1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/syscall_user_dispatch.h> 57 #include <linux/jiffies.h> 58 #include <linux/futex.h> 59 #include <linux/compat.h> 60 #include <linux/kthread.h> 61 #include <linux/task_io_accounting_ops.h> 62 #include <linux/rcupdate.h> 63 #include <linux/ptrace.h> 64 #include <linux/mount.h> 65 #include <linux/audit.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/proc_fs.h> 69 #include <linux/profile.h> 70 #include <linux/rmap.h> 71 #include <linux/ksm.h> 72 #include <linux/acct.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/tsacct_kern.h> 75 #include <linux/cn_proc.h> 76 #include <linux/freezer.h> 77 #include <linux/delayacct.h> 78 #include <linux/taskstats_kern.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 #include <linux/stackprotector.h> 101 #include <linux/user_events.h> 102 #include <linux/iommu.h> 103 #include <linux/rseq.h> 104 #include <uapi/linux/pidfd.h> 105 #include <linux/pidfs.h> 106 107 #include <asm/pgalloc.h> 108 #include <linux/uaccess.h> 109 #include <asm/mmu_context.h> 110 #include <asm/cacheflush.h> 111 #include <asm/tlbflush.h> 112 113 #include <trace/events/sched.h> 114 115 #define CREATE_TRACE_POINTS 116 #include <trace/events/task.h> 117 118 #include <kunit/visibility.h> 119 120 /* 121 * Minimum number of threads to boot the kernel 122 */ 123 #define MIN_THREADS 20 124 125 /* 126 * Maximum number of threads 127 */ 128 #define MAX_THREADS FUTEX_TID_MASK 129 130 /* 131 * Protected counters by write_lock_irq(&tasklist_lock) 132 */ 133 unsigned long total_forks; /* Handle normal Linux uptimes. */ 134 int nr_threads; /* The idle threads do not count.. */ 135 136 static int max_threads; /* tunable limit on nr_threads */ 137 138 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 139 140 static const char * const resident_page_types[] = { 141 NAMED_ARRAY_INDEX(MM_FILEPAGES), 142 NAMED_ARRAY_INDEX(MM_ANONPAGES), 143 NAMED_ARRAY_INDEX(MM_SWAPENTS), 144 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 145 }; 146 147 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 148 149 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 150 151 #ifdef CONFIG_PROVE_RCU 152 int lockdep_tasklist_lock_is_held(void) 153 { 154 return lockdep_is_held(&tasklist_lock); 155 } 156 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 157 #endif /* #ifdef CONFIG_PROVE_RCU */ 158 159 int nr_processes(void) 160 { 161 int cpu; 162 int total = 0; 163 164 for_each_possible_cpu(cpu) 165 total += per_cpu(process_counts, cpu); 166 167 return total; 168 } 169 170 void __weak arch_release_task_struct(struct task_struct *tsk) 171 { 172 } 173 174 static struct kmem_cache *task_struct_cachep; 175 176 static inline struct task_struct *alloc_task_struct_node(int node) 177 { 178 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 179 } 180 181 static inline void free_task_struct(struct task_struct *tsk) 182 { 183 kmem_cache_free(task_struct_cachep, tsk); 184 } 185 186 /* 187 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 188 * kmemcache based allocator. 189 */ 190 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 191 192 # ifdef CONFIG_VMAP_STACK 193 /* 194 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 195 * flush. Try to minimize the number of calls by caching stacks. 196 */ 197 #define NR_CACHED_STACKS 2 198 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 199 200 struct vm_stack { 201 struct rcu_head rcu; 202 struct vm_struct *stack_vm_area; 203 }; 204 205 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 206 { 207 unsigned int i; 208 209 for (i = 0; i < NR_CACHED_STACKS; i++) { 210 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 211 continue; 212 return true; 213 } 214 return false; 215 } 216 217 static void thread_stack_free_rcu(struct rcu_head *rh) 218 { 219 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 220 221 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 222 return; 223 224 vfree(vm_stack); 225 } 226 227 static void thread_stack_delayed_free(struct task_struct *tsk) 228 { 229 struct vm_stack *vm_stack = tsk->stack; 230 231 vm_stack->stack_vm_area = tsk->stack_vm_area; 232 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 233 } 234 235 static int free_vm_stack_cache(unsigned int cpu) 236 { 237 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 238 int i; 239 240 for (i = 0; i < NR_CACHED_STACKS; i++) { 241 struct vm_struct *vm_stack = cached_vm_stacks[i]; 242 243 if (!vm_stack) 244 continue; 245 246 vfree(vm_stack->addr); 247 cached_vm_stacks[i] = NULL; 248 } 249 250 return 0; 251 } 252 253 static int memcg_charge_kernel_stack(struct vm_struct *vm) 254 { 255 int i; 256 int ret; 257 int nr_charged = 0; 258 259 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 260 261 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 262 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 263 if (ret) 264 goto err; 265 nr_charged++; 266 } 267 return 0; 268 err: 269 for (i = 0; i < nr_charged; i++) 270 memcg_kmem_uncharge_page(vm->pages[i], 0); 271 return ret; 272 } 273 274 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 275 { 276 struct vm_struct *vm; 277 void *stack; 278 int i; 279 280 for (i = 0; i < NR_CACHED_STACKS; i++) { 281 struct vm_struct *s; 282 283 s = this_cpu_xchg(cached_stacks[i], NULL); 284 285 if (!s) 286 continue; 287 288 /* Reset stack metadata. */ 289 kasan_unpoison_range(s->addr, THREAD_SIZE); 290 291 stack = kasan_reset_tag(s->addr); 292 293 /* Clear stale pointers from reused stack. */ 294 memset(stack, 0, THREAD_SIZE); 295 296 if (memcg_charge_kernel_stack(s)) { 297 vfree(s->addr); 298 return -ENOMEM; 299 } 300 301 tsk->stack_vm_area = s; 302 tsk->stack = stack; 303 return 0; 304 } 305 306 /* 307 * Allocated stacks are cached and later reused by new threads, 308 * so memcg accounting is performed manually on assigning/releasing 309 * stacks to tasks. Drop __GFP_ACCOUNT. 310 */ 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 312 VMALLOC_START, VMALLOC_END, 313 THREADINFO_GFP & ~__GFP_ACCOUNT, 314 PAGE_KERNEL, 315 0, node, __builtin_return_address(0)); 316 if (!stack) 317 return -ENOMEM; 318 319 vm = find_vm_area(stack); 320 if (memcg_charge_kernel_stack(vm)) { 321 vfree(stack); 322 return -ENOMEM; 323 } 324 /* 325 * We can't call find_vm_area() in interrupt context, and 326 * free_thread_stack() can be called in interrupt context, 327 * so cache the vm_struct. 328 */ 329 tsk->stack_vm_area = vm; 330 stack = kasan_reset_tag(stack); 331 tsk->stack = stack; 332 return 0; 333 } 334 335 static void free_thread_stack(struct task_struct *tsk) 336 { 337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 338 thread_stack_delayed_free(tsk); 339 340 tsk->stack = NULL; 341 tsk->stack_vm_area = NULL; 342 } 343 344 # else /* !CONFIG_VMAP_STACK */ 345 346 static void thread_stack_free_rcu(struct rcu_head *rh) 347 { 348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 349 } 350 351 static void thread_stack_delayed_free(struct task_struct *tsk) 352 { 353 struct rcu_head *rh = tsk->stack; 354 355 call_rcu(rh, thread_stack_free_rcu); 356 } 357 358 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 359 { 360 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 361 THREAD_SIZE_ORDER); 362 363 if (likely(page)) { 364 tsk->stack = kasan_reset_tag(page_address(page)); 365 return 0; 366 } 367 return -ENOMEM; 368 } 369 370 static void free_thread_stack(struct task_struct *tsk) 371 { 372 thread_stack_delayed_free(tsk); 373 tsk->stack = NULL; 374 } 375 376 # endif /* CONFIG_VMAP_STACK */ 377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 378 379 static struct kmem_cache *thread_stack_cache; 380 381 static void thread_stack_free_rcu(struct rcu_head *rh) 382 { 383 kmem_cache_free(thread_stack_cache, rh); 384 } 385 386 static void thread_stack_delayed_free(struct task_struct *tsk) 387 { 388 struct rcu_head *rh = tsk->stack; 389 390 call_rcu(rh, thread_stack_free_rcu); 391 } 392 393 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 394 { 395 unsigned long *stack; 396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 397 stack = kasan_reset_tag(stack); 398 tsk->stack = stack; 399 return stack ? 0 : -ENOMEM; 400 } 401 402 static void free_thread_stack(struct task_struct *tsk) 403 { 404 thread_stack_delayed_free(tsk); 405 tsk->stack = NULL; 406 } 407 408 void thread_stack_cache_init(void) 409 { 410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 411 THREAD_SIZE, THREAD_SIZE, 0, 0, 412 THREAD_SIZE, NULL); 413 BUG_ON(thread_stack_cache == NULL); 414 } 415 416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 417 418 /* SLAB cache for signal_struct structures (tsk->signal) */ 419 static struct kmem_cache *signal_cachep; 420 421 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 422 struct kmem_cache *sighand_cachep; 423 424 /* SLAB cache for files_struct structures (tsk->files) */ 425 struct kmem_cache *files_cachep; 426 427 /* SLAB cache for fs_struct structures (tsk->fs) */ 428 struct kmem_cache *fs_cachep; 429 430 /* SLAB cache for vm_area_struct structures */ 431 static struct kmem_cache *vm_area_cachep; 432 433 /* SLAB cache for mm_struct structures (tsk->mm) */ 434 static struct kmem_cache *mm_cachep; 435 436 #ifdef CONFIG_PER_VMA_LOCK 437 438 /* SLAB cache for vm_area_struct.lock */ 439 static struct kmem_cache *vma_lock_cachep; 440 441 static bool vma_lock_alloc(struct vm_area_struct *vma) 442 { 443 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 444 if (!vma->vm_lock) 445 return false; 446 447 init_rwsem(&vma->vm_lock->lock); 448 vma->vm_lock_seq = -1; 449 450 return true; 451 } 452 453 static inline void vma_lock_free(struct vm_area_struct *vma) 454 { 455 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 456 } 457 458 #else /* CONFIG_PER_VMA_LOCK */ 459 460 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 461 static inline void vma_lock_free(struct vm_area_struct *vma) {} 462 463 #endif /* CONFIG_PER_VMA_LOCK */ 464 465 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 466 { 467 struct vm_area_struct *vma; 468 469 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 470 if (!vma) 471 return NULL; 472 473 vma_init(vma, mm); 474 if (!vma_lock_alloc(vma)) { 475 kmem_cache_free(vm_area_cachep, vma); 476 return NULL; 477 } 478 479 return vma; 480 } 481 482 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 483 { 484 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 485 486 if (!new) 487 return NULL; 488 489 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 490 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 491 /* 492 * orig->shared.rb may be modified concurrently, but the clone 493 * will be reinitialized. 