xref: /linux/kernel/fork.c (revision 7a309195d11cde854eb75559fbd6b48f9e518f25)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
129 
130 static const char * const resident_page_types[] = {
131 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136 
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138 
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
140 
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 	return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148 
149 int nr_processes(void)
150 {
151 	int cpu;
152 	int total = 0;
153 
154 	for_each_possible_cpu(cpu)
155 		total += per_cpu(process_counts, cpu);
156 
157 	return total;
158 }
159 
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163 
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166 
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171 
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 	kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177 
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179 
180 /*
181  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182  * kmemcache based allocator.
183  */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185 
186 #ifdef CONFIG_VMAP_STACK
187 /*
188  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189  * flush.  Try to minimize the number of calls by caching stacks.
190  */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193 
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 	int i;
198 
199 	for (i = 0; i < NR_CACHED_STACKS; i++) {
200 		struct vm_struct *vm_stack = cached_vm_stacks[i];
201 
202 		if (!vm_stack)
203 			continue;
204 
205 		vfree(vm_stack->addr);
206 		cached_vm_stacks[i] = NULL;
207 	}
208 
209 	return 0;
210 }
211 #endif
212 
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 	void *stack;
217 	int i;
218 
219 	for (i = 0; i < NR_CACHED_STACKS; i++) {
220 		struct vm_struct *s;
221 
222 		s = this_cpu_xchg(cached_stacks[i], NULL);
223 
224 		if (!s)
225 			continue;
226 
227 		/* Clear the KASAN shadow of the stack. */
228 		kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229 
230 		/* Clear stale pointers from reused stack. */
231 		memset(s->addr, 0, THREAD_SIZE);
232 
233 		tsk->stack_vm_area = s;
234 		tsk->stack = s->addr;
235 		return s->addr;
236 	}
237 
238 	/*
239 	 * Allocated stacks are cached and later reused by new threads,
240 	 * so memcg accounting is performed manually on assigning/releasing
241 	 * stacks to tasks. Drop __GFP_ACCOUNT.
242 	 */
243 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
244 				     VMALLOC_START, VMALLOC_END,
245 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
246 				     PAGE_KERNEL,
247 				     0, node, __builtin_return_address(0));
248 
249 	/*
250 	 * We can't call find_vm_area() in interrupt context, and
251 	 * free_thread_stack() can be called in interrupt context,
252 	 * so cache the vm_struct.
253 	 */
254 	if (stack) {
255 		tsk->stack_vm_area = find_vm_area(stack);
256 		tsk->stack = stack;
257 	}
258 	return stack;
259 #else
260 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 					     THREAD_SIZE_ORDER);
262 
263 	if (likely(page)) {
264 		tsk->stack = page_address(page);
265 		return tsk->stack;
266 	}
267 	return NULL;
268 #endif
269 }
270 
271 static inline void free_thread_stack(struct task_struct *tsk)
272 {
273 #ifdef CONFIG_VMAP_STACK
274 	struct vm_struct *vm = task_stack_vm_area(tsk);
275 
276 	if (vm) {
277 		int i;
278 
279 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
280 			memcg_kmem_uncharge_page(vm->pages[i], 0);
281 
282 		for (i = 0; i < NR_CACHED_STACKS; i++) {
283 			if (this_cpu_cmpxchg(cached_stacks[i],
284 					NULL, tsk->stack_vm_area) != NULL)
285 				continue;
286 
287 			return;
288 		}
289 
290 		vfree_atomic(tsk->stack);
291 		return;
292 	}
293 #endif
294 
295 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
296 }
297 # else
298 static struct kmem_cache *thread_stack_cache;
299 
300 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
301 						  int node)
302 {
303 	unsigned long *stack;
304 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
305 	tsk->stack = stack;
306 	return stack;
307 }
308 
309 static void free_thread_stack(struct task_struct *tsk)
310 {
311 	kmem_cache_free(thread_stack_cache, tsk->stack);
312 }
313 
314 void thread_stack_cache_init(void)
315 {
316 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
317 					THREAD_SIZE, THREAD_SIZE, 0, 0,
318 					THREAD_SIZE, NULL);
319 	BUG_ON(thread_stack_cache == NULL);
320 }
321 # endif
322 #endif
323 
324 /* SLAB cache for signal_struct structures (tsk->signal) */
325 static struct kmem_cache *signal_cachep;
326 
327 /* SLAB cache for sighand_struct structures (tsk->sighand) */
328 struct kmem_cache *sighand_cachep;
329 
330 /* SLAB cache for files_struct structures (tsk->files) */
331 struct kmem_cache *files_cachep;
332 
333 /* SLAB cache for fs_struct structures (tsk->fs) */
334 struct kmem_cache *fs_cachep;
335 
336 /* SLAB cache for vm_area_struct structures */
337 static struct kmem_cache *vm_area_cachep;
338 
339 /* SLAB cache for mm_struct structures (tsk->mm) */
340 static struct kmem_cache *mm_cachep;
341 
342 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
343 {
344 	struct vm_area_struct *vma;
345 
346 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
347 	if (vma)
348 		vma_init(vma, mm);
349 	return vma;
350 }
351 
352 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
353 {
354 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
355 
356 	if (new) {
357 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
358 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
359 		/*
360 		 * orig->shared.rb may be modified concurrently, but the clone
361 		 * will be reinitialized.
362 		 */
363 		*new = data_race(*orig);
364 		INIT_LIST_HEAD(&new->anon_vma_chain);
365 		new->vm_next = new->vm_prev = NULL;
366 	}
367 	return new;
368 }
369 
370 void vm_area_free(struct vm_area_struct *vma)
371 {
372 	kmem_cache_free(vm_area_cachep, vma);
373 }
374 
375 static void account_kernel_stack(struct task_struct *tsk, int account)
376 {
377 	void *stack = task_stack_page(tsk);
378 	struct vm_struct *vm = task_stack_vm_area(tsk);
379 
380 
381 	/* All stack pages are in the same node. */
382 	if (vm)
383 		mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
384 				      account * (THREAD_SIZE / 1024));
385 	else
386 		mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
387 				      account * (THREAD_SIZE / 1024));
388 }
389 
390 static int memcg_charge_kernel_stack(struct task_struct *tsk)
391 {
392 #ifdef CONFIG_VMAP_STACK
393 	struct vm_struct *vm = task_stack_vm_area(tsk);
394 	int ret;
395 
396 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
397 
398 	if (vm) {
399 		int i;
400 
401 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
402 
403 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
404 			/*
405 			 * If memcg_kmem_charge_page() fails, page->mem_cgroup
406 			 * pointer is NULL, and memcg_kmem_uncharge_page() in
407 			 * free_thread_stack() will ignore this page.
408 			 */
409 			ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
410 						     0);
411 			if (ret)
412 				return ret;
413 		}
414 	}
415 #endif
416 	return 0;
417 }
418 
419 static void release_task_stack(struct task_struct *tsk)
420 {
421 	if (WARN_ON(tsk->state != TASK_DEAD))
422 		return;  /* Better to leak the stack than to free prematurely */
423 
424 	account_kernel_stack(tsk, -1);
425 	free_thread_stack(tsk);
426 	tsk->stack = NULL;
427 #ifdef CONFIG_VMAP_STACK
428 	tsk->stack_vm_area = NULL;
429 #endif
430 }
431 
432 #ifdef CONFIG_THREAD_INFO_IN_TASK
433 void put_task_stack(struct task_struct *tsk)
434 {
435 	if (refcount_dec_and_test(&tsk->stack_refcount))
436 		release_task_stack(tsk);
437 }
438 #endif
439 
440 void free_task(struct task_struct *tsk)
441 {
442 	scs_release(tsk);
443 
444 #ifndef CONFIG_THREAD_INFO_IN_TASK
445 	/*
446 	 * The task is finally done with both the stack and thread_info,
447 	 * so free both.
448 	 */
449 	release_task_stack(tsk);
450 #else
451 	/*
452 	 * If the task had a separate stack allocation, it should be gone
453 	 * by now.
454 	 */
455 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
456 #endif
457 	rt_mutex_debug_task_free(tsk);
458 	ftrace_graph_exit_task(tsk);
459 	arch_release_task_struct(tsk);
460 	if (tsk->flags & PF_KTHREAD)
461 		free_kthread_struct(tsk);
462 	free_task_struct(tsk);
463 }
464 EXPORT_SYMBOL(free_task);
465 
466 #ifdef CONFIG_MMU
467 static __latent_entropy int dup_mmap(struct mm_struct *mm,
468 					struct mm_struct *oldmm)
469 {
470 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
471 	struct rb_node **rb_link, *rb_parent;
472 	int retval;
473 	unsigned long charge;
474 	LIST_HEAD(uf);
475 
476 	uprobe_start_dup_mmap();
477 	if (mmap_write_lock_killable(oldmm)) {
478 		retval = -EINTR;
479 		goto fail_uprobe_end;
480 	}
481 	flush_cache_dup_mm(oldmm);
482 	uprobe_dup_mmap(oldmm, mm);
483 	/*
484 	 * Not linked in yet - no deadlock potential:
485 	 */
486 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
487 
488 	/* No ordering required: file already has been exposed. */
489 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
490 
491 	mm->total_vm = oldmm->total_vm;
492 	mm->data_vm = oldmm->data_vm;
493 	mm->exec_vm = oldmm->exec_vm;
494 	mm->stack_vm = oldmm->stack_vm;
495 
496 	rb_link = &mm->mm_rb.rb_node;
497 	rb_parent = NULL;
498 	pprev = &mm->mmap;
499 	retval = ksm_fork(mm, oldmm);
500 	if (retval)
501 		goto out;
502 	retval = khugepaged_fork(mm, oldmm);
503 	if (retval)
504 		goto out;
505 
506 	prev = NULL;
507 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
508 		struct file *file;
509 
510 		if (mpnt->vm_flags & VM_DONTCOPY) {
511 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
512 			continue;
513 		}
514 		charge = 0;
515 		/*
516 		 * Don't duplicate many vmas if we've been oom-killed (for
517 		 * example)
518 		 */
519 		if (fatal_signal_pending(current)) {
520 			retval = -EINTR;
521 			goto out;
522 		}
523 		if (mpnt->vm_flags & VM_ACCOUNT) {
524 			unsigned long len = vma_pages(mpnt);
525 
526 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
527 				goto fail_nomem;
528 			charge = len;
529 		}
530 		tmp = vm_area_dup(mpnt);
531 		if (!tmp)
532 			goto fail_nomem;
533 		retval = vma_dup_policy(mpnt, tmp);
534 		if (retval)
535 			goto fail_nomem_policy;
536 		tmp->vm_mm = mm;
537 		retval = dup_userfaultfd(tmp, &uf);
538 		if (retval)
539 			goto fail_nomem_anon_vma_fork;
540 		if (tmp->vm_flags & VM_WIPEONFORK) {
541 			/*
542 			 * VM_WIPEONFORK gets a clean slate in the child.
