xref: /linux/kernel/fork.c (revision 7b04fa014c11e6415da8b5a7999dbd201abad53c)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/nsproxy.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cgroup.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/task_io_accounting_ops.h>
40 #include <linux/rcupdate.h>
41 #include <linux/ptrace.h>
42 #include <linux/mount.h>
43 #include <linux/audit.h>
44 #include <linux/memcontrol.h>
45 #include <linux/profile.h>
46 #include <linux/rmap.h>
47 #include <linux/acct.h>
48 #include <linux/tsacct_kern.h>
49 #include <linux/cn_proc.h>
50 #include <linux/freezer.h>
51 #include <linux/delayacct.h>
52 #include <linux/taskstats_kern.h>
53 #include <linux/random.h>
54 #include <linux/tty.h>
55 #include <linux/proc_fs.h>
56 #include <linux/blkdev.h>
57 
58 #include <asm/pgtable.h>
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/cacheflush.h>
63 #include <asm/tlbflush.h>
64 
65 /*
66  * Protected counters by write_lock_irq(&tasklist_lock)
67  */
68 unsigned long total_forks;	/* Handle normal Linux uptimes. */
69 int nr_threads; 		/* The idle threads do not count.. */
70 
71 int max_threads;		/* tunable limit on nr_threads */
72 
73 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
74 
75 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
76 
77 int nr_processes(void)
78 {
79 	int cpu;
80 	int total = 0;
81 
82 	for_each_online_cpu(cpu)
83 		total += per_cpu(process_counts, cpu);
84 
85 	return total;
86 }
87 
88 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
89 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
90 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
91 static struct kmem_cache *task_struct_cachep;
92 #endif
93 
94 /* SLAB cache for signal_struct structures (tsk->signal) */
95 static struct kmem_cache *signal_cachep;
96 
97 /* SLAB cache for sighand_struct structures (tsk->sighand) */
98 struct kmem_cache *sighand_cachep;
99 
100 /* SLAB cache for files_struct structures (tsk->files) */
101 struct kmem_cache *files_cachep;
102 
103 /* SLAB cache for fs_struct structures (tsk->fs) */
104 struct kmem_cache *fs_cachep;
105 
106 /* SLAB cache for vm_area_struct structures */
107 struct kmem_cache *vm_area_cachep;
108 
109 /* SLAB cache for mm_struct structures (tsk->mm) */
110 static struct kmem_cache *mm_cachep;
111 
112 void free_task(struct task_struct *tsk)
113 {
114 	prop_local_destroy_single(&tsk->dirties);
115 	free_thread_info(tsk->stack);
116 	rt_mutex_debug_task_free(tsk);
117 	free_task_struct(tsk);
118 }
119 EXPORT_SYMBOL(free_task);
120 
121 void __put_task_struct(struct task_struct *tsk)
122 {
123 	WARN_ON(!tsk->exit_state);
124 	WARN_ON(atomic_read(&tsk->usage));
125 	WARN_ON(tsk == current);
126 
127 	security_task_free(tsk);
128 	free_uid(tsk->user);
129 	put_group_info(tsk->group_info);
130 	delayacct_tsk_free(tsk);
131 
132 	if (!profile_handoff_task(tsk))
133 		free_task(tsk);
134 }
135 
136 /*
137  * macro override instead of weak attribute alias, to workaround
138  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
139  */
140 #ifndef arch_task_cache_init
141 #define arch_task_cache_init()
142 #endif
143 
144 void __init fork_init(unsigned long mempages)
145 {
146 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
147 #ifndef ARCH_MIN_TASKALIGN
148 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
149 #endif
150 	/* create a slab on which task_structs can be allocated */
151 	task_struct_cachep =
152 		kmem_cache_create("task_struct", sizeof(struct task_struct),
153 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
154 #endif
155 
156 	/* do the arch specific task caches init */
157 	arch_task_cache_init();
158 
159 	/*
160 	 * The default maximum number of threads is set to a safe
161 	 * value: the thread structures can take up at most half
162 	 * of memory.
163 	 */
164 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
165 
166 	/*
167 	 * we need to allow at least 20 threads to boot a system
168 	 */
169 	if(max_threads < 20)
170 		max_threads = 20;
171 
172 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
173 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
174 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
175 		init_task.signal->rlim[RLIMIT_NPROC];
176 }
177 
178 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
179 					       struct task_struct *src)
180 {
181 	*dst = *src;
182 	return 0;
183 }
184 
185 static struct task_struct *dup_task_struct(struct task_struct *orig)
186 {
187 	struct task_struct *tsk;
188 	struct thread_info *ti;
189 	int err;
190 
191 	prepare_to_copy(orig);
192 
193 	tsk = alloc_task_struct();
194 	if (!tsk)
195 		return NULL;
196 
197 	ti = alloc_thread_info(tsk);
198 	if (!ti) {
199 		free_task_struct(tsk);
200 		return NULL;
201 	}
202 
203  	err = arch_dup_task_struct(tsk, orig);
204 	if (err)
205 		goto out;
206 
207 	tsk->stack = ti;
208 
209 	err = prop_local_init_single(&tsk->dirties);
210 	if (err)
211 		goto out;
212 
213 	setup_thread_stack(tsk, orig);
214 
215 #ifdef CONFIG_CC_STACKPROTECTOR
216 	tsk->stack_canary = get_random_int();
217 #endif
218 
219 	/* One for us, one for whoever does the "release_task()" (usually parent) */
220 	atomic_set(&tsk->usage,2);
221 	atomic_set(&tsk->fs_excl, 0);
222 #ifdef CONFIG_BLK_DEV_IO_TRACE
223 	tsk->btrace_seq = 0;
224 #endif
225 	tsk->splice_pipe = NULL;
226 	return tsk;
227 
228 out:
229 	free_thread_info(ti);
230 	free_task_struct(tsk);
231 	return NULL;
232 }
233 
234 #ifdef CONFIG_MMU
235 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
236 {
237 	struct vm_area_struct *mpnt, *tmp, **pprev;
238 	struct rb_node **rb_link, *rb_parent;
239 	int retval;
240 	unsigned long charge;
241 	struct mempolicy *pol;
242 
243 	down_write(&oldmm->mmap_sem);
244 	flush_cache_dup_mm(oldmm);
245 	/*
246 	 * Not linked in yet - no deadlock potential:
247 	 */
248 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
249 
250 	mm->locked_vm = 0;
251 	mm->mmap = NULL;
252 	mm->mmap_cache = NULL;
253 	mm->free_area_cache = oldmm->mmap_base;
254 	mm->cached_hole_size = ~0UL;
255 	mm->map_count = 0;
256 	cpus_clear(mm->cpu_vm_mask);
257 	mm->mm_rb = RB_ROOT;
258 	rb_link = &mm->mm_rb.rb_node;
259 	rb_parent = NULL;
260 	pprev = &mm->mmap;
261 
262 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
263 		struct file *file;
264 
265 		if (mpnt->vm_flags & VM_DONTCOPY) {
266 			long pages = vma_pages(mpnt);
267 			mm->total_vm -= pages;
268 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
269 								-pages);
270 			continue;
271 		}
272 		charge = 0;
273 		if (mpnt->vm_flags & VM_ACCOUNT) {
274 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
275 			if (security_vm_enough_memory(len))
276 				goto fail_nomem;
277 			charge = len;
278 		}
279 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
280 		if (!tmp)
281 			goto fail_nomem;
282 		*tmp = *mpnt;
283 		pol = mpol_dup(vma_policy(mpnt));
284 		retval = PTR_ERR(pol);
285 		if (IS_ERR(pol))
286 			goto fail_nomem_policy;
287 		vma_set_policy(tmp, pol);
288 		tmp->vm_flags &= ~VM_LOCKED;
289 		tmp->vm_mm = mm;
290 		tmp->vm_next = NULL;
291 		anon_vma_link(tmp);
292 		file = tmp->vm_file;
293 		if (file) {
294 			struct inode *inode = file->f_path.dentry->d_inode;
295 			get_file(file);
296 			if (tmp->vm_flags & VM_DENYWRITE)
297 				atomic_dec(&inode->i_writecount);
298 
299 			/* insert tmp into the share list, just after mpnt */
300 			spin_lock(&file->f_mapping->i_mmap_lock);
301 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
302 			flush_dcache_mmap_lock(file->f_mapping);
303 			vma_prio_tree_add(tmp, mpnt);
304 			flush_dcache_mmap_unlock(file->f_mapping);
305 			spin_unlock(&file->f_mapping->i_mmap_lock);
306 		}
307 
308 		/*
309 		 * Link in the new vma and copy the page table entries.