494 */ 495 data_race(memcpy(new, orig, sizeof(*new))); 496 if (!vma_lock_alloc(new)) { 497 kmem_cache_free(vm_area_cachep, new); 498 return NULL; 499 } 500 INIT_LIST_HEAD(&new->anon_vma_chain); 501 vma_numab_state_init(new); 502 dup_anon_vma_name(orig, new); 503 504 return new; 505 } 506 507 void __vm_area_free(struct vm_area_struct *vma) 508 { 509 vma_numab_state_free(vma); 510 free_anon_vma_name(vma); 511 vma_lock_free(vma); 512 kmem_cache_free(vm_area_cachep, vma); 513 } 514 515 #ifdef CONFIG_PER_VMA_LOCK 516 static void vm_area_free_rcu_cb(struct rcu_head *head) 517 { 518 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 519 vm_rcu); 520 521 /* The vma should not be locked while being destroyed. */ 522 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 523 __vm_area_free(vma); 524 } 525 #endif 526 527 void vm_area_free(struct vm_area_struct *vma) 528 { 529 #ifdef CONFIG_PER_VMA_LOCK 530 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 531 #else 532 __vm_area_free(vma); 533 #endif 534 } 535 536 static void account_kernel_stack(struct task_struct *tsk, int account) 537 { 538 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 539 struct vm_struct *vm = task_stack_vm_area(tsk); 540 int i; 541 542 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 543 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 544 account * (PAGE_SIZE / 1024)); 545 } else { 546 void *stack = task_stack_page(tsk); 547 548 /* All stack pages are in the same node. */ 549 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 550 account * (THREAD_SIZE / 1024)); 551 } 552 } 553 554 void exit_task_stack_account(struct task_struct *tsk) 555 { 556 account_kernel_stack(tsk, -1); 557 558 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 559 struct vm_struct *vm; 560 int i; 561 562 vm = task_stack_vm_area(tsk); 563 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 564 memcg_kmem_uncharge_page(vm->pages[i], 0); 565 } 566 } 567 568 static void release_task_stack(struct task_struct *tsk) 569 { 570 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 571 return; /* Better to leak the stack than to free prematurely */ 572 573 free_thread_stack(tsk); 574 } 575 576 #ifdef CONFIG_THREAD_INFO_IN_TASK 577 void put_task_stack(struct task_struct *tsk) 578 { 579 if (refcount_dec_and_test(&tsk->stack_refcount)) 580 release_task_stack(tsk); 581 } 582 #endif 583 584 void free_task(struct task_struct *tsk) 585 { 586 #ifdef CONFIG_SECCOMP 587 WARN_ON_ONCE(tsk->seccomp.filter); 588 #endif 589 release_user_cpus_ptr(tsk); 590 scs_release(tsk); 591 592 #ifndef CONFIG_THREAD_INFO_IN_TASK 593 /* 594 * The task is finally done with both the stack and thread_info, 595 * so free both. 596 */ 597 release_task_stack(tsk); 598 #else 599 /* 600 * If the task had a separate stack allocation, it should be gone 601 * by now. 602 */ 603 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 604 #endif 605 rt_mutex_debug_task_free(tsk); 606 ftrace_graph_exit_task(tsk); 607 arch_release_task_struct(tsk); 608 if (tsk->flags & PF_KTHREAD) 609 free_kthread_struct(tsk); 610 bpf_task_storage_free(tsk); 611 free_task_struct(tsk); 612 } 613 EXPORT_SYMBOL(free_task); 614 615 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 616 { 617 struct file *exe_file; 618 619 exe_file = get_mm_exe_file(oldmm); 620 RCU_INIT_POINTER(mm->exe_file, exe_file); 621 /* 622 * We depend on the oldmm having properly denied write access to the 623 * exe_file already. 624 */ 625 if (exe_file && deny_write_access(exe_file)) 626 pr_warn_once("deny_write_access() failed in %s\n", __func__); 627 } 628 629 #ifdef CONFIG_MMU 630 static __latent_entropy int dup_mmap(struct mm_struct *mm, 631 struct mm_struct *oldmm) 632 { 633 struct vm_area_struct *mpnt, *tmp; 634 int retval; 635 unsigned long charge = 0; 636 LIST_HEAD(uf); 637 VMA_ITERATOR(vmi, mm, 0); 638 639 uprobe_start_dup_mmap(); 640 if (mmap_write_lock_killable(oldmm)) { 641 retval = -EINTR; 642 goto fail_uprobe_end; 643 } 644 flush_cache_dup_mm(oldmm); 645 uprobe_dup_mmap(oldmm, mm); 646 /* 647 * Not linked in yet - no deadlock potential: 648 */ 649 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 650 651 /* No ordering required: file already has been exposed. */ 652 dup_mm_exe_file(mm, oldmm); 653 654 mm->total_vm = oldmm->total_vm; 655 mm->data_vm = oldmm->data_vm; 656 mm->exec_vm = oldmm->exec_vm; 657 mm->stack_vm = oldmm->stack_vm; 658 659 retval = ksm_fork(mm, oldmm); 660 if (retval) 661 goto out; 662 khugepaged_fork(mm, oldmm); 663 664 /* Use __mt_dup() to efficiently build an identical maple tree. */ 665 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 666 if (unlikely(retval)) 667 goto out; 668 669 mt_clear_in_rcu(vmi.mas.tree); 670 for_each_vma(vmi, mpnt) { 671 struct file *file; 672 673 vma_start_write(mpnt); 674 if (mpnt->vm_flags & VM_DONTCOPY) { 675 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 676 mpnt->vm_end, GFP_KERNEL); 677 if (retval) 678 goto loop_out; 679 680 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 681 continue; 682 } 683 charge = 0; 684 /* 685 * Don't duplicate many vmas if we've been oom-killed (for 686 * example) 687 */ 688 if (fatal_signal_pending(current)) { 689 retval = -EINTR; 690 goto loop_out; 691 } 692 if (mpnt->vm_flags & VM_ACCOUNT) { 693 unsigned long len = vma_pages(mpnt); 694 695 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 696 goto fail_nomem; 697 charge = len; 698 } 699 tmp = vm_area_dup(mpnt); 700 if (!tmp) 701 goto fail_nomem; 702 retval = vma_dup_policy(mpnt, tmp); 703 if (retval) 704 goto fail_nomem_policy; 705 tmp->vm_mm = mm; 706 retval = dup_userfaultfd(tmp, &uf); 707 if (retval) 708 goto fail_nomem_anon_vma_fork; 709 if (tmp->vm_flags & VM_WIPEONFORK) { 710 /* 711 * VM_WIPEONFORK gets a clean slate in the child. 712 * Don't prepare anon_vma until fault since we don't 713 * copy page for current vma. 714 */ 715 tmp->anon_vma = NULL; 716 } else if (anon_vma_fork(tmp, mpnt)) 717 goto fail_nomem_anon_vma_fork; 718 vm_flags_clear(tmp, VM_LOCKED_MASK); 719 /* 720 * Copy/update hugetlb private vma information. 721 */ 722 if (is_vm_hugetlb_page(tmp)) 723 hugetlb_dup_vma_private(tmp); 724 725 /* 726 * Link the vma into the MT. After using __mt_dup(), memory 727 * allocation is not necessary here, so it cannot fail. 728 */ 729 vma_iter_bulk_store(&vmi, tmp); 730 731 mm->map_count++; 732 733 if (tmp->vm_ops && tmp->vm_ops->open) 734 tmp->vm_ops->open(tmp); 735 736 file = tmp->vm_file; 737 if (file) { 738 struct address_space *mapping = file->f_mapping; 739 740 get_file(file); 741 i_mmap_lock_write(mapping); 742 if (vma_is_shared_maywrite(tmp)) 743 mapping_allow_writable(mapping); 744 flush_dcache_mmap_lock(mapping); 745 /* insert tmp into the share list, just after mpnt */ 746 vma_interval_tree_insert_after(tmp, mpnt, 747 &mapping->i_mmap); 748 flush_dcache_mmap_unlock(mapping); 749 i_mmap_unlock_write(mapping); 750 } 751 752 if (!(tmp->vm_flags & VM_WIPEONFORK)) 753 retval = copy_page_range(tmp, mpnt); 754 755 if (retval) { 756 mpnt = vma_next(&vmi); 757 goto loop_out; 758 } 759 } 760 /* a new mm has just been created */ 761 retval = arch_dup_mmap(oldmm, mm); 762 loop_out: 763 vma_iter_free(&vmi); 764 if (!retval) { 765 mt_set_in_rcu(vmi.mas.tree); 766 } else if (mpnt) { 767 /* 768 * The entire maple tree has already been duplicated. If the 769 * mmap duplication fails, mark the failure point with 770 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 771 * stop releasing VMAs that have not been duplicated after this 772 * point. 773 */ 774 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 775 mas_store(&vmi.mas, XA_ZERO_ENTRY); 776 } 777 out: 778 mmap_write_unlock(mm); 779 flush_tlb_mm(oldmm); 780 mmap_write_unlock(oldmm); 781 dup_userfaultfd_complete(&uf); 782 fail_uprobe_end: 783 uprobe_end_dup_mmap(); 784 return retval; 785 786 fail_nomem_anon_vma_fork: 787 mpol_put(vma_policy(tmp)); 788 fail_nomem_policy: 789 vm_area_free(tmp); 790 fail_nomem: 791 retval = -ENOMEM; 792 vm_unacct_memory(charge); 793 goto loop_out; 794 } 795 796 static inline int mm_alloc_pgd(struct mm_struct *mm) 797 { 798 mm->pgd = pgd_alloc(mm); 799 if (unlikely(!mm->pgd)) 800 return -ENOMEM; 801 return 0; 802 } 803 804 static inline void mm_free_pgd(struct mm_struct *mm) 805 { 806 pgd_free(mm, mm->pgd); 807 } 808 #else 809 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 810 { 811 mmap_write_lock(oldmm); 812 dup_mm_exe_file(mm, oldmm); 813 mmap_write_unlock(oldmm); 814 return 0; 815 } 816 #define mm_alloc_pgd(mm) (0) 817 #define mm_free_pgd(mm) 818 #endif /* CONFIG_MMU */ 819 820 static void check_mm(struct mm_struct *mm) 821 { 822 int i; 823 824 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 825 "Please make sure 'struct resident_page_types[]' is updated as well"); 826 827 for (i = 0; i < NR_MM_COUNTERS; i++) { 828 long x = percpu_counter_sum(&mm->rss_stat[i]); 829 830 if (unlikely(x)) 831 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 832 mm, resident_page_types[i], x); 833 } 834 835 if (mm_pgtables_bytes(mm)) 836 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 837 mm_pgtables_bytes(mm)); 838 839 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 840 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 841 #endif 842 } 843 844 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 845 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 846 847 static void do_check_lazy_tlb(void *arg) 848 { 849 struct mm_struct *mm = arg; 850 851 WARN_ON_ONCE(current->active_mm == mm); 852 } 853 854 static void do_shoot_lazy_tlb(void *arg) 855 { 856 struct mm_struct *mm = arg; 857 858 if (current->active_mm == mm) { 859 WARN_ON_ONCE(current->mm); 860 current->active_mm = &init_mm; 861 switch_mm(mm, &init_mm, current); 862 } 863 } 864 865 static void cleanup_lazy_tlbs(struct mm_struct *mm) 866 { 867 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 868 /* 869 * In this case, lazy tlb mms are refounted and would not reach 870 * __mmdrop until all CPUs have switched away and mmdrop()ed. 871 */ 872 return; 873 } 874 875 /* 876 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 877 * requires lazy mm users to switch to another mm when the refcount 878 * drops to zero, before the mm is freed. This requires IPIs here to 879 * switch kernel threads to init_mm. 880 * 881 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 882 * switch with the final userspace teardown TLB flush which leaves the 883 * mm lazy on this CPU but no others, reducing the need for additional 884 * IPIs here. There are cases where a final IPI is still required here, 885 * such as the final mmdrop being performed on a different CPU than the 886 * one exiting, or kernel threads using the mm when userspace exits. 887 * 888 * IPI overheads have not found to be expensive, but they could be 889 * reduced in a number of possible ways, for example (roughly 890 * increasing order of complexity): 891 * - The last lazy reference created by exit_mm() could instead switch 892 * to init_mm, however it's probable this will run on the same CPU 893 * immediately afterwards, so this may not reduce IPIs much. 894 * - A batch of mms requiring IPIs could be gathered and freed at once. 895 * - CPUs store active_mm where it can be remotely checked without a 896 * lock, to filter out false-positives in the cpumask. 897 * - After mm_users or mm_count reaches zero, switching away from the 898 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 899 * with some batching or delaying of the final IPIs. 900 * - A delayed freeing and RCU-like quiescing sequence based on mm 901 * switching to avoid IPIs completely. 