543 			 * Don't prepare anon_vma until fault since we don't
544 			 * copy page for current vma.
545 			 */
546 			tmp->anon_vma = NULL;
547 		} else if (anon_vma_fork(tmp, mpnt))
548 			goto fail_nomem_anon_vma_fork;
549 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
550 		file = tmp->vm_file;
551 		if (file) {
552 			struct inode *inode = file_inode(file);
553 			struct address_space *mapping = file->f_mapping;
554 
555 			get_file(file);
556 			if (tmp->vm_flags & VM_DENYWRITE)
557 				atomic_dec(&inode->i_writecount);
558 			i_mmap_lock_write(mapping);
559 			if (tmp->vm_flags & VM_SHARED)
560 				atomic_inc(&mapping->i_mmap_writable);
561 			flush_dcache_mmap_lock(mapping);
562 			/* insert tmp into the share list, just after mpnt */
563 			vma_interval_tree_insert_after(tmp, mpnt,
564 					&mapping->i_mmap);
565 			flush_dcache_mmap_unlock(mapping);
566 			i_mmap_unlock_write(mapping);
567 		}
568 
569 		/*
570 		 * Clear hugetlb-related page reserves for children. This only
571 		 * affects MAP_PRIVATE mappings. Faults generated by the child
572 		 * are not guaranteed to succeed, even if read-only
573 		 */
574 		if (is_vm_hugetlb_page(tmp))
575 			reset_vma_resv_huge_pages(tmp);
576 
577 		/*
578 		 * Link in the new vma and copy the page table entries.
579 		 */
580 		*pprev = tmp;
581 		pprev = &tmp->vm_next;
582 		tmp->vm_prev = prev;
583 		prev = tmp;
584 
585 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
586 		rb_link = &tmp->vm_rb.rb_right;
587 		rb_parent = &tmp->vm_rb;
588 
589 		mm->map_count++;
590 		if (!(tmp->vm_flags & VM_WIPEONFORK))
591 			retval = copy_page_range(mm, oldmm, mpnt);
592 
593 		if (tmp->vm_ops && tmp->vm_ops->open)
594 			tmp->vm_ops->open(tmp);
595 
596 		if (retval)
597 			goto out;
598 	}
599 	/* a new mm has just been created */
600 	retval = arch_dup_mmap(oldmm, mm);
601 out:
602 	mmap_write_unlock(mm);
603 	flush_tlb_mm(oldmm);
604 	mmap_write_unlock(oldmm);
605 	dup_userfaultfd_complete(&uf);
606 fail_uprobe_end:
607 	uprobe_end_dup_mmap();
608 	return retval;
609 fail_nomem_anon_vma_fork:
610 	mpol_put(vma_policy(tmp));
611 fail_nomem_policy:
612 	vm_area_free(tmp);
613 fail_nomem:
614 	retval = -ENOMEM;
615 	vm_unacct_memory(charge);
616 	goto out;
617 }
618 
619 static inline int mm_alloc_pgd(struct mm_struct *mm)
620 {
621 	mm->pgd = pgd_alloc(mm);
622 	if (unlikely(!mm->pgd))
623 		return -ENOMEM;
624 	return 0;
625 }
626 
627 static inline void mm_free_pgd(struct mm_struct *mm)
628 {
629 	pgd_free(mm, mm->pgd);
630 }
631 #else
632 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
633 {
634 	mmap_write_lock(oldmm);
635 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
636 	mmap_write_unlock(oldmm);
637 	return 0;
638 }
639 #define mm_alloc_pgd(mm)	(0)
640 #define mm_free_pgd(mm)
641 #endif /* CONFIG_MMU */
642 
643 static void check_mm(struct mm_struct *mm)
644 {
645 	int i;
646 
647 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
648 			 "Please make sure 'struct resident_page_types[]' is updated as well");
649 
650 	for (i = 0; i < NR_MM_COUNTERS; i++) {
651 		long x = atomic_long_read(&mm->rss_stat.count[i]);
652 
653 		if (unlikely(x))
654 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
655 				 mm, resident_page_types[i], x);
656 	}
657 
658 	if (mm_pgtables_bytes(mm))
659 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
660 				mm_pgtables_bytes(mm));
661 
662 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
663 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
664 #endif
665 }
666 
667 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
668 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
669 
670 /*
671  * Called when the last reference to the mm
672  * is dropped: either by a lazy thread or by
673  * mmput. Free the page directory and the mm.
674  */
675 void __mmdrop(struct mm_struct *mm)
676 {
677 	BUG_ON(mm == &init_mm);
678 	WARN_ON_ONCE(mm == current->mm);
679 	WARN_ON_ONCE(mm == current->active_mm);
680 	mm_free_pgd(mm);
681 	destroy_context(mm);
682 	mmu_notifier_subscriptions_destroy(mm);
683 	check_mm(mm);
684 	put_user_ns(mm->user_ns);
685 	free_mm(mm);
686 }
687 EXPORT_SYMBOL_GPL(__mmdrop);
688 
689 static void mmdrop_async_fn(struct work_struct *work)
690 {
691 	struct mm_struct *mm;
692 
693 	mm = container_of(work, struct mm_struct, async_put_work);
694 	__mmdrop(mm);
695 }
696 
697 static void mmdrop_async(struct mm_struct *mm)
698 {
699 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
700 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
701 		schedule_work(&mm->async_put_work);
702 	}
703 }
704 
705 static inline void free_signal_struct(struct signal_struct *sig)
706 {
707 	taskstats_tgid_free(sig);
708 	sched_autogroup_exit(sig);
709 	/*
710 	 * __mmdrop is not safe to call from softirq context on x86 due to
711 	 * pgd_dtor so postpone it to the async context
712 	 */
713 	if (sig->oom_mm)
714 		mmdrop_async(sig->oom_mm);
715 	kmem_cache_free(signal_cachep, sig);
716 }
717 
718 static inline void put_signal_struct(struct signal_struct *sig)
719 {
720 	if (refcount_dec_and_test(&sig->sigcnt))
721 		free_signal_struct(sig);
722 }
723 
724 void __put_task_struct(struct task_struct *tsk)
725 {
726 	WARN_ON(!tsk->exit_state);
727 	WARN_ON(refcount_read(&tsk->usage));
728 	WARN_ON(tsk == current);
729 
730 	cgroup_free(tsk);
731 	task_numa_free(tsk, true);
732 	security_task_free(tsk);
733 	exit_creds(tsk);
734 	delayacct_tsk_free(tsk);
735 	put_signal_struct(tsk->signal);
736 
737 	if (!profile_handoff_task(tsk))
738 		free_task(tsk);
739 }
740 EXPORT_SYMBOL_GPL(__put_task_struct);
741 
742 void __init __weak arch_task_cache_init(void) { }
743 
744 /*
745  * set_max_threads
746  */
747 static void set_max_threads(unsigned int max_threads_suggested)
748 {
749 	u64 threads;
750 	unsigned long nr_pages = totalram_pages();
751 
752 	/*
753 	 * The number of threads shall be limited such that the thread
754 	 * structures may only consume a small part of the available memory.
755 	 */
756 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
757 		threads = MAX_THREADS;
758 	else
759 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
760 				    (u64) THREAD_SIZE * 8UL);
761 
762 	if (threads > max_threads_suggested)
763 		threads = max_threads_suggested;
764 
765 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
766 }
767 
768 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
769 /* Initialized by the architecture: */
770 int arch_task_struct_size __read_mostly;
771 #endif
772 
773 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
774 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
775 {
776 	/* Fetch thread_struct whitelist for the architecture. */
777 	arch_thread_struct_whitelist(offset, size);
778 
779 	/*
780 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
781 	 * adjust offset to position of thread_struct in task_struct.
782 	 */
783 	if (unlikely(*size == 0))
784 		*offset = 0;
785 	else
786 		*offset += offsetof(struct task_struct, thread);
787 }
788 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
789 
790 void __init fork_init(void)
791 {
792 	int i;
793 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
794 #ifndef ARCH_MIN_TASKALIGN
795 #define ARCH_MIN_TASKALIGN	0
796 #endif
797 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
798 	unsigned long useroffset, usersize;
799 
800 	/* create a slab on which task_structs can be allocated */
801 	task_struct_whitelist(&useroffset, &usersize);
802 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
803 			arch_task_struct_size, align,
804 			SLAB_PANIC|SLAB_ACCOUNT,
805 			useroffset, usersize, NULL);
806 #endif
807 
808 	/* do the arch specific task caches init */
809 	arch_task_cache_init();
810 
811 	set_max_threads(MAX_THREADS);
812 
813 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
814 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
815 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
816 		init_task.signal->rlim[RLIMIT_NPROC];
817 
818 	for (i = 0; i < UCOUNT_COUNTS; i++) {
819 		init_user_ns.ucount_max[i] = max_threads/2;
820 	}
821 
822 #ifdef CONFIG_VMAP_STACK
823 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
824 			  NULL, free_vm_stack_cache);
825 #endif
826 
827 	scs_init();
828 
829 	lockdep_init_task(&init_task);
830 	uprobes_init();
831 }
832 
833 int __weak arch_dup_task_struct(struct task_struct *dst,
834 					       struct task_struct *src)
835 {
836 	*dst = *src;
837 	return 0;
838 }
839 
840 void set_task_stack_end_magic(struct task_struct *tsk)
841 {
842 	unsigned long *stackend;
843 
844 	stackend = end_of_stack(tsk);
845 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
846 }
847 
848 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
849 {
850 	struct task_struct *tsk;
851 	unsigned long *stack;
852 	struct vm_struct *stack_vm_area __maybe_unused;
853 	int err;
854 
855 	if (node == NUMA_NO_NODE)
856 		node = tsk_fork_get_node(orig);
857 	tsk = alloc_task_struct_node(node);
858 	if (!tsk)
859 		return NULL;
860 
861 	stack = alloc_thread_stack_node(tsk, node);
862 	if (!stack)
863 		goto free_tsk;
864 
865 	if (memcg_charge_kernel_stack(tsk))
866 		goto free_stack;
867 
868 	stack_vm_area = task_stack_vm_area(tsk);
869 
870 	err = arch_dup_task_struct(tsk, orig);
871 
872 	/*
873 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
874 	 * sure they're properly initialized before using any stack-related
875 	 * functions again.
876 	 */
877 	tsk->stack = stack;
878 #ifdef CONFIG_VMAP_STACK
879 	tsk->stack_vm_area = stack_vm_area;
880 #endif
881 #ifdef CONFIG_THREAD_INFO_IN_TASK
882 	refcount_set(&tsk->stack_refcount, 1);
883 #endif
884 
885 	if (err)
886 		goto free_stack;
887 
888 	err = scs_prepare(tsk, node);
889 	if (err)
890 		goto free_stack;
891 
892 #ifdef CONFIG_SECCOMP
893 	/*
894 	 * We must handle setting up seccomp filters once we're under
895 	 * the sighand lock in case orig has changed between now and
896 	 * then. Until then, filter must be NULL to avoid messing up
897 	 * the usage counts on the error path calling free_task.
