1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/vmacache.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/blkdev.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 99 #include <asm/pgalloc.h> 100 #include <linux/uaccess.h> 101 #include <asm/mmu_context.h> 102 #include <asm/cacheflush.h> 103 #include <asm/tlbflush.h> 104 105 #include <trace/events/sched.h> 106 107 #define CREATE_TRACE_POINTS 108 #include <trace/events/task.h> 109 110 /* 111 * Minimum number of threads to boot the kernel 112 */ 113 #define MIN_THREADS 20 114 115 /* 116 * Maximum number of threads 117 */ 118 #define MAX_THREADS FUTEX_TID_MASK 119 120 /* 121 * Protected counters by write_lock_irq(&tasklist_lock) 122 */ 123 unsigned long total_forks; /* Handle normal Linux uptimes. */ 124 int nr_threads; /* The idle threads do not count.. */ 125 126 static int max_threads; /* tunable limit on nr_threads */ 127 128 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 129 130 static const char * const resident_page_types[] = { 131 NAMED_ARRAY_INDEX(MM_FILEPAGES), 132 NAMED_ARRAY_INDEX(MM_ANONPAGES), 133 NAMED_ARRAY_INDEX(MM_SWAPENTS), 134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 135 }; 136 137 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 138 139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 140 141 #ifdef CONFIG_PROVE_RCU 142 int lockdep_tasklist_lock_is_held(void) 143 { 144 return lockdep_is_held(&tasklist_lock); 145 } 146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 147 #endif /* #ifdef CONFIG_PROVE_RCU */ 148 149 int nr_processes(void) 150 { 151 int cpu; 152 int total = 0; 153 154 for_each_possible_cpu(cpu) 155 total += per_cpu(process_counts, cpu); 156 157 return total; 158 } 159 160 void __weak arch_release_task_struct(struct task_struct *tsk) 161 { 162 } 163 164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 165 static struct kmem_cache *task_struct_cachep; 166 167 static inline struct task_struct *alloc_task_struct_node(int node) 168 { 169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 170 } 171 172 static inline void free_task_struct(struct task_struct *tsk) 173 { 174 kmem_cache_free(task_struct_cachep, tsk); 175 } 176 #endif 177 178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 179 180 /* 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 182 * kmemcache based allocator. 183 */ 184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 185 186 #ifdef CONFIG_VMAP_STACK 187 /* 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 189 * flush. Try to minimize the number of calls by caching stacks. 190 */ 191 #define NR_CACHED_STACKS 2 192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 193 194 static int free_vm_stack_cache(unsigned int cpu) 195 { 196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 197 int i; 198 199 for (i = 0; i < NR_CACHED_STACKS; i++) { 200 struct vm_struct *vm_stack = cached_vm_stacks[i]; 201 202 if (!vm_stack) 203 continue; 204 205 vfree(vm_stack->addr); 206 cached_vm_stacks[i] = NULL; 207 } 208 209 return 0; 210 } 211 #endif 212 213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 214 { 215 #ifdef CONFIG_VMAP_STACK 216 void *stack; 217 int i; 218 219 for (i = 0; i < NR_CACHED_STACKS; i++) { 220 struct vm_struct *s; 221 222 s = this_cpu_xchg(cached_stacks[i], NULL); 223 224 if (!s) 225 continue; 226 227 /* Clear the KASAN shadow of the stack. */ 228 kasan_unpoison_shadow(s->addr, THREAD_SIZE); 229 230 /* Clear stale pointers from reused stack. */ 231 memset(s->addr, 0, THREAD_SIZE); 232 233 tsk->stack_vm_area = s; 234 tsk->stack = s->addr; 235 return s->addr; 236 } 237 238 /* 239 * Allocated stacks are cached and later reused by new threads, 240 * so memcg accounting is performed manually on assigning/releasing 241 * stacks to tasks. Drop __GFP_ACCOUNT. 242 */ 243 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 244 VMALLOC_START, VMALLOC_END, 245 THREADINFO_GFP & ~__GFP_ACCOUNT, 246 PAGE_KERNEL, 247 0, node, __builtin_return_address(0)); 248 249 /* 250 * We can't call find_vm_area() in interrupt context, and 251 * free_thread_stack() can be called in interrupt context, 252 * so cache the vm_struct. 253 */ 254 if (stack) { 255 tsk->stack_vm_area = find_vm_area(stack); 256 tsk->stack = stack; 257 } 258 return stack; 259 #else 260 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 261 THREAD_SIZE_ORDER); 262 263 if (likely(page)) { 264 tsk->stack = page_address(page); 265 return tsk->stack; 266 } 267 return NULL; 268 #endif 269 } 270 271 static inline void free_thread_stack(struct task_struct *tsk) 272 { 273 #ifdef CONFIG_VMAP_STACK 274 struct vm_struct *vm = task_stack_vm_area(tsk); 275 276 if (vm) { 277 int i; 278 279 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 280 memcg_kmem_uncharge_page(vm->pages[i], 0); 281 282 for (i = 0; i < NR_CACHED_STACKS; i++) { 283 if (this_cpu_cmpxchg(cached_stacks[i], 284 NULL, tsk->stack_vm_area) != NULL) 285 continue; 286 287 return; 288 } 289 290 vfree_atomic(tsk->stack); 291 return; 292 } 293 #endif 294 295 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 296 } 297 # else 298 static struct kmem_cache *thread_stack_cache; 299 300 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 301 int node) 302 { 303 unsigned long *stack; 304 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 305 tsk->stack = stack; 306 return stack; 307 } 308 309 static void free_thread_stack(struct task_struct *tsk) 310 { 311 kmem_cache_free(thread_stack_cache, tsk->stack); 312 } 313 314 void thread_stack_cache_init(void) 315 { 316 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 317 THREAD_SIZE, THREAD_SIZE, 0, 0, 318 THREAD_SIZE, NULL); 319 BUG_ON(thread_stack_cache == NULL); 320 } 321 # endif 322 #endif 323 324 /* SLAB cache for signal_struct structures (tsk->signal) */ 325 static struct kmem_cache *signal_cachep; 326 327 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 328 struct kmem_cache *sighand_cachep; 329 330 /* SLAB cache for files_struct structures (tsk->files) */ 331 struct kmem_cache *files_cachep; 332 333 /* SLAB cache for fs_struct structures (tsk->fs) */ 334 struct kmem_cache *fs_cachep; 335 336 /* SLAB cache for vm_area_struct structures */ 337 static struct kmem_cache *vm_area_cachep; 338 339 /* SLAB cache for mm_struct structures (tsk->mm) */ 340 static struct kmem_cache *mm_cachep; 341 342 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 343 { 344 struct vm_area_struct *vma; 345 346 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 347 if (vma) 348 vma_init(vma, mm); 349 return vma; 350 } 351 352 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 353 { 354 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 355 356 if (new) { 357 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 358 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 359 /* 360 * orig->shared.rb may be modified concurrently, but the clone 361 * will be reinitialized. 362 */ 363 *new = data_race(*orig); 364 INIT_LIST_HEAD(&new->anon_vma_chain); 365 new->vm_next = new->vm_prev = NULL; 366 } 367 return new; 368 } 369 370 void vm_area_free(struct vm_area_struct *vma) 371 { 372 kmem_cache_free(vm_area_cachep, vma); 373 } 374 375 static void account_kernel_stack(struct task_struct *tsk, int account) 376 { 377 void *stack = task_stack_page(tsk); 378 struct vm_struct *vm = task_stack_vm_area(tsk); 379 380 381 /* All stack pages are in the same node. */ 382 if (vm) 383 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB, 384 account * (THREAD_SIZE / 1024)); 385 else 386 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB, 387 account * (THREAD_SIZE / 1024)); 388 } 389 390 static int memcg_charge_kernel_stack(struct task_struct *tsk) 391 { 392 #ifdef CONFIG_VMAP_STACK 393 struct vm_struct *vm = task_stack_vm_area(tsk); 394 int ret; 395 396 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 397 398 if (vm) { 399 int i; 400 401 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 402 403 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 404 /* 405 * If memcg_kmem_charge_page() fails, page->mem_cgroup 406 * pointer is NULL, and memcg_kmem_uncharge_page() in 407 * free_thread_stack() will ignore this page. 408 */ 409 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 410 0); 411 if (ret) 412 return ret; 413 } 414 } 415 #endif 416 return 0; 417 } 418 419 static void release_task_stack(struct task_struct *tsk) 420 { 421 if (WARN_ON(tsk->state != TASK_DEAD)) 422 return; /* Better to leak the stack than to free prematurely */ 423 424 account_kernel_stack(tsk, -1); 425 free_thread_stack(tsk); 426 tsk->stack = NULL; 427 #ifdef CONFIG_VMAP_STACK 428 tsk->stack_vm_area = NULL; 429 #endif 430 } 431 432 #ifdef CONFIG_THREAD_INFO_IN_TASK 433 void put_task_stack(struct task_struct *tsk) 434 { 435 if (refcount_dec_and_test(&tsk->stack_refcount)) 436 release_task_stack(tsk); 437 } 438 #endif 439 440 void free_task(struct task_struct *tsk) 441 { 442 scs_release(tsk); 443 444 #ifndef CONFIG_THREAD_INFO_IN_TASK 445 /* 446 * The task is finally done with both the stack and thread_info, 447 * so free both. 448 */ 449 release_task_stack(tsk); 450 #else 451 /* 452 * If the task had a separate stack allocation, it should be gone 453 * by now. 454 */ 455 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 456 #endif 457 rt_mutex_debug_task_free(tsk); 458 ftrace_graph_exit_task(tsk); 459 arch_release_task_struct(tsk); 460 if (tsk->flags & PF_KTHREAD) 461 free_kthread_struct(tsk); 462 free_task_struct(tsk); 463 } 464 EXPORT_SYMBOL(free_task); 465 466 #ifdef CONFIG_MMU 467 static __latent_entropy int dup_mmap(struct mm_struct *mm, 468 struct mm_struct *oldmm) 469 { 470 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 471 struct rb_node **rb_link, *rb_parent; 472 int retval; 473 unsigned long charge; 474 LIST_HEAD(uf); 475 476 uprobe_start_dup_mmap(); 477 if (mmap_write_lock_killable(oldmm)) { 478 retval = -EINTR; 479 goto fail_uprobe_end; 480 } 481 flush_cache_dup_mm(oldmm); 482 uprobe_dup_mmap(oldmm, mm); 483 /* 484 * Not linked in yet - no deadlock potential: 485 */ 486 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 487 488 /* No ordering required: file already has been exposed. */ 489 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 490 491 mm->total_vm = oldmm->total_vm; 492 mm->data_vm = oldmm->data_vm; 493 mm->exec_vm = oldmm->exec_vm; 494 mm->stack_vm = oldmm->stack_vm; 495 496 rb_link = &mm->mm_rb.rb_node; 497 rb_parent = NULL; 498 pprev = &mm->mmap; 499 retval = ksm_fork(mm, oldmm); 500 if (retval) 501 goto out; 502 retval = khugepaged_fork(mm, oldmm); 503 if (retval) 504 goto out; 505 506 prev = NULL; 507 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 508 struct file *file; 509 510 if (mpnt->vm_flags & VM_DONTCOPY) { 511 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 512 continue; 513 } 514 charge = 0; 515 /* 516 * Don't duplicate many vmas if we've been oom-killed (for 517 * example) 518 */ 519 if (fatal_signal_pending(current)) { 520 retval = -EINTR; 521 goto out; 522 } 523 if (mpnt->vm_flags & VM_ACCOUNT) { 524 unsigned long len = vma_pages(mpnt); 525 526 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 527 goto fail_nomem; 528 charge = len; 529 } 530 tmp = vm_area_dup(mpnt); 531 if (!tmp) 532 goto fail_nomem; 533 retval = vma_dup_policy(mpnt, tmp); 534 if (retval) 535 goto fail_nomem_policy; 536 tmp->vm_mm = mm; 537 retval = dup_userfaultfd(tmp, &uf); 538 if (retval) 539 goto fail_nomem_anon_vma_fork; 540 if (tmp->vm_flags & VM_WIPEONFORK) { 541 /* 542 * VM_WIPEONFORK gets a clean slate in the child. 