902 */ 903 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 904 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 905 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 906 } 907 908 /* 909 * Called when the last reference to the mm 910 * is dropped: either by a lazy thread or by 911 * mmput. Free the page directory and the mm. 912 */ 913 void __mmdrop(struct mm_struct *mm) 914 { 915 BUG_ON(mm == &init_mm); 916 WARN_ON_ONCE(mm == current->mm); 917 918 /* Ensure no CPUs are using this as their lazy tlb mm */ 919 cleanup_lazy_tlbs(mm); 920 921 WARN_ON_ONCE(mm == current->active_mm); 922 mm_free_pgd(mm); 923 destroy_context(mm); 924 mmu_notifier_subscriptions_destroy(mm); 925 check_mm(mm); 926 put_user_ns(mm->user_ns); 927 mm_pasid_drop(mm); 928 mm_destroy_cid(mm); 929 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 930 931 free_mm(mm); 932 } 933 EXPORT_SYMBOL_GPL(__mmdrop); 934 935 static void mmdrop_async_fn(struct work_struct *work) 936 { 937 struct mm_struct *mm; 938 939 mm = container_of(work, struct mm_struct, async_put_work); 940 __mmdrop(mm); 941 } 942 943 static void mmdrop_async(struct mm_struct *mm) 944 { 945 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 946 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 947 schedule_work(&mm->async_put_work); 948 } 949 } 950 951 static inline void free_signal_struct(struct signal_struct *sig) 952 { 953 taskstats_tgid_free(sig); 954 sched_autogroup_exit(sig); 955 /* 956 * __mmdrop is not safe to call from softirq context on x86 due to 957 * pgd_dtor so postpone it to the async context 958 */ 959 if (sig->oom_mm) 960 mmdrop_async(sig->oom_mm); 961 kmem_cache_free(signal_cachep, sig); 962 } 963 964 static inline void put_signal_struct(struct signal_struct *sig) 965 { 966 if (refcount_dec_and_test(&sig->sigcnt)) 967 free_signal_struct(sig); 968 } 969 970 void __put_task_struct(struct task_struct *tsk) 971 { 972 WARN_ON(!tsk->exit_state); 973 WARN_ON(refcount_read(&tsk->usage)); 974 WARN_ON(tsk == current); 975 976 io_uring_free(tsk); 977 cgroup_free(tsk); 978 task_numa_free(tsk, true); 979 security_task_free(tsk); 980 exit_creds(tsk); 981 delayacct_tsk_free(tsk); 982 put_signal_struct(tsk->signal); 983 sched_core_free(tsk); 984 free_task(tsk); 985 } 986 EXPORT_SYMBOL_GPL(__put_task_struct); 987 988 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 989 { 990 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 991 992 __put_task_struct(task); 993 } 994 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 995 996 void __init __weak arch_task_cache_init(void) { } 997 998 /* 999 * set_max_threads 1000 */ 1001 static void set_max_threads(unsigned int max_threads_suggested) 1002 { 1003 u64 threads; 1004 unsigned long nr_pages = totalram_pages(); 1005 1006 /* 1007 * The number of threads shall be limited such that the thread 1008 * structures may only consume a small part of the available memory. 1009 */ 1010 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1011 threads = MAX_THREADS; 1012 else 1013 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1014 (u64) THREAD_SIZE * 8UL); 1015 1016 if (threads > max_threads_suggested) 1017 threads = max_threads_suggested; 1018 1019 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1020 } 1021 1022 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1023 /* Initialized by the architecture: */ 1024 int arch_task_struct_size __read_mostly; 1025 #endif 1026 1027 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1028 { 1029 /* Fetch thread_struct whitelist for the architecture. */ 1030 arch_thread_struct_whitelist(offset, size); 1031 1032 /* 1033 * Handle zero-sized whitelist or empty thread_struct, otherwise 1034 * adjust offset to position of thread_struct in task_struct. 1035 */ 1036 if (unlikely(*size == 0)) 1037 *offset = 0; 1038 else 1039 *offset += offsetof(struct task_struct, thread); 1040 } 1041 1042 void __init fork_init(void) 1043 { 1044 int i; 1045 #ifndef ARCH_MIN_TASKALIGN 1046 #define ARCH_MIN_TASKALIGN 0 1047 #endif 1048 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1049 unsigned long useroffset, usersize; 1050 1051 /* create a slab on which task_structs can be allocated */ 1052 task_struct_whitelist(&useroffset, &usersize); 1053 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1054 arch_task_struct_size, align, 1055 SLAB_PANIC|SLAB_ACCOUNT, 1056 useroffset, usersize, NULL); 1057 1058 /* do the arch specific task caches init */ 1059 arch_task_cache_init(); 1060 1061 set_max_threads(MAX_THREADS); 1062 1063 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1064 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1065 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1066 init_task.signal->rlim[RLIMIT_NPROC]; 1067 1068 for (i = 0; i < UCOUNT_COUNTS; i++) 1069 init_user_ns.ucount_max[i] = max_threads/2; 1070 1071 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1074 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1075 1076 #ifdef CONFIG_VMAP_STACK 1077 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1078 NULL, free_vm_stack_cache); 1079 #endif 1080 1081 scs_init(); 1082 1083 lockdep_init_task(&init_task); 1084 uprobes_init(); 1085 } 1086 1087 int __weak arch_dup_task_struct(struct task_struct *dst, 1088 struct task_struct *src) 1089 { 1090 *dst = *src; 1091 return 0; 1092 } 1093 1094 void set_task_stack_end_magic(struct task_struct *tsk) 1095 { 1096 unsigned long *stackend; 1097 1098 stackend = end_of_stack(tsk); 1099 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1100 } 1101 1102 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1103 { 1104 struct task_struct *tsk; 1105 int err; 1106 1107 if (node == NUMA_NO_NODE) 1108 node = tsk_fork_get_node(orig); 1109 tsk = alloc_task_struct_node(node); 1110 if (!tsk) 1111 return NULL; 1112 1113 err = arch_dup_task_struct(tsk, orig); 1114 if (err) 1115 goto free_tsk; 1116 1117 err = alloc_thread_stack_node(tsk, node); 1118 if (err) 1119 goto free_tsk; 1120 1121 #ifdef CONFIG_THREAD_INFO_IN_TASK 1122 refcount_set(&tsk->stack_refcount, 1); 1123 #endif 1124 account_kernel_stack(tsk, 1); 1125 1126 err = scs_prepare(tsk, node); 1127 if (err) 1128 goto free_stack; 1129 1130 #ifdef CONFIG_SECCOMP 1131 /* 1132 * We must handle setting up seccomp filters once we're under 1133 * the sighand lock in case orig has changed between now and 1134 * then. Until then, filter must be NULL to avoid messing up 1135 * the usage counts on the error path calling free_task. 1136 */ 1137 tsk->seccomp.filter = NULL; 1138 #endif 1139 1140 setup_thread_stack(tsk, orig); 1141 clear_user_return_notifier(tsk); 1142 clear_tsk_need_resched(tsk); 1143 set_task_stack_end_magic(tsk); 1144 clear_syscall_work_syscall_user_dispatch(tsk); 1145 1146 #ifdef CONFIG_STACKPROTECTOR 1147 tsk->stack_canary = get_random_canary(); 1148 #endif 1149 if (orig->cpus_ptr == &orig->cpus_mask) 1150 tsk->cpus_ptr = &tsk->cpus_mask; 1151 dup_user_cpus_ptr(tsk, orig, node); 1152 1153 /* 1154 * One for the user space visible state that goes away when reaped. 1155 * One for the scheduler. 1156 */ 1157 refcount_set(&tsk->rcu_users, 2); 1158 /* One for the rcu users */ 1159 refcount_set(&tsk->usage, 1); 1160 #ifdef CONFIG_BLK_DEV_IO_TRACE 1161 tsk->btrace_seq = 0; 1162 #endif 1163 tsk->splice_pipe = NULL; 1164 tsk->task_frag.page = NULL; 1165 tsk->wake_q.next = NULL; 1166 tsk->worker_private = NULL; 1167 1168 kcov_task_init(tsk); 1169 kmsan_task_create(tsk); 1170 kmap_local_fork(tsk); 1171 1172 #ifdef CONFIG_FAULT_INJECTION 1173 tsk->fail_nth = 0; 1174 #endif 1175 1176 #ifdef CONFIG_BLK_CGROUP 1177 tsk->throttle_disk = NULL; 1178 tsk->use_memdelay = 0; 1179 #endif 1180 1181 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1182 tsk->pasid_activated = 0; 1183 #endif 1184 1185 #ifdef CONFIG_MEMCG 1186 tsk->active_memcg = NULL; 1187 #endif 1188 1189 #ifdef CONFIG_CPU_SUP_INTEL 1190 tsk->reported_split_lock = 0; 1191 #endif 1192 1193 #ifdef CONFIG_SCHED_MM_CID 1194 tsk->mm_cid = -1; 1195 tsk->last_mm_cid = -1; 1196 tsk->mm_cid_active = 0; 1197 tsk->migrate_from_cpu = -1; 1198 #endif 1199 return tsk; 1200 1201 free_stack: 1202 exit_task_stack_account(tsk); 1203 free_thread_stack(tsk); 1204 free_tsk: 1205 free_task_struct(tsk); 1206 return NULL; 1207 } 1208 1209 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1210 1211 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1212 1213 static int __init coredump_filter_setup(char *s) 1214 { 1215 default_dump_filter = 1216 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1217 MMF_DUMP_FILTER_MASK; 1218 return 1; 1219 } 1220 1221 __setup("coredump_filter=", coredump_filter_setup); 1222 1223 #include <linux/init_task.h> 1224 1225 static void mm_init_aio(struct mm_struct *mm) 1226 { 1227 #ifdef CONFIG_AIO 1228 spin_lock_init(&mm->ioctx_lock); 1229 mm->ioctx_table = NULL; 1230 #endif 1231 } 1232 1233 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1234 struct task_struct *p) 1235 { 1236 #ifdef CONFIG_MEMCG 1237 if (mm->owner == p) 1238 WRITE_ONCE(mm->owner, NULL); 1239 #endif 1240 } 1241 1242 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1243 { 1244 #ifdef CONFIG_MEMCG 1245 mm->owner = p; 1246 #endif 1247 } 1248 1249 static void mm_init_uprobes_state(struct mm_struct *mm) 1250 { 1251 #ifdef CONFIG_UPROBES 1252 mm->uprobes_state.xol_area = NULL; 1253 #endif 1254 } 1255 1256 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1257 struct user_namespace *user_ns) 1258 { 1259 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1260 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1261 atomic_set(&mm->mm_users, 1); 1262 atomic_set(&mm->mm_count, 1); 1263 seqcount_init(&mm->write_protect_seq); 1264 mmap_init_lock(mm); 1265 INIT_LIST_HEAD(&mm->mmlist); 1266 #ifdef CONFIG_PER_VMA_LOCK 1267 mm->mm_lock_seq = 0; 1268 #endif 1269 mm_pgtables_bytes_init(mm); 1270 mm->map_count = 0; 1271 mm->locked_vm = 0; 1272 atomic64_set(&mm->pinned_vm, 0); 1273 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1274 spin_lock_init(&mm->page_table_lock); 1275 spin_lock_init(&mm->arg_lock); 1276 mm_init_cpumask(mm); 1277 mm_init_aio(mm); 1278 mm_init_owner(mm, p); 1279 mm_pasid_init(mm); 1280 RCU_INIT_POINTER(mm->exe_file, NULL); 1281 mmu_notifier_subscriptions_init(mm); 1282 init_tlb_flush_pending(mm); 1283 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1284 mm->pmd_huge_pte = NULL; 1285 #endif 1286 mm_init_uprobes_state(mm); 1287 hugetlb_count_init(mm); 1288 1289 if (current->mm) { 1290 mm->flags = mmf_init_flags(current->mm->flags); 1291 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1292 } else { 1293 mm->flags = default_dump_filter; 1294 mm->def_flags = 0; 1295 } 1296 1297 if (mm_alloc_pgd(mm)) 1298 goto fail_nopgd; 1299 1300 if (init_new_context(p, mm)) 1301 goto fail_nocontext; 1302 1303 if (mm_alloc_cid(mm)) 1304 goto fail_cid; 1305 1306 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1307 NR_MM_COUNTERS)) 1308 goto fail_pcpu; 1309 1310 mm->user_ns = get_user_ns(user_ns); 1311 lru_gen_init_mm(mm); 1312 return mm; 1313 1314 fail_pcpu: 1315 mm_destroy_cid(mm); 1316 fail_cid: 1317 destroy_context(mm); 1318 fail_nocontext: 1319 mm_free_pgd(mm); 1320 fail_nopgd: 1321 free_mm(mm); 1322 return NULL; 1323 } 1324 1325 /* 1326 * Allocate and initialize an mm_struct. 1327 */ 1328 struct mm_struct *mm_alloc(void) 1329 { 1330 struct mm_struct *mm; 1331 1332 mm = allocate_mm(); 1333 if (!mm) 1334 return NULL; 1335 1336 memset(mm, 0, sizeof(*mm)); 1337 return mm_init(mm, current, current_user_ns()); 1338 } 1339 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1340 1341 static inline void __mmput(struct mm_struct *mm) 1342 { 1343 VM_BUG_ON(atomic_read(&mm->mm_users)); 1344 1345 uprobe_clear_state(mm); 1346 exit_aio(mm); 1347 ksm_exit(mm); 1348 khugepaged_exit(mm); /* must run before exit_mmap */ 1349 exit_mmap(mm); 1350 mm_put_huge_zero_folio(mm); 1351 set_mm_exe_file(mm, NULL); 1352 if (!list_empty(&mm->mmlist)) { 1353 spin_lock(&mmlist_lock); 1354 list_del(&mm->mmlist); 1355 spin_unlock(&mmlist_lock); 1356 } 1357 if (mm->binfmt) 1358 module_put(mm->binfmt->module); 1359 lru_gen_del_mm(mm); 1360 mmdrop(mm); 1361 } 1362 1363 /* 1364 * Decrement the use count and release all resources for an mm. 1365 */ 1366 void mmput(struct mm_struct *mm) 1367 { 1368 might_sleep(); 1369 1370 if (atomic_dec_and_test(&mm->mm_users)) 1371 __mmput(mm); 1372 } 1373 EXPORT_SYMBOL_GPL(mmput); 1374 1375 #ifdef CONFIG_MMU 1376 static void mmput_async_fn(struct work_struct *work) 1377 { 1378 struct mm_struct *mm = container_of(work, struct mm_struct, 1379 async_put_work); 1380 1381 __mmput(mm); 1382 } 1383 1384 void mmput_async(struct mm_struct *mm) 1385 { 1386 if (atomic_dec_and_test(&mm->mm_users)) { 1387 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1388 schedule_work(&mm->async_put_work); 1389 } 1390 } 1391 EXPORT_SYMBOL_GPL(mmput_async); 1392 #endif 1393 1394 /** 1395 * set_mm_exe_file - change a reference to the mm's executable file 1396 * @mm: The mm to change. 