_args args = {
2941 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2942 		.pidfd		= parent_tidptr,
2943 		.child_tid	= child_tidptr,
2944 		.parent_tid	= parent_tidptr,
2945 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2946 		.stack		= newsp,
2947 		.tls		= tls,
2948 	};
2949 
2950 	return kernel_clone(&args);
2951 }
2952 #endif
2953 
2954 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2955 					      struct clone_args __user *uargs,
2956 					      size_t usize)
2957 {
2958 	int err;
2959 	struct clone_args args;
2960 	pid_t *kset_tid = kargs->set_tid;
2961 
2962 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2963 		     CLONE_ARGS_SIZE_VER0);
2964 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2965 		     CLONE_ARGS_SIZE_VER1);
2966 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2967 		     CLONE_ARGS_SIZE_VER2);
2968 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2969 
2970 	if (unlikely(usize > PAGE_SIZE))
2971 		return -E2BIG;
2972 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2973 		return -EINVAL;
2974 
2975 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2976 	if (err)
2977 		return err;
2978 
2979 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2980 		return -EINVAL;
2981 
2982 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2983 		return -EINVAL;
2984 
2985 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2986 		return -EINVAL;
2987 
2988 	/*
2989 	 * Verify that higher 32bits of exit_signal are unset and that
2990 	 * it is a valid signal
2991 	 */
2992 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2993 		     !valid_signal(args.exit_signal)))
2994 		return -EINVAL;
2995 
2996 	if ((args.flags & CLONE_INTO_CGROUP) &&
2997 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2998 		return -EINVAL;
2999 
3000 	*kargs = (struct kernel_clone_args){
3001 		.flags		= args.flags,
3002 		.pidfd		= u64_to_user_ptr(args.pidfd),
3003 		.child_tid	= u64_to_user_ptr(args.child_tid),
3004 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3005 		.exit_signal	= args.exit_signal,
3006 		.stack		= args.stack,
3007 		.stack_size	= args.stack_size,
3008 		.tls		= args.tls,
3009 		.set_tid_size	= args.set_tid_size,
3010 		.cgroup		= args.cgroup,
3011 	};
3012 
3013 	if (args.set_tid &&
3014 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3015 			(kargs->set_tid_size * sizeof(pid_t))))
3016 		return -EFAULT;
3017 
3018 	kargs->set_tid = kset_tid;
3019 
3020 	return 0;
3021 }
3022 
3023 /**
3024  * clone3_stack_valid - check and prepare stack
3025  * @kargs: kernel clone args
3026  *
3027  * Verify that the stack arguments userspace gave us are sane.
3028  * In addition, set the stack direction for userspace since it's easy for us to
3029  * determine.
3030  */
3031 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3032 {
3033 	if (kargs->stack == 0) {
3034 		if (kargs->stack_size > 0)
3035 			return false;
3036 	} else {
3037 		if (kargs->stack_size == 0)
3038 			return false;
3039 
3040 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3041 			return false;
3042 
3043 #if !defined(CONFIG_STACK_GROWSUP)
3044 		kargs->stack += kargs->stack_size;
3045 #endif
3046 	}
3047 
3048 	return true;
3049 }
3050 
3051 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3052 {
3053 	/* Verify that no unknown flags are passed along. */
3054 	if (kargs->flags &
3055 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3056 		return false;
3057 
3058 	/*
3059 	 * - make the CLONE_DETACHED bit reusable for clone3
3060 	 * - make the CSIGNAL bits reusable for clone3
3061 	 */
3062 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3063 		return false;
3064 
3065 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3066 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3067 		return false;
3068 
3069 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3070 	    kargs->exit_signal)
3071 		return false;
3072 
3073 	if (!clone3_stack_valid(kargs))
3074 		return false;
3075 
3076 	return true;
3077 }
3078 
3079 /**
3080  * sys_clone3 - create a new process with specific properties
3081  * @uargs: argument structure
3082  * @size:  size of @uargs
3083  *
3084  * clone3() is the extensible successor to clone()/clone2().