543 * Don't prepare anon_vma until fault since we don't 544 * copy page for current vma. 545 */ 546 tmp->anon_vma = NULL; 547 } else if (anon_vma_fork(tmp, mpnt)) 548 goto fail_nomem_anon_vma_fork; 549 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 550 file = tmp->vm_file; 551 if (file) { 552 struct inode *inode = file_inode(file); 553 struct address_space *mapping = file->f_mapping; 554 555 get_file(file); 556 if (tmp->vm_flags & VM_DENYWRITE) 557 atomic_dec(&inode->i_writecount); 558 i_mmap_lock_write(mapping); 559 if (tmp->vm_flags & VM_SHARED) 560 atomic_inc(&mapping->i_mmap_writable); 561 flush_dcache_mmap_lock(mapping); 562 /* insert tmp into the share list, just after mpnt */ 563 vma_interval_tree_insert_after(tmp, mpnt, 564 &mapping->i_mmap); 565 flush_dcache_mmap_unlock(mapping); 566 i_mmap_unlock_write(mapping); 567 } 568 569 /* 570 * Clear hugetlb-related page reserves for children. This only 571 * affects MAP_PRIVATE mappings. Faults generated by the child 572 * are not guaranteed to succeed, even if read-only 573 */ 574 if (is_vm_hugetlb_page(tmp)) 575 reset_vma_resv_huge_pages(tmp); 576 577 /* 578 * Link in the new vma and copy the page table entries. 579 */ 580 *pprev = tmp; 581 pprev = &tmp->vm_next; 582 tmp->vm_prev = prev; 583 prev = tmp; 584 585 __vma_link_rb(mm, tmp, rb_link, rb_parent); 586 rb_link = &tmp->vm_rb.rb_right; 587 rb_parent = &tmp->vm_rb; 588 589 mm->map_count++; 590 if (!(tmp->vm_flags & VM_WIPEONFORK)) 591 retval = copy_page_range(mm, oldmm, mpnt); 592 593 if (tmp->vm_ops && tmp->vm_ops->open) 594 tmp->vm_ops->open(tmp); 595 596 if (retval) 597 goto out; 598 } 599 /* a new mm has just been created */ 600 retval = arch_dup_mmap(oldmm, mm); 601 out: 602 mmap_write_unlock(mm); 603 flush_tlb_mm(oldmm); 604 mmap_write_unlock(oldmm); 605 dup_userfaultfd_complete(&uf); 606 fail_uprobe_end: 607 uprobe_end_dup_mmap(); 608 return retval; 609 fail_nomem_anon_vma_fork: 610 mpol_put(vma_policy(tmp)); 611 fail_nomem_policy: 612 vm_area_free(tmp); 613 fail_nomem: 614 retval = -ENOMEM; 615 vm_unacct_memory(charge); 616 goto out; 617 } 618 619 static inline int mm_alloc_pgd(struct mm_struct *mm) 620 { 621 mm->pgd = pgd_alloc(mm); 622 if (unlikely(!mm->pgd)) 623 return -ENOMEM; 624 return 0; 625 } 626 627 static inline void mm_free_pgd(struct mm_struct *mm) 628 { 629 pgd_free(mm, mm->pgd); 630 } 631 #else 632 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 633 { 634 mmap_write_lock(oldmm); 635 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 636 mmap_write_unlock(oldmm); 637 return 0; 638 } 639 #define mm_alloc_pgd(mm) (0) 640 #define mm_free_pgd(mm) 641 #endif /* CONFIG_MMU */ 642 643 static void check_mm(struct mm_struct *mm) 644 { 645 int i; 646 647 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 648 "Please make sure 'struct resident_page_types[]' is updated as well"); 649 650 for (i = 0; i < NR_MM_COUNTERS; i++) { 651 long x = atomic_long_read(&mm->rss_stat.count[i]); 652 653 if (unlikely(x)) 654 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 655 mm, resident_page_types[i], x); 656 } 657 658 if (mm_pgtables_bytes(mm)) 659 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 660 mm_pgtables_bytes(mm)); 661 662 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 663 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 664 #endif 665 } 666 667 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 668 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 669 670 /* 671 * Called when the last reference to the mm 672 * is dropped: either by a lazy thread or by 673 * mmput. Free the page directory and the mm. 674 */ 675 void __mmdrop(struct mm_struct *mm) 676 { 677 BUG_ON(mm == &init_mm); 678 WARN_ON_ONCE(mm == current->mm); 679 WARN_ON_ONCE(mm == current->active_mm); 680 mm_free_pgd(mm); 681 destroy_context(mm); 682 mmu_notifier_subscriptions_destroy(mm); 683 check_mm(mm); 684 put_user_ns(mm->user_ns); 685 free_mm(mm); 686 } 687 EXPORT_SYMBOL_GPL(__mmdrop); 688 689 static void mmdrop_async_fn(struct work_struct *work) 690 { 691 struct mm_struct *mm; 692 693 mm = container_of(work, struct mm_struct, async_put_work); 694 __mmdrop(mm); 695 } 696 697 static void mmdrop_async(struct mm_struct *mm) 698 { 699 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 700 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 701 schedule_work(&mm->async_put_work); 702 } 703 } 704 705 static inline void free_signal_struct(struct signal_struct *sig) 706 { 707 taskstats_tgid_free(sig); 708 sched_autogroup_exit(sig); 709 /* 710 * __mmdrop is not safe to call from softirq context on x86 due to 711 * pgd_dtor so postpone it to the async context 712 */ 713 if (sig->oom_mm) 714 mmdrop_async(sig->oom_mm); 715 kmem_cache_free(signal_cachep, sig); 716 } 717 718 static inline void put_signal_struct(struct signal_struct *sig) 719 { 720 if (refcount_dec_and_test(&sig->sigcnt)) 721 free_signal_struct(sig); 722 } 723 724 void __put_task_struct(struct task_struct *tsk) 725 { 726 WARN_ON(!tsk->exit_state); 727 WARN_ON(refcount_read(&tsk->usage)); 728 WARN_ON(tsk == current); 729 730 cgroup_free(tsk); 731 task_numa_free(tsk, true); 732 security_task_free(tsk); 733 exit_creds(tsk); 734 delayacct_tsk_free(tsk); 735 put_signal_struct(tsk->signal); 736 737 if (!profile_handoff_task(tsk)) 738 free_task(tsk); 739 } 740 EXPORT_SYMBOL_GPL(__put_task_struct); 741 742 void __init __weak arch_task_cache_init(void) { } 743 744 /* 745 * set_max_threads 746 */ 747 static void set_max_threads(unsigned int max_threads_suggested) 748 { 749 u64 threads; 750 unsigned long nr_pages = totalram_pages(); 751 752 /* 753 * The number of threads shall be limited such that the thread 754 * structures may only consume a small part of the available memory. 755 */ 756 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 757 threads = MAX_THREADS; 758 else 759 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 760 (u64) THREAD_SIZE * 8UL); 761 762 if (threads > max_threads_suggested) 763 threads = max_threads_suggested; 764 765 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 766 } 767 768 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 769 /* Initialized by the architecture: */ 770 int arch_task_struct_size __read_mostly; 771 #endif 772 773 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 774 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 775 { 776 /* Fetch thread_struct whitelist for the architecture. */ 777 arch_thread_struct_whitelist(offset, size); 778 779 /* 780 * Handle zero-sized whitelist or empty thread_struct, otherwise 781 * adjust offset to position of thread_struct in task_struct. 782 */ 783 if (unlikely(*size == 0)) 784 *offset = 0; 785 else 786 *offset += offsetof(struct task_struct, thread); 787 } 788 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 789 790 void __init fork_init(void) 791 { 792 int i; 793 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 794 #ifndef ARCH_MIN_TASKALIGN 795 #define ARCH_MIN_TASKALIGN 0 796 #endif 797 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 798 unsigned long useroffset, usersize; 799 800 /* create a slab on which task_structs can be allocated */ 801 task_struct_whitelist(&useroffset, &usersize); 802 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 803 arch_task_struct_size, align, 804 SLAB_PANIC|SLAB_ACCOUNT, 805 useroffset, usersize, NULL); 806 #endif 807 808 /* do the arch specific task caches init */ 809 arch_task_cache_init(); 810 811 set_max_threads(MAX_THREADS); 812 813 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 814 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 815 init_task.signal->rlim[RLIMIT_SIGPENDING] = 816 init_task.signal->rlim[RLIMIT_NPROC]; 817 818 for (i = 0; i < UCOUNT_COUNTS; i++) { 819 init_user_ns.ucount_max[i] = max_threads/2; 820 } 821 822 #ifdef CONFIG_VMAP_STACK 823 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 824 NULL, free_vm_stack_cache); 825 #endif 826 827 scs_init(); 828 829 lockdep_init_task(&init_task); 830 uprobes_init(); 831 } 832 833 int __weak arch_dup_task_struct(struct task_struct *dst, 834 struct task_struct *src) 835 { 836 *dst = *src; 837 return 0; 838 } 839 840 void set_task_stack_end_magic(struct task_struct *tsk) 841 { 842 unsigned long *stackend; 843 844 stackend = end_of_stack(tsk); 845 *stackend = STACK_END_MAGIC; /* for overflow detection */ 846 } 847 848 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 849 { 850 struct task_struct *tsk; 851 unsigned long *stack; 852 struct vm_struct *stack_vm_area __maybe_unused; 853 int err; 854 855 if (node == NUMA_NO_NODE) 856 node = tsk_fork_get_node(orig); 857 tsk = alloc_task_struct_node(node); 858 if (!tsk) 859 return NULL; 860 861 stack = alloc_thread_stack_node(tsk, node); 862 if (!stack) 863 goto free_tsk; 864 865 if (memcg_charge_kernel_stack(tsk)) 866 goto free_stack; 867 868 stack_vm_area = task_stack_vm_area(tsk); 869 870 err = arch_dup_task_struct(tsk, orig); 871 872 /* 873 * arch_dup_task_struct() clobbers the stack-related fields. Make 874 * sure they're properly initialized before using any stack-related 875 * functions again. 