1397 * @new_exe_file: The new file to use. 1398 * 1399 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1400 * 1401 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1402 * invocations: in mmput() nobody alive left, in execve it happens before 1403 * the new mm is made visible to anyone. 1404 * 1405 * Can only fail if new_exe_file != NULL. 1406 */ 1407 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1408 { 1409 struct file *old_exe_file; 1410 1411 /* 1412 * It is safe to dereference the exe_file without RCU as 1413 * this function is only called if nobody else can access 1414 * this mm -- see comment above for justification. 1415 */ 1416 old_exe_file = rcu_dereference_raw(mm->exe_file); 1417 1418 if (new_exe_file) { 1419 /* 1420 * We expect the caller (i.e., sys_execve) to already denied 1421 * write access, so this is unlikely to fail. 1422 */ 1423 if (unlikely(deny_write_access(new_exe_file))) 1424 return -EACCES; 1425 get_file(new_exe_file); 1426 } 1427 rcu_assign_pointer(mm->exe_file, new_exe_file); 1428 if (old_exe_file) { 1429 allow_write_access(old_exe_file); 1430 fput(old_exe_file); 1431 } 1432 return 0; 1433 } 1434 1435 /** 1436 * replace_mm_exe_file - replace a reference to the mm's executable file 1437 * @mm: The mm to change. 1438 * @new_exe_file: The new file to use. 1439 * 1440 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1441 * 1442 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1443 */ 1444 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1445 { 1446 struct vm_area_struct *vma; 1447 struct file *old_exe_file; 1448 int ret = 0; 1449 1450 /* Forbid mm->exe_file change if old file still mapped. */ 1451 old_exe_file = get_mm_exe_file(mm); 1452 if (old_exe_file) { 1453 VMA_ITERATOR(vmi, mm, 0); 1454 mmap_read_lock(mm); 1455 for_each_vma(vmi, vma) { 1456 if (!vma->vm_file) 1457 continue; 1458 if (path_equal(&vma->vm_file->f_path, 1459 &old_exe_file->f_path)) { 1460 ret = -EBUSY; 1461 break; 1462 } 1463 } 1464 mmap_read_unlock(mm); 1465 fput(old_exe_file); 1466 if (ret) 1467 return ret; 1468 } 1469 1470 ret = deny_write_access(new_exe_file); 1471 if (ret) 1472 return -EACCES; 1473 get_file(new_exe_file); 1474 1475 /* set the new file */ 1476 mmap_write_lock(mm); 1477 old_exe_file = rcu_dereference_raw(mm->exe_file); 1478 rcu_assign_pointer(mm->exe_file, new_exe_file); 1479 mmap_write_unlock(mm); 1480 1481 if (old_exe_file) { 1482 allow_write_access(old_exe_file); 1483 fput(old_exe_file); 1484 } 1485 return 0; 1486 } 1487 1488 /** 1489 * get_mm_exe_file - acquire a reference to the mm's executable file 1490 * @mm: The mm of interest. 1491 * 1492 * Returns %NULL if mm has no associated executable file. 1493 * User must release file via fput(). 1494 */ 1495 struct file *get_mm_exe_file(struct mm_struct *mm) 1496 { 1497 struct file *exe_file; 1498 1499 rcu_read_lock(); 1500 exe_file = get_file_rcu(&mm->exe_file); 1501 rcu_read_unlock(); 1502 return exe_file; 1503 } 1504 1505 /** 1506 * get_task_exe_file - acquire a reference to the task's executable file 1507 * @task: The task. 1508 * 1509 * Returns %NULL if task's mm (if any) has no associated executable file or 1510 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1511 * User must release file via fput(). 1512 */ 1513 struct file *get_task_exe_file(struct task_struct *task) 1514 { 1515 struct file *exe_file = NULL; 1516 struct mm_struct *mm; 1517 1518 task_lock(task); 1519 mm = task->mm; 1520 if (mm) { 1521 if (!(task->flags & PF_KTHREAD)) 1522 exe_file = get_mm_exe_file(mm); 1523 } 1524 task_unlock(task); 1525 return exe_file; 1526 } 1527 1528 /** 1529 * get_task_mm - acquire a reference to the task's mm 1530 * @task: The task. 1531 * 1532 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1533 * this kernel workthread has transiently adopted a user mm with use_mm, 1534 * to do its AIO) is not set and if so returns a reference to it, after 1535 * bumping up the use count. User must release the mm via mmput() 1536 * after use. Typically used by /proc and ptrace. 1537 */ 1538 struct mm_struct *get_task_mm(struct task_struct *task) 1539 { 1540 struct mm_struct *mm; 1541 1542 task_lock(task); 1543 mm = task->mm; 1544 if (mm) { 1545 if (task->flags & PF_KTHREAD) 1546 mm = NULL; 1547 else 1548 mmget(mm); 1549 } 1550 task_unlock(task); 1551 return mm; 1552 } 1553 EXPORT_SYMBOL_GPL(get_task_mm); 1554 1555 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1556 { 1557 struct mm_struct *mm; 1558 int err; 1559 1560 err = down_read_killable(&task->signal->exec_update_lock); 1561 if (err) 1562 return ERR_PTR(err); 1563 1564 mm = get_task_mm(task); 1565 if (mm && mm != current->mm && 1566 !ptrace_may_access(task, mode)) { 1567 mmput(mm); 1568 mm = ERR_PTR(-EACCES); 1569 } 1570 up_read(&task->signal->exec_update_lock); 1571 1572 return mm; 1573 } 1574 1575 static void complete_vfork_done(struct task_struct *tsk) 1576 { 1577 struct completion *vfork; 1578 1579 task_lock(tsk); 1580 vfork = tsk->vfork_done; 1581 if (likely(vfork)) { 1582 tsk->vfork_done = NULL; 1583 complete(vfork); 1584 } 1585 task_unlock(tsk); 1586 } 1587 1588 static int wait_for_vfork_done(struct task_struct *child, 1589 struct completion *vfork) 1590 { 1591 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1592 int killed; 1593 1594 cgroup_enter_frozen(); 1595 killed = wait_for_completion_state(vfork, state); 1596 cgroup_leave_frozen(false); 1597 1598 if (killed) { 1599 task_lock(child); 1600 child->vfork_done = NULL; 1601 task_unlock(child); 1602 } 1603 1604 put_task_struct(child); 1605 return killed; 1606 } 1607 1608 /* Please note the differences between mmput and mm_release. 1609 * mmput is called whenever we stop holding onto a mm_struct, 1610 * error success whatever. 1611 * 1612 * mm_release is called after a mm_struct has been removed 1613 * from the current process. 1614 * 1615 * This difference is important for error handling, when we 1616 * only half set up a mm_struct for a new process and need to restore 1617 * the old one. Because we mmput the new mm_struct before 1618 * restoring the old one. . . 1619 * Eric Biederman 10 January 1998 1620 */ 1621 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1622 { 1623 uprobe_free_utask(tsk); 1624 1625 /* Get rid of any cached register state */ 1626 deactivate_mm(tsk, mm); 1627 1628 /* 1629 * Signal userspace if we're not exiting with a core dump 1630 * because we want to leave the value intact for debugging 1631 * purposes. 1632 */ 1633 if (tsk->clear_child_tid) { 1634 if (atomic_read(&mm->mm_users) > 1) { 1635 /* 1636 * We don't check the error code - if userspace has 1637 * not set up a proper pointer then tough luck. 1638 */ 1639 put_user(0, tsk->clear_child_tid); 1640 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1641 1, NULL, NULL, 0, 0); 1642 } 1643 tsk->clear_child_tid = NULL; 1644 } 1645 1646 /* 1647 * All done, finally we can wake up parent and return this mm to him. 1648 * Also kthread_stop() uses this completion for synchronization. 1649 */ 1650 if (tsk->vfork_done) 1651 complete_vfork_done(tsk); 1652 } 1653 1654 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1655 { 1656 futex_exit_release(tsk); 1657 mm_release(tsk, mm); 1658 } 1659 1660 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1661 { 1662 futex_exec_release(tsk); 1663 mm_release(tsk, mm); 1664 } 1665 1666 /** 1667 * dup_mm() - duplicates an existing mm structure 1668 * @tsk: the task_struct with which the new mm will be associated. 1669 * @oldmm: the mm to duplicate. 1670 * 1671 * Allocates a new mm structure and duplicates the provided @oldmm structure 1672 * content into it. 1673 * 1674 * Return: the duplicated mm or NULL on failure. 1675 */ 1676 static struct mm_struct *dup_mm(struct task_struct *tsk, 1677 struct mm_struct *oldmm) 1678 { 1679 struct mm_struct *mm; 1680 int err; 1681 1682 mm = allocate_mm(); 1683 if (!mm) 1684 goto fail_nomem; 1685 1686 memcpy(mm, oldmm, sizeof(*mm)); 1687 1688 if (!mm_init(mm, tsk, mm->user_ns)) 1689 goto fail_nomem; 1690 1691 err = dup_mmap(mm, oldmm); 1692 if (err) 1693 goto free_pt; 1694 1695 mm->hiwater_rss = get_mm_rss(mm); 1696 mm->hiwater_vm = mm->total_vm; 1697 1698 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1699 goto free_pt; 1700 1701 return mm; 1702 1703 free_pt: 1704 /* don't put binfmt in mmput, we haven't got module yet */ 1705 mm->binfmt = NULL; 1706 mm_init_owner(mm, NULL); 1707 mmput(mm); 1708 1709 fail_nomem: 1710 return NULL; 1711 } 1712 1713 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1714 { 1715 struct mm_struct *mm, *oldmm; 1716 1717 tsk->min_flt = tsk->maj_flt = 0; 1718 tsk->nvcsw = tsk->nivcsw = 0; 1719 #ifdef CONFIG_DETECT_HUNG_TASK 1720 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1721 tsk->last_switch_time = 0; 1722 #endif 1723 1724 tsk->mm = NULL; 1725 tsk->active_mm = NULL; 1726 1727 /* 1728 * Are we cloning a kernel thread? 1729 * 1730 * We need to steal a active VM for that.. 1731 */ 1732 oldmm = current->mm; 1733 if (!oldmm) 1734 return 0; 1735 1736 if (clone_flags & CLONE_VM) { 1737 mmget(oldmm); 1738 mm = oldmm; 1739 } else { 1740 mm = dup_mm(tsk, current->mm); 1741 if (!mm) 1742 return -ENOMEM; 1743 } 1744 1745 tsk->mm = mm; 1746 tsk->active_mm = mm; 1747 sched_mm_cid_fork(tsk); 1748 return 0; 1749 } 1750 1751 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1752 { 1753 struct fs_struct *fs = current->fs; 1754 if (clone_flags & CLONE_FS) { 1755 /* tsk->fs is already what we want */ 1756 spin_lock(&fs->lock); 1757 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1758 if (fs->in_exec) { 1759 spin_unlock(&fs->lock); 1760 return -EAGAIN; 1761 } 1762 fs->users++; 1763 spin_unlock(&fs->lock); 1764 return 0; 1765 } 1766 tsk->fs = copy_fs_struct(fs); 1767 if (!tsk->fs) 1768 return -ENOMEM; 1769 return 0; 1770 } 1771 1772 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1773 int no_files) 1774 { 1775 struct files_struct *oldf, *newf; 1776 int error = 0; 1777 1778 /* 1779 * A background process may not have any files ... 1780 */ 1781 oldf = current->files; 1782 if (!oldf) 1783 goto out; 1784 1785 if (no_files) { 1786 tsk->files = NULL; 1787 goto out; 1788 } 1789 1790 if (clone_flags & CLONE_FILES) { 1791 atomic_inc(&oldf->count); 1792 goto out; 1793 } 1794 1795 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1796 if (!newf) 1797 goto out; 1798 1799 tsk->files = newf; 1800 error = 0; 1801 out: 1802 return error; 1803 } 1804 1805 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1806 { 1807 struct sighand_struct *sig; 1808 1809 if (clone_flags & CLONE_SIGHAND) { 1810 refcount_inc(¤t->sighand->count); 1811 return 0; 1812 } 1813 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1814 RCU_INIT_POINTER(tsk->sighand, sig); 1815 if (!sig) 1816 return -ENOMEM; 1817 1818 refcount_set(&sig->count, 1); 1819 spin_lock_irq(¤t->sighand->siglock); 1820 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1821 spin_unlock_irq(¤t->sighand->siglock); 1822 1823 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1824 if (clone_flags & CLONE_CLEAR_SIGHAND) 1825 flush_signal_handlers(tsk, 0); 1826 1827 return 0; 1828 } 1829 1830 void __cleanup_sighand(struct sighand_struct *sighand) 1831 { 1832 if (refcount_dec_and_test(&sighand->count)) { 1833 signalfd_cleanup(sighand); 1834 /* 1835 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1836 * without an RCU grace period, see __lock_task_sighand(). 1837 */ 1838 kmem_cache_free(sighand_cachep, sighand); 1839 } 1840 } 1841 1842 /* 1843 * Initialize POSIX timer handling for a thread group. 