xref: /linux/kernel/fork.c (revision 7d81a5e03ddbb44d05a32cad4a46a23577216497)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/profile.h>
50 #include <linux/rmap.h>
51 #include <linux/acct.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/freezer.h>
55 #include <linux/delayacct.h>
56 #include <linux/taskstats_kern.h>
57 #include <linux/random.h>
58 #include <linux/tty.h>
59 #include <linux/proc_fs.h>
60 #include <linux/blkdev.h>
61 
62 #include <asm/pgtable.h>
63 #include <asm/pgalloc.h>
64 #include <asm/uaccess.h>
65 #include <asm/mmu_context.h>
66 #include <asm/cacheflush.h>
67 #include <asm/tlbflush.h>
68 
69 /*
70  * Protected counters by write_lock_irq(&tasklist_lock)
71  */
72 unsigned long total_forks;	/* Handle normal Linux uptimes. */
73 int nr_threads; 		/* The idle threads do not count.. */
74 
75 int max_threads;		/* tunable limit on nr_threads */
76 
77 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
78 
79 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
80 
81 int nr_processes(void)
82 {
83 	int cpu;
84 	int total = 0;
85 
86 	for_each_online_cpu(cpu)
87 		total += per_cpu(process_counts, cpu);
88 
89 	return total;
90 }
91 
92 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
93 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
94 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
95 static struct kmem_cache *task_struct_cachep;
96 #endif
97 
98 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
99 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
100 {
101 #ifdef CONFIG_DEBUG_STACK_USAGE
102 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
103 #else
104 	gfp_t mask = GFP_KERNEL;
105 #endif
106 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
107 }
108 
109 static inline void free_thread_info(struct thread_info *ti)
110 {
111 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
112 }
113 #endif
114 
115 /* SLAB cache for signal_struct structures (tsk->signal) */
116 static struct kmem_cache *signal_cachep;
117 
118 /* SLAB cache for sighand_struct structures (tsk->sighand) */
119 struct kmem_cache *sighand_cachep;
120 
121 /* SLAB cache for files_struct structures (tsk->files) */
122 struct kmem_cache *files_cachep;
123 
124 /* SLAB cache for fs_struct structures (tsk->fs) */
125 struct kmem_cache *fs_cachep;
126 
127 /* SLAB cache for vm_area_struct structures */
128 struct kmem_cache *vm_area_cachep;
129 
130 /* SLAB cache for mm_struct structures (tsk->mm) */
131 static struct kmem_cache *mm_cachep;
132 
133 void free_task(struct task_struct *tsk)
134 {
135 	prop_local_destroy_single(&tsk->dirties);
136 	free_thread_info(tsk->stack);
137 	rt_mutex_debug_task_free(tsk);
138 	free_task_struct(tsk);
139 }
140 EXPORT_SYMBOL(free_task);
141 
142 void __put_task_struct(struct task_struct *tsk)
143 {
144 	WARN_ON(!tsk->exit_state);
145 	WARN_ON(atomic_read(&tsk->usage));
146 	WARN_ON(tsk == current);
147 
148 	security_task_free(tsk);
149 	free_uid(tsk->user);
150 	put_group_info(tsk->group_info);
151 	delayacct_tsk_free(tsk);
152 
153 	if (!profile_handoff_task(tsk))
154 		free_task(tsk);
155 }
156 
157 /*
158  * macro override instead of weak attribute alias, to workaround
159  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
160  */
161 #ifndef arch_task_cache_init
162 #define arch_task_cache_init()
163 #endif
164 
165 void __init fork_init(unsigned long mempages)
166 {
167 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
168 #ifndef ARCH_MIN_TASKALIGN
169 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
170 #endif
171 	/* create a slab on which task_structs can be allocated */
172 	task_struct_cachep =
173 		kmem_cache_create("task_struct", sizeof(struct task_struct),
174 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
175 #endif
176 
177 	/* do the arch specific task caches init */
178 	arch_task_cache_init();
179 
180 	/*
181 	 * The default maximum number of threads is set to a safe
182 	 * value: the thread structures can take up at most half
183 	 * of memory.
184 	 */
185 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
186 
187 	/*
188 	 * we need to allow at least 20 threads to boot a system
189 	 */
190 	if(max_threads < 20)
191 		max_threads = 20;
192 
193 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
194 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
195 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
196 		init_task.signal->rlim[RLIMIT_NPROC];
197 }
198 
199 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
200 					       struct task_struct *src)
201 {
202 	*dst = *src;
203 	return 0;
204 }
205 
206 static struct task_struct *dup_task_struct(struct task_struct *orig)
207 {
208 	struct task_struct *tsk;
209 	struct thread_info *ti;
210 	int err;
211 
212 	prepare_to_copy(orig);
213 
214 	tsk = alloc_task_struct();
215 	if (!tsk)
216 		return NULL;
217 
218 	ti = alloc_thread_info(tsk);
219 	if (!ti) {
220 		free_task_struct(tsk);
221 		return NULL;
222 	}
223 
224  	err = arch_dup_task_struct(tsk, orig);
225 	if (err)
226 		goto out;
227 
228 	tsk->stack = ti;
229 
230 	err = prop_local_init_single(&tsk->dirties);
231 	if (err)
232 		goto out;
233 
234 	setup_thread_stack(tsk, orig);
235 
236 #ifdef CONFIG_CC_STACKPROTECTOR
237 	tsk->stack_canary = get_random_int();
238 #endif
239 
240 	/* One for us, one for whoever does the "release_task()" (usually parent) */
241 	atomic_set(&tsk->usage,2);
242 	atomic_set(&tsk->fs_excl, 0);
243 #ifdef CONFIG_BLK_DEV_IO_TRACE
244 	tsk->btrace_seq = 0;
245 #endif
246 	tsk->splice_pipe = NULL;
247 	return tsk;
248 
249 out:
250 	free_thread_info(ti);