876 */ 877 tsk->stack = stack; 878 #ifdef CONFIG_VMAP_STACK 879 tsk->stack_vm_area = stack_vm_area; 880 #endif 881 #ifdef CONFIG_THREAD_INFO_IN_TASK 882 refcount_set(&tsk->stack_refcount, 1); 883 #endif 884 885 if (err) 886 goto free_stack; 887 888 err = scs_prepare(tsk, node); 889 if (err) 890 goto free_stack; 891 892 #ifdef CONFIG_SECCOMP 893 /* 894 * We must handle setting up seccomp filters once we're under 895 * the sighand lock in case orig has changed between now and 896 * then. Until then, filter must be NULL to avoid messing up 897 * the usage counts on the error path calling free_task. 898 */ 899 tsk->seccomp.filter = NULL; 900 #endif 901 902 setup_thread_stack(tsk, orig); 903 clear_user_return_notifier(tsk); 904 clear_tsk_need_resched(tsk); 905 set_task_stack_end_magic(tsk); 906 907 #ifdef CONFIG_STACKPROTECTOR 908 tsk->stack_canary = get_random_canary(); 909 #endif 910 if (orig->cpus_ptr == &orig->cpus_mask) 911 tsk->cpus_ptr = &tsk->cpus_mask; 912 913 /* 914 * One for the user space visible state that goes away when reaped. 915 * One for the scheduler. 916 */ 917 refcount_set(&tsk->rcu_users, 2); 918 /* One for the rcu users */ 919 refcount_set(&tsk->usage, 1); 920 #ifdef CONFIG_BLK_DEV_IO_TRACE 921 tsk->btrace_seq = 0; 922 #endif 923 tsk->splice_pipe = NULL; 924 tsk->task_frag.page = NULL; 925 tsk->wake_q.next = NULL; 926 927 account_kernel_stack(tsk, 1); 928 929 kcov_task_init(tsk); 930 931 #ifdef CONFIG_FAULT_INJECTION 932 tsk->fail_nth = 0; 933 #endif 934 935 #ifdef CONFIG_BLK_CGROUP 936 tsk->throttle_queue = NULL; 937 tsk->use_memdelay = 0; 938 #endif 939 940 #ifdef CONFIG_MEMCG 941 tsk->active_memcg = NULL; 942 #endif 943 return tsk; 944 945 free_stack: 946 free_thread_stack(tsk); 947 free_tsk: 948 free_task_struct(tsk); 949 return NULL; 950 } 951 952 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 953 954 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 955 956 static int __init coredump_filter_setup(char *s) 957 { 958 default_dump_filter = 959 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 960 MMF_DUMP_FILTER_MASK; 961 return 1; 962 } 963 964 __setup("coredump_filter=", coredump_filter_setup); 965 966 #include <linux/init_task.h> 967 968 static void mm_init_aio(struct mm_struct *mm) 969 { 970 #ifdef CONFIG_AIO 971 spin_lock_init(&mm->ioctx_lock); 972 mm->ioctx_table = NULL; 973 #endif 974 } 975 976 static __always_inline void mm_clear_owner(struct mm_struct *mm, 977 struct task_struct *p) 978 { 979 #ifdef CONFIG_MEMCG 980 if (mm->owner == p) 981 WRITE_ONCE(mm->owner, NULL); 982 #endif 983 } 984 985 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 986 { 987 #ifdef CONFIG_MEMCG 988 mm->owner = p; 989 #endif 990 } 991 992 static void mm_init_uprobes_state(struct mm_struct *mm) 993 { 994 #ifdef CONFIG_UPROBES 995 mm->uprobes_state.xol_area = NULL; 996 #endif 997 } 998 999 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1000 struct user_namespace *user_ns) 1001 { 1002 mm->mmap = NULL; 1003 mm->mm_rb = RB_ROOT; 1004 mm->vmacache_seqnum = 0; 1005 atomic_set(&mm->mm_users, 1); 1006 atomic_set(&mm->mm_count, 1); 1007 mmap_init_lock(mm); 1008 INIT_LIST_HEAD(&mm->mmlist); 1009 mm->core_state = NULL; 1010 mm_pgtables_bytes_init(mm); 1011 mm->map_count = 0; 1012 mm->locked_vm = 0; 1013 atomic64_set(&mm->pinned_vm, 0); 1014 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1015 spin_lock_init(&mm->page_table_lock); 1016 spin_lock_init(&mm->arg_lock); 1017 mm_init_cpumask(mm); 1018 mm_init_aio(mm); 1019 mm_init_owner(mm, p); 1020 RCU_INIT_POINTER(mm->exe_file, NULL); 1021 mmu_notifier_subscriptions_init(mm); 1022 init_tlb_flush_pending(mm); 1023 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1024 mm->pmd_huge_pte = NULL; 1025 #endif 1026 mm_init_uprobes_state(mm); 1027 1028 if (current->mm) { 1029 mm->flags = current->mm->flags & MMF_INIT_MASK; 1030 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1031 } else { 1032 mm->flags = default_dump_filter; 1033 mm->def_flags = 0; 1034 } 1035 1036 if (mm_alloc_pgd(mm)) 1037 goto fail_nopgd; 1038 1039 if (init_new_context(p, mm)) 1040 goto fail_nocontext; 1041 1042 mm->user_ns = get_user_ns(user_ns); 1043 return mm; 1044 1045 fail_nocontext: 1046 mm_free_pgd(mm); 1047 fail_nopgd: 1048 free_mm(mm); 1049 return NULL; 1050 } 1051 1052 /* 1053 * Allocate and initialize an mm_struct. 1054 */ 1055 struct mm_struct *mm_alloc(void) 1056 { 1057 struct mm_struct *mm; 1058 1059 mm = allocate_mm(); 1060 if (!mm) 1061 return NULL; 1062 1063 memset(mm, 0, sizeof(*mm)); 1064 return mm_init(mm, current, current_user_ns()); 1065 } 1066 1067 static inline void __mmput(struct mm_struct *mm) 1068 { 1069 VM_BUG_ON(atomic_read(&mm->mm_users)); 1070 1071 uprobe_clear_state(mm); 1072 exit_aio(mm); 1073 ksm_exit(mm); 1074 khugepaged_exit(mm); /* must run before exit_mmap */ 1075 exit_mmap(mm); 1076 mm_put_huge_zero_page(mm); 1077 set_mm_exe_file(mm, NULL); 1078 if (!list_empty(&mm->mmlist)) { 1079 spin_lock(&mmlist_lock); 1080 list_del(&mm->mmlist); 1081 spin_unlock(&mmlist_lock); 1082 } 1083 if (mm->binfmt) 1084 module_put(mm->binfmt->module); 1085 mmdrop(mm); 1086 } 1087 1088 /* 1089 * Decrement the use count and release all resources for an mm. 1090 */ 1091 void mmput(struct mm_struct *mm) 1092 { 1093 might_sleep(); 1094 1095 if (atomic_dec_and_test(&mm->mm_users)) 1096 __mmput(mm); 1097 } 1098 EXPORT_SYMBOL_GPL(mmput); 1099 1100 #ifdef CONFIG_MMU 1101 static void mmput_async_fn(struct work_struct *work) 1102 { 1103 struct mm_struct *mm = container_of(work, struct mm_struct, 1104 async_put_work); 1105 1106 __mmput(mm); 1107 } 1108 1109 void mmput_async(struct mm_struct *mm) 1110 { 1111 if (atomic_dec_and_test(&mm->mm_users)) { 1112 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1113 schedule_work(&mm->async_put_work); 1114 } 1115 } 1116 #endif 1117 1118 /** 1119 * set_mm_exe_file - change a reference to the mm's executable file 1120 * 1121 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1122 * 1123 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1124 * invocations: in mmput() nobody alive left, in execve task is single 1125 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1126 * mm->exe_file, but does so without using set_mm_exe_file() in order 1127 * to do avoid the need for any locks. 1128 */ 1129 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1130 { 1131 struct file *old_exe_file; 1132 1133 /* 1134 * It is safe to dereference the exe_file without RCU as 1135 * this function is only called if nobody else can access 1136 * this mm -- see comment above for justification. 1137 */ 1138 old_exe_file = rcu_dereference_raw(mm->exe_file); 1139 1140 if (new_exe_file) 1141 get_file(new_exe_file); 1142 rcu_assign_pointer(mm->exe_file, new_exe_file); 1143 if (old_exe_file) 1144 fput(old_exe_file); 1145 } 1146 1147 /** 1148 * get_mm_exe_file - acquire a reference to the mm's executable file 1149 * 1150 * Returns %NULL if mm has no associated executable file. 1151 * User must release file via fput(). 1152 */ 1153 struct file *get_mm_exe_file(struct mm_struct *mm) 1154 { 1155 struct file *exe_file; 1156 1157 rcu_read_lock(); 1158 exe_file = rcu_dereference(mm->exe_file); 1159 if (exe_file && !get_file_rcu(exe_file)) 1160 exe_file = NULL; 1161 rcu_read_unlock(); 1162 return exe_file; 1163 } 1164 EXPORT_SYMBOL(get_mm_exe_file); 1165 1166 /** 1167 * get_task_exe_file - acquire a reference to the task's executable file 1168 * 1169 * Returns %NULL if task's mm (if any) has no associated executable file or 1170 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1171 * User must release file via fput(). 1172 */ 1173 struct file *get_task_exe_file(struct task_struct *task) 1174 { 1175 struct file *exe_file = NULL; 1176 struct mm_struct *mm; 1177 1178 task_lock(task); 1179 mm = task->mm; 1180 if (mm) { 1181 if (!(task->flags & PF_KTHREAD)) 1182 exe_file = get_mm_exe_file(mm); 1183 } 1184 task_unlock(task); 1185 return exe_file; 1186 } 1187 EXPORT_SYMBOL(get_task_exe_file); 1188 1189 /** 1190 * get_task_mm - acquire a reference to the task's mm 1191 * 1192 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1193 * this kernel workthread has transiently adopted a user mm with use_mm, 1194 * to do its AIO) is not set and if so returns a reference to it, after 1195 * bumping up the use count. User must release the mm via mmput() 1196 * after use. Typically used by /proc and ptrace. 1197 */ 1198 struct mm_struct *get_task_mm(struct task_struct *task) 1199 { 1200 struct mm_struct *mm; 1201 1202 task_lock(task); 1203 mm = task->mm; 1204 if (mm) { 1205 if (task->flags & PF_KTHREAD) 1206 mm = NULL; 1207 else 1208 mmget(mm); 1209 } 1210 task_unlock(task); 1211 return mm; 1212 } 1213 EXPORT_SYMBOL_GPL(get_task_mm); 1214 1215 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1216 { 1217 struct mm_struct *mm; 1218 int err; 1219 1220 err = mutex_lock_killable(&task->signal->exec_update_mutex); 1221 if (err) 1222 return ERR_PTR(err); 1223 1224 mm = get_task_mm(task); 1225 if (mm && mm != current->mm && 1226 !ptrace_may_access(task, mode)) { 1227 mmput(mm); 1228 mm = ERR_PTR(-EACCES); 1229 } 1230 mutex_unlock(&task->signal->exec_update_mutex); 1231 1232 return mm; 1233 } 1234 1235 static void complete_vfork_done(struct task_struct *tsk) 1236 { 1237 struct completion *vfork; 1238 1239 task_lock(tsk); 1240 vfork = tsk->vfork_done; 1241 if (likely(vfork)) { 1242 tsk->vfork_done = NULL; 1243 complete(vfork); 1244 } 1245 task_unlock(tsk); 1246 } 1247 1248 static int wait_for_vfork_done(struct task_struct *child, 1249 struct completion *vfork) 1250 { 1251 int killed; 1252 1253 freezer_do_not_count(); 1254 cgroup_enter_frozen(); 1255 killed = wait_for_completion_killable(vfork); 1256 cgroup_leave_frozen(false); 1257 freezer_count(); 1258 1259 if (killed) { 1260 task_lock(child); 1261 child->vfork_done = NULL; 1262 task_unlock(child); 1263 } 1264 1265 put_task_struct(child); 1266 return killed; 1267 } 1268 1269 /* Please note the differences between mmput and mm_release. 