1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/bpf.h> 101 #include <linux/stackprotector.h> 102 #include <linux/user_events.h> 103 #include <linux/iommu.h> 104 #include <linux/rseq.h> 105 #include <uapi/linux/pidfd.h> 106 #include <linux/pidfs.h> 107 #include <linux/tick.h> 108 109 #include <asm/pgalloc.h> 110 #include <linux/uaccess.h> 111 #include <asm/mmu_context.h> 112 #include <asm/cacheflush.h> 113 #include <asm/tlbflush.h> 114 115 #include <trace/events/sched.h> 116 117 #define CREATE_TRACE_POINTS 118 #include <trace/events/task.h> 119 120 #include <kunit/visibility.h> 121 122 /* 123 * Minimum number of threads to boot the kernel 124 */ 125 #define MIN_THREADS 20 126 127 /* 128 * Maximum number of threads 129 */ 130 #define MAX_THREADS FUTEX_TID_MASK 131 132 /* 133 * Protected counters by write_lock_irq(&tasklist_lock) 134 */ 135 unsigned long total_forks; /* Handle normal Linux uptimes. */ 136 int nr_threads; /* The idle threads do not count.. */ 137 138 static int max_threads; /* tunable limit on nr_threads */ 139 140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 141 142 static const char * const resident_page_types[] = { 143 NAMED_ARRAY_INDEX(MM_FILEPAGES), 144 NAMED_ARRAY_INDEX(MM_ANONPAGES), 145 NAMED_ARRAY_INDEX(MM_SWAPENTS), 146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 147 }; 148 149 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 150 151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 152 153 #ifdef CONFIG_PROVE_RCU 154 int lockdep_tasklist_lock_is_held(void) 155 { 156 return lockdep_is_held(&tasklist_lock); 157 } 158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 159 #endif /* #ifdef CONFIG_PROVE_RCU */ 160 161 int nr_processes(void) 162 { 163 int cpu; 164 int total = 0; 165 166 for_each_possible_cpu(cpu) 167 total += per_cpu(process_counts, cpu); 168 169 return total; 170 } 171 172 void __weak arch_release_task_struct(struct task_struct *tsk) 173 { 174 } 175 176 static struct kmem_cache *task_struct_cachep; 177 178 static inline struct task_struct *alloc_task_struct_node(int node) 179 { 180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 181 } 182 183 static inline void free_task_struct(struct task_struct *tsk) 184 { 185 kmem_cache_free(task_struct_cachep, tsk); 186 } 187 188 /* 189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 190 * kmemcache based allocator. 191 */ 192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 193 194 # ifdef CONFIG_VMAP_STACK 195 /* 196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 197 * flush. Try to minimize the number of calls by caching stacks. 198 */ 199 #define NR_CACHED_STACKS 2 200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 201 202 struct vm_stack { 203 struct rcu_head rcu; 204 struct vm_struct *stack_vm_area; 205 }; 206 207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 208 { 209 unsigned int i; 210 211 for (i = 0; i < NR_CACHED_STACKS; i++) { 212 struct vm_struct *tmp = NULL; 213 214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm)) 215 return true; 216 } 217 return false; 218 } 219 220 static void thread_stack_free_rcu(struct rcu_head *rh) 221 { 222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 223 224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 225 return; 226 227 vfree(vm_stack); 228 } 229 230 static void thread_stack_delayed_free(struct task_struct *tsk) 231 { 232 struct vm_stack *vm_stack = tsk->stack; 233 234 vm_stack->stack_vm_area = tsk->stack_vm_area; 235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 236 } 237 238 static int free_vm_stack_cache(unsigned int cpu) 239 { 240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 241 int i; 242 243 for (i = 0; i < NR_CACHED_STACKS; i++) { 244 struct vm_struct *vm_stack = cached_vm_stacks[i]; 245 246 if (!vm_stack) 247 continue; 248 249 vfree(vm_stack->addr); 250 cached_vm_stacks[i] = NULL; 251 } 252 253 return 0; 254 } 255 256 static int memcg_charge_kernel_stack(struct vm_struct *vm) 257 { 258 int i; 259 int ret; 260 int nr_charged = 0; 261 262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 263 264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 266 if (ret) 267 goto err; 268 nr_charged++; 269 } 270 return 0; 271 err: 272 for (i = 0; i < nr_charged; i++) 273 memcg_kmem_uncharge_page(vm->pages[i], 0); 274 return ret; 275 } 276 277 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 278 { 279 struct vm_struct *vm; 280 void *stack; 281 int i; 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 struct vm_struct *s; 285 286 s = this_cpu_xchg(cached_stacks[i], NULL); 287 288 if (!s) 289 continue; 290 291 /* Reset stack metadata. */ 292 kasan_unpoison_range(s->addr, THREAD_SIZE); 293 294 stack = kasan_reset_tag(s->addr); 295 296 /* Clear stale pointers from reused stack. */ 297 memset(stack, 0, THREAD_SIZE); 298 299 if (memcg_charge_kernel_stack(s)) { 300 vfree(s->addr); 301 return -ENOMEM; 302 } 303 304 tsk->stack_vm_area = s; 305 tsk->stack = stack; 306 return 0; 307 } 308 309 /* 310 * Allocated stacks are cached and later reused by new threads, 311 * so memcg accounting is performed manually on assigning/releasing 312 * stacks to tasks. Drop __GFP_ACCOUNT. 313 */ 314 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 315 VMALLOC_START, VMALLOC_END, 316 THREADINFO_GFP & ~__GFP_ACCOUNT, 317 PAGE_KERNEL, 318 0, node, __builtin_return_address(0)); 319 if (!stack) 320 return -ENOMEM; 321 322 vm = find_vm_area(stack); 323 if (memcg_charge_kernel_stack(vm)) { 324 vfree(stack); 325 return -ENOMEM; 326 } 327 /* 328 * We can't call find_vm_area() in interrupt context, and 329 * free_thread_stack() can be called in interrupt context, 330 * so cache the vm_struct. 331 */ 332 tsk->stack_vm_area = vm; 333 stack = kasan_reset_tag(stack); 334 tsk->stack = stack; 335 return 0; 336 } 337 338 static void free_thread_stack(struct task_struct *tsk) 339 { 340 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 341 thread_stack_delayed_free(tsk); 342 343 tsk->stack = NULL; 344 tsk->stack_vm_area = NULL; 345 } 346 347 # else /* !CONFIG_VMAP_STACK */ 348 349 static void thread_stack_free_rcu(struct rcu_head *rh) 350 { 351 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 352 } 353 354 static void thread_stack_delayed_free(struct task_struct *tsk) 355 { 356 struct rcu_head *rh = tsk->stack; 357 358 call_rcu(rh, thread_stack_free_rcu); 359 } 360 361 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 362 { 363 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 364 THREAD_SIZE_ORDER); 365 366 if (likely(page)) { 367 tsk->stack = kasan_reset_tag(page_address(page)); 368 return 0; 369 } 370 return -ENOMEM; 371 } 372 373 static void free_thread_stack(struct task_struct *tsk) 374 { 375 thread_stack_delayed_free(tsk); 376 tsk->stack = NULL; 377 } 378 379 # endif /* CONFIG_VMAP_STACK */ 380 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 381 382 static struct kmem_cache *thread_stack_cache; 383 384 static void thread_stack_free_rcu(struct rcu_head *rh) 385 { 386 kmem_cache_free(thread_stack_cache, rh); 387 } 388 389 static void thread_stack_delayed_free(struct task_struct *tsk) 390 { 391 struct rcu_head *rh = tsk->stack; 392 393 call_rcu(rh, thread_stack_free_rcu); 394 } 395 396 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 397 { 398 unsigned long *stack; 399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 400 stack = kasan_reset_tag(stack); 401 tsk->stack = stack; 402 return stack ? 0 : -ENOMEM; 403 } 404 405 static void free_thread_stack(struct task_struct *tsk) 406 { 407 thread_stack_delayed_free(tsk); 408 tsk->stack = NULL; 409 } 410 411 void thread_stack_cache_init(void) 412 { 413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 414 THREAD_SIZE, THREAD_SIZE, 0, 0, 415 THREAD_SIZE, NULL); 416 BUG_ON(thread_stack_cache == NULL); 417 } 418 419 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 420 421 /* SLAB cache for signal_struct structures (tsk->signal) */ 422 static struct kmem_cache *signal_cachep; 423 424 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 425 struct kmem_cache *sighand_cachep; 426 427 /* SLAB cache for files_struct structures (tsk->files) */ 428 struct kmem_cache *files_cachep; 429 430 /* SLAB cache for fs_struct structures (tsk->fs) */ 431 struct kmem_cache *fs_cachep; 432 433 /* SLAB cache for vm_area_struct structures */ 434 static struct kmem_cache *vm_area_cachep; 435 436 /* SLAB cache for mm_struct structures (tsk->mm) */ 437 static struct kmem_cache *mm_cachep; 438 439 #ifdef CONFIG_PER_VMA_LOCK 440 441 /* SLAB cache for vm_area_struct.lock */ 442 static struct kmem_cache *vma_lock_cachep; 443 444 static bool vma_lock_alloc(struct vm_area_struct *vma) 445 { 446 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 447 if (!vma->vm_lock) 448 return false; 449 450 init_rwsem(&vma->vm_lock->lock); 451 vma->vm_lock_seq = -1; 452 453 return true; 454 } 455 456 static inline void vma_lock_free(struct vm_area_struct *vma) 457 { 458 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 459 } 460 461 #else /* CONFIG_PER_VMA_LOCK */ 462 463 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 464 static inline void vma_lock_free(struct vm_area_struct *vma) {} 465 466 #endif /* CONFIG_PER_VMA_LOCK */ 467 468 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 469 { 470 struct vm_area_struct *vma; 471 472 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 473 if (!vma) 474 return NULL; 475 476 vma_init(vma, mm); 477 if (!vma_lock_alloc(vma)) { 478 kmem_cache_free(vm_area_cachep, vma); 479 return NULL; 480 } 481 482 return vma; 483 } 484 485 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 486 { 487 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 488 489 if (!new) 490 return NULL; 491 492 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 493 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 494 /* 495 * orig->shared.rb may be modified concurrently, but the clone 496 * will be reinitialized. 