1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 100 #include <asm/pgalloc.h> 101 #include <linux/uaccess.h> 102 #include <asm/mmu_context.h> 103 #include <asm/cacheflush.h> 104 #include <asm/tlbflush.h> 105 106 #include <trace/events/sched.h> 107 108 #define CREATE_TRACE_POINTS 109 #include <trace/events/task.h> 110 111 /* 112 * Minimum number of threads to boot the kernel 113 */ 114 #define MIN_THREADS 20 115 116 /* 117 * Maximum number of threads 118 */ 119 #define MAX_THREADS FUTEX_TID_MASK 120 121 /* 122 * Protected counters by write_lock_irq(&tasklist_lock) 123 */ 124 unsigned long total_forks; /* Handle normal Linux uptimes. */ 125 int nr_threads; /* The idle threads do not count.. */ 126 127 static int max_threads; /* tunable limit on nr_threads */ 128 129 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 130 131 static const char * const resident_page_types[] = { 132 NAMED_ARRAY_INDEX(MM_FILEPAGES), 133 NAMED_ARRAY_INDEX(MM_ANONPAGES), 134 NAMED_ARRAY_INDEX(MM_SWAPENTS), 135 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 136 }; 137 138 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 139 140 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 141 142 #ifdef CONFIG_PROVE_RCU 143 int lockdep_tasklist_lock_is_held(void) 144 { 145 return lockdep_is_held(&tasklist_lock); 146 } 147 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 148 #endif /* #ifdef CONFIG_PROVE_RCU */ 149 150 int nr_processes(void) 151 { 152 int cpu; 153 int total = 0; 154 155 for_each_possible_cpu(cpu) 156 total += per_cpu(process_counts, cpu); 157 158 return total; 159 } 160 161 void __weak arch_release_task_struct(struct task_struct *tsk) 162 { 163 } 164 165 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 166 static struct kmem_cache *task_struct_cachep; 167 168 static inline struct task_struct *alloc_task_struct_node(int node) 169 { 170 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 171 } 172 173 static inline void free_task_struct(struct task_struct *tsk) 174 { 175 kmem_cache_free(task_struct_cachep, tsk); 176 } 177 #endif 178 179 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 180 181 /* 182 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 183 * kmemcache based allocator. 184 */ 185 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 186 187 #ifdef CONFIG_VMAP_STACK 188 /* 189 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 190 * flush. Try to minimize the number of calls by caching stacks. 191 */ 192 #define NR_CACHED_STACKS 2 193 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 194 195 static int free_vm_stack_cache(unsigned int cpu) 196 { 197 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 198 int i; 199 200 for (i = 0; i < NR_CACHED_STACKS; i++) { 201 struct vm_struct *vm_stack = cached_vm_stacks[i]; 202 203 if (!vm_stack) 204 continue; 205 206 vfree(vm_stack->addr); 207 cached_vm_stacks[i] = NULL; 208 } 209 210 return 0; 211 } 212 #endif 213 214 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 215 { 216 #ifdef CONFIG_VMAP_STACK 217 void *stack; 218 int i; 219 220 for (i = 0; i < NR_CACHED_STACKS; i++) { 221 struct vm_struct *s; 222 223 s = this_cpu_xchg(cached_stacks[i], NULL); 224 225 if (!s) 226 continue; 227 228 /* Clear the KASAN shadow of the stack. */ 229 kasan_unpoison_shadow(s->addr, THREAD_SIZE); 230 231 /* Clear stale pointers from reused stack. */ 232 memset(s->addr, 0, THREAD_SIZE); 233 234 tsk->stack_vm_area = s; 235 tsk->stack = s->addr; 236 return s->addr; 237 } 238 239 /* 240 * Allocated stacks are cached and later reused by new threads, 241 * so memcg accounting is performed manually on assigning/releasing 242 * stacks to tasks. Drop __GFP_ACCOUNT. 243 */ 244 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 245 VMALLOC_START, VMALLOC_END, 246 THREADINFO_GFP & ~__GFP_ACCOUNT, 247 PAGE_KERNEL, 248 0, node, __builtin_return_address(0)); 249 250 /* 251 * We can't call find_vm_area() in interrupt context, and 252 * free_thread_stack() can be called in interrupt context, 253 * so cache the vm_struct. 254 */ 255 if (stack) { 256 tsk->stack_vm_area = find_vm_area(stack); 257 tsk->stack = stack; 258 } 259 return stack; 260 #else 261 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 262 THREAD_SIZE_ORDER); 263 264 if (likely(page)) { 265 tsk->stack = kasan_reset_tag(page_address(page)); 266 return tsk->stack; 267 } 268 return NULL; 269 #endif 270 } 271 272 static inline void free_thread_stack(struct task_struct *tsk) 273 { 274 #ifdef CONFIG_VMAP_STACK 275 struct vm_struct *vm = task_stack_vm_area(tsk); 276 277 if (vm) { 278 int i; 279 280 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 281 memcg_kmem_uncharge_page(vm->pages[i], 0); 282 283 for (i = 0; i < NR_CACHED_STACKS; i++) { 284 if (this_cpu_cmpxchg(cached_stacks[i], 285 NULL, tsk->stack_vm_area) != NULL) 286 continue; 287 288 return; 289 } 290 291 vfree_atomic(tsk->stack); 292 return; 293 } 294 #endif 295 296 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 297 } 298 # else 299 static struct kmem_cache *thread_stack_cache; 300 301 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 302 int node) 303 { 304 unsigned long *stack; 305 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 306 stack = kasan_reset_tag(stack); 307 tsk->stack = stack; 308 return stack; 309 } 310 311 static void free_thread_stack(struct task_struct *tsk) 312 { 313 kmem_cache_free(thread_stack_cache, tsk->stack); 314 } 315 316 void thread_stack_cache_init(void) 317 { 318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 319 THREAD_SIZE, THREAD_SIZE, 0, 0, 320 THREAD_SIZE, NULL); 321 BUG_ON(thread_stack_cache == NULL); 322 } 323 # endif 324 #endif 325 326 /* SLAB cache for signal_struct structures (tsk->signal) */ 327 static struct kmem_cache *signal_cachep; 328 329 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 330 struct kmem_cache *sighand_cachep; 331 332 /* SLAB cache for files_struct structures (tsk->files) */ 333 struct kmem_cache *files_cachep; 334 335 /* SLAB cache for fs_struct structures (tsk->fs) */ 336 struct kmem_cache *fs_cachep; 337 338 /* SLAB cache for vm_area_struct structures */ 339 static struct kmem_cache *vm_area_cachep; 340 341 /* SLAB cache for mm_struct structures (tsk->mm) */ 342 static struct kmem_cache *mm_cachep; 343 344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 345 { 346 struct vm_area_struct *vma; 347 348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 349 if (vma) 350 vma_init(vma, mm); 351 return vma; 352 } 353 354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 355 { 356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 357 358 if (new) { 359 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 360 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 361 /* 362 * orig->shared.rb may be modified concurrently, but the clone 363 * will be reinitialized. 364 */ 365 *new = data_race(*orig); 366 INIT_LIST_HEAD(&new->anon_vma_chain); 367 new->vm_next = new->vm_prev = NULL; 368 } 369 return new; 370 } 371 372 void vm_area_free(struct vm_area_struct *vma) 373 { 374 kmem_cache_free(vm_area_cachep, vma); 375 } 376 377 static void account_kernel_stack(struct task_struct *tsk, int account) 378 { 379 void *stack = task_stack_page(tsk); 380 struct vm_struct *vm = task_stack_vm_area(tsk); 381 382 383 /* All stack pages are in the same node. */ 384 if (vm) 385 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB, 386 account * (THREAD_SIZE / 1024)); 387 else 388 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB, 389 account * (THREAD_SIZE / 1024)); 390 } 391 392 static int memcg_charge_kernel_stack(struct task_struct *tsk) 393 { 394 #ifdef CONFIG_VMAP_STACK 395 struct vm_struct *vm = task_stack_vm_area(tsk); 396 int ret; 397 398 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 399 400 if (vm) { 401 int i; 402 403 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 404 405 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 406 /* 407 * If memcg_kmem_charge_page() fails, page's 408 * memory cgroup pointer is NULL, and 409 * memcg_kmem_uncharge_page() in free_thread_stack() 410 * will ignore this page. 411 */ 412 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 413 0); 414 if (ret) 415 return ret; 416 } 417 } 418 #endif 419 return 0; 420 } 421 422 static void release_task_stack(struct task_struct *tsk) 423 { 424 if (WARN_ON(tsk->state != TASK_DEAD)) 425 return; /* Better to leak the stack than to free prematurely */ 426 427 account_kernel_stack(tsk, -1); 428 free_thread_stack(tsk); 429 tsk->stack = NULL; 430 #ifdef CONFIG_VMAP_STACK 431 tsk->stack_vm_area = NULL; 432 #endif 433 } 434 435 #ifdef CONFIG_THREAD_INFO_IN_TASK 436 void put_task_stack(struct task_struct *tsk) 437 { 438 if (refcount_dec_and_test(&tsk->stack_refcount)) 439 release_task_stack(tsk); 440 } 441 #endif 442 443 void free_task(struct task_struct *tsk) 444 { 445 scs_release(tsk); 446 447 #ifndef CONFIG_THREAD_INFO_IN_TASK 448 /* 449 * The task is finally done with both the stack and thread_info, 450 * so free both. 451 */ 452 release_task_stack(tsk); 453 #else 454 /* 455 * If the task had a separate stack allocation, it should be gone 456 * by now. 457 */ 458 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 459 #endif 460 rt_mutex_debug_task_free(tsk); 461 ftrace_graph_exit_task(tsk); 462 arch_release_task_struct(tsk); 463 if (tsk->flags & PF_KTHREAD) 464 free_kthread_struct(tsk); 465 free_task_struct(tsk); 466 } 467 EXPORT_SYMBOL(free_task); 468 469 #ifdef CONFIG_MMU 470 static __latent_entropy int dup_mmap(struct mm_struct *mm, 471 struct mm_struct *oldmm) 472 { 473 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 474 struct rb_node **rb_link, *rb_parent; 475 int retval; 476 unsigned long charge; 477 LIST_HEAD(uf); 478 479 uprobe_start_dup_mmap(); 480 if (mmap_write_lock_killable(oldmm)) { 481 retval = -EINTR; 482 goto fail_uprobe_end; 483 } 484 flush_cache_dup_mm(oldmm); 485 uprobe_dup_mmap(oldmm, mm); 486 /* 487 * Not linked in yet - no deadlock potential: 488 */ 489 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 490 491 /* No ordering required: file already has been exposed. */ 492 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 493 494 mm->total_vm = oldmm->total_vm; 495 mm->data_vm = oldmm->data_vm; 496 mm->exec_vm = oldmm->exec_vm; 497 mm->stack_vm = oldmm->stack_vm; 498 499 rb_link = &mm->mm_rb.rb_node; 500 rb_parent = NULL; 501 pprev = &mm->mmap; 502 retval = ksm_fork(mm, oldmm); 503 if (retval) 504 goto out; 505 retval = khugepaged_fork(mm, oldmm); 506 if (retval) 507 goto out; 508 509 prev = NULL; 510 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 511 struct file *file; 512 513 if (mpnt->vm_flags & VM_DONTCOPY) { 514 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 515 continue; 516 } 517 charge = 0; 518 /* 519 * Don't duplicate many vmas if we've been oom-killed (for 520 * example) 521 */ 522 if (fatal_signal_pending(current)) { 523 retval = -EINTR; 524 goto out; 525 } 526 if (mpnt->vm_flags & VM_ACCOUNT) { 527 unsigned long len = vma_pages(mpnt); 528 529 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 530 goto fail_nomem; 531 charge = len; 532 } 533 tmp = vm_area_dup(mpnt); 534 if (!tmp) 535 goto fail_nomem; 536 retval = vma_dup_policy(mpnt, tmp); 537 if (retval) 538 goto fail_nomem_policy; 539 tmp->vm_mm = mm; 540 retval = dup_userfaultfd(tmp, &uf); 541 if (retval) 542 goto fail_nomem_anon_vma_fork; 543 if (tmp->vm_flags & VM_WIPEONFORK) { 544 /* 545 * VM_WIPEONFORK gets a clean slate in the child. 