310 		 */
311 		*pprev = tmp;
312 		pprev = &tmp->vm_next;
313 
314 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
315 		rb_link = &tmp->vm_rb.rb_right;
316 		rb_parent = &tmp->vm_rb;
317 
318 		mm->map_count++;
319 		retval = copy_page_range(mm, oldmm, mpnt);
320 
321 		if (tmp->vm_ops && tmp->vm_ops->open)
322 			tmp->vm_ops->open(tmp);
323 
324 		if (retval)
325 			goto out;
326 	}
327 	/* a new mm has just been created */
328 	arch_dup_mmap(oldmm, mm);
329 	retval = 0;
330 out:
331 	up_write(&mm->mmap_sem);
332 	flush_tlb_mm(oldmm);
333 	up_write(&oldmm->mmap_sem);
334 	return retval;
335 fail_nomem_policy:
336 	kmem_cache_free(vm_area_cachep, tmp);
337 fail_nomem:
338 	retval = -ENOMEM;
339 	vm_unacct_memory(charge);
340 	goto out;
341 }
342 
343 static inline int mm_alloc_pgd(struct mm_struct * mm)
344 {
345 	mm->pgd = pgd_alloc(mm);
346 	if (unlikely(!mm->pgd))
347 		return -ENOMEM;
348 	return 0;
349 }
350 
351 static inline void mm_free_pgd(struct mm_struct * mm)
352 {
353 	pgd_free(mm, mm->pgd);
354 }
355 #else
356 #define dup_mmap(mm, oldmm)	(0)
357 #define mm_alloc_pgd(mm)	(0)
358 #define mm_free_pgd(mm)
359 #endif /* CONFIG_MMU */
360 
361 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
362 
363 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
364 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
365 
366 #include <linux/init_task.h>
367 
368 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
369 {
370 	atomic_set(&mm->mm_users, 1);
371 	atomic_set(&mm->mm_count, 1);
372 	init_rwsem(&mm->mmap_sem);
373 	INIT_LIST_HEAD(&mm->mmlist);
374 	mm->flags = (current->mm) ? current->mm->flags
375 				  : MMF_DUMP_FILTER_DEFAULT;
376 	mm->core_waiters = 0;
377 	mm->nr_ptes = 0;
378 	set_mm_counter(mm, file_rss, 0);
379 	set_mm_counter(mm, anon_rss, 0);
380 	spin_lock_init(&mm->page_table_lock);
381 	rwlock_init(&mm->ioctx_list_lock);
382 	mm->ioctx_list = NULL;
383 	mm->free_area_cache = TASK_UNMAPPED_BASE;
384 	mm->cached_hole_size = ~0UL;
385 	mm_init_owner(mm, p);
386 
387 	if (likely(!mm_alloc_pgd(mm))) {
388 		mm->def_flags = 0;
389 		return mm;
390 	}
391 
392 	free_mm(mm);
393 	return NULL;
394 }
395 
396 /*
397  * Allocate and initialize an mm_struct.
398  */
399 struct mm_struct * mm_alloc(void)
400 {
401 	struct mm_struct * mm;
402 
403 	mm = allocate_mm();
404 	if (mm) {
405 		memset(mm, 0, sizeof(*mm));
406 		mm = mm_init(mm, current);
407 	}
408 	return mm;
409 }
410 
411 /*
412  * Called when the last reference to the mm
413  * is dropped: either by a lazy thread or by
414  * mmput. Free the page directory and the mm.
415  */
416 void __mmdrop(struct mm_struct *mm)
417 {
418 	BUG_ON(mm == &init_mm);
419 	mm_free_pgd(mm);
420 	destroy_context(mm);
421 	free_mm(mm);
422 }
423 EXPORT_SYMBOL_GPL(__mmdrop);
424 
425 /*
426  * Decrement the use count and release all resources for an mm.
427  */
428 void mmput(struct mm_struct *mm)
429 {
430 	might_sleep();
431 
432 	if (atomic_dec_and_test(&mm->mm_users)) {
433 		exit_aio(mm);
434 		exit_mmap(mm);
435 		set_mm_exe_file(mm, NULL);
436 		if (!list_empty(&mm->mmlist)) {
437 			spin_lock(&mmlist_lock);
438 			list_del(&mm->mmlist);
439 			spin_unlock(&mmlist_lock);
440 		}
441 		put_swap_token(mm);
442 		mmdrop(mm);
443 	}
444 }
445 EXPORT_SYMBOL_GPL(mmput);
446 
447 /**
448  * get_task_mm - acquire a reference to the task's mm
449  *
450  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
451  * this kernel workthread has transiently adopted a user mm with use_mm,
452  * to do its AIO) is not set and if so returns a reference to it, after
453  * bumping up the use count.  User must release the mm via mmput()
454  * after use.  Typically used by /proc and ptrace.
455  */
456 struct mm_struct *get_task_mm(struct task_struct *task)
457 {
458 	struct mm_struct *mm;
459 
460 	task_lock(task);
461 	mm = task->mm;
462 	if (mm) {
463 		if (task->flags & PF_BORROWED_MM)
464 			mm = NULL;
465 		else
466 			atomic_inc(&mm->mm_users);
467 	}
468 	task_unlock(task);
469 	return mm;
470 }
471 EXPORT_SYMBOL_GPL(get_task_mm);
472 
473 /* Please note the differences between mmput and mm_release.
474  * mmput is called whenever we stop holding onto a mm_struct,
475  * error success whatever.
476  *
477  * mm_release is called after a mm_struct has been removed
478  * from the current process.
479  *
480  * This difference is important for error handling, when we
481  * only half set up a mm_struct for a new process and need to restore
482  * the old one.  Because we mmput the new mm_struct before
483  * restoring the old one. . .