1270 * mmput is called whenever we stop holding onto a mm_struct, 1271 * error success whatever. 1272 * 1273 * mm_release is called after a mm_struct has been removed 1274 * from the current process. 1275 * 1276 * This difference is important for error handling, when we 1277 * only half set up a mm_struct for a new process and need to restore 1278 * the old one. Because we mmput the new mm_struct before 1279 * restoring the old one. . . 1280 * Eric Biederman 10 January 1998 1281 */ 1282 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1283 { 1284 uprobe_free_utask(tsk); 1285 1286 /* Get rid of any cached register state */ 1287 deactivate_mm(tsk, mm); 1288 1289 /* 1290 * Signal userspace if we're not exiting with a core dump 1291 * because we want to leave the value intact for debugging 1292 * purposes. 1293 */ 1294 if (tsk->clear_child_tid) { 1295 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1296 atomic_read(&mm->mm_users) > 1) { 1297 /* 1298 * We don't check the error code - if userspace has 1299 * not set up a proper pointer then tough luck. 1300 */ 1301 put_user(0, tsk->clear_child_tid); 1302 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1303 1, NULL, NULL, 0, 0); 1304 } 1305 tsk->clear_child_tid = NULL; 1306 } 1307 1308 /* 1309 * All done, finally we can wake up parent and return this mm to him. 1310 * Also kthread_stop() uses this completion for synchronization. 1311 */ 1312 if (tsk->vfork_done) 1313 complete_vfork_done(tsk); 1314 } 1315 1316 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1317 { 1318 futex_exit_release(tsk); 1319 mm_release(tsk, mm); 1320 } 1321 1322 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1323 { 1324 futex_exec_release(tsk); 1325 mm_release(tsk, mm); 1326 } 1327 1328 /** 1329 * dup_mm() - duplicates an existing mm structure 1330 * @tsk: the task_struct with which the new mm will be associated. 1331 * @oldmm: the mm to duplicate. 1332 * 1333 * Allocates a new mm structure and duplicates the provided @oldmm structure 1334 * content into it. 1335 * 1336 * Return: the duplicated mm or NULL on failure. 1337 */ 1338 static struct mm_struct *dup_mm(struct task_struct *tsk, 1339 struct mm_struct *oldmm) 1340 { 1341 struct mm_struct *mm; 1342 int err; 1343 1344 mm = allocate_mm(); 1345 if (!mm) 1346 goto fail_nomem; 1347 1348 memcpy(mm, oldmm, sizeof(*mm)); 1349 1350 if (!mm_init(mm, tsk, mm->user_ns)) 1351 goto fail_nomem; 1352 1353 err = dup_mmap(mm, oldmm); 1354 if (err) 1355 goto free_pt; 1356 1357 mm->hiwater_rss = get_mm_rss(mm); 1358 mm->hiwater_vm = mm->total_vm; 1359 1360 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1361 goto free_pt; 1362 1363 return mm; 1364 1365 free_pt: 1366 /* don't put binfmt in mmput, we haven't got module yet */ 1367 mm->binfmt = NULL; 1368 mm_init_owner(mm, NULL); 1369 mmput(mm); 1370 1371 fail_nomem: 1372 return NULL; 1373 } 1374 1375 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1376 { 1377 struct mm_struct *mm, *oldmm; 1378 int retval; 1379 1380 tsk->min_flt = tsk->maj_flt = 0; 1381 tsk->nvcsw = tsk->nivcsw = 0; 1382 #ifdef CONFIG_DETECT_HUNG_TASK 1383 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1384 tsk->last_switch_time = 0; 1385 #endif 1386 1387 tsk->mm = NULL; 1388 tsk->active_mm = NULL; 1389 1390 /* 1391 * Are we cloning a kernel thread? 1392 * 1393 * We need to steal a active VM for that.. 1394 */ 1395 oldmm = current->mm; 1396 if (!oldmm) 1397 return 0; 1398 1399 /* initialize the new vmacache entries */ 1400 vmacache_flush(tsk); 1401 1402 if (clone_flags & CLONE_VM) { 1403 mmget(oldmm); 1404 mm = oldmm; 1405 goto good_mm; 1406 } 1407 1408 retval = -ENOMEM; 1409 mm = dup_mm(tsk, current->mm); 1410 if (!mm) 1411 goto fail_nomem; 1412 1413 good_mm: 1414 tsk->mm = mm; 1415 tsk->active_mm = mm; 1416 return 0; 1417 1418 fail_nomem: 1419 return retval; 1420 } 1421 1422 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1423 { 1424 struct fs_struct *fs = current->fs; 1425 if (clone_flags & CLONE_FS) { 1426 /* tsk->fs is already what we want */ 1427 spin_lock(&fs->lock); 1428 if (fs->in_exec) { 1429 spin_unlock(&fs->lock); 1430 return -EAGAIN; 1431 } 1432 fs->users++; 1433 spin_unlock(&fs->lock); 1434 return 0; 1435 } 1436 tsk->fs = copy_fs_struct(fs); 1437 if (!tsk->fs) 1438 return -ENOMEM; 1439 return 0; 1440 } 1441 1442 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1443 { 1444 struct files_struct *oldf, *newf; 1445 int error = 0; 1446 1447 /* 1448 * A background process may not have any files ... 1449 */ 1450 oldf = current->files; 1451 if (!oldf) 1452 goto out; 1453 1454 if (clone_flags & CLONE_FILES) { 1455 atomic_inc(&oldf->count); 1456 goto out; 1457 } 1458 1459 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1460 if (!newf) 1461 goto out; 1462 1463 tsk->files = newf; 1464 error = 0; 1465 out: 1466 return error; 1467 } 1468 1469 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1470 { 1471 #ifdef CONFIG_BLOCK 1472 struct io_context *ioc = current->io_context; 1473 struct io_context *new_ioc; 1474 1475 if (!ioc) 1476 return 0; 1477 /* 1478 * Share io context with parent, if CLONE_IO is set 1479 */ 1480 if (clone_flags & CLONE_IO) { 1481 ioc_task_link(ioc); 1482 tsk->io_context = ioc; 1483 } else if (ioprio_valid(ioc->ioprio)) { 1484 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1485 if (unlikely(!new_ioc)) 1486 return -ENOMEM; 1487 1488 new_ioc->ioprio = ioc->ioprio; 1489 put_io_context(new_ioc); 1490 } 1491 #endif 1492 return 0; 1493 } 1494 1495 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1496 { 1497 struct sighand_struct *sig; 1498 1499 if (clone_flags & CLONE_SIGHAND) { 1500 refcount_inc(¤t->sighand->count); 1501 return 0; 1502 } 1503 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1504 RCU_INIT_POINTER(tsk->sighand, sig); 1505 if (!sig) 1506 return -ENOMEM; 1507 1508 refcount_set(&sig->count, 1); 1509 spin_lock_irq(¤t->sighand->siglock); 1510 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1511 spin_unlock_irq(¤t->sighand->siglock); 1512 1513 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1514 if (clone_flags & CLONE_CLEAR_SIGHAND) 1515 flush_signal_handlers(tsk, 0); 1516 1517 return 0; 1518 } 1519 1520 void __cleanup_sighand(struct sighand_struct *sighand) 1521 { 1522 if (refcount_dec_and_test(&sighand->count)) { 1523 signalfd_cleanup(sighand); 1524 /* 1525 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1526 * without an RCU grace period, see __lock_task_sighand(). 1527 */ 1528 kmem_cache_free(sighand_cachep, sighand); 1529 } 1530 } 1531 1532 /* 1533 * Initialize POSIX timer handling for a thread group. 1534 */ 1535 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1536 { 1537 struct posix_cputimers *pct = &sig->posix_cputimers; 1538 unsigned long cpu_limit; 1539 1540 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1541 posix_cputimers_group_init(pct, cpu_limit); 1542 } 1543 1544 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1545 { 1546 struct signal_struct *sig; 1547 1548 if (clone_flags & CLONE_THREAD) 1549 return 0; 1550 1551 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1552 tsk->signal = sig; 1553 if (!sig) 1554 return -ENOMEM; 1555 1556 sig->nr_threads = 1; 1557 atomic_set(&sig->live, 1); 1558 refcount_set(&sig->sigcnt, 1); 1559 1560 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1561 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1562 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1563 1564 init_waitqueue_head(&sig->wait_chldexit); 1565 sig->curr_target = tsk; 1566 init_sigpending(&sig->shared_pending); 1567 INIT_HLIST_HEAD(&sig->multiprocess); 1568 seqlock_init(&sig->stats_lock); 1569 prev_cputime_init(&sig->prev_cputime); 1570 1571 #ifdef CONFIG_POSIX_TIMERS 1572 INIT_LIST_HEAD(&sig->posix_timers); 1573 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1574 sig->real_timer.function = it_real_fn; 1575 #endif 1576 1577 task_lock(current->group_leader); 1578 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1579 task_unlock(current->group_leader); 1580 1581 posix_cpu_timers_init_group(sig); 1582 1583 tty_audit_fork(sig); 1584 sched_autogroup_fork(sig); 1585 1586 sig->oom_score_adj = current->signal->oom_score_adj; 1587 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1588 1589 mutex_init(&sig->cred_guard_mutex); 1590 mutex_init(&sig->exec_update_mutex); 1591 1592 return 0; 1593 } 1594 1595 static void copy_seccomp(struct task_struct *p) 1596 { 1597 #ifdef CONFIG_SECCOMP 1598 /* 1599 * Must be called with sighand->lock held, which is common to 1600 * all threads in the group. Holding cred_guard_mutex is not 1601 * needed because this new task is not yet running and cannot 1602 * be racing exec. 1603 */ 1604 assert_spin_locked(¤t->sighand->siglock); 1605 1606 /* Ref-count the new filter user, and assign it. */ 1607 get_seccomp_filter(current); 1608 p->seccomp = current->seccomp; 1609 1610 /* 1611 * Explicitly enable no_new_privs here in case it got set 1612 * between the task_struct being duplicated and holding the 1613 * sighand lock. The seccomp state and nnp must be in sync. 1614 */ 1615 if (task_no_new_privs(current)) 1616 task_set_no_new_privs(p); 1617 1618 /* 1619 * If the parent gained a seccomp mode after copying thread 1620 * flags and between before we held the sighand lock, we have 1621 * to manually enable the seccomp thread flag here. 1622 */ 1623 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1624 set_tsk_thread_flag(p, TIF_SECCOMP); 1625 #endif 1626 } 1627 1628 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1629 { 1630 current->clear_child_tid = tidptr; 1631 1632 return task_pid_vnr(current); 1633 } 1634 1635 static void rt_mutex_init_task(struct task_struct *p) 1636 { 1637 raw_spin_lock_init(&p->pi_lock); 1638 #ifdef CONFIG_RT_MUTEXES 1639 p->pi_waiters = RB_ROOT_CACHED; 1640 p->pi_top_task = NULL; 1641 p->pi_blocked_on = NULL; 1642 #endif 1643 } 1644 1645 static inline void