3085  * It takes a struct as argument that is versioned by its size.
3086  *
3087  * Return: On success, a positive PID for the child process.
3088  *         On error, a negative errno number.
3089  */
3090 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3091 {
3092 	int err;
3093 
3094 	struct kernel_clone_args kargs;
3095 	pid_t set_tid[MAX_PID_NS_LEVEL];
3096 
3097 #ifdef __ARCH_BROKEN_SYS_CLONE3
3098 #warning clone3() entry point is missing, please fix
3099 	return -ENOSYS;
3100 #endif
3101 
3102 	kargs.set_tid = set_tid;
3103 
3104 	err = copy_clone_args_from_user(&kargs, uargs, size);
3105 	if (err)
3106 		return err;
3107 
3108 	if (!clone3_args_valid(&kargs))
3109 		return -EINVAL;
3110 
3111 	return kernel_clone(&kargs);
3112 }
3113 
3114 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3115 {
3116 	struct task_struct *leader, *parent, *child;
3117 	int res;
3118 
3119 	read_lock(&tasklist_lock);
3120 	leader = top = top->group_leader;
3121 down:
3122 	for_each_thread(leader, parent) {
3123 		list_for_each_entry(child, &parent->children, sibling) {
3124 			res = visitor(child, data);
3125 			if (res) {
3126 				if (res < 0)
3127 					goto out;
3128 				leader = child;
3129 				goto down;
3130 			}
3131 up:
3132 			;
3133 		}
3134 	}
3135 
3136 	if (leader != top) {
3137 		child = leader;
3138 		parent = child->real_parent;
3139 		leader = parent->group_leader;
3140 		goto up;
3141 	}
3142 out:
3143 	read_unlock(&tasklist_lock);
3144 }
3145 
3146 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3147 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3148 #endif
3149 
3150 static void sighand_ctor(void *data)
3151 {
3152 	struct sighand_struct *sighand = data;
3153 
3154 	spin_lock_init(&sighand->siglock);
3155 	init_waitqueue_head(&sighand->signalfd_wqh);
3156 }
3157 
3158 void __init mm_cache_init(void)
3159 {
3160 	unsigned int mm_size;
3161 
3162 	/*
3163 	 * The mm_cpumask is located at the end of mm_struct, and is
3164 	 * dynamically sized based on the maximum CPU number this system
3165 	 * can have, taking hotplug into account (nr_cpu_ids).
3166 	 */
3167 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3168 
3169 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3170 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3171 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3172 			offsetof(struct mm_struct, saved_auxv),
3173 			sizeof_field(struct mm_struct, saved_auxv),
3174 			NULL);
3175 }
3176 
3177 void __init proc_caches_init(void)
3178 {
3179 	sighand_cachep = kmem_cache_create("sighand_cache",
3180 			sizeof(struct sighand_struct), 0,
3181 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3182 			SLAB_ACCOUNT, sighand_ctor);
3183 	signal_cachep = kmem_cache_create("signal_cache",
3184 			sizeof(struct signal_struct), 0,
3185 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3186 			NULL);
3187 	files_cachep = kmem_cache_create("files_cache",
3188 			sizeof(struct files_struct), 0,
3189 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3190 			NULL);
3191 	fs_cachep = kmem_cache_create("fs_cache",
3192 			sizeof(struct fs_struct), 0,
3193 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3194 			NULL);
3195 
3196 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3197 #ifdef CONFIG_PER_VMA_LOCK
3198 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3199 #endif
3200 	mmap_init();
3201 	nsproxy_cache_init();
3202 }
3203 
3204 /*
3205  * Check constraints on flags passed to the unshare system call.