251 	free_task_struct(tsk);
252 	return NULL;
253 }
254 
255 #ifdef CONFIG_MMU
256 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
257 {
258 	struct vm_area_struct *mpnt, *tmp, **pprev;
259 	struct rb_node **rb_link, *rb_parent;
260 	int retval;
261 	unsigned long charge;
262 	struct mempolicy *pol;
263 
264 	down_write(&oldmm->mmap_sem);
265 	flush_cache_dup_mm(oldmm);
266 	/*
267 	 * Not linked in yet - no deadlock potential:
268 	 */
269 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
270 
271 	mm->locked_vm = 0;
272 	mm->mmap = NULL;
273 	mm->mmap_cache = NULL;
274 	mm->free_area_cache = oldmm->mmap_base;
275 	mm->cached_hole_size = ~0UL;
276 	mm->map_count = 0;
277 	cpus_clear(mm->cpu_vm_mask);
278 	mm->mm_rb = RB_ROOT;
279 	rb_link = &mm->mm_rb.rb_node;
280 	rb_parent = NULL;
281 	pprev = &mm->mmap;
282 
283 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
284 		struct file *file;
285 
286 		if (mpnt->vm_flags & VM_DONTCOPY) {
287 			long pages = vma_pages(mpnt);
288 			mm->total_vm -= pages;
289 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
290 								-pages);
291 			continue;
292 		}
293 		charge = 0;
294 		if (mpnt->vm_flags & VM_ACCOUNT) {
295 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
296 			if (security_vm_enough_memory(len))
297 				goto fail_nomem;
298 			charge = len;
299 		}
300 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
301 		if (!tmp)
302 			goto fail_nomem;
303 		*tmp = *mpnt;
304 		pol = mpol_dup(vma_policy(mpnt));
305 		retval = PTR_ERR(pol);
306 		if (IS_ERR(pol))
307 			goto fail_nomem_policy;
308 		vma_set_policy(tmp, pol);
309 		tmp->vm_flags &= ~VM_LOCKED;
310 		tmp->vm_mm = mm;
311 		tmp->vm_next = NULL;
312 		anon_vma_link(tmp);
313 		file = tmp->vm_file;
314 		if (file) {
315 			struct inode *inode = file->f_path.dentry->d_inode;
316 			get_file(file);
317 			if (tmp->vm_flags & VM_DENYWRITE)
318 				atomic_dec(&inode->i_writecount);
319 
320 			/* insert tmp into the share list, just after mpnt */
321 			spin_lock(&file->f_mapping->i_mmap_lock);
322 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
323 			flush_dcache_mmap_lock(file->f_mapping);
324 			vma_prio_tree_add(tmp, mpnt);
325 			flush_dcache_mmap_unlock(file->f_mapping);
326 			spin_unlock(&file->f_mapping->i_mmap_lock);
327 		}
328 
329 		/*
330 		 * Clear hugetlb-related page reserves for children. This only
331 		 * affects MAP_PRIVATE mappings. Faults generated by the child
332 		 * are not guaranteed to succeed, even if read-only
333 		 */
334 		if (is_vm_hugetlb_page(tmp))
335 			reset_vma_resv_huge_pages(tmp);
336 
337 		/*
338 		 * Link in the new vma and copy the page table entries.
339 		 */
340 		*pprev = tmp;
341 		pprev = &tmp->vm_next;
342 
343 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
344 		rb_link = &tmp->vm_rb.rb_right;
345 		rb_parent = &tmp->vm_rb;
346 
347 		mm->map_count++;
348 		retval = copy_page_range(mm, oldmm, mpnt);
349 
350 		if (tmp->vm_ops && tmp->vm_ops->open)
351 			tmp->vm_ops->open(tmp);
352 
353 		if (retval)
354 			goto out;
355 	}
356 	/* a new mm has just been created */
357 	arch_dup_mmap(oldmm, mm);
358 	retval = 0;
359 out:
360 	up_write(&mm->mmap_sem);
361 	flush_tlb_mm(oldmm);
362 	up_write(&oldmm->mmap_sem);
363 	return retval;
364 fail_nomem_policy:
365 	kmem_cache_free(vm_area_cachep, tmp);
366 fail_nomem:
367 	retval = -ENOMEM;
368 	vm_unacct_memory(charge);
369 	goto out;
370 }
371 
372 static inline int mm_alloc_pgd(struct mm_struct * mm)
373 {
374 	mm->pgd = pgd_alloc(mm);
375 	if (unlikely(!mm->pgd))
376 		return -ENOMEM;
377 	return 0;
378 }
379 
380 static inline void mm_free_pgd(struct mm_struct * mm)
381 {
382 	pgd_free(mm, mm->pgd);
383 }
384 #else
385 #define dup_mmap(mm, oldmm)	(0)
386 #define mm_alloc_pgd(mm)	(0)
387 #define mm_free_pgd(mm)
388 #endif /* CONFIG_MMU */
389 
390 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
391 
392 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
393 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
394 
395 #include <linux/init_task.h>
396 
397 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
398 {
399 	atomic_set(&mm->mm_users, 1);
400 	atomic_set(&mm->mm_count, 1);
401 	init_rwsem(&mm->mmap_sem);
402 	INIT_LIST_HEAD(&mm->mmlist);
403 	mm->flags = (current->mm) ? current->mm->flags
404 				  : MMF_DUMP_FILTER_DEFAULT;
405 	mm->core_state = NULL;
406 	mm->nr_ptes = 0;
407 	set_mm_counter(mm, file_rss, 0);
408 	set_mm_counter(mm, anon_rss, 0);
409 	spin_lock_init(&mm->page_table_lock);
410 	rwlock_init(&mm->ioctx_list_lock);
411 	mm->ioctx_list = NULL;
412 	mm->free_area_cache = TASK_UNMAPPED_BASE;
413 	mm->cached_hole_size = ~0UL;
414 	mm_init_owner(mm, p);
415 
416 	if (likely(!mm_alloc_pgd(mm))) {
417 		mm->def_flags = 0;
418 		mmu_notifier_mm_init(mm);
419 		return mm;
420 	}
421 
422 	free_mm(mm);
423 	return NULL;
424 }
425 
426 /*
427  * Allocate and initialize an mm_struct.
428  */
429 struct mm_struct * mm_alloc(void)
430 {
431 	struct mm_struct * mm;
432 
433 	mm = allocate_mm();
434 	if (mm) {
435 		memset(mm, 0, sizeof(*mm));
436 		mm = mm_init(mm, current);
437 	}
438 	return mm;
439 }
440 
441 /*
442  * Called when the last reference to the mm
443  * is dropped: either by a lazy thread or by
444  * mmput. Free the page directory and the mm.
445  */
446 void __mmdrop(struct mm_struct *mm)
447 {
448 	BUG_ON(mm == &init_mm);
449 	mm_free_pgd(mm);
450 	destroy_context(mm);
451 	mmu_notifier_mm_destroy(mm);
452 	free_mm(mm);
453 }
454 EXPORT_SYMBOL_GPL(__mmdrop);
455 
456 /*
457  * Decrement the use count and release all resources for an mm.