546 * Don't prepare anon_vma until fault since we don't 547 * copy page for current vma. 548 */ 549 tmp->anon_vma = NULL; 550 } else if (anon_vma_fork(tmp, mpnt)) 551 goto fail_nomem_anon_vma_fork; 552 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 553 file = tmp->vm_file; 554 if (file) { 555 struct inode *inode = file_inode(file); 556 struct address_space *mapping = file->f_mapping; 557 558 get_file(file); 559 if (tmp->vm_flags & VM_DENYWRITE) 560 put_write_access(inode); 561 i_mmap_lock_write(mapping); 562 if (tmp->vm_flags & VM_SHARED) 563 mapping_allow_writable(mapping); 564 flush_dcache_mmap_lock(mapping); 565 /* insert tmp into the share list, just after mpnt */ 566 vma_interval_tree_insert_after(tmp, mpnt, 567 &mapping->i_mmap); 568 flush_dcache_mmap_unlock(mapping); 569 i_mmap_unlock_write(mapping); 570 } 571 572 /* 573 * Clear hugetlb-related page reserves for children. This only 574 * affects MAP_PRIVATE mappings. Faults generated by the child 575 * are not guaranteed to succeed, even if read-only 576 */ 577 if (is_vm_hugetlb_page(tmp)) 578 reset_vma_resv_huge_pages(tmp); 579 580 /* 581 * Link in the new vma and copy the page table entries. 582 */ 583 *pprev = tmp; 584 pprev = &tmp->vm_next; 585 tmp->vm_prev = prev; 586 prev = tmp; 587 588 __vma_link_rb(mm, tmp, rb_link, rb_parent); 589 rb_link = &tmp->vm_rb.rb_right; 590 rb_parent = &tmp->vm_rb; 591 592 mm->map_count++; 593 if (!(tmp->vm_flags & VM_WIPEONFORK)) 594 retval = copy_page_range(tmp, mpnt); 595 596 if (tmp->vm_ops && tmp->vm_ops->open) 597 tmp->vm_ops->open(tmp); 598 599 if (retval) 600 goto out; 601 } 602 /* a new mm has just been created */ 603 retval = arch_dup_mmap(oldmm, mm); 604 out: 605 mmap_write_unlock(mm); 606 flush_tlb_mm(oldmm); 607 mmap_write_unlock(oldmm); 608 dup_userfaultfd_complete(&uf); 609 fail_uprobe_end: 610 uprobe_end_dup_mmap(); 611 return retval; 612 fail_nomem_anon_vma_fork: 613 mpol_put(vma_policy(tmp)); 614 fail_nomem_policy: 615 vm_area_free(tmp); 616 fail_nomem: 617 retval = -ENOMEM; 618 vm_unacct_memory(charge); 619 goto out; 620 } 621 622 static inline int mm_alloc_pgd(struct mm_struct *mm) 623 { 624 mm->pgd = pgd_alloc(mm); 625 if (unlikely(!mm->pgd)) 626 return -ENOMEM; 627 return 0; 628 } 629 630 static inline void mm_free_pgd(struct mm_struct *mm) 631 { 632 pgd_free(mm, mm->pgd); 633 } 634 #else 635 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 636 { 637 mmap_write_lock(oldmm); 638 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 639 mmap_write_unlock(oldmm); 640 return 0; 641 } 642 #define mm_alloc_pgd(mm) (0) 643 #define mm_free_pgd(mm) 644 #endif /* CONFIG_MMU */ 645 646 static void check_mm(struct mm_struct *mm) 647 { 648 int i; 649 650 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 651 "Please make sure 'struct resident_page_types[]' is updated as well"); 652 653 for (i = 0; i < NR_MM_COUNTERS; i++) { 654 long x = atomic_long_read(&mm->rss_stat.count[i]); 655 656 if (unlikely(x)) 657 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 658 mm, resident_page_types[i], x); 659 } 660 661 if (mm_pgtables_bytes(mm)) 662 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 663 mm_pgtables_bytes(mm)); 664 665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 666 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 667 #endif 668 } 669 670 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 671 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 672 673 /* 674 * Called when the last reference to the mm 675 * is dropped: either by a lazy thread or by 676 * mmput. Free the page directory and the mm. 677 */ 678 void __mmdrop(struct mm_struct *mm) 679 { 680 BUG_ON(mm == &init_mm); 681 WARN_ON_ONCE(mm == current->mm); 682 WARN_ON_ONCE(mm == current->active_mm); 683 mm_free_pgd(mm); 684 destroy_context(mm); 685 mmu_notifier_subscriptions_destroy(mm); 686 check_mm(mm); 687 put_user_ns(mm->user_ns); 688 free_mm(mm); 689 } 690 EXPORT_SYMBOL_GPL(__mmdrop); 691 692 static void mmdrop_async_fn(struct work_struct *work) 693 { 694 struct mm_struct *mm; 695 696 mm = container_of(work, struct mm_struct, async_put_work); 697 __mmdrop(mm); 698 } 699 700 static void mmdrop_async(struct mm_struct *mm) 701 { 702 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 703 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 704 schedule_work(&mm->async_put_work); 705 } 706 } 707 708 static inline void free_signal_struct(struct signal_struct *sig) 709 { 710 taskstats_tgid_free(sig); 711 sched_autogroup_exit(sig); 712 /* 713 * __mmdrop is not safe to call from softirq context on x86 due to 714 * pgd_dtor so postpone it to the async context 715 */ 716 if (sig->oom_mm) 717 mmdrop_async(sig->oom_mm); 718 kmem_cache_free(signal_cachep, sig); 719 } 720 721 static inline void put_signal_struct(struct signal_struct *sig) 722 { 723 if (refcount_dec_and_test(&sig->sigcnt)) 724 free_signal_struct(sig); 725 } 726 727 void __put_task_struct(struct task_struct *tsk) 728 { 729 WARN_ON(!tsk->exit_state); 730 WARN_ON(refcount_read(&tsk->usage)); 731 WARN_ON(tsk == current); 732 733 io_uring_free(tsk); 734 cgroup_free(tsk); 735 task_numa_free(tsk, true); 736 security_task_free(tsk); 737 exit_creds(tsk); 738 delayacct_tsk_free(tsk); 739 put_signal_struct(tsk->signal); 740 741 if (!profile_handoff_task(tsk)) 742 free_task(tsk); 743 } 744 EXPORT_SYMBOL_GPL(__put_task_struct); 745 746 void __init __weak arch_task_cache_init(void) { } 747 748 /* 749 * set_max_threads 750 */ 751 static void set_max_threads(unsigned int max_threads_suggested) 752 { 753 u64 threads; 754 unsigned long nr_pages = totalram_pages(); 755 756 /* 757 * The number of threads shall be limited such that the thread 758 * structures may only consume a small part of the available memory. 759 */ 760 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 761 threads = MAX_THREADS; 762 else 763 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 764 (u64) THREAD_SIZE * 8UL); 765 766 if (threads > max_threads_suggested) 767 threads = max_threads_suggested; 768 769 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 770 } 771 772 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 773 /* Initialized by the architecture: */ 774 int arch_task_struct_size __read_mostly; 775 #endif 776 777 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 778 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 779 { 780 /* Fetch thread_struct whitelist for the architecture. */ 781 arch_thread_struct_whitelist(offset, size); 782 783 /* 784 * Handle zero-sized whitelist or empty thread_struct, otherwise 785 * adjust offset to position of thread_struct in task_struct. 786 */ 787 if (unlikely(*size == 0)) 788 *offset = 0; 789 else 790 *offset += offsetof(struct task_struct, thread); 791 } 792 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 793 794 void __init fork_init(void) 795 { 796 int i; 797 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 798 #ifndef ARCH_MIN_TASKALIGN 799 #define ARCH_MIN_TASKALIGN 0 800 #endif 801 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 802 unsigned long useroffset, usersize; 803 804 /* create a slab on which task_structs can be allocated */ 805 task_struct_whitelist(&useroffset, &usersize); 806 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 807 arch_task_struct_size, align, 808 SLAB_PANIC|SLAB_ACCOUNT, 809 useroffset, usersize, NULL); 810 #endif 811 812 /* do the arch specific task caches init */ 813 arch_task_cache_init(); 814 815 set_max_threads(MAX_THREADS); 816 817 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 818 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 819 init_task.signal->rlim[RLIMIT_SIGPENDING] = 820 init_task.signal->rlim[RLIMIT_NPROC]; 821 822 for (i = 0; i < UCOUNT_COUNTS; i++) { 823 init_user_ns.ucount_max[i] = max_threads/2; 824 } 825 826 #ifdef CONFIG_VMAP_STACK 827 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 828 NULL, free_vm_stack_cache); 829 #endif 830 831 scs_init(); 832 833 lockdep_init_task(&init_task); 834 uprobes_init(); 835 } 836 837 int __weak arch_dup_task_struct(struct task_struct *dst, 838 struct task_struct *src) 839 { 840 *dst = *src; 841 return 0; 842 } 843 844 void set_task_stack_end_magic(struct task_struct *tsk) 845 { 846 unsigned long *stackend; 847 848 stackend = end_of_stack(tsk); 849 *stackend = STACK_END_MAGIC; /* for overflow detection */ 850 } 851 852 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 853 { 854 struct task_struct *tsk; 855 unsigned long *stack; 856 struct vm_struct *stack_vm_area __maybe_unused; 857 int err; 858 859 if (node == NUMA_NO_NODE) 860 node = tsk_fork_get_node(orig); 861 tsk = alloc_task_struct_node(node); 862 if (!tsk) 863 return NULL; 864 865 stack = alloc_thread_stack_node(tsk, node); 866 if (!stack) 867 goto free_tsk; 868 869 if (memcg_charge_kernel_stack(tsk)) 870 goto free_stack; 871 872 stack_vm_area = task_stack_vm_area(tsk); 873 874 err = arch_dup_task_struct(tsk, orig); 875 876 /* 877 * arch_dup_task_struct() clobbers the stack-related fields. Make 878 * sure they're properly initialized before using any stack-related 879 * functions again. 