497 */ 498 data_race(memcpy(new, orig, sizeof(*new))); 499 if (!vma_lock_alloc(new)) { 500 kmem_cache_free(vm_area_cachep, new); 501 return NULL; 502 } 503 INIT_LIST_HEAD(&new->anon_vma_chain); 504 vma_numab_state_init(new); 505 dup_anon_vma_name(orig, new); 506 507 return new; 508 } 509 510 void __vm_area_free(struct vm_area_struct *vma) 511 { 512 vma_numab_state_free(vma); 513 free_anon_vma_name(vma); 514 vma_lock_free(vma); 515 kmem_cache_free(vm_area_cachep, vma); 516 } 517 518 #ifdef CONFIG_PER_VMA_LOCK 519 static void vm_area_free_rcu_cb(struct rcu_head *head) 520 { 521 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 522 vm_rcu); 523 524 /* The vma should not be locked while being destroyed. */ 525 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 526 __vm_area_free(vma); 527 } 528 #endif 529 530 void vm_area_free(struct vm_area_struct *vma) 531 { 532 #ifdef CONFIG_PER_VMA_LOCK 533 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 534 #else 535 __vm_area_free(vma); 536 #endif 537 } 538 539 static void account_kernel_stack(struct task_struct *tsk, int account) 540 { 541 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 542 struct vm_struct *vm = task_stack_vm_area(tsk); 543 int i; 544 545 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 546 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 547 account * (PAGE_SIZE / 1024)); 548 } else { 549 void *stack = task_stack_page(tsk); 550 551 /* All stack pages are in the same node. */ 552 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 553 account * (THREAD_SIZE / 1024)); 554 } 555 } 556 557 void exit_task_stack_account(struct task_struct *tsk) 558 { 559 account_kernel_stack(tsk, -1); 560 561 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 562 struct vm_struct *vm; 563 int i; 564 565 vm = task_stack_vm_area(tsk); 566 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 567 memcg_kmem_uncharge_page(vm->pages[i], 0); 568 } 569 } 570 571 static void release_task_stack(struct task_struct *tsk) 572 { 573 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 574 return; /* Better to leak the stack than to free prematurely */ 575 576 free_thread_stack(tsk); 577 } 578 579 #ifdef CONFIG_THREAD_INFO_IN_TASK 580 void put_task_stack(struct task_struct *tsk) 581 { 582 if (refcount_dec_and_test(&tsk->stack_refcount)) 583 release_task_stack(tsk); 584 } 585 #endif 586 587 void free_task(struct task_struct *tsk) 588 { 589 #ifdef CONFIG_SECCOMP 590 WARN_ON_ONCE(tsk->seccomp.filter); 591 #endif 592 release_user_cpus_ptr(tsk); 593 scs_release(tsk); 594 595 #ifndef CONFIG_THREAD_INFO_IN_TASK 596 /* 597 * The task is finally done with both the stack and thread_info, 598 * so free both. 599 */ 600 release_task_stack(tsk); 601 #else 602 /* 603 * If the task had a separate stack allocation, it should be gone 604 * by now. 605 */ 606 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 607 #endif 608 rt_mutex_debug_task_free(tsk); 609 ftrace_graph_exit_task(tsk); 610 arch_release_task_struct(tsk); 611 if (tsk->flags & PF_KTHREAD) 612 free_kthread_struct(tsk); 613 bpf_task_storage_free(tsk); 614 free_task_struct(tsk); 615 } 616 EXPORT_SYMBOL(free_task); 617 618 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 619 { 620 struct file *exe_file; 621 622 exe_file = get_mm_exe_file(oldmm); 623 RCU_INIT_POINTER(mm->exe_file, exe_file); 624 /* 625 * We depend on the oldmm having properly denied write access to the 626 * exe_file already. 627 */ 628 if (exe_file && deny_write_access(exe_file)) 629 pr_warn_once("deny_write_access() failed in %s\n", __func__); 630 } 631 632 #ifdef CONFIG_MMU 633 static __latent_entropy int dup_mmap(struct mm_struct *mm, 634 struct mm_struct *oldmm) 635 { 636 struct vm_area_struct *mpnt, *tmp; 637 int retval; 638 unsigned long charge = 0; 639 LIST_HEAD(uf); 640 VMA_ITERATOR(vmi, mm, 0); 641 642 uprobe_start_dup_mmap(); 643 if (mmap_write_lock_killable(oldmm)) { 644 retval = -EINTR; 645 goto fail_uprobe_end; 646 } 647 flush_cache_dup_mm(oldmm); 648 uprobe_dup_mmap(oldmm, mm); 649 /* 650 * Not linked in yet - no deadlock potential: 651 */ 652 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 653 654 /* No ordering required: file already has been exposed. */ 655 dup_mm_exe_file(mm, oldmm); 656 657 mm->total_vm = oldmm->total_vm; 658 mm->data_vm = oldmm->data_vm; 659 mm->exec_vm = oldmm->exec_vm; 660 mm->stack_vm = oldmm->stack_vm; 661 662 /* Use __mt_dup() to efficiently build an identical maple tree. */ 663 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 664 if (unlikely(retval)) 665 goto out; 666 667 mt_clear_in_rcu(vmi.mas.tree); 668 for_each_vma(vmi, mpnt) { 669 struct file *file; 670 671 vma_start_write(mpnt); 672 if (mpnt->vm_flags & VM_DONTCOPY) { 673 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 674 mpnt->vm_end, GFP_KERNEL); 675 if (retval) 676 goto loop_out; 677 678 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 679 continue; 680 } 681 charge = 0; 682 /* 683 * Don't duplicate many vmas if we've been oom-killed (for 684 * example) 685 */ 686 if (fatal_signal_pending(current)) { 687 retval = -EINTR; 688 goto loop_out; 689 } 690 if (mpnt->vm_flags & VM_ACCOUNT) { 691 unsigned long len = vma_pages(mpnt); 692 693 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 694 goto fail_nomem; 695 charge = len; 696 } 697 tmp = vm_area_dup(mpnt); 698 if (!tmp) 699 goto fail_nomem; 700 retval = vma_dup_policy(mpnt, tmp); 701 if (retval) 702 goto fail_nomem_policy; 703 tmp->vm_mm = mm; 704 retval = dup_userfaultfd(tmp, &uf); 705 if (retval) 706 goto fail_nomem_anon_vma_fork; 707 if (tmp->vm_flags & VM_WIPEONFORK) { 708 /* 709 * VM_WIPEONFORK gets a clean slate in the child. 710 * Don't prepare anon_vma until fault since we don't 711 * copy page for current vma. 712 */ 713 tmp->anon_vma = NULL; 714 } else if (anon_vma_fork(tmp, mpnt)) 715 goto fail_nomem_anon_vma_fork; 716 vm_flags_clear(tmp, VM_LOCKED_MASK); 717 /* 718 * Copy/update hugetlb private vma information. 719 */ 720 if (is_vm_hugetlb_page(tmp)) 721 hugetlb_dup_vma_private(tmp); 722 723 /* 724 * Link the vma into the MT. After using __mt_dup(), memory 725 * allocation is not necessary here, so it cannot fail. 726 */ 727 vma_iter_bulk_store(&vmi, tmp); 728 729 mm->map_count++; 730 731 if (tmp->vm_ops && tmp->vm_ops->open) 732 tmp->vm_ops->open(tmp); 733 734 file = tmp->vm_file; 735 if (file) { 736 struct address_space *mapping = file->f_mapping; 737 738 get_file(file); 739 i_mmap_lock_write(mapping); 740 if (vma_is_shared_maywrite(tmp)) 741 mapping_allow_writable(mapping); 742 flush_dcache_mmap_lock(mapping); 743 /* insert tmp into the share list, just after mpnt */ 744 vma_interval_tree_insert_after(tmp, mpnt, 745 &mapping->i_mmap); 746 flush_dcache_mmap_unlock(mapping); 747 i_mmap_unlock_write(mapping); 748 } 749 750 if (!(tmp->vm_flags & VM_WIPEONFORK)) 751 retval = copy_page_range(tmp, mpnt); 752 753 if (retval) { 754 mpnt = vma_next(&vmi); 755 goto loop_out; 756 } 757 } 758 /* a new mm has just been created */ 759 retval = arch_dup_mmap(oldmm, mm); 760 loop_out: 761 vma_iter_free(&vmi); 762 if (!retval) { 763 mt_set_in_rcu(vmi.mas.tree); 764 ksm_fork(mm, oldmm); 765 khugepaged_fork(mm, oldmm); 766 } else if (mpnt) { 767 /* 768 * The entire maple tree has already been duplicated. If the 769 * mmap duplication fails, mark the failure point with 770 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 771 * stop releasing VMAs that have not been duplicated after this 772 * point. 773 */ 774 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 775 mas_store(&vmi.mas, XA_ZERO_ENTRY); 776 } 777 out: 778 mmap_write_unlock(mm); 779 flush_tlb_mm(oldmm); 780 mmap_write_unlock(oldmm); 781 if (!retval) 782 dup_userfaultfd_complete(&uf); 783 else 784 dup_userfaultfd_fail(&uf); 785 fail_uprobe_end: 786 uprobe_end_dup_mmap(); 787 return retval; 788 789 fail_nomem_anon_vma_fork: 790 mpol_put(vma_policy(tmp)); 791 fail_nomem_policy: 792 vm_area_free(tmp); 793 fail_nomem: 794 retval = -ENOMEM; 795 vm_unacct_memory(charge); 796 goto loop_out; 797 } 798 799 static inline int mm_alloc_pgd(struct mm_struct *mm) 800 { 801 mm->pgd = pgd_alloc(mm); 802 if (unlikely(!mm->pgd)) 803 return -ENOMEM; 804 return 0; 805 } 806 807 static inline void mm_free_pgd(struct mm_struct *mm) 808 { 809 pgd_free(mm, mm->pgd); 810 } 811 #else 812 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 813 { 814 mmap_write_lock(oldmm); 815 dup_mm_exe_file(mm, oldmm); 816 mmap_write_unlock(oldmm); 817 return 0; 818 } 819 #define mm_alloc_pgd(mm) (0) 820 #define mm_free_pgd(mm) 821 #endif /* CONFIG_MMU */ 822 823 static void check_mm(struct mm_struct *mm) 824 { 825 int i; 826 827 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 828 "Please make sure 'struct resident_page_types[]' is updated as well"); 829 830 for (i = 0; i < NR_MM_COUNTERS; i++) { 831 long x = percpu_counter_sum(&mm->rss_stat[i]); 832 833 if (unlikely(x)) 834 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 835 mm, resident_page_types[i], x); 836 } 837 838 if (mm_pgtables_bytes(mm)) 839 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 840 mm_pgtables_bytes(mm)); 841 842 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 843 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 844 #endif 845 } 846 847 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 848 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 849 850 static void do_check_lazy_tlb(void *arg) 851 { 852 struct mm_struct *mm = arg; 853 854 WARN_ON_ONCE(current->active_mm == mm); 855 } 856 857 static void do_shoot_lazy_tlb(void *arg) 858 { 859 struct mm_struct *mm = arg; 860 861 if (current->active_mm == mm) { 862 WARN_ON_ONCE(current->mm); 863 current->active_mm = &init_mm; 864 switch_mm(mm, &init_mm, current); 865 } 866 } 867 868 static void cleanup_lazy_tlbs(struct mm_struct *mm) 869 { 870 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 871 /* 872 * In this case, lazy tlb mms are refounted and would not reach 873 * __mmdrop until all CPUs have switched away and mmdrop()ed. 874 */ 875 return; 876 } 877 878 /* 879 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 880 * requires lazy mm users to switch to another mm when the refcount 881 * drops to zero, before the mm is freed. This requires IPIs here to 882 * switch kernel threads to init_mm. 883 * 884 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 885 * switch with the final userspace teardown TLB flush which leaves the 886 * mm lazy on this CPU but no others, reducing the need for additional 887 * IPIs here. There are cases where a final IPI is still required here, 888 * such as the final mmdrop being performed on a different CPU than the 889 * one exiting, or kernel threads using the mm when userspace exits. 890 * 891 * IPI overheads have not found to be expensive, but they could be 892 * reduced in a number of possible ways, for example (roughly 893 * increasing order of complexity): 894 * - The last lazy reference created by exit_mm() could instead switch 895 * to init_mm, however it's probable this will run on the same CPU 896 * immediately afterwards, so this may not reduce IPIs much. 897 * - A batch of mms requiring IPIs could be gathered and freed at once. 898 * - CPUs store active_mm where it can be remotely checked without a 899 * lock, to filter out false-positives in the cpumask. 900 * - After mm_users or mm_count reaches zero, switching away from the 901 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 902 * with some batching or delaying of the final IPIs. 903 * - A delayed freeing and RCU-like quiescing sequence based on mm 904 * switching to avoid IPIs completely. 905 */ 906 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 907 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 908 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 909 } 910 911 /* 912 * Called when the last reference to the mm 913 * is dropped: either by a lazy thread or by 914 * mmput. Free the page directory and the mm. 915 */ 916 void __mmdrop(struct mm_struct *mm) 917 { 918 BUG_ON(mm == &init_mm); 919 WARN_ON_ONCE(mm == current->mm); 920 921 /* Ensure no CPUs are using this as their lazy tlb mm */ 922 cleanup_lazy_tlbs(mm); 923 924 WARN_ON_ONCE(mm == current->active_mm); 925 mm_free_pgd(mm); 926 destroy_context(mm); 927 mmu_notifier_subscriptions_destroy(mm); 928 check_mm(mm); 929 put_user_ns(mm->user_ns); 930 mm_pasid_drop(mm); 931 mm_destroy_cid(mm); 932 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 933 934 free_mm(mm); 935 } 936 EXPORT_SYMBOL_GPL(__mmdrop); 937 938 static void mmdrop_async_fn(struct work_struct *work) 939 { 940 struct mm_struct *mm; 941 942 mm = container_of(work, struct mm_struct, async_put_work); 943 __mmdrop(mm); 944 } 945 946 static void mmdrop_async(struct mm_struct *mm) 947 { 948 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 949 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 950 schedule_work(&mm->async_put_work); 951 } 952 } 953 954 static inline void free_signal_struct(struct signal_struct *sig) 955 { 956 taskstats_tgid_free(sig); 957 sched_autogroup_exit(sig); 958 /* 959 * __mmdrop is not safe to call from softirq context on x86 due to 960 * pgd_dtor so postpone it to the async context 961 */ 962 if (sig->oom_mm) 963 mmdrop_async(sig->oom_mm); 964 kmem_cache_free(signal_cachep, sig); 965 } 966 967 static inline void put_signal_struct(struct signal_struct *sig) 968 { 969 if (refcount_dec_and_test(&sig->sigcnt)) 970 free_signal_struct(sig); 971 } 972 973 void __put_task_struct(struct task_struct *tsk) 974 { 975 WARN_ON(!tsk->exit_state); 976 WARN_ON(refcount_read(&tsk->usage)); 977 WARN_ON(tsk == current); 978 979 sched_ext_free(tsk); 980 io_uring_free(tsk); 981 cgroup_free(tsk); 982 task_numa_free(tsk, true); 983 security_task_free(tsk); 984 exit_creds(tsk); 985 delayacct_tsk_free(tsk); 986 put_signal_struct(tsk->signal); 987 sched_core_free(tsk); 988 free_task(tsk); 989 } 990 EXPORT_SYMBOL_GPL(__put_task_struct); 991 992 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 993 { 994 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 995 996 __put_task_struct(task); 997 } 998 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 999 1000 void __init __weak arch_task_cache_init(void) { } 1001 1002 /* 1003 * set_max_threads 1004 */ 1005 static void __init set_max_threads(unsigned int max_threads_suggested) 1006 { 1007 u64 threads; 1008 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 1009 1010 /* 1011 * The number of threads shall be limited such that the thread 1012 * structures may only consume a small part of the available memory. 