458  */
459 void mmput(struct mm_struct *mm)
460 {
461 	might_sleep();
462 
463 	if (atomic_dec_and_test(&mm->mm_users)) {
464 		exit_aio(mm);
465 		exit_mmap(mm);
466 		set_mm_exe_file(mm, NULL);
467 		if (!list_empty(&mm->mmlist)) {
468 			spin_lock(&mmlist_lock);
469 			list_del(&mm->mmlist);
470 			spin_unlock(&mmlist_lock);
471 		}
472 		put_swap_token(mm);
473 		mmdrop(mm);
474 	}
475 }
476 EXPORT_SYMBOL_GPL(mmput);
477 
478 /**
479  * get_task_mm - acquire a reference to the task's mm
480  *
481  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
482  * this kernel workthread has transiently adopted a user mm with use_mm,
483  * to do its AIO) is not set and if so returns a reference to it, after
484  * bumping up the use count.  User must release the mm via mmput()
485  * after use.  Typically used by /proc and ptrace.
486  */
487 struct mm_struct *get_task_mm(struct task_struct *task)
488 {
489 	struct mm_struct *mm;
490 
491 	task_lock(task);
492 	mm = task->mm;
493 	if (mm) {
494 		if (task->flags & PF_KTHREAD)
495 			mm = NULL;
496 		else
497 			atomic_inc(&mm->mm_users);
498 	}
499 	task_unlock(task);
500 	return mm;
501 }
502 EXPORT_SYMBOL_GPL(get_task_mm);
503 
504 /* Please note the differences between mmput and mm_release.
505  * mmput is called whenever we stop holding onto a mm_struct,
506  * error success whatever.
507  *
508  * mm_release is called after a mm_struct has been removed
509  * from the current process.
510  *
511  * This difference is important for error handling, when we
512  * only half set up a mm_struct for a new process and need to restore
513  * the old one.  Because we mmput the new mm_struct before
514  * restoring the old one. . .
515  * Eric Biederman 10 January 1998
516  */
517 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
518 {
519 	struct completion *vfork_done = tsk->vfork_done;
520 
521 	/* Get rid of any cached register state */
522 	deactivate_mm(tsk, mm);
523 
524 	/* notify parent sleeping on vfork() */
525 	if (vfork_done) {
526 		tsk->vfork_done = NULL;
527 		complete(vfork_done);
528 	}
529 
530 	/*
531 	 * If we're exiting normally, clear a user-space tid field if
532 	 * requested.  We leave this alone when dying by signal, to leave
533 	 * the value intact in a core dump, and to save the unnecessary
534 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
535 	 */
536 	if (tsk->clear_child_tid
537 	    && !(tsk->flags & PF_SIGNALED)
538 	    && atomic_read(&mm->mm_users) > 1) {
539 		u32 __user * tidptr = tsk->clear_child_tid;
540 		tsk->clear_child_tid = NULL;
541 
542 		/*
543 		 * We don't check the error code - if userspace has
544 		 * not set up a proper pointer then tough luck.
545 		 */
546 		put_user(0, tidptr);
547 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
548 	}
549 }
550 
551 /*
552  * Allocate a new mm structure and copy contents from the
553  * mm structure of the passed in task structure.
554  */
555 struct mm_struct *dup_mm(struct task_struct *tsk)
556 {
557 	struct mm_struct *mm, *oldmm = current->mm;
558 	int err;
559 
560 	if (!oldmm)
561 		return NULL;
562 
563 	mm = allocate_mm();
564 	if (!mm)
565 		goto fail_nomem;
566 
567 	memcpy(mm, oldmm, sizeof(*mm));
568 
569 	/* Initializing for Swap token stuff */
570 	mm->token_priority = 0;
571 	mm->last_interval = 0;
572 
573 	if (!mm_init(mm, tsk))
574 		goto fail_nomem;
575 
576 	if (init_new_context(tsk, mm))
577 		goto fail_nocontext;
578 
579 	dup_mm_exe_file(oldmm, mm);
580 
581 	err = dup_mmap(mm, oldmm);
582 	if (err)
583 		goto free_pt;
584 
585 	mm->hiwater_rss = get_mm_rss(mm);
586 	mm->hiwater_vm = mm->total_vm;
587 
588 	return mm;
589 
590 free_pt:
591 	mmput(mm);
592 
593 fail_nomem:
594 	return NULL;
595 
596 fail_nocontext:
597 	/*
598 	 * If init_new_context() failed, we cannot use mmput() to free the mm
599 	 * because it calls destroy_context()
600 	 */
601 	mm_free_pgd(mm);
602 	free_mm(mm);
603 	return NULL;
604 }
605 
606 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
607 {
608 	struct mm_struct * mm, *oldmm;
609 	int retval;
610 
611 	tsk->min_flt = tsk->maj_flt = 0;
612 	tsk->nvcsw = tsk->nivcsw = 0;
613 
614 	tsk->mm = NULL;
615 	tsk->active_mm = NULL;
616 
617 	/*
618 	 * Are we cloning a kernel thread?
619 	 *
620 	 * We need to steal a active VM for that..
621 	 */
622 	oldmm = current->mm;
623 	if (!oldmm)
624 		return 0;
625 
626 	if (clone_flags & CLONE_VM) {
627 		atomic_inc(&oldmm->mm_users);
628 		mm = oldmm;
629 		goto good_mm;
630 	}
631 
632 	retval = -ENOMEM;
633 	mm = dup_mm(tsk);
634 	if (!mm)
635 		goto fail_nomem;
636 
637 good_mm:
638 	/* Initializing for Swap token stuff */
639 	mm->token_priority = 0;
640 	mm->last_interval = 0;
641 
642 	tsk->mm = mm;
643 	tsk->active_mm = mm;
644 	return 0;
645 
646 fail_nomem:
647 	return retval;
648 }
649 
650 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
651 {
652 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
653 	/* We don't need to lock fs - think why ;-) */
654 	if (fs) {
655 		atomic_set(&fs->count, 1);
656 		rwlock_init(&fs->lock);
657 		fs->umask = old->umask;
658 		read_lock(&old->lock);
659 		fs->root = old->root;
660 		path_get(&old->root);
661 		fs->pwd = old->pwd;
662 		path_get(&old->pwd);
663 		read_unlock(&old->lock);
664 	}
665 	return fs;
666 }
667 
668 struct fs_struct *copy_fs_struct(struct fs_struct *old)
669 {
670 	return __copy_fs_struct(old);
671 }
672 
673 EXPORT_SYMBOL_GPL(copy_fs_struct);
674 
675 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
676 {
677 	if (clone_flags & CLONE_FS) {
678 		atomic_inc(&current->fs->count);
679 		return 0;
680 	}
681 	tsk->fs = __copy_fs_struct(current->fs);
682 	if (!tsk->fs)
683 		return -ENOMEM;
684 	return 0;
685 }
686 
687 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
688 {
689 	struct files_struct *oldf, *newf;
690 	int error = 0;
691 
692 	/*
693 	 * A background process may not have any files ...