898 	 */
899 	tsk->seccomp.filter = NULL;
900 #endif
901 
902 	setup_thread_stack(tsk, orig);
903 	clear_user_return_notifier(tsk);
904 	clear_tsk_need_resched(tsk);
905 	set_task_stack_end_magic(tsk);
906 
907 #ifdef CONFIG_STACKPROTECTOR
908 	tsk->stack_canary = get_random_canary();
909 #endif
910 	if (orig->cpus_ptr == &orig->cpus_mask)
911 		tsk->cpus_ptr = &tsk->cpus_mask;
912 
913 	/*
914 	 * One for the user space visible state that goes away when reaped.
915 	 * One for the scheduler.
916 	 */
917 	refcount_set(&tsk->rcu_users, 2);
918 	/* One for the rcu users */
919 	refcount_set(&tsk->usage, 1);
920 #ifdef CONFIG_BLK_DEV_IO_TRACE
921 	tsk->btrace_seq = 0;
922 #endif
923 	tsk->splice_pipe = NULL;
924 	tsk->task_frag.page = NULL;
925 	tsk->wake_q.next = NULL;
926 
927 	account_kernel_stack(tsk, 1);
928 
929 	kcov_task_init(tsk);
930 
931 #ifdef CONFIG_FAULT_INJECTION
932 	tsk->fail_nth = 0;
933 #endif
934 
935 #ifdef CONFIG_BLK_CGROUP
936 	tsk->throttle_queue = NULL;
937 	tsk->use_memdelay = 0;
938 #endif
939 
940 #ifdef CONFIG_MEMCG
941 	tsk->active_memcg = NULL;
942 #endif
943 	return tsk;
944 
945 free_stack:
946 	free_thread_stack(tsk);
947 free_tsk:
948 	free_task_struct(tsk);
949 	return NULL;
950 }
951 
952 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
953 
954 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
955 
956 static int __init coredump_filter_setup(char *s)
957 {
958 	default_dump_filter =
959 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
960 		MMF_DUMP_FILTER_MASK;
961 	return 1;
962 }
963 
964 __setup("coredump_filter=", coredump_filter_setup);
965 
966 #include <linux/init_task.h>
967 
968 static void mm_init_aio(struct mm_struct *mm)
969 {
970 #ifdef CONFIG_AIO
971 	spin_lock_init(&mm->ioctx_lock);
972 	mm->ioctx_table = NULL;
973 #endif
974 }
975 
976 static __always_inline void mm_clear_owner(struct mm_struct *mm,
977 					   struct task_struct *p)
978 {
979 #ifdef CONFIG_MEMCG
980 	if (mm->owner == p)
981 		WRITE_ONCE(mm->owner, NULL);
982 #endif
983 }
984 
985 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
986 {
987 #ifdef CONFIG_MEMCG
988 	mm->owner = p;
989 #endif
990 }
991 
992 static void mm_init_uprobes_state(struct mm_struct *mm)
993 {
994 #ifdef CONFIG_UPROBES
995 	mm->uprobes_state.xol_area = NULL;
996 #endif
997 }
998 
999 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1000 	struct user_namespace *user_ns)
1001 {
1002 	mm->mmap = NULL;
1003 	mm->mm_rb = RB_ROOT;
1004 	mm->vmacache_seqnum = 0;
1005 	atomic_set(&mm->mm_users, 1);
1006 	atomic_set(&mm->mm_count, 1);
1007 	mmap_init_lock(mm);
1008 	INIT_LIST_HEAD(&mm->mmlist);
1009 	mm->core_state = NULL;
1010 	mm_pgtables_bytes_init(mm);
1011 	mm->map_count = 0;
1012 	mm->locked_vm = 0;
1013 	atomic64_set(&mm->pinned_vm, 0);
1014 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1015 	spin_lock_init(&mm->page_table_lock);
1016 	spin_lock_init(&mm->arg_lock);
1017 	mm_init_cpumask(mm);
1018 	mm_init_aio(mm);
1019 	mm_init_owner(mm, p);
1020 	RCU_INIT_POINTER(mm->exe_file, NULL);
1021 	mmu_notifier_subscriptions_init(mm);
1022 	init_tlb_flush_pending(mm);
1023 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1024 	mm->pmd_huge_pte = NULL;
1025 #endif
1026 	mm_init_uprobes_state(mm);
1027 
1028 	if (current->mm) {
1029 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1030 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1031 	} else {
1032 		mm->flags = default_dump_filter;
1033 		mm->def_flags = 0;
1034 	}
1035 
1036 	if (mm_alloc_pgd(mm))
1037 		goto fail_nopgd;
1038 
1039 	if (init_new_context(p, mm))
1040 		goto fail_nocontext;
1041 
1042 	mm->user_ns = get_user_ns(user_ns);
1043 	return mm;
1044 
1045 fail_nocontext:
1046 	mm_free_pgd(mm);
1047 fail_nopgd:
1048 	free_mm(mm);
1049 	return NULL;
1050 }
1051 
1052 /*
1053  * Allocate and initialize an mm_struct.
1054  */
1055 struct mm_struct *mm_alloc(void)
1056 {
1057 	struct mm_struct *mm;
1058 
1059 	mm = allocate_mm();
1060 	if (!mm)
1061 		return NULL;
1062 
1063 	memset(mm, 0, sizeof(*mm));
1064 	return mm_init(mm, current, current_user_ns());
1065 }
1066 
1067 static inline void __mmput(struct mm_struct *mm)
1068 {
1069 	VM_BUG_ON(atomic_read(&mm->mm_users));
1070 
1071 	uprobe_clear_state(mm);
1072 	exit_aio(mm);
1073 	ksm_exit(mm);
1074 	khugepaged_exit(mm); /* must run before exit_mmap */
1075 	exit_mmap(mm);
1076 	mm_put_huge_zero_page(mm);
1077 	set_mm_exe_file(mm, NULL);
1078 	if (!list_empty(&mm->mmlist)) {
1079 		spin_lock(&mmlist_lock);
1080 		list_del(&mm->mmlist);
1081 		spin_unlock(&mmlist_lock);
1082 	}
1083 	if (mm->binfmt)
1084 		module_put(mm->binfmt->module);
1085 	mmdrop(mm);
1086 }
1087 
1088 /*
1089  * Decrement the use count and release all resources for an mm.
1090  */
1091 void mmput(struct mm_struct *mm)
1092 {
1093 	might_sleep();
1094 
1095 	if (atomic_dec_and_test(&mm->mm_users))
1096 		__mmput(mm);
1097 }
1098 EXPORT_SYMBOL_GPL(mmput);
1099 
1100 #ifdef CONFIG_MMU
1101 static void mmput_async_fn(struct work_struct *work)
1102 {
1103 	struct mm_struct *mm = container_of(work, struct mm_struct,
1104 					    async_put_work);
1105 
1106 	__mmput(mm);
1107 }
1108 
1109 void mmput_async(struct mm_struct *mm)
1110 {
1111 	if (atomic_dec_and_test(&mm->mm_users)) {
1112 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1113 		schedule_work(&mm->async_put_work);
1114 	}
1115 }
1116 #endif
1117 
1118 /**
1119  * set_mm_exe_file - change a reference to the mm's executable file
1120  *
1121  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1122  *
1123  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1124  * invocations: in mmput() nobody alive left, in execve task is single
1125  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1126  * mm->exe_file, but does so without using set_mm_exe_file() in order
1127  * to do avoid the need for any locks.
1128  */
1129 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1130 {
1131 	struct file *old_exe_file;
1132 
1133 	/*
1134 	 * It is safe to dereference the exe_file without RCU as
1135 	 * this function is only called if nobody else can access
1136 	 * this mm -- see comment above for justification.
1137 	 */
1138 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1139 
1140 	if (new_exe_file)
1141 		get_file(new_exe_file);
1142 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1143 	if (old_exe_file)
1144 		fput(old_exe_file);
1145 }
1146 
1147 /**
1148  * get_mm_exe_file - acquire a reference to the mm's executable file
1149  *
1150  * Returns %NULL if mm has no associated executable file.
1151  * User must release file via fput().
1152  */
1153 struct file *get_mm_exe_file(struct mm_struct *mm)
1154 {
1155 	struct file *exe_file;
1156 
1157 	rcu_read_lock();
1158 	exe_file = rcu_dereference(mm->exe_file);
1159 	if (exe_file && !get_file_rcu(exe_file))
1160 		exe_file = NULL;
1161 	rcu_read_unlock();
1162 	return exe_file;
1163 }
1164 EXPORT_SYMBOL(get_mm_exe_file);
1165 
1166 /**
1167  * get_task_exe_file - acquire a reference to the task's executable file
1168  *
1169  * Returns %NULL if task's mm (if any) has no associated executable file or
1170  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1171  * User must release file via fput().
1172  */
1173 struct file *get_task_exe_file(struct task_struct *task)
1174 {
1175 	struct file *exe_file = NULL;
1176 	struct mm_struct *mm;
1177 
1178 	task_lock(task);
1179 	mm = task->mm;
1180 	if (mm) {
1181 		if (!(task->flags & PF_KTHREAD))
1182 			exe_file = get_mm_exe_file(mm);
1183 	}
1184 	task_unlock(task);
1185 	return exe_file;
1186 }
1187 EXPORT_SYMBOL(get_task_exe_file);
1188 
1189 /**
1190  * get_task_mm - acquire a reference to the task's mm
1191  *
1192  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1193  * this kernel workthread has transiently adopted a user mm with use_mm,
1194  * to do its AIO) is not set and if so returns a reference to it, after
1195  * bumping up the use count.  User must release the mm via mmput()
1196  * after use.  Typically used by /proc and ptrace.