484  * Eric Biederman 10 January 1998
485  */
486 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
487 {
488 	struct completion *vfork_done = tsk->vfork_done;
489 
490 	/* Get rid of any cached register state */
491 	deactivate_mm(tsk, mm);
492 
493 	/* notify parent sleeping on vfork() */
494 	if (vfork_done) {
495 		tsk->vfork_done = NULL;
496 		complete(vfork_done);
497 	}
498 
499 	/*
500 	 * If we're exiting normally, clear a user-space tid field if
501 	 * requested.  We leave this alone when dying by signal, to leave
502 	 * the value intact in a core dump, and to save the unnecessary
503 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
504 	 */
505 	if (tsk->clear_child_tid
506 	    && !(tsk->flags & PF_SIGNALED)
507 	    && atomic_read(&mm->mm_users) > 1) {
508 		u32 __user * tidptr = tsk->clear_child_tid;
509 		tsk->clear_child_tid = NULL;
510 
511 		/*
512 		 * We don't check the error code - if userspace has
513 		 * not set up a proper pointer then tough luck.
514 		 */
515 		put_user(0, tidptr);
516 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
517 	}
518 }
519 
520 /*
521  * Allocate a new mm structure and copy contents from the
522  * mm structure of the passed in task structure.
523  */
524 struct mm_struct *dup_mm(struct task_struct *tsk)
525 {
526 	struct mm_struct *mm, *oldmm = current->mm;
527 	int err;
528 
529 	if (!oldmm)
530 		return NULL;
531 
532 	mm = allocate_mm();
533 	if (!mm)
534 		goto fail_nomem;
535 
536 	memcpy(mm, oldmm, sizeof(*mm));
537 
538 	/* Initializing for Swap token stuff */
539 	mm->token_priority = 0;
540 	mm->last_interval = 0;
541 
542 	if (!mm_init(mm, tsk))
543 		goto fail_nomem;
544 
545 	if (init_new_context(tsk, mm))
546 		goto fail_nocontext;
547 
548 	dup_mm_exe_file(oldmm, mm);
549 
550 	err = dup_mmap(mm, oldmm);
551 	if (err)
552 		goto free_pt;
553 
554 	mm->hiwater_rss = get_mm_rss(mm);
555 	mm->hiwater_vm = mm->total_vm;
556 
557 	return mm;
558 
559 free_pt:
560 	mmput(mm);
561 
562 fail_nomem:
563 	return NULL;
564 
565 fail_nocontext:
566 	/*
567 	 * If init_new_context() failed, we cannot use mmput() to free the mm
568 	 * because it calls destroy_context()
569 	 */
570 	mm_free_pgd(mm);
571 	free_mm(mm);
572 	return NULL;
573 }
574 
575 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
576 {
577 	struct mm_struct * mm, *oldmm;
578 	int retval;
579 
580 	tsk->min_flt = tsk->maj_flt = 0;
581 	tsk->nvcsw = tsk->nivcsw = 0;
582 
583 	tsk->mm = NULL;
584 	tsk->active_mm = NULL;
585 
586 	/*
587 	 * Are we cloning a kernel thread?
588 	 *
589 	 * We need to steal a active VM for that..
590 	 */
591 	oldmm = current->mm;
592 	if (!oldmm)
593 		return 0;
594 
595 	if (clone_flags & CLONE_VM) {
596 		atomic_inc(&oldmm->mm_users);
597 		mm = oldmm;
598 		goto good_mm;
599 	}
600 
601 	retval = -ENOMEM;
602 	mm = dup_mm(tsk);
603 	if (!mm)
604 		goto fail_nomem;
605 
606 good_mm:
607 	/* Initializing for Swap token stuff */
608 	mm->token_priority = 0;
609 	mm->last_interval = 0;
610 
611 	tsk->mm = mm;
612 	tsk->active_mm = mm;
613 	return 0;
614 
615 fail_nomem:
616 	return retval;
617 }
618 
619 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
620 {
621 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
622 	/* We don't need to lock fs - think why ;-) */
623 	if (fs) {
624 		atomic_set(&fs->count, 1);
625 		rwlock_init(&fs->lock);
626 		fs->umask = old->umask;
627 		read_lock(&old->lock);
628 		fs->root = old->root;
629 		path_get(&old->root);
630 		fs->pwd = old->pwd;
631 		path_get(&old->pwd);
632 		if (old->altroot.dentry) {
633 			fs->altroot = old->altroot;
634 			path_get(&old->altroot);
635 		} else {
636 			fs->altroot.mnt = NULL;
637 			fs->altroot.dentry = NULL;
638 		}
639 		read_unlock(&old->lock);
640 	}
641 	return fs;
642 }
643 
644 struct fs_struct *copy_fs_struct(struct fs_struct *old)
645 {
646 	return __copy_fs_struct(old);
647 }
648 
649 EXPORT_SYMBOL_GPL(copy_fs_struct);
650 
651 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
652 {
653 	if (clone_flags & CLONE_FS) {
654 		atomic_inc(&current->fs->count);
655 		return 0;
656 	}
657 	tsk->fs = __copy_fs_struct(current->fs);
658 	if (!tsk->fs)
659 		return -ENOMEM;
660 	return 0;
661 }
662 
663 static int count_open_files(struct fdtable *fdt)
664 {
665 	int size = fdt->max_fds;
666 	int i;
667 
668 	/* Find the last open fd */
669 	for (i = size/(8*sizeof(long)); i > 0; ) {
670 		if (fdt->open_fds->fds_bits[--i])
671 			break;
672 	}
673 	i = (i+1) * 8 * sizeof(long);
674 	return i;
675 }
676 
677 static struct files_struct *alloc_files(void)
678 {
679 	struct files_struct *newf;
680 	struct fdtable *fdt;
681 
682 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
683 	if (!newf)
684 		goto out;
685 
686 	atomic_set(&newf->count, 1);
687 
688 	spin_lock_init(&newf->file_lock);
689 	newf->next_fd = 0;
690 	fdt = &newf->fdtab;
691 	fdt->max_fds = NR_OPEN_DEFAULT;
692 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
693 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
694 	fdt->fd = &newf->fd_array[0];
695 	INIT_RCU_HEAD(&fdt->rcu);
696 	fdt->next = NULL;
697 	rcu_assign_pointer(newf->fdt, fdt);
698 out:
699 	return newf;
700 }
701 
702 /*
703  * Allocate a new files structure and copy contents from the
704  * passed in files structure.
705  * errorp will be valid only when the returned files_struct is NULL.
706  */
707 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
708 {
709 	struct files_struct *newf;
710 	struct file **old_fds, **new_fds;
711 	int open_files, size, i;
712 	struct fdtable *old_fdt, *new_fdt;
713 
714 	*errorp = -ENOMEM;
715 	newf = alloc_files();
716 	if (!newf)
717 		goto out;
718 
719 	spin_lock(&oldf->file_lock);
720 	old_fdt = files_fdtable(oldf);
721 	new_fdt = files_fdtable(newf);
722 	open_files = count_open_files(old_fdt);
723 
724 	/*
725 	 * Check whether we need to allocate a larger fd array and fd set.
726 	 * Note: we're not a clone task, so the open count won't change.
727 	 */
728 	if (open_files > new_fdt->max_fds) {
729 		new_fdt->max_fds = 0;
730 		spin_unlock(&oldf->file_lock);
731 		spin_lock(&newf->file_lock);
732 		*errorp = expand_files(newf, open_files-1);
733 		spin_unlock(&newf->file_lock);
734 		if (*errorp < 0)
735 			goto out_release;
736 		new_fdt = files_fdtable(newf);
737 		/*
738 		 * Reacquire the oldf lock and a pointer to its fd table
739 		 * who knows it may have a new bigger fd table. We need
740 		 * the latest pointer.
