xref: /linux/kernel/fork.c (revision 7b12b9137930eb821b68e1bfa11e9de692208620)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
47 
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54 
55 /*
56  * Protected counters by write_lock_irq(&tasklist_lock)
57  */
58 unsigned long total_forks;	/* Handle normal Linux uptimes. */
59 int nr_threads; 		/* The idle threads do not count.. */
60 
61 int max_threads;		/* tunable limit on nr_threads */
62 
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64 
65  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
66 
67 EXPORT_SYMBOL(tasklist_lock);
68 
69 int nr_processes(void)
70 {
71 	int cpu;
72 	int total = 0;
73 
74 	for_each_online_cpu(cpu)
75 		total += per_cpu(process_counts, cpu);
76 
77 	return total;
78 }
79 
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85 
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t *signal_cachep;
88 
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91 
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94 
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97 
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100 
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103 
104 void free_task(struct task_struct *tsk)
105 {
106 	free_thread_info(tsk->thread_info);
107 	free_task_struct(tsk);
108 }
109 EXPORT_SYMBOL(free_task);
110 
111 void __put_task_struct(struct task_struct *tsk)
112 {
113 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
114 	WARN_ON(atomic_read(&tsk->usage));
115 	WARN_ON(tsk == current);
116 
117 	if (unlikely(tsk->audit_context))
118 		audit_free(tsk);
119 	security_task_free(tsk);
120 	free_uid(tsk->user);
121 	put_group_info(tsk->group_info);
122 
123 	if (!profile_handoff_task(tsk))
124 		free_task(tsk);
125 }
126 
127 void __init fork_init(unsigned long mempages)
128 {
129 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
130 #ifndef ARCH_MIN_TASKALIGN
131 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
132 #endif
133 	/* create a slab on which task_structs can be allocated */
134 	task_struct_cachep =
135 		kmem_cache_create("task_struct", sizeof(struct task_struct),
136 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
137 #endif
138 
139 	/*
140 	 * The default maximum number of threads is set to a safe
141 	 * value: the thread structures can take up at most half
142 	 * of memory.
143 	 */
144 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
145 
146 	/*
147 	 * we need to allow at least 20 threads to boot a system
148 	 */
149 	if(max_threads < 20)
150 		max_threads = 20;
151 
152 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
153 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
154 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
155 		init_task.signal->rlim[RLIMIT_NPROC];
156 }
157 
158 static struct task_struct *dup_task_struct(struct task_struct *orig)
159 {
160 	struct task_struct *tsk;
161 	struct thread_info *ti;
162 
163 	prepare_to_copy(orig);
164 
165 	tsk = alloc_task_struct();
166 	if (!tsk)
167 		return NULL;
168 
169 	ti = alloc_thread_info(tsk);
170 	if (!ti) {
171 		free_task_struct(tsk);
172 		return NULL;
173 	}
174 
175 	*tsk = *orig;
176 	tsk->thread_info = ti;
177 	setup_thread_stack(tsk, orig);
178 
179 	/* One for us, one for whoever does the "release_task()" (usually parent) */
180 	atomic_set(&tsk->usage,2);
181 	atomic_set(&tsk->fs_excl, 0);
182 	tsk->btrace_seq = 0;
183 	tsk->splice_pipe = NULL;
184 	return tsk;
185 }
186 
187 #ifdef CONFIG_MMU
188 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
189 {
190 	struct vm_area_struct *mpnt, *tmp, **pprev;
191 	struct rb_node **rb_link, *rb_parent;
192 	int retval;
193 	unsigned long charge;
194 	struct mempolicy *pol;
195 
196 	down_write(&oldmm->mmap_sem);
197 	flush_cache_mm(oldmm);
198 	down_write(&mm->mmap_sem);
199 
200 	mm->locked_vm = 0;
201 	mm->mmap = NULL;
202 	mm->mmap_cache = NULL;
203 	mm->free_area_cache = oldmm->mmap_base;
204 	mm->cached_hole_size = ~0UL;
205 	mm->map_count = 0;
206 	cpus_clear(mm->cpu_vm_mask);
207 	mm->mm_rb = RB_ROOT;
208 	rb_link = &mm->mm_rb.rb_node;
209 	rb_parent = NULL;
210 	pprev = &mm->mmap;
211 
212 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
213 		struct file *file;
214 
215 		if (mpnt->vm_flags & VM_DONTCOPY) {
216 			long pages = vma_pages(mpnt);
217 			mm->total_vm -= pages;
218 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
219 								-pages);
220 			continue;
221 		}
222 		charge = 0;
223 		if (mpnt->vm_flags & VM_ACCOUNT) {
224 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
225 			if (security_vm_enough_memory(len))
226 				goto fail_nomem;
227 			charge = len;
228 		}
229 		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
230 		if (!tmp)
231 			goto fail_nomem;
232 		*tmp = *mpnt;
233 		pol = mpol_copy(vma_policy(mpnt));
234 		retval = PTR_ERR(pol);
235 		if (IS_ERR(pol))
236 			goto fail_nomem_policy;
237 		vma_set_policy(tmp, pol);
238 		tmp->vm_flags &= ~VM_LOCKED;
239 		tmp->vm_mm = mm;
240 		tmp->vm_next = NULL;
241 		anon_vma_link(tmp);
242 		file = tmp->vm_file;
243 		if (file) {
244 			struct inode *inode = file->f_dentry->d_inode;
245 			get_file(file);
246 			if (tmp->vm_flags & VM_DENYWRITE)
247 				atomic_dec(&inode->i_writecount);
248 
249 			/* insert tmp into the share list, just after mpnt */
250 			spin_lock(&file->f_mapping->i_mmap_lock);
251 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
252 			flush_dcache_mmap_lock(file->f_mapping);
253 			vma_prio_tree_add(tmp, mpnt);
254 			flush_dcache_mmap_unlock(file->f_mapping);
255 			spin_unlock(&file->f_mapping->i_mmap_lock);
256 		}
257 
258 		/*
259 		 * Link in the new vma and copy the page table entries.