880 */ 881 tsk->stack = stack; 882 #ifdef CONFIG_VMAP_STACK 883 tsk->stack_vm_area = stack_vm_area; 884 #endif 885 #ifdef CONFIG_THREAD_INFO_IN_TASK 886 refcount_set(&tsk->stack_refcount, 1); 887 #endif 888 889 if (err) 890 goto free_stack; 891 892 err = scs_prepare(tsk, node); 893 if (err) 894 goto free_stack; 895 896 #ifdef CONFIG_SECCOMP 897 /* 898 * We must handle setting up seccomp filters once we're under 899 * the sighand lock in case orig has changed between now and 900 * then. Until then, filter must be NULL to avoid messing up 901 * the usage counts on the error path calling free_task. 902 */ 903 tsk->seccomp.filter = NULL; 904 #endif 905 906 setup_thread_stack(tsk, orig); 907 clear_user_return_notifier(tsk); 908 clear_tsk_need_resched(tsk); 909 set_task_stack_end_magic(tsk); 910 911 #ifdef CONFIG_STACKPROTECTOR 912 tsk->stack_canary = get_random_canary(); 913 #endif 914 if (orig->cpus_ptr == &orig->cpus_mask) 915 tsk->cpus_ptr = &tsk->cpus_mask; 916 917 /* 918 * One for the user space visible state that goes away when reaped. 919 * One for the scheduler. 920 */ 921 refcount_set(&tsk->rcu_users, 2); 922 /* One for the rcu users */ 923 refcount_set(&tsk->usage, 1); 924 #ifdef CONFIG_BLK_DEV_IO_TRACE 925 tsk->btrace_seq = 0; 926 #endif 927 tsk->splice_pipe = NULL; 928 tsk->task_frag.page = NULL; 929 tsk->wake_q.next = NULL; 930 931 account_kernel_stack(tsk, 1); 932 933 kcov_task_init(tsk); 934 935 #ifdef CONFIG_FAULT_INJECTION 936 tsk->fail_nth = 0; 937 #endif 938 939 #ifdef CONFIG_BLK_CGROUP 940 tsk->throttle_queue = NULL; 941 tsk->use_memdelay = 0; 942 #endif 943 944 #ifdef CONFIG_MEMCG 945 tsk->active_memcg = NULL; 946 #endif 947 return tsk; 948 949 free_stack: 950 free_thread_stack(tsk); 951 free_tsk: 952 free_task_struct(tsk); 953 return NULL; 954 } 955 956 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 957 958 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 959 960 static int __init coredump_filter_setup(char *s) 961 { 962 default_dump_filter = 963 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 964 MMF_DUMP_FILTER_MASK; 965 return 1; 966 } 967 968 __setup("coredump_filter=", coredump_filter_setup); 969 970 #include <linux/init_task.h> 971 972 static void mm_init_aio(struct mm_struct *mm) 973 { 974 #ifdef CONFIG_AIO 975 spin_lock_init(&mm->ioctx_lock); 976 mm->ioctx_table = NULL; 977 #endif 978 } 979 980 static __always_inline void mm_clear_owner(struct mm_struct *mm, 981 struct task_struct *p) 982 { 983 #ifdef CONFIG_MEMCG 984 if (mm->owner == p) 985 WRITE_ONCE(mm->owner, NULL); 986 #endif 987 } 988 989 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 990 { 991 #ifdef CONFIG_MEMCG 992 mm->owner = p; 993 #endif 994 } 995 996 static void mm_init_uprobes_state(struct mm_struct *mm) 997 { 998 #ifdef CONFIG_UPROBES 999 mm->uprobes_state.xol_area = NULL; 1000 #endif 1001 } 1002 1003 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1004 struct user_namespace *user_ns) 1005 { 1006 mm->mmap = NULL; 1007 mm->mm_rb = RB_ROOT; 1008 mm->vmacache_seqnum = 0; 1009 atomic_set(&mm->mm_users, 1); 1010 atomic_set(&mm->mm_count, 1); 1011 mmap_init_lock(mm); 1012 INIT_LIST_HEAD(&mm->mmlist); 1013 mm->core_state = NULL; 1014 mm_pgtables_bytes_init(mm); 1015 mm->map_count = 0; 1016 mm->locked_vm = 0; 1017 atomic_set(&mm->has_pinned, 0); 1018 atomic64_set(&mm->pinned_vm, 0); 1019 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1020 spin_lock_init(&mm->page_table_lock); 1021 spin_lock_init(&mm->arg_lock); 1022 mm_init_cpumask(mm); 1023 mm_init_aio(mm); 1024 mm_init_owner(mm, p); 1025 RCU_INIT_POINTER(mm->exe_file, NULL); 1026 mmu_notifier_subscriptions_init(mm); 1027 init_tlb_flush_pending(mm); 1028 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1029 mm->pmd_huge_pte = NULL; 1030 #endif 1031 mm_init_uprobes_state(mm); 1032 1033 if (current->mm) { 1034 mm->flags = current->mm->flags & MMF_INIT_MASK; 1035 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1036 } else { 1037 mm->flags = default_dump_filter; 1038 mm->def_flags = 0; 1039 } 1040 1041 if (mm_alloc_pgd(mm)) 1042 goto fail_nopgd; 1043 1044 if (init_new_context(p, mm)) 1045 goto fail_nocontext; 1046 1047 mm->user_ns = get_user_ns(user_ns); 1048 return mm; 1049 1050 fail_nocontext: 1051 mm_free_pgd(mm); 1052 fail_nopgd: 1053 free_mm(mm); 1054 return NULL; 1055 } 1056 1057 /* 1058 * Allocate and initialize an mm_struct. 1059 */ 1060 struct mm_struct *mm_alloc(void) 1061 { 1062 struct mm_struct *mm; 1063 1064 mm = allocate_mm(); 1065 if (!mm) 1066 return NULL; 1067 1068 memset(mm, 0, sizeof(*mm)); 1069 return mm_init(mm, current, current_user_ns()); 1070 } 1071 1072 static inline void __mmput(struct mm_struct *mm) 1073 { 1074 VM_BUG_ON(atomic_read(&mm->mm_users)); 1075 1076 uprobe_clear_state(mm); 1077 exit_aio(mm); 1078 ksm_exit(mm); 1079 khugepaged_exit(mm); /* must run before exit_mmap */ 1080 exit_mmap(mm); 1081 mm_put_huge_zero_page(mm); 1082 set_mm_exe_file(mm, NULL); 1083 if (!list_empty(&mm->mmlist)) { 1084 spin_lock(&mmlist_lock); 1085 list_del(&mm->mmlist); 1086 spin_unlock(&mmlist_lock); 1087 } 1088 if (mm->binfmt) 1089 module_put(mm->binfmt->module); 1090 mmdrop(mm); 1091 } 1092 1093 /* 1094 * Decrement the use count and release all resources for an mm. 1095 */ 1096 void mmput(struct mm_struct *mm) 1097 { 1098 might_sleep(); 1099 1100 if (atomic_dec_and_test(&mm->mm_users)) 1101 __mmput(mm); 1102 } 1103 EXPORT_SYMBOL_GPL(mmput); 1104 1105 #ifdef CONFIG_MMU 1106 static void mmput_async_fn(struct work_struct *work) 1107 { 1108 struct mm_struct *mm = container_of(work, struct mm_struct, 1109 async_put_work); 1110 1111 __mmput(mm); 1112 } 1113 1114 void mmput_async(struct mm_struct *mm) 1115 { 1116 if (atomic_dec_and_test(&mm->mm_users)) { 1117 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1118 schedule_work(&mm->async_put_work); 1119 } 1120 } 1121 #endif 1122 1123 /** 1124 * set_mm_exe_file - change a reference to the mm's executable file 1125 * 1126 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1127 * 1128 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1129 * invocations: in mmput() nobody alive left, in execve task is single 1130 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1131 * mm->exe_file, but does so without using set_mm_exe_file() in order 1132 * to do avoid the need for any locks. 1133 */ 1134 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1135 { 1136 struct file *old_exe_file; 1137 1138 /* 1139 * It is safe to dereference the exe_file without RCU as 1140 * this function is only called if nobody else can access 1141 * this mm -- see comment above for justification. 1142 */ 1143 old_exe_file = rcu_dereference_raw(mm->exe_file); 1144 1145 if (new_exe_file) 1146 get_file(new_exe_file); 1147 rcu_assign_pointer(mm->exe_file, new_exe_file); 1148 if (old_exe_file) 1149 fput(old_exe_file); 1150 } 1151 1152 /** 1153 * get_mm_exe_file - acquire a reference to the mm's executable file 1154 * 1155 * Returns %NULL if mm has no associated executable file. 1156 * User must release file via fput(). 1157 */ 1158 struct file *get_mm_exe_file(struct mm_struct *mm) 1159 { 1160 struct file *exe_file; 1161 1162 rcu_read_lock(); 1163 exe_file = rcu_dereference(mm->exe_file); 1164 if (exe_file && !get_file_rcu(exe_file)) 1165 exe_file = NULL; 1166 rcu_read_unlock(); 1167 return exe_file; 1168 } 1169 EXPORT_SYMBOL(get_mm_exe_file); 1170 1171 /** 1172 * get_task_exe_file - acquire a reference to the task's executable file 1173 * 1174 * Returns %NULL if task's mm (if any) has no associated executable file or 1175 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1176 * User must release file via fput(). 1177 */ 1178 struct file *get_task_exe_file(struct task_struct *task) 1179 { 1180 struct file *exe_file = NULL; 1181 struct mm_struct *mm; 1182 1183 task_lock(task); 1184 mm = task->mm; 1185 if (mm) { 1186 if (!(task->flags & PF_KTHREAD)) 1187 exe_file = get_mm_exe_file(mm); 1188 } 1189 task_unlock(task); 1190 return exe_file; 1191 } 1192 EXPORT_SYMBOL(get_task_exe_file); 1193 1194 /** 1195 * get_task_mm - acquire a reference to the task's mm 1196 * 1197 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1198 * this kernel workthread has transiently adopted a user mm with use_mm, 1199 * to do its AIO) is not set and if so returns a reference to it, after 1200 * bumping up the use count. User must release the mm via mmput() 1201 * after use. Typically used by /proc and ptrace. 1202 */ 1203 struct mm_struct *get_task_mm(struct task_struct *task) 1204 { 1205 struct mm_struct *mm; 1206 1207 task_lock(task); 1208 mm = task->mm; 1209 if (mm) { 1210 if (task->flags & PF_KTHREAD) 1211 mm = NULL; 1212 else 1213 mmget(mm); 1214 } 1215 task_unlock(task); 1216 return mm; 1217 } 1218 EXPORT_SYMBOL_GPL(get_task_mm); 1219 1220 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1221 { 1222 struct mm_struct *mm; 1223 int err; 1224 1225 err = mutex_lock_killable(&task->signal->exec_update_mutex); 1226 if (err) 1227 return ERR_PTR(err); 1228 1229 mm = get_task_mm(task); 1230 if (mm && mm != current->mm && 1231 !ptrace_may_access(task, mode)) { 1232 mmput(mm); 1233 mm = ERR_PTR(-EACCES); 1234 } 1235 mutex_unlock(&task->signal->exec_update_mutex); 1236 1237 return mm; 1238 } 1239 1240 static void complete_vfork_done(struct task_struct *tsk) 1241 { 1242 struct completion *vfork; 1243 1244 task_lock(tsk); 1245 vfork = tsk->vfork_done; 1246 if (likely(vfork)) { 1247 tsk->vfork_done = NULL; 1248 complete(vfork); 1249 } 1250 task_unlock(tsk); 1251 } 1252 1253 static int wait_for_vfork_done(struct task_struct *child, 1254 struct completion *vfork) 1255 { 1256 int killed; 1257 1258 freezer_do_not_count(); 1259 cgroup_enter_frozen(); 1260 killed = wait_for_completion_killable(vfork); 1261 cgroup_leave_frozen(false); 1262 freezer_count(); 1263 1264 if (killed) { 1265 task_lock(child); 1266 child->vfork_done = NULL; 1267 task_unlock(child); 1268 } 1269 1270 put_task_struct(child); 1271 return killed; 1272 } 1273 1274 /* Please note the differences between mmput and mm_release. 1275 * mmput is called whenever we stop holding onto a mm_struct, 1276 * error success whatever. 