1013 */ 1014 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1015 threads = MAX_THREADS; 1016 else 1017 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1018 (u64) THREAD_SIZE * 8UL); 1019 1020 if (threads > max_threads_suggested) 1021 threads = max_threads_suggested; 1022 1023 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1024 } 1025 1026 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1027 /* Initialized by the architecture: */ 1028 int arch_task_struct_size __read_mostly; 1029 #endif 1030 1031 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 1032 { 1033 /* Fetch thread_struct whitelist for the architecture. */ 1034 arch_thread_struct_whitelist(offset, size); 1035 1036 /* 1037 * Handle zero-sized whitelist or empty thread_struct, otherwise 1038 * adjust offset to position of thread_struct in task_struct. 1039 */ 1040 if (unlikely(*size == 0)) 1041 *offset = 0; 1042 else 1043 *offset += offsetof(struct task_struct, thread); 1044 } 1045 1046 void __init fork_init(void) 1047 { 1048 int i; 1049 #ifndef ARCH_MIN_TASKALIGN 1050 #define ARCH_MIN_TASKALIGN 0 1051 #endif 1052 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1053 unsigned long useroffset, usersize; 1054 1055 /* create a slab on which task_structs can be allocated */ 1056 task_struct_whitelist(&useroffset, &usersize); 1057 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1058 arch_task_struct_size, align, 1059 SLAB_PANIC|SLAB_ACCOUNT, 1060 useroffset, usersize, NULL); 1061 1062 /* do the arch specific task caches init */ 1063 arch_task_cache_init(); 1064 1065 set_max_threads(MAX_THREADS); 1066 1067 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1068 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1069 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1070 init_task.signal->rlim[RLIMIT_NPROC]; 1071 1072 for (i = 0; i < UCOUNT_COUNTS; i++) 1073 init_user_ns.ucount_max[i] = max_threads/2; 1074 1075 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1076 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1077 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1078 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1079 1080 #ifdef CONFIG_VMAP_STACK 1081 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1082 NULL, free_vm_stack_cache); 1083 #endif 1084 1085 scs_init(); 1086 1087 lockdep_init_task(&init_task); 1088 uprobes_init(); 1089 } 1090 1091 int __weak arch_dup_task_struct(struct task_struct *dst, 1092 struct task_struct *src) 1093 { 1094 *dst = *src; 1095 return 0; 1096 } 1097 1098 void set_task_stack_end_magic(struct task_struct *tsk) 1099 { 1100 unsigned long *stackend; 1101 1102 stackend = end_of_stack(tsk); 1103 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1104 } 1105 1106 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1107 { 1108 struct task_struct *tsk; 1109 int err; 1110 1111 if (node == NUMA_NO_NODE) 1112 node = tsk_fork_get_node(orig); 1113 tsk = alloc_task_struct_node(node); 1114 if (!tsk) 1115 return NULL; 1116 1117 err = arch_dup_task_struct(tsk, orig); 1118 if (err) 1119 goto free_tsk; 1120 1121 err = alloc_thread_stack_node(tsk, node); 1122 if (err) 1123 goto free_tsk; 1124 1125 #ifdef CONFIG_THREAD_INFO_IN_TASK 1126 refcount_set(&tsk->stack_refcount, 1); 1127 #endif 1128 account_kernel_stack(tsk, 1); 1129 1130 err = scs_prepare(tsk, node); 1131 if (err) 1132 goto free_stack; 1133 1134 #ifdef CONFIG_SECCOMP 1135 /* 1136 * We must handle setting up seccomp filters once we're under 1137 * the sighand lock in case orig has changed between now and 1138 * then. Until then, filter must be NULL to avoid messing up 1139 * the usage counts on the error path calling free_task. 1140 */ 1141 tsk->seccomp.filter = NULL; 1142 #endif 1143 1144 setup_thread_stack(tsk, orig); 1145 clear_user_return_notifier(tsk); 1146 clear_tsk_need_resched(tsk); 1147 set_task_stack_end_magic(tsk); 1148 clear_syscall_work_syscall_user_dispatch(tsk); 1149 1150 #ifdef CONFIG_STACKPROTECTOR 1151 tsk->stack_canary = get_random_canary(); 1152 #endif 1153 if (orig->cpus_ptr == &orig->cpus_mask) 1154 tsk->cpus_ptr = &tsk->cpus_mask; 1155 dup_user_cpus_ptr(tsk, orig, node); 1156 1157 /* 1158 * One for the user space visible state that goes away when reaped. 1159 * One for the scheduler. 1160 */ 1161 refcount_set(&tsk->rcu_users, 2); 1162 /* One for the rcu users */ 1163 refcount_set(&tsk->usage, 1); 1164 #ifdef CONFIG_BLK_DEV_IO_TRACE 1165 tsk->btrace_seq = 0; 1166 #endif 1167 tsk->splice_pipe = NULL; 1168 tsk->task_frag.page = NULL; 1169 tsk->wake_q.next = NULL; 1170 tsk->worker_private = NULL; 1171 1172 kcov_task_init(tsk); 1173 kmsan_task_create(tsk); 1174 kmap_local_fork(tsk); 1175 1176 #ifdef CONFIG_FAULT_INJECTION 1177 tsk->fail_nth = 0; 1178 #endif 1179 1180 #ifdef CONFIG_BLK_CGROUP 1181 tsk->throttle_disk = NULL; 1182 tsk->use_memdelay = 0; 1183 #endif 1184 1185 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1186 tsk->pasid_activated = 0; 1187 #endif 1188 1189 #ifdef CONFIG_MEMCG 1190 tsk->active_memcg = NULL; 1191 #endif 1192 1193 #ifdef CONFIG_X86_BUS_LOCK_DETECT 1194 tsk->reported_split_lock = 0; 1195 #endif 1196 1197 #ifdef CONFIG_SCHED_MM_CID 1198 tsk->mm_cid = -1; 1199 tsk->last_mm_cid = -1; 1200 tsk->mm_cid_active = 0; 1201 tsk->migrate_from_cpu = -1; 1202 #endif 1203 return tsk; 1204 1205 free_stack: 1206 exit_task_stack_account(tsk); 1207 free_thread_stack(tsk); 1208 free_tsk: 1209 free_task_struct(tsk); 1210 return NULL; 1211 } 1212 1213 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1214 1215 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1216 1217 static int __init coredump_filter_setup(char *s) 1218 { 1219 default_dump_filter = 1220 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1221 MMF_DUMP_FILTER_MASK; 1222 return 1; 1223 } 1224 1225 __setup("coredump_filter=", coredump_filter_setup); 1226 1227 #include <linux/init_task.h> 1228 1229 static void mm_init_aio(struct mm_struct *mm) 1230 { 1231 #ifdef CONFIG_AIO 1232 spin_lock_init(&mm->ioctx_lock); 1233 mm->ioctx_table = NULL; 1234 #endif 1235 } 1236 1237 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1238 struct task_struct *p) 1239 { 1240 #ifdef CONFIG_MEMCG 1241 if (mm->owner == p) 1242 WRITE_ONCE(mm->owner, NULL); 1243 #endif 1244 } 1245 1246 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1247 { 1248 #ifdef CONFIG_MEMCG 1249 mm->owner = p; 1250 #endif 1251 } 1252 1253 static void mm_init_uprobes_state(struct mm_struct *mm) 1254 { 1255 #ifdef CONFIG_UPROBES 1256 mm->uprobes_state.xol_area = NULL; 1257 #endif 1258 } 1259 1260 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1261 struct user_namespace *user_ns) 1262 { 1263 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1264 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1265 atomic_set(&mm->mm_users, 1); 1266 atomic_set(&mm->mm_count, 1); 1267 seqcount_init(&mm->write_protect_seq); 1268 mmap_init_lock(mm); 1269 INIT_LIST_HEAD(&mm->mmlist); 1270 #ifdef CONFIG_PER_VMA_LOCK 1271 mm->mm_lock_seq = 0; 1272 #endif 1273 mm_pgtables_bytes_init(mm); 1274 mm->map_count = 0; 1275 mm->locked_vm = 0; 1276 atomic64_set(&mm->pinned_vm, 0); 1277 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1278 spin_lock_init(&mm->page_table_lock); 1279 spin_lock_init(&mm->arg_lock); 1280 mm_init_cpumask(mm); 1281 mm_init_aio(mm); 1282 mm_init_owner(mm, p); 1283 mm_pasid_init(mm); 1284 RCU_INIT_POINTER(mm->exe_file, NULL); 1285 mmu_notifier_subscriptions_init(mm); 1286 init_tlb_flush_pending(mm); 1287 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1288 mm->pmd_huge_pte = NULL; 1289 #endif 1290 mm_init_uprobes_state(mm); 1291 hugetlb_count_init(mm); 1292 1293 if (current->mm) { 1294 mm->flags = mmf_init_flags(current->mm->flags); 1295 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1296 } else { 1297 mm->flags = default_dump_filter; 1298 mm->def_flags = 0; 1299 } 1300 1301 if (mm_alloc_pgd(mm)) 1302 goto fail_nopgd; 1303 1304 if (init_new_context(p, mm)) 1305 goto fail_nocontext; 1306 1307 if (mm_alloc_cid(mm, p)) 1308 goto fail_cid; 1309 1310 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1311 NR_MM_COUNTERS)) 1312 goto fail_pcpu; 1313 1314 mm->user_ns = get_user_ns(user_ns); 1315 lru_gen_init_mm(mm); 1316 return mm; 1317 1318 fail_pcpu: 1319 mm_destroy_cid(mm); 1320 fail_cid: 1321 destroy_context(mm); 1322 fail_nocontext: 1323 mm_free_pgd(mm); 1324 fail_nopgd: 1325 free_mm(mm); 1326 return NULL; 1327 } 1328 1329 /* 1330 * Allocate and initialize an mm_struct. 1331 */ 1332 struct mm_struct *mm_alloc(void) 1333 { 1334 struct mm_struct *mm; 1335 1336 mm = allocate_mm(); 1337 if (!mm) 1338 return NULL; 1339 1340 memset(mm, 0, sizeof(*mm)); 1341 return mm_init(mm, current, current_user_ns()); 1342 } 1343 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1344 1345 static inline void __mmput(struct mm_struct *mm) 1346 { 1347 VM_BUG_ON(atomic_read(&mm->mm_users)); 1348 1349 uprobe_clear_state(mm); 1350 exit_aio(mm); 1351 ksm_exit(mm); 1352 khugepaged_exit(mm); /* must run before exit_mmap */ 1353 exit_mmap(mm); 1354 mm_put_huge_zero_folio(mm); 1355 set_mm_exe_file(mm, NULL); 1356 if (!list_empty(&mm->mmlist)) { 1357 spin_lock(&mmlist_lock); 1358 list_del(&mm->mmlist); 1359 spin_unlock(&mmlist_lock); 1360 } 1361 if (mm->binfmt) 1362 module_put(mm->binfmt->module); 1363 lru_gen_del_mm(mm); 1364 mmdrop(mm); 1365 } 1366 1367 /* 1368 * Decrement the use count and release all resources for an mm. 1369 */ 1370 void mmput(struct mm_struct *mm) 1371 { 1372 might_sleep(); 1373 1374 if (atomic_dec_and_test(&mm->mm_users)) 1375 __mmput(mm); 1376 } 1377 EXPORT_SYMBOL_GPL(mmput); 1378 1379 #ifdef CONFIG_MMU 1380 static void mmput_async_fn(struct work_struct *work) 1381 { 1382 struct mm_struct *mm = container_of(work, struct mm_struct, 1383 async_put_work); 1384 1385 __mmput(mm); 1386 } 1387 1388 void mmput_async(struct mm_struct *mm) 1389 { 1390 if (atomic_dec_and_test(&mm->mm_users)) { 1391 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1392 schedule_work(&mm->async_put_work); 1393 } 1394 } 1395 EXPORT_SYMBOL_GPL(mmput_async); 1396 #endif 1397 1398 /** 1399 * set_mm_exe_file - change a reference to the mm's executable file 1400 * @mm: The mm to change. 1401 * @new_exe_file: The new file to use. 1402 * 1403 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1404 * 1405 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1406 * invocations: in mmput() nobody alive left, in execve it happens before 1407 * the new mm is made visible to anyone. 