260 		 */
261 		*pprev = tmp;
262 		pprev = &tmp->vm_next;
263 
264 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
265 		rb_link = &tmp->vm_rb.rb_right;
266 		rb_parent = &tmp->vm_rb;
267 
268 		mm->map_count++;
269 		retval = copy_page_range(mm, oldmm, mpnt);
270 
271 		if (tmp->vm_ops && tmp->vm_ops->open)
272 			tmp->vm_ops->open(tmp);
273 
274 		if (retval)
275 			goto out;
276 	}
277 	retval = 0;
278 out:
279 	up_write(&mm->mmap_sem);
280 	flush_tlb_mm(oldmm);
281 	up_write(&oldmm->mmap_sem);
282 	return retval;
283 fail_nomem_policy:
284 	kmem_cache_free(vm_area_cachep, tmp);
285 fail_nomem:
286 	retval = -ENOMEM;
287 	vm_unacct_memory(charge);
288 	goto out;
289 }
290 
291 static inline int mm_alloc_pgd(struct mm_struct * mm)
292 {
293 	mm->pgd = pgd_alloc(mm);
294 	if (unlikely(!mm->pgd))
295 		return -ENOMEM;
296 	return 0;
297 }
298 
299 static inline void mm_free_pgd(struct mm_struct * mm)
300 {
301 	pgd_free(mm->pgd);
302 }
303 #else
304 #define dup_mmap(mm, oldmm)	(0)
305 #define mm_alloc_pgd(mm)	(0)
306 #define mm_free_pgd(mm)
307 #endif /* CONFIG_MMU */
308 
309  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
310 
311 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
312 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
313 
314 #include <linux/init_task.h>
315 
316 static struct mm_struct * mm_init(struct mm_struct * mm)
317 {
318 	atomic_set(&mm->mm_users, 1);
319 	atomic_set(&mm->mm_count, 1);
320 	init_rwsem(&mm->mmap_sem);
321 	INIT_LIST_HEAD(&mm->mmlist);
322 	mm->core_waiters = 0;
323 	mm->nr_ptes = 0;
324 	set_mm_counter(mm, file_rss, 0);
325 	set_mm_counter(mm, anon_rss, 0);
326 	spin_lock_init(&mm->page_table_lock);
327 	rwlock_init(&mm->ioctx_list_lock);
328 	mm->ioctx_list = NULL;
329 	mm->free_area_cache = TASK_UNMAPPED_BASE;
330 	mm->cached_hole_size = ~0UL;
331 
332 	if (likely(!mm_alloc_pgd(mm))) {
333 		mm->def_flags = 0;
334 		return mm;
335 	}
336 	free_mm(mm);
337 	return NULL;
338 }
339 
340 /*
341  * Allocate and initialize an mm_struct.
342  */
343 struct mm_struct * mm_alloc(void)
344 {
345 	struct mm_struct * mm;
346 
347 	mm = allocate_mm();
348 	if (mm) {
349 		memset(mm, 0, sizeof(*mm));
350 		mm = mm_init(mm);
351 	}
352 	return mm;
353 }
354 
355 /*
356  * Called when the last reference to the mm
357  * is dropped: either by a lazy thread or by
358  * mmput. Free the page directory and the mm.
359  */
360 void fastcall __mmdrop(struct mm_struct *mm)
361 {
362 	BUG_ON(mm == &init_mm);
363 	mm_free_pgd(mm);
364 	destroy_context(mm);
365 	free_mm(mm);
366 }
367 
368 /*
369  * Decrement the use count and release all resources for an mm.
370  */
371 void mmput(struct mm_struct *mm)
372 {
373 	if (atomic_dec_and_test(&mm->mm_users)) {
374 		exit_aio(mm);
375 		exit_mmap(mm);
376 		if (!list_empty(&mm->mmlist)) {
377 			spin_lock(&mmlist_lock);
378 			list_del(&mm->mmlist);
379 			spin_unlock(&mmlist_lock);
380 		}
381 		put_swap_token(mm);
382 		mmdrop(mm);
383 	}
384 }
385 EXPORT_SYMBOL_GPL(mmput);
386 
387 /**
388  * get_task_mm - acquire a reference to the task's mm
389  *
390  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
391  * this kernel workthread has transiently adopted a user mm with use_mm,
392  * to do its AIO) is not set and if so returns a reference to it, after
393  * bumping up the use count.  User must release the mm via mmput()
394  * after use.  Typically used by /proc and ptrace.
395  */
396 struct mm_struct *get_task_mm(struct task_struct *task)
397 {
398 	struct mm_struct *mm;
399 
400 	task_lock(task);
401 	mm = task->mm;
402 	if (mm) {
403 		if (task->flags & PF_BORROWED_MM)
404 			mm = NULL;
405 		else
406 			atomic_inc(&mm->mm_users);
407 	}
408 	task_unlock(task);
409 	return mm;
410 }
411 EXPORT_SYMBOL_GPL(get_task_mm);
412 
413 /* Please note the differences between mmput and mm_release.
414  * mmput is called whenever we stop holding onto a mm_struct,
415  * error success whatever.
416  *
417  * mm_release is called after a mm_struct has been removed
418  * from the current process.
419  *
420  * This difference is important for error handling, when we
421  * only half set up a mm_struct for a new process and need to restore
422  * the old one.  Because we mmput the new mm_struct before
423  * restoring the old one. . .
424  * Eric Biederman 10 January 1998
425  */
426 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
427 {
428 	struct completion *vfork_done = tsk->vfork_done;
429 
430 	/* Get rid of any cached register state */
431 	deactivate_mm(tsk, mm);
432 
433 	/* notify parent sleeping on vfork() */
434 	if (vfork_done) {
435 		tsk->vfork_done = NULL;
436 		complete(vfork_done);
437 	}
438 	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
439 		u32 __user * tidptr = tsk->clear_child_tid;
440 		tsk->clear_child_tid = NULL;
441 
442 		/*
443 		 * We don't check the error code - if userspace has
444 		 * not set up a proper pointer then tough luck.
445 		 */
446 		put_user(0, tidptr);
447 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
448 	}
449 }
450 
451 /*
452  * Allocate a new mm structure and copy contents from the
453  * mm structure of the passed in task structure.