1197  */
1198 struct mm_struct *get_task_mm(struct task_struct *task)
1199 {
1200 	struct mm_struct *mm;
1201 
1202 	task_lock(task);
1203 	mm = task->mm;
1204 	if (mm) {
1205 		if (task->flags & PF_KTHREAD)
1206 			mm = NULL;
1207 		else
1208 			mmget(mm);
1209 	}
1210 	task_unlock(task);
1211 	return mm;
1212 }
1213 EXPORT_SYMBOL_GPL(get_task_mm);
1214 
1215 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1216 {
1217 	struct mm_struct *mm;
1218 	int err;
1219 
1220 	err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1221 	if (err)
1222 		return ERR_PTR(err);
1223 
1224 	mm = get_task_mm(task);
1225 	if (mm && mm != current->mm &&
1226 			!ptrace_may_access(task, mode)) {
1227 		mmput(mm);
1228 		mm = ERR_PTR(-EACCES);
1229 	}
1230 	mutex_unlock(&task->signal->exec_update_mutex);
1231 
1232 	return mm;
1233 }
1234 
1235 static void complete_vfork_done(struct task_struct *tsk)
1236 {
1237 	struct completion *vfork;
1238 
1239 	task_lock(tsk);
1240 	vfork = tsk->vfork_done;
1241 	if (likely(vfork)) {
1242 		tsk->vfork_done = NULL;
1243 		complete(vfork);
1244 	}
1245 	task_unlock(tsk);
1246 }
1247 
1248 static int wait_for_vfork_done(struct task_struct *child,
1249 				struct completion *vfork)
1250 {
1251 	int killed;
1252 
1253 	freezer_do_not_count();
1254 	cgroup_enter_frozen();
1255 	killed = wait_for_completion_killable(vfork);
1256 	cgroup_leave_frozen(false);
1257 	freezer_count();
1258 
1259 	if (killed) {
1260 		task_lock(child);
1261 		child->vfork_done = NULL;
1262 		task_unlock(child);
1263 	}
1264 
1265 	put_task_struct(child);
1266 	return killed;
1267 }
1268 
1269 /* Please note the differences between mmput and mm_release.
1270  * mmput is called whenever we stop holding onto a mm_struct,
1271  * error success whatever.
1272  *
1273  * mm_release is called after a mm_struct has been removed
1274  * from the current process.
1275  *
1276  * This difference is important for error handling, when we
1277  * only half set up a mm_struct for a new process and need to restore
1278  * the old one.  Because we mmput the new mm_struct before
1279  * restoring the old one. . .
1280  * Eric Biederman 10 January 1998
1281  */
1282 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1283 {
1284 	uprobe_free_utask(tsk);
1285 
1286 	/* Get rid of any cached register state */
1287 	deactivate_mm(tsk, mm);
1288 
1289 	/*
1290 	 * Signal userspace if we're not exiting with a core dump
1291 	 * because we want to leave the value intact for debugging
1292 	 * purposes.
1293 	 */
1294 	if (tsk->clear_child_tid) {
1295 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1296 		    atomic_read(&mm->mm_users) > 1) {
1297 			/*
1298 			 * We don't check the error code - if userspace has
1299 			 * not set up a proper pointer then tough luck.
1300 			 */
1301 			put_user(0, tsk->clear_child_tid);
1302 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1303 					1, NULL, NULL, 0, 0);
1304 		}
1305 		tsk->clear_child_tid = NULL;
1306 	}
1307 
1308 	/*
1309 	 * All done, finally we can wake up parent and return this mm to him.
1310 	 * Also kthread_stop() uses this completion for synchronization.
1311 	 */
1312 	if (tsk->vfork_done)
1313 		complete_vfork_done(tsk);
1314 }
1315 
1316 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1317 {
1318 	futex_exit_release(tsk);
1319 	mm_release(tsk, mm);
1320 }
1321 
1322 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1323 {
1324 	futex_exec_release(tsk);
1325 	mm_release(tsk, mm);
1326 }
1327 
1328 /**
1329  * dup_mm() - duplicates an existing mm structure
1330  * @tsk: the task_struct with which the new mm will be associated.
1331  * @oldmm: the mm to duplicate.
1332  *
1333  * Allocates a new mm structure and duplicates the provided @oldmm structure
1334  * content into it.
1335  *
1336  * Return: the duplicated mm or NULL on failure.
1337  */
1338 static struct mm_struct *dup_mm(struct task_struct *tsk,
1339 				struct mm_struct *oldmm)
1340 {
1341 	struct mm_struct *mm;
1342 	int err;
1343 
1344 	mm = allocate_mm();
1345 	if (!mm)
1346 		goto fail_nomem;
1347 
1348 	memcpy(mm, oldmm, sizeof(*mm));
1349 
1350 	if (!mm_init(mm, tsk, mm->user_ns))
1351 		goto fail_nomem;
1352 
1353 	err = dup_mmap(mm, oldmm);
1354 	if (err)
1355 		goto free_pt;
1356 
1357 	mm->hiwater_rss = get_mm_rss(mm);
1358 	mm->hiwater_vm = mm->total_vm;
1359 
1360 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1361 		goto free_pt;
1362 
1363 	return mm;
1364 
1365 free_pt:
1366 	/* don't put binfmt in mmput, we haven't got module yet */
1367 	mm->binfmt = NULL;
1368 	mm_init_owner(mm, NULL);
1369 	mmput(mm);
1370 
1371 fail_nomem:
1372 	return NULL;
1373 }
1374 
1375 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1376 {
1377 	struct mm_struct *mm, *oldmm;
1378 	int retval;
1379 
1380 	tsk->min_flt = tsk->maj_flt = 0;
1381 	tsk->nvcsw = tsk->nivcsw = 0;
1382 #ifdef CONFIG_DETECT_HUNG_TASK
1383 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1384 	tsk->last_switch_time = 0;
1385 #endif
1386 
1387 	tsk->mm = NULL;
1388 	tsk->active_mm = NULL;
1389 
1390 	/*
1391 	 * Are we cloning a kernel thread?
1392 	 *
1393 	 * We need to steal a active VM for that..
1394 	 */
1395 	oldmm = current->mm;
1396 	if (!oldmm)
1397 		return 0;
1398 
1399 	/* initialize the new vmacache entries */
1400 	vmacache_flush(tsk);
1401 
1402 	if (clone_flags & CLONE_VM) {
1403 		mmget(oldmm);
1404 		mm = oldmm;
1405 		goto good_mm;
1406 	}
1407 
1408 	retval = -ENOMEM;
1409 	mm = dup_mm(tsk, current->mm);
1410 	if (!mm)
1411 		goto fail_nomem;
1412 
1413 good_mm:
1414 	tsk->mm = mm;
1415 	tsk->active_mm = mm;
1416 	return 0;
1417 
1418 fail_nomem:
1419 	return retval;
1420 }
1421 
1422 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1423 {
1424 	struct fs_struct *fs = current->fs;
1425 	if (clone_flags & CLONE_FS) {
1426 		/* tsk->fs is already what we want */
1427 		spin_lock(&fs->lock);
1428 		if (fs->in_exec) {
1429 			spin_unlock(&fs->lock);
1430 			return -EAGAIN;
1431 		}
1432 		fs->users++;
1433 		spin_unlock(&fs->lock);
1434 		return 0;
1435 	}
1436 	tsk->fs = copy_fs_struct(fs);
1437 	if (!tsk->fs)
1438 		return -ENOMEM;
1439 	return 0;
1440 }
1441 
1442 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1443 {
1444 	struct files_struct *oldf, *newf;
1445 	int error = 0;
1446 
1447 	/*
1448 	 * A background process may not have any files ...
1449 	 */
1450 	oldf = current->files;
1451 	if (!oldf)
1452 		goto out;
1453 
1454 	if (clone_flags & CLONE_FILES) {
1455 		atomic_inc(&oldf->count);
1456 		goto out;
1457 	}
1458 
1459 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1460 	if (!newf)
1461 		goto out;
1462 
1463 	tsk->files = newf;
1464 	error = 0;
1465 out:
1466 	return error;
1467 }
1468 
1469 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1470 {
1471 #ifdef CONFIG_BLOCK
1472 	struct io_context *ioc = current->io_context;
1473 	struct io_context *new_ioc;
1474 
1475 	if (!ioc)
1476 		return 0;
1477 	/*
1478 	 * Share io context with parent, if CLONE_IO is set
1479 	 */
1480 	if (clone_flags & CLONE_IO) {
1481 		ioc_task_link(ioc);
1482 		tsk->io_context = ioc;
1483 	} else if (ioprio_valid(ioc->ioprio)) {
1484 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1485 		if (unlikely(!new_ioc))
1486 			return -ENOMEM;
1487 
1488 		new_ioc->ioprio = ioc->ioprio;
1489 		put_io_context(new_ioc);
1490 	}
1491 #endif
1492 	return 0;
1493 }
1494 
1495 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1496 {
1497 	struct sighand_struct *sig;
1498 
1499 	if (clone_flags & CLONE_SIGHAND) {
1500 		refcount_inc(&current->sighand->count);
1501 		return 0;
1502 	}
1503 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1504 	RCU_INIT_POINTER(tsk->sighand, sig);
1505 	if (!sig)
1506 		return -ENOMEM;
1507 
1508 	refcount_set(&sig->count, 1);
1509 	spin_lock_irq(&current->sighand->siglock);
1510 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1511 	spin_unlock_irq(&current->sighand->siglock);
1512 
1513 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1514 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1515 		flush_signal_handlers(tsk, 0);
1516 
1517 	return 0;
1518 }
1519 
1520 void __cleanup_sighand(struct sighand_struct *sighand)
1521 {
1522 	if (refcount_dec_and_test(&sighand->count)) {
1523 		signalfd_cleanup(sighand);
1524 		/*
1525 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1526 		 * without an RCU grace period, see __lock_task_sighand().
1527 		 */
1528 		kmem_cache_free(sighand_cachep, sighand);
1529 	}
1530 }
1531 
1532 /*
1533  * Initialize POSIX timer handling for a thread group.
1534  */
1535 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1536 {
1537 	struct posix_cputimers *pct = &sig->posix_cputimers;
1538 	unsigned long cpu_limit;
1539 
1540 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1541 	posix_cputimers_group_init(pct, cpu_limit);
1542 }
1543 
1544 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1545 {
1546 	struct signal_struct *sig;
1547 
1548 	if (clone_flags & CLONE_THREAD)
1549 		return 0;
1550 
1551 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1552 	tsk->signal = sig;
1553 	if (!sig)
1554 		return -ENOMEM;
1555 
1556 	sig->nr_threads = 1;
1557 	atomic_set(&sig->live, 1);
1558 	refcount_set(&sig->sigcnt, 1);
1559 
1560 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1561 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1562 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1563 
1564 	init_waitqueue_head(&sig->wait_chldexit);
1565 	sig->curr_target = tsk;
1566 	init_sigpending(&sig->shared_pending);
1567 	INIT_HLIST_HEAD(&sig->multiprocess);
1568 	seqlock_init(&sig->stats_lock);
1569 	prev_cputime_init(&sig->prev_cputime);
1570 
1571 #ifdef CONFIG_POSIX_TIMERS
1572 	INIT_LIST_HEAD(&sig->posix_timers);
1573 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1574 	sig->real_timer.function = it_real_fn;
1575 #endif
1576 
1577 	task_lock(current->group_leader);
1578 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1579 	task_unlock(current->group_leader);
1580 
1581 	posix_cpu_timers_init_group(sig);
1582 
1583 	tty_audit_fork(sig);
1584 	sched_autogroup_fork(sig);
1585 
1586 	sig->oom_score_adj = current->signal->oom_score_adj;
1587 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1588 
1589 	mutex_init(&sig->cred_guard_mutex);
1590 	mutex_init(&sig->exec_update_mutex);
1591 
1592 	return 0;
1593 }
1594 
1595 static void copy_seccomp(struct task_struct *p)
1596 {
1597 #ifdef CONFIG_SECCOMP
1598 	/*
1599 	 * Must be called with sighand->lock held, which is common to
1600 	 * all threads in the group. Holding cred_guard_mutex is not
1601 	 * needed because this new task is not yet running and cannot
1602 	 * be racing exec.