741 		 */
742 		spin_lock(&oldf->file_lock);
743 		old_fdt = files_fdtable(oldf);
744 	}
745 
746 	old_fds = old_fdt->fd;
747 	new_fds = new_fdt->fd;
748 
749 	memcpy(new_fdt->open_fds->fds_bits,
750 		old_fdt->open_fds->fds_bits, open_files/8);
751 	memcpy(new_fdt->close_on_exec->fds_bits,
752 		old_fdt->close_on_exec->fds_bits, open_files/8);
753 
754 	for (i = open_files; i != 0; i--) {
755 		struct file *f = *old_fds++;
756 		if (f) {
757 			get_file(f);
758 		} else {
759 			/*
760 			 * The fd may be claimed in the fd bitmap but not yet
761 			 * instantiated in the files array if a sibling thread
762 			 * is partway through open().  So make sure that this
763 			 * fd is available to the new process.
764 			 */
765 			FD_CLR(open_files - i, new_fdt->open_fds);
766 		}
767 		rcu_assign_pointer(*new_fds++, f);
768 	}
769 	spin_unlock(&oldf->file_lock);
770 
771 	/* compute the remainder to be cleared */
772 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
773 
774 	/* This is long word aligned thus could use a optimized version */
775 	memset(new_fds, 0, size);
776 
777 	if (new_fdt->max_fds > open_files) {
778 		int left = (new_fdt->max_fds-open_files)/8;
779 		int start = open_files / (8 * sizeof(unsigned long));
780 
781 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
782 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
783 	}
784 
785 	return newf;
786 
787 out_release:
788 	kmem_cache_free(files_cachep, newf);
789 out:
790 	return NULL;
791 }
792 
793 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
794 {
795 	struct files_struct *oldf, *newf;
796 	int error = 0;
797 
798 	/*
799 	 * A background process may not have any files ...
800 	 */
801 	oldf = current->files;
802 	if (!oldf)
803 		goto out;
804 
805 	if (clone_flags & CLONE_FILES) {
806 		atomic_inc(&oldf->count);
807 		goto out;
808 	}
809 
810 	newf = dup_fd(oldf, &error);
811 	if (!newf)
812 		goto out;
813 
814 	tsk->files = newf;
815 	error = 0;
816 out:
817 	return error;
818 }
819 
820 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
821 {
822 #ifdef CONFIG_BLOCK
823 	struct io_context *ioc = current->io_context;
824 
825 	if (!ioc)
826 		return 0;
827 	/*
828 	 * Share io context with parent, if CLONE_IO is set
829 	 */
830 	if (clone_flags & CLONE_IO) {
831 		tsk->io_context = ioc_task_link(ioc);
832 		if (unlikely(!tsk->io_context))
833 			return -ENOMEM;
834 	} else if (ioprio_valid(ioc->ioprio)) {
835 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
836 		if (unlikely(!tsk->io_context))
837 			return -ENOMEM;
838 
839 		tsk->io_context->ioprio = ioc->ioprio;
840 	}
841 #endif
842 	return 0;
843 }
844 
845 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
846 {
847 	struct sighand_struct *sig;
848 
849 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
850 		atomic_inc(&current->sighand->count);
851 		return 0;
852 	}
853 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
854 	rcu_assign_pointer(tsk->sighand, sig);
855 	if (!sig)
856 		return -ENOMEM;
857 	atomic_set(&sig->count, 1);
858 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
859 	return 0;
860 }
861 
862 void __cleanup_sighand(struct sighand_struct *sighand)
863 {
864 	if (atomic_dec_and_test(&sighand->count))
865 		kmem_cache_free(sighand_cachep, sighand);
866 }
867 
868 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
869 {
870 	struct signal_struct *sig;
871 	int ret;
872 
873 	if (clone_flags & CLONE_THREAD) {
874 		atomic_inc(&current->signal->count);
875 		atomic_inc(&current->signal->live);
876 		return 0;
877 	}
878 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
879 	tsk->signal = sig;
880 	if (!sig)
881 		return -ENOMEM;
882 
883 	ret = copy_thread_group_keys(tsk);
884 	if (ret < 0) {
885 		kmem_cache_free(signal_cachep, sig);
886 		return ret;
887 	}
888 
889 	atomic_set(&sig->count, 1);
890 	atomic_set(&sig->live, 1);
891 	init_waitqueue_head(&sig->wait_chldexit);
892 	sig->flags = 0;
893 	sig->group_exit_code = 0;
894 	sig->group_exit_task = NULL;
895 	sig->group_stop_count = 0;
896 	sig->curr_target = tsk;
897 	init_sigpending(&sig->shared_pending);
898 	INIT_LIST_HEAD(&sig->posix_timers);
899 
900 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
901 	sig->it_real_incr.tv64 = 0;
902 	sig->real_timer.function = it_real_fn;
903 
904 	sig->it_virt_expires = cputime_zero;
905 	sig->it_virt_incr = cputime_zero;
906 	sig->it_prof_expires = cputime_zero;
907 	sig->it_prof_incr = cputime_zero;
908 
909 	sig->leader = 0;	/* session leadership doesn't inherit */
910 	sig->tty_old_pgrp = NULL;
911 
912 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
913 	sig->gtime = cputime_zero;
914 	sig->cgtime = cputime_zero;
915 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
916 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
917 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
918 	sig->sum_sched_runtime = 0;
919 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
920 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
921 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
922 	taskstats_tgid_init(sig);
923 
924 	task_lock(current->group_leader);
925 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
926 	task_unlock(current->group_leader);
927 
928 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
929 		/*
930 		 * New sole thread in the process gets an expiry time
931 		 * of the whole CPU time limit.
932 		 */
933 		tsk->it_prof_expires =
934 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
935 	}
936 	acct_init_pacct(&sig->pacct);
937 
938 	tty_audit_fork(sig);
939 
940 	return 0;
941 }
942 
943 void __cleanup_signal(struct signal_struct *sig)
944 {
945 	exit_thread_group_keys(sig);
946 	kmem_cache_free(signal_cachep, sig);
947 }
948 
949 static void cleanup_signal(struct task_struct *tsk)
950 {
951 	struct signal_struct *sig = tsk->signal;
952 
953 	atomic_dec(&sig->live);
954 
955 	if (atomic_dec_and_test(&sig->count))
956 		__cleanup_signal(sig);
957 }
958 
959 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
960 {
961 	unsigned long new_flags = p->flags;
962 
963 	new_flags &= ~PF_SUPERPRIV;
964 	new_flags |= PF_FORKNOEXEC;
965 	if (!(clone_flags & CLONE_PTRACE))
966 		p->ptrace = 0;
967 	p->flags = new_flags;
968 	clear_freeze_flag(p);
969 }
970 
971 asmlinkage long sys_set_tid_address(int __user *tidptr)
972 {
973 	current->clear_child_tid = tidptr;
974 
975 	return task_pid_vnr(current);
976 }
977 
978 static void rt_mutex_init_task(struct task_struct *p)
979 {
980 	spin_lock_init(&p->pi_lock);
981 #ifdef CONFIG_RT_MUTEXES
982 	plist_head_init(&p->pi_waiters, &p->pi_lock);
983 	p->pi_blocked_on = NULL;
984 #endif
985 }
986 
987 #ifdef CONFIG_MM_OWNER
988 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
989 {
990 	mm->owner = p;
991 }
992 #endif /* CONFIG_MM_OWNER */
993 
994 /*
995  * This creates a new process as a copy of the old one,
996  * but does not actually start it yet.