init_task_pid_links(struct task_struct *task) 1646 { 1647 enum pid_type type; 1648 1649 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1650 INIT_HLIST_NODE(&task->pid_links[type]); 1651 } 1652 } 1653 1654 static inline void 1655 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1656 { 1657 if (type == PIDTYPE_PID) 1658 task->thread_pid = pid; 1659 else 1660 task->signal->pids[type] = pid; 1661 } 1662 1663 static inline void rcu_copy_process(struct task_struct *p) 1664 { 1665 #ifdef CONFIG_PREEMPT_RCU 1666 p->rcu_read_lock_nesting = 0; 1667 p->rcu_read_unlock_special.s = 0; 1668 p->rcu_blocked_node = NULL; 1669 INIT_LIST_HEAD(&p->rcu_node_entry); 1670 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1671 #ifdef CONFIG_TASKS_RCU 1672 p->rcu_tasks_holdout = false; 1673 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1674 p->rcu_tasks_idle_cpu = -1; 1675 #endif /* #ifdef CONFIG_TASKS_RCU */ 1676 #ifdef CONFIG_TASKS_TRACE_RCU 1677 p->trc_reader_nesting = 0; 1678 p->trc_reader_special.s = 0; 1679 INIT_LIST_HEAD(&p->trc_holdout_list); 1680 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1681 } 1682 1683 struct pid *pidfd_pid(const struct file *file) 1684 { 1685 if (file->f_op == &pidfd_fops) 1686 return file->private_data; 1687 1688 return ERR_PTR(-EBADF); 1689 } 1690 1691 static int pidfd_release(struct inode *inode, struct file *file) 1692 { 1693 struct pid *pid = file->private_data; 1694 1695 file->private_data = NULL; 1696 put_pid(pid); 1697 return 0; 1698 } 1699 1700 #ifdef CONFIG_PROC_FS 1701 /** 1702 * pidfd_show_fdinfo - print information about a pidfd 1703 * @m: proc fdinfo file 1704 * @f: file referencing a pidfd 1705 * 1706 * Pid: 1707 * This function will print the pid that a given pidfd refers to in the 1708 * pid namespace of the procfs instance. 1709 * If the pid namespace of the process is not a descendant of the pid 1710 * namespace of the procfs instance 0 will be shown as its pid. This is 1711 * similar to calling getppid() on a process whose parent is outside of 1712 * its pid namespace. 1713 * 1714 * NSpid: 1715 * If pid namespaces are supported then this function will also print 1716 * the pid of a given pidfd refers to for all descendant pid namespaces 1717 * starting from the current pid namespace of the instance, i.e. the 1718 * Pid field and the first entry in the NSpid field will be identical. 1719 * If the pid namespace of the process is not a descendant of the pid 1720 * namespace of the procfs instance 0 will be shown as its first NSpid 1721 * entry and no others will be shown. 1722 * Note that this differs from the Pid and NSpid fields in 1723 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1724 * the pid namespace of the procfs instance. The difference becomes 1725 * obvious when sending around a pidfd between pid namespaces from a 1726 * different branch of the tree, i.e. where no ancestoral relation is 1727 * present between the pid namespaces: 1728 * - create two new pid namespaces ns1 and ns2 in the initial pid 1729 * namespace (also take care to create new mount namespaces in the 1730 * new pid namespace and mount procfs) 1731 * - create a process with a pidfd in ns1 1732 * - send pidfd from ns1 to ns2 1733 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1734 * have exactly one entry, which is 0 1735 */ 1736 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1737 { 1738 struct pid *pid = f->private_data; 1739 struct pid_namespace *ns; 1740 pid_t nr = -1; 1741 1742 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1743 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1744 nr = pid_nr_ns(pid, ns); 1745 } 1746 1747 seq_put_decimal_ll(m, "Pid:\t", nr); 1748 1749 #ifdef CONFIG_PID_NS 1750 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1751 if (nr > 0) { 1752 int i; 1753 1754 /* If nr is non-zero it means that 'pid' is valid and that 1755 * ns, i.e. the pid namespace associated with the procfs 1756 * instance, is in the pid namespace hierarchy of pid. 1757 * Start at one below the already printed level. 1758 */ 1759 for (i = ns->level + 1; i <= pid->level; i++) 1760 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1761 } 1762 #endif 1763 seq_putc(m, '\n'); 1764 } 1765 #endif 1766 1767 /* 1768 * Poll support for process exit notification. 1769 */ 1770 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1771 { 1772 struct pid *pid = file->private_data; 1773 __poll_t poll_flags = 0; 1774 1775 poll_wait(file, &pid->wait_pidfd, pts); 1776 1777 /* 1778 * Inform pollers only when the whole thread group exits. 1779 * If the thread group leader exits before all other threads in the 1780 * group, then poll(2) should block, similar to the wait(2) family. 1781 */ 1782 if (thread_group_exited(pid)) 1783 poll_flags = EPOLLIN | EPOLLRDNORM; 1784 1785 return poll_flags; 1786 } 1787 1788 const struct file_operations pidfd_fops = { 1789 .release = pidfd_release, 1790 .poll = pidfd_poll, 1791 #ifdef CONFIG_PROC_FS 1792 .show_fdinfo = pidfd_show_fdinfo, 1793 #endif 1794 }; 1795 1796 static void __delayed_free_task(struct rcu_head *rhp) 1797 { 1798 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1799 1800 free_task(tsk); 1801 } 1802 1803 static __always_inline void delayed_free_task(struct task_struct *tsk) 1804 { 1805 if (IS_ENABLED(CONFIG_MEMCG)) 1806 call_rcu(&tsk->rcu, __delayed_free_task); 1807 else 1808 free_task(tsk); 1809 } 1810 1811 /* 1812 * This creates a new process as a copy of the old one, 1813 * but does not actually start it yet. 1814 * 1815 * It copies the registers, and all the appropriate 1816 * parts of the process environment (as per the clone 1817 * flags). The actual kick-off is left to the caller. 1818 */ 1819 static __latent_entropy struct task_struct *copy_process( 1820 struct pid *pid, 1821 int trace, 1822 int node, 1823 struct kernel_clone_args *args) 1824 { 1825 int pidfd = -1, retval; 1826 struct task_struct *p; 1827 struct multiprocess_signals delayed; 1828 struct file *pidfile = NULL; 1829 u64 clone_flags = args->flags; 1830 struct nsproxy *nsp = current->nsproxy; 1831 1832 /* 1833 * Don't allow sharing the root directory with processes in a different 1834 * namespace 1835 */ 1836 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1837 return ERR_PTR(-EINVAL); 1838 1839 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1840 return ERR_PTR(-EINVAL); 1841 1842 /* 1843 * Thread groups must share signals as well, and detached threads 1844 * can only be started up within the thread group. 1845 */ 1846 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1847 return ERR_PTR(-EINVAL); 1848 1849 /* 1850 * Shared signal handlers imply shared VM. By way of the above, 1851 * thread groups also imply shared VM. Blocking this case allows 1852 * for various simplifications in other code. 1853 */ 1854 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1855 return ERR_PTR(-EINVAL); 1856 1857 /* 1858 * Siblings of global init remain as zombies on exit since they are 1859 * not reaped by their parent (swapper). To solve this and to avoid 1860 * multi-rooted process trees, prevent global and container-inits 1861 * from creating siblings. 1862 */ 1863 if ((clone_flags & CLONE_PARENT) && 1864 current->signal->flags & SIGNAL_UNKILLABLE) 1865 return ERR_PTR(-EINVAL); 1866 1867 /* 1868 * If the new process will be in a different pid or user namespace 1869 * do not allow it to share a thread group with the forking task. 1870 */ 1871 if (clone_flags & CLONE_THREAD) { 1872 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1873 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 1874 return ERR_PTR(-EINVAL); 1875 } 1876 1877 /* 1878 * If the new process will be in a different time namespace 1879 * do not allow it to share VM or a thread group with the forking task. 1880 */ 1881 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 1882 if (nsp->time_ns != nsp->time_ns_for_children) 1883 return ERR_PTR(-EINVAL); 1884 } 1885 1886 if (clone_flags & CLONE_PIDFD) { 1887 /* 1888 * - CLONE_DETACHED is blocked so that we can potentially 1889 * reuse it later for CLONE_PIDFD. 1890 * - CLONE_THREAD is blocked until someone really needs it. 1891 */ 1892 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1893 return ERR_PTR(-EINVAL); 1894 } 1895 1896 /* 1897 * Force any signals received before this point to be delivered 1898 * before the fork happens. Collect up signals sent to multiple 1899 * processes that happen during the fork and delay them so that 1900 * they appear to happen after the fork. 1901 */ 1902 sigemptyset(&delayed.signal); 1903 INIT_HLIST_NODE(&delayed.node); 1904 1905 spin_lock_irq(¤t->sighand->siglock); 1906 if (!(clone_flags & CLONE_THREAD)) 1907 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1908 recalc_sigpending(); 1909 spin_unlock_irq(¤t->sighand->siglock); 1910 retval = -ERESTARTNOINTR; 1911 if (signal_pending(current)) 1912 goto fork_out; 1913 1914 retval = -ENOMEM; 1915 p = dup_task_struct(current, node); 1916 if (!p) 1917 goto fork_out; 1918 1919 /* 1920 * This _must_ happen before we call free_task(), i.e. before we jump 1921 * to any of the bad_fork_* labels. This is to avoid freeing 1922 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1923 * kernel threads (PF_KTHREAD). 1924 */ 1925 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1926 /* 1927 * Clear TID on mm_release()? 1928 */ 1929 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1930 1931 ftrace_graph_init_task(p); 1932 1933 rt_mutex_init_task(p); 1934 1935 lockdep_assert_irqs_enabled(); 1936 #ifdef CONFIG_PROVE_LOCKING 1937 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1938 #endif 1939 retval = -EAGAIN; 1940 if (atomic_read(&p->real_cred->user->processes) >= 1941 task_rlimit(p, RLIMIT_NPROC)) { 1942 if (p->real_cred->user != INIT_USER && 1943 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1944 goto bad_fork_free; 1945 } 1946 current->flags &= ~PF_NPROC_EXCEEDED; 1947 1948 retval = copy_creds(p, clone_flags); 1949 if (retval < 0) 1950 goto bad_fork_free; 1951 1952 /* 1953 * If multiple threads are within copy_process(), then this check 1954 * triggers too late. This doesn't hurt, the check is only there 1955 * to stop root fork bombs. 