1408 * 1409 * Can only fail if new_exe_file != NULL. 1410 */ 1411 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1412 { 1413 struct file *old_exe_file; 1414 1415 /* 1416 * It is safe to dereference the exe_file without RCU as 1417 * this function is only called if nobody else can access 1418 * this mm -- see comment above for justification. 1419 */ 1420 old_exe_file = rcu_dereference_raw(mm->exe_file); 1421 1422 if (new_exe_file) { 1423 /* 1424 * We expect the caller (i.e., sys_execve) to already denied 1425 * write access, so this is unlikely to fail. 1426 */ 1427 if (unlikely(deny_write_access(new_exe_file))) 1428 return -EACCES; 1429 get_file(new_exe_file); 1430 } 1431 rcu_assign_pointer(mm->exe_file, new_exe_file); 1432 if (old_exe_file) { 1433 allow_write_access(old_exe_file); 1434 fput(old_exe_file); 1435 } 1436 return 0; 1437 } 1438 1439 /** 1440 * replace_mm_exe_file - replace a reference to the mm's executable file 1441 * @mm: The mm to change. 1442 * @new_exe_file: The new file to use. 1443 * 1444 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1445 * 1446 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1447 */ 1448 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1449 { 1450 struct vm_area_struct *vma; 1451 struct file *old_exe_file; 1452 int ret = 0; 1453 1454 /* Forbid mm->exe_file change if old file still mapped. */ 1455 old_exe_file = get_mm_exe_file(mm); 1456 if (old_exe_file) { 1457 VMA_ITERATOR(vmi, mm, 0); 1458 mmap_read_lock(mm); 1459 for_each_vma(vmi, vma) { 1460 if (!vma->vm_file) 1461 continue; 1462 if (path_equal(&vma->vm_file->f_path, 1463 &old_exe_file->f_path)) { 1464 ret = -EBUSY; 1465 break; 1466 } 1467 } 1468 mmap_read_unlock(mm); 1469 fput(old_exe_file); 1470 if (ret) 1471 return ret; 1472 } 1473 1474 ret = deny_write_access(new_exe_file); 1475 if (ret) 1476 return -EACCES; 1477 get_file(new_exe_file); 1478 1479 /* set the new file */ 1480 mmap_write_lock(mm); 1481 old_exe_file = rcu_dereference_raw(mm->exe_file); 1482 rcu_assign_pointer(mm->exe_file, new_exe_file); 1483 mmap_write_unlock(mm); 1484 1485 if (old_exe_file) { 1486 allow_write_access(old_exe_file); 1487 fput(old_exe_file); 1488 } 1489 return 0; 1490 } 1491 1492 /** 1493 * get_mm_exe_file - acquire a reference to the mm's executable file 1494 * @mm: The mm of interest. 1495 * 1496 * Returns %NULL if mm has no associated executable file. 1497 * User must release file via fput(). 1498 */ 1499 struct file *get_mm_exe_file(struct mm_struct *mm) 1500 { 1501 struct file *exe_file; 1502 1503 rcu_read_lock(); 1504 exe_file = get_file_rcu(&mm->exe_file); 1505 rcu_read_unlock(); 1506 return exe_file; 1507 } 1508 1509 /** 1510 * get_task_exe_file - acquire a reference to the task's executable file 1511 * @task: The task. 1512 * 1513 * Returns %NULL if task's mm (if any) has no associated executable file or 1514 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1515 * User must release file via fput(). 1516 */ 1517 struct file *get_task_exe_file(struct task_struct *task) 1518 { 1519 struct file *exe_file = NULL; 1520 struct mm_struct *mm; 1521 1522 task_lock(task); 1523 mm = task->mm; 1524 if (mm) { 1525 if (!(task->flags & PF_KTHREAD)) 1526 exe_file = get_mm_exe_file(mm); 1527 } 1528 task_unlock(task); 1529 return exe_file; 1530 } 1531 1532 /** 1533 * get_task_mm - acquire a reference to the task's mm 1534 * @task: The task. 1535 * 1536 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1537 * this kernel workthread has transiently adopted a user mm with use_mm, 1538 * to do its AIO) is not set and if so returns a reference to it, after 1539 * bumping up the use count. User must release the mm via mmput() 1540 * after use. Typically used by /proc and ptrace. 1541 */ 1542 struct mm_struct *get_task_mm(struct task_struct *task) 1543 { 1544 struct mm_struct *mm; 1545 1546 if (task->flags & PF_KTHREAD) 1547 return NULL; 1548 1549 task_lock(task); 1550 mm = task->mm; 1551 if (mm) 1552 mmget(mm); 1553 task_unlock(task); 1554 return mm; 1555 } 1556 EXPORT_SYMBOL_GPL(get_task_mm); 1557 1558 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1559 { 1560 struct mm_struct *mm; 1561 int err; 1562 1563 err = down_read_killable(&task->signal->exec_update_lock); 1564 if (err) 1565 return ERR_PTR(err); 1566 1567 mm = get_task_mm(task); 1568 if (!mm) { 1569 mm = ERR_PTR(-ESRCH); 1570 } else if (mm != current->mm && !ptrace_may_access(task, mode)) { 1571 mmput(mm); 1572 mm = ERR_PTR(-EACCES); 1573 } 1574 up_read(&task->signal->exec_update_lock); 1575 1576 return mm; 1577 } 1578 1579 static void complete_vfork_done(struct task_struct *tsk) 1580 { 1581 struct completion *vfork; 1582 1583 task_lock(tsk); 1584 vfork = tsk->vfork_done; 1585 if (likely(vfork)) { 1586 tsk->vfork_done = NULL; 1587 complete(vfork); 1588 } 1589 task_unlock(tsk); 1590 } 1591 1592 static int wait_for_vfork_done(struct task_struct *child, 1593 struct completion *vfork) 1594 { 1595 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1596 int killed; 1597 1598 cgroup_enter_frozen(); 1599 killed = wait_for_completion_state(vfork, state); 1600 cgroup_leave_frozen(false); 1601 1602 if (killed) { 1603 task_lock(child); 1604 child->vfork_done = NULL; 1605 task_unlock(child); 1606 } 1607 1608 put_task_struct(child); 1609 return killed; 1610 } 1611 1612 /* Please note the differences between mmput and mm_release. 1613 * mmput is called whenever we stop holding onto a mm_struct, 1614 * error success whatever. 1615 * 1616 * mm_release is called after a mm_struct has been removed 1617 * from the current process. 1618 * 1619 * This difference is important for error handling, when we 1620 * only half set up a mm_struct for a new process and need to restore 1621 * the old one. Because we mmput the new mm_struct before 1622 * restoring the old one. . . 1623 * Eric Biederman 10 January 1998 1624 */ 1625 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1626 { 1627 uprobe_free_utask(tsk); 1628 1629 /* Get rid of any cached register state */ 1630 deactivate_mm(tsk, mm); 1631 1632 /* 1633 * Signal userspace if we're not exiting with a core dump 1634 * because we want to leave the value intact for debugging 1635 * purposes. 1636 */ 1637 if (tsk->clear_child_tid) { 1638 if (atomic_read(&mm->mm_users) > 1) { 1639 /* 1640 * We don't check the error code - if userspace has 1641 * not set up a proper pointer then tough luck. 1642 */ 1643 put_user(0, tsk->clear_child_tid); 1644 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1645 1, NULL, NULL, 0, 0); 1646 } 1647 tsk->clear_child_tid = NULL; 1648 } 1649 1650 /* 1651 * All done, finally we can wake up parent and return this mm to him. 1652 * Also kthread_stop() uses this completion for synchronization. 1653 */ 1654 if (tsk->vfork_done) 1655 complete_vfork_done(tsk); 1656 } 1657 1658 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1659 { 1660 futex_exit_release(tsk); 1661 mm_release(tsk, mm); 1662 } 1663 1664 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1665 { 1666 futex_exec_release(tsk); 1667 mm_release(tsk, mm); 1668 } 1669 1670 /** 1671 * dup_mm() - duplicates an existing mm structure 1672 * @tsk: the task_struct with which the new mm will be associated. 1673 * @oldmm: the mm to duplicate. 1674 * 1675 * Allocates a new mm structure and duplicates the provided @oldmm structure 1676 * content into it. 1677 * 1678 * Return: the duplicated mm or NULL on failure. 1679 */ 1680 static struct mm_struct *dup_mm(struct task_struct *tsk, 1681 struct mm_struct *oldmm) 1682 { 1683 struct mm_struct *mm; 1684 int err; 1685 1686 mm = allocate_mm(); 1687 if (!mm) 1688 goto fail_nomem; 1689 1690 memcpy(mm, oldmm, sizeof(*mm)); 1691 1692 if (!mm_init(mm, tsk, mm->user_ns)) 1693 goto fail_nomem; 1694 1695 err = dup_mmap(mm, oldmm); 1696 if (err) 1697 goto free_pt; 1698 1699 mm->hiwater_rss = get_mm_rss(mm); 1700 mm->hiwater_vm = mm->total_vm; 1701 1702 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1703 goto free_pt; 1704 1705 return mm; 1706 1707 free_pt: 1708 /* don't put binfmt in mmput, we haven't got module yet */ 1709 mm->binfmt = NULL; 1710 mm_init_owner(mm, NULL); 1711 mmput(mm); 1712 1713 fail_nomem: 1714 return NULL; 1715 } 1716 1717 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1718 { 1719 struct mm_struct *mm, *oldmm; 1720 1721 tsk->min_flt = tsk->maj_flt = 0; 1722 tsk->nvcsw = tsk->nivcsw = 0; 1723 #ifdef CONFIG_DETECT_HUNG_TASK 1724 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1725 tsk->last_switch_time = 0; 1726 #endif 1727 1728 tsk->mm = NULL; 1729 tsk->active_mm = NULL; 1730 1731 /* 1732 * Are we cloning a kernel thread? 1733 * 1734 * We need to steal a active VM for that.. 1735 */ 1736 oldmm = current->mm; 1737 if (!oldmm) 1738 return 0; 1739 1740 if (clone_flags & CLONE_VM) { 1741 mmget(oldmm); 1742 mm = oldmm; 1743 } else { 1744 mm = dup_mm(tsk, current->mm); 1745 if (!mm) 1746 return -ENOMEM; 1747 } 1748 1749 tsk->mm = mm; 1750 tsk->active_mm = mm; 1751 sched_mm_cid_fork(tsk); 1752 return 0; 1753 } 1754 1755 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1756 { 1757 struct fs_struct *fs = current->fs; 1758 if (clone_flags & CLONE_FS) { 1759 /* tsk->fs is already what we want */ 1760 spin_lock(&fs->lock); 1761 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1762 if (fs->in_exec) { 1763 spin_unlock(&fs->lock); 1764 return -EAGAIN; 1765 } 1766 fs->users++; 1767 spin_unlock(&fs->lock); 1768 return 0; 1769 } 1770 tsk->fs = copy_fs_struct(fs); 1771 if (!tsk->fs) 1772 return -ENOMEM; 1773 return 0; 1774 } 1775 1776 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1777 int no_files) 1778 { 1779 struct files_struct *oldf, *newf; 1780 1781 /* 1782 * A background process may not have any files ... 1783 */ 1784 oldf = current->files; 1785 if (!oldf) 1786 return 0; 1787 1788 if (no_files) { 1789 tsk->files = NULL; 1790 return 0; 1791 } 1792 1793 if (clone_flags & CLONE_FILES) { 1794 atomic_inc(&oldf->count); 1795 return 0; 1796 } 1797 1798 newf = dup_fd(oldf, NULL); 1799 if (IS_ERR(newf)) 1800 return PTR_ERR(newf); 1801 1802 tsk->files = newf; 1803 return 0; 1804 } 1805 1806 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1807 { 1808 struct sighand_struct *sig; 1809 1810 if (clone_flags & CLONE_SIGHAND) { 1811 refcount_inc(¤t->sighand->count); 1812 return 0; 1813 } 1814 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1815 RCU_INIT_POINTER(tsk->sighand, sig); 1816 if (!sig) 1817 return -ENOMEM; 1818 1819 refcount_set(&sig->count, 1); 1820 spin_lock_irq(¤t->sighand->siglock); 1821 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1822 spin_unlock_irq(¤t->sighand->siglock); 1823 1824 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1825 if (clone_flags & CLONE_CLEAR_SIGHAND) 1826 flush_signal_handlers(tsk, 0); 1827 1828 return 0; 1829 } 1830 1831 void __cleanup_sighand(struct sighand_struct *sighand) 1832 { 1833 if (refcount_dec_and_test(&sighand->count)) { 1834 signalfd_cleanup(sighand); 1835 /* 1836 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1837 * without an RCU grace period, see __lock_task_sighand(). 1838 */ 1839 kmem_cache_free(sighand_cachep, sighand); 1840 } 1841 } 1842 1843 /* 1844 * Initialize POSIX timer handling for a thread group. 