3206  */
3207 static int check_unshare_flags(unsigned long unshare_flags)
3208 {
3209 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3210 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3211 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3212 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3213 				CLONE_NEWTIME))
3214 		return -EINVAL;
3215 	/*
3216 	 * Not implemented, but pretend it works if there is nothing
3217 	 * to unshare.  Note that unsharing the address space or the
3218 	 * signal handlers also need to unshare the signal queues (aka
3219 	 * CLONE_THREAD).
3220 	 */
3221 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3222 		if (!thread_group_empty(current))
3223 			return -EINVAL;
3224 	}
3225 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3226 		if (refcount_read(&current->sighand->count) > 1)
3227 			return -EINVAL;
3228 	}
3229 	if (unshare_flags & CLONE_VM) {
3230 		if (!current_is_single_threaded())
3231 			return -EINVAL;
3232 	}
3233 
3234 	return 0;
3235 }
3236 
3237 /*
3238  * Unshare the filesystem structure if it is being shared
3239  */
3240 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3241 {
3242 	struct fs_struct *fs = current->fs;
3243 
3244 	if (!(unshare_flags & CLONE_FS) || !fs)
3245 		return 0;
3246 
3247 	/* don't need lock here; in the worst case we'll do useless copy */
3248 	if (fs->users == 1)
3249 		return 0;
3250 
3251 	*new_fsp = copy_fs_struct(fs);
3252 	if (!*new_fsp)
3253 		return -ENOMEM;
3254 
3255 	return 0;
3256 }
3257 
3258 /*
3259  * Unshare file descriptor table if it is being shared
3260  */
3261 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3262 {
3263 	struct files_struct *fd = current->files;
3264 
3265 	if ((unshare_flags & CLONE_FILES) &&
3266 	    (fd && atomic_read(&fd->count) > 1)) {
3267 		fd = dup_fd(fd, NULL);
3268 		if (IS_ERR(fd))
3269 			return PTR_ERR(fd);
3270 		*new_fdp = fd;
3271 	}
3272 
3273 	return 0;
3274 }
3275 
3276 /*
3277  * unshare allows a process to 'unshare' part of the process
3278  * context which was originally shared using clone.  copy_*
3279  * functions used by kernel_clone() cannot be used here directly
3280  * because they modify an inactive task_struct that is being
3281  * constructed. Here we are modifying the current, active,
3282  * task_struct.
3283  */
3284 int ksys_unshare(unsigned long unshare_flags)
3285 {
3286 	struct fs_struct *fs, *new_fs = NULL;
3287 	struct files_struct *new_fd = NULL;
3288 	struct cred *new_cred = NULL;
3289 	struct nsproxy *new_nsproxy = NULL;
3290 	int do_sysvsem = 0;
3291 	int err;
3292 
3293 	/*
3294 	 * If unsharing a user namespace must also unshare the thread group
3295 	 * and unshare the filesystem root and working directories.
3296 	 */
3297 	if (unshare_flags & CLONE_NEWUSER)
3298 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3299 	/*
3300 	 * If unsharing vm, must also unshare signal handlers.
3301 	 */
3302 	if (unshare_flags & CLONE_VM)
3303 		unshare_flags |= CLONE_SIGHAND;
3304 	/*
3305 	 * If unsharing a signal handlers, must also unshare the signal queues.
3306 	 */
3307 	if (unshare_flags & CLONE_SIGHAND)
3308 		unshare_flags |= CLONE_THREAD;
3309 	/*
3310 	 * If unsharing namespace, must also unshare filesystem information.
3311 	 */
3312 	if (unshare_flags & CLONE_NEWNS)
3313 		unshare_flags |= CLONE_FS;
3314 
3315 	err = check_unshare_flags(unshare_flags);
3316 	if (err)
3317 		goto bad_unshare_out;
3318 	/*
3319 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3320 	 * to a new ipc namespace, the semaphore arrays from the old
3321 	 * namespace are unreachable.