454  */
455 static struct mm_struct *dup_mm(struct task_struct *tsk)
456 {
457 	struct mm_struct *mm, *oldmm = current->mm;
458 	int err;
459 
460 	if (!oldmm)
461 		return NULL;
462 
463 	mm = allocate_mm();
464 	if (!mm)
465 		goto fail_nomem;
466 
467 	memcpy(mm, oldmm, sizeof(*mm));
468 
469 	if (!mm_init(mm))
470 		goto fail_nomem;
471 
472 	if (init_new_context(tsk, mm))
473 		goto fail_nocontext;
474 
475 	err = dup_mmap(mm, oldmm);
476 	if (err)
477 		goto free_pt;
478 
479 	mm->hiwater_rss = get_mm_rss(mm);
480 	mm->hiwater_vm = mm->total_vm;
481 
482 	return mm;
483 
484 free_pt:
485 	mmput(mm);
486 
487 fail_nomem:
488 	return NULL;
489 
490 fail_nocontext:
491 	/*
492 	 * If init_new_context() failed, we cannot use mmput() to free the mm
493 	 * because it calls destroy_context()
494 	 */
495 	mm_free_pgd(mm);
496 	free_mm(mm);
497 	return NULL;
498 }
499 
500 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
501 {
502 	struct mm_struct * mm, *oldmm;
503 	int retval;
504 
505 	tsk->min_flt = tsk->maj_flt = 0;
506 	tsk->nvcsw = tsk->nivcsw = 0;
507 
508 	tsk->mm = NULL;
509 	tsk->active_mm = NULL;
510 
511 	/*
512 	 * Are we cloning a kernel thread?
513 	 *
514 	 * We need to steal a active VM for that..
515 	 */
516 	oldmm = current->mm;
517 	if (!oldmm)
518 		return 0;
519 
520 	if (clone_flags & CLONE_VM) {
521 		atomic_inc(&oldmm->mm_users);
522 		mm = oldmm;
523 		goto good_mm;
524 	}
525 
526 	retval = -ENOMEM;
527 	mm = dup_mm(tsk);
528 	if (!mm)
529 		goto fail_nomem;
530 
531 good_mm:
532 	tsk->mm = mm;
533 	tsk->active_mm = mm;
534 	return 0;
535 
536 fail_nomem:
537 	return retval;
538 }
539 
540 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
541 {
542 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
543 	/* We don't need to lock fs - think why ;-) */
544 	if (fs) {
545 		atomic_set(&fs->count, 1);
546 		rwlock_init(&fs->lock);
547 		fs->umask = old->umask;
548 		read_lock(&old->lock);
549 		fs->rootmnt = mntget(old->rootmnt);
550 		fs->root = dget(old->root);
551 		fs->pwdmnt = mntget(old->pwdmnt);
552 		fs->pwd = dget(old->pwd);
553 		if (old->altroot) {
554 			fs->altrootmnt = mntget(old->altrootmnt);
555 			fs->altroot = dget(old->altroot);
556 		} else {
557 			fs->altrootmnt = NULL;
558 			fs->altroot = NULL;
559 		}
560 		read_unlock(&old->lock);
561 	}
562 	return fs;
563 }
564 
565 struct fs_struct *copy_fs_struct(struct fs_struct *old)
566 {
567 	return __copy_fs_struct(old);
568 }
569 
570 EXPORT_SYMBOL_GPL(copy_fs_struct);
571 
572 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
573 {
574 	if (clone_flags & CLONE_FS) {
575 		atomic_inc(&current->fs->count);
576 		return 0;
577 	}
578 	tsk->fs = __copy_fs_struct(current->fs);
579 	if (!tsk->fs)
580 		return -ENOMEM;
581 	return 0;
582 }
583 
584 static int count_open_files(struct fdtable *fdt)
585 {
586 	int size = fdt->max_fdset;
587 	int i;
588 
589 	/* Find the last open fd */
590 	for (i = size/(8*sizeof(long)); i > 0; ) {
591 		if (fdt->open_fds->fds_bits[--i])
592 			break;
593 	}
594 	i = (i+1) * 8 * sizeof(long);
595 	return i;
596 }
597 
598 static struct files_struct *alloc_files(void)
599 {
600 	struct files_struct *newf;
601 	struct fdtable *fdt;
602 
603 	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
604 	if (!newf)
605 		goto out;
606 
607 	atomic_set(&newf->count, 1);
608 
609 	spin_lock_init(&newf->file_lock);
610 	newf->next_fd = 0;
611 	fdt = &newf->fdtab;
612 	fdt->max_fds = NR_OPEN_DEFAULT;
613 	fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
614 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
615 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
616 	fdt->fd = &newf->fd_array[0];
617 	INIT_RCU_HEAD(&fdt->rcu);
618 	fdt->free_files = NULL;
619 	fdt->next = NULL;
620 	rcu_assign_pointer(newf->fdt, fdt);
621 out:
622 	return newf;
623 }
624 
625 /*
626  * Allocate a new files structure and copy contents from the
627  * passed in files structure.
628  */
629 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
630 {
631 	struct files_struct *newf;
632 	struct file **old_fds, **new_fds;
633 	int open_files, size, i, expand;
634 	struct fdtable *old_fdt, *new_fdt;
635 
636 	newf = alloc_files();
637 	if (!newf)
638 		goto out;
639 
640 	spin_lock(&oldf->file_lock);
641 	old_fdt = files_fdtable(oldf);
642 	new_fdt = files_fdtable(newf);
643 	size = old_fdt->max_fdset;
644 	open_files = count_open_files(old_fdt);
645 	expand = 0;
646 
647 	/*
648 	 * Check whether we need to allocate a larger fd array or fd set.
649 	 * Note: we're not a clone task, so the open count won't  change.
650 	 */
651 	if (open_files > new_fdt->max_fdset) {
652 		new_fdt->max_fdset = 0;
653 		expand = 1;
654 	}
655 	if (open_files > new_fdt->max_fds) {
656 		new_fdt->max_fds = 0;
657 		expand = 1;
658 	}
659 
660 	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
661 	if (expand) {
662 		spin_unlock(&oldf->file_lock);
663 		spin_lock(&newf->file_lock);
664 		*errorp = expand_files(newf, open_files-1);
665 		spin_unlock(&newf->file_lock);
666 		if (*errorp < 0)
667 			goto out_release;
668 		new_fdt = files_fdtable(newf);
669 		/*
670 		 * Reacquire the oldf lock and a pointer to its fd table
671 		 * who knows it may have a new bigger fd table. We need
672 		 * the latest pointer.