1845 */ 1846 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1847 { 1848 struct posix_cputimers *pct = &sig->posix_cputimers; 1849 unsigned long cpu_limit; 1850 1851 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1852 posix_cputimers_group_init(pct, cpu_limit); 1853 } 1854 1855 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1856 { 1857 struct signal_struct *sig; 1858 1859 if (clone_flags & CLONE_THREAD) 1860 return 0; 1861 1862 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1863 tsk->signal = sig; 1864 if (!sig) 1865 return -ENOMEM; 1866 1867 sig->nr_threads = 1; 1868 sig->quick_threads = 1; 1869 atomic_set(&sig->live, 1); 1870 refcount_set(&sig->sigcnt, 1); 1871 1872 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1873 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1874 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1875 1876 init_waitqueue_head(&sig->wait_chldexit); 1877 sig->curr_target = tsk; 1878 init_sigpending(&sig->shared_pending); 1879 INIT_HLIST_HEAD(&sig->multiprocess); 1880 seqlock_init(&sig->stats_lock); 1881 prev_cputime_init(&sig->prev_cputime); 1882 1883 #ifdef CONFIG_POSIX_TIMERS 1884 INIT_HLIST_HEAD(&sig->posix_timers); 1885 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1886 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1887 sig->real_timer.function = it_real_fn; 1888 #endif 1889 1890 task_lock(current->group_leader); 1891 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1892 task_unlock(current->group_leader); 1893 1894 posix_cpu_timers_init_group(sig); 1895 1896 tty_audit_fork(sig); 1897 sched_autogroup_fork(sig); 1898 1899 sig->oom_score_adj = current->signal->oom_score_adj; 1900 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1901 1902 mutex_init(&sig->cred_guard_mutex); 1903 init_rwsem(&sig->exec_update_lock); 1904 1905 return 0; 1906 } 1907 1908 static void copy_seccomp(struct task_struct *p) 1909 { 1910 #ifdef CONFIG_SECCOMP 1911 /* 1912 * Must be called with sighand->lock held, which is common to 1913 * all threads in the group. Holding cred_guard_mutex is not 1914 * needed because this new task is not yet running and cannot 1915 * be racing exec. 1916 */ 1917 assert_spin_locked(¤t->sighand->siglock); 1918 1919 /* Ref-count the new filter user, and assign it. */ 1920 get_seccomp_filter(current); 1921 p->seccomp = current->seccomp; 1922 1923 /* 1924 * Explicitly enable no_new_privs here in case it got set 1925 * between the task_struct being duplicated and holding the 1926 * sighand lock. The seccomp state and nnp must be in sync. 1927 */ 1928 if (task_no_new_privs(current)) 1929 task_set_no_new_privs(p); 1930 1931 /* 1932 * If the parent gained a seccomp mode after copying thread 1933 * flags and between before we held the sighand lock, we have 1934 * to manually enable the seccomp thread flag here. 1935 */ 1936 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1937 set_task_syscall_work(p, SECCOMP); 1938 #endif 1939 } 1940 1941 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1942 { 1943 current->clear_child_tid = tidptr; 1944 1945 return task_pid_vnr(current); 1946 } 1947 1948 static void rt_mutex_init_task(struct task_struct *p) 1949 { 1950 raw_spin_lock_init(&p->pi_lock); 1951 #ifdef CONFIG_RT_MUTEXES 1952 p->pi_waiters = RB_ROOT_CACHED; 1953 p->pi_top_task = NULL; 1954 p->pi_blocked_on = NULL; 1955 #endif 1956 } 1957 1958 static inline void init_task_pid_links(struct task_struct *task) 1959 { 1960 enum pid_type type; 1961 1962 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1963 INIT_HLIST_NODE(&task->pid_links[type]); 1964 } 1965 1966 static inline void 1967 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1968 { 1969 if (type == PIDTYPE_PID) 1970 task->thread_pid = pid; 1971 else 1972 task->signal->pids[type] = pid; 1973 } 1974 1975 static inline void rcu_copy_process(struct task_struct *p) 1976 { 1977 #ifdef CONFIG_PREEMPT_RCU 1978 p->rcu_read_lock_nesting = 0; 1979 p->rcu_read_unlock_special.s = 0; 1980 p->rcu_blocked_node = NULL; 1981 INIT_LIST_HEAD(&p->rcu_node_entry); 1982 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1983 #ifdef CONFIG_TASKS_RCU 1984 p->rcu_tasks_holdout = false; 1985 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1986 p->rcu_tasks_idle_cpu = -1; 1987 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1988 #endif /* #ifdef CONFIG_TASKS_RCU */ 1989 #ifdef CONFIG_TASKS_TRACE_RCU 1990 p->trc_reader_nesting = 0; 1991 p->trc_reader_special.s = 0; 1992 INIT_LIST_HEAD(&p->trc_holdout_list); 1993 INIT_LIST_HEAD(&p->trc_blkd_node); 1994 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1995 } 1996 1997 /** 1998 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1999 * @pid: the struct pid for which to create a pidfd 2000 * @flags: flags of the new @pidfd 2001 * @ret: Where to return the file for the pidfd. 2002 * 2003 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2004 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2005 * 2006 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2007 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2008 * pidfd file are prepared. 2009 * 2010 * If this function returns successfully the caller is responsible to either 2011 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2012 * order to install the pidfd into its file descriptor table or they must use 2013 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2014 * respectively. 2015 * 2016 * This function is useful when a pidfd must already be reserved but there 2017 * might still be points of failure afterwards and the caller wants to ensure 2018 * that no pidfd is leaked into its file descriptor table. 2019 * 2020 * Return: On success, a reserved pidfd is returned from the function and a new 2021 * pidfd file is returned in the last argument to the function. On 2022 * error, a negative error code is returned from the function and the 2023 * last argument remains unchanged. 2024 */ 2025 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2026 { 2027 int pidfd; 2028 struct file *pidfd_file; 2029 2030 pidfd = get_unused_fd_flags(O_CLOEXEC); 2031 if (pidfd < 0) 2032 return pidfd; 2033 2034 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2035 if (IS_ERR(pidfd_file)) { 2036 put_unused_fd(pidfd); 2037 return PTR_ERR(pidfd_file); 2038 } 2039 /* 2040 * anon_inode_getfile() ignores everything outside of the 2041 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2042 */ 2043 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2044 *ret = pidfd_file; 2045 return pidfd; 2046 } 2047 2048 /** 2049 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2050 * @pid: the struct pid for which to create a pidfd 2051 * @flags: flags of the new @pidfd 2052 * @ret: Where to return the pidfd. 2053 * 2054 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2055 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2056 * 2057 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2058 * task identified by @pid must be a thread-group leader. 2059 * 2060 * If this function returns successfully the caller is responsible to either 2061 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2062 * order to install the pidfd into its file descriptor table or they must use 2063 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2064 * respectively. 2065 * 2066 * This function is useful when a pidfd must already be reserved but there 2067 * might still be points of failure afterwards and the caller wants to ensure 2068 * that no pidfd is leaked into its file descriptor table. 2069 * 2070 * Return: On success, a reserved pidfd is returned from the function and a new 2071 * pidfd file is returned in the last argument to the function. On 2072 * error, a negative error code is returned from the function and the 2073 * last argument remains unchanged. 2074 */ 2075 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2076 { 2077 bool thread = flags & PIDFD_THREAD; 2078 2079 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2080 return -EINVAL; 2081 2082 return __pidfd_prepare(pid, flags, ret); 2083 } 2084 2085 static void __delayed_free_task(struct rcu_head *rhp) 2086 { 2087 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2088 2089 free_task(tsk); 2090 } 2091 2092 static __always_inline void delayed_free_task(struct task_struct *tsk) 2093 { 2094 if (IS_ENABLED(CONFIG_MEMCG)) 2095 call_rcu(&tsk->rcu, __delayed_free_task); 2096 else 2097 free_task(tsk); 2098 } 2099 2100 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2101 { 2102 /* Skip if kernel thread */ 2103 if (!tsk->mm) 2104 return; 2105 2106 /* Skip if spawning a thread or using vfork */ 2107 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2108 return; 2109 2110 /* We need to synchronize with __set_oom_adj */ 2111 mutex_lock(&oom_adj_mutex); 2112 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2113 /* Update the values in case they were changed after copy_signal */ 2114 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2115 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2116 mutex_unlock(&oom_adj_mutex); 2117 } 2118 2119 #ifdef CONFIG_RV 2120 static void rv_task_fork(struct task_struct *p) 2121 { 2122 int i; 2123 2124 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2125 p->rv[i].da_mon.monitoring = false; 2126 } 2127 #else 2128 #define rv_task_fork(p) do {} while (0) 2129 #endif 2130 2131 /* 2132 * This creates a new process as a copy of the old one, 2133 * but does not actually start it yet. 2134 * 2135 * It copies the registers, and all the appropriate 2136 * parts of the process environment (as per the clone 2137 * flags). The actual kick-off is left to the caller. 2138 */ 2139 __latent_entropy struct task_struct *copy_process( 2140 struct pid *pid, 2141 int trace, 2142 int node, 2143 struct kernel_clone_args *args) 2144 { 2145 int pidfd = -1, retval; 2146 struct task_struct *p; 2147 struct multiprocess_signals delayed; 2148 struct file *pidfile = NULL; 2149 const u64 clone_flags = args->flags; 2150 struct nsproxy *nsp = current->nsproxy; 2151 2152 /* 2153 * Don't allow sharing the root directory with processes in a different 2154 * namespace 2155 */ 2156 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2157 return ERR_PTR(-EINVAL); 2158 2159 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2160 return ERR_PTR(-EINVAL); 2161 2162 /* 2163 * Thread groups must share signals as well, and detached threads 2164 * can only be started up within the thread group. 2165 */ 2166 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2167 return ERR_PTR(-EINVAL); 2168 2169 /* 2170 * Shared signal handlers imply shared VM. By way of the above, 2171 * thread groups also imply shared VM. Blocking this case allows 2172 * for various simplifications in other code. 2173 */ 2174 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2175 return ERR_PTR(-EINVAL); 2176 2177 /* 2178 * Siblings of global init remain as zombies on exit since they are 2179 * not reaped by their parent (swapper). To solve this and to avoid 2180 * multi-rooted process trees, prevent global and container-inits 2181 * from creating siblings. 2182 */ 2183 if ((clone_flags & CLONE_PARENT) && 2184 current->signal->flags & SIGNAL_UNKILLABLE) 2185 return ERR_PTR(-EINVAL); 2186 2187 /* 2188 * If the new process will be in a different pid or user namespace 2189 * do not allow it to share a thread group with the forking task. 2190 */ 2191 if (clone_flags & CLONE_THREAD) { 2192 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2193 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2194 return ERR_PTR(-EINVAL); 2195 } 2196 2197 if (clone_flags & CLONE_PIDFD) { 2198 /* 2199 * - CLONE_DETACHED is blocked so that we can potentially 2200 * reuse it later for CLONE_PIDFD. 2201 */ 2202 if (clone_flags & CLONE_DETACHED) 2203 return ERR_PTR(-EINVAL); 2204 } 2205 2206 /* 2207 * Force any signals received before this point to be delivered 2208 * before the fork happens. Collect up signals sent to multiple 2209 * processes that happen during the fork and delay them so that 2210 * they appear to happen after the fork. 2211 */ 2212 sigemptyset(&delayed.signal); 2213 INIT_HLIST_NODE(&delayed.node); 2214 2215 spin_lock_irq(¤t->sighand->siglock); 2216 if (!