694 	 */
695 	oldf = current->files;
696 	if (!oldf)
697 		goto out;
698 
699 	if (clone_flags & CLONE_FILES) {
700 		atomic_inc(&oldf->count);
701 		goto out;
702 	}
703 
704 	newf = dup_fd(oldf, &error);
705 	if (!newf)
706 		goto out;
707 
708 	tsk->files = newf;
709 	error = 0;
710 out:
711 	return error;
712 }
713 
714 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
715 {
716 #ifdef CONFIG_BLOCK
717 	struct io_context *ioc = current->io_context;
718 
719 	if (!ioc)
720 		return 0;
721 	/*
722 	 * Share io context with parent, if CLONE_IO is set
723 	 */
724 	if (clone_flags & CLONE_IO) {
725 		tsk->io_context = ioc_task_link(ioc);
726 		if (unlikely(!tsk->io_context))
727 			return -ENOMEM;
728 	} else if (ioprio_valid(ioc->ioprio)) {
729 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
730 		if (unlikely(!tsk->io_context))
731 			return -ENOMEM;
732 
733 		tsk->io_context->ioprio = ioc->ioprio;
734 	}
735 #endif
736 	return 0;
737 }
738 
739 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
740 {
741 	struct sighand_struct *sig;
742 
743 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
744 		atomic_inc(&current->sighand->count);
745 		return 0;
746 	}
747 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
748 	rcu_assign_pointer(tsk->sighand, sig);
749 	if (!sig)
750 		return -ENOMEM;
751 	atomic_set(&sig->count, 1);
752 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
753 	return 0;
754 }
755 
756 void __cleanup_sighand(struct sighand_struct *sighand)
757 {
758 	if (atomic_dec_and_test(&sighand->count))
759 		kmem_cache_free(sighand_cachep, sighand);
760 }
761 
762 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
763 {
764 	struct signal_struct *sig;
765 	int ret;
766 
767 	if (clone_flags & CLONE_THREAD) {
768 		atomic_inc(&current->signal->count);
769 		atomic_inc(&current->signal->live);
770 		return 0;
771 	}
772 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
773 	tsk->signal = sig;
774 	if (!sig)
775 		return -ENOMEM;
776 
777 	ret = copy_thread_group_keys(tsk);
778 	if (ret < 0) {
779 		kmem_cache_free(signal_cachep, sig);
780 		return ret;
781 	}
782 
783 	atomic_set(&sig->count, 1);
784 	atomic_set(&sig->live, 1);
785 	init_waitqueue_head(&sig->wait_chldexit);
786 	sig->flags = 0;
787 	sig->group_exit_code = 0;
788 	sig->group_exit_task = NULL;
789 	sig->group_stop_count = 0;
790 	sig->curr_target = tsk;
791 	init_sigpending(&sig->shared_pending);
792 	INIT_LIST_HEAD(&sig->posix_timers);
793 
794 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
795 	sig->it_real_incr.tv64 = 0;
796 	sig->real_timer.function = it_real_fn;
797 
798 	sig->it_virt_expires = cputime_zero;
799 	sig->it_virt_incr = cputime_zero;
800 	sig->it_prof_expires = cputime_zero;
801 	sig->it_prof_incr = cputime_zero;
802 
803 	sig->leader = 0;	/* session leadership doesn't inherit */
804 	sig->tty_old_pgrp = NULL;
805 	sig->tty = NULL;
806 
807 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
808 	sig->gtime = cputime_zero;
809 	sig->cgtime = cputime_zero;
810 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
811 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
812 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
813 	task_io_accounting_init(&sig->ioac);
814 	sig->sum_sched_runtime = 0;
815 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
816 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
817 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
818 	taskstats_tgid_init(sig);
819 
820 	task_lock(current->group_leader);
821 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
822 	task_unlock(current->group_leader);
823 
824 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
825 		/*
826 		 * New sole thread in the process gets an expiry time
827 		 * of the whole CPU time limit.
828 		 */
829 		tsk->it_prof_expires =
830 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
831 	}
832 	acct_init_pacct(&sig->pacct);
833 
834 	tty_audit_fork(sig);
835 
836 	return 0;
837 }
838 
839 void __cleanup_signal(struct signal_struct *sig)
840 {
841 	exit_thread_group_keys(sig);
842 	tty_kref_put(sig->tty);
843 	kmem_cache_free(signal_cachep, sig);
844 }
845 
846 static void cleanup_signal(struct task_struct *tsk)
847 {
848 	struct signal_struct *sig = tsk->signal;
849 
850 	atomic_dec(&sig->live);
851 
852 	if (atomic_dec_and_test(&sig->count))
853 		__cleanup_signal(sig);
854 }
855 
856 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
857 {
858 	unsigned long new_flags = p->flags;
859 
860 	new_flags &= ~PF_SUPERPRIV;
861 	new_flags |= PF_FORKNOEXEC;
862 	new_flags |= PF_STARTING;
863 	p->flags = new_flags;
864 	clear_freeze_flag(p);
865 }
866 
867 asmlinkage long sys_set_tid_address(int __user *tidptr)
868 {
869 	current->clear_child_tid = tidptr;
870 
871 	return task_pid_vnr(current);
872 }
873 
874 static void rt_mutex_init_task(struct task_struct *p)
875 {
876 	spin_lock_init(&p->pi_lock);
877 #ifdef CONFIG_RT_MUTEXES
878 	plist_head_init(&p->pi_waiters, &p->pi_lock);
879 	p->pi_blocked_on = NULL;
880 #endif
881 }
882 
883 #ifdef CONFIG_MM_OWNER
884 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
885 {
886 	mm->owner = p;
887 }
888 #endif /* CONFIG_MM_OWNER */
889 
890 /*
891  * This creates a new process as a copy of the old one,
892  * but does not actually start it yet.
893  *
894  * It copies the registers, and all the appropriate
895  * parts of the process environment (as per the clone
896  * flags). The actual kick-off is left to the caller.
897  */
898 static struct task_struct *copy_process(unsigned long clone_flags,
899 					unsigned long stack_start,
900 					struct pt_regs *regs,
901 					unsigned long stack_size,
902 					int __user *child_tidptr,
903 					struct pid *pid,
904 					int trace)
905 {
906 	int retval;
907 	struct task_struct *p;
908 	int cgroup_callbacks_done = 0;
909 
910 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
911 		return ERR_PTR(-EINVAL);
912 
913 	/*
914 	 * Thread groups must share signals as well, and detached threads
915 	 * can only be started up within the thread group.
916 	 */
917 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
918 		return ERR_PTR(-EINVAL);
919 
920 	/*
921 	 * Shared signal handlers imply shared VM. By way of the above,
922 	 * thread groups also imply shared VM. Blocking this case allows
923 	 * for various simplifications in other code.