1277 * 1278 * mm_release is called after a mm_struct has been removed 1279 * from the current process. 1280 * 1281 * This difference is important for error handling, when we 1282 * only half set up a mm_struct for a new process and need to restore 1283 * the old one. Because we mmput the new mm_struct before 1284 * restoring the old one. . . 1285 * Eric Biederman 10 January 1998 1286 */ 1287 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1288 { 1289 uprobe_free_utask(tsk); 1290 1291 /* Get rid of any cached register state */ 1292 deactivate_mm(tsk, mm); 1293 1294 /* 1295 * Signal userspace if we're not exiting with a core dump 1296 * because we want to leave the value intact for debugging 1297 * purposes. 1298 */ 1299 if (tsk->clear_child_tid) { 1300 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1301 atomic_read(&mm->mm_users) > 1) { 1302 /* 1303 * We don't check the error code - if userspace has 1304 * not set up a proper pointer then tough luck. 1305 */ 1306 put_user(0, tsk->clear_child_tid); 1307 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1308 1, NULL, NULL, 0, 0); 1309 } 1310 tsk->clear_child_tid = NULL; 1311 } 1312 1313 /* 1314 * All done, finally we can wake up parent and return this mm to him. 1315 * Also kthread_stop() uses this completion for synchronization. 1316 */ 1317 if (tsk->vfork_done) 1318 complete_vfork_done(tsk); 1319 } 1320 1321 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1322 { 1323 futex_exit_release(tsk); 1324 mm_release(tsk, mm); 1325 } 1326 1327 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1328 { 1329 futex_exec_release(tsk); 1330 mm_release(tsk, mm); 1331 } 1332 1333 /** 1334 * dup_mm() - duplicates an existing mm structure 1335 * @tsk: the task_struct with which the new mm will be associated. 1336 * @oldmm: the mm to duplicate. 1337 * 1338 * Allocates a new mm structure and duplicates the provided @oldmm structure 1339 * content into it. 1340 * 1341 * Return: the duplicated mm or NULL on failure. 1342 */ 1343 static struct mm_struct *dup_mm(struct task_struct *tsk, 1344 struct mm_struct *oldmm) 1345 { 1346 struct mm_struct *mm; 1347 int err; 1348 1349 mm = allocate_mm(); 1350 if (!mm) 1351 goto fail_nomem; 1352 1353 memcpy(mm, oldmm, sizeof(*mm)); 1354 1355 if (!mm_init(mm, tsk, mm->user_ns)) 1356 goto fail_nomem; 1357 1358 err = dup_mmap(mm, oldmm); 1359 if (err) 1360 goto free_pt; 1361 1362 mm->hiwater_rss = get_mm_rss(mm); 1363 mm->hiwater_vm = mm->total_vm; 1364 1365 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1366 goto free_pt; 1367 1368 return mm; 1369 1370 free_pt: 1371 /* don't put binfmt in mmput, we haven't got module yet */ 1372 mm->binfmt = NULL; 1373 mm_init_owner(mm, NULL); 1374 mmput(mm); 1375 1376 fail_nomem: 1377 return NULL; 1378 } 1379 1380 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1381 { 1382 struct mm_struct *mm, *oldmm; 1383 int retval; 1384 1385 tsk->min_flt = tsk->maj_flt = 0; 1386 tsk->nvcsw = tsk->nivcsw = 0; 1387 #ifdef CONFIG_DETECT_HUNG_TASK 1388 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1389 tsk->last_switch_time = 0; 1390 #endif 1391 1392 tsk->mm = NULL; 1393 tsk->active_mm = NULL; 1394 1395 /* 1396 * Are we cloning a kernel thread? 1397 * 1398 * We need to steal a active VM for that.. 1399 */ 1400 oldmm = current->mm; 1401 if (!oldmm) 1402 return 0; 1403 1404 /* initialize the new vmacache entries */ 1405 vmacache_flush(tsk); 1406 1407 if (clone_flags & CLONE_VM) { 1408 mmget(oldmm); 1409 mm = oldmm; 1410 goto good_mm; 1411 } 1412 1413 retval = -ENOMEM; 1414 mm = dup_mm(tsk, current->mm); 1415 if (!mm) 1416 goto fail_nomem; 1417 1418 good_mm: 1419 tsk->mm = mm; 1420 tsk->active_mm = mm; 1421 return 0; 1422 1423 fail_nomem: 1424 return retval; 1425 } 1426 1427 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1428 { 1429 struct fs_struct *fs = current->fs; 1430 if (clone_flags & CLONE_FS) { 1431 /* tsk->fs is already what we want */ 1432 spin_lock(&fs->lock); 1433 if (fs->in_exec) { 1434 spin_unlock(&fs->lock); 1435 return -EAGAIN; 1436 } 1437 fs->users++; 1438 spin_unlock(&fs->lock); 1439 return 0; 1440 } 1441 tsk->fs = copy_fs_struct(fs); 1442 if (!tsk->fs) 1443 return -ENOMEM; 1444 return 0; 1445 } 1446 1447 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1448 { 1449 struct files_struct *oldf, *newf; 1450 int error = 0; 1451 1452 /* 1453 * A background process may not have any files ... 1454 */ 1455 oldf = current->files; 1456 if (!oldf) 1457 goto out; 1458 1459 if (clone_flags & CLONE_FILES) { 1460 atomic_inc(&oldf->count); 1461 goto out; 1462 } 1463 1464 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1465 if (!newf) 1466 goto out; 1467 1468 tsk->files = newf; 1469 error = 0; 1470 out: 1471 return error; 1472 } 1473 1474 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1475 { 1476 #ifdef CONFIG_BLOCK 1477 struct io_context *ioc = current->io_context; 1478 struct io_context *new_ioc; 1479 1480 if (!ioc) 1481 return 0; 1482 /* 1483 * Share io context with parent, if CLONE_IO is set 1484 */ 1485 if (clone_flags & CLONE_IO) { 1486 ioc_task_link(ioc); 1487 tsk->io_context = ioc; 1488 } else if (ioprio_valid(ioc->ioprio)) { 1489 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1490 if (unlikely(!new_ioc)) 1491 return -ENOMEM; 1492 1493 new_ioc->ioprio = ioc->ioprio; 1494 put_io_context(new_ioc); 1495 } 1496 #endif 1497 return 0; 1498 } 1499 1500 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1501 { 1502 struct sighand_struct *sig; 1503 1504 if (clone_flags & CLONE_SIGHAND) { 1505 refcount_inc(¤t->sighand->count); 1506 return 0; 1507 } 1508 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1509 RCU_INIT_POINTER(tsk->sighand, sig); 1510 if (!sig) 1511 return -ENOMEM; 1512 1513 refcount_set(&sig->count, 1); 1514 spin_lock_irq(¤t->sighand->siglock); 1515 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1516 spin_unlock_irq(¤t->sighand->siglock); 1517 1518 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1519 if (clone_flags & CLONE_CLEAR_SIGHAND) 1520 flush_signal_handlers(tsk, 0); 1521 1522 return 0; 1523 } 1524 1525 void __cleanup_sighand(struct sighand_struct *sighand) 1526 { 1527 if (refcount_dec_and_test(&sighand->count)) { 1528 signalfd_cleanup(sighand); 1529 /* 1530 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1531 * without an RCU grace period, see __lock_task_sighand(). 1532 */ 1533 kmem_cache_free(sighand_cachep, sighand); 1534 } 1535 } 1536 1537 /* 1538 * Initialize POSIX timer handling for a thread group. 1539 */ 1540 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1541 { 1542 struct posix_cputimers *pct = &sig->posix_cputimers; 1543 unsigned long cpu_limit; 1544 1545 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1546 posix_cputimers_group_init(pct, cpu_limit); 1547 } 1548 1549 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1550 { 1551 struct signal_struct *sig; 1552 1553 if (clone_flags & CLONE_THREAD) 1554 return 0; 1555 1556 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1557 tsk->signal = sig; 1558 if (!sig) 1559 return -ENOMEM; 1560 1561 sig->nr_threads = 1; 1562 atomic_set(&sig->live, 1); 1563 refcount_set(&sig->sigcnt, 1); 1564 1565 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1566 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1567 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1568 1569 init_waitqueue_head(&sig->wait_chldexit); 1570 sig->curr_target = tsk; 1571 init_sigpending(&sig->shared_pending); 1572 INIT_HLIST_HEAD(&sig->multiprocess); 1573 seqlock_init(&sig->stats_lock); 1574 prev_cputime_init(&sig->prev_cputime); 1575 1576 #ifdef CONFIG_POSIX_TIMERS 1577 INIT_LIST_HEAD(&sig->posix_timers); 1578 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1579 sig->real_timer.function = it_real_fn; 1580 #endif 1581 1582 task_lock(current->group_leader); 1583 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1584 task_unlock(current->group_leader); 1585 1586 posix_cpu_timers_init_group(sig); 1587 1588 tty_audit_fork(sig); 1589 sched_autogroup_fork(sig); 1590 1591 sig->oom_score_adj = current->signal->oom_score_adj; 1592 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1593 1594 mutex_init(&sig->cred_guard_mutex); 1595 mutex_init(&sig->exec_update_mutex); 1596 1597 return 0; 1598 } 1599 1600 static void copy_seccomp(struct task_struct *p) 1601 { 1602 #ifdef CONFIG_SECCOMP 1603 /* 1604 * Must be called with sighand->lock held, which is common to 1605 * all threads in the group. Holding cred_guard_mutex is not 1606 * needed because this new task is not yet running and cannot 1607 * be racing exec. 1608 */ 1609 assert_spin_locked(¤t->sighand->siglock); 1610 1611 /* Ref-count the new filter user, and assign it. */ 1612 get_seccomp_filter(current); 1613 p->seccomp = current->seccomp; 1614 1615 /* 1616 * Explicitly enable no_new_privs here in case it got set 1617 * between the task_struct being duplicated and holding the 1618 * sighand lock. The seccomp state and nnp must be in sync. 1619 */ 1620 if (task_no_new_privs(current)) 1621 task_set_no_new_privs(p); 1622 1623 /* 1624 * If the parent gained a seccomp mode after copying thread 1625 * flags and between before we held the sighand lock, we have 1626 * to manually enable the seccomp thread flag here. 1627 */ 1628 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1629 set_tsk_thread_flag(p, TIF_SECCOMP); 1630 #endif 1631 } 1632 1633 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1634 { 1635 current->clear_child_tid = tidptr; 1636 1637 return task_pid_vnr(current); 1638 } 1639 1640 static void rt_mutex_init_task(struct task_struct *p) 1641 { 1642 raw_spin_lock_init(&p->pi_lock); 1643 #ifdef CONFIG_RT_MUTEXES 1644 p->pi_waiters = RB_ROOT_CACHED; 1645 p->pi_top_task = NULL; 1646 p->pi_blocked_on = NULL; 1647 #endif 1648 } 1649 1650 static inline void init_task_pid_links(struct task_struct *task) 1651 { 1652 enum pid_type type; 1653 1654 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1655 INIT_HLIST_NODE(&task->pid_links[type]); 1656 } 1657 } 1658 1659 static inline void 1660 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1661 { 1662 if (type == PIDTYPE_PID) 1663 task->thread_pid = pid; 1664 else 1665 task->signal->pids[type] = pid; 1666 } 1667 1668 static inline void rcu_copy_process(struct task_struct *p) 1669 { 1670 #ifdef CONFIG_PREEMPT_RCU 1671 p->rcu_read_lock_nesting = 0; 1672 p->rcu_read_unlock_special.s = 0; 1673 p->rcu_blocked_node = NULL; 1674 INIT_LIST_HEAD(&p->rcu_node_entry); 1675 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1676 #ifdef CONFIG_TASKS_RCU 1677 p->rcu_tasks_holdout = false; 1678 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1679 p->rcu_tasks_idle_cpu = -1; 1680 #endif /* #ifdef CONFIG_TASKS_RCU */ 1681 #ifdef CONFIG_TASKS_TRACE_RCU 1682 p->trc_reader_nesting = 0; 1683 p->trc_reader_special.s = 0; 1684 INIT_LIST_HEAD(&p->trc_holdout_list); 1685 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1686 } 1687 1688 struct pid *pidfd_pid(const struct file *file) 1689 { 1690 if (file->f_op == &pidfd_fops) 1691 return file->private_data; 1692 1693 return ERR_PTR(-EBADF); 1694 } 1695 1696 static int pidfd_release(struct inode *inode, struct file *file) 1697 { 1698 struct pid *pid = file->private_data; 1699 1700 file->private_data = NULL; 1701 put_pid(pid); 1702 return 0; 1703 } 1704 1705 #ifdef CONFIG_PROC_FS 1706 /** 1707 * pidfd_show_fdinfo - print information about a pidfd 1708 * @m: proc fdinfo file 1709 * @f: file referencing a pidfd 1710 * 1711 * Pid: 1712 * This function will print the pid that a given pidfd refers to in the 1713 * pid namespace of the procfs instance. 