1844 */ 1845 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1846 { 1847 struct posix_cputimers *pct = &sig->posix_cputimers; 1848 unsigned long cpu_limit; 1849 1850 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1851 posix_cputimers_group_init(pct, cpu_limit); 1852 } 1853 1854 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1855 { 1856 struct signal_struct *sig; 1857 1858 if (clone_flags & CLONE_THREAD) 1859 return 0; 1860 1861 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1862 tsk->signal = sig; 1863 if (!sig) 1864 return -ENOMEM; 1865 1866 sig->nr_threads = 1; 1867 sig->quick_threads = 1; 1868 atomic_set(&sig->live, 1); 1869 refcount_set(&sig->sigcnt, 1); 1870 1871 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1872 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1873 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1874 1875 init_waitqueue_head(&sig->wait_chldexit); 1876 sig->curr_target = tsk; 1877 init_sigpending(&sig->shared_pending); 1878 INIT_HLIST_HEAD(&sig->multiprocess); 1879 seqlock_init(&sig->stats_lock); 1880 prev_cputime_init(&sig->prev_cputime); 1881 1882 #ifdef CONFIG_POSIX_TIMERS 1883 INIT_LIST_HEAD(&sig->posix_timers); 1884 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1885 sig->real_timer.function = it_real_fn; 1886 #endif 1887 1888 task_lock(current->group_leader); 1889 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1890 task_unlock(current->group_leader); 1891 1892 posix_cpu_timers_init_group(sig); 1893 1894 tty_audit_fork(sig); 1895 sched_autogroup_fork(sig); 1896 1897 sig->oom_score_adj = current->signal->oom_score_adj; 1898 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1899 1900 mutex_init(&sig->cred_guard_mutex); 1901 init_rwsem(&sig->exec_update_lock); 1902 1903 return 0; 1904 } 1905 1906 static void copy_seccomp(struct task_struct *p) 1907 { 1908 #ifdef CONFIG_SECCOMP 1909 /* 1910 * Must be called with sighand->lock held, which is common to 1911 * all threads in the group. Holding cred_guard_mutex is not 1912 * needed because this new task is not yet running and cannot 1913 * be racing exec. 1914 */ 1915 assert_spin_locked(¤t->sighand->siglock); 1916 1917 /* Ref-count the new filter user, and assign it. */ 1918 get_seccomp_filter(current); 1919 p->seccomp = current->seccomp; 1920 1921 /* 1922 * Explicitly enable no_new_privs here in case it got set 1923 * between the task_struct being duplicated and holding the 1924 * sighand lock. The seccomp state and nnp must be in sync. 1925 */ 1926 if (task_no_new_privs(current)) 1927 task_set_no_new_privs(p); 1928 1929 /* 1930 * If the parent gained a seccomp mode after copying thread 1931 * flags and between before we held the sighand lock, we have 1932 * to manually enable the seccomp thread flag here. 1933 */ 1934 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1935 set_task_syscall_work(p, SECCOMP); 1936 #endif 1937 } 1938 1939 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1940 { 1941 current->clear_child_tid = tidptr; 1942 1943 return task_pid_vnr(current); 1944 } 1945 1946 static void rt_mutex_init_task(struct task_struct *p) 1947 { 1948 raw_spin_lock_init(&p->pi_lock); 1949 #ifdef CONFIG_RT_MUTEXES 1950 p->pi_waiters = RB_ROOT_CACHED; 1951 p->pi_top_task = NULL; 1952 p->pi_blocked_on = NULL; 1953 #endif 1954 } 1955 1956 static inline void init_task_pid_links(struct task_struct *task) 1957 { 1958 enum pid_type type; 1959 1960 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1961 INIT_HLIST_NODE(&task->pid_links[type]); 1962 } 1963 1964 static inline void 1965 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1966 { 1967 if (type == PIDTYPE_PID) 1968 task->thread_pid = pid; 1969 else 1970 task->signal->pids[type] = pid; 1971 } 1972 1973 static inline void rcu_copy_process(struct task_struct *p) 1974 { 1975 #ifdef CONFIG_PREEMPT_RCU 1976 p->rcu_read_lock_nesting = 0; 1977 p->rcu_read_unlock_special.s = 0; 1978 p->rcu_blocked_node = NULL; 1979 INIT_LIST_HEAD(&p->rcu_node_entry); 1980 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1981 #ifdef CONFIG_TASKS_RCU 1982 p->rcu_tasks_holdout = false; 1983 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1984 p->rcu_tasks_idle_cpu = -1; 1985 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1986 #endif /* #ifdef CONFIG_TASKS_RCU */ 1987 #ifdef CONFIG_TASKS_TRACE_RCU 1988 p->trc_reader_nesting = 0; 1989 p->trc_reader_special.s = 0; 1990 INIT_LIST_HEAD(&p->trc_holdout_list); 1991 INIT_LIST_HEAD(&p->trc_blkd_node); 1992 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1993 } 1994 1995 /** 1996 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1997 * @pid: the struct pid for which to create a pidfd 1998 * @flags: flags of the new @pidfd 1999 * @ret: Where to return the file for the pidfd. 2000 * 2001 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2002 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2003 * 2004 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2005 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2006 * pidfd file are prepared. 2007 * 2008 * If this function returns successfully the caller is responsible to either 2009 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2010 * order to install the pidfd into its file descriptor table or they must use 2011 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2012 * respectively. 2013 * 2014 * This function is useful when a pidfd must already be reserved but there 2015 * might still be points of failure afterwards and the caller wants to ensure 2016 * that no pidfd is leaked into its file descriptor table. 2017 * 2018 * Return: On success, a reserved pidfd is returned from the function and a new 2019 * pidfd file is returned in the last argument to the function. On 2020 * error, a negative error code is returned from the function and the 2021 * last argument remains unchanged. 2022 */ 2023 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2024 { 2025 int pidfd; 2026 struct file *pidfd_file; 2027 2028 pidfd = get_unused_fd_flags(O_CLOEXEC); 2029 if (pidfd < 0) 2030 return pidfd; 2031 2032 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2033 if (IS_ERR(pidfd_file)) { 2034 put_unused_fd(pidfd); 2035 return PTR_ERR(pidfd_file); 2036 } 2037 /* 2038 * anon_inode_getfile() ignores everything outside of the 2039 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2040 */ 2041 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2042 *ret = pidfd_file; 2043 return pidfd; 2044 } 2045 2046 /** 2047 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2048 * @pid: the struct pid for which to create a pidfd 2049 * @flags: flags of the new @pidfd 2050 * @ret: Where to return the pidfd. 2051 * 2052 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2053 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2054 * 2055 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2056 * task identified by @pid must be a thread-group leader. 2057 * 2058 * If this function returns successfully the caller is responsible to either 2059 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2060 * order to install the pidfd into its file descriptor table or they must use 2061 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2062 * respectively. 2063 * 2064 * This function is useful when a pidfd must already be reserved but there 2065 * might still be points of failure afterwards and the caller wants to ensure 2066 * that no pidfd is leaked into its file descriptor table. 2067 * 2068 * Return: On success, a reserved pidfd is returned from the function and a new 2069 * pidfd file is returned in the last argument to the function. On 2070 * error, a negative error code is returned from the function and the 2071 * last argument remains unchanged. 2072 */ 2073 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2074 { 2075 bool thread = flags & PIDFD_THREAD; 2076 2077 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2078 return -EINVAL; 2079 2080 return __pidfd_prepare(pid, flags, ret); 2081 } 2082 2083 static void __delayed_free_task(struct rcu_head *rhp) 2084 { 2085 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2086 2087 free_task(tsk); 2088 } 2089 2090 static __always_inline void delayed_free_task(struct task_struct *tsk) 2091 { 2092 if (IS_ENABLED(CONFIG_MEMCG)) 2093 call_rcu(&tsk->rcu, __delayed_free_task); 2094 else 2095 free_task(tsk); 2096 } 2097 2098 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2099 { 2100 /* Skip if kernel thread */ 2101 if (!tsk->mm) 2102 return; 2103 2104 /* Skip if spawning a thread or using vfork */ 2105 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2106 return; 2107 2108 /* We need to synchronize with __set_oom_adj */ 2109 mutex_lock(&oom_adj_mutex); 2110 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2111 /* Update the values in case they were changed after copy_signal */ 2112 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2113 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2114 mutex_unlock(&oom_adj_mutex); 2115 } 2116 2117 #ifdef CONFIG_RV 2118 static void rv_task_fork(struct task_struct *p) 2119 { 2120 int i; 2121 2122 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2123 p->rv[i].da_mon.monitoring = false; 2124 } 2125 #else 2126 #define rv_task_fork(p) do {} while (0) 2127 #endif 2128 2129 /* 2130 * This creates a new process as a copy of the old one, 2131 * but does not actually start it yet. 2132 * 2133 * It copies the registers, and all the appropriate 2134 * parts of the process environment (as per the clone 2135 * flags). The actual kick-off is left to the caller. 2136 */ 2137 __latent_entropy struct task_struct *copy_process( 2138 struct pid *pid, 2139 int trace, 2140 int node, 2141 struct kernel_clone_args *args) 2142 { 2143 int pidfd = -1, retval; 2144 struct task_struct *p; 2145 struct multiprocess_signals delayed; 2146 struct file *pidfile = NULL; 2147 const u64 clone_flags = args->flags; 2148 struct nsproxy *nsp = current->nsproxy; 2149 2150 /* 2151 * Don't allow sharing the root directory with processes in a different 2152 * namespace 2153 */ 2154 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2155 return ERR_PTR(-EINVAL); 2156 2157 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2158 return ERR_PTR(-EINVAL); 2159 2160 /* 2161 * Thread groups must share signals as well, and detached threads 2162 * can only be started up within the thread group. 2163 */ 2164 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2165 return ERR_PTR(-EINVAL); 2166 2167 /* 2168 * Shared signal handlers imply shared VM. By way of the above, 2169 * thread groups also imply shared VM. Blocking this case allows 2170 * for various simplifications in other code. 2171 */ 2172 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2173 return ERR_PTR(-EINVAL); 2174 2175 /* 2176 * Siblings of global init remain as zombies on exit since they are 2177 * not reaped by their parent (swapper). To solve this and to avoid 2178 * multi-rooted process trees, prevent global and container-inits 2179 * from creating siblings. 2180 */ 2181 if ((clone_flags & CLONE_PARENT) && 2182 current->signal->flags & SIGNAL_UNKILLABLE) 2183 return ERR_PTR(-EINVAL); 2184 2185 /* 2186 * If the new process will be in a different pid or user namespace 2187 * do not allow it to share a thread group with the forking task. 2188 */ 2189 if (clone_flags & CLONE_THREAD) { 2190 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2191 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2192 return ERR_PTR(-EINVAL); 2193 } 2194 2195 if (clone_flags & CLONE_PIDFD) { 2196 /* 2197 * - CLONE_DETACHED is blocked so that we can potentially 2198 * reuse it later for CLONE_PIDFD. 