997  *
998  * It copies the registers, and all the appropriate
999  * parts of the process environment (as per the clone
1000  * flags). The actual kick-off is left to the caller.
1001  */
1002 static struct task_struct *copy_process(unsigned long clone_flags,
1003 					unsigned long stack_start,
1004 					struct pt_regs *regs,
1005 					unsigned long stack_size,
1006 					int __user *child_tidptr,
1007 					struct pid *pid)
1008 {
1009 	int retval;
1010 	struct task_struct *p;
1011 	int cgroup_callbacks_done = 0;
1012 
1013 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1014 		return ERR_PTR(-EINVAL);
1015 
1016 	/*
1017 	 * Thread groups must share signals as well, and detached threads
1018 	 * can only be started up within the thread group.
1019 	 */
1020 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1021 		return ERR_PTR(-EINVAL);
1022 
1023 	/*
1024 	 * Shared signal handlers imply shared VM. By way of the above,
1025 	 * thread groups also imply shared VM. Blocking this case allows
1026 	 * for various simplifications in other code.
1027 	 */
1028 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1029 		return ERR_PTR(-EINVAL);
1030 
1031 	retval = security_task_create(clone_flags);
1032 	if (retval)
1033 		goto fork_out;
1034 
1035 	retval = -ENOMEM;
1036 	p = dup_task_struct(current);
1037 	if (!p)
1038 		goto fork_out;
1039 
1040 	rt_mutex_init_task(p);
1041 
1042 #ifdef CONFIG_TRACE_IRQFLAGS
1043 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1044 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1045 #endif
1046 	retval = -EAGAIN;
1047 	if (atomic_read(&p->user->processes) >=
1048 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1049 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1050 		    p->user != current->nsproxy->user_ns->root_user)
1051 			goto bad_fork_free;
1052 	}
1053 
1054 	atomic_inc(&p->user->__count);
1055 	atomic_inc(&p->user->processes);
1056 	get_group_info(p->group_info);
1057 
1058 	/*
1059 	 * If multiple threads are within copy_process(), then this check
1060 	 * triggers too late. This doesn't hurt, the check is only there
1061 	 * to stop root fork bombs.
1062 	 */
1063 	if (nr_threads >= max_threads)
1064 		goto bad_fork_cleanup_count;
1065 
1066 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1067 		goto bad_fork_cleanup_count;
1068 
1069 	if (p->binfmt && !try_module_get(p->binfmt->module))
1070 		goto bad_fork_cleanup_put_domain;
1071 
1072 	p->did_exec = 0;
1073 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1074 	copy_flags(clone_flags, p);
1075 	INIT_LIST_HEAD(&p->children);
1076 	INIT_LIST_HEAD(&p->sibling);
1077 #ifdef CONFIG_PREEMPT_RCU
1078 	p->rcu_read_lock_nesting = 0;
1079 	p->rcu_flipctr_idx = 0;
1080 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1081 	p->vfork_done = NULL;
1082 	spin_lock_init(&p->alloc_lock);
1083 
1084 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1085 	init_sigpending(&p->pending);
1086 
1087 	p->utime = cputime_zero;
1088 	p->stime = cputime_zero;
1089 	p->gtime = cputime_zero;
1090 	p->utimescaled = cputime_zero;
1091 	p->stimescaled = cputime_zero;
1092 	p->prev_utime = cputime_zero;
1093 	p->prev_stime = cputime_zero;
1094 
1095 #ifdef CONFIG_DETECT_SOFTLOCKUP
1096 	p->last_switch_count = 0;
1097 	p->last_switch_timestamp = 0;
1098 #endif
1099 
1100 #ifdef CONFIG_TASK_XACCT
1101 	p->rchar = 0;		/* I/O counter: bytes read */
1102 	p->wchar = 0;		/* I/O counter: bytes written */
1103 	p->syscr = 0;		/* I/O counter: read syscalls */
1104 	p->syscw = 0;		/* I/O counter: write syscalls */
1105 #endif
1106 	task_io_accounting_init(p);
1107 	acct_clear_integrals(p);
1108 
1109 	p->it_virt_expires = cputime_zero;
1110 	p->it_prof_expires = cputime_zero;
1111 	p->it_sched_expires = 0;
1112 	INIT_LIST_HEAD(&p->cpu_timers[0]);
1113 	INIT_LIST_HEAD(&p->cpu_timers[1]);
1114 	INIT_LIST_HEAD(&p->cpu_timers[2]);
1115 
1116 	p->lock_depth = -1;		/* -1 = no lock */
1117 	do_posix_clock_monotonic_gettime(&p->start_time);
1118 	p->real_start_time = p->start_time;
1119 	monotonic_to_bootbased(&p->real_start_time);
1120 #ifdef CONFIG_SECURITY
1121 	p->security = NULL;
1122 #endif
1123 	p->cap_bset = current->cap_bset;
1124 	p->io_context = NULL;
1125 	p->audit_context = NULL;
1126 	cgroup_fork(p);
1127 #ifdef CONFIG_NUMA
1128 	p->mempolicy = mpol_dup(p->mempolicy);
1129  	if (IS_ERR(p->mempolicy)) {
1130  		retval = PTR_ERR(p->mempolicy);
1131  		p->mempolicy = NULL;
1132  		goto bad_fork_cleanup_cgroup;
1133  	}
1134 	mpol_fix_fork_child_flag(p);
1135 #endif
1136 #ifdef CONFIG_TRACE_IRQFLAGS
1137 	p->irq_events = 0;
1138 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1139 	p->hardirqs_enabled = 1;
1140 #else
1141 	p->hardirqs_enabled = 0;
1142 #endif
1143 	p->hardirq_enable_ip = 0;
1144 	p->hardirq_enable_event = 0;
1145 	p->hardirq_disable_ip = _THIS_IP_;
1146 	p->hardirq_disable_event = 0;
1147 	p->softirqs_enabled = 1;
1148 	p->softirq_enable_ip = _THIS_IP_;
1149 	p->softirq_enable_event = 0;
1150 	p->softirq_disable_ip = 0;
1151 	p->softirq_disable_event = 0;
1152 	p->hardirq_context = 0;
1153 	p->softirq_context = 0;
1154 #endif
1155 #ifdef CONFIG_LOCKDEP
1156 	p->lockdep_depth = 0; /* no locks held yet */
1157 	p->curr_chain_key = 0;
1158 	p->lockdep_recursion = 0;
1159 #endif
1160 
1161 #ifdef CONFIG_DEBUG_MUTEXES
1162 	p->blocked_on = NULL; /* not blocked yet */
1163 #endif
1164 
1165 	/* Perform scheduler related setup. Assign this task to a CPU. */
1166 	sched_fork(p, clone_flags);
1167 
1168 	if ((retval = security_task_alloc(p)))
1169 		goto bad_fork_cleanup_policy;
1170 	if ((retval = audit_alloc(p)))
1171 		goto bad_fork_cleanup_security;
1172 	/* copy all the process information */
1173 	if ((retval = copy_semundo(clone_flags, p)))
1174 		goto bad_fork_cleanup_audit;
1175 	if ((retval = copy_files(clone_flags, p)))
1176 		goto bad_fork_cleanup_semundo;
1177 	if ((retval = copy_fs(clone_flags, p)))
1178 		goto bad_fork_cleanup_files;
1179 	if ((retval = copy_sighand(clone_flags, p)))
1180 		goto bad_fork_cleanup_fs;
1181 	if ((retval = copy_signal(clone_flags, p)))
1182 		goto bad_fork_cleanup_sighand;
1183 	if ((retval = copy_mm(clone_flags, p)))
1184 		goto bad_fork_cleanup_signal;
1185 	if ((retval = copy_keys(clone_flags, p)))
1186 		goto bad_fork_cleanup_mm;
1187 	if ((retval = copy_namespaces(clone_flags, p)))
1188 		goto bad_fork_cleanup_keys;
1189 	if ((retval = copy_io(clone_flags, p)))
1190 		goto bad_fork_cleanup_namespaces;
1191 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1192 	if (retval)
1193 		goto bad_fork_cleanup_io;
1194 
1195 	if (pid != &init_struct_pid) {
1196 		retval = -ENOMEM;
1197 		pid = alloc_pid(task_active_pid_ns(p));
1198 		if (!pid)
1199 			goto bad_fork_cleanup_io;
1200 
1201 		if (clone_flags & CLONE_NEWPID) {
1202 			retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1203 			if (retval < 0)
1204 				goto bad_fork_free_pid;
1205 		}
1206 	}
1207 
1208 	p->pid = pid_nr(pid);
1209 	p->tgid = p->pid;
1210 	if (clone_flags & CLONE_THREAD)
1211 		p->tgid = current->tgid;
1212 
1213 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1214 	/*
1215 	 * Clear TID on mm_release()?