673 		 */
674 		spin_lock(&oldf->file_lock);
675 		old_fdt = files_fdtable(oldf);
676 	}
677 
678 	old_fds = old_fdt->fd;
679 	new_fds = new_fdt->fd;
680 
681 	memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
682 	memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
683 
684 	for (i = open_files; i != 0; i--) {
685 		struct file *f = *old_fds++;
686 		if (f) {
687 			get_file(f);
688 		} else {
689 			/*
690 			 * The fd may be claimed in the fd bitmap but not yet
691 			 * instantiated in the files array if a sibling thread
692 			 * is partway through open().  So make sure that this
693 			 * fd is available to the new process.
694 			 */
695 			FD_CLR(open_files - i, new_fdt->open_fds);
696 		}
697 		rcu_assign_pointer(*new_fds++, f);
698 	}
699 	spin_unlock(&oldf->file_lock);
700 
701 	/* compute the remainder to be cleared */
702 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
703 
704 	/* This is long word aligned thus could use a optimized version */
705 	memset(new_fds, 0, size);
706 
707 	if (new_fdt->max_fdset > open_files) {
708 		int left = (new_fdt->max_fdset-open_files)/8;
709 		int start = open_files / (8 * sizeof(unsigned long));
710 
711 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
712 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
713 	}
714 
715 out:
716 	return newf;
717 
718 out_release:
719 	free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
720 	free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
721 	free_fd_array(new_fdt->fd, new_fdt->max_fds);
722 	kmem_cache_free(files_cachep, newf);
723 	return NULL;
724 }
725 
726 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
727 {
728 	struct files_struct *oldf, *newf;
729 	int error = 0;
730 
731 	/*
732 	 * A background process may not have any files ...
733 	 */
734 	oldf = current->files;
735 	if (!oldf)
736 		goto out;
737 
738 	if (clone_flags & CLONE_FILES) {
739 		atomic_inc(&oldf->count);
740 		goto out;
741 	}
742 
743 	/*
744 	 * Note: we may be using current for both targets (See exec.c)
745 	 * This works because we cache current->files (old) as oldf. Don't
746 	 * break this.
747 	 */
748 	tsk->files = NULL;
749 	error = -ENOMEM;
750 	newf = dup_fd(oldf, &error);
751 	if (!newf)
752 		goto out;
753 
754 	tsk->files = newf;
755 	error = 0;
756 out:
757 	return error;
758 }
759 
760 /*
761  *	Helper to unshare the files of the current task.
762  *	We don't want to expose copy_files internals to
763  *	the exec layer of the kernel.
764  */
765 
766 int unshare_files(void)
767 {
768 	struct files_struct *files  = current->files;
769 	int rc;
770 
771 	BUG_ON(!files);
772 
773 	/* This can race but the race causes us to copy when we don't
774 	   need to and drop the copy */
775 	if(atomic_read(&files->count) == 1)
776 	{
777 		atomic_inc(&files->count);
778 		return 0;
779 	}
780 	rc = copy_files(0, current);
781 	if(rc)
782 		current->files = files;
783 	return rc;
784 }
785 
786 EXPORT_SYMBOL(unshare_files);
787 
788 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
789 {
790 	struct sighand_struct *sig;
791 
792 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
793 		atomic_inc(&current->sighand->count);
794 		return 0;
795 	}
796 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
797 	rcu_assign_pointer(tsk->sighand, sig);
798 	if (!sig)
799 		return -ENOMEM;
800 	atomic_set(&sig->count, 1);
801 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
802 	return 0;
803 }
804 
805 void __cleanup_sighand(struct sighand_struct *sighand)
806 {
807 	if (atomic_dec_and_test(&sighand->count))
808 		kmem_cache_free(sighand_cachep, sighand);
809 }
810 
811 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
812 {
813 	struct signal_struct *sig;
814 	int ret;
815 
816 	if (clone_flags & CLONE_THREAD) {
817 		atomic_inc(&current->signal->count);
818 		atomic_inc(&current->signal->live);
819 		return 0;
820 	}
821 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
822 	tsk->signal = sig;
823 	if (!sig)
824 		return -ENOMEM;
825 
826 	ret = copy_thread_group_keys(tsk);
827 	if (ret < 0) {
828 		kmem_cache_free(signal_cachep, sig);
829 		return ret;
830 	}
831 
832 	atomic_set(&sig->count, 1);
833 	atomic_set(&sig->live, 1);
834 	init_waitqueue_head(&sig->wait_chldexit);
835 	sig->flags = 0;
836 	sig->group_exit_code = 0;
837 	sig->group_exit_task = NULL;
838 	sig->group_stop_count = 0;
839 	sig->curr_target = NULL;
840 	init_sigpending(&sig->shared_pending);
841 	INIT_LIST_HEAD(&sig->posix_timers);
842 
843 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
844 	sig->it_real_incr.tv64 = 0;
845 	sig->real_timer.function = it_real_fn;
846 	sig->tsk = tsk;
847 
848 	sig->it_virt_expires = cputime_zero;
849 	sig->it_virt_incr = cputime_zero;
850 	sig->it_prof_expires = cputime_zero;
851 	sig->it_prof_incr = cputime_zero;
852 
853 	sig->leader = 0;	/* session leadership doesn't inherit */
854 	sig->tty_old_pgrp = 0;
855 
856 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
857 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
858 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
859 	sig->sched_time = 0;
860 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
861 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
862 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
863 
864 	task_lock(current->group_leader);
865 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
866 	task_unlock(current->group_leader);
867 
868 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
869 		/*
870 		 * New sole thread in the process gets an expiry time
871 		 * of the whole CPU time limit.
872 		 */
873 		tsk->it_prof_expires =
874 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
875 	}
876 
877 	return 0;
878 }
879 
880 void __cleanup_signal(struct signal_struct *sig)
881 {
882 	exit_thread_group_keys(sig);
883 	kmem_cache_free(signal_cachep, sig);
884 }
885 
886 static inline void cleanup_signal(struct task_struct *tsk)
887 {
888 	struct signal_struct *sig = tsk->signal;
889 
890 	atomic_dec(&sig->live);
891 
892 	if (atomic_dec_and_test(&sig->count))
893 		__cleanup_signal(sig);
894 }
895 
896 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
897 {
898 	unsigned long new_flags = p->flags;
899 
900 	new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
901 	new_flags |= PF_FORKNOEXEC;
902 	if (!(clone_flags & CLONE_PTRACE))
903 		p->ptrace = 0;
904 	p->flags = new_flags;
905 }
906 
907 asmlinkage long sys_set_tid_address(int __user *tidptr)
908 {
909 	current->clear_child_tid = tidptr;
910 
911 	return current->pid;
912 }
913 
914 /*
915  * This creates a new process as a copy of the old one,
916  * but does not actually start it yet.