2199 */ 2200 if (clone_flags & CLONE_DETACHED) 2201 return ERR_PTR(-EINVAL); 2202 } 2203 2204 /* 2205 * Force any signals received before this point to be delivered 2206 * before the fork happens. Collect up signals sent to multiple 2207 * processes that happen during the fork and delay them so that 2208 * they appear to happen after the fork. 2209 */ 2210 sigemptyset(&delayed.signal); 2211 INIT_HLIST_NODE(&delayed.node); 2212 2213 spin_lock_irq(¤t->sighand->siglock); 2214 if (!(clone_flags & CLONE_THREAD)) 2215 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2216 recalc_sigpending(); 2217 spin_unlock_irq(¤t->sighand->siglock); 2218 retval = -ERESTARTNOINTR; 2219 if (task_sigpending(current)) 2220 goto fork_out; 2221 2222 retval = -ENOMEM; 2223 p = dup_task_struct(current, node); 2224 if (!p) 2225 goto fork_out; 2226 p->flags &= ~PF_KTHREAD; 2227 if (args->kthread) 2228 p->flags |= PF_KTHREAD; 2229 if (args->user_worker) { 2230 /* 2231 * Mark us a user worker, and block any signal that isn't 2232 * fatal or STOP 2233 */ 2234 p->flags |= PF_USER_WORKER; 2235 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2236 } 2237 if (args->io_thread) 2238 p->flags |= PF_IO_WORKER; 2239 2240 if (args->name) 2241 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2242 2243 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2244 /* 2245 * Clear TID on mm_release()? 2246 */ 2247 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2248 2249 ftrace_graph_init_task(p); 2250 2251 rt_mutex_init_task(p); 2252 2253 lockdep_assert_irqs_enabled(); 2254 #ifdef CONFIG_PROVE_LOCKING 2255 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2256 #endif 2257 retval = copy_creds(p, clone_flags); 2258 if (retval < 0) 2259 goto bad_fork_free; 2260 2261 retval = -EAGAIN; 2262 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2263 if (p->real_cred->user != INIT_USER && 2264 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2265 goto bad_fork_cleanup_count; 2266 } 2267 current->flags &= ~PF_NPROC_EXCEEDED; 2268 2269 /* 2270 * If multiple threads are within copy_process(), then this check 2271 * triggers too late. This doesn't hurt, the check is only there 2272 * to stop root fork bombs. 2273 */ 2274 retval = -EAGAIN; 2275 if (data_race(nr_threads >= max_threads)) 2276 goto bad_fork_cleanup_count; 2277 2278 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2279 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2280 p->flags |= PF_FORKNOEXEC; 2281 INIT_LIST_HEAD(&p->children); 2282 INIT_LIST_HEAD(&p->sibling); 2283 rcu_copy_process(p); 2284 p->vfork_done = NULL; 2285 spin_lock_init(&p->alloc_lock); 2286 2287 init_sigpending(&p->pending); 2288 2289 p->utime = p->stime = p->gtime = 0; 2290 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2291 p->utimescaled = p->stimescaled = 0; 2292 #endif 2293 prev_cputime_init(&p->prev_cputime); 2294 2295 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2296 seqcount_init(&p->vtime.seqcount); 2297 p->vtime.starttime = 0; 2298 p->vtime.state = VTIME_INACTIVE; 2299 #endif 2300 2301 #ifdef CONFIG_IO_URING 2302 p->io_uring = NULL; 2303 #endif 2304 2305 p->default_timer_slack_ns = current->timer_slack_ns; 2306 2307 #ifdef CONFIG_PSI 2308 p->psi_flags = 0; 2309 #endif 2310 2311 task_io_accounting_init(&p->ioac); 2312 acct_clear_integrals(p); 2313 2314 posix_cputimers_init(&p->posix_cputimers); 2315 2316 p->io_context = NULL; 2317 audit_set_context(p, NULL); 2318 cgroup_fork(p); 2319 if (args->kthread) { 2320 if (!set_kthread_struct(p)) 2321 goto bad_fork_cleanup_delayacct; 2322 } 2323 #ifdef CONFIG_NUMA 2324 p->mempolicy = mpol_dup(p->mempolicy); 2325 if (IS_ERR(p->mempolicy)) { 2326 retval = PTR_ERR(p->mempolicy); 2327 p->mempolicy = NULL; 2328 goto bad_fork_cleanup_delayacct; 2329 } 2330 #endif 2331 #ifdef CONFIG_CPUSETS 2332 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2333 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2334 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2335 #endif 2336 #ifdef CONFIG_TRACE_IRQFLAGS 2337 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2338 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2339 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2340 p->softirqs_enabled = 1; 2341 p->softirq_context = 0; 2342 #endif 2343 2344 p->pagefault_disabled = 0; 2345 2346 #ifdef CONFIG_LOCKDEP 2347 lockdep_init_task(p); 2348 #endif 2349 2350 #ifdef CONFIG_DEBUG_MUTEXES 2351 p->blocked_on = NULL; /* not blocked yet */ 2352 #endif 2353 #ifdef CONFIG_BCACHE 2354 p->sequential_io = 0; 2355 p->sequential_io_avg = 0; 2356 #endif 2357 #ifdef CONFIG_BPF_SYSCALL 2358 RCU_INIT_POINTER(p->bpf_storage, NULL); 2359 p->bpf_ctx = NULL; 2360 #endif 2361 2362 /* Perform scheduler related setup. Assign this task to a CPU. */ 2363 retval = sched_fork(clone_flags, p); 2364 if (retval) 2365 goto bad_fork_cleanup_policy; 2366 2367 retval = perf_event_init_task(p, clone_flags); 2368 if (retval) 2369 goto bad_fork_cleanup_policy; 2370 retval = audit_alloc(p); 2371 if (retval) 2372 goto bad_fork_cleanup_perf; 2373 /* copy all the process information */ 2374 shm_init_task(p); 2375 retval = security_task_alloc(p, clone_flags); 2376 if (retval) 2377 goto bad_fork_cleanup_audit; 2378 retval = copy_semundo(clone_flags, p); 2379 if (retval) 2380 goto bad_fork_cleanup_security; 2381 retval = copy_files(clone_flags, p, args->no_files); 2382 if (retval) 2383 goto bad_fork_cleanup_semundo; 2384 retval = copy_fs(clone_flags, p); 2385 if (retval) 2386 goto bad_fork_cleanup_files; 2387 retval = copy_sighand(clone_flags, p); 2388 if (retval) 2389 goto bad_fork_cleanup_fs; 2390 retval = copy_signal(clone_flags, p); 2391 if (retval) 2392 goto bad_fork_cleanup_sighand; 2393 retval = copy_mm(clone_flags, p); 2394 if (retval) 2395 goto bad_fork_cleanup_signal; 2396 retval = copy_namespaces(clone_flags, p); 2397 if (retval) 2398 goto bad_fork_cleanup_mm; 2399 retval = copy_io(clone_flags, p); 2400 if (retval) 2401 goto bad_fork_cleanup_namespaces; 2402 retval = copy_thread(p, args); 2403 if (retval) 2404 goto bad_fork_cleanup_io; 2405 2406 stackleak_task_init(p); 2407 2408 if (pid != &init_struct_pid) { 2409 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2410 args->set_tid_size); 2411 if (IS_ERR(pid)) { 2412 retval = PTR_ERR(pid); 2413 goto bad_fork_cleanup_thread; 2414 } 2415 } 2416 2417 /* 2418 * This has to happen after we've potentially unshared the file 2419 * descriptor table (so that the pidfd doesn't leak into the child 2420 * if the fd table isn't shared). 2421 */ 2422 if (clone_flags & CLONE_PIDFD) { 2423 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2424 2425 /* Note that no task has been attached to @pid yet. */ 2426 retval = __pidfd_prepare(pid, flags, &pidfile); 2427 if (retval < 0) 2428 goto bad_fork_free_pid; 2429 pidfd = retval; 2430 2431 retval = put_user(pidfd, args->pidfd); 2432 if (retval) 2433 goto bad_fork_put_pidfd; 2434 } 2435 2436 #ifdef CONFIG_BLOCK 2437 p->plug = NULL; 2438 #endif 2439 futex_init_task(p); 2440 2441 /* 2442 * sigaltstack should be cleared when sharing the same VM 2443 */ 2444 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2445 sas_ss_reset(p); 2446 2447 /* 2448 * Syscall tracing and stepping should be turned off in the 2449 * child regardless of CLONE_PTRACE. 2450 */ 2451 user_disable_single_step(p); 2452 clear_task_syscall_work(p, SYSCALL_TRACE); 2453 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2454 clear_task_syscall_work(p, SYSCALL_EMU); 2455 #endif 2456 clear_tsk_latency_tracing(p); 2457 2458 /* ok, now we should be set up.. */ 2459 p->pid = pid_nr(pid); 2460 if (clone_flags & CLONE_THREAD) { 2461 p->group_leader = current->group_leader; 2462 p->tgid = current->tgid; 2463 } else { 2464 p->group_leader = p; 2465 p->tgid = p->pid; 2466 } 2467 2468 p->nr_dirtied = 0; 2469 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2470 p->dirty_paused_when = 0; 2471 2472 p->pdeath_signal = 0; 2473 p->task_works = NULL; 2474 clear_posix_cputimers_work(p); 2475 2476 #ifdef CONFIG_KRETPROBES 2477 p->kretprobe_instances.first = NULL; 2478 #endif 2479 #ifdef CONFIG_RETHOOK 2480 p->rethooks.first = NULL; 2481 #endif 2482 2483 /* 2484 * Ensure that the cgroup subsystem policies allow the new process to be 2485 * forked. It should be noted that the new process's css_set can be changed 2486 * between here and cgroup_post_fork() if an organisation operation is in 2487 * progress. 2488 */ 2489 retval = cgroup_can_fork(p, args); 2490 if (retval) 2491 goto bad_fork_put_pidfd; 2492 2493 /* 2494 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2495 * the new task on the correct runqueue. All this *before* the task 2496 * becomes visible. 2497 * 2498 * This isn't part of ->can_fork() because while the re-cloning is 2499 * cgroup specific, it unconditionally needs to place the task on a 2500 * runqueue. 2501 */ 2502 sched_cgroup_fork(p, args); 2503 2504 /* 2505 * From this point on we must avoid any synchronous user-space 2506 * communication until we take the tasklist-lock. In particular, we do 2507 * not want user-space to be able to predict the process start-time by 2508 * stalling fork(2) after we recorded the start_time but before it is 2509 * visible to the system. 2510 */ 2511 2512 p->start_time = ktime_get_ns(); 2513 p->start_boottime = ktime_get_boottime_ns(); 2514 2515 /* 2516 * Make it visible to the rest of the system, but dont wake it up yet. 2517 * Need tasklist lock for parent etc handling! 2518 */ 2519 write_lock_irq(&tasklist_lock); 2520 2521 /* CLONE_PARENT re-uses the old parent */ 2522 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2523 p->real_parent = current->real_parent; 2524 p->parent_exec_id = current->parent_exec_id; 2525 if (clone_flags & CLONE_THREAD) 2526 p->exit_signal = -1; 2527 else 2528 p->exit_signal = current->group_leader->exit_signal; 2529 } else { 2530 p->real_parent = current; 2531 p->parent_exec_id = current->self_exec_id; 2532 p->exit_signal = args->exit_signal; 2533 } 2534 2535 klp_copy_process(p); 2536 2537 sched_core_fork(p); 2538 2539 spin_lock(¤t->sighand->siglock); 2540 2541 rv_task_fork(p); 2542 2543 rseq_fork(p, clone_flags); 2544 2545 /* Don't start children in a dying pid namespace */ 2546 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2547 retval = -ENOMEM; 2548 goto bad_fork_cancel_cgroup; 2549 } 2550 2551 /* Let kill terminate clone/fork in the middle */ 2552 if (fatal_signal_pending(current)) { 2553 retval = -EINTR; 2554 goto bad_fork_cancel_cgroup; 2555 } 2556 2557 /* No more failure paths after this point. */ 2558 2559 /* 2560 * Copy seccomp details explicitly here, in case they were changed 2561 * before holding sighand lock. 2562 */ 2563 copy_seccomp(p); 2564 2565 init_task_pid_links(p); 2566 if (likely(p->pid)) { 2567 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2568 2569 init_task_pid(p, PIDTYPE_PID, pid); 2570 if (thread_group_leader(p)) { 2571 init_task_pid(p, PIDTYPE_TGID, pid); 2572 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2573 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2574 2575 if (is_child_reaper(pid)) { 2576 ns_of_pid(pid)->child_reaper = p; 2577 p->signal->flags |= SIGNAL_UNKILLABLE; 2578 } 2579 p->signal->shared_pending.signal = delayed.signal; 2580 p->signal->tty = tty_kref_get(current->signal->tty); 2581 /* 2582 * Inherit has_child_subreaper flag under the same 2583 * tasklist_lock with adding child to the process tree 2584 * for propagate_has_child_subreaper optimization. 