1714 * If the pid namespace of the process is not a descendant of the pid 1715 * namespace of the procfs instance 0 will be shown as its pid. This is 1716 * similar to calling getppid() on a process whose parent is outside of 1717 * its pid namespace. 1718 * 1719 * NSpid: 1720 * If pid namespaces are supported then this function will also print 1721 * the pid of a given pidfd refers to for all descendant pid namespaces 1722 * starting from the current pid namespace of the instance, i.e. the 1723 * Pid field and the first entry in the NSpid field will be identical. 1724 * If the pid namespace of the process is not a descendant of the pid 1725 * namespace of the procfs instance 0 will be shown as its first NSpid 1726 * entry and no others will be shown. 1727 * Note that this differs from the Pid and NSpid fields in 1728 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1729 * the pid namespace of the procfs instance. The difference becomes 1730 * obvious when sending around a pidfd between pid namespaces from a 1731 * different branch of the tree, i.e. where no ancestoral relation is 1732 * present between the pid namespaces: 1733 * - create two new pid namespaces ns1 and ns2 in the initial pid 1734 * namespace (also take care to create new mount namespaces in the 1735 * new pid namespace and mount procfs) 1736 * - create a process with a pidfd in ns1 1737 * - send pidfd from ns1 to ns2 1738 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1739 * have exactly one entry, which is 0 1740 */ 1741 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1742 { 1743 struct pid *pid = f->private_data; 1744 struct pid_namespace *ns; 1745 pid_t nr = -1; 1746 1747 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1748 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1749 nr = pid_nr_ns(pid, ns); 1750 } 1751 1752 seq_put_decimal_ll(m, "Pid:\t", nr); 1753 1754 #ifdef CONFIG_PID_NS 1755 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1756 if (nr > 0) { 1757 int i; 1758 1759 /* If nr is non-zero it means that 'pid' is valid and that 1760 * ns, i.e. the pid namespace associated with the procfs 1761 * instance, is in the pid namespace hierarchy of pid. 1762 * Start at one below the already printed level. 1763 */ 1764 for (i = ns->level + 1; i <= pid->level; i++) 1765 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1766 } 1767 #endif 1768 seq_putc(m, '\n'); 1769 } 1770 #endif 1771 1772 /* 1773 * Poll support for process exit notification. 1774 */ 1775 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1776 { 1777 struct pid *pid = file->private_data; 1778 __poll_t poll_flags = 0; 1779 1780 poll_wait(file, &pid->wait_pidfd, pts); 1781 1782 /* 1783 * Inform pollers only when the whole thread group exits. 1784 * If the thread group leader exits before all other threads in the 1785 * group, then poll(2) should block, similar to the wait(2) family. 1786 */ 1787 if (thread_group_exited(pid)) 1788 poll_flags = EPOLLIN | EPOLLRDNORM; 1789 1790 return poll_flags; 1791 } 1792 1793 const struct file_operations pidfd_fops = { 1794 .release = pidfd_release, 1795 .poll = pidfd_poll, 1796 #ifdef CONFIG_PROC_FS 1797 .show_fdinfo = pidfd_show_fdinfo, 1798 #endif 1799 }; 1800 1801 static void __delayed_free_task(struct rcu_head *rhp) 1802 { 1803 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1804 1805 free_task(tsk); 1806 } 1807 1808 static __always_inline void delayed_free_task(struct task_struct *tsk) 1809 { 1810 if (IS_ENABLED(CONFIG_MEMCG)) 1811 call_rcu(&tsk->rcu, __delayed_free_task); 1812 else 1813 free_task(tsk); 1814 } 1815 1816 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1817 { 1818 /* Skip if kernel thread */ 1819 if (!tsk->mm) 1820 return; 1821 1822 /* Skip if spawning a thread or using vfork */ 1823 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1824 return; 1825 1826 /* We need to synchronize with __set_oom_adj */ 1827 mutex_lock(&oom_adj_mutex); 1828 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1829 /* Update the values in case they were changed after copy_signal */ 1830 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1831 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1832 mutex_unlock(&oom_adj_mutex); 1833 } 1834 1835 /* 1836 * This creates a new process as a copy of the old one, 1837 * but does not actually start it yet. 1838 * 1839 * It copies the registers, and all the appropriate 1840 * parts of the process environment (as per the clone 1841 * flags). The actual kick-off is left to the caller. 1842 */ 1843 static __latent_entropy struct task_struct *copy_process( 1844 struct pid *pid, 1845 int trace, 1846 int node, 1847 struct kernel_clone_args *args) 1848 { 1849 int pidfd = -1, retval; 1850 struct task_struct *p; 1851 struct multiprocess_signals delayed; 1852 struct file *pidfile = NULL; 1853 u64 clone_flags = args->flags; 1854 struct nsproxy *nsp = current->nsproxy; 1855 1856 /* 1857 * Don't allow sharing the root directory with processes in a different 1858 * namespace 1859 */ 1860 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1861 return ERR_PTR(-EINVAL); 1862 1863 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1864 return ERR_PTR(-EINVAL); 1865 1866 /* 1867 * Thread groups must share signals as well, and detached threads 1868 * can only be started up within the thread group. 1869 */ 1870 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1871 return ERR_PTR(-EINVAL); 1872 1873 /* 1874 * Shared signal handlers imply shared VM. By way of the above, 1875 * thread groups also imply shared VM. Blocking this case allows 1876 * for various simplifications in other code. 1877 */ 1878 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1879 return ERR_PTR(-EINVAL); 1880 1881 /* 1882 * Siblings of global init remain as zombies on exit since they are 1883 * not reaped by their parent (swapper). To solve this and to avoid 1884 * multi-rooted process trees, prevent global and container-inits 1885 * from creating siblings. 1886 */ 1887 if ((clone_flags & CLONE_PARENT) && 1888 current->signal->flags & SIGNAL_UNKILLABLE) 1889 return ERR_PTR(-EINVAL); 1890 1891 /* 1892 * If the new process will be in a different pid or user namespace 1893 * do not allow it to share a thread group with the forking task. 1894 */ 1895 if (clone_flags & CLONE_THREAD) { 1896 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1897 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1898 return ERR_PTR(-EINVAL); 1899 } 1900 1901 /* 1902 * If the new process will be in a different time namespace 1903 * do not allow it to share VM or a thread group with the forking task. 1904 */ 1905 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1906 if (nsp->time_ns != nsp->time_ns_for_children) 1907 return ERR_PTR(-EINVAL); 1908 } 1909 1910 if (clone_flags & CLONE_PIDFD) { 1911 /* 1912 * - CLONE_DETACHED is blocked so that we can potentially 1913 * reuse it later for CLONE_PIDFD. 1914 * - CLONE_THREAD is blocked until someone really needs it. 1915 */ 1916 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1917 return ERR_PTR(-EINVAL); 1918 } 1919 1920 /* 1921 * Force any signals received before this point to be delivered 1922 * before the fork happens. Collect up signals sent to multiple 1923 * processes that happen during the fork and delay them so that 1924 * they appear to happen after the fork. 1925 */ 1926 sigemptyset(&delayed.signal); 1927 INIT_HLIST_NODE(&delayed.node); 1928 1929 spin_lock_irq(¤t->sighand->siglock); 1930 if (!(clone_flags & CLONE_THREAD)) 1931 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1932 recalc_sigpending(); 1933 spin_unlock_irq(¤t->sighand->siglock); 1934 retval = -ERESTARTNOINTR; 1935 if (signal_pending(current)) 1936 goto fork_out; 1937 1938 retval = -ENOMEM; 1939 p = dup_task_struct(current, node); 1940 if (!p) 1941 goto fork_out; 1942 1943 /* 1944 * This _must_ happen before we call free_task(), i.e. before we jump 1945 * to any of the bad_fork_* labels. This is to avoid freeing 1946 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1947 * kernel threads (PF_KTHREAD). 1948 */ 1949 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1950 /* 1951 * Clear TID on mm_release()? 1952 */ 1953 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1954 1955 ftrace_graph_init_task(p); 1956 1957 rt_mutex_init_task(p); 1958 1959 lockdep_assert_irqs_enabled(); 1960 #ifdef CONFIG_PROVE_LOCKING 1961 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1962 #endif 1963 retval = -EAGAIN; 1964 if (atomic_read(&p->real_cred->user->processes) >= 1965 task_rlimit(p, RLIMIT_NPROC)) { 1966 if (p->real_cred->user != INIT_USER && 1967 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1968 goto bad_fork_free; 1969 } 1970 current->flags &= ~PF_NPROC_EXCEEDED; 1971 1972 retval = copy_creds(p, clone_flags); 1973 if (retval < 0) 1974 goto bad_fork_free; 1975 1976 /* 1977 * If multiple threads are within copy_process(), then this check 1978 * triggers too late. This doesn't hurt, the check is only there 1979 * to stop root fork bombs. 