1603 	 */
1604 	assert_spin_locked(&current->sighand->siglock);
1605 
1606 	/* Ref-count the new filter user, and assign it. */
1607 	get_seccomp_filter(current);
1608 	p->seccomp = current->seccomp;
1609 
1610 	/*
1611 	 * Explicitly enable no_new_privs here in case it got set
1612 	 * between the task_struct being duplicated and holding the
1613 	 * sighand lock. The seccomp state and nnp must be in sync.
1614 	 */
1615 	if (task_no_new_privs(current))
1616 		task_set_no_new_privs(p);
1617 
1618 	/*
1619 	 * If the parent gained a seccomp mode after copying thread
1620 	 * flags and between before we held the sighand lock, we have
1621 	 * to manually enable the seccomp thread flag here.
1622 	 */
1623 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1624 		set_tsk_thread_flag(p, TIF_SECCOMP);
1625 #endif
1626 }
1627 
1628 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1629 {
1630 	current->clear_child_tid = tidptr;
1631 
1632 	return task_pid_vnr(current);
1633 }
1634 
1635 static void rt_mutex_init_task(struct task_struct *p)
1636 {
1637 	raw_spin_lock_init(&p->pi_lock);
1638 #ifdef CONFIG_RT_MUTEXES
1639 	p->pi_waiters = RB_ROOT_CACHED;
1640 	p->pi_top_task = NULL;
1641 	p->pi_blocked_on = NULL;
1642 #endif
1643 }
1644 
1645 static inline void init_task_pid_links(struct task_struct *task)
1646 {
1647 	enum pid_type type;
1648 
1649 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1650 		INIT_HLIST_NODE(&task->pid_links[type]);
1651 	}
1652 }
1653 
1654 static inline void
1655 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1656 {
1657 	if (type == PIDTYPE_PID)
1658 		task->thread_pid = pid;
1659 	else
1660 		task->signal->pids[type] = pid;
1661 }
1662 
1663 static inline void rcu_copy_process(struct task_struct *p)
1664 {
1665 #ifdef CONFIG_PREEMPT_RCU
1666 	p->rcu_read_lock_nesting = 0;
1667 	p->rcu_read_unlock_special.s = 0;
1668 	p->rcu_blocked_node = NULL;
1669 	INIT_LIST_HEAD(&p->rcu_node_entry);
1670 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1671 #ifdef CONFIG_TASKS_RCU
1672 	p->rcu_tasks_holdout = false;
1673 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1674 	p->rcu_tasks_idle_cpu = -1;
1675 #endif /* #ifdef CONFIG_TASKS_RCU */
1676 #ifdef CONFIG_TASKS_TRACE_RCU
1677 	p->trc_reader_nesting = 0;
1678 	p->trc_reader_special.s = 0;
1679 	INIT_LIST_HEAD(&p->trc_holdout_list);
1680 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1681 }
1682 
1683 struct pid *pidfd_pid(const struct file *file)
1684 {
1685 	if (file->f_op == &pidfd_fops)
1686 		return file->private_data;
1687 
1688 	return ERR_PTR(-EBADF);
1689 }
1690 
1691 static int pidfd_release(struct inode *inode, struct file *file)
1692 {
1693 	struct pid *pid = file->private_data;
1694 
1695 	file->private_data = NULL;
1696 	put_pid(pid);
1697 	return 0;
1698 }
1699 
1700 #ifdef CONFIG_PROC_FS
1701 /**
1702  * pidfd_show_fdinfo - print information about a pidfd
1703  * @m: proc fdinfo file
1704  * @f: file referencing a pidfd
1705  *
1706  * Pid:
1707  * This function will print the pid that a given pidfd refers to in the
1708  * pid namespace of the procfs instance.
1709  * If the pid namespace of the process is not a descendant of the pid
1710  * namespace of the procfs instance 0 will be shown as its pid. This is
1711  * similar to calling getppid() on a process whose parent is outside of
1712  * its pid namespace.
1713  *
1714  * NSpid:
1715  * If pid namespaces are supported then this function will also print
1716  * the pid of a given pidfd refers to for all descendant pid namespaces
1717  * starting from the current pid namespace of the instance, i.e. the
1718  * Pid field and the first entry in the NSpid field will be identical.
1719  * If the pid namespace of the process is not a descendant of the pid
1720  * namespace of the procfs instance 0 will be shown as its first NSpid
1721  * entry and no others will be shown.
1722  * Note that this differs from the Pid and NSpid fields in
1723  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1724  * the  pid namespace of the procfs instance. The difference becomes
1725  * obvious when sending around a pidfd between pid namespaces from a
1726  * different branch of the tree, i.e. where no ancestoral relation is
1727  * present between the pid namespaces:
1728  * - create two new pid namespaces ns1 and ns2 in the initial pid
1729  *   namespace (also take care to create new mount namespaces in the
1730  *   new pid namespace and mount procfs)
1731  * - create a process with a pidfd in ns1
1732  * - send pidfd from ns1 to ns2
1733  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1734  *   have exactly one entry, which is 0
1735  */
1736 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1737 {
1738 	struct pid *pid = f->private_data;
1739 	struct pid_namespace *ns;
1740 	pid_t nr = -1;
1741 
1742 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1743 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1744 		nr = pid_nr_ns(pid, ns);
1745 	}
1746 
1747 	seq_put_decimal_ll(m, "Pid:\t", nr);
1748 
1749 #ifdef CONFIG_PID_NS
1750 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1751 	if (nr > 0) {
1752 		int i;
1753 
1754 		/* If nr is non-zero it means that 'pid' is valid and that
1755 		 * ns, i.e. the pid namespace associated with the procfs
1756 		 * instance, is in the pid namespace hierarchy of pid.
1757 		 * Start at one below the already printed level.
1758 		 */
1759 		for (i = ns->level + 1; i <= pid->level; i++)
1760 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1761 	}
1762 #endif
1763 	seq_putc(m, '\n');
1764 }
1765 #endif
1766 
1767 /*
1768  * Poll support for process exit notification.
1769  */
1770 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1771 {
1772 	struct pid *pid = file->private_data;
1773 	__poll_t poll_flags = 0;
1774 
1775 	poll_wait(file, &pid->wait_pidfd, pts);
1776 
1777 	/*
1778 	 * Inform pollers only when the whole thread group exits.
1779 	 * If the thread group leader exits before all other threads in the
1780 	 * group, then poll(2) should block, similar to the wait(2) family.
1781 	 */
1782 	if (thread_group_exited(pid))
1783 		poll_flags = EPOLLIN | EPOLLRDNORM;
1784 
1785 	return poll_flags;
1786 }
1787 
1788 const struct file_operations pidfd_fops = {
1789 	.release = pidfd_release,
1790 	.poll = pidfd_poll,
1791 #ifdef CONFIG_PROC_FS
1792 	.show_fdinfo = pidfd_show_fdinfo,
1793 #endif
1794 };
1795 
1796 static void __delayed_free_task(struct rcu_head *rhp)
1797 {
1798 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1799 
1800 	free_task(tsk);
1801 }
1802 
1803 static __always_inline void delayed_free_task(struct task_struct *tsk)
1804 {
1805 	if (IS_ENABLED(CONFIG_MEMCG))
1806 		call_rcu(&tsk->rcu, __delayed_free_task);
1807 	else
1808 		free_task(tsk);
1809 }
1810 
1811 /*
1812  * This creates a new process as a copy of the old one,
1813  * but does not actually start it yet.
1814  *
1815  * It copies the registers, and all the appropriate
1816  * parts of the process environment (as per the clone
1817  * flags). The actual kick-off is left to the caller.
1818  */
1819 static __latent_entropy struct task_struct *copy_process(
1820 					struct pid *pid,
1821 					int trace,
1822 					int node,
1823 					struct kernel_clone_args *args)
1824 {
1825 	int pidfd = -1, retval;
1826 	struct task_struct *p;
1827 	struct multiprocess_signals delayed;
1828 	struct file *pidfile = NULL;
1829 	u64 clone_flags = args->flags;
1830 	struct nsproxy *nsp = current->nsproxy;
1831 
1832 	/*
1833 	 * Don't allow sharing the root directory with processes in a different
1834 	 * namespace
1835 	 */
1836 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1837 		return ERR_PTR(-EINVAL);
1838 
1839 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1840 		return ERR_PTR(-EINVAL);
1841 
1842 	/*
1843 	 * Thread groups must share signals as well, and detached threads
1844 	 * can only be started up within the thread group.
1845 	 */
1846 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1847 		return ERR_PTR(-EINVAL);
1848 
1849 	/*
1850 	 * Shared signal handlers imply shared VM. By way of the above,
1851 	 * thread groups also imply shared VM. Blocking this case allows
1852 	 * for various simplifications in other code.
1853 	 */
1854 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1855 		return ERR_PTR(-EINVAL);
1856 
1857 	/*
1858 	 * Siblings of global init remain as zombies on exit since they are
1859 	 * not reaped by their parent (swapper). To solve this and to avoid
1860 	 * multi-rooted process trees, prevent global and container-inits
1861 	 * from creating siblings.
1862 	 */
1863 	if ((clone_flags & CLONE_PARENT) &&
1864 				current->signal->flags & SIGNAL_UNKILLABLE)
1865 		return ERR_PTR(-EINVAL);
1866 
1867 	/*
1868 	 * If the new process will be in a different pid or user namespace
1869 	 * do not allow it to share a thread group with the forking task.
1870 	 */
1871 	if (clone_flags & CLONE_THREAD) {
1872 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1873 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1874 			return ERR_PTR(-EINVAL);
1875 	}
1876 
1877 	/*
1878 	 * If the new process will be in a different time namespace
1879 	 * do not allow it to share VM or a thread group with the forking task.
1880 	 */
1881 	if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1882 		if (nsp->time_ns != nsp->time_ns_for_children)
1883 			return ERR_PTR(-EINVAL);
1884 	}
1885 
1886 	if (clone_flags & CLONE_PIDFD) {
1887 		/*
1888 		 * - CLONE_DETACHED is blocked so that we can potentially
1889 		 *   reuse it later for CLONE_PIDFD.
1890 		 * - CLONE_THREAD is blocked until someone really needs it.