917  *
918  * It copies the registers, and all the appropriate
919  * parts of the process environment (as per the clone
920  * flags). The actual kick-off is left to the caller.
921  */
922 static task_t *copy_process(unsigned long clone_flags,
923 				 unsigned long stack_start,
924 				 struct pt_regs *regs,
925 				 unsigned long stack_size,
926 				 int __user *parent_tidptr,
927 				 int __user *child_tidptr,
928 				 int pid)
929 {
930 	int retval;
931 	struct task_struct *p = NULL;
932 
933 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
934 		return ERR_PTR(-EINVAL);
935 
936 	/*
937 	 * Thread groups must share signals as well, and detached threads
938 	 * can only be started up within the thread group.
939 	 */
940 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
941 		return ERR_PTR(-EINVAL);
942 
943 	/*
944 	 * Shared signal handlers imply shared VM. By way of the above,
945 	 * thread groups also imply shared VM. Blocking this case allows
946 	 * for various simplifications in other code.
947 	 */
948 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
949 		return ERR_PTR(-EINVAL);
950 
951 	retval = security_task_create(clone_flags);
952 	if (retval)
953 		goto fork_out;
954 
955 	retval = -ENOMEM;
956 	p = dup_task_struct(current);
957 	if (!p)
958 		goto fork_out;
959 
960 	retval = -EAGAIN;
961 	if (atomic_read(&p->user->processes) >=
962 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
963 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
964 				p->user != &root_user)
965 			goto bad_fork_free;
966 	}
967 
968 	atomic_inc(&p->user->__count);
969 	atomic_inc(&p->user->processes);
970 	get_group_info(p->group_info);
971 
972 	/*
973 	 * If multiple threads are within copy_process(), then this check
974 	 * triggers too late. This doesn't hurt, the check is only there
975 	 * to stop root fork bombs.
976 	 */
977 	if (nr_threads >= max_threads)
978 		goto bad_fork_cleanup_count;
979 
980 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
981 		goto bad_fork_cleanup_count;
982 
983 	if (p->binfmt && !try_module_get(p->binfmt->module))
984 		goto bad_fork_cleanup_put_domain;
985 
986 	p->did_exec = 0;
987 	copy_flags(clone_flags, p);
988 	p->pid = pid;
989 	retval = -EFAULT;
990 	if (clone_flags & CLONE_PARENT_SETTID)
991 		if (put_user(p->pid, parent_tidptr))
992 			goto bad_fork_cleanup;
993 
994 	p->proc_dentry = NULL;
995 
996 	INIT_LIST_HEAD(&p->children);
997 	INIT_LIST_HEAD(&p->sibling);
998 	p->vfork_done = NULL;
999 	spin_lock_init(&p->alloc_lock);
1000 	spin_lock_init(&p->proc_lock);
1001 
1002 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1003 	init_sigpending(&p->pending);
1004 
1005 	p->utime = cputime_zero;
1006 	p->stime = cputime_zero;
1007  	p->sched_time = 0;
1008 	p->rchar = 0;		/* I/O counter: bytes read */
1009 	p->wchar = 0;		/* I/O counter: bytes written */
1010 	p->syscr = 0;		/* I/O counter: read syscalls */
1011 	p->syscw = 0;		/* I/O counter: write syscalls */
1012 	acct_clear_integrals(p);
1013 
1014  	p->it_virt_expires = cputime_zero;
1015 	p->it_prof_expires = cputime_zero;
1016  	p->it_sched_expires = 0;
1017  	INIT_LIST_HEAD(&p->cpu_timers[0]);
1018  	INIT_LIST_HEAD(&p->cpu_timers[1]);
1019  	INIT_LIST_HEAD(&p->cpu_timers[2]);
1020 
1021 	p->lock_depth = -1;		/* -1 = no lock */
1022 	do_posix_clock_monotonic_gettime(&p->start_time);
1023 	p->security = NULL;
1024 	p->io_context = NULL;
1025 	p->io_wait = NULL;
1026 	p->audit_context = NULL;
1027 	cpuset_fork(p);
1028 #ifdef CONFIG_NUMA
1029  	p->mempolicy = mpol_copy(p->mempolicy);
1030  	if (IS_ERR(p->mempolicy)) {
1031  		retval = PTR_ERR(p->mempolicy);
1032  		p->mempolicy = NULL;
1033  		goto bad_fork_cleanup_cpuset;
1034  	}
1035 	mpol_fix_fork_child_flag(p);
1036 #endif
1037 
1038 #ifdef CONFIG_DEBUG_MUTEXES
1039 	p->blocked_on = NULL; /* not blocked yet */
1040 #endif
1041 
1042 	p->tgid = p->pid;
1043 	if (clone_flags & CLONE_THREAD)
1044 		p->tgid = current->tgid;
1045 
1046 	if ((retval = security_task_alloc(p)))
1047 		goto bad_fork_cleanup_policy;
1048 	if ((retval = audit_alloc(p)))
1049 		goto bad_fork_cleanup_security;
1050 	/* copy all the process information */
1051 	if ((retval = copy_semundo(clone_flags, p)))
1052 		goto bad_fork_cleanup_audit;
1053 	if ((retval = copy_files(clone_flags, p)))
1054 		goto bad_fork_cleanup_semundo;
1055 	if ((retval = copy_fs(clone_flags, p)))
1056 		goto bad_fork_cleanup_files;
1057 	if ((retval = copy_sighand(clone_flags, p)))
1058 		goto bad_fork_cleanup_fs;
1059 	if ((retval = copy_signal(clone_flags, p)))
1060 		goto bad_fork_cleanup_sighand;
1061 	if ((retval = copy_mm(clone_flags, p)))
1062 		goto bad_fork_cleanup_signal;
1063 	if ((retval = copy_keys(clone_flags, p)))
1064 		goto bad_fork_cleanup_mm;
1065 	if ((retval = copy_namespace(clone_flags, p)))
1066 		goto bad_fork_cleanup_keys;
1067 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1068 	if (retval)
1069 		goto bad_fork_cleanup_namespace;
1070 
1071 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1072 	/*
1073 	 * Clear TID on mm_release()?