(clone_flags & CLONE_THREAD)) 2217 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2218 recalc_sigpending(); 2219 spin_unlock_irq(¤t->sighand->siglock); 2220 retval = -ERESTARTNOINTR; 2221 if (task_sigpending(current)) 2222 goto fork_out; 2223 2224 retval = -ENOMEM; 2225 p = dup_task_struct(current, node); 2226 if (!p) 2227 goto fork_out; 2228 p->flags &= ~PF_KTHREAD; 2229 if (args->kthread) 2230 p->flags |= PF_KTHREAD; 2231 if (args->user_worker) { 2232 /* 2233 * Mark us a user worker, and block any signal that isn't 2234 * fatal or STOP 2235 */ 2236 p->flags |= PF_USER_WORKER; 2237 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2238 } 2239 if (args->io_thread) 2240 p->flags |= PF_IO_WORKER; 2241 2242 if (args->name) 2243 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2244 2245 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2246 /* 2247 * Clear TID on mm_release()? 2248 */ 2249 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2250 2251 ftrace_graph_init_task(p); 2252 2253 rt_mutex_init_task(p); 2254 2255 lockdep_assert_irqs_enabled(); 2256 #ifdef CONFIG_PROVE_LOCKING 2257 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2258 #endif 2259 retval = copy_creds(p, clone_flags); 2260 if (retval < 0) 2261 goto bad_fork_free; 2262 2263 retval = -EAGAIN; 2264 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2265 if (p->real_cred->user != INIT_USER && 2266 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2267 goto bad_fork_cleanup_count; 2268 } 2269 current->flags &= ~PF_NPROC_EXCEEDED; 2270 2271 /* 2272 * If multiple threads are within copy_process(), then this check 2273 * triggers too late. This doesn't hurt, the check is only there 2274 * to stop root fork bombs. 2275 */ 2276 retval = -EAGAIN; 2277 if (data_race(nr_threads >= max_threads)) 2278 goto bad_fork_cleanup_count; 2279 2280 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2281 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2282 p->flags |= PF_FORKNOEXEC; 2283 INIT_LIST_HEAD(&p->children); 2284 INIT_LIST_HEAD(&p->sibling); 2285 rcu_copy_process(p); 2286 p->vfork_done = NULL; 2287 spin_lock_init(&p->alloc_lock); 2288 2289 init_sigpending(&p->pending); 2290 2291 p->utime = p->stime = p->gtime = 0; 2292 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2293 p->utimescaled = p->stimescaled = 0; 2294 #endif 2295 prev_cputime_init(&p->prev_cputime); 2296 2297 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2298 seqcount_init(&p->vtime.seqcount); 2299 p->vtime.starttime = 0; 2300 p->vtime.state = VTIME_INACTIVE; 2301 #endif 2302 2303 #ifdef CONFIG_IO_URING 2304 p->io_uring = NULL; 2305 #endif 2306 2307 p->default_timer_slack_ns = current->timer_slack_ns; 2308 2309 #ifdef CONFIG_PSI 2310 p->psi_flags = 0; 2311 #endif 2312 2313 task_io_accounting_init(&p->ioac); 2314 acct_clear_integrals(p); 2315 2316 posix_cputimers_init(&p->posix_cputimers); 2317 tick_dep_init_task(p); 2318 2319 p->io_context = NULL; 2320 audit_set_context(p, NULL); 2321 cgroup_fork(p); 2322 if (args->kthread) { 2323 if (!set_kthread_struct(p)) 2324 goto bad_fork_cleanup_delayacct; 2325 } 2326 #ifdef CONFIG_NUMA 2327 p->mempolicy = mpol_dup(p->mempolicy); 2328 if (IS_ERR(p->mempolicy)) { 2329 retval = PTR_ERR(p->mempolicy); 2330 p->mempolicy = NULL; 2331 goto bad_fork_cleanup_delayacct; 2332 } 2333 #endif 2334 #ifdef CONFIG_CPUSETS 2335 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2336 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2337 #endif 2338 #ifdef CONFIG_TRACE_IRQFLAGS 2339 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2340 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2341 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2342 p->softirqs_enabled = 1; 2343 p->softirq_context = 0; 2344 #endif 2345 2346 p->pagefault_disabled = 0; 2347 2348 #ifdef CONFIG_LOCKDEP 2349 lockdep_init_task(p); 2350 #endif 2351 2352 #ifdef CONFIG_DEBUG_MUTEXES 2353 p->blocked_on = NULL; /* not blocked yet */ 2354 #endif 2355 #ifdef CONFIG_BCACHE 2356 p->sequential_io = 0; 2357 p->sequential_io_avg = 0; 2358 #endif 2359 #ifdef CONFIG_BPF_SYSCALL 2360 RCU_INIT_POINTER(p->bpf_storage, NULL); 2361 p->bpf_ctx = NULL; 2362 #endif 2363 2364 /* Perform scheduler related setup. Assign this task to a CPU. */ 2365 retval = sched_fork(clone_flags, p); 2366 if (retval) 2367 goto bad_fork_cleanup_policy; 2368 2369 retval = perf_event_init_task(p, clone_flags); 2370 if (retval) 2371 goto bad_fork_sched_cancel_fork; 2372 retval = audit_alloc(p); 2373 if (retval) 2374 goto bad_fork_cleanup_perf; 2375 /* copy all the process information */ 2376 shm_init_task(p); 2377 retval = security_task_alloc(p, clone_flags); 2378 if (retval) 2379 goto bad_fork_cleanup_audit; 2380 retval = copy_semundo(clone_flags, p); 2381 if (retval) 2382 goto bad_fork_cleanup_security; 2383 retval = copy_files(clone_flags, p, args->no_files); 2384 if (retval) 2385 goto bad_fork_cleanup_semundo; 2386 retval = copy_fs(clone_flags, p); 2387 if (retval) 2388 goto bad_fork_cleanup_files; 2389 retval = copy_sighand(clone_flags, p); 2390 if (retval) 2391 goto bad_fork_cleanup_fs; 2392 retval = copy_signal(clone_flags, p); 2393 if (retval) 2394 goto bad_fork_cleanup_sighand; 2395 retval = copy_mm(clone_flags, p); 2396 if (retval) 2397 goto bad_fork_cleanup_signal; 2398 retval = copy_namespaces(clone_flags, p); 2399 if (retval) 2400 goto bad_fork_cleanup_mm; 2401 retval = copy_io(clone_flags, p); 2402 if (retval) 2403 goto bad_fork_cleanup_namespaces; 2404 retval = copy_thread(p, args); 2405 if (retval) 2406 goto bad_fork_cleanup_io; 2407 2408 stackleak_task_init(p); 2409 2410 if (pid != &init_struct_pid) { 2411 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2412 args->set_tid_size); 2413 if (IS_ERR(pid)) { 2414 retval = PTR_ERR(pid); 2415 goto bad_fork_cleanup_thread; 2416 } 2417 } 2418 2419 /* 2420 * This has to happen after we've potentially unshared the file 2421 * descriptor table (so that the pidfd doesn't leak into the child 2422 * if the fd table isn't shared). 2423 */ 2424 if (clone_flags & CLONE_PIDFD) { 2425 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2426 2427 /* Note that no task has been attached to @pid yet. */ 2428 retval = __pidfd_prepare(pid, flags, &pidfile); 2429 if (retval < 0) 2430 goto bad_fork_free_pid; 2431 pidfd = retval; 2432 2433 retval = put_user(pidfd, args->pidfd); 2434 if (retval) 2435 goto bad_fork_put_pidfd; 2436 } 2437 2438 #ifdef CONFIG_BLOCK 2439 p->plug = NULL; 2440 #endif 2441 futex_init_task(p); 2442 2443 /* 2444 * sigaltstack should be cleared when sharing the same VM 2445 */ 2446 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2447 sas_ss_reset(p); 2448 2449 /* 2450 * Syscall tracing and stepping should be turned off in the 2451 * child regardless of CLONE_PTRACE. 2452 */ 2453 user_disable_single_step(p); 2454 clear_task_syscall_work(p, SYSCALL_TRACE); 2455 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2456 clear_task_syscall_work(p, SYSCALL_EMU); 2457 #endif 2458 clear_tsk_latency_tracing(p); 2459 2460 /* ok, now we should be set up.. */ 2461 p->pid = pid_nr(pid); 2462 if (clone_flags & CLONE_THREAD) { 2463 p->group_leader = current->group_leader; 2464 p->tgid = current->tgid; 2465 } else { 2466 p->group_leader = p; 2467 p->tgid = p->pid; 2468 } 2469 2470 p->nr_dirtied = 0; 2471 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2472 p->dirty_paused_when = 0; 2473 2474 p->pdeath_signal = 0; 2475 p->task_works = NULL; 2476 clear_posix_cputimers_work(p); 2477 2478 #ifdef CONFIG_KRETPROBES 2479 p->kretprobe_instances.first = NULL; 2480 #endif 2481 #ifdef CONFIG_RETHOOK 2482 p->rethooks.first = NULL; 2483 #endif 2484 2485 /* 2486 * Ensure that the cgroup subsystem policies allow the new process to be 2487 * forked. It should be noted that the new process's css_set can be changed 2488 * between here and cgroup_post_fork() if an organisation operation is in 2489 * progress. 2490 */ 2491 retval = cgroup_can_fork(p, args); 2492 if (retval) 2493 goto bad_fork_put_pidfd; 2494 2495 /* 2496 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2497 * the new task on the correct runqueue. All this *before* the task 2498 * becomes visible. 2499 * 2500 * This isn't part of ->can_fork() because while the re-cloning is 2501 * cgroup specific, it unconditionally needs to place the task on a 2502 * runqueue. 2503 */ 2504 retval = sched_cgroup_fork(p, args); 2505 if (retval) 2506 goto bad_fork_cancel_cgroup; 2507 2508 /* 2509 * From this point on we must avoid any synchronous user-space 2510 * communication until we take the tasklist-lock. In particular, we do 2511 * not want user-space to be able to predict the process start-time by 2512 * stalling fork(2) after we recorded the start_time but before it is 2513 * visible to the system. 2514 */ 2515 2516 p->start_time = ktime_get_ns(); 2517 p->start_boottime = ktime_get_boottime_ns(); 2518 2519 /* 2520 * Make it visible to the rest of the system, but dont wake it up yet. 2521 * Need tasklist lock for parent etc handling! 2522 */ 2523 write_lock_irq(&tasklist_lock); 2524 2525 /* CLONE_PARENT re-uses the old parent */ 2526 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2527 p->real_parent = current->real_parent; 2528 p->parent_exec_id = current->parent_exec_id; 2529 if (clone_flags & CLONE_THREAD) 2530 p->exit_signal = -1; 2531 else 2532 p->exit_signal = current->group_leader->exit_signal; 2533 } else { 2534 p->real_parent = current; 2535 p->parent_exec_id = current->self_exec_id; 2536 p->exit_signal = args->exit_signal; 2537 } 2538 2539 klp_copy_process(p); 2540 2541 sched_core_fork(p); 2542 2543 spin_lock(¤t->sighand->siglock); 2544 2545 rv_task_fork(p); 2546 2547 rseq_fork(p, clone_flags); 2548 2549 /* Don't start children in a dying pid namespace */ 2550 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2551 retval = -ENOMEM; 2552 goto bad_fork_core_free; 2553 } 2554 2555 /* Let kill terminate clone/fork in the middle */ 2556 if (fatal_signal_pending(current)) { 2557 retval = -EINTR; 2558 goto bad_fork_core_free; 2559 } 2560 2561 /* No more failure paths after this point. */ 2562 2563 /* 2564 * Copy seccomp details explicitly here, in case they were changed 2565 * before holding sighand lock. 2566 */ 2567 copy_seccomp(p); 2568 2569 init_task_pid_links(p); 2570 if (likely(p->pid)) { 2571 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2572 2573 init_task_pid(p, PIDTYPE_PID, pid); 2574 if (thread_group_leader(p)) { 2575 init_task_pid(p, PIDTYPE_TGID, pid); 2576 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2577 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2578 2579 if (is_child_reaper(pid)) { 2580 ns_of_pid(pid)->child_reaper = p; 2581 p->signal->flags |= SIGNAL_UNKILLABLE; 2582 } 2583 p->signal->shared_pending.signal = delayed.signal; 2584 p->signal->tty = tty_kref_get(current->signal->tty); 2585 /* 2586 * Inherit has_child_subreaper flag under the same 2587 * tasklist_lock with adding child to the process tree 2588 * for propagate_has_child_subreaper optimization. 