1891 		 */
1892 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1893 			return ERR_PTR(-EINVAL);
1894 	}
1895 
1896 	/*
1897 	 * Force any signals received before this point to be delivered
1898 	 * before the fork happens.  Collect up signals sent to multiple
1899 	 * processes that happen during the fork and delay them so that
1900 	 * they appear to happen after the fork.
1901 	 */
1902 	sigemptyset(&delayed.signal);
1903 	INIT_HLIST_NODE(&delayed.node);
1904 
1905 	spin_lock_irq(&current->sighand->siglock);
1906 	if (!(clone_flags & CLONE_THREAD))
1907 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1908 	recalc_sigpending();
1909 	spin_unlock_irq(&current->sighand->siglock);
1910 	retval = -ERESTARTNOINTR;
1911 	if (signal_pending(current))
1912 		goto fork_out;
1913 
1914 	retval = -ENOMEM;
1915 	p = dup_task_struct(current, node);
1916 	if (!p)
1917 		goto fork_out;
1918 
1919 	/*
1920 	 * This _must_ happen before we call free_task(), i.e. before we jump
1921 	 * to any of the bad_fork_* labels. This is to avoid freeing
1922 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1923 	 * kernel threads (PF_KTHREAD).
1924 	 */
1925 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1926 	/*
1927 	 * Clear TID on mm_release()?
1928 	 */
1929 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1930 
1931 	ftrace_graph_init_task(p);
1932 
1933 	rt_mutex_init_task(p);
1934 
1935 	lockdep_assert_irqs_enabled();
1936 #ifdef CONFIG_PROVE_LOCKING
1937 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1938 #endif
1939 	retval = -EAGAIN;
1940 	if (atomic_read(&p->real_cred->user->processes) >=
1941 			task_rlimit(p, RLIMIT_NPROC)) {
1942 		if (p->real_cred->user != INIT_USER &&
1943 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1944 			goto bad_fork_free;
1945 	}
1946 	current->flags &= ~PF_NPROC_EXCEEDED;
1947 
1948 	retval = copy_creds(p, clone_flags);
1949 	if (retval < 0)
1950 		goto bad_fork_free;
1951 
1952 	/*
1953 	 * If multiple threads are within copy_process(), then this check
1954 	 * triggers too late. This doesn't hurt, the check is only there
1955 	 * to stop root fork bombs.
1956 	 */
1957 	retval = -EAGAIN;
1958 	if (data_race(nr_threads >= max_threads))
1959 		goto bad_fork_cleanup_count;
1960 
1961 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1962 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1963 	p->flags |= PF_FORKNOEXEC;
1964 	INIT_LIST_HEAD(&p->children);
1965 	INIT_LIST_HEAD(&p->sibling);
1966 	rcu_copy_process(p);
1967 	p->vfork_done = NULL;
1968 	spin_lock_init(&p->alloc_lock);
1969 
1970 	init_sigpending(&p->pending);
1971 
1972 	p->utime = p->stime = p->gtime = 0;
1973 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1974 	p->utimescaled = p->stimescaled = 0;
1975 #endif
1976 	prev_cputime_init(&p->prev_cputime);
1977 
1978 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1979 	seqcount_init(&p->vtime.seqcount);
1980 	p->vtime.starttime = 0;
1981 	p->vtime.state = VTIME_INACTIVE;
1982 #endif
1983 
1984 #if defined(SPLIT_RSS_COUNTING)
1985 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1986 #endif
1987 
1988 	p->default_timer_slack_ns = current->timer_slack_ns;
1989 
1990 #ifdef CONFIG_PSI
1991 	p->psi_flags = 0;
1992 #endif
1993 
1994 	task_io_accounting_init(&p->ioac);
1995 	acct_clear_integrals(p);
1996 
1997 	posix_cputimers_init(&p->posix_cputimers);
1998 
1999 	p->io_context = NULL;
2000 	audit_set_context(p, NULL);
2001 	cgroup_fork(p);
2002 #ifdef CONFIG_NUMA
2003 	p->mempolicy = mpol_dup(p->mempolicy);
2004 	if (IS_ERR(p->mempolicy)) {
2005 		retval = PTR_ERR(p->mempolicy);
2006 		p->mempolicy = NULL;
2007 		goto bad_fork_cleanup_threadgroup_lock;
2008 	}
2009 #endif
2010 #ifdef CONFIG_CPUSETS
2011 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2012 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2013 	seqcount_init(&p->mems_allowed_seq);
2014 #endif
2015 #ifdef CONFIG_TRACE_IRQFLAGS
2016 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2017 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2018 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2019 	p->softirqs_enabled		= 1;
2020 	p->softirq_context		= 0;
2021 #endif
2022 
2023 	p->pagefault_disabled = 0;
2024 
2025 #ifdef CONFIG_LOCKDEP
2026 	lockdep_init_task(p);
2027 #endif
2028 
2029 #ifdef CONFIG_DEBUG_MUTEXES
2030 	p->blocked_on = NULL; /* not blocked yet */
2031 #endif
2032 #ifdef CONFIG_BCACHE
2033 	p->sequential_io	= 0;
2034 	p->sequential_io_avg	= 0;
2035 #endif
2036 
2037 	/* Perform scheduler related setup. Assign this task to a CPU. */
2038 	retval = sched_fork(clone_flags, p);
2039 	if (retval)
2040 		goto bad_fork_cleanup_policy;
2041 
2042 	retval = perf_event_init_task(p);
2043 	if (retval)
2044 		goto bad_fork_cleanup_policy;
2045 	retval = audit_alloc(p);
2046 	if (retval)
2047 		goto bad_fork_cleanup_perf;
2048 	/* copy all the process information */
2049 	shm_init_task(p);
2050 	retval = security_task_alloc(p, clone_flags);
2051 	if (retval)
2052 		goto bad_fork_cleanup_audit;
2053 	retval = copy_semundo(clone_flags, p);
2054 	if (retval)
2055 		goto bad_fork_cleanup_security;
2056 	retval = copy_files(clone_flags, p);
2057 	if (retval)
2058 		goto bad_fork_cleanup_semundo;
2059 	retval = copy_fs(clone_flags, p);
2060 	if (retval)
2061 		goto bad_fork_cleanup_files;
2062 	retval = copy_sighand(clone_flags, p);
2063 	if (retval)
2064 		goto bad_fork_cleanup_fs;
2065 	retval = copy_signal(clone_flags, p);
2066 	if (retval)
2067 		goto bad_fork_cleanup_sighand;
2068 	retval = copy_mm(clone_flags, p);
2069 	if (retval)
2070 		goto bad_fork_cleanup_signal;
2071 	retval = copy_namespaces(clone_flags, p);
2072 	if (retval)
2073 		goto bad_fork_cleanup_mm;
2074 	retval = copy_io(clone_flags, p);
2075 	if (retval)
2076 		goto bad_fork_cleanup_namespaces;
2077 	retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2078 	if (retval)
2079 		goto bad_fork_cleanup_io;
2080 
2081 	stackleak_task_init(p);
2082 
2083 	if (pid != &init_struct_pid) {
2084 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2085 				args->set_tid_size);
2086 		if (IS_ERR(pid)) {
2087 			retval = PTR_ERR(pid);
2088 			goto bad_fork_cleanup_thread;
2089 		}
2090 	}
2091 
2092 	/*
2093 	 * This has to happen after we've potentially unshared the file
2094 	 * descriptor table (so that the pidfd doesn't leak into the child
2095 	 * if the fd table isn't shared).
2096 	 */
2097 	if (clone_flags & CLONE_PIDFD) {
2098 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2099 		if (retval < 0)
2100 			goto bad_fork_free_pid;
2101 
2102 		pidfd = retval;
2103 
2104 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2105 					      O_RDWR | O_CLOEXEC);
2106 		if (IS_ERR(pidfile)) {
2107 			put_unused_fd(pidfd);
2108 			retval = PTR_ERR(pidfile);
2109 			goto bad_fork_free_pid;
2110 		}
2111 		get_pid(pid);	/* held by pidfile now */
2112 
2113 		retval = put_user(pidfd, args->pidfd);
2114 		if (retval)
2115 			goto bad_fork_put_pidfd;
2116 	}
2117 
2118 #ifdef CONFIG_BLOCK
2119 	p->plug = NULL;
2120 #endif
2121 	futex_init_task(p);
2122 
2123 	/*
2124 	 * sigaltstack should be cleared when sharing the same VM
2125 	 */
2126 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2127 		sas_ss_reset(p);
2128 
2129 	/*
2130 	 * Syscall tracing and stepping should be turned off in the
2131 	 * child regardless of CLONE_PTRACE.
2132 	 */
2133 	user_disable_single_step(p);
2134 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2135 #ifdef TIF_SYSCALL_EMU
2136 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2137 #endif
2138 	clear_tsk_latency_tracing(p);
2139 
2140 	/* ok, now we should be set up.. */
2141 	p->pid = pid_nr(pid);
2142 	if (clone_flags & CLONE_THREAD) {
2143 		p->exit_signal = -1;
2144 		p->group_leader = current->group_leader;
2145 		p->tgid = current->tgid;
2146 	} else {
2147 		if (clone_flags & CLONE_PARENT)
2148 			p->exit_signal = current->group_leader->exit_signal;
2149 		else
2150 			p->exit_signal = args->exit_signal;
2151 		p->group_leader = p;
2152 		p->tgid = p->pid;
2153 	}
2154 
2155 	p->nr_dirtied = 0;
2156 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2157 	p->dirty_paused_when = 0;
2158 
2159 	p->pdeath_signal = 0;
2160 	INIT_LIST_HEAD(&p->thread_group);
2161 	p->task_works = NULL;
2162 
2163 	/*
2164 	 * Ensure that the cgroup subsystem policies allow the new process to be
2165 	 * forked. It should be noted the the new process's css_set can be changed
2166 	 * between here and cgroup_post_fork() if an organisation operation is in
2167 	 * progress.
2168 	 */
2169 	retval = cgroup_can_fork(p, args);
2170 	if (retval)
2171 		goto bad_fork_put_pidfd;
2172 
2173 	/*
2174 	 * From this point on we must avoid any synchronous user-space
2175 	 * communication until we take the tasklist-lock. In particular, we do
2176 	 * not want user-space to be able to predict the process start-time by
2177 	 * stalling fork(2) after we recorded the start_time but before it is
2178 	 * visible to the system.
2179 	 */
2180 
2181 	p->start_time = ktime_get_ns();
2182 	p->start_boottime = ktime_get_boottime_ns();
2183 
2184 	/*
2185 	 * Make it visible to the rest of the system, but dont wake it up yet.
2186 	 * Need tasklist lock for parent etc handling!