1074 	 */
1075 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1076 	p->robust_list = NULL;
1077 #ifdef CONFIG_COMPAT
1078 	p->compat_robust_list = NULL;
1079 #endif
1080 	/*
1081 	 * sigaltstack should be cleared when sharing the same VM
1082 	 */
1083 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1084 		p->sas_ss_sp = p->sas_ss_size = 0;
1085 
1086 	/*
1087 	 * Syscall tracing should be turned off in the child regardless
1088 	 * of CLONE_PTRACE.
1089 	 */
1090 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1091 #ifdef TIF_SYSCALL_EMU
1092 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1093 #endif
1094 
1095 	/* Our parent execution domain becomes current domain
1096 	   These must match for thread signalling to apply */
1097 
1098 	p->parent_exec_id = p->self_exec_id;
1099 
1100 	/* ok, now we should be set up.. */
1101 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1102 	p->pdeath_signal = 0;
1103 	p->exit_state = 0;
1104 
1105 	/*
1106 	 * Ok, make it visible to the rest of the system.
1107 	 * We dont wake it up yet.
1108 	 */
1109 	p->group_leader = p;
1110 	INIT_LIST_HEAD(&p->thread_group);
1111 	INIT_LIST_HEAD(&p->ptrace_children);
1112 	INIT_LIST_HEAD(&p->ptrace_list);
1113 
1114 	/* Perform scheduler related setup. Assign this task to a CPU. */
1115 	sched_fork(p, clone_flags);
1116 
1117 	/* Need tasklist lock for parent etc handling! */
1118 	write_lock_irq(&tasklist_lock);
1119 
1120 	/*
1121 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1122 	 * not be changed, nor will its assigned CPU.
1123 	 *
1124 	 * The cpus_allowed mask of the parent may have changed after it was
1125 	 * copied first time - so re-copy it here, then check the child's CPU
1126 	 * to ensure it is on a valid CPU (and if not, just force it back to
1127 	 * parent's CPU). This avoids alot of nasty races.
1128 	 */
1129 	p->cpus_allowed = current->cpus_allowed;
1130 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1131 			!cpu_online(task_cpu(p))))
1132 		set_task_cpu(p, smp_processor_id());
1133 
1134 	/* CLONE_PARENT re-uses the old parent */
1135 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1136 		p->real_parent = current->real_parent;
1137 	else
1138 		p->real_parent = current;
1139 	p->parent = p->real_parent;
1140 
1141 	spin_lock(&current->sighand->siglock);
1142 
1143 	/*
1144 	 * Process group and session signals need to be delivered to just the
1145 	 * parent before the fork or both the parent and the child after the
1146 	 * fork. Restart if a signal comes in before we add the new process to
1147 	 * it's process group.
1148 	 * A fatal signal pending means that current will exit, so the new
1149 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1150  	 */
1151  	recalc_sigpending();
1152 	if (signal_pending(current)) {
1153 		spin_unlock(&current->sighand->siglock);
1154 		write_unlock_irq(&tasklist_lock);
1155 		retval = -ERESTARTNOINTR;
1156 		goto bad_fork_cleanup_namespace;
1157 	}
1158 
1159 	if (clone_flags & CLONE_THREAD) {
1160 		/*
1161 		 * Important: if an exit-all has been started then
1162 		 * do not create this new thread - the whole thread
1163 		 * group is supposed to exit anyway.
1164 		 */
1165 		if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1166 			spin_unlock(&current->sighand->siglock);
1167 			write_unlock_irq(&tasklist_lock);
1168 			retval = -EAGAIN;
1169 			goto bad_fork_cleanup_namespace;
1170 		}
1171 
1172 		p->group_leader = current->group_leader;
1173 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1174 
1175 		if (!cputime_eq(current->signal->it_virt_expires,
1176 				cputime_zero) ||
1177 		    !cputime_eq(current->signal->it_prof_expires,
1178 				cputime_zero) ||
1179 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1180 		    !list_empty(&current->signal->cpu_timers[0]) ||
1181 		    !list_empty(&current->signal->cpu_timers[1]) ||
1182 		    !list_empty(&current->signal->cpu_timers[2])) {
1183 			/*
1184 			 * Have child wake up on its first tick to check
1185 			 * for process CPU timers.
1186 			 */
1187 			p->it_prof_expires = jiffies_to_cputime(1);
1188 		}
1189 	}
1190 
1191 	/*
1192 	 * inherit ioprio
1193 	 */
1194 	p->ioprio = current->ioprio;
1195 
1196 	if (likely(p->pid)) {
1197 		add_parent(p);
1198 		if (unlikely(p->ptrace & PT_PTRACED))
1199 			__ptrace_link(p, current->parent);
1200 
1201 		if (thread_group_leader(p)) {
1202 			p->signal->tty = current->signal->tty;
1203 			p->signal->pgrp = process_group(current);
1204 			p->signal->session = current->signal->session;
1205 			attach_pid(p, PIDTYPE_PGID, process_group(p));
1206 			attach_pid(p, PIDTYPE_SID, p->signal->session);
1207 
1208 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1209 			__get_cpu_var(process_counts)++;
1210 		}
1211 		attach_pid(p, PIDTYPE_PID, p->pid);
1212 		nr_threads++;
1213 	}
1214 
1215 	total_forks++;
1216 	spin_unlock(&current->sighand->siglock);
1217 	write_unlock_irq(&tasklist_lock);
1218 	proc_fork_connector(p);
1219 	return p;
1220 
1221 bad_fork_cleanup_namespace:
1222 	exit_namespace(p);
1223 bad_fork_cleanup_keys:
1224 	exit_keys(p);
1225 bad_fork_cleanup_mm:
1226 	if (p->mm)
1227 		mmput(p->mm);
1228 bad_fork_cleanup_signal:
1229 	cleanup_signal(p);
1230 bad_fork_cleanup_sighand:
1231 	__cleanup_sighand(p->sighand);
1232 bad_fork_cleanup_fs:
1233 	exit_fs(p); /* blocking */
1234 bad_fork_cleanup_files:
1235 	exit_files(p); /* blocking */
1236 bad_fork_cleanup_semundo:
1237 	exit_sem(p);
1238 bad_fork_cleanup_audit:
1239 	audit_free(p);
1240 bad_fork_cleanup_security:
1241 	security_task_free(p);
1242 bad_fork_cleanup_policy:
1243 #ifdef CONFIG_NUMA
1244 	mpol_free(p->mempolicy);