1216 	 */
1217 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1218 #ifdef CONFIG_FUTEX
1219 	p->robust_list = NULL;
1220 #ifdef CONFIG_COMPAT
1221 	p->compat_robust_list = NULL;
1222 #endif
1223 	INIT_LIST_HEAD(&p->pi_state_list);
1224 	p->pi_state_cache = NULL;
1225 #endif
1226 	/*
1227 	 * sigaltstack should be cleared when sharing the same VM
1228 	 */
1229 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1230 		p->sas_ss_sp = p->sas_ss_size = 0;
1231 
1232 	/*
1233 	 * Syscall tracing should be turned off in the child regardless
1234 	 * of CLONE_PTRACE.
1235 	 */
1236 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1237 #ifdef TIF_SYSCALL_EMU
1238 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1239 #endif
1240 	clear_all_latency_tracing(p);
1241 
1242 	/* Our parent execution domain becomes current domain
1243 	   These must match for thread signalling to apply */
1244 	p->parent_exec_id = p->self_exec_id;
1245 
1246 	/* ok, now we should be set up.. */
1247 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1248 	p->pdeath_signal = 0;
1249 	p->exit_state = 0;
1250 
1251 	/*
1252 	 * Ok, make it visible to the rest of the system.
1253 	 * We dont wake it up yet.
1254 	 */
1255 	p->group_leader = p;
1256 	INIT_LIST_HEAD(&p->thread_group);
1257 	INIT_LIST_HEAD(&p->ptrace_children);
1258 	INIT_LIST_HEAD(&p->ptrace_list);
1259 
1260 	/* Now that the task is set up, run cgroup callbacks if
1261 	 * necessary. We need to run them before the task is visible
1262 	 * on the tasklist. */
1263 	cgroup_fork_callbacks(p);
1264 	cgroup_callbacks_done = 1;
1265 
1266 	/* Need tasklist lock for parent etc handling! */
1267 	write_lock_irq(&tasklist_lock);
1268 
1269 	/*
1270 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1271 	 * not be changed, nor will its assigned CPU.
1272 	 *
1273 	 * The cpus_allowed mask of the parent may have changed after it was
1274 	 * copied first time - so re-copy it here, then check the child's CPU
1275 	 * to ensure it is on a valid CPU (and if not, just force it back to
1276 	 * parent's CPU). This avoids alot of nasty races.
1277 	 */
1278 	p->cpus_allowed = current->cpus_allowed;
1279 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1280 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1281 			!cpu_online(task_cpu(p))))
1282 		set_task_cpu(p, smp_processor_id());
1283 
1284 	/* CLONE_PARENT re-uses the old parent */
1285 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1286 		p->real_parent = current->real_parent;
1287 	else
1288 		p->real_parent = current;
1289 	p->parent = p->real_parent;
1290 
1291 	spin_lock(&current->sighand->siglock);
1292 
1293 	/*
1294 	 * Process group and session signals need to be delivered to just the
1295 	 * parent before the fork or both the parent and the child after the
1296 	 * fork. Restart if a signal comes in before we add the new process to
1297 	 * it's process group.
1298 	 * A fatal signal pending means that current will exit, so the new
1299 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1300  	 */
1301 	recalc_sigpending();
1302 	if (signal_pending(current)) {
1303 		spin_unlock(&current->sighand->siglock);
1304 		write_unlock_irq(&tasklist_lock);
1305 		retval = -ERESTARTNOINTR;
1306 		goto bad_fork_free_pid;
1307 	}
1308 
1309 	if (clone_flags & CLONE_THREAD) {
1310 		p->group_leader = current->group_leader;
1311 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1312 
1313 		if (!cputime_eq(current->signal->it_virt_expires,
1314 				cputime_zero) ||
1315 		    !cputime_eq(current->signal->it_prof_expires,
1316 				cputime_zero) ||
1317 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1318 		    !list_empty(&current->signal->cpu_timers[0]) ||
1319 		    !list_empty(&current->signal->cpu_timers[1]) ||
1320 		    !list_empty(&current->signal->cpu_timers[2])) {
1321 			/*
1322 			 * Have child wake up on its first tick to check
1323 			 * for process CPU timers.