924 	 */
925 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
926 		return ERR_PTR(-EINVAL);
927 
928 	retval = security_task_create(clone_flags);
929 	if (retval)
930 		goto fork_out;
931 
932 	retval = -ENOMEM;
933 	p = dup_task_struct(current);
934 	if (!p)
935 		goto fork_out;
936 
937 	rt_mutex_init_task(p);
938 
939 #ifdef CONFIG_PROVE_LOCKING
940 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
941 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
942 #endif
943 	retval = -EAGAIN;
944 	if (atomic_read(&p->user->processes) >=
945 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
946 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
947 		    p->user != current->nsproxy->user_ns->root_user)
948 			goto bad_fork_free;
949 	}
950 
951 	atomic_inc(&p->user->__count);
952 	atomic_inc(&p->user->processes);
953 	get_group_info(p->group_info);
954 
955 	/*
956 	 * If multiple threads are within copy_process(), then this check
957 	 * triggers too late. This doesn't hurt, the check is only there
958 	 * to stop root fork bombs.
959 	 */
960 	if (nr_threads >= max_threads)
961 		goto bad_fork_cleanup_count;
962 
963 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
964 		goto bad_fork_cleanup_count;
965 
966 	if (p->binfmt && !try_module_get(p->binfmt->module))
967 		goto bad_fork_cleanup_put_domain;
968 
969 	p->did_exec = 0;
970 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
971 	copy_flags(clone_flags, p);
972 	INIT_LIST_HEAD(&p->children);
973 	INIT_LIST_HEAD(&p->sibling);
974 #ifdef CONFIG_PREEMPT_RCU
975 	p->rcu_read_lock_nesting = 0;
976 	p->rcu_flipctr_idx = 0;
977 #endif /* #ifdef CONFIG_PREEMPT_RCU */
978 	p->vfork_done = NULL;
979 	spin_lock_init(&p->alloc_lock);
980 
981 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
982 	init_sigpending(&p->pending);
983 
984 	p->utime = cputime_zero;
985 	p->stime = cputime_zero;
986 	p->gtime = cputime_zero;
987 	p->utimescaled = cputime_zero;
988 	p->stimescaled = cputime_zero;
989 	p->prev_utime = cputime_zero;
990 	p->prev_stime = cputime_zero;
991 
992 #ifdef CONFIG_DETECT_SOFTLOCKUP
993 	p->last_switch_count = 0;
994 	p->last_switch_timestamp = 0;
995 #endif
996 
997 	task_io_accounting_init(&p->ioac);
998 	acct_clear_integrals(p);
999 
1000 	p->it_virt_expires = cputime_zero;
1001 	p->it_prof_expires = cputime_zero;
1002 	p->it_sched_expires = 0;
1003 	INIT_LIST_HEAD(&p->cpu_timers[0]);
1004 	INIT_LIST_HEAD(&p->cpu_timers[1]);
1005 	INIT_LIST_HEAD(&p->cpu_timers[2]);
1006 
1007 	p->lock_depth = -1;		/* -1 = no lock */
1008 	do_posix_clock_monotonic_gettime(&p->start_time);
1009 	p->real_start_time = p->start_time;
1010 	monotonic_to_bootbased(&p->real_start_time);
1011 #ifdef CONFIG_SECURITY
1012 	p->security = NULL;
1013 #endif
1014 	p->cap_bset = current->cap_bset;
1015 	p->io_context = NULL;
1016 	p->audit_context = NULL;
1017 	cgroup_fork(p);
1018 #ifdef CONFIG_NUMA
1019 	p->mempolicy = mpol_dup(p->mempolicy);
1020  	if (IS_ERR(p->mempolicy)) {
1021  		retval = PTR_ERR(p->mempolicy);
1022  		p->mempolicy = NULL;
1023  		goto bad_fork_cleanup_cgroup;
1024  	}
1025 	mpol_fix_fork_child_flag(p);
1026 #endif
1027 #ifdef CONFIG_TRACE_IRQFLAGS
1028 	p->irq_events = 0;
1029 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1030 	p->hardirqs_enabled = 1;
1031 #else
1032 	p->hardirqs_enabled = 0;
1033 #endif
1034 	p->hardirq_enable_ip = 0;
1035 	p->hardirq_enable_event = 0;
1036 	p->hardirq_disable_ip = _THIS_IP_;
1037 	p->hardirq_disable_event = 0;
1038 	p->softirqs_enabled = 1;
1039 	p->softirq_enable_ip = _THIS_IP_;
1040 	p->softirq_enable_event = 0;
1041 	p->softirq_disable_ip = 0;
1042 	p->softirq_disable_event = 0;
1043 	p->hardirq_context = 0;
1044 	p->softirq_context = 0;
1045 #endif
1046 #ifdef CONFIG_LOCKDEP
1047 	p->lockdep_depth = 0; /* no locks held yet */
1048 	p->curr_chain_key = 0;
1049 	p->lockdep_recursion = 0;
1050 #endif
1051 
1052 #ifdef CONFIG_DEBUG_MUTEXES
1053 	p->blocked_on = NULL; /* not blocked yet */
1054 #endif
1055 
1056 	/* Perform scheduler related setup. Assign this task to a CPU. */
1057 	sched_fork(p, clone_flags);
1058 
1059 	if ((retval = security_task_alloc(p)))
1060 		goto bad_fork_cleanup_policy;
1061 	if ((retval = audit_alloc(p)))
1062 		goto bad_fork_cleanup_security;
1063 	/* copy all the process information */
1064 	if ((retval = copy_semundo(clone_flags, p)))
1065 		goto bad_fork_cleanup_audit;
1066 	if ((retval = copy_files(clone_flags, p)))
1067 		goto bad_fork_cleanup_semundo;
1068 	if ((retval = copy_fs(clone_flags, p)))
1069 		goto bad_fork_cleanup_files;
1070 	if ((retval = copy_sighand(clone_flags, p)))
1071 		goto bad_fork_cleanup_fs;
1072 	if ((retval = copy_signal(clone_flags, p)))
1073 		goto bad_fork_cleanup_sighand;
1074 	if ((retval = copy_mm(clone_flags, p)))
1075 		goto bad_fork_cleanup_signal;
1076 	if ((retval = copy_keys(clone_flags, p)))
1077 		goto bad_fork_cleanup_mm;
1078 	if ((retval = copy_namespaces(clone_flags, p)))
1079 		goto bad_fork_cleanup_keys;
1080 	if ((retval = copy_io(clone_flags, p)))
1081 		goto bad_fork_cleanup_namespaces;
1082 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1083 	if (retval)
1084 		goto bad_fork_cleanup_io;
1085 
1086 	if (pid != &init_struct_pid) {
1087 		retval = -ENOMEM;
1088 		pid = alloc_pid(task_active_pid_ns(p));
1089 		if (!pid)
1090 			goto bad_fork_cleanup_io;
1091 
1092 		if (clone_flags & CLONE_NEWPID) {
1093 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1094 			if (retval < 0)
1095 				goto bad_fork_free_pid;
1096 		}
1097 	}
1098 
1099 	p->pid = pid_nr(pid);
1100 	p->tgid = p->pid;
1101 	if (clone_flags & CLONE_THREAD)
1102 		p->tgid = current->tgid;
1103 
1104 	if (current->nsproxy != p->nsproxy) {
1105 		retval = ns_cgroup_clone(p, pid);
1106 		if (retval)
1107 			goto bad_fork_free_pid;
1108 	}
1109 
1110 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1111 	/*
1112 	 * Clear TID on mm_release()?