2585 */ 2586 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2587 p->real_parent->signal->is_child_subreaper; 2588 list_add_tail(&p->sibling, &p->real_parent->children); 2589 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2590 attach_pid(p, PIDTYPE_TGID); 2591 attach_pid(p, PIDTYPE_PGID); 2592 attach_pid(p, PIDTYPE_SID); 2593 __this_cpu_inc(process_counts); 2594 } else { 2595 current->signal->nr_threads++; 2596 current->signal->quick_threads++; 2597 atomic_inc(¤t->signal->live); 2598 refcount_inc(¤t->signal->sigcnt); 2599 task_join_group_stop(p); 2600 list_add_tail_rcu(&p->thread_node, 2601 &p->signal->thread_head); 2602 } 2603 attach_pid(p, PIDTYPE_PID); 2604 nr_threads++; 2605 } 2606 total_forks++; 2607 hlist_del_init(&delayed.node); 2608 spin_unlock(¤t->sighand->siglock); 2609 syscall_tracepoint_update(p); 2610 write_unlock_irq(&tasklist_lock); 2611 2612 if (pidfile) 2613 fd_install(pidfd, pidfile); 2614 2615 proc_fork_connector(p); 2616 sched_post_fork(p); 2617 cgroup_post_fork(p, args); 2618 perf_event_fork(p); 2619 2620 trace_task_newtask(p, clone_flags); 2621 uprobe_copy_process(p, clone_flags); 2622 user_events_fork(p, clone_flags); 2623 2624 copy_oom_score_adj(clone_flags, p); 2625 2626 return p; 2627 2628 bad_fork_cancel_cgroup: 2629 sched_core_free(p); 2630 spin_unlock(¤t->sighand->siglock); 2631 write_unlock_irq(&tasklist_lock); 2632 cgroup_cancel_fork(p, args); 2633 bad_fork_put_pidfd: 2634 if (clone_flags & CLONE_PIDFD) { 2635 fput(pidfile); 2636 put_unused_fd(pidfd); 2637 } 2638 bad_fork_free_pid: 2639 if (pid != &init_struct_pid) 2640 free_pid(pid); 2641 bad_fork_cleanup_thread: 2642 exit_thread(p); 2643 bad_fork_cleanup_io: 2644 if (p->io_context) 2645 exit_io_context(p); 2646 bad_fork_cleanup_namespaces: 2647 exit_task_namespaces(p); 2648 bad_fork_cleanup_mm: 2649 if (p->mm) { 2650 mm_clear_owner(p->mm, p); 2651 mmput(p->mm); 2652 } 2653 bad_fork_cleanup_signal: 2654 if (!(clone_flags & CLONE_THREAD)) 2655 free_signal_struct(p->signal); 2656 bad_fork_cleanup_sighand: 2657 __cleanup_sighand(p->sighand); 2658 bad_fork_cleanup_fs: 2659 exit_fs(p); /* blocking */ 2660 bad_fork_cleanup_files: 2661 exit_files(p); /* blocking */ 2662 bad_fork_cleanup_semundo: 2663 exit_sem(p); 2664 bad_fork_cleanup_security: 2665 security_task_free(p); 2666 bad_fork_cleanup_audit: 2667 audit_free(p); 2668 bad_fork_cleanup_perf: 2669 perf_event_free_task(p); 2670 bad_fork_cleanup_policy: 2671 lockdep_free_task(p); 2672 #ifdef CONFIG_NUMA 2673 mpol_put(p->mempolicy); 2674 #endif 2675 bad_fork_cleanup_delayacct: 2676 delayacct_tsk_free(p); 2677 bad_fork_cleanup_count: 2678 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2679 exit_creds(p); 2680 bad_fork_free: 2681 WRITE_ONCE(p->__state, TASK_DEAD); 2682 exit_task_stack_account(p); 2683 put_task_stack(p); 2684 delayed_free_task(p); 2685 fork_out: 2686 spin_lock_irq(¤t->sighand->siglock); 2687 hlist_del_init(&delayed.node); 2688 spin_unlock_irq(¤t->sighand->siglock); 2689 return ERR_PTR(retval); 2690 } 2691 2692 static inline void init_idle_pids(struct task_struct *idle) 2693 { 2694 enum pid_type type; 2695 2696 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2697 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2698 init_task_pid(idle, type, &init_struct_pid); 2699 } 2700 } 2701 2702 static int idle_dummy(void *dummy) 2703 { 2704 /* This function is never called */ 2705 return 0; 2706 } 2707 2708 struct task_struct * __init fork_idle(int cpu) 2709 { 2710 struct task_struct *task; 2711 struct kernel_clone_args args = { 2712 .flags = CLONE_VM, 2713 .fn = &idle_dummy, 2714 .fn_arg = NULL, 2715 .kthread = 1, 2716 .idle = 1, 2717 }; 2718 2719 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2720 if (!IS_ERR(task)) { 2721 init_idle_pids(task); 2722 init_idle(task, cpu); 2723 } 2724 2725 return task; 2726 } 2727 2728 /* 2729 * This is like kernel_clone(), but shaved down and tailored to just 2730 * creating io_uring workers. It returns a created task, or an error pointer. 2731 * The returned task is inactive, and the caller must fire it up through 2732 * wake_up_new_task(p). All signals are blocked in the created task. 2733 */ 2734 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2735 { 2736 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2737 CLONE_IO; 2738 struct kernel_clone_args args = { 2739 .flags = ((lower_32_bits(flags) | CLONE_VM | 2740 CLONE_UNTRACED) & ~CSIGNAL), 2741 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2742 .fn = fn, 2743 .fn_arg = arg, 2744 .io_thread = 1, 2745 .user_worker = 1, 2746 }; 2747 2748 return copy_process(NULL, 0, node, &args); 2749 } 2750 2751 /* 2752 * Ok, this is the main fork-routine. 2753 * 2754 * It copies the process, and if successful kick-starts 2755 * it and waits for it to finish using the VM if required. 2756 * 2757 * args->exit_signal is expected to be checked for sanity by the caller. 2758 */ 2759 pid_t kernel_clone(struct kernel_clone_args *args) 2760 { 2761 u64 clone_flags = args->flags; 2762 struct completion vfork; 2763 struct pid *pid; 2764 struct task_struct *p; 2765 int trace = 0; 2766 pid_t nr; 2767 2768 /* 2769 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2770 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2771 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2772 * field in struct clone_args and it still doesn't make sense to have 2773 * them both point at the same memory location. Performing this check 2774 * here has the advantage that we don't need to have a separate helper 2775 * to check for legacy clone(). 2776 */ 2777 if ((clone_flags & CLONE_PIDFD) && 2778 (clone_flags & CLONE_PARENT_SETTID) && 2779 (args->pidfd == args->parent_tid)) 2780 return -EINVAL; 2781 2782 /* 2783 * Determine whether and which event to report to ptracer. When 2784 * called from kernel_thread or CLONE_UNTRACED is explicitly 2785 * requested, no event is reported; otherwise, report if the event 2786 * for the type of forking is enabled. 2787 */ 2788 if (!(clone_flags & CLONE_UNTRACED)) { 2789 if (clone_flags & CLONE_VFORK) 2790 trace = PTRACE_EVENT_VFORK; 2791 else if (args->exit_signal != SIGCHLD) 2792 trace = PTRACE_EVENT_CLONE; 2793 else 2794 trace = PTRACE_EVENT_FORK; 2795 2796 if (likely(!ptrace_event_enabled(current, trace))) 2797 trace = 0; 2798 } 2799 2800 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2801 add_latent_entropy(); 2802 2803 if (IS_ERR(p)) 2804 return PTR_ERR(p); 2805 2806 /* 2807 * Do this prior waking up the new thread - the thread pointer 2808 * might get invalid after that point, if the thread exits quickly. 2809 */ 2810 trace_sched_process_fork(current, p); 2811 2812 pid = get_task_pid(p, PIDTYPE_PID); 2813 nr = pid_vnr(pid); 2814 2815 if (clone_flags & CLONE_PARENT_SETTID) 2816 put_user(nr, args->parent_tid); 2817 2818 if (clone_flags & CLONE_VFORK) { 2819 p->vfork_done = &vfork; 2820 init_completion(&vfork); 2821 get_task_struct(p); 2822 } 2823 2824 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2825 /* lock the task to synchronize with memcg migration */ 2826 task_lock(p); 2827 lru_gen_add_mm(p->mm); 2828 task_unlock(p); 2829 } 2830 2831 wake_up_new_task(p); 2832 2833 /* forking complete and child started to run, tell ptracer */ 2834 if (unlikely(trace)) 2835 ptrace_event_pid(trace, pid); 2836 2837 if (clone_flags & CLONE_VFORK) { 2838 if (!wait_for_vfork_done(p, &vfork)) 2839 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2840 } 2841 2842 put_pid(pid); 2843 return nr; 2844 } 2845 2846 /* 2847 * Create a kernel thread. 2848 */ 2849 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2850 unsigned long flags) 2851 { 2852 struct kernel_clone_args args = { 2853 .flags = ((lower_32_bits(flags) | CLONE_VM | 2854 CLONE_UNTRACED) & ~CSIGNAL), 2855 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2856 .fn = fn, 2857 .fn_arg = arg, 2858 .name = name, 2859 .kthread = 1, 2860 }; 2861 2862 return kernel_clone(&args); 2863 } 2864 2865 /* 2866 * Create a user mode thread. 2867 */ 2868 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2869 { 2870 struct kernel_clone_args args = { 2871 .flags = ((lower_32_bits(flags) | CLONE_VM | 2872 CLONE_UNTRACED) & ~CSIGNAL), 2873 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2874 .fn = fn, 2875 .fn_arg = arg, 2876 }; 2877 2878 return kernel_clone(&args); 2879 } 2880 2881 #ifdef __ARCH_WANT_SYS_FORK 2882 SYSCALL_DEFINE0(fork) 2883 { 2884 #ifdef CONFIG_MMU 2885 struct kernel_clone_args args = { 2886 .exit_signal = SIGCHLD, 2887 }; 2888 2889 return kernel_clone(&args); 2890 #else 2891 /* can not support in nommu mode */ 2892 return -EINVAL; 2893 #endif 2894 } 2895 #endif 2896 2897 #ifdef __ARCH_WANT_SYS_VFORK 2898 SYSCALL_DEFINE0(vfork) 2899 { 2900 struct kernel_clone_args args = { 2901 .flags = CLONE_VFORK | CLONE_VM, 2902 .exit_signal = SIGCHLD, 2903 }; 2904 2905 return kernel_clone(&args); 2906 } 2907 #endif 2908 2909 #ifdef __ARCH_WANT_SYS_CLONE 2910 #ifdef CONFIG_CLONE_BACKWARDS 2911 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2912 int __user *, parent_tidptr, 2913 unsigned long, tls, 2914 int __user *, child_tidptr) 2915 #elif defined(CONFIG_CLONE_BACKWARDS2) 2916 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2917 int __user *, parent_tidptr, 2918 int __user *, child_tidptr, 2919 unsigned long, tls) 2920 #elif defined(CONFIG_CLONE_BACKWARDS3) 2921 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2922 int, stack_size, 2923 int __user *, parent_tidptr, 2924 int __user *, child_tidptr, 2925 unsigned long, tls) 2926 #else 2927 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2928 int __user *, parent_tidptr, 2929 int __user *, child_tidptr, 2930 unsigned long, tls) 2931 #endif 2932 { 2933 struct kernel_clone_args args = { 2934 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2935 .pidfd = parent_tidptr, 2936 .child_tid = child_tidptr, 2937 .parent_tid = parent_tidptr, 2938 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2939 .stack = newsp, 2940 .tls = tls, 2941 }; 2942 2943 return kernel_clone(&args); 2944 } 2945 #endif 2946 2947 #ifdef __ARCH_WANT_SYS_CLONE3 2948 2949 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2950 struct clone_args __user *uargs, 2951 size_t usize) 2952 { 2953 int err; 2954 struct clone_args args; 2955 pid_t *kset_tid = kargs->set_tid; 2956 2957 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2958 CLONE_ARGS_SIZE_VER0); 2959 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2960 CLONE_ARGS_SIZE_VER1); 2961 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2962 CLONE_ARGS_SIZE_VER2); 2963 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2964 2965 if (unlikely(usize > PAGE_SIZE)) 2966 return -E2BIG; 2967 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2968 return -EINVAL; 2969 2970 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2971 if (err) 2972 return err; 2973 2974 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2975 return -EINVAL; 2976 2977 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2978 return -EINVAL; 2979 2980 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2981 return -EINVAL; 2982 2983 /* 2984 * Verify that higher 32bits of exit_signal are unset and that 2985 * it is a valid signal 2986 */ 2987 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2988 !valid_signal(args.exit_signal))) 2989 return -EINVAL; 2990 2991 if ((args.flags & CLONE_INTO_CGROUP) && 2992 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2993 return -EINVAL; 2994 2995 *kargs = (struct kernel_clone_args){ 2996 .flags = args.flags, 2997 .pidfd = u64_to_user_ptr(args.pidfd), 2998 .child_tid = u64_to_user_ptr(args.child_tid), 2999 .parent_tid = u64_to_user_ptr(args.parent_tid), 3000 .exit_signal = args.exit_signal, 3001 .stack = args.stack, 3002 .stack_size = args.stack_size, 3003 .tls = args.tls, 3004 .set_tid_size = args.set_tid_size, 3005 .cgroup = args.cgroup, 3006 }; 3007 3008 if (args.set_tid && 3009 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3010 (kargs->set_tid_size * sizeof(pid_t)))) 3011 return -EFAULT; 3012 3013 kargs->set_tid = kset_tid; 3014 3015 return 0; 3016 } 3017 3018 /** 3019 * clone3_stack_valid - check and prepare stack 3020 * @kargs: kernel clone args 3021 * 3022 * Verify that the stack arguments userspace gave us are sane. 3023 * In addition, set the stack direction for userspace since it's easy for us to 3024 * determine. 