1324 			 */
1325 			p->it_prof_expires = jiffies_to_cputime(1);
1326 		}
1327 	}
1328 
1329 	if (likely(p->pid)) {
1330 		add_parent(p);
1331 		if (unlikely(p->ptrace & PT_PTRACED))
1332 			__ptrace_link(p, current->parent);
1333 
1334 		if (thread_group_leader(p)) {
1335 			if (clone_flags & CLONE_NEWPID)
1336 				p->nsproxy->pid_ns->child_reaper = p;
1337 
1338 			p->signal->leader_pid = pid;
1339 			p->signal->tty = current->signal->tty;
1340 			set_task_pgrp(p, task_pgrp_nr(current));
1341 			set_task_session(p, task_session_nr(current));
1342 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1343 			attach_pid(p, PIDTYPE_SID, task_session(current));
1344 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1345 			__get_cpu_var(process_counts)++;
1346 		}
1347 		attach_pid(p, PIDTYPE_PID, pid);
1348 		nr_threads++;
1349 	}
1350 
1351 	total_forks++;
1352 	spin_unlock(&current->sighand->siglock);
1353 	write_unlock_irq(&tasklist_lock);
1354 	proc_fork_connector(p);
1355 	cgroup_post_fork(p);
1356 	return p;
1357 
1358 bad_fork_free_pid:
1359 	if (pid != &init_struct_pid)
1360 		free_pid(pid);
1361 bad_fork_cleanup_io:
1362 	put_io_context(p->io_context);
1363 bad_fork_cleanup_namespaces:
1364 	exit_task_namespaces(p);
1365 bad_fork_cleanup_keys:
1366 	exit_keys(p);
1367 bad_fork_cleanup_mm:
1368 	if (p->mm)
1369 		mmput(p->mm);
1370 bad_fork_cleanup_signal:
1371 	cleanup_signal(p);
1372 bad_fork_cleanup_sighand:
1373 	__cleanup_sighand(p->sighand);
1374 bad_fork_cleanup_fs:
1375 	exit_fs(p); /* blocking */
1376 bad_fork_cleanup_files:
1377 	exit_files(p); /* blocking */
1378 bad_fork_cleanup_semundo:
1379 	exit_sem(p);
1380 bad_fork_cleanup_audit:
1381 	audit_free(p);
1382 bad_fork_cleanup_security:
1383 	security_task_free(p);
1384 bad_fork_cleanup_policy:
1385 #ifdef CONFIG_NUMA
1386 	mpol_put(p->mempolicy);
1387 bad_fork_cleanup_cgroup:
1388 #endif
1389 	cgroup_exit(p, cgroup_callbacks_done);
1390 	delayacct_tsk_free(p);
1391 	if (p->binfmt)
1392 		module_put(p->binfmt->module);
1393 bad_fork_cleanup_put_domain:
1394 	module_put(task_thread_info(p)->exec_domain->module);
1395 bad_fork_cleanup_count:
1396 	put_group_info(p->group_info);
1397 	atomic_dec(&p->user->processes);
1398 	free_uid(p->user);
1399 bad_fork_free:
1400 	free_task(p);
1401 fork_out:
1402 	return ERR_PTR(retval);
1403 }
1404 
1405 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1406 {
1407 	memset(regs, 0, sizeof(struct pt_regs));
1408 	return regs;
1409 }
1410 
1411 struct task_struct * __cpuinit fork_idle(int cpu)
1412 {
1413 	struct task_struct *task;
1414 	struct pt_regs regs;
1415 
1416 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1417 				&init_struct_pid);
1418 	if (!IS_ERR(task))
1419 		init_idle(task, cpu);
1420 
1421 	return task;
1422 }
1423 
1424 static int fork_traceflag(unsigned clone_flags)
1425 {
1426 	if (clone_flags & CLONE_UNTRACED)
1427 		return 0;
1428 	else if (clone_flags & CLONE_VFORK) {
1429 		if (current->ptrace & PT_TRACE_VFORK)
1430 			return PTRACE_EVENT_VFORK;
1431 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1432 		if (current->ptrace & PT_TRACE_CLONE)
1433 			return PTRACE_EVENT_CLONE;
1434 	} else if (current->ptrace & PT_TRACE_FORK)
1435 		return PTRACE_EVENT_FORK;
1436 
1437 	return 0;
1438 }
1439 
1440 /*
1441  *  Ok, this is the main fork-routine.
1442  *
1443  * It copies the process, and if successful kick-starts
1444  * it and waits for it to finish using the VM if required.
1445  */
1446 long do_fork(unsigned long clone_flags,
1447 	      unsigned long stack_start,
1448 	      struct pt_regs *regs,
1449 	      unsigned long stack_size,
1450 	      int __user *parent_tidptr,
1451 	      int __user *child_tidptr)
1452 {
1453 	struct task_struct *p;
1454 	int trace = 0;
1455 	long nr;
1456 
1457 	/*
1458 	 * We hope to recycle these flags after 2.6.26
1459 	 */
1460 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1461 		static int __read_mostly count = 100;
1462 
1463 		if (count > 0 && printk_ratelimit()) {
1464 			char comm[TASK_COMM_LEN];
1465 
1466 			count--;
1467 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1468 					"clone flags 0x%lx\n",
1469 				get_task_comm(comm, current),
1470 				clone_flags & CLONE_STOPPED);
1471 		}
1472 	}
1473 
1474 	if (unlikely(current->ptrace)) {
1475 		trace = fork_traceflag (clone_flags);
1476 		if (trace)
1477 			clone_flags |= CLONE_PTRACE;
1478 	}
1479 
1480 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1481 			child_tidptr, NULL);
1482 	/*
1483 	 * Do this prior waking up the new thread - the thread pointer
1484 	 * might get invalid after that point, if the thread exits quickly.
1485 	 */
1486 	if (!IS_ERR(p)) {
1487 		struct completion vfork;
1488 
1489 		nr = task_pid_vnr(p);
1490 
1491 		if (clone_flags & CLONE_PARENT_SETTID)
1492 			put_user(nr, parent_tidptr);
1493 
1494 		if (clone_flags & CLONE_VFORK) {
1495 			p->vfork_done = &vfork;
1496 			init_completion(&vfork);
1497 		}
1498 
1499 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1500 			/*
1501 			 * We'll start up with an immediate SIGSTOP.
1502 			 */
1503 			sigaddset(&p->pending.signal, SIGSTOP);
1504 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1505 		}
1506 
1507 		if (!(clone_flags & CLONE_STOPPED))
1508 			wake_up_new_task(p, clone_flags);
1509 		else
1510 			__set_task_state(p, TASK_STOPPED);
1511 
1512 		if (unlikely (trace)) {
1513 			current->ptrace_message = nr;
1514 			ptrace_notify ((trace << 8) | SIGTRAP);
1515 		}
1516 
1517 		if (clone_flags & CLONE_VFORK) {
1518 			freezer_do_not_count();
1519 			wait_for_completion(&vfork);
1520 			freezer_count();
1521 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1522 				current->ptrace_message = nr;
1523 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1524 			}
1525 		}
1526 	} else {
1527 		nr = PTR_ERR(p);
1528 	}
1529 	return nr;
1530 }
1531 
1532 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1533 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1534 #endif
1535 
1536 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1537 {
1538 	struct sighand_struct *sighand = data;
1539 
1540 	spin_lock_init(&sighand->siglock);
1541 	init_waitqueue_head(&sighand->signalfd_wqh);
1542 }
1543 
1544 void __init proc_caches_init(void)
1545 {
1546 	sighand_cachep = kmem_cache_create("sighand_cache",
1547 			sizeof(struct sighand_struct), 0,
1548 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1549 			sighand_ctor);
1550 	signal_cachep = kmem_cache_create("signal_cache",
1551 			sizeof(struct signal_struct), 0,
1552 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1553 	files_cachep = kmem_cache_create("files_cache",
1554 			sizeof(struct files_struct), 0,
1555 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1556 	fs_cachep = kmem_cache_create("fs_cache",
1557 			sizeof(struct fs_struct), 0,
1558 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1559 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1560 			sizeof(struct vm_area_struct), 0,
1561 			SLAB_PANIC, NULL);
1562 	mm_cachep = kmem_cache_create("mm_struct",
1563 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1564 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1565 }
1566 
1567 /*
1568  * Check constraints on flags passed to the unshare system call and
1569  * force unsharing of additional process context as appropriate.