1113 	 */
1114 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1115 #ifdef CONFIG_FUTEX
1116 	p->robust_list = NULL;
1117 #ifdef CONFIG_COMPAT
1118 	p->compat_robust_list = NULL;
1119 #endif
1120 	INIT_LIST_HEAD(&p->pi_state_list);
1121 	p->pi_state_cache = NULL;
1122 #endif
1123 	/*
1124 	 * sigaltstack should be cleared when sharing the same VM
1125 	 */
1126 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1127 		p->sas_ss_sp = p->sas_ss_size = 0;
1128 
1129 	/*
1130 	 * Syscall tracing should be turned off in the child regardless
1131 	 * of CLONE_PTRACE.
1132 	 */
1133 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1134 #ifdef TIF_SYSCALL_EMU
1135 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1136 #endif
1137 	clear_all_latency_tracing(p);
1138 
1139 	/* Our parent execution domain becomes current domain
1140 	   These must match for thread signalling to apply */
1141 	p->parent_exec_id = p->self_exec_id;
1142 
1143 	/* ok, now we should be set up.. */
1144 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1145 	p->pdeath_signal = 0;
1146 	p->exit_state = 0;
1147 
1148 	/*
1149 	 * Ok, make it visible to the rest of the system.
1150 	 * We dont wake it up yet.
1151 	 */
1152 	p->group_leader = p;
1153 	INIT_LIST_HEAD(&p->thread_group);
1154 
1155 	/* Now that the task is set up, run cgroup callbacks if
1156 	 * necessary. We need to run them before the task is visible
1157 	 * on the tasklist. */
1158 	cgroup_fork_callbacks(p);
1159 	cgroup_callbacks_done = 1;
1160 
1161 	/* Need tasklist lock for parent etc handling! */
1162 	write_lock_irq(&tasklist_lock);
1163 
1164 	/*
1165 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1166 	 * not be changed, nor will its assigned CPU.
1167 	 *
1168 	 * The cpus_allowed mask of the parent may have changed after it was
1169 	 * copied first time - so re-copy it here, then check the child's CPU
1170 	 * to ensure it is on a valid CPU (and if not, just force it back to
1171 	 * parent's CPU). This avoids alot of nasty races.
1172 	 */
1173 	p->cpus_allowed = current->cpus_allowed;
1174 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1175 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1176 			!cpu_online(task_cpu(p))))
1177 		set_task_cpu(p, smp_processor_id());
1178 
1179 	/* CLONE_PARENT re-uses the old parent */
1180 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1181 		p->real_parent = current->real_parent;
1182 	else
1183 		p->real_parent = current;
1184 
1185 	spin_lock(&current->sighand->siglock);
1186 
1187 	/*
1188 	 * Process group and session signals need to be delivered to just the
1189 	 * parent before the fork or both the parent and the child after the
1190 	 * fork. Restart if a signal comes in before we add the new process to
1191 	 * it's process group.
1192 	 * A fatal signal pending means that current will exit, so the new
1193 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1194  	 */
1195 	recalc_sigpending();
1196 	if (signal_pending(current)) {
1197 		spin_unlock(&current->sighand->siglock);
1198 		write_unlock_irq(&tasklist_lock);
1199 		retval = -ERESTARTNOINTR;
1200 		goto bad_fork_free_pid;
1201 	}
1202 
1203 	if (clone_flags & CLONE_THREAD) {
1204 		p->group_leader = current->group_leader;
1205 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1206 
1207 		if (!cputime_eq(current->signal->it_virt_expires,
1208 				cputime_zero) ||
1209 		    !cputime_eq(current->signal->it_prof_expires,
1210 				cputime_zero) ||
1211 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1212 		    !list_empty(&current->signal->cpu_timers[0]) ||
1213 		    !list_empty(&current->signal->cpu_timers[1]) ||
1214 		    !list_empty(&current->signal->cpu_timers[2])) {
1215 			/*
1216 			 * Have child wake up on its first tick to check
1217 			 * for process CPU timers.
1218 			 */
1219 			p->it_prof_expires = jiffies_to_cputime(1);
1220 		}
1221 	}
1222 
1223 	if (likely(p->pid)) {
1224 		list_add_tail(&p->sibling, &p->real_parent->children);
1225 		tracehook_finish_clone(p, clone_flags, trace);
1226 
1227 		if (thread_group_leader(p)) {
1228 			if (clone_flags & CLONE_NEWPID)
1229 				p->nsproxy->pid_ns->child_reaper = p;
1230 
1231 			p->signal->leader_pid = pid;
1232 			tty_kref_put(p->signal->tty);
1233 			p->signal->tty = tty_kref_get(current->signal->tty);
1234 			set_task_pgrp(p, task_pgrp_nr(current));
1235 			set_task_session(p, task_session_nr(current));
1236 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1237 			attach_pid(p, PIDTYPE_SID, task_session(current));
1238 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1239 			__get_cpu_var(process_counts)++;
1240 		}
1241 		attach_pid(p, PIDTYPE_PID, pid);
1242 		nr_threads++;
1243 	}
1244 
1245 	total_forks++;
1246 	spin_unlock(&current->sighand->siglock);
1247 	write_unlock_irq(&tasklist_lock);
1248 	proc_fork_connector(p);
1249 	cgroup_post_fork(p);
1250 	return p;
1251 
1252 bad_fork_free_pid:
1253 	if (pid != &init_struct_pid)
1254 		free_pid(pid);
1255 bad_fork_cleanup_io:
1256 	put_io_context(p->io_context);
1257 bad_fork_cleanup_namespaces:
1258 	exit_task_namespaces(p);
1259 bad_fork_cleanup_keys:
1260 	exit_keys(p);
1261 bad_fork_cleanup_mm:
1262 	if (p->mm)
1263 		mmput(p->mm);
1264 bad_fork_cleanup_signal:
1265 	cleanup_signal(p);
1266 bad_fork_cleanup_sighand:
1267 	__cleanup_sighand(p->sighand);
1268 bad_fork_cleanup_fs:
1269 	exit_fs(p); /* blocking */
1270 bad_fork_cleanup_files:
1271 	exit_files(p); /* blocking */
1272 bad_fork_cleanup_semundo:
1273 	exit_sem(p);
1274 bad_fork_cleanup_audit:
1275 	audit_free(p);
1276 bad_fork_cleanup_security:
1277 	security_task_free(p);
1278 bad_fork_cleanup_policy:
1279 #ifdef CONFIG_NUMA
1280 	mpol_put(p->mempolicy);
1281 bad_fork_cleanup_cgroup:
1282 #endif
1283 	cgroup_exit(p, cgroup_callbacks_done);
1284 	delayacct_tsk_free(p);
1285 	if (p->binfmt)
1286 		module_put(p->binfmt->module);
1287 bad_fork_cleanup_put_domain:
1288 	module_put(task_thread_info(p)->exec_domain->module);
1289 bad_fork_cleanup_count:
1290 	put_group_info(p->group_info);
1291 	atomic_dec(&p->user->processes);
1292 	free_uid(p->user);
1293 bad_fork_free:
1294 	free_task(p);
1295 fork_out:
1296 	return ERR_PTR(retval);
1297 }
1298 
1299 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1300 {
1301 	memset(regs, 0, sizeof(struct pt_regs));
1302 	return regs;
1303 }
1304 
1305 struct task_struct * __cpuinit fork_idle(int cpu)
1306 {
1307 	struct task_struct *task;
1308 	struct pt_regs regs;
1309 
1310 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1311 			    &init_struct_pid, 0);
1312 	if (!IS_ERR(task))
1313 		init_idle(task, cpu);
1314 
1315 	return task;
1316 }
1317 
1318 /*
1319  *  Ok, this is the main fork-routine.