1956 */ 1957 retval = -EAGAIN; 1958 if (data_race(nr_threads >= max_threads)) 1959 goto bad_fork_cleanup_count; 1960 1961 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1962 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1963 p->flags |= PF_FORKNOEXEC; 1964 INIT_LIST_HEAD(&p->children); 1965 INIT_LIST_HEAD(&p->sibling); 1966 rcu_copy_process(p); 1967 p->vfork_done = NULL; 1968 spin_lock_init(&p->alloc_lock); 1969 1970 init_sigpending(&p->pending); 1971 1972 p->utime = p->stime = p->gtime = 0; 1973 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1974 p->utimescaled = p->stimescaled = 0; 1975 #endif 1976 prev_cputime_init(&p->prev_cputime); 1977 1978 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1979 seqcount_init(&p->vtime.seqcount); 1980 p->vtime.starttime = 0; 1981 p->vtime.state = VTIME_INACTIVE; 1982 #endif 1983 1984 #if defined(SPLIT_RSS_COUNTING) 1985 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1986 #endif 1987 1988 p->default_timer_slack_ns = current->timer_slack_ns; 1989 1990 #ifdef CONFIG_PSI 1991 p->psi_flags = 0; 1992 #endif 1993 1994 task_io_accounting_init(&p->ioac); 1995 acct_clear_integrals(p); 1996 1997 posix_cputimers_init(&p->posix_cputimers); 1998 1999 p->io_context = NULL; 2000 audit_set_context(p, NULL); 2001 cgroup_fork(p); 2002 #ifdef CONFIG_NUMA 2003 p->mempolicy = mpol_dup(p->mempolicy); 2004 if (IS_ERR(p->mempolicy)) { 2005 retval = PTR_ERR(p->mempolicy); 2006 p->mempolicy = NULL; 2007 goto bad_fork_cleanup_threadgroup_lock; 2008 } 2009 #endif 2010 #ifdef CONFIG_CPUSETS 2011 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2012 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2013 seqcount_init(&p->mems_allowed_seq); 2014 #endif 2015 #ifdef CONFIG_TRACE_IRQFLAGS 2016 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2017 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2018 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2019 p->softirqs_enabled = 1; 2020 p->softirq_context = 0; 2021 #endif 2022 2023 p->pagefault_disabled = 0; 2024 2025 #ifdef CONFIG_LOCKDEP 2026 lockdep_init_task(p); 2027 #endif 2028 2029 #ifdef CONFIG_DEBUG_MUTEXES 2030 p->blocked_on = NULL; /* not blocked yet */ 2031 #endif 2032 #ifdef CONFIG_BCACHE 2033 p->sequential_io = 0; 2034 p->sequential_io_avg = 0; 2035 #endif 2036 2037 /* Perform scheduler related setup. Assign this task to a CPU. */ 2038 retval = sched_fork(clone_flags, p); 2039 if (retval) 2040 goto bad_fork_cleanup_policy; 2041 2042 retval = perf_event_init_task(p); 2043 if (retval) 2044 goto bad_fork_cleanup_policy; 2045 retval = audit_alloc(p); 2046 if (retval) 2047 goto bad_fork_cleanup_perf; 2048 /* copy all the process information */ 2049 shm_init_task(p); 2050 retval = security_task_alloc(p, clone_flags); 2051 if (retval) 2052 goto bad_fork_cleanup_audit; 2053 retval = copy_semundo(clone_flags, p); 2054 if (retval) 2055 goto bad_fork_cleanup_security; 2056 retval = copy_files(clone_flags, p); 2057 if (retval) 2058 goto bad_fork_cleanup_semundo; 2059 retval = copy_fs(clone_flags, p); 2060 if (retval) 2061 goto bad_fork_cleanup_files; 2062 retval = copy_sighand(clone_flags, p); 2063 if (retval) 2064 goto bad_fork_cleanup_fs; 2065 retval = copy_signal(clone_flags, p); 2066 if (retval) 2067 goto bad_fork_cleanup_sighand; 2068 retval = copy_mm(clone_flags, p); 2069 if (retval) 2070 goto bad_fork_cleanup_signal; 2071 retval = copy_namespaces(clone_flags, p); 2072 if (retval) 2073 goto bad_fork_cleanup_mm; 2074 retval = copy_io(clone_flags, p); 2075 if (retval) 2076 goto bad_fork_cleanup_namespaces; 2077 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls); 2078 if (retval) 2079 goto bad_fork_cleanup_io; 2080 2081 stackleak_task_init(p); 2082 2083 if (pid != &init_struct_pid) { 2084 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2085 args->set_tid_size); 2086 if (IS_ERR(pid)) { 2087 retval = PTR_ERR(pid); 2088 goto bad_fork_cleanup_thread; 2089 } 2090 } 2091 2092 /* 2093 * This has to happen after we've potentially unshared the file 2094 * descriptor table (so that the pidfd doesn't leak into the child 2095 * if the fd table isn't shared). 2096 */ 2097 if (clone_flags & CLONE_PIDFD) { 2098 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2099 if (retval < 0) 2100 goto bad_fork_free_pid; 2101 2102 pidfd = retval; 2103 2104 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2105 O_RDWR | O_CLOEXEC); 2106 if (IS_ERR(pidfile)) { 2107 put_unused_fd(pidfd); 2108 retval = PTR_ERR(pidfile); 2109 goto bad_fork_free_pid; 2110 } 2111 get_pid(pid); /* held by pidfile now */ 2112 2113 retval = put_user(pidfd, args->pidfd); 2114 if (retval) 2115 goto bad_fork_put_pidfd; 2116 } 2117 2118 #ifdef CONFIG_BLOCK 2119 p->plug = NULL; 2120 #endif 2121 futex_init_task(p); 2122 2123 /* 2124 * sigaltstack should be cleared when sharing the same VM 2125 */ 2126 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2127 sas_ss_reset(p); 2128 2129 /* 2130 * Syscall tracing and stepping should be turned off in the 2131 * child regardless of CLONE_PTRACE. 2132 */ 2133 user_disable_single_step(p); 2134 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2135 #ifdef TIF_SYSCALL_EMU 2136 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2137 #endif 2138 clear_tsk_latency_tracing(p); 2139 2140 /* ok, now we should be set up.. */ 2141 p->pid = pid_nr(pid); 2142 if (clone_flags & CLONE_THREAD) { 2143 p->exit_signal = -1; 2144 p->group_leader = current->group_leader; 2145 p->tgid = current->tgid; 2146 } else { 2147 if (clone_flags & CLONE_PARENT) 2148 p->exit_signal = current->group_leader->exit_signal; 2149 else 2150 p->exit_signal = args->exit_signal; 2151 p->group_leader = p; 2152 p->tgid = p->pid; 2153 } 2154 2155 p->nr_dirtied = 0; 2156 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2157 p->dirty_paused_when = 0; 2158 2159 p->pdeath_signal = 0; 2160 INIT_LIST_HEAD(&p->thread_group); 2161 p->task_works = NULL; 2162 2163 /* 2164 * Ensure that the cgroup subsystem policies allow the new process to be 2165 * forked. It should be noted the the new process's css_set can be changed 2166 * between here and cgroup_post_fork() if an organisation operation is in 2167 * progress. 2168 */ 2169 retval = cgroup_can_fork(p, args); 2170 if (retval) 2171 goto bad_fork_put_pidfd; 2172 2173 /* 2174 * From this point on we must avoid any synchronous user-space 2175 * communication until we take the tasklist-lock. In particular, we do 2176 * not want user-space to be able to predict the process start-time by 2177 * stalling fork(2) after we recorded the start_time but before it is 2178 * visible to the system. 2179 */ 2180 2181 p->start_time = ktime_get_ns(); 2182 p->start_boottime = ktime_get_boottime_ns(); 2183 2184 /* 2185 * Make it visible to the rest of the system, but dont wake it up yet. 2186 * Need tasklist lock for parent etc handling! 2187 */ 2188 write_lock_irq(&tasklist_lock); 2189 2190 /* CLONE_PARENT re-uses the old parent */ 2191 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2192 p->real_parent = current->real_parent; 2193 p->parent_exec_id = current->parent_exec_id; 2194 } else { 2195 p->real_parent = current; 2196 p->parent_exec_id = current->self_exec_id; 2197 } 2198 2199 klp_copy_process(p); 2200 2201 spin_lock(¤t->sighand->siglock); 2202 2203 /* 2204 * Copy seccomp details explicitly here, in case they were changed 2205 * before holding sighand lock. 2206 */ 2207 copy_seccomp(p); 2208 2209 rseq_fork(p, clone_flags); 2210 2211 /* Don't start children in a dying pid namespace */ 2212 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2213 retval = -ENOMEM; 2214 goto bad_fork_cancel_cgroup; 2215 } 2216 2217 /* Let kill terminate clone/fork in the middle */ 2218 if (fatal_signal_pending(current)) { 2219 retval = -EINTR; 2220 goto bad_fork_cancel_cgroup; 2221 } 2222 2223 /* past the last point of failure */ 2224 if (pidfile) 2225 fd_install(pidfd, pidfile); 2226 2227 init_task_pid_links(p); 2228 if (likely(p->pid)) { 2229 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2230 2231 init_task_pid(p, PIDTYPE_PID, pid); 2232 if (thread_group_leader(p)) { 2233 init_task_pid(p, PIDTYPE_TGID, pid); 2234 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2235 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2236 2237 if (is_child_reaper(pid)) { 2238 ns_of_pid(pid)->child_reaper = p; 2239 p->signal->flags |= SIGNAL_UNKILLABLE; 2240 } 2241 p->signal->shared_pending.signal = delayed.signal; 2242 p->signal->tty = tty_kref_get(current->signal->tty); 2243 /* 2244 * Inherit has_child_subreaper flag under the same 2245 * tasklist_lock with adding child to the process tree 2246 * for propagate_has_child_subreaper optimization. 2247 */ 2248 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2249 p->real_parent->signal->is_child_subreaper; 2250 list_add_tail(&p->sibling, &p->real_parent->children); 2251 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2252 attach_pid(p, PIDTYPE_TGID); 2253 attach_pid(p, PIDTYPE_PGID); 2254 attach_pid(p, PIDTYPE_SID); 2255 __this_cpu_inc(process_counts); 2256 } else { 2257 current->signal->nr_threads++; 2258 atomic_inc(¤t->signal->live); 2259 refcount_inc(¤t->signal->sigcnt); 2260 task_join_group_stop(p); 2261 list_add_tail_rcu(&p->thread_group, 2262 &p->group_leader->thread_group); 2263 list_add_tail_rcu(&p->thread_node, 2264 &p->signal->thread_head); 2265 } 2266 attach_pid(p, PIDTYPE_PID); 2267 nr_threads++; 2268 } 2269 total_forks++; 2270 hlist_del_init(&delayed.node); 2271 spin_unlock(¤t->sighand->siglock); 2272 syscall_tracepoint_update(p); 2273 write_unlock_irq(&tasklist_lock); 2274 2275 proc_fork_connector(p); 2276 sched_post_fork(p); 2277 cgroup_post_fork(p, args); 2278 perf_event_fork(p); 2279 2280 trace_task_newtask(p, clone_flags); 2281 uprobe_copy_process(p, clone_flags); 2282 2283 return p; 2284 2285 bad_fork_cancel_cgroup: 2286 spin_unlock(¤t->sighand->siglock); 2287 write_unlock_irq(&tasklist_lock); 2288 cgroup_cancel_fork(p, args); 2289 bad_fork_put_pidfd: 2290 if (clone_flags & CLONE_PIDFD) { 2291 fput(pidfile); 2292 put_unused_fd(pidfd); 2293 } 2294 bad_fork_free_pid: 2295 if (pid != &init_struct_pid) 2296 free_pid(pid); 2297 bad_fork_cleanup_thread: 2298 exit_thread(p); 2299 bad_fork_cleanup_io: 2300 if (p->io_context) 2301 exit_io_context(p); 2302 bad_fork_cleanup_namespaces: 2303 exit_task_namespaces(p); 2304 bad_fork_cleanup_mm: 2305 if (p->mm) { 2306 mm_clear_owner(p->mm, p); 2307 mmput(p->mm); 2308 } 2309 bad_fork_cleanup_signal: 2310 if (!