1570  */
1571 static void check_unshare_flags(unsigned long *flags_ptr)
1572 {
1573 	/*
1574 	 * If unsharing a thread from a thread group, must also
1575 	 * unshare vm.
1576 	 */
1577 	if (*flags_ptr & CLONE_THREAD)
1578 		*flags_ptr |= CLONE_VM;
1579 
1580 	/*
1581 	 * If unsharing vm, must also unshare signal handlers.
1582 	 */
1583 	if (*flags_ptr & CLONE_VM)
1584 		*flags_ptr |= CLONE_SIGHAND;
1585 
1586 	/*
1587 	 * If unsharing signal handlers and the task was created
1588 	 * using CLONE_THREAD, then must unshare the thread
1589 	 */
1590 	if ((*flags_ptr & CLONE_SIGHAND) &&
1591 	    (atomic_read(&current->signal->count) > 1))
1592 		*flags_ptr |= CLONE_THREAD;
1593 
1594 	/*
1595 	 * If unsharing namespace, must also unshare filesystem information.
1596 	 */
1597 	if (*flags_ptr & CLONE_NEWNS)
1598 		*flags_ptr |= CLONE_FS;
1599 }
1600 
1601 /*
1602  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1603  */
1604 static int unshare_thread(unsigned long unshare_flags)
1605 {
1606 	if (unshare_flags & CLONE_THREAD)
1607 		return -EINVAL;
1608 
1609 	return 0;
1610 }
1611 
1612 /*
1613  * Unshare the filesystem structure if it is being shared
1614  */
1615 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1616 {
1617 	struct fs_struct *fs = current->fs;
1618 
1619 	if ((unshare_flags & CLONE_FS) &&
1620 	    (fs && atomic_read(&fs->count) > 1)) {
1621 		*new_fsp = __copy_fs_struct(current->fs);
1622 		if (!*new_fsp)
1623 			return -ENOMEM;
1624 	}
1625 
1626 	return 0;
1627 }
1628 
1629 /*
1630  * Unsharing of sighand is not supported yet
1631  */
1632 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1633 {
1634 	struct sighand_struct *sigh = current->sighand;
1635 
1636 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1637 		return -EINVAL;
1638 	else
1639 		return 0;
1640 }
1641 
1642 /*
1643  * Unshare vm if it is being shared
1644  */
1645 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1646 {
1647 	struct mm_struct *mm = current->mm;
1648 
1649 	if ((unshare_flags & CLONE_VM) &&
1650 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1651 		return -EINVAL;
1652 	}
1653 
1654 	return 0;
1655 }
1656 
1657 /*
1658  * Unshare file descriptor table if it is being shared
1659  */
1660 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1661 {
1662 	struct files_struct *fd = current->files;
1663 	int error = 0;
1664 
1665 	if ((unshare_flags & CLONE_FILES) &&
1666 	    (fd && atomic_read(&fd->count) > 1)) {
1667 		*new_fdp = dup_fd(fd, &error);
1668 		if (!*new_fdp)
1669 			return error;
1670 	}
1671 
1672 	return 0;
1673 }
1674 
1675 /*
1676  * unshare allows a process to 'unshare' part of the process
1677  * context which was originally shared using clone.  copy_*
1678  * functions used by do_fork() cannot be used here directly
1679  * because they modify an inactive task_struct that is being
1680  * constructed. Here we are modifying the current, active,
1681  * task_struct.
1682  */
1683 asmlinkage long sys_unshare(unsigned long unshare_flags)
1684 {
1685 	int err = 0;
1686 	struct fs_struct *fs, *new_fs = NULL;
1687 	struct sighand_struct *new_sigh = NULL;
1688 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1689 	struct files_struct *fd, *new_fd = NULL;
1690 	struct nsproxy *new_nsproxy = NULL;
1691 	int do_sysvsem = 0;
1692 
1693 	check_unshare_flags(&unshare_flags);
1694 
1695 	/* Return -EINVAL for all unsupported flags */
1696 	err = -EINVAL;
1697 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1698 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1699 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1700 				CLONE_NEWNET))
1701 		goto bad_unshare_out;
1702 
1703 	/*
1704 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1705 	 * to a new ipc namespace, the semaphore arrays from the old
1706 	 * namespace are unreachable.
1707 	 */
1708 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1709 		do_sysvsem = 1;
1710 	if ((err = unshare_thread(unshare_flags)))
1711 		goto bad_unshare_out;
1712 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1713 		goto bad_unshare_cleanup_thread;
1714 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1715 		goto bad_unshare_cleanup_fs;
1716 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1717 		goto bad_unshare_cleanup_sigh;
1718 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1719 		goto bad_unshare_cleanup_vm;
1720 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1721 			new_fs)))
1722 		goto bad_unshare_cleanup_fd;
1723 
1724 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1725 		if (do_sysvsem) {
1726 			/*
1727 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1728 			 */
1729 			exit_sem(current);
1730 		}
1731 
1732 		if (new_nsproxy) {
1733 			switch_task_namespaces(current, new_nsproxy);
1734 			new_nsproxy = NULL;
1735 		}
1736 
1737 		task_lock(current);
1738 
1739 		if (new_fs) {
1740 			fs = current->fs;
1741 			current->fs = new_fs;
1742 			new_fs = fs;
1743 		}
1744 
1745 		if (new_mm) {
1746 			mm = current->mm;
1747 			active_mm = current->active_mm;
1748 			current->mm = new_mm;
1749 			current->active_mm = new_mm;
1750 			activate_mm(active_mm, new_mm);
1751 			new_mm = mm;
1752 		}
1753 
1754 		if (new_fd) {
1755 			fd = current->files;
1756 			current->files = new_fd;
1757 			new_fd = fd;
1758 		}
1759 
1760 		task_unlock(current);
1761 	}
1762 
1763 	if (new_nsproxy)
1764 		put_nsproxy(new_nsproxy);
1765 
1766 bad_unshare_cleanup_fd:
1767 	if (new_fd)
1768 		put_files_struct(new_fd);
1769 
1770 bad_unshare_cleanup_vm:
1771 	if (new_mm)
1772 		mmput(new_mm);
1773 
1774 bad_unshare_cleanup_sigh:
1775 	if (new_sigh)
1776 		if (atomic_dec_and_test(&new_sigh->count))
1777 			kmem_cache_free(sighand_cachep, new_sigh);
1778 
1779 bad_unshare_cleanup_fs:
1780 	if (new_fs)
1781 		put_fs_struct(new_fs);
1782 
1783 bad_unshare_cleanup_thread:
1784 bad_unshare_out:
1785 	return err;
1786 }
1787 
1788 /*
1789  *	Helper to unshare the files of the current task.
1790  *	We don't want to expose copy_files internals to
1791  *	the exec layer of the kernel.
1792  */
1793 
1794 int unshare_files(struct files_struct **displaced)
1795 {
1796 	struct task_struct *task = current;
1797 	struct files_struct *copy = NULL;
1798 	int error;
1799 
1800 	error = unshare_fd(CLONE_FILES, &copy);
1801 	if (error || !copy) {
1802 		*displaced = NULL;
1803 		return error;
1804 	}
1805 	*displaced = task->files;
1806 	task_lock(task);
1807 	task->files = copy;
1808 	task_unlock(task);
1809 	return 0;
1810 }
1811