3322 	 */
3323 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3324 		do_sysvsem = 1;
3325 	err = unshare_fs(unshare_flags, &new_fs);
3326 	if (err)
3327 		goto bad_unshare_out;
3328 	err = unshare_fd(unshare_flags, &new_fd);
3329 	if (err)
3330 		goto bad_unshare_cleanup_fs;
3331 	err = unshare_userns(unshare_flags, &new_cred);
3332 	if (err)
3333 		goto bad_unshare_cleanup_fd;
3334 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3335 					 new_cred, new_fs);
3336 	if (err)
3337 		goto bad_unshare_cleanup_cred;
3338 
3339 	if (new_cred) {
3340 		err = set_cred_ucounts(new_cred);
3341 		if (err)
3342 			goto bad_unshare_cleanup_cred;
3343 	}
3344 
3345 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3346 		if (do_sysvsem) {
3347 			/*
3348 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3349 			 */
3350 			exit_sem(current);
3351 		}
3352 		if (unshare_flags & CLONE_NEWIPC) {
3353 			/* Orphan segments in old ns (see sem above). */
3354 			exit_shm(current);
3355 			shm_init_task(current);
3356 		}
3357 
3358 		if (new_nsproxy)
3359 			switch_task_namespaces(current, new_nsproxy);
3360 
3361 		task_lock(current);
3362 
3363 		if (new_fs) {
3364 			fs = current->fs;
3365 			spin_lock(&fs->lock);
3366 			current->fs = new_fs;
3367 			if (--fs->users)
3368 				new_fs = NULL;
3369 			else
3370 				new_fs = fs;
3371 			spin_unlock(&fs->lock);
3372 		}
3373 
3374 		if (new_fd)
3375 			swap(current->files, new_fd);
3376 
3377 		task_unlock(current);
3378 
3379 		if (new_cred) {
3380 			/* Install the new user namespace */
3381 			commit_creds(new_cred);
3382 			new_cred = NULL;
3383 		}
3384 	}
3385 
3386 	perf_event_namespaces(current);
3387 
3388 bad_unshare_cleanup_cred:
3389 	if (new_cred)
3390 		put_cred(new_cred);
3391 bad_unshare_cleanup_fd:
3392 	if (new_fd)
3393 		put_files_struct(new_fd);
3394 
3395 bad_unshare_cleanup_fs:
3396 	if (new_fs)
3397 		free_fs_struct(new_fs);
3398 
3399 bad_unshare_out:
3400 	return err;
3401 }
3402 
3403 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3404 {
3405 	return ksys_unshare(unshare_flags);
3406 }
3407 
3408 /*
3409  *	Helper to unshare the files of the current task.
3410  *	We don't want to expose copy_files internals to
3411  *	the exec layer of the kernel.
3412  */
3413 
3414 int unshare_files(void)
3415 {
3416 	struct task_struct *task = current;
3417 	struct files_struct *old, *copy = NULL;
3418 	int error;
3419 
3420 	error = unshare_fd(CLONE_FILES, &copy);
3421 	if (error || !copy)
3422 		return error;
3423 
3424 	old = task->files;
3425 	task_lock(task);
3426 	task->files = copy;
3427 	task_unlock(task);
3428 	put_files_struct(old);
3429 	return 0;
3430 }
3431 
3432 int sysctl_max_threads(const struct ctl_table *table, int write,
3433 		       void *buffer, size_t *lenp, loff_t *ppos)
3434 {
3435 	struct ctl_table t;
3436 	int ret;
3437 	int threads = max_threads;
3438 	int min = 1;
3439 	int max = MAX_THREADS;
3440 
3441 	t = *table;
3442 	t.data = &threads;
3443 	t.extra1 = &min;
3444 	t.extra2 = &max;
3445 
3446 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3447 	if (ret || !write)
3448 		return ret;
3449 
3450 	max_threads = threads;
3451 
3452 	return 0;
3453 }
3454