(clone_flags & CLONE_THREAD)) 2311 free_signal_struct(p->signal); 2312 bad_fork_cleanup_sighand: 2313 __cleanup_sighand(p->sighand); 2314 bad_fork_cleanup_fs: 2315 exit_fs(p); /* blocking */ 2316 bad_fork_cleanup_files: 2317 exit_files(p); /* blocking */ 2318 bad_fork_cleanup_semundo: 2319 exit_sem(p); 2320 bad_fork_cleanup_security: 2321 security_task_free(p); 2322 bad_fork_cleanup_audit: 2323 audit_free(p); 2324 bad_fork_cleanup_perf: 2325 perf_event_free_task(p); 2326 bad_fork_cleanup_policy: 2327 lockdep_free_task(p); 2328 #ifdef CONFIG_NUMA 2329 mpol_put(p->mempolicy); 2330 bad_fork_cleanup_threadgroup_lock: 2331 #endif 2332 delayacct_tsk_free(p); 2333 bad_fork_cleanup_count: 2334 atomic_dec(&p->cred->user->processes); 2335 exit_creds(p); 2336 bad_fork_free: 2337 p->state = TASK_DEAD; 2338 put_task_stack(p); 2339 delayed_free_task(p); 2340 fork_out: 2341 spin_lock_irq(¤t->sighand->siglock); 2342 hlist_del_init(&delayed.node); 2343 spin_unlock_irq(¤t->sighand->siglock); 2344 return ERR_PTR(retval); 2345 } 2346 2347 static inline void init_idle_pids(struct task_struct *idle) 2348 { 2349 enum pid_type type; 2350 2351 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2352 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2353 init_task_pid(idle, type, &init_struct_pid); 2354 } 2355 } 2356 2357 struct task_struct *fork_idle(int cpu) 2358 { 2359 struct task_struct *task; 2360 struct kernel_clone_args args = { 2361 .flags = CLONE_VM, 2362 }; 2363 2364 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2365 if (!IS_ERR(task)) { 2366 init_idle_pids(task); 2367 init_idle(task, cpu); 2368 } 2369 2370 return task; 2371 } 2372 2373 struct mm_struct *copy_init_mm(void) 2374 { 2375 return dup_mm(NULL, &init_mm); 2376 } 2377 2378 /* 2379 * Ok, this is the main fork-routine. 2380 * 2381 * It copies the process, and if successful kick-starts 2382 * it and waits for it to finish using the VM if required. 2383 * 2384 * args->exit_signal is expected to be checked for sanity by the caller. 2385 */ 2386 long _do_fork(struct kernel_clone_args *args) 2387 { 2388 u64 clone_flags = args->flags; 2389 struct completion vfork; 2390 struct pid *pid; 2391 struct task_struct *p; 2392 int trace = 0; 2393 long nr; 2394 2395 /* 2396 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2397 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2398 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2399 * field in struct clone_args and it still doesn't make sense to have 2400 * them both point at the same memory location. Performing this check 2401 * here has the advantage that we don't need to have a separate helper 2402 * to check for legacy clone(). 2403 */ 2404 if ((args->flags & CLONE_PIDFD) && 2405 (args->flags & CLONE_PARENT_SETTID) && 2406 (args->pidfd == args->parent_tid)) 2407 return -EINVAL; 2408 2409 /* 2410 * Determine whether and which event to report to ptracer. When 2411 * called from kernel_thread or CLONE_UNTRACED is explicitly 2412 * requested, no event is reported; otherwise, report if the event 2413 * for the type of forking is enabled. 2414 */ 2415 if (!(clone_flags & CLONE_UNTRACED)) { 2416 if (clone_flags & CLONE_VFORK) 2417 trace = PTRACE_EVENT_VFORK; 2418 else if (args->exit_signal != SIGCHLD) 2419 trace = PTRACE_EVENT_CLONE; 2420 else 2421 trace = PTRACE_EVENT_FORK; 2422 2423 if (likely(!ptrace_event_enabled(current, trace))) 2424 trace = 0; 2425 } 2426 2427 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2428 add_latent_entropy(); 2429 2430 if (IS_ERR(p)) 2431 return PTR_ERR(p); 2432 2433 /* 2434 * Do this prior waking up the new thread - the thread pointer 2435 * might get invalid after that point, if the thread exits quickly. 2436 */ 2437 trace_sched_process_fork(current, p); 2438 2439 pid = get_task_pid(p, PIDTYPE_PID); 2440 nr = pid_vnr(pid); 2441 2442 if (clone_flags & CLONE_PARENT_SETTID) 2443 put_user(nr, args->parent_tid); 2444 2445 if (clone_flags & CLONE_VFORK) { 2446 p->vfork_done = &vfork; 2447 init_completion(&vfork); 2448 get_task_struct(p); 2449 } 2450 2451 wake_up_new_task(p); 2452 2453 /* forking complete and child started to run, tell ptracer */ 2454 if (unlikely(trace)) 2455 ptrace_event_pid(trace, pid); 2456 2457 if (clone_flags & CLONE_VFORK) { 2458 if (!wait_for_vfork_done(p, &vfork)) 2459 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2460 } 2461 2462 put_pid(pid); 2463 return nr; 2464 } 2465 2466 /* 2467 * Create a kernel thread. 2468 */ 2469 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2470 { 2471 struct kernel_clone_args args = { 2472 .flags = ((lower_32_bits(flags) | CLONE_VM | 2473 CLONE_UNTRACED) & ~CSIGNAL), 2474 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2475 .stack = (unsigned long)fn, 2476 .stack_size = (unsigned long)arg, 2477 }; 2478 2479 return _do_fork(&args); 2480 } 2481 2482 #ifdef __ARCH_WANT_SYS_FORK 2483 SYSCALL_DEFINE0(fork) 2484 { 2485 #ifdef CONFIG_MMU 2486 struct kernel_clone_args args = { 2487 .exit_signal = SIGCHLD, 2488 }; 2489 2490 return _do_fork(&args); 2491 #else 2492 /* can not support in nommu mode */ 2493 return -EINVAL; 2494 #endif 2495 } 2496 #endif 2497 2498 #ifdef __ARCH_WANT_SYS_VFORK 2499 SYSCALL_DEFINE0(vfork) 2500 { 2501 struct kernel_clone_args args = { 2502 .flags = CLONE_VFORK | CLONE_VM, 2503 .exit_signal = SIGCHLD, 2504 }; 2505 2506 return _do_fork(&args); 2507 } 2508 #endif 2509 2510 #ifdef __ARCH_WANT_SYS_CLONE 2511 #ifdef CONFIG_CLONE_BACKWARDS 2512 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2513 int __user *, parent_tidptr, 2514 unsigned long, tls, 2515 int __user *, child_tidptr) 2516 #elif defined(CONFIG_CLONE_BACKWARDS2) 2517 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2518 int __user *, parent_tidptr, 2519 int __user *, child_tidptr, 2520 unsigned long, tls) 2521 #elif defined(CONFIG_CLONE_BACKWARDS3) 2522 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2523 int, stack_size, 2524 int __user *, parent_tidptr, 2525 int __user *, child_tidptr, 2526 unsigned long, tls) 2527 #else 2528 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2529 int __user *, parent_tidptr, 2530 int __user *, child_tidptr, 2531 unsigned long, tls) 2532 #endif 2533 { 2534 struct kernel_clone_args args = { 2535 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2536 .pidfd = parent_tidptr, 2537 .child_tid = child_tidptr, 2538 .parent_tid = parent_tidptr, 2539 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2540 .stack = newsp, 2541 .tls = tls, 2542 }; 2543 2544 return _do_fork(&args); 2545 } 2546 #endif 2547 2548 #ifdef __ARCH_WANT_SYS_CLONE3 2549 2550 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2551 struct clone_args __user *uargs, 2552 size_t usize) 2553 { 2554 int err; 2555 struct clone_args args; 2556 pid_t *kset_tid = kargs->set_tid; 2557 2558 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2559 CLONE_ARGS_SIZE_VER0); 2560 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2561 CLONE_ARGS_SIZE_VER1); 2562 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2563 CLONE_ARGS_SIZE_VER2); 2564 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2565 2566 if (unlikely(usize > PAGE_SIZE)) 2567 return -E2BIG; 2568 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2569 return -EINVAL; 2570 2571 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2572 if (err) 2573 return err; 2574 2575 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2576 return -EINVAL; 2577 2578 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2579 return -EINVAL; 2580 2581 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2582 return -EINVAL; 2583 2584 /* 2585 * Verify that higher 32bits of exit_signal are unset and that 2586 * it is a valid signal 2587 */ 2588 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2589 !valid_signal(args.exit_signal))) 2590 return -EINVAL; 2591 2592 if ((args.flags & CLONE_INTO_CGROUP) && 2593 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2594 return -EINVAL; 2595 2596 *kargs = (struct kernel_clone_args){ 2597 .flags = args.flags, 2598 .pidfd = u64_to_user_ptr(args.pidfd), 2599 .child_tid = u64_to_user_ptr(args.child_tid), 2600 .parent_tid = u64_to_user_ptr(args.parent_tid), 2601 .exit_signal = args.exit_signal, 2602 .stack = args.stack, 2603 .stack_size = args.stack_size, 2604 .tls = args.tls, 2605 .set_tid_size = args.set_tid_size, 2606 .cgroup = args.cgroup, 2607 }; 2608 2609 if (args.set_tid && 2610 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2611 (kargs->set_tid_size * sizeof(pid_t)))) 2612 return -EFAULT; 2613 2614 kargs->set_tid = kset_tid; 2615 2616 return 0; 2617 } 2618 2619 /** 2620 * clone3_stack_valid - check and prepare stack 2621 * @kargs: kernel clone args 2622 * 2623 * Verify that the stack arguments userspace gave us are sane. 2624 * In addition, set the stack direction for userspace since it's easy for us to 2625 * determine. 2626 */ 2627 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2628 { 2629 if (kargs->stack == 0) { 2630 if (kargs->stack_size > 0) 2631 return false; 2632 } else { 2633 if (kargs->stack_size == 0) 2634 return false; 2635 2636 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2637 return false; 2638 2639 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2640 kargs->stack += kargs->stack_size; 2641 #endif 2642 } 2643 2644 return true; 2645 } 2646 2647 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2648 { 2649 /* Verify that no unknown flags are passed along. */ 2650 if (kargs->flags & 2651 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2652 return false; 2653 2654 /* 2655 * - make the CLONE_DETACHED bit reuseable for clone3 2656 * - make the CSIGNAL bits reuseable for clone3 2657 */ 2658 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2659 return false; 2660 2661 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2662 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2663 return false; 2664 2665 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2666 kargs->exit_signal) 2667 return false; 2668 2669 if (!clone3_stack_valid(kargs)) 2670 return false; 2671 2672 return true; 2673 } 2674 2675 /** 2676 * clone3 - create a new process with specific properties 2677 * @uargs: argument structure 2678 * @size: size of @uargs 2679 * 2680 * clone3() is the extensible successor to clone()/clone2(). 