1980 */ 1981 retval = -EAGAIN; 1982 if (data_race(nr_threads >= max_threads)) 1983 goto bad_fork_cleanup_count; 1984 1985 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1986 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1987 p->flags |= PF_FORKNOEXEC; 1988 INIT_LIST_HEAD(&p->children); 1989 INIT_LIST_HEAD(&p->sibling); 1990 rcu_copy_process(p); 1991 p->vfork_done = NULL; 1992 spin_lock_init(&p->alloc_lock); 1993 1994 init_sigpending(&p->pending); 1995 1996 p->utime = p->stime = p->gtime = 0; 1997 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1998 p->utimescaled = p->stimescaled = 0; 1999 #endif 2000 prev_cputime_init(&p->prev_cputime); 2001 2002 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2003 seqcount_init(&p->vtime.seqcount); 2004 p->vtime.starttime = 0; 2005 p->vtime.state = VTIME_INACTIVE; 2006 #endif 2007 2008 #ifdef CONFIG_IO_URING 2009 p->io_uring = NULL; 2010 #endif 2011 2012 #if defined(SPLIT_RSS_COUNTING) 2013 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2014 #endif 2015 2016 p->default_timer_slack_ns = current->timer_slack_ns; 2017 2018 #ifdef CONFIG_PSI 2019 p->psi_flags = 0; 2020 #endif 2021 2022 task_io_accounting_init(&p->ioac); 2023 acct_clear_integrals(p); 2024 2025 posix_cputimers_init(&p->posix_cputimers); 2026 2027 p->io_context = NULL; 2028 audit_set_context(p, NULL); 2029 cgroup_fork(p); 2030 #ifdef CONFIG_NUMA 2031 p->mempolicy = mpol_dup(p->mempolicy); 2032 if (IS_ERR(p->mempolicy)) { 2033 retval = PTR_ERR(p->mempolicy); 2034 p->mempolicy = NULL; 2035 goto bad_fork_cleanup_threadgroup_lock; 2036 } 2037 #endif 2038 #ifdef CONFIG_CPUSETS 2039 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2040 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2041 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2042 #endif 2043 #ifdef CONFIG_TRACE_IRQFLAGS 2044 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2045 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2046 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2047 p->softirqs_enabled = 1; 2048 p->softirq_context = 0; 2049 #endif 2050 2051 p->pagefault_disabled = 0; 2052 2053 #ifdef CONFIG_LOCKDEP 2054 lockdep_init_task(p); 2055 #endif 2056 2057 #ifdef CONFIG_DEBUG_MUTEXES 2058 p->blocked_on = NULL; /* not blocked yet */ 2059 #endif 2060 #ifdef CONFIG_BCACHE 2061 p->sequential_io = 0; 2062 p->sequential_io_avg = 0; 2063 #endif 2064 2065 /* Perform scheduler related setup. Assign this task to a CPU. */ 2066 retval = sched_fork(clone_flags, p); 2067 if (retval) 2068 goto bad_fork_cleanup_policy; 2069 2070 retval = perf_event_init_task(p); 2071 if (retval) 2072 goto bad_fork_cleanup_policy; 2073 retval = audit_alloc(p); 2074 if (retval) 2075 goto bad_fork_cleanup_perf; 2076 /* copy all the process information */ 2077 shm_init_task(p); 2078 retval = security_task_alloc(p, clone_flags); 2079 if (retval) 2080 goto bad_fork_cleanup_audit; 2081 retval = copy_semundo(clone_flags, p); 2082 if (retval) 2083 goto bad_fork_cleanup_security; 2084 retval = copy_files(clone_flags, p); 2085 if (retval) 2086 goto bad_fork_cleanup_semundo; 2087 retval = copy_fs(clone_flags, p); 2088 if (retval) 2089 goto bad_fork_cleanup_files; 2090 retval = copy_sighand(clone_flags, p); 2091 if (retval) 2092 goto bad_fork_cleanup_fs; 2093 retval = copy_signal(clone_flags, p); 2094 if (retval) 2095 goto bad_fork_cleanup_sighand; 2096 retval = copy_mm(clone_flags, p); 2097 if (retval) 2098 goto bad_fork_cleanup_signal; 2099 retval = copy_namespaces(clone_flags, p); 2100 if (retval) 2101 goto bad_fork_cleanup_mm; 2102 retval = copy_io(clone_flags, p); 2103 if (retval) 2104 goto bad_fork_cleanup_namespaces; 2105 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2106 if (retval) 2107 goto bad_fork_cleanup_io; 2108 2109 stackleak_task_init(p); 2110 2111 if (pid != &init_struct_pid) { 2112 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2113 args->set_tid_size); 2114 if (IS_ERR(pid)) { 2115 retval = PTR_ERR(pid); 2116 goto bad_fork_cleanup_thread; 2117 } 2118 } 2119 2120 /* 2121 * This has to happen after we've potentially unshared the file 2122 * descriptor table (so that the pidfd doesn't leak into the child 2123 * if the fd table isn't shared). 2124 */ 2125 if (clone_flags & CLONE_PIDFD) { 2126 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2127 if (retval < 0) 2128 goto bad_fork_free_pid; 2129 2130 pidfd = retval; 2131 2132 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2133 O_RDWR | O_CLOEXEC); 2134 if (IS_ERR(pidfile)) { 2135 put_unused_fd(pidfd); 2136 retval = PTR_ERR(pidfile); 2137 goto bad_fork_free_pid; 2138 } 2139 get_pid(pid); /* held by pidfile now */ 2140 2141 retval = put_user(pidfd, args->pidfd); 2142 if (retval) 2143 goto bad_fork_put_pidfd; 2144 } 2145 2146 #ifdef CONFIG_BLOCK 2147 p->plug = NULL; 2148 #endif 2149 futex_init_task(p); 2150 2151 /* 2152 * sigaltstack should be cleared when sharing the same VM 2153 */ 2154 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2155 sas_ss_reset(p); 2156 2157 /* 2158 * Syscall tracing and stepping should be turned off in the 2159 * child regardless of CLONE_PTRACE. 2160 */ 2161 user_disable_single_step(p); 2162 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2163 #ifdef TIF_SYSCALL_EMU 2164 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2165 #endif 2166 clear_tsk_latency_tracing(p); 2167 2168 /* ok, now we should be set up.. */ 2169 p->pid = pid_nr(pid); 2170 if (clone_flags & CLONE_THREAD) { 2171 p->group_leader = current->group_leader; 2172 p->tgid = current->tgid; 2173 } else { 2174 p->group_leader = p; 2175 p->tgid = p->pid; 2176 } 2177 2178 p->nr_dirtied = 0; 2179 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2180 p->dirty_paused_when = 0; 2181 2182 p->pdeath_signal = 0; 2183 INIT_LIST_HEAD(&p->thread_group); 2184 p->task_works = NULL; 2185 2186 /* 2187 * Ensure that the cgroup subsystem policies allow the new process to be 2188 * forked. It should be noted that the new process's css_set can be changed 2189 * between here and cgroup_post_fork() if an organisation operation is in 2190 * progress. 2191 */ 2192 retval = cgroup_can_fork(p, args); 2193 if (retval) 2194 goto bad_fork_put_pidfd; 2195 2196 /* 2197 * From this point on we must avoid any synchronous user-space 2198 * communication until we take the tasklist-lock. In particular, we do 2199 * not want user-space to be able to predict the process start-time by 2200 * stalling fork(2) after we recorded the start_time but before it is 2201 * visible to the system. 2202 */ 2203 2204 p->start_time = ktime_get_ns(); 2205 p->start_boottime = ktime_get_boottime_ns(); 2206 2207 /* 2208 * Make it visible to the rest of the system, but dont wake it up yet. 2209 * Need tasklist lock for parent etc handling! 2210 */ 2211 write_lock_irq(&tasklist_lock); 2212 2213 /* CLONE_PARENT re-uses the old parent */ 2214 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2215 p->real_parent = current->real_parent; 2216 p->parent_exec_id = current->parent_exec_id; 2217 if (clone_flags & CLONE_THREAD) 2218 p->exit_signal = -1; 2219 else 2220 p->exit_signal = current->group_leader->exit_signal; 2221 } else { 2222 p->real_parent = current; 2223 p->parent_exec_id = current->self_exec_id; 2224 p->exit_signal = args->exit_signal; 2225 } 2226 2227 klp_copy_process(p); 2228 2229 spin_lock(¤t->sighand->siglock); 2230 2231 /* 2232 * Copy seccomp details explicitly here, in case they were changed 2233 * before holding sighand lock. 2234 */ 2235 copy_seccomp(p); 2236 2237 rseq_fork(p, clone_flags); 2238 2239 /* Don't start children in a dying pid namespace */ 2240 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2241 retval = -ENOMEM; 2242 goto bad_fork_cancel_cgroup; 2243 } 2244 2245 /* Let kill terminate clone/fork in the middle */ 2246 if (fatal_signal_pending(current)) { 2247 retval = -EINTR; 2248 goto bad_fork_cancel_cgroup; 2249 } 2250 2251 /* past the last point of failure */ 2252 if (pidfile) 2253 fd_install(pidfd, pidfile); 2254 2255 init_task_pid_links(p); 2256 if (likely(p->pid)) { 2257 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2258 2259 init_task_pid(p, PIDTYPE_PID, pid); 2260 if (thread_group_leader(p)) { 2261 init_task_pid(p, PIDTYPE_TGID, pid); 2262 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2263 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2264 2265 if (is_child_reaper(pid)) { 2266 ns_of_pid(pid)->child_reaper = p; 2267 p->signal->flags |= SIGNAL_UNKILLABLE; 2268 } 2269 p->signal->shared_pending.signal = delayed.signal; 2270 p->signal->tty = tty_kref_get(current->signal->tty); 2271 /* 2272 * Inherit has_child_subreaper flag under the same 2273 * tasklist_lock with adding child to the process tree 2274 * for propagate_has_child_subreaper optimization. 2275 */ 2276 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2277 p->real_parent->signal->is_child_subreaper; 2278 list_add_tail(&p->sibling, &p->real_parent->children); 2279 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2280 attach_pid(p, PIDTYPE_TGID); 2281 attach_pid(p, PIDTYPE_PGID); 2282 attach_pid(p, PIDTYPE_SID); 2283 __this_cpu_inc(process_counts); 2284 } else { 2285 current->signal->nr_threads++; 2286 atomic_inc(¤t->signal->live); 2287 refcount_inc(¤t->signal->sigcnt); 2288 task_join_group_stop(p); 2289 list_add_tail_rcu(&p->thread_group, 2290 &p->group_leader->thread_group); 2291 list_add_tail_rcu(&p->thread_node, 2292 &p->signal->thread_head); 2293 } 2294 attach_pid(p, PIDTYPE_PID); 2295 nr_threads++; 2296 } 2297 total_forks++; 2298 hlist_del_init(&delayed.node); 2299 spin_unlock(¤t->sighand->siglock); 2300 syscall_tracepoint_update(p); 2301 write_unlock_irq(&tasklist_lock); 2302 2303 proc_fork_connector(p); 2304 sched_post_fork(p); 2305 cgroup_post_fork(p, args); 2306 perf_event_fork(p); 2307 2308 trace_task_newtask(p, clone_flags); 2309 uprobe_copy_process(p, clone_flags); 2310 2311 copy_oom_score_adj(clone_flags, p); 2312 2313 return p; 2314 2315 bad_fork_cancel_cgroup: 2316 spin_unlock(¤t->sighand->siglock); 2317 write_unlock_irq(&tasklist_lock); 2318 cgroup_cancel_fork(p, args); 2319 bad_fork_put_pidfd: 2320 if (clone_flags & CLONE_PIDFD) { 2321 fput(pidfile); 2322 put_unused_fd(pidfd); 2323 } 2324 bad_fork_free_pid: 2325 if (pid != &init_struct_pid) 2326 free_pid(pid); 2327 bad_fork_cleanup_thread: 2328 exit_thread(p); 2329 bad_fork_cleanup_io: 2330 if (p->io_context) 2331 exit_io_context(p); 2332 bad_fork_cleanup_namespaces: 2333 exit_task_namespaces(p); 2334 bad_fork_cleanup_mm: 2335 if (p->mm) { 2336 mm_clear_owner(p->mm, p); 2337 mmput(p->mm); 2338 } 2339 bad_fork_cleanup_signal: 2340 if (!