3025 */ 3026 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3027 { 3028 if (kargs->stack == 0) { 3029 if (kargs->stack_size > 0) 3030 return false; 3031 } else { 3032 if (kargs->stack_size == 0) 3033 return false; 3034 3035 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3036 return false; 3037 3038 #if !defined(CONFIG_STACK_GROWSUP) 3039 kargs->stack += kargs->stack_size; 3040 #endif 3041 } 3042 3043 return true; 3044 } 3045 3046 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3047 { 3048 /* Verify that no unknown flags are passed along. */ 3049 if (kargs->flags & 3050 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3051 return false; 3052 3053 /* 3054 * - make the CLONE_DETACHED bit reusable for clone3 3055 * - make the CSIGNAL bits reusable for clone3 3056 */ 3057 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3058 return false; 3059 3060 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3061 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3062 return false; 3063 3064 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3065 kargs->exit_signal) 3066 return false; 3067 3068 if (!clone3_stack_valid(kargs)) 3069 return false; 3070 3071 return true; 3072 } 3073 3074 /** 3075 * sys_clone3 - create a new process with specific properties 3076 * @uargs: argument structure 3077 * @size: size of @uargs 3078 * 3079 * clone3() is the extensible successor to clone()/clone2(). 3080 * It takes a struct as argument that is versioned by its size. 3081 * 3082 * Return: On success, a positive PID for the child process. 3083 * On error, a negative errno number. 3084 */ 3085 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3086 { 3087 int err; 3088 3089 struct kernel_clone_args kargs; 3090 pid_t set_tid[MAX_PID_NS_LEVEL]; 3091 3092 kargs.set_tid = set_tid; 3093 3094 err = copy_clone_args_from_user(&kargs, uargs, size); 3095 if (err) 3096 return err; 3097 3098 if (!clone3_args_valid(&kargs)) 3099 return -EINVAL; 3100 3101 return kernel_clone(&kargs); 3102 } 3103 #endif 3104 3105 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3106 { 3107 struct task_struct *leader, *parent, *child; 3108 int res; 3109 3110 read_lock(&tasklist_lock); 3111 leader = top = top->group_leader; 3112 down: 3113 for_each_thread(leader, parent) { 3114 list_for_each_entry(child, &parent->children, sibling) { 3115 res = visitor(child, data); 3116 if (res) { 3117 if (res < 0) 3118 goto out; 3119 leader = child; 3120 goto down; 3121 } 3122 up: 3123 ; 3124 } 3125 } 3126 3127 if (leader != top) { 3128 child = leader; 3129 parent = child->real_parent; 3130 leader = parent->group_leader; 3131 goto up; 3132 } 3133 out: 3134 read_unlock(&tasklist_lock); 3135 } 3136 3137 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3138 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3139 #endif 3140 3141 static void sighand_ctor(void *data) 3142 { 3143 struct sighand_struct *sighand = data; 3144 3145 spin_lock_init(&sighand->siglock); 3146 init_waitqueue_head(&sighand->signalfd_wqh); 3147 } 3148 3149 void __init mm_cache_init(void) 3150 { 3151 unsigned int mm_size; 3152 3153 /* 3154 * The mm_cpumask is located at the end of mm_struct, and is 3155 * dynamically sized based on the maximum CPU number this system 3156 * can have, taking hotplug into account (nr_cpu_ids). 3157 */ 3158 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3159 3160 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3161 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3162 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3163 offsetof(struct mm_struct, saved_auxv), 3164 sizeof_field(struct mm_struct, saved_auxv), 3165 NULL); 3166 } 3167 3168 void __init proc_caches_init(void) 3169 { 3170 sighand_cachep = kmem_cache_create("sighand_cache", 3171 sizeof(struct sighand_struct), 0, 3172 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3173 SLAB_ACCOUNT, sighand_ctor); 3174 signal_cachep = kmem_cache_create("signal_cache", 3175 sizeof(struct signal_struct), 0, 3176 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3177 NULL); 3178 files_cachep = kmem_cache_create("files_cache", 3179 sizeof(struct files_struct), 0, 3180 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3181 NULL); 3182 fs_cachep = kmem_cache_create("fs_cache", 3183 sizeof(struct fs_struct), 0, 3184 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3185 NULL); 3186 3187 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3188 #ifdef CONFIG_PER_VMA_LOCK 3189 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3190 #endif 3191 mmap_init(); 3192 nsproxy_cache_init(); 3193 } 3194 3195 /* 3196 * Check constraints on flags passed to the unshare system call. 3197 */ 3198 static int check_unshare_flags(unsigned long unshare_flags) 3199 { 3200 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3201 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3202 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3203 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3204 CLONE_NEWTIME)) 3205 return -EINVAL; 3206 /* 3207 * Not implemented, but pretend it works if there is nothing 3208 * to unshare. Note that unsharing the address space or the 3209 * signal handlers also need to unshare the signal queues (aka 3210 * CLONE_THREAD). 3211 */ 3212 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3213 if (!thread_group_empty(current)) 3214 return -EINVAL; 3215 } 3216 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3217 if (refcount_read(¤t->sighand->count) > 1) 3218 return -EINVAL; 3219 } 3220 if (unshare_flags & CLONE_VM) { 3221 if (!current_is_single_threaded()) 3222 return -EINVAL; 3223 } 3224 3225 return 0; 3226 } 3227 3228 /* 3229 * Unshare the filesystem structure if it is being shared 3230 */ 3231 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3232 { 3233 struct fs_struct *fs = current->fs; 3234 3235 if (!(unshare_flags & CLONE_FS) || !fs) 3236 return 0; 3237 3238 /* don't need lock here; in the worst case we'll do useless copy */ 3239 if (fs->users == 1) 3240 return 0; 3241 3242 *new_fsp = copy_fs_struct(fs); 3243 if (!*new_fsp) 3244 return -ENOMEM; 3245 3246 return 0; 3247 } 3248 3249 /* 3250 * Unshare file descriptor table if it is being shared 3251 */ 3252 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3253 struct files_struct **new_fdp) 3254 { 3255 struct files_struct *fd = current->files; 3256 int error = 0; 3257 3258 if ((unshare_flags & CLONE_FILES) && 3259 (fd && atomic_read(&fd->count) > 1)) { 3260 *new_fdp = dup_fd(fd, max_fds, &error); 3261 if (!*new_fdp) 3262 return error; 3263 } 3264 3265 return 0; 3266 } 3267 3268 /* 3269 * unshare allows a process to 'unshare' part of the process 3270 * context which was originally shared using clone. copy_* 3271 * functions used by kernel_clone() cannot be used here directly 3272 * because they modify an inactive task_struct that is being 3273 * constructed. Here we are modifying the current, active, 3274 * task_struct. 3275 */ 3276 int ksys_unshare(unsigned long unshare_flags) 3277 { 3278 struct fs_struct *fs, *new_fs = NULL; 3279 struct files_struct *new_fd = NULL; 3280 struct cred *new_cred = NULL; 3281 struct nsproxy *new_nsproxy = NULL; 3282 int do_sysvsem = 0; 3283 int err; 3284 3285 /* 3286 * If unsharing a user namespace must also unshare the thread group 3287 * and unshare the filesystem root and working directories. 3288 */ 3289 if (unshare_flags & CLONE_NEWUSER) 3290 unshare_flags |= CLONE_THREAD | CLONE_FS; 3291 /* 3292 * If unsharing vm, must also unshare signal handlers. 3293 */ 3294 if (unshare_flags & CLONE_VM) 3295 unshare_flags |= CLONE_SIGHAND; 3296 /* 3297 * If unsharing a signal handlers, must also unshare the signal queues. 3298 */ 3299 if (unshare_flags & CLONE_SIGHAND) 3300 unshare_flags |= CLONE_THREAD; 3301 /* 3302 * If unsharing namespace, must also unshare filesystem information. 3303 */ 3304 if (unshare_flags & CLONE_NEWNS) 3305 unshare_flags |= CLONE_FS; 3306 3307 err = check_unshare_flags(unshare_flags); 3308 if (err) 3309 goto bad_unshare_out; 3310 /* 3311 * CLONE_NEWIPC must also detach from the undolist: after switching 3312 * to a new ipc namespace, the semaphore arrays from the old 3313 * namespace are unreachable. 3314 */ 3315 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3316 do_sysvsem = 1; 3317 err = unshare_fs(unshare_flags, &new_fs); 3318 if (err) 3319 goto bad_unshare_out; 3320 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3321 if (err) 3322 goto bad_unshare_cleanup_fs; 3323 err = unshare_userns(unshare_flags, &new_cred); 3324 if (err) 3325 goto bad_unshare_cleanup_fd; 3326 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3327 new_cred, new_fs); 3328 if (err) 3329 goto bad_unshare_cleanup_cred; 3330 3331 if (new_cred) { 3332 err = set_cred_ucounts(new_cred); 3333 if (err) 3334 goto bad_unshare_cleanup_cred; 3335 } 3336 3337 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3338 if (do_sysvsem) { 3339 /* 3340 * CLONE_SYSVSEM is equivalent to sys_exit(). 3341 */ 3342 exit_sem(current); 3343 } 3344 if (unshare_flags & CLONE_NEWIPC) { 3345 /* Orphan segments in old ns (see sem above). */ 3346 exit_shm(current); 3347 shm_init_task(current); 3348 } 3349 3350 if (new_nsproxy) 3351 switch_task_namespaces(current, new_nsproxy); 3352 3353 task_lock(current); 3354 3355 if (new_fs) { 3356 fs = current->fs; 3357 spin_lock(&fs->lock); 3358 current->fs = new_fs; 3359 if (--fs->users) 3360 new_fs = NULL; 3361 else 3362 new_fs = fs; 3363 spin_unlock(&fs->lock); 3364 } 3365 3366 if (new_fd) 3367 swap(current->files, new_fd); 3368 3369 task_unlock(current); 3370 3371 if (new_cred) { 3372 /* Install the new user namespace */ 3373 commit_creds(new_cred); 3374 new_cred = NULL; 3375 } 3376 } 3377 3378 perf_event_namespaces(current); 3379 3380 bad_unshare_cleanup_cred: 3381 if (new_cred) 3382 put_cred(new_cred); 3383 bad_unshare_cleanup_fd: 3384 if (new_fd) 3385 put_files_struct(new_fd); 3386 3387 bad_unshare_cleanup_fs: 3388 if (new_fs) 3389 free_fs_struct(new_fs); 3390 3391 bad_unshare_out: 3392 return err; 3393 } 3394 3395 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3396 { 3397 return ksys_unshare(unshare_flags); 3398 } 3399 3400 /* 3401 * Helper to unshare the files of the current task. 3402 * We don't want to expose copy_files internals to 3403 * the exec layer of the kernel. 3404 */ 3405 3406 int unshare_files(void) 3407 { 3408 struct task_struct *task = current; 3409 struct files_struct *old, *copy = NULL; 3410 int error; 3411 3412 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3413 if (error || !copy) 3414 return error; 3415 3416 old = task->files; 3417 task_lock(task); 3418 task->files = copy; 3419 task_unlock(task); 3420 put_files_struct(old); 3421 return 0; 3422 } 3423 3424 int sysctl_max_threads(struct ctl_table *table, int write, 3425 void *buffer, size_t *lenp, loff_t *ppos) 3426 { 3427 struct ctl_table t; 3428 int ret; 3429 int threads = max_threads; 3430 int min = 1; 3431 int max = MAX_THREADS; 3432 3433 t = *table; 3434 t.data = &threads; 3435 t.extra1 = &min; 3436 t.extra2 = &max; 3437 3438 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3439 if (ret || !write) 3440 return ret; 3441 3442 max_threads = threads; 3443 3444 return 0; 3445 } 3446