2187 	 */
2188 	write_lock_irq(&tasklist_lock);
2189 
2190 	/* CLONE_PARENT re-uses the old parent */
2191 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2192 		p->real_parent = current->real_parent;
2193 		p->parent_exec_id = current->parent_exec_id;
2194 	} else {
2195 		p->real_parent = current;
2196 		p->parent_exec_id = current->self_exec_id;
2197 	}
2198 
2199 	klp_copy_process(p);
2200 
2201 	spin_lock(&current->sighand->siglock);
2202 
2203 	/*
2204 	 * Copy seccomp details explicitly here, in case they were changed
2205 	 * before holding sighand lock.
2206 	 */
2207 	copy_seccomp(p);
2208 
2209 	rseq_fork(p, clone_flags);
2210 
2211 	/* Don't start children in a dying pid namespace */
2212 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2213 		retval = -ENOMEM;
2214 		goto bad_fork_cancel_cgroup;
2215 	}
2216 
2217 	/* Let kill terminate clone/fork in the middle */
2218 	if (fatal_signal_pending(current)) {
2219 		retval = -EINTR;
2220 		goto bad_fork_cancel_cgroup;
2221 	}
2222 
2223 	/* past the last point of failure */
2224 	if (pidfile)
2225 		fd_install(pidfd, pidfile);
2226 
2227 	init_task_pid_links(p);
2228 	if (likely(p->pid)) {
2229 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2230 
2231 		init_task_pid(p, PIDTYPE_PID, pid);
2232 		if (thread_group_leader(p)) {
2233 			init_task_pid(p, PIDTYPE_TGID, pid);
2234 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2235 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2236 
2237 			if (is_child_reaper(pid)) {
2238 				ns_of_pid(pid)->child_reaper = p;
2239 				p->signal->flags |= SIGNAL_UNKILLABLE;
2240 			}
2241 			p->signal->shared_pending.signal = delayed.signal;
2242 			p->signal->tty = tty_kref_get(current->signal->tty);
2243 			/*
2244 			 * Inherit has_child_subreaper flag under the same
2245 			 * tasklist_lock with adding child to the process tree
2246 			 * for propagate_has_child_subreaper optimization.
2247 			 */
2248 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2249 							 p->real_parent->signal->is_child_subreaper;
2250 			list_add_tail(&p->sibling, &p->real_parent->children);
2251 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2252 			attach_pid(p, PIDTYPE_TGID);
2253 			attach_pid(p, PIDTYPE_PGID);
2254 			attach_pid(p, PIDTYPE_SID);
2255 			__this_cpu_inc(process_counts);
2256 		} else {
2257 			current->signal->nr_threads++;
2258 			atomic_inc(&current->signal->live);
2259 			refcount_inc(&current->signal->sigcnt);
2260 			task_join_group_stop(p);
2261 			list_add_tail_rcu(&p->thread_group,
2262 					  &p->group_leader->thread_group);
2263 			list_add_tail_rcu(&p->thread_node,
2264 					  &p->signal->thread_head);
2265 		}
2266 		attach_pid(p, PIDTYPE_PID);
2267 		nr_threads++;
2268 	}
2269 	total_forks++;
2270 	hlist_del_init(&delayed.node);
2271 	spin_unlock(&current->sighand->siglock);
2272 	syscall_tracepoint_update(p);
2273 	write_unlock_irq(&tasklist_lock);
2274 
2275 	proc_fork_connector(p);
2276 	sched_post_fork(p);
2277 	cgroup_post_fork(p, args);
2278 	perf_event_fork(p);
2279 
2280 	trace_task_newtask(p, clone_flags);
2281 	uprobe_copy_process(p, clone_flags);
2282 
2283 	return p;
2284 
2285 bad_fork_cancel_cgroup:
2286 	spin_unlock(&current->sighand->siglock);
2287 	write_unlock_irq(&tasklist_lock);
2288 	cgroup_cancel_fork(p, args);
2289 bad_fork_put_pidfd:
2290 	if (clone_flags & CLONE_PIDFD) {
2291 		fput(pidfile);
2292 		put_unused_fd(pidfd);
2293 	}
2294 bad_fork_free_pid:
2295 	if (pid != &init_struct_pid)
2296 		free_pid(pid);
2297 bad_fork_cleanup_thread:
2298 	exit_thread(p);
2299 bad_fork_cleanup_io:
2300 	if (p->io_context)
2301 		exit_io_context(p);
2302 bad_fork_cleanup_namespaces:
2303 	exit_task_namespaces(p);
2304 bad_fork_cleanup_mm:
2305 	if (p->mm) {
2306 		mm_clear_owner(p->mm, p);
2307 		mmput(p->mm);
2308 	}
2309 bad_fork_cleanup_signal:
2310 	if (!(clone_flags & CLONE_THREAD))
2311 		free_signal_struct(p->signal);
2312 bad_fork_cleanup_sighand:
2313 	__cleanup_sighand(p->sighand);
2314 bad_fork_cleanup_fs:
2315 	exit_fs(p); /* blocking */
2316 bad_fork_cleanup_files:
2317 	exit_files(p); /* blocking */
2318 bad_fork_cleanup_semundo:
2319 	exit_sem(p);
2320 bad_fork_cleanup_security:
2321 	security_task_free(p);
2322 bad_fork_cleanup_audit:
2323 	audit_free(p);
2324 bad_fork_cleanup_perf:
2325 	perf_event_free_task(p);
2326 bad_fork_cleanup_policy:
2327 	lockdep_free_task(p);
2328 #ifdef CONFIG_NUMA
2329 	mpol_put(p->mempolicy);
2330 bad_fork_cleanup_threadgroup_lock:
2331 #endif
2332 	delayacct_tsk_free(p);
2333 bad_fork_cleanup_count:
2334 	atomic_dec(&p->cred->user->processes);
2335 	exit_creds(p);
2336 bad_fork_free:
2337 	p->state = TASK_DEAD;
2338 	put_task_stack(p);
2339 	delayed_free_task(p);
2340 fork_out:
2341 	spin_lock_irq(&current->sighand->siglock);
2342 	hlist_del_init(&delayed.node);
2343 	spin_unlock_irq(&current->sighand->siglock);
2344 	return ERR_PTR(retval);
2345 }
2346 
2347 static inline void init_idle_pids(struct task_struct *idle)
2348 {
2349 	enum pid_type type;
2350 
2351 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2352 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2353 		init_task_pid(idle, type, &init_struct_pid);
2354 	}
2355 }
2356 
2357 struct task_struct *fork_idle(int cpu)
2358 {
2359 	struct task_struct *task;
2360 	struct kernel_clone_args args = {
2361 		.flags = CLONE_VM,
2362 	};
2363 
2364 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2365 	if (!IS_ERR(task)) {
2366 		init_idle_pids(task);
2367 		init_idle(task, cpu);
2368 	}
2369 
2370 	return task;
2371 }
2372 
2373 struct mm_struct *copy_init_mm(void)
2374 {
2375 	return dup_mm(NULL, &init_mm);
2376 }
2377 
2378 /*
2379  *  Ok, this is the main fork-routine.
2380  *
2381  * It copies the process, and if successful kick-starts
2382  * it and waits for it to finish using the VM if required.
2383  *
2384  * args->exit_signal is expected to be checked for sanity by the caller.
2385  */
2386 long _do_fork(struct kernel_clone_args *args)
2387 {
2388 	u64 clone_flags = args->flags;
2389 	struct completion vfork;
2390 	struct pid *pid;
2391 	struct task_struct *p;
2392 	int trace = 0;
2393 	long nr;
2394 
2395 	/*
2396 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2397 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2398 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2399 	 * field in struct clone_args and it still doesn't make sense to have
2400 	 * them both point at the same memory location. Performing this check
2401 	 * here has the advantage that we don't need to have a separate helper
2402 	 * to check for legacy clone().
2403 	 */
2404 	if ((args->flags & CLONE_PIDFD) &&
2405 	    (args->flags & CLONE_PARENT_SETTID) &&
2406 	    (args->pidfd == args->parent_tid))
2407 		return -EINVAL;
2408 
2409 	/*
2410 	 * Determine whether and which event to report to ptracer.  When
2411 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2412 	 * requested, no event is reported; otherwise, report if the event
2413 	 * for the type of forking is enabled.
2414 	 */
2415 	if (!(clone_flags & CLONE_UNTRACED)) {
2416 		if (clone_flags & CLONE_VFORK)
2417 			trace = PTRACE_EVENT_VFORK;
2418 		else if (args->exit_signal != SIGCHLD)
2419 			trace = PTRACE_EVENT_CLONE;
2420 		else
2421 			trace = PTRACE_EVENT_FORK;
2422 
2423 		if (likely(!ptrace_event_enabled(current, trace)))
2424 			trace = 0;
2425 	}
2426 
2427 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2428 	add_latent_entropy();
2429 
2430 	if (IS_ERR(p))
2431 		return PTR_ERR(p);
2432 
2433 	/*
2434 	 * Do this prior waking up the new thread - the thread pointer
2435 	 * might get invalid after that point, if the thread exits quickly.
2436 	 */
2437 	trace_sched_process_fork(current, p);
2438 
2439 	pid = get_task_pid(p, PIDTYPE_PID);
2440 	nr = pid_vnr(pid);
2441 
2442 	if (clone_flags & CLONE_PARENT_SETTID)
2443 		put_user(nr, args->parent_tid);
2444 
2445 	if (clone_flags & CLONE_VFORK) {
2446 		p->vfork_done = &vfork;
2447 		init_completion(&vfork);
2448 		get_task_struct(p);
2449 	}
2450 
2451 	wake_up_new_task(p);
2452 
2453 	/* forking complete and child started to run, tell ptracer */
2454 	if (unlikely(trace))
2455 		ptrace_event_pid(trace, pid);
2456 
2457 	if (clone_flags & CLONE_VFORK) {
2458 		if (!wait_for_vfork_done(p, &vfork))
2459 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2460 	}
2461 
2462 	put_pid(pid);
2463 	return nr;
2464 }
2465 
2466 /*
2467  * Create a kernel thread.