(clone_flags & CLONE_THREAD)) 2341 free_signal_struct(p->signal); 2342 bad_fork_cleanup_sighand: 2343 __cleanup_sighand(p->sighand); 2344 bad_fork_cleanup_fs: 2345 exit_fs(p); /* blocking */ 2346 bad_fork_cleanup_files: 2347 exit_files(p); /* blocking */ 2348 bad_fork_cleanup_semundo: 2349 exit_sem(p); 2350 bad_fork_cleanup_security: 2351 security_task_free(p); 2352 bad_fork_cleanup_audit: 2353 audit_free(p); 2354 bad_fork_cleanup_perf: 2355 perf_event_free_task(p); 2356 bad_fork_cleanup_policy: 2357 lockdep_free_task(p); 2358 #ifdef CONFIG_NUMA 2359 mpol_put(p->mempolicy); 2360 bad_fork_cleanup_threadgroup_lock: 2361 #endif 2362 delayacct_tsk_free(p); 2363 bad_fork_cleanup_count: 2364 atomic_dec(&p->cred->user->processes); 2365 exit_creds(p); 2366 bad_fork_free: 2367 p->state = TASK_DEAD; 2368 put_task_stack(p); 2369 delayed_free_task(p); 2370 fork_out: 2371 spin_lock_irq(¤t->sighand->siglock); 2372 hlist_del_init(&delayed.node); 2373 spin_unlock_irq(¤t->sighand->siglock); 2374 return ERR_PTR(retval); 2375 } 2376 2377 static inline void init_idle_pids(struct task_struct *idle) 2378 { 2379 enum pid_type type; 2380 2381 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2382 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2383 init_task_pid(idle, type, &init_struct_pid); 2384 } 2385 } 2386 2387 struct task_struct *fork_idle(int cpu) 2388 { 2389 struct task_struct *task; 2390 struct kernel_clone_args args = { 2391 .flags = CLONE_VM, 2392 }; 2393 2394 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2395 if (!IS_ERR(task)) { 2396 init_idle_pids(task); 2397 init_idle(task, cpu); 2398 } 2399 2400 return task; 2401 } 2402 2403 struct mm_struct *copy_init_mm(void) 2404 { 2405 return dup_mm(NULL, &init_mm); 2406 } 2407 2408 /* 2409 * Ok, this is the main fork-routine. 2410 * 2411 * It copies the process, and if successful kick-starts 2412 * it and waits for it to finish using the VM if required. 2413 * 2414 * args->exit_signal is expected to be checked for sanity by the caller. 2415 */ 2416 pid_t kernel_clone(struct kernel_clone_args *args) 2417 { 2418 u64 clone_flags = args->flags; 2419 struct completion vfork; 2420 struct pid *pid; 2421 struct task_struct *p; 2422 int trace = 0; 2423 pid_t nr; 2424 2425 /* 2426 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2427 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2428 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2429 * field in struct clone_args and it still doesn't make sense to have 2430 * them both point at the same memory location. Performing this check 2431 * here has the advantage that we don't need to have a separate helper 2432 * to check for legacy clone(). 2433 */ 2434 if ((args->flags & CLONE_PIDFD) && 2435 (args->flags & CLONE_PARENT_SETTID) && 2436 (args->pidfd == args->parent_tid)) 2437 return -EINVAL; 2438 2439 /* 2440 * Determine whether and which event to report to ptracer. When 2441 * called from kernel_thread or CLONE_UNTRACED is explicitly 2442 * requested, no event is reported; otherwise, report if the event 2443 * for the type of forking is enabled. 2444 */ 2445 if (!(clone_flags & CLONE_UNTRACED)) { 2446 if (clone_flags & CLONE_VFORK) 2447 trace = PTRACE_EVENT_VFORK; 2448 else if (args->exit_signal != SIGCHLD) 2449 trace = PTRACE_EVENT_CLONE; 2450 else 2451 trace = PTRACE_EVENT_FORK; 2452 2453 if (likely(!ptrace_event_enabled(current, trace))) 2454 trace = 0; 2455 } 2456 2457 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2458 add_latent_entropy(); 2459 2460 if (IS_ERR(p)) 2461 return PTR_ERR(p); 2462 2463 /* 2464 * Do this prior waking up the new thread - the thread pointer 2465 * might get invalid after that point, if the thread exits quickly. 2466 */ 2467 trace_sched_process_fork(current, p); 2468 2469 pid = get_task_pid(p, PIDTYPE_PID); 2470 nr = pid_vnr(pid); 2471 2472 if (clone_flags & CLONE_PARENT_SETTID) 2473 put_user(nr, args->parent_tid); 2474 2475 if (clone_flags & CLONE_VFORK) { 2476 p->vfork_done = &vfork; 2477 init_completion(&vfork); 2478 get_task_struct(p); 2479 } 2480 2481 wake_up_new_task(p); 2482 2483 /* forking complete and child started to run, tell ptracer */ 2484 if (unlikely(trace)) 2485 ptrace_event_pid(trace, pid); 2486 2487 if (clone_flags & CLONE_VFORK) { 2488 if (!wait_for_vfork_done(p, &vfork)) 2489 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2490 } 2491 2492 put_pid(pid); 2493 return nr; 2494 } 2495 2496 /* 2497 * Create a kernel thread. 2498 */ 2499 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2500 { 2501 struct kernel_clone_args args = { 2502 .flags = ((lower_32_bits(flags) | CLONE_VM | 2503 CLONE_UNTRACED) & ~CSIGNAL), 2504 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2505 .stack = (unsigned long)fn, 2506 .stack_size = (unsigned long)arg, 2507 }; 2508 2509 return kernel_clone(&args); 2510 } 2511 2512 #ifdef __ARCH_WANT_SYS_FORK 2513 SYSCALL_DEFINE0(fork) 2514 { 2515 #ifdef CONFIG_MMU 2516 struct kernel_clone_args args = { 2517 .exit_signal = SIGCHLD, 2518 }; 2519 2520 return kernel_clone(&args); 2521 #else 2522 /* can not support in nommu mode */ 2523 return -EINVAL; 2524 #endif 2525 } 2526 #endif 2527 2528 #ifdef __ARCH_WANT_SYS_VFORK 2529 SYSCALL_DEFINE0(vfork) 2530 { 2531 struct kernel_clone_args args = { 2532 .flags = CLONE_VFORK | CLONE_VM, 2533 .exit_signal = SIGCHLD, 2534 }; 2535 2536 return kernel_clone(&args); 2537 } 2538 #endif 2539 2540 #ifdef __ARCH_WANT_SYS_CLONE 2541 #ifdef CONFIG_CLONE_BACKWARDS 2542 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2543 int __user *, parent_tidptr, 2544 unsigned long, tls, 2545 int __user *, child_tidptr) 2546 #elif defined(CONFIG_CLONE_BACKWARDS2) 2547 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2548 int __user *, parent_tidptr, 2549 int __user *, child_tidptr, 2550 unsigned long, tls) 2551 #elif defined(CONFIG_CLONE_BACKWARDS3) 2552 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2553 int, stack_size, 2554 int __user *, parent_tidptr, 2555 int __user *, child_tidptr, 2556 unsigned long, tls) 2557 #else 2558 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2559 int __user *, parent_tidptr, 2560 int __user *, child_tidptr, 2561 unsigned long, tls) 2562 #endif 2563 { 2564 struct kernel_clone_args args = { 2565 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2566 .pidfd = parent_tidptr, 2567 .child_tid = child_tidptr, 2568 .parent_tid = parent_tidptr, 2569 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2570 .stack = newsp, 2571 .tls = tls, 2572 }; 2573 2574 return kernel_clone(&args); 2575 } 2576 #endif 2577 2578 #ifdef __ARCH_WANT_SYS_CLONE3 2579 2580 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2581 struct clone_args __user *uargs, 2582 size_t usize) 2583 { 2584 int err; 2585 struct clone_args args; 2586 pid_t *kset_tid = kargs->set_tid; 2587 2588 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2589 CLONE_ARGS_SIZE_VER0); 2590 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2591 CLONE_ARGS_SIZE_VER1); 2592 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2593 CLONE_ARGS_SIZE_VER2); 2594 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2595 2596 if (unlikely(usize > PAGE_SIZE)) 2597 return -E2BIG; 2598 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2599 return -EINVAL; 2600 2601 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2602 if (err) 2603 return err; 2604 2605 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2606 return -EINVAL; 2607 2608 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2609 return -EINVAL; 2610 2611 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2612 return -EINVAL; 2613 2614 /* 2615 * Verify that higher 32bits of exit_signal are unset and that 2616 * it is a valid signal 2617 */ 2618 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2619 !valid_signal(args.exit_signal))) 2620 return -EINVAL; 2621 2622 if ((args.flags & CLONE_INTO_CGROUP) && 2623 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2624 return -EINVAL; 2625 2626 *kargs = (struct kernel_clone_args){ 2627 .flags = args.flags, 2628 .pidfd = u64_to_user_ptr(args.pidfd), 2629 .child_tid = u64_to_user_ptr(args.child_tid), 2630 .parent_tid = u64_to_user_ptr(args.parent_tid), 2631 .exit_signal = args.exit_signal, 2632 .stack = args.stack, 2633 .stack_size = args.stack_size, 2634 .tls = args.tls, 2635 .set_tid_size = args.set_tid_size, 2636 .cgroup = args.cgroup, 2637 }; 2638 2639 if (args.set_tid && 2640 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2641 (kargs->set_tid_size * sizeof(pid_t)))) 2642 return -EFAULT; 2643 2644 kargs->set_tid = kset_tid; 2645 2646 return 0; 2647 } 2648 2649 /** 2650 * clone3_stack_valid - check and prepare stack 2651 * @kargs: kernel clone args 2652 * 2653 * Verify that the stack arguments userspace gave us are sane. 2654 * In addition, set the stack direction for userspace since it's easy for us to 2655 * determine. 2656 */ 2657 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2658 { 2659 if (kargs->stack == 0) { 2660 if (kargs->stack_size > 0) 2661 return false; 2662 } else { 2663 if (kargs->stack_size == 0) 2664 return false; 2665 2666 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2667 return false; 2668 2669 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2670 kargs->stack += kargs->stack_size; 2671 #endif 2672 } 2673 2674 return true; 2675 } 2676 2677 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2678 { 2679 /* Verify that no unknown flags are passed along. */ 2680 if (kargs->flags & 2681 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2682 return false; 2683 2684 /* 2685 * - make the CLONE_DETACHED bit reuseable for clone3 2686 * - make the CSIGNAL bits reuseable for clone3 2687 */ 2688 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2689 return false; 2690 2691 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2692 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2693 return false; 2694 2695 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2696 kargs->exit_signal) 2697 return false; 2698 2699 if (!clone3_stack_valid(kargs)) 2700 return false; 2701 2702 return true; 2703 } 2704 2705 /** 2706 * clone3 - create a new process with specific properties 2707 * @uargs: argument structure 2708 * @size: size of @uargs 2709 * 2710 * clone3() is the extensible successor to clone()/clone2(). 