2681 * It takes a struct as argument that is versioned by its size. 2682 * 2683 * Return: On success, a positive PID for the child process. 2684 * On error, a negative errno number. 2685 */ 2686 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2687 { 2688 int err; 2689 2690 struct kernel_clone_args kargs; 2691 pid_t set_tid[MAX_PID_NS_LEVEL]; 2692 2693 kargs.set_tid = set_tid; 2694 2695 err = copy_clone_args_from_user(&kargs, uargs, size); 2696 if (err) 2697 return err; 2698 2699 if (!clone3_args_valid(&kargs)) 2700 return -EINVAL; 2701 2702 return _do_fork(&kargs); 2703 } 2704 #endif 2705 2706 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2707 { 2708 struct task_struct *leader, *parent, *child; 2709 int res; 2710 2711 read_lock(&tasklist_lock); 2712 leader = top = top->group_leader; 2713 down: 2714 for_each_thread(leader, parent) { 2715 list_for_each_entry(child, &parent->children, sibling) { 2716 res = visitor(child, data); 2717 if (res) { 2718 if (res < 0) 2719 goto out; 2720 leader = child; 2721 goto down; 2722 } 2723 up: 2724 ; 2725 } 2726 } 2727 2728 if (leader != top) { 2729 child = leader; 2730 parent = child->real_parent; 2731 leader = parent->group_leader; 2732 goto up; 2733 } 2734 out: 2735 read_unlock(&tasklist_lock); 2736 } 2737 2738 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2739 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2740 #endif 2741 2742 static void sighand_ctor(void *data) 2743 { 2744 struct sighand_struct *sighand = data; 2745 2746 spin_lock_init(&sighand->siglock); 2747 init_waitqueue_head(&sighand->signalfd_wqh); 2748 } 2749 2750 void __init proc_caches_init(void) 2751 { 2752 unsigned int mm_size; 2753 2754 sighand_cachep = kmem_cache_create("sighand_cache", 2755 sizeof(struct sighand_struct), 0, 2756 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2757 SLAB_ACCOUNT, sighand_ctor); 2758 signal_cachep = kmem_cache_create("signal_cache", 2759 sizeof(struct signal_struct), 0, 2760 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2761 NULL); 2762 files_cachep = kmem_cache_create("files_cache", 2763 sizeof(struct files_struct), 0, 2764 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2765 NULL); 2766 fs_cachep = kmem_cache_create("fs_cache", 2767 sizeof(struct fs_struct), 0, 2768 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2769 NULL); 2770 2771 /* 2772 * The mm_cpumask is located at the end of mm_struct, and is 2773 * dynamically sized based on the maximum CPU number this system 2774 * can have, taking hotplug into account (nr_cpu_ids). 2775 */ 2776 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2777 2778 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2779 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2780 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2781 offsetof(struct mm_struct, saved_auxv), 2782 sizeof_field(struct mm_struct, saved_auxv), 2783 NULL); 2784 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2785 mmap_init(); 2786 nsproxy_cache_init(); 2787 } 2788 2789 /* 2790 * Check constraints on flags passed to the unshare system call. 2791 */ 2792 static int check_unshare_flags(unsigned long unshare_flags) 2793 { 2794 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2795 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2796 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2797 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 2798 CLONE_NEWTIME)) 2799 return -EINVAL; 2800 /* 2801 * Not implemented, but pretend it works if there is nothing 2802 * to unshare. Note that unsharing the address space or the 2803 * signal handlers also need to unshare the signal queues (aka 2804 * CLONE_THREAD). 2805 */ 2806 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2807 if (!thread_group_empty(current)) 2808 return -EINVAL; 2809 } 2810 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2811 if (refcount_read(¤t->sighand->count) > 1) 2812 return -EINVAL; 2813 } 2814 if (unshare_flags & CLONE_VM) { 2815 if (!current_is_single_threaded()) 2816 return -EINVAL; 2817 } 2818 2819 return 0; 2820 } 2821 2822 /* 2823 * Unshare the filesystem structure if it is being shared 2824 */ 2825 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2826 { 2827 struct fs_struct *fs = current->fs; 2828 2829 if (!(unshare_flags & CLONE_FS) || !fs) 2830 return 0; 2831 2832 /* don't need lock here; in the worst case we'll do useless copy */ 2833 if (fs->users == 1) 2834 return 0; 2835 2836 *new_fsp = copy_fs_struct(fs); 2837 if (!*new_fsp) 2838 return -ENOMEM; 2839 2840 return 0; 2841 } 2842 2843 /* 2844 * Unshare file descriptor table if it is being shared 2845 */ 2846 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 2847 struct files_struct **new_fdp) 2848 { 2849 struct files_struct *fd = current->files; 2850 int error = 0; 2851 2852 if ((unshare_flags & CLONE_FILES) && 2853 (fd && atomic_read(&fd->count) > 1)) { 2854 *new_fdp = dup_fd(fd, max_fds, &error); 2855 if (!*new_fdp) 2856 return error; 2857 } 2858 2859 return 0; 2860 } 2861 2862 /* 2863 * unshare allows a process to 'unshare' part of the process 2864 * context which was originally shared using clone. copy_* 2865 * functions used by _do_fork() cannot be used here directly 2866 * because they modify an inactive task_struct that is being 2867 * constructed. Here we are modifying the current, active, 2868 * task_struct. 2869 */ 2870 int ksys_unshare(unsigned long unshare_flags) 2871 { 2872 struct fs_struct *fs, *new_fs = NULL; 2873 struct files_struct *fd, *new_fd = NULL; 2874 struct cred *new_cred = NULL; 2875 struct nsproxy *new_nsproxy = NULL; 2876 int do_sysvsem = 0; 2877 int err; 2878 2879 /* 2880 * If unsharing a user namespace must also unshare the thread group 2881 * and unshare the filesystem root and working directories. 2882 */ 2883 if (unshare_flags & CLONE_NEWUSER) 2884 unshare_flags |= CLONE_THREAD | CLONE_FS; 2885 /* 2886 * If unsharing vm, must also unshare signal handlers. 2887 */ 2888 if (unshare_flags & CLONE_VM) 2889 unshare_flags |= CLONE_SIGHAND; 2890 /* 2891 * If unsharing a signal handlers, must also unshare the signal queues. 2892 */ 2893 if (unshare_flags & CLONE_SIGHAND) 2894 unshare_flags |= CLONE_THREAD; 2895 /* 2896 * If unsharing namespace, must also unshare filesystem information. 2897 */ 2898 if (unshare_flags & CLONE_NEWNS) 2899 unshare_flags |= CLONE_FS; 2900 2901 err = check_unshare_flags(unshare_flags); 2902 if (err) 2903 goto bad_unshare_out; 2904 /* 2905 * CLONE_NEWIPC must also detach from the undolist: after switching 2906 * to a new ipc namespace, the semaphore arrays from the old 2907 * namespace are unreachable. 2908 */ 2909 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2910 do_sysvsem = 1; 2911 err = unshare_fs(unshare_flags, &new_fs); 2912 if (err) 2913 goto bad_unshare_out; 2914 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 2915 if (err) 2916 goto bad_unshare_cleanup_fs; 2917 err = unshare_userns(unshare_flags, &new_cred); 2918 if (err) 2919 goto bad_unshare_cleanup_fd; 2920 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2921 new_cred, new_fs); 2922 if (err) 2923 goto bad_unshare_cleanup_cred; 2924 2925 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2926 if (do_sysvsem) { 2927 /* 2928 * CLONE_SYSVSEM is equivalent to sys_exit(). 2929 */ 2930 exit_sem(current); 2931 } 2932 if (unshare_flags & CLONE_NEWIPC) { 2933 /* Orphan segments in old ns (see sem above). */ 2934 exit_shm(current); 2935 shm_init_task(current); 2936 } 2937 2938 if (new_nsproxy) 2939 switch_task_namespaces(current, new_nsproxy); 2940 2941 task_lock(current); 2942 2943 if (new_fs) { 2944 fs = current->fs; 2945 spin_lock(&fs->lock); 2946 current->fs = new_fs; 2947 if (--fs->users) 2948 new_fs = NULL; 2949 else 2950 new_fs = fs; 2951 spin_unlock(&fs->lock); 2952 } 2953 2954 if (new_fd) { 2955 fd = current->files; 2956 current->files = new_fd; 2957 new_fd = fd; 2958 } 2959 2960 task_unlock(current); 2961 2962 if (new_cred) { 2963 /* Install the new user namespace */ 2964 commit_creds(new_cred); 2965 new_cred = NULL; 2966 } 2967 } 2968 2969 perf_event_namespaces(current); 2970 2971 bad_unshare_cleanup_cred: 2972 if (new_cred) 2973 put_cred(new_cred); 2974 bad_unshare_cleanup_fd: 2975 if (new_fd) 2976 put_files_struct(new_fd); 2977 2978 bad_unshare_cleanup_fs: 2979 if (new_fs) 2980 free_fs_struct(new_fs); 2981 2982 bad_unshare_out: 2983 return err; 2984 } 2985 2986 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 2987 { 2988 return ksys_unshare(unshare_flags); 2989 } 2990 2991 /* 2992 * Helper to unshare the files of the current task. 2993 * We don't want to expose copy_files internals to 2994 * the exec layer of the kernel. 2995 */ 2996 2997 int unshare_files(struct files_struct **displaced) 2998 { 2999 struct task_struct *task = current; 3000 struct files_struct *copy = NULL; 3001 int error; 3002 3003 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3004 if (error || !copy) { 3005 *displaced = NULL; 3006 return error; 3007 } 3008 *displaced = task->files; 3009 task_lock(task); 3010 task->files = copy; 3011 task_unlock(task); 3012 return 0; 3013 } 3014 3015 int sysctl_max_threads(struct ctl_table *table, int write, 3016 void __user *buffer, size_t *lenp, loff_t *ppos) 3017 { 3018 struct ctl_table t; 3019 int ret; 3020 int threads = max_threads; 3021 int min = 1; 3022 int max = MAX_THREADS; 3023 3024 t = *table; 3025 t.data = &threads; 3026 t.extra1 = &min; 3027 t.extra2 = &max; 3028 3029 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3030 if (ret || !write) 3031 return ret; 3032 3033 max_threads = threads; 3034 3035 return 0; 3036 } 3037