1245 bad_fork_cleanup_cpuset:
1246 #endif
1247 	cpuset_exit(p);
1248 bad_fork_cleanup:
1249 	if (p->binfmt)
1250 		module_put(p->binfmt->module);
1251 bad_fork_cleanup_put_domain:
1252 	module_put(task_thread_info(p)->exec_domain->module);
1253 bad_fork_cleanup_count:
1254 	put_group_info(p->group_info);
1255 	atomic_dec(&p->user->processes);
1256 	free_uid(p->user);
1257 bad_fork_free:
1258 	free_task(p);
1259 fork_out:
1260 	return ERR_PTR(retval);
1261 }
1262 
1263 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1264 {
1265 	memset(regs, 0, sizeof(struct pt_regs));
1266 	return regs;
1267 }
1268 
1269 task_t * __devinit fork_idle(int cpu)
1270 {
1271 	task_t *task;
1272 	struct pt_regs regs;
1273 
1274 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1275 	if (!task)
1276 		return ERR_PTR(-ENOMEM);
1277 	init_idle(task, cpu);
1278 
1279 	return task;
1280 }
1281 
1282 static inline int fork_traceflag (unsigned clone_flags)
1283 {
1284 	if (clone_flags & CLONE_UNTRACED)
1285 		return 0;
1286 	else if (clone_flags & CLONE_VFORK) {
1287 		if (current->ptrace & PT_TRACE_VFORK)
1288 			return PTRACE_EVENT_VFORK;
1289 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1290 		if (current->ptrace & PT_TRACE_CLONE)
1291 			return PTRACE_EVENT_CLONE;
1292 	} else if (current->ptrace & PT_TRACE_FORK)
1293 		return PTRACE_EVENT_FORK;
1294 
1295 	return 0;
1296 }
1297 
1298 /*
1299  *  Ok, this is the main fork-routine.
1300  *
1301  * It copies the process, and if successful kick-starts
1302  * it and waits for it to finish using the VM if required.
1303  */
1304 long do_fork(unsigned long clone_flags,
1305 	      unsigned long stack_start,
1306 	      struct pt_regs *regs,
1307 	      unsigned long stack_size,
1308 	      int __user *parent_tidptr,
1309 	      int __user *child_tidptr)
1310 {
1311 	struct task_struct *p;
1312 	int trace = 0;
1313 	struct pid *pid = alloc_pid();
1314 	long nr;
1315 
1316 	if (!pid)
1317 		return -EAGAIN;
1318 	nr = pid->nr;
1319 	if (unlikely(current->ptrace)) {
1320 		trace = fork_traceflag (clone_flags);
1321 		if (trace)
1322 			clone_flags |= CLONE_PTRACE;
1323 	}
1324 
1325 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1326 	/*
1327 	 * Do this prior waking up the new thread - the thread pointer
1328 	 * might get invalid after that point, if the thread exits quickly.
1329 	 */
1330 	if (!IS_ERR(p)) {
1331 		struct completion vfork;
1332 
1333 		if (clone_flags & CLONE_VFORK) {
1334 			p->vfork_done = &vfork;
1335 			init_completion(&vfork);
1336 		}
1337 
1338 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1339 			/*
1340 			 * We'll start up with an immediate SIGSTOP.
1341 			 */
1342 			sigaddset(&p->pending.signal, SIGSTOP);
1343 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1344 		}
1345 
1346 		if (!(clone_flags & CLONE_STOPPED))
1347 			wake_up_new_task(p, clone_flags);
1348 		else
1349 			p->state = TASK_STOPPED;
1350 
1351 		if (unlikely (trace)) {
1352 			current->ptrace_message = nr;
1353 			ptrace_notify ((trace << 8) | SIGTRAP);
1354 		}
1355 
1356 		if (clone_flags & CLONE_VFORK) {
1357 			wait_for_completion(&vfork);
1358 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1359 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1360 		}
1361 	} else {
1362 		free_pid(pid);
1363 		nr = PTR_ERR(p);
1364 	}
1365 	return nr;
1366 }
1367 
1368 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1369 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1370 #endif
1371 
1372 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1373 {
1374 	struct sighand_struct *sighand = data;
1375 
1376 	if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1377 					SLAB_CTOR_CONSTRUCTOR)
1378 		spin_lock_init(&sighand->siglock);
1379 }
1380 
1381 void __init proc_caches_init(void)
1382 {
1383 	sighand_cachep = kmem_cache_create("sighand_cache",
1384 			sizeof(struct sighand_struct), 0,
1385 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1386 			sighand_ctor, NULL);
1387 	signal_cachep = kmem_cache_create("signal_cache",
1388 			sizeof(struct signal_struct), 0,
1389 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1390 	files_cachep = kmem_cache_create("files_cache",
1391 			sizeof(struct files_struct), 0,
1392 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1393 	fs_cachep = kmem_cache_create("fs_cache",
1394 			sizeof(struct fs_struct), 0,
1395 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1396 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1397 			sizeof(struct vm_area_struct), 0,
1398 			SLAB_PANIC, NULL, NULL);
1399 	mm_cachep = kmem_cache_create("mm_struct",
1400 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1401 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1402 }
1403 
1404 
1405 /*
1406  * Check constraints on flags passed to the unshare system call and
1407  * force unsharing of additional process context as appropriate.
1408  */
1409 static inline void check_unshare_flags(unsigned long *flags_ptr)
1410 {
1411 	/*
1412 	 * If unsharing a thread from a thread group, must also
1413 	 * unshare vm.
1414 	 */
1415 	if (*flags_ptr & CLONE_THREAD)
1416 		*flags_ptr |= CLONE_VM;
1417 
1418 	/*
1419 	 * If unsharing vm, must also unshare signal handlers.
1420 	 */
1421 	if (*flags_ptr & CLONE_VM)
1422 		*flags_ptr |= CLONE_SIGHAND;
1423 
1424 	/*
1425 	 * If unsharing signal handlers and the task was created
1426 	 * using CLONE_THREAD, then must unshare the thread
1427 	 */
1428 	if ((*flags_ptr & CLONE_SIGHAND) &&
1429 	    (atomic_read(&current->signal->count) > 1))
1430 		*flags_ptr |= CLONE_THREAD;
1431 
1432 	/*
1433 	 * If unsharing namespace, must also unshare filesystem information.