1320  *
1321  * It copies the process, and if successful kick-starts
1322  * it and waits for it to finish using the VM if required.
1323  */
1324 long do_fork(unsigned long clone_flags,
1325 	      unsigned long stack_start,
1326 	      struct pt_regs *regs,
1327 	      unsigned long stack_size,
1328 	      int __user *parent_tidptr,
1329 	      int __user *child_tidptr)
1330 {
1331 	struct task_struct *p;
1332 	int trace = 0;
1333 	long nr;
1334 
1335 	/*
1336 	 * We hope to recycle these flags after 2.6.26
1337 	 */
1338 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1339 		static int __read_mostly count = 100;
1340 
1341 		if (count > 0 && printk_ratelimit()) {
1342 			char comm[TASK_COMM_LEN];
1343 
1344 			count--;
1345 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1346 					"clone flags 0x%lx\n",
1347 				get_task_comm(comm, current),
1348 				clone_flags & CLONE_STOPPED);
1349 		}
1350 	}
1351 
1352 	/*
1353 	 * When called from kernel_thread, don't do user tracing stuff.
1354 	 */
1355 	if (likely(user_mode(regs)))
1356 		trace = tracehook_prepare_clone(clone_flags);
1357 
1358 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1359 			 child_tidptr, NULL, trace);
1360 	/*
1361 	 * Do this prior waking up the new thread - the thread pointer
1362 	 * might get invalid after that point, if the thread exits quickly.
1363 	 */
1364 	if (!IS_ERR(p)) {
1365 		struct completion vfork;
1366 
1367 		nr = task_pid_vnr(p);
1368 
1369 		if (clone_flags & CLONE_PARENT_SETTID)
1370 			put_user(nr, parent_tidptr);
1371 
1372 		if (clone_flags & CLONE_VFORK) {
1373 			p->vfork_done = &vfork;
1374 			init_completion(&vfork);
1375 		}
1376 
1377 		tracehook_report_clone(trace, regs, clone_flags, nr, p);
1378 
1379 		/*
1380 		 * We set PF_STARTING at creation in case tracing wants to
1381 		 * use this to distinguish a fully live task from one that
1382 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1383 		 * clear it and set the child going.
1384 		 */
1385 		p->flags &= ~PF_STARTING;
1386 
1387 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1388 			/*
1389 			 * We'll start up with an immediate SIGSTOP.
1390 			 */
1391 			sigaddset(&p->pending.signal, SIGSTOP);
1392 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1393 			__set_task_state(p, TASK_STOPPED);
1394 		} else {
1395 			wake_up_new_task(p, clone_flags);
1396 		}
1397 
1398 		tracehook_report_clone_complete(trace, regs,
1399 						clone_flags, nr, p);
1400 
1401 		if (clone_flags & CLONE_VFORK) {
1402 			freezer_do_not_count();
1403 			wait_for_completion(&vfork);
1404 			freezer_count();
1405 			tracehook_report_vfork_done(p, nr);
1406 		}
1407 	} else {
1408 		nr = PTR_ERR(p);
1409 	}
1410 	return nr;
1411 }
1412 
1413 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1414 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1415 #endif
1416 
1417 static void sighand_ctor(void *data)
1418 {
1419 	struct sighand_struct *sighand = data;
1420 
1421 	spin_lock_init(&sighand->siglock);
1422 	init_waitqueue_head(&sighand->signalfd_wqh);
1423 }
1424 
1425 void __init proc_caches_init(void)
1426 {
1427 	sighand_cachep = kmem_cache_create("sighand_cache",
1428 			sizeof(struct sighand_struct), 0,
1429 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1430 			sighand_ctor);
1431 	signal_cachep = kmem_cache_create("signal_cache",
1432 			sizeof(struct signal_struct), 0,
1433 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1434 	files_cachep = kmem_cache_create("files_cache",
1435 			sizeof(struct files_struct), 0,
1436 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1437 	fs_cachep = kmem_cache_create("fs_cache",
1438 			sizeof(struct fs_struct), 0,
1439 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1440 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1441 			sizeof(struct vm_area_struct), 0,
1442 			SLAB_PANIC, NULL);
1443 	mm_cachep = kmem_cache_create("mm_struct",
1444 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1445 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1446 }
1447 
1448 /*
1449  * Check constraints on flags passed to the unshare system call and
1450  * force unsharing of additional process context as appropriate.
1451  */
1452 static void check_unshare_flags(unsigned long *flags_ptr)
1453 {
1454 	/*
1455 	 * If unsharing a thread from a thread group, must also
1456 	 * unshare vm.
1457 	 */
1458 	if (*flags_ptr & CLONE_THREAD)
1459 		*flags_ptr |= CLONE_VM;
1460 
1461 	/*
1462 	 * If unsharing vm, must also unshare signal handlers.