2589 */ 2590 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2591 p->real_parent->signal->is_child_subreaper; 2592 list_add_tail(&p->sibling, &p->real_parent->children); 2593 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2594 attach_pid(p, PIDTYPE_TGID); 2595 attach_pid(p, PIDTYPE_PGID); 2596 attach_pid(p, PIDTYPE_SID); 2597 __this_cpu_inc(process_counts); 2598 } else { 2599 current->signal->nr_threads++; 2600 current->signal->quick_threads++; 2601 atomic_inc(¤t->signal->live); 2602 refcount_inc(¤t->signal->sigcnt); 2603 task_join_group_stop(p); 2604 list_add_tail_rcu(&p->thread_node, 2605 &p->signal->thread_head); 2606 } 2607 attach_pid(p, PIDTYPE_PID); 2608 nr_threads++; 2609 } 2610 total_forks++; 2611 hlist_del_init(&delayed.node); 2612 spin_unlock(¤t->sighand->siglock); 2613 syscall_tracepoint_update(p); 2614 write_unlock_irq(&tasklist_lock); 2615 2616 if (pidfile) 2617 fd_install(pidfd, pidfile); 2618 2619 proc_fork_connector(p); 2620 sched_post_fork(p); 2621 cgroup_post_fork(p, args); 2622 perf_event_fork(p); 2623 2624 trace_task_newtask(p, clone_flags); 2625 uprobe_copy_process(p, clone_flags); 2626 user_events_fork(p, clone_flags); 2627 2628 copy_oom_score_adj(clone_flags, p); 2629 2630 return p; 2631 2632 bad_fork_core_free: 2633 sched_core_free(p); 2634 spin_unlock(¤t->sighand->siglock); 2635 write_unlock_irq(&tasklist_lock); 2636 bad_fork_cancel_cgroup: 2637 cgroup_cancel_fork(p, args); 2638 bad_fork_put_pidfd: 2639 if (clone_flags & CLONE_PIDFD) { 2640 fput(pidfile); 2641 put_unused_fd(pidfd); 2642 } 2643 bad_fork_free_pid: 2644 if (pid != &init_struct_pid) 2645 free_pid(pid); 2646 bad_fork_cleanup_thread: 2647 exit_thread(p); 2648 bad_fork_cleanup_io: 2649 if (p->io_context) 2650 exit_io_context(p); 2651 bad_fork_cleanup_namespaces: 2652 exit_task_namespaces(p); 2653 bad_fork_cleanup_mm: 2654 if (p->mm) { 2655 mm_clear_owner(p->mm, p); 2656 mmput(p->mm); 2657 } 2658 bad_fork_cleanup_signal: 2659 if (!(clone_flags & CLONE_THREAD)) 2660 free_signal_struct(p->signal); 2661 bad_fork_cleanup_sighand: 2662 __cleanup_sighand(p->sighand); 2663 bad_fork_cleanup_fs: 2664 exit_fs(p); /* blocking */ 2665 bad_fork_cleanup_files: 2666 exit_files(p); /* blocking */ 2667 bad_fork_cleanup_semundo: 2668 exit_sem(p); 2669 bad_fork_cleanup_security: 2670 security_task_free(p); 2671 bad_fork_cleanup_audit: 2672 audit_free(p); 2673 bad_fork_cleanup_perf: 2674 perf_event_free_task(p); 2675 bad_fork_sched_cancel_fork: 2676 sched_cancel_fork(p); 2677 bad_fork_cleanup_policy: 2678 lockdep_free_task(p); 2679 #ifdef CONFIG_NUMA 2680 mpol_put(p->mempolicy); 2681 #endif 2682 bad_fork_cleanup_delayacct: 2683 delayacct_tsk_free(p); 2684 bad_fork_cleanup_count: 2685 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2686 exit_creds(p); 2687 bad_fork_free: 2688 WRITE_ONCE(p->__state, TASK_DEAD); 2689 exit_task_stack_account(p); 2690 put_task_stack(p); 2691 delayed_free_task(p); 2692 fork_out: 2693 spin_lock_irq(¤t->sighand->siglock); 2694 hlist_del_init(&delayed.node); 2695 spin_unlock_irq(¤t->sighand->siglock); 2696 return ERR_PTR(retval); 2697 } 2698 2699 static inline void init_idle_pids(struct task_struct *idle) 2700 { 2701 enum pid_type type; 2702 2703 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2704 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2705 init_task_pid(idle, type, &init_struct_pid); 2706 } 2707 } 2708 2709 static int idle_dummy(void *dummy) 2710 { 2711 /* This function is never called */ 2712 return 0; 2713 } 2714 2715 struct task_struct * __init fork_idle(int cpu) 2716 { 2717 struct task_struct *task; 2718 struct kernel_clone_args args = { 2719 .flags = CLONE_VM, 2720 .fn = &idle_dummy, 2721 .fn_arg = NULL, 2722 .kthread = 1, 2723 .idle = 1, 2724 }; 2725 2726 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2727 if (!IS_ERR(task)) { 2728 init_idle_pids(task); 2729 init_idle(task, cpu); 2730 } 2731 2732 return task; 2733 } 2734 2735 /* 2736 * This is like kernel_clone(), but shaved down and tailored to just 2737 * creating io_uring workers. It returns a created task, or an error pointer. 2738 * The returned task is inactive, and the caller must fire it up through 2739 * wake_up_new_task(p). All signals are blocked in the created task. 2740 */ 2741 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2742 { 2743 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2744 CLONE_IO; 2745 struct kernel_clone_args args = { 2746 .flags = ((lower_32_bits(flags) | CLONE_VM | 2747 CLONE_UNTRACED) & ~CSIGNAL), 2748 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2749 .fn = fn, 2750 .fn_arg = arg, 2751 .io_thread = 1, 2752 .user_worker = 1, 2753 }; 2754 2755 return copy_process(NULL, 0, node, &args); 2756 } 2757 2758 /* 2759 * Ok, this is the main fork-routine. 2760 * 2761 * It copies the process, and if successful kick-starts 2762 * it and waits for it to finish using the VM if required. 2763 * 2764 * args->exit_signal is expected to be checked for sanity by the caller. 2765 */ 2766 pid_t kernel_clone(struct kernel_clone_args *args) 2767 { 2768 u64 clone_flags = args->flags; 2769 struct completion vfork; 2770 struct pid *pid; 2771 struct task_struct *p; 2772 int trace = 0; 2773 pid_t nr; 2774 2775 /* 2776 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2777 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2778 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2779 * field in struct clone_args and it still doesn't make sense to have 2780 * them both point at the same memory location. Performing this check 2781 * here has the advantage that we don't need to have a separate helper 2782 * to check for legacy clone(). 2783 */ 2784 if ((clone_flags & CLONE_PIDFD) && 2785 (clone_flags & CLONE_PARENT_SETTID) && 2786 (args->pidfd == args->parent_tid)) 2787 return -EINVAL; 2788 2789 /* 2790 * Determine whether and which event to report to ptracer. When 2791 * called from kernel_thread or CLONE_UNTRACED is explicitly 2792 * requested, no event is reported; otherwise, report if the event 2793 * for the type of forking is enabled. 2794 */ 2795 if (!(clone_flags & CLONE_UNTRACED)) { 2796 if (clone_flags & CLONE_VFORK) 2797 trace = PTRACE_EVENT_VFORK; 2798 else if (args->exit_signal != SIGCHLD) 2799 trace = PTRACE_EVENT_CLONE; 2800 else 2801 trace = PTRACE_EVENT_FORK; 2802 2803 if (likely(!ptrace_event_enabled(current, trace))) 2804 trace = 0; 2805 } 2806 2807 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2808 add_latent_entropy(); 2809 2810 if (IS_ERR(p)) 2811 return PTR_ERR(p); 2812 2813 /* 2814 * Do this prior waking up the new thread - the thread pointer 2815 * might get invalid after that point, if the thread exits quickly. 2816 */ 2817 trace_sched_process_fork(current, p); 2818 2819 pid = get_task_pid(p, PIDTYPE_PID); 2820 nr = pid_vnr(pid); 2821 2822 if (clone_flags & CLONE_PARENT_SETTID) 2823 put_user(nr, args->parent_tid); 2824 2825 if (clone_flags & CLONE_VFORK) { 2826 p->vfork_done = &vfork; 2827 init_completion(&vfork); 2828 get_task_struct(p); 2829 } 2830 2831 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2832 /* lock the task to synchronize with memcg migration */ 2833 task_lock(p); 2834 lru_gen_add_mm(p->mm); 2835 task_unlock(p); 2836 } 2837 2838 wake_up_new_task(p); 2839 2840 /* forking complete and child started to run, tell ptracer */ 2841 if (unlikely(trace)) 2842 ptrace_event_pid(trace, pid); 2843 2844 if (clone_flags & CLONE_VFORK) { 2845 if (!wait_for_vfork_done(p, &vfork)) 2846 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2847 } 2848 2849 put_pid(pid); 2850 return nr; 2851 } 2852 2853 /* 2854 * Create a kernel thread. 2855 */ 2856 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2857 unsigned long flags) 2858 { 2859 struct kernel_clone_args args = { 2860 .flags = ((lower_32_bits(flags) | CLONE_VM | 2861 CLONE_UNTRACED) & ~CSIGNAL), 2862 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2863 .fn = fn, 2864 .fn_arg = arg, 2865 .name = name, 2866 .kthread = 1, 2867 }; 2868 2869 return kernel_clone(&args); 2870 } 2871 2872 /* 2873 * Create a user mode thread. 2874 */ 2875 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2876 { 2877 struct kernel_clone_args args = { 2878 .flags = ((lower_32_bits(flags) | CLONE_VM | 2879 CLONE_UNTRACED) & ~CSIGNAL), 2880 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2881 .fn = fn, 2882 .fn_arg = arg, 2883 }; 2884 2885 return kernel_clone(&args); 2886 } 2887 2888 #ifdef __ARCH_WANT_SYS_FORK 2889 SYSCALL_DEFINE0(fork) 2890 { 2891 #ifdef CONFIG_MMU 2892 struct kernel_clone_args args = { 2893 .exit_signal = SIGCHLD, 2894 }; 2895 2896 return kernel_clone(&args); 2897 #else 2898 /* can not support in nommu mode */ 2899 return -EINVAL; 2900 #endif 2901 } 2902 #endif 2903 2904 #ifdef __ARCH_WANT_SYS_VFORK 2905 SYSCALL_DEFINE0(vfork) 2906 { 2907 struct kernel_clone_args args = { 2908 .flags = CLONE_VFORK | CLONE_VM, 2909 .exit_signal = SIGCHLD, 2910 }; 2911 2912 return kernel_clone(&args); 2913 } 2914 #endif 2915 2916 #ifdef __ARCH_WANT_SYS_CLONE 2917 #ifdef CONFIG_CLONE_BACKWARDS 2918 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2919 int __user *, parent_tidptr, 2920 unsigned long, tls, 2921 int __user *, child_tidptr) 2922 #elif defined(CONFIG_CLONE_BACKWARDS2) 2923 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2924 int __user *, parent_tidptr, 2925 int __user *, child_tidptr, 2926 unsigned long, tls) 2927 #elif defined(CONFIG_CLONE_BACKWARDS3) 2928 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2929 int, stack_size, 2930 int __user *, parent_tidptr, 2931 int __user *, child_tidptr, 2932 unsigned long, tls) 2933 #else 2934 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2935 int __user *, parent_tidptr, 2936 int __user *, child_tidptr, 2937 unsigned long, tls) 2938 #endif 2939 { 2940 struct kernel_clone_args args = { 2941 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2942 .pidfd = parent_tidptr, 2943 .child_tid = child_tidptr, 2944 .parent_tid = parent_tidptr, 2945 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2946 .stack = newsp, 2947 .tls = tls, 2948 }; 2949 2950 return kernel_clone(&args); 2951 } 2952 #endif 2953 2954 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2955 struct clone_args __user *uargs, 2956 size_t usize) 2957 { 2958 int err; 2959 struct clone_args args; 2960 pid_t *kset_tid = kargs->set_tid; 2961 2962 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2963 CLONE_ARGS_SIZE_VER0); 2964 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2965 CLONE_ARGS_SIZE_VER1); 2966 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2967 CLONE_ARGS_SIZE_VER2); 2968 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2969 2970 if (unlikely(usize > PAGE_SIZE)) 2971 return -E2BIG; 2972 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2973 return -EINVAL; 2974 2975 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2976 if (err) 2977 return err; 2978 2979 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2980 return -EINVAL; 2981 2982 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2983 return -EINVAL; 2984 2985 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2986 return -EINVAL; 2987 2988 /* 2989 * Verify that higher 32bits of exit_signal are unset and that 2990 * it is a valid signal 2991 */ 2992 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2993 !valid_signal(args.exit_signal))) 2994 return -EINVAL; 2995 2996 if ((args.flags & CLONE_INTO_CGROUP) && 2997 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2998 return -EINVAL; 2999 3000 *kargs = (struct kernel_clone_args){ 3001 .flags = args.flags, 3002 .pidfd = u64_to_user_ptr(args.pidfd), 3003 .child_tid = u64_to_user_ptr(args.child_tid), 3004 .parent_tid = u64_to_user_ptr(args.parent_tid), 3005 .exit_signal = args.exit_signal, 3006 .stack = args.stack, 3007 .stack_size = args.stack_size, 3008 .tls = args.tls, 3009 .set_tid_size = args.set_tid_size, 3010 .cgroup = args.cgroup, 3011 }; 3012 3013 if (args.set_tid && 3014 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3015 (kargs->set_tid_size * sizeof(pid_t)))) 3016 return -EFAULT; 3017 3018 kargs->set_tid = kset_tid; 3019 3020 return 0; 3021 } 3022 3023 /** 3024 * clone3_stack_valid - check and prepare stack 3025 * @kargs: kernel clone args 3026 * 3027 * Verify that the stack arguments userspace gave us are sane. 3028 * In addition, set the stack direction for userspace since it's easy for us to 3029 * determine. 