2711 * It takes a struct as argument that is versioned by its size. 2712 * 2713 * Return: On success, a positive PID for the child process. 2714 * On error, a negative errno number. 2715 */ 2716 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2717 { 2718 int err; 2719 2720 struct kernel_clone_args kargs; 2721 pid_t set_tid[MAX_PID_NS_LEVEL]; 2722 2723 kargs.set_tid = set_tid; 2724 2725 err = copy_clone_args_from_user(&kargs, uargs, size); 2726 if (err) 2727 return err; 2728 2729 if (!clone3_args_valid(&kargs)) 2730 return -EINVAL; 2731 2732 return kernel_clone(&kargs); 2733 } 2734 #endif 2735 2736 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2737 { 2738 struct task_struct *leader, *parent, *child; 2739 int res; 2740 2741 read_lock(&tasklist_lock); 2742 leader = top = top->group_leader; 2743 down: 2744 for_each_thread(leader, parent) { 2745 list_for_each_entry(child, &parent->children, sibling) { 2746 res = visitor(child, data); 2747 if (res) { 2748 if (res < 0) 2749 goto out; 2750 leader = child; 2751 goto down; 2752 } 2753 up: 2754 ; 2755 } 2756 } 2757 2758 if (leader != top) { 2759 child = leader; 2760 parent = child->real_parent; 2761 leader = parent->group_leader; 2762 goto up; 2763 } 2764 out: 2765 read_unlock(&tasklist_lock); 2766 } 2767 2768 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2769 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2770 #endif 2771 2772 static void sighand_ctor(void *data) 2773 { 2774 struct sighand_struct *sighand = data; 2775 2776 spin_lock_init(&sighand->siglock); 2777 init_waitqueue_head(&sighand->signalfd_wqh); 2778 } 2779 2780 void __init proc_caches_init(void) 2781 { 2782 unsigned int mm_size; 2783 2784 sighand_cachep = kmem_cache_create("sighand_cache", 2785 sizeof(struct sighand_struct), 0, 2786 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2787 SLAB_ACCOUNT, sighand_ctor); 2788 signal_cachep = kmem_cache_create("signal_cache", 2789 sizeof(struct signal_struct), 0, 2790 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2791 NULL); 2792 files_cachep = kmem_cache_create("files_cache", 2793 sizeof(struct files_struct), 0, 2794 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2795 NULL); 2796 fs_cachep = kmem_cache_create("fs_cache", 2797 sizeof(struct fs_struct), 0, 2798 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2799 NULL); 2800 2801 /* 2802 * The mm_cpumask is located at the end of mm_struct, and is 2803 * dynamically sized based on the maximum CPU number this system 2804 * can have, taking hotplug into account (nr_cpu_ids). 2805 */ 2806 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2807 2808 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2809 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2810 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2811 offsetof(struct mm_struct, saved_auxv), 2812 sizeof_field(struct mm_struct, saved_auxv), 2813 NULL); 2814 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2815 mmap_init(); 2816 nsproxy_cache_init(); 2817 } 2818 2819 /* 2820 * Check constraints on flags passed to the unshare system call. 2821 */ 2822 static int check_unshare_flags(unsigned long unshare_flags) 2823 { 2824 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2825 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2826 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2827 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2828 CLONE_NEWTIME)) 2829 return -EINVAL; 2830 /* 2831 * Not implemented, but pretend it works if there is nothing 2832 * to unshare. Note that unsharing the address space or the 2833 * signal handlers also need to unshare the signal queues (aka 2834 * CLONE_THREAD). 2835 */ 2836 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2837 if (!thread_group_empty(current)) 2838 return -EINVAL; 2839 } 2840 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2841 if (refcount_read(¤t->sighand->count) > 1) 2842 return -EINVAL; 2843 } 2844 if (unshare_flags & CLONE_VM) { 2845 if (!current_is_single_threaded()) 2846 return -EINVAL; 2847 } 2848 2849 return 0; 2850 } 2851 2852 /* 2853 * Unshare the filesystem structure if it is being shared 2854 */ 2855 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2856 { 2857 struct fs_struct *fs = current->fs; 2858 2859 if (!(unshare_flags & CLONE_FS) || !fs) 2860 return 0; 2861 2862 /* don't need lock here; in the worst case we'll do useless copy */ 2863 if (fs->users == 1) 2864 return 0; 2865 2866 *new_fsp = copy_fs_struct(fs); 2867 if (!*new_fsp) 2868 return -ENOMEM; 2869 2870 return 0; 2871 } 2872 2873 /* 2874 * Unshare file descriptor table if it is being shared 2875 */ 2876 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2877 struct files_struct **new_fdp) 2878 { 2879 struct files_struct *fd = current->files; 2880 int error = 0; 2881 2882 if ((unshare_flags & CLONE_FILES) && 2883 (fd && atomic_read(&fd->count) > 1)) { 2884 *new_fdp = dup_fd(fd, max_fds, &error); 2885 if (!*new_fdp) 2886 return error; 2887 } 2888 2889 return 0; 2890 } 2891 2892 /* 2893 * unshare allows a process to 'unshare' part of the process 2894 * context which was originally shared using clone. copy_* 2895 * functions used by kernel_clone() cannot be used here directly 2896 * because they modify an inactive task_struct that is being 2897 * constructed. Here we are modifying the current, active, 2898 * task_struct. 2899 */ 2900 int ksys_unshare(unsigned long unshare_flags) 2901 { 2902 struct fs_struct *fs, *new_fs = NULL; 2903 struct files_struct *fd, *new_fd = NULL; 2904 struct cred *new_cred = NULL; 2905 struct nsproxy *new_nsproxy = NULL; 2906 int do_sysvsem = 0; 2907 int err; 2908 2909 /* 2910 * If unsharing a user namespace must also unshare the thread group 2911 * and unshare the filesystem root and working directories. 2912 */ 2913 if (unshare_flags & CLONE_NEWUSER) 2914 unshare_flags |= CLONE_THREAD | CLONE_FS; 2915 /* 2916 * If unsharing vm, must also unshare signal handlers. 2917 */ 2918 if (unshare_flags & CLONE_VM) 2919 unshare_flags |= CLONE_SIGHAND; 2920 /* 2921 * If unsharing a signal handlers, must also unshare the signal queues. 2922 */ 2923 if (unshare_flags & CLONE_SIGHAND) 2924 unshare_flags |= CLONE_THREAD; 2925 /* 2926 * If unsharing namespace, must also unshare filesystem information. 2927 */ 2928 if (unshare_flags & CLONE_NEWNS) 2929 unshare_flags |= CLONE_FS; 2930 2931 err = check_unshare_flags(unshare_flags); 2932 if (err) 2933 goto bad_unshare_out; 2934 /* 2935 * CLONE_NEWIPC must also detach from the undolist: after switching 2936 * to a new ipc namespace, the semaphore arrays from the old 2937 * namespace are unreachable. 2938 */ 2939 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2940 do_sysvsem = 1; 2941 err = unshare_fs(unshare_flags, &new_fs); 2942 if (err) 2943 goto bad_unshare_out; 2944 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2945 if (err) 2946 goto bad_unshare_cleanup_fs; 2947 err = unshare_userns(unshare_flags, &new_cred); 2948 if (err) 2949 goto bad_unshare_cleanup_fd; 2950 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2951 new_cred, new_fs); 2952 if (err) 2953 goto bad_unshare_cleanup_cred; 2954 2955 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2956 if (do_sysvsem) { 2957 /* 2958 * CLONE_SYSVSEM is equivalent to sys_exit(). 2959 */ 2960 exit_sem(current); 2961 } 2962 if (unshare_flags & CLONE_NEWIPC) { 2963 /* Orphan segments in old ns (see sem above). */ 2964 exit_shm(current); 2965 shm_init_task(current); 2966 } 2967 2968 if (new_nsproxy) 2969 switch_task_namespaces(current, new_nsproxy); 2970 2971 task_lock(current); 2972 2973 if (new_fs) { 2974 fs = current->fs; 2975 spin_lock(&fs->lock); 2976 current->fs = new_fs; 2977 if (--fs->users) 2978 new_fs = NULL; 2979 else 2980 new_fs = fs; 2981 spin_unlock(&fs->lock); 2982 } 2983 2984 if (new_fd) { 2985 fd = current->files; 2986 current->files = new_fd; 2987 new_fd = fd; 2988 } 2989 2990 task_unlock(current); 2991 2992 if (new_cred) { 2993 /* Install the new user namespace */ 2994 commit_creds(new_cred); 2995 new_cred = NULL; 2996 } 2997 } 2998 2999 perf_event_namespaces(current); 3000 3001 bad_unshare_cleanup_cred: 3002 if (new_cred) 3003 put_cred(new_cred); 3004 bad_unshare_cleanup_fd: 3005 if (new_fd) 3006 put_files_struct(new_fd); 3007 3008 bad_unshare_cleanup_fs: 3009 if (new_fs) 3010 free_fs_struct(new_fs); 3011 3012 bad_unshare_out: 3013 return err; 3014 } 3015 3016 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3017 { 3018 return ksys_unshare(unshare_flags); 3019 } 3020 3021 /* 3022 * Helper to unshare the files of the current task. 3023 * We don't want to expose copy_files internals to 3024 * the exec layer of the kernel. 3025 */ 3026 3027 int unshare_files(struct files_struct **displaced) 3028 { 3029 struct task_struct *task = current; 3030 struct files_struct *copy = NULL; 3031 int error; 3032 3033 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3034 if (error || !copy) { 3035 *displaced = NULL; 3036 return error; 3037 } 3038 *displaced = task->files; 3039 task_lock(task); 3040 task->files = copy; 3041 task_unlock(task); 3042 return 0; 3043 } 3044 3045 int sysctl_max_threads(struct ctl_table *table, int write, 3046 void *buffer, size_t *lenp, loff_t *ppos) 3047 { 3048 struct ctl_table t; 3049 int ret; 3050 int threads = max_threads; 3051 int min = 1; 3052 int max = MAX_THREADS; 3053 3054 t = *table; 3055 t.data = &threads; 3056 t.extra1 = &min; 3057 t.extra2 = &max; 3058 3059 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3060 if (ret || !write) 3061 return ret; 3062 3063 max_threads = threads; 3064 3065 return 0; 3066 } 3067