1463 	 */
1464 	if (*flags_ptr & CLONE_VM)
1465 		*flags_ptr |= CLONE_SIGHAND;
1466 
1467 	/*
1468 	 * If unsharing signal handlers and the task was created
1469 	 * using CLONE_THREAD, then must unshare the thread
1470 	 */
1471 	if ((*flags_ptr & CLONE_SIGHAND) &&
1472 	    (atomic_read(&current->signal->count) > 1))
1473 		*flags_ptr |= CLONE_THREAD;
1474 
1475 	/*
1476 	 * If unsharing namespace, must also unshare filesystem information.
1477 	 */
1478 	if (*flags_ptr & CLONE_NEWNS)
1479 		*flags_ptr |= CLONE_FS;
1480 }
1481 
1482 /*
1483  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1484  */
1485 static int unshare_thread(unsigned long unshare_flags)
1486 {
1487 	if (unshare_flags & CLONE_THREAD)
1488 		return -EINVAL;
1489 
1490 	return 0;
1491 }
1492 
1493 /*
1494  * Unshare the filesystem structure if it is being shared
1495  */
1496 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1497 {
1498 	struct fs_struct *fs = current->fs;
1499 
1500 	if ((unshare_flags & CLONE_FS) &&
1501 	    (fs && atomic_read(&fs->count) > 1)) {
1502 		*new_fsp = __copy_fs_struct(current->fs);
1503 		if (!*new_fsp)
1504 			return -ENOMEM;
1505 	}
1506 
1507 	return 0;
1508 }
1509 
1510 /*
1511  * Unsharing of sighand is not supported yet
1512  */
1513 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1514 {
1515 	struct sighand_struct *sigh = current->sighand;
1516 
1517 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1518 		return -EINVAL;
1519 	else
1520 		return 0;
1521 }
1522 
1523 /*
1524  * Unshare vm if it is being shared
1525  */
1526 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1527 {
1528 	struct mm_struct *mm = current->mm;
1529 
1530 	if ((unshare_flags & CLONE_VM) &&
1531 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1532 		return -EINVAL;
1533 	}
1534 
1535 	return 0;
1536 }
1537 
1538 /*
1539  * Unshare file descriptor table if it is being shared
1540  */
1541 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1542 {
1543 	struct files_struct *fd = current->files;
1544 	int error = 0;
1545 
1546 	if ((unshare_flags & CLONE_FILES) &&
1547 	    (fd && atomic_read(&fd->count) > 1)) {
1548 		*new_fdp = dup_fd(fd, &error);
1549 		if (!*new_fdp)
1550 			return error;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
1556 /*
1557  * unshare allows a process to 'unshare' part of the process
1558  * context which was originally shared using clone.  copy_*
1559  * functions used by do_fork() cannot be used here directly
1560  * because they modify an inactive task_struct that is being
1561  * constructed. Here we are modifying the current, active,
1562  * task_struct.
1563  */
1564 asmlinkage long sys_unshare(unsigned long unshare_flags)
1565 {
1566 	int err = 0;
1567 	struct fs_struct *fs, *new_fs = NULL;
1568 	struct sighand_struct *new_sigh = NULL;
1569 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1570 	struct files_struct *fd, *new_fd = NULL;
1571 	struct nsproxy *new_nsproxy = NULL;
1572 	int do_sysvsem = 0;
1573 
1574 	check_unshare_flags(&unshare_flags);
1575 
1576 	/* Return -EINVAL for all unsupported flags */
1577 	err = -EINVAL;
1578 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1579 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1580 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1581 				CLONE_NEWNET))
1582 		goto bad_unshare_out;
1583 
1584 	/*
1585 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1586 	 * to a new ipc namespace, the semaphore arrays from the old
1587 	 * namespace are unreachable.
1588 	 */
1589 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1590 		do_sysvsem = 1;
1591 	if ((err = unshare_thread(unshare_flags)))
1592 		goto bad_unshare_out;
1593 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1594 		goto bad_unshare_cleanup_thread;
1595 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1596 		goto bad_unshare_cleanup_fs;
1597 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1598 		goto bad_unshare_cleanup_sigh;
1599 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1600 		goto bad_unshare_cleanup_vm;
1601 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1602 			new_fs)))
1603 		goto bad_unshare_cleanup_fd;
1604 
1605 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1606 		if (do_sysvsem) {
1607 			/*
1608 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1609 			 */
1610 			exit_sem(current);
1611 		}
1612 
1613 		if (new_nsproxy) {
1614 			switch_task_namespaces(current, new_nsproxy);
1615 			new_nsproxy = NULL;
1616 		}
1617 
1618 		task_lock(current);
1619 
1620 		if (new_fs) {
1621 			fs = current->fs;
1622 			current->fs = new_fs;
1623 			new_fs = fs;
1624 		}
1625 
1626 		if (new_mm) {
1627 			mm = current->mm;
1628 			active_mm = current->active_mm;
1629 			current->mm = new_mm;
1630 			current->active_mm = new_mm;
1631 			activate_mm(active_mm, new_mm);
1632 			new_mm = mm;
1633 		}
1634 
1635 		if (new_fd) {
1636 			fd = current->files;
1637 			current->files = new_fd;
1638 			new_fd = fd;
1639 		}
1640 
1641 		task_unlock(current);
1642 	}
1643 
1644 	if (new_nsproxy)
1645 		put_nsproxy(new_nsproxy);
1646 
1647 bad_unshare_cleanup_fd:
1648 	if (new_fd)
1649 		put_files_struct(new_fd);
1650 
1651 bad_unshare_cleanup_vm:
1652 	if (new_mm)
1653 		mmput(new_mm);
1654 
1655 bad_unshare_cleanup_sigh:
1656 	if (new_sigh)
1657 		if (atomic_dec_and_test(&new_sigh->count))
1658 			kmem_cache_free(sighand_cachep, new_sigh);
1659 
1660 bad_unshare_cleanup_fs:
1661 	if (new_fs)
1662 		put_fs_struct(new_fs);
1663 
1664 bad_unshare_cleanup_thread:
1665 bad_unshare_out:
1666 	return err;
1667 }
1668 
1669 /*
1670  *	Helper to unshare the files of the current task.
1671  *	We don't want to expose copy_files internals to
1672  *	the exec layer of the kernel.
1673  */
1674 
1675 int unshare_files(struct files_struct **displaced)
1676 {
1677 	struct task_struct *task = current;
1678 	struct files_struct *copy = NULL;
1679 	int error;
1680 
1681 	error = unshare_fd(CLONE_FILES, &copy);
1682 	if (error || !copy) {
1683 		*displaced = NULL;
1684 		return error;
1685 	}
1686 	*displaced = task->files;
1687 	task_lock(task);
1688 	task->files = copy;
1689 	task_unlock(task);
1690 	return 0;
1691 }
1692