3030 */ 3031 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3032 { 3033 if (kargs->stack == 0) { 3034 if (kargs->stack_size > 0) 3035 return false; 3036 } else { 3037 if (kargs->stack_size == 0) 3038 return false; 3039 3040 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3041 return false; 3042 3043 #if !defined(CONFIG_STACK_GROWSUP) 3044 kargs->stack += kargs->stack_size; 3045 #endif 3046 } 3047 3048 return true; 3049 } 3050 3051 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3052 { 3053 /* Verify that no unknown flags are passed along. */ 3054 if (kargs->flags & 3055 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3056 return false; 3057 3058 /* 3059 * - make the CLONE_DETACHED bit reusable for clone3 3060 * - make the CSIGNAL bits reusable for clone3 3061 */ 3062 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3063 return false; 3064 3065 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3066 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3067 return false; 3068 3069 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3070 kargs->exit_signal) 3071 return false; 3072 3073 if (!clone3_stack_valid(kargs)) 3074 return false; 3075 3076 return true; 3077 } 3078 3079 /** 3080 * sys_clone3 - create a new process with specific properties 3081 * @uargs: argument structure 3082 * @size: size of @uargs 3083 * 3084 * clone3() is the extensible successor to clone()/clone2(). 3085 * It takes a struct as argument that is versioned by its size. 3086 * 3087 * Return: On success, a positive PID for the child process. 3088 * On error, a negative errno number. 3089 */ 3090 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3091 { 3092 int err; 3093 3094 struct kernel_clone_args kargs; 3095 pid_t set_tid[MAX_PID_NS_LEVEL]; 3096 3097 #ifdef __ARCH_BROKEN_SYS_CLONE3 3098 #warning clone3() entry point is missing, please fix 3099 return -ENOSYS; 3100 #endif 3101 3102 kargs.set_tid = set_tid; 3103 3104 err = copy_clone_args_from_user(&kargs, uargs, size); 3105 if (err) 3106 return err; 3107 3108 if (!clone3_args_valid(&kargs)) 3109 return -EINVAL; 3110 3111 return kernel_clone(&kargs); 3112 } 3113 3114 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3115 { 3116 struct task_struct *leader, *parent, *child; 3117 int res; 3118 3119 read_lock(&tasklist_lock); 3120 leader = top = top->group_leader; 3121 down: 3122 for_each_thread(leader, parent) { 3123 list_for_each_entry(child, &parent->children, sibling) { 3124 res = visitor(child, data); 3125 if (res) { 3126 if (res < 0) 3127 goto out; 3128 leader = child; 3129 goto down; 3130 } 3131 up: 3132 ; 3133 } 3134 } 3135 3136 if (leader != top) { 3137 child = leader; 3138 parent = child->real_parent; 3139 leader = parent->group_leader; 3140 goto up; 3141 } 3142 out: 3143 read_unlock(&tasklist_lock); 3144 } 3145 3146 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3147 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3148 #endif 3149 3150 static void sighand_ctor(void *data) 3151 { 3152 struct sighand_struct *sighand = data; 3153 3154 spin_lock_init(&sighand->siglock); 3155 init_waitqueue_head(&sighand->signalfd_wqh); 3156 } 3157 3158 void __init mm_cache_init(void) 3159 { 3160 unsigned int mm_size; 3161 3162 /* 3163 * The mm_cpumask is located at the end of mm_struct, and is 3164 * dynamically sized based on the maximum CPU number this system 3165 * can have, taking hotplug into account (nr_cpu_ids). 3166 */ 3167 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3168 3169 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3170 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3171 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3172 offsetof(struct mm_struct, saved_auxv), 3173 sizeof_field(struct mm_struct, saved_auxv), 3174 NULL); 3175 } 3176 3177 void __init proc_caches_init(void) 3178 { 3179 sighand_cachep = kmem_cache_create("sighand_cache", 3180 sizeof(struct sighand_struct), 0, 3181 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3182 SLAB_ACCOUNT, sighand_ctor); 3183 signal_cachep = kmem_cache_create("signal_cache", 3184 sizeof(struct signal_struct), 0, 3185 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3186 NULL); 3187 files_cachep = kmem_cache_create("files_cache", 3188 sizeof(struct files_struct), 0, 3189 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3190 NULL); 3191 fs_cachep = kmem_cache_create("fs_cache", 3192 sizeof(struct fs_struct), 0, 3193 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3194 NULL); 3195 3196 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3197 #ifdef CONFIG_PER_VMA_LOCK 3198 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3199 #endif 3200 mmap_init(); 3201 nsproxy_cache_init(); 3202 } 3203 3204 /* 3205 * Check constraints on flags passed to the unshare system call. 3206 */ 3207 static int check_unshare_flags(unsigned long unshare_flags) 3208 { 3209 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3210 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3211 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3212 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3213 CLONE_NEWTIME)) 3214 return -EINVAL; 3215 /* 3216 * Not implemented, but pretend it works if there is nothing 3217 * to unshare. Note that unsharing the address space or the 3218 * signal handlers also need to unshare the signal queues (aka 3219 * CLONE_THREAD). 3220 */ 3221 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3222 if (!thread_group_empty(current)) 3223 return -EINVAL; 3224 } 3225 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3226 if (refcount_read(¤t->sighand->count) > 1) 3227 return -EINVAL; 3228 } 3229 if (unshare_flags & CLONE_VM) { 3230 if (!current_is_single_threaded()) 3231 return -EINVAL; 3232 } 3233 3234 return 0; 3235 } 3236 3237 /* 3238 * Unshare the filesystem structure if it is being shared 3239 */ 3240 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3241 { 3242 struct fs_struct *fs = current->fs; 3243 3244 if (!(unshare_flags & CLONE_FS) || !fs) 3245 return 0; 3246 3247 /* don't need lock here; in the worst case we'll do useless copy */ 3248 if (fs->users == 1) 3249 return 0; 3250 3251 *new_fsp = copy_fs_struct(fs); 3252 if (!*new_fsp) 3253 return -ENOMEM; 3254 3255 return 0; 3256 } 3257 3258 /* 3259 * Unshare file descriptor table if it is being shared 3260 */ 3261 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3262 { 3263 struct files_struct *fd = current->files; 3264 3265 if ((unshare_flags & CLONE_FILES) && 3266 (fd && atomic_read(&fd->count) > 1)) { 3267 fd = dup_fd(fd, NULL); 3268 if (IS_ERR(fd)) 3269 return PTR_ERR(fd); 3270 *new_fdp = fd; 3271 } 3272 3273 return 0; 3274 } 3275 3276 /* 3277 * unshare allows a process to 'unshare' part of the process 3278 * context which was originally shared using clone. copy_* 3279 * functions used by kernel_clone() cannot be used here directly 3280 * because they modify an inactive task_struct that is being 3281 * constructed. Here we are modifying the current, active, 3282 * task_struct. 3283 */ 3284 int ksys_unshare(unsigned long unshare_flags) 3285 { 3286 struct fs_struct *fs, *new_fs = NULL; 3287 struct files_struct *new_fd = NULL; 3288 struct cred *new_cred = NULL; 3289 struct nsproxy *new_nsproxy = NULL; 3290 int do_sysvsem = 0; 3291 int err; 3292 3293 /* 3294 * If unsharing a user namespace must also unshare the thread group 3295 * and unshare the filesystem root and working directories. 3296 */ 3297 if (unshare_flags & CLONE_NEWUSER) 3298 unshare_flags |= CLONE_THREAD | CLONE_FS; 3299 /* 3300 * If unsharing vm, must also unshare signal handlers. 3301 */ 3302 if (unshare_flags & CLONE_VM) 3303 unshare_flags |= CLONE_SIGHAND; 3304 /* 3305 * If unsharing a signal handlers, must also unshare the signal queues. 3306 */ 3307 if (unshare_flags & CLONE_SIGHAND) 3308 unshare_flags |= CLONE_THREAD; 3309 /* 3310 * If unsharing namespace, must also unshare filesystem information. 3311 */ 3312 if (unshare_flags & CLONE_NEWNS) 3313 unshare_flags |= CLONE_FS; 3314 3315 err = check_unshare_flags(unshare_flags); 3316 if (err) 3317 goto bad_unshare_out; 3318 /* 3319 * CLONE_NEWIPC must also detach from the undolist: after switching 3320 * to a new ipc namespace, the semaphore arrays from the old 3321 * namespace are unreachable. 3322 */ 3323 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3324 do_sysvsem = 1; 3325 err = unshare_fs(unshare_flags, &new_fs); 3326 if (err) 3327 goto bad_unshare_out; 3328 err = unshare_fd(unshare_flags, &new_fd); 3329 if (err) 3330 goto bad_unshare_cleanup_fs; 3331 err = unshare_userns(unshare_flags, &new_cred); 3332 if (err) 3333 goto bad_unshare_cleanup_fd; 3334 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3335 new_cred, new_fs); 3336 if (err) 3337 goto bad_unshare_cleanup_cred; 3338 3339 if (new_cred) { 3340 err = set_cred_ucounts(new_cred); 3341 if (err) 3342 goto bad_unshare_cleanup_cred; 3343 } 3344 3345 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3346 if (do_sysvsem) { 3347 /* 3348 * CLONE_SYSVSEM is equivalent to sys_exit(). 3349 */ 3350 exit_sem(current); 3351 } 3352 if (unshare_flags & CLONE_NEWIPC) { 3353 /* Orphan segments in old ns (see sem above). */ 3354 exit_shm(current); 3355 shm_init_task(current); 3356 } 3357 3358 if (new_nsproxy) 3359 switch_task_namespaces(current, new_nsproxy); 3360 3361 task_lock(current); 3362 3363 if (new_fs) { 3364 fs = current->fs; 3365 spin_lock(&fs->lock); 3366 current->fs = new_fs; 3367 if (--fs->users) 3368 new_fs = NULL; 3369 else 3370 new_fs = fs; 3371 spin_unlock(&fs->lock); 3372 } 3373 3374 if (new_fd) 3375 swap(current->files, new_fd); 3376 3377 task_unlock(current); 3378 3379 if (new_cred) { 3380 /* Install the new user namespace */ 3381 commit_creds(new_cred); 3382 new_cred = NULL; 3383 } 3384 } 3385 3386 perf_event_namespaces(current); 3387 3388 bad_unshare_cleanup_cred: 3389 if (new_cred) 3390 put_cred(new_cred); 3391 bad_unshare_cleanup_fd: 3392 if (new_fd) 3393 put_files_struct(new_fd); 3394 3395 bad_unshare_cleanup_fs: 3396 if (new_fs) 3397 free_fs_struct(new_fs); 3398 3399 bad_unshare_out: 3400 return err; 3401 } 3402 3403 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3404 { 3405 return ksys_unshare(unshare_flags); 3406 } 3407 3408 /* 3409 * Helper to unshare the files of the current task. 3410 * We don't want to expose copy_files internals to 3411 * the exec layer of the kernel. 3412 */ 3413 3414 int unshare_files(void) 3415 { 3416 struct task_struct *task = current; 3417 struct files_struct *old, *copy = NULL; 3418 int error; 3419 3420 error = unshare_fd(CLONE_FILES, ©); 3421 if (error || !copy) 3422 return error; 3423 3424 old = task->files; 3425 task_lock(task); 3426 task->files = copy; 3427 task_unlock(task); 3428 put_files_struct(old); 3429 return 0; 3430 } 3431 3432 int sysctl_max_threads(const struct ctl_table *table, int write, 3433 void *buffer, size_t *lenp, loff_t *ppos) 3434 { 3435 struct ctl_table t; 3436 int ret; 3437 int threads = max_threads; 3438 int min = 1; 3439 int max = MAX_THREADS; 3440 3441 t = *table; 3442 t.data = &threads; 3443 t.extra1 = &min; 3444 t.extra2 = &max; 3445 3446 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3447 if (ret || !write) 3448 return ret; 3449 3450 max_threads = threads; 3451 3452 return 0; 3453 } 3454