1434 	 */
1435 	if (*flags_ptr & CLONE_NEWNS)
1436 		*flags_ptr |= CLONE_FS;
1437 }
1438 
1439 /*
1440  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1441  */
1442 static int unshare_thread(unsigned long unshare_flags)
1443 {
1444 	if (unshare_flags & CLONE_THREAD)
1445 		return -EINVAL;
1446 
1447 	return 0;
1448 }
1449 
1450 /*
1451  * Unshare the filesystem structure if it is being shared
1452  */
1453 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1454 {
1455 	struct fs_struct *fs = current->fs;
1456 
1457 	if ((unshare_flags & CLONE_FS) &&
1458 	    (fs && atomic_read(&fs->count) > 1)) {
1459 		*new_fsp = __copy_fs_struct(current->fs);
1460 		if (!*new_fsp)
1461 			return -ENOMEM;
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 /*
1468  * Unshare the namespace structure if it is being shared
1469  */
1470 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1471 {
1472 	struct namespace *ns = current->namespace;
1473 
1474 	if ((unshare_flags & CLONE_NEWNS) &&
1475 	    (ns && atomic_read(&ns->count) > 1)) {
1476 		if (!capable(CAP_SYS_ADMIN))
1477 			return -EPERM;
1478 
1479 		*new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1480 		if (!*new_nsp)
1481 			return -ENOMEM;
1482 	}
1483 
1484 	return 0;
1485 }
1486 
1487 /*
1488  * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1489  * supported yet
1490  */
1491 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1492 {
1493 	struct sighand_struct *sigh = current->sighand;
1494 
1495 	if ((unshare_flags & CLONE_SIGHAND) &&
1496 	    (sigh && atomic_read(&sigh->count) > 1))
1497 		return -EINVAL;
1498 	else
1499 		return 0;
1500 }
1501 
1502 /*
1503  * Unshare vm if it is being shared
1504  */
1505 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1506 {
1507 	struct mm_struct *mm = current->mm;
1508 
1509 	if ((unshare_flags & CLONE_VM) &&
1510 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1511 		return -EINVAL;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 /*
1518  * Unshare file descriptor table if it is being shared
1519  */
1520 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1521 {
1522 	struct files_struct *fd = current->files;
1523 	int error = 0;
1524 
1525 	if ((unshare_flags & CLONE_FILES) &&
1526 	    (fd && atomic_read(&fd->count) > 1)) {
1527 		*new_fdp = dup_fd(fd, &error);
1528 		if (!*new_fdp)
1529 			return error;
1530 	}
1531 
1532 	return 0;
1533 }
1534 
1535 /*
1536  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1537  * supported yet
1538  */
1539 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1540 {
1541 	if (unshare_flags & CLONE_SYSVSEM)
1542 		return -EINVAL;
1543 
1544 	return 0;
1545 }
1546 
1547 /*
1548  * unshare allows a process to 'unshare' part of the process
1549  * context which was originally shared using clone.  copy_*
1550  * functions used by do_fork() cannot be used here directly
1551  * because they modify an inactive task_struct that is being
1552  * constructed. Here we are modifying the current, active,
1553  * task_struct.
1554  */
1555 asmlinkage long sys_unshare(unsigned long unshare_flags)
1556 {
1557 	int err = 0;
1558 	struct fs_struct *fs, *new_fs = NULL;
1559 	struct namespace *ns, *new_ns = NULL;
1560 	struct sighand_struct *sigh, *new_sigh = NULL;
1561 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1562 	struct files_struct *fd, *new_fd = NULL;
1563 	struct sem_undo_list *new_ulist = NULL;
1564 
1565 	check_unshare_flags(&unshare_flags);
1566 
1567 	/* Return -EINVAL for all unsupported flags */
1568 	err = -EINVAL;
1569 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1570 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1571 		goto bad_unshare_out;
1572 
1573 	if ((err = unshare_thread(unshare_flags)))
1574 		goto bad_unshare_out;
1575 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1576 		goto bad_unshare_cleanup_thread;
1577 	if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1578 		goto bad_unshare_cleanup_fs;
1579 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1580 		goto bad_unshare_cleanup_ns;
1581 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1582 		goto bad_unshare_cleanup_sigh;
1583 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1584 		goto bad_unshare_cleanup_vm;
1585 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1586 		goto bad_unshare_cleanup_fd;
1587 
1588 	if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1589 
1590 		task_lock(current);
1591 
1592 		if (new_fs) {
1593 			fs = current->fs;
1594 			current->fs = new_fs;
1595 			new_fs = fs;
1596 		}
1597 
1598 		if (new_ns) {
1599 			ns = current->namespace;
1600 			current->namespace = new_ns;
1601 			new_ns = ns;
1602 		}
1603 
1604 		if (new_sigh) {
1605 			sigh = current->sighand;
1606 			rcu_assign_pointer(current->sighand, new_sigh);
1607 			new_sigh = sigh;
1608 		}
1609 
1610 		if (new_mm) {
1611 			mm = current->mm;
1612 			active_mm = current->active_mm;
1613 			current->mm = new_mm;
1614 			current->active_mm = new_mm;
1615 			activate_mm(active_mm, new_mm);
1616 			new_mm = mm;
1617 		}
1618 
1619 		if (new_fd) {
1620 			fd = current->files;
1621 			current->files = new_fd;
1622 			new_fd = fd;
1623 		}
1624 
1625 		task_unlock(current);
1626 	}
1627 
1628 bad_unshare_cleanup_fd:
1629 	if (new_fd)
1630 		put_files_struct(new_fd);
1631 
1632 bad_unshare_cleanup_vm:
1633 	if (new_mm)
1634 		mmput(new_mm);
1635 
1636 bad_unshare_cleanup_sigh:
1637 	if (new_sigh)
1638 		if (atomic_dec_and_test(&new_sigh->count))
1639 			kmem_cache_free(sighand_cachep, new_sigh);
1640 
1641 bad_unshare_cleanup_ns:
1642 	if (new_ns)
1643 		put_namespace(new_ns);
1644 
1645 bad_unshare_cleanup_fs:
1646 	if (new_fs)
1647 		put_fs_struct(new_fs);
1648 
1649 bad_unshare_cleanup_thread:
1650 bad_unshare_out:
1651 	return err;
1652 }
1653