2468  */
2469 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2470 {
2471 	struct kernel_clone_args args = {
2472 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2473 				    CLONE_UNTRACED) & ~CSIGNAL),
2474 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2475 		.stack		= (unsigned long)fn,
2476 		.stack_size	= (unsigned long)arg,
2477 	};
2478 
2479 	return _do_fork(&args);
2480 }
2481 
2482 #ifdef __ARCH_WANT_SYS_FORK
2483 SYSCALL_DEFINE0(fork)
2484 {
2485 #ifdef CONFIG_MMU
2486 	struct kernel_clone_args args = {
2487 		.exit_signal = SIGCHLD,
2488 	};
2489 
2490 	return _do_fork(&args);
2491 #else
2492 	/* can not support in nommu mode */
2493 	return -EINVAL;
2494 #endif
2495 }
2496 #endif
2497 
2498 #ifdef __ARCH_WANT_SYS_VFORK
2499 SYSCALL_DEFINE0(vfork)
2500 {
2501 	struct kernel_clone_args args = {
2502 		.flags		= CLONE_VFORK | CLONE_VM,
2503 		.exit_signal	= SIGCHLD,
2504 	};
2505 
2506 	return _do_fork(&args);
2507 }
2508 #endif
2509 
2510 #ifdef __ARCH_WANT_SYS_CLONE
2511 #ifdef CONFIG_CLONE_BACKWARDS
2512 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2513 		 int __user *, parent_tidptr,
2514 		 unsigned long, tls,
2515 		 int __user *, child_tidptr)
2516 #elif defined(CONFIG_CLONE_BACKWARDS2)
2517 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2518 		 int __user *, parent_tidptr,
2519 		 int __user *, child_tidptr,
2520 		 unsigned long, tls)
2521 #elif defined(CONFIG_CLONE_BACKWARDS3)
2522 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2523 		int, stack_size,
2524 		int __user *, parent_tidptr,
2525 		int __user *, child_tidptr,
2526 		unsigned long, tls)
2527 #else
2528 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2529 		 int __user *, parent_tidptr,
2530 		 int __user *, child_tidptr,
2531 		 unsigned long, tls)
2532 #endif
2533 {
2534 	struct kernel_clone_args args = {
2535 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2536 		.pidfd		= parent_tidptr,
2537 		.child_tid	= child_tidptr,
2538 		.parent_tid	= parent_tidptr,
2539 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2540 		.stack		= newsp,
2541 		.tls		= tls,
2542 	};
2543 
2544 	return _do_fork(&args);
2545 }
2546 #endif
2547 
2548 #ifdef __ARCH_WANT_SYS_CLONE3
2549 
2550 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2551 					      struct clone_args __user *uargs,
2552 					      size_t usize)
2553 {
2554 	int err;
2555 	struct clone_args args;
2556 	pid_t *kset_tid = kargs->set_tid;
2557 
2558 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2559 		     CLONE_ARGS_SIZE_VER0);
2560 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2561 		     CLONE_ARGS_SIZE_VER1);
2562 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2563 		     CLONE_ARGS_SIZE_VER2);
2564 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2565 
2566 	if (unlikely(usize > PAGE_SIZE))
2567 		return -E2BIG;
2568 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2569 		return -EINVAL;
2570 
2571 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2572 	if (err)
2573 		return err;
2574 
2575 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2576 		return -EINVAL;
2577 
2578 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2579 		return -EINVAL;
2580 
2581 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2582 		return -EINVAL;
2583 
2584 	/*
2585 	 * Verify that higher 32bits of exit_signal are unset and that
2586 	 * it is a valid signal
2587 	 */
2588 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2589 		     !valid_signal(args.exit_signal)))
2590 		return -EINVAL;
2591 
2592 	if ((args.flags & CLONE_INTO_CGROUP) &&
2593 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2594 		return -EINVAL;
2595 
2596 	*kargs = (struct kernel_clone_args){
2597 		.flags		= args.flags,
2598 		.pidfd		= u64_to_user_ptr(args.pidfd),
2599 		.child_tid	= u64_to_user_ptr(args.child_tid),
2600 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2601 		.exit_signal	= args.exit_signal,
2602 		.stack		= args.stack,
2603 		.stack_size	= args.stack_size,
2604 		.tls		= args.tls,
2605 		.set_tid_size	= args.set_tid_size,
2606 		.cgroup		= args.cgroup,
2607 	};
2608 
2609 	if (args.set_tid &&
2610 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2611 			(kargs->set_tid_size * sizeof(pid_t))))
2612 		return -EFAULT;
2613 
2614 	kargs->set_tid = kset_tid;
2615 
2616 	return 0;
2617 }
2618 
2619 /**
2620  * clone3_stack_valid - check and prepare stack
2621  * @kargs: kernel clone args
2622  *
2623  * Verify that the stack arguments userspace gave us are sane.
2624  * In addition, set the stack direction for userspace since it's easy for us to
2625  * determine.
2626  */
2627 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2628 {
2629 	if (kargs->stack == 0) {
2630 		if (kargs->stack_size > 0)
2631 			return false;
2632 	} else {
2633 		if (kargs->stack_size == 0)
2634 			return false;
2635 
2636 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2637 			return false;
2638 
2639 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2640 		kargs->stack += kargs->stack_size;
2641 #endif
2642 	}
2643 
2644 	return true;
2645 }
2646 
2647 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2648 {
2649 	/* Verify that no unknown flags are passed along. */
2650 	if (kargs->flags &
2651 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2652 		return false;
2653 
2654 	/*
2655 	 * - make the CLONE_DETACHED bit reuseable for clone3
2656 	 * - make the CSIGNAL bits reuseable for clone3
2657 	 */
2658 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2659 		return false;
2660 
2661 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2662 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2663 		return false;
2664 
2665 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2666 	    kargs->exit_signal)
2667 		return false;
2668 
2669 	if (!clone3_stack_valid(kargs))
2670 		return false;
2671 
2672 	return true;
2673 }
2674 
2675 /**
2676  * clone3 - create a new process with specific properties
2677  * @uargs: argument structure
2678  * @size:  size of @uargs
2679  *
2680  * clone3() is the extensible successor to clone()/clone2().
2681  * It takes a struct as argument that is versioned by its size.
2682  *
2683  * Return: On success, a positive PID for the child process.
2684  *         On error, a negative errno number.
2685  */
2686 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2687 {
2688 	int err;
2689 
2690 	struct kernel_clone_args kargs;
2691 	pid_t set_tid[MAX_PID_NS_LEVEL];
2692 
2693 	kargs.set_tid = set_tid;
2694 
2695 	err = copy_clone_args_from_user(&kargs, uargs, size);
2696 	if (err)
2697 		return err;
2698 
2699 	if (!clone3_args_valid(&kargs))
2700 		return -EINVAL;
2701 
2702 	return _do_fork(&kargs);
2703 }
2704 #endif
2705 
2706 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2707 {
2708 	struct task_struct *leader, *parent, *child;
2709 	int res;
2710 
2711 	read_lock(&tasklist_lock);
2712 	leader = top = top->group_leader;
2713 down:
2714 	for_each_thread(leader, parent) {
2715 		list_for_each_entry(child, &parent->children, sibling) {
2716 			res = visitor(child, data);
2717 			if (res) {
2718 				if (res < 0)
2719 					goto out;
2720 				leader = child;
2721 				goto down;
2722 			}
2723 up:
2724 			;
2725 		}
2726 	}
2727 
2728 	if (leader != top) {
2729 		child = leader;
2730 		parent = child->real_parent;
2731 		leader = parent->group_leader;
2732 		goto up;
2733 	}
2734 out:
2735 	read_unlock(&tasklist_lock);
2736 }
2737 
2738 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2739 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2740 #endif
2741 
2742 static void sighand_ctor(void *data)
2743 {
2744 	struct sighand_struct *sighand = data;
2745 
2746 	spin_lock_init(&sighand->siglock);
2747 	init_waitqueue_head(&sighand->signalfd_wqh);
2748 }
2749 
2750 void __init proc_caches_init(void)
2751 {
2752 	unsigned int mm_size;
2753 
2754 	sighand_cachep = kmem_cache_create("sighand_cache",
2755 			sizeof(struct sighand_struct), 0,
2756 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2757 			SLAB_ACCOUNT, sighand_ctor);
2758 	signal_cachep = kmem_cache_create("signal_cache",
2759 			sizeof(struct signal_struct), 0,
2760 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2761 			NULL);
2762 	files_cachep = kmem_cache_create("files_cache",
2763 			sizeof(struct files_struct), 0,
2764 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2765 			NULL);
2766 	fs_cachep = kmem_cache_create("fs_cache",
2767 			sizeof(struct fs_struct), 0,
2768 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2769 			NULL);
2770 
2771 	/*
2772 	 * The mm_cpumask is located at the end of mm_struct, and is
2773 	 * dynamically sized based on the maximum CPU number this system
2774 	 * can have, taking hotplug into account (nr_cpu_ids).
2775 	 */
2776 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2777 
2778 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2779 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2780 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2781 			offsetof(struct mm_struct, saved_auxv),
2782 			sizeof_field(struct mm_struct, saved_auxv),
2783 			NULL);
2784 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2785 	mmap_init();
2786 	nsproxy_cache_init();
2787 }
2788 
2789 /*
2790  * Check constraints on flags passed to the unshare system call.
2791  */
2792 static int check_unshare_flags(unsigned long unshare_flags)
2793 {
2794 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2795 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2796 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2797 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2798 				CLONE_NEWTIME))
2799 		return -EINVAL;
2800 	/*
2801 	 * Not implemented, but pretend it works if there is nothing
2802 	 * to unshare.  Note that unsharing the address space or the
2803 	 * signal handlers also need to unshare the signal queues (aka
2804 	 * CLONE_THREAD).
2805 	 */
2806 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2807 		if (!thread_group_empty(current))
2808 			return -EINVAL;
2809 	}
2810 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2811 		if (refcount_read(&current->sighand->count) > 1)
2812 			return -EINVAL;
2813 	}
2814 	if (unshare_flags & CLONE_VM) {
2815 		if (!current_is_single_threaded())
2816 			return -EINVAL;
2817 	}
2818 
2819 	return 0;
2820 }
2821 
2822 /*
2823  * Unshare the filesystem structure if it is being shared
2824  */
2825 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2826 {
2827 	struct fs_struct *fs = current->fs;
2828 
2829 	if (!(unshare_flags & CLONE_FS) || !fs)
2830 		return 0;
2831 
2832 	/* don't need lock here; in the worst case we'll do useless copy */
2833 	if (fs->users == 1)
2834 		return 0;
2835 
2836 	*new_fsp = copy_fs_struct(fs);
2837 	if (!*new_fsp)
2838 		return -ENOMEM;
2839 
2840 	return 0;
2841 }
2842 
2843 /*
2844  * Unshare file descriptor table if it is being shared
2845  */
2846 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2847 	       struct files_struct **new_fdp)
2848 {
2849 	struct files_struct *fd = current->files;
2850 	int error = 0;
2851 
2852 	if ((unshare_flags & CLONE_FILES) &&
2853 	    (fd && atomic_read(&fd->count) > 1)) {
2854 		*new_fdp = dup_fd(fd, max_fds, &error);
2855 		if (!*new_fdp)
2856 			return error;
2857 	}
2858 
2859 	return 0;
2860 }
2861 
2862 /*
2863  * unshare allows a process to 'unshare' part of the process
2864  * context which was originally shared using clone.  copy_*
2865  * functions used by _do_fork() cannot be used here directly
2866  * because they modify an inactive task_struct that is being
2867  * constructed. Here we are modifying the current, active,
2868  * task_struct.
2869  */
2870 int ksys_unshare(unsigned long unshare_flags)
2871 {
2872 	struct fs_struct *fs, *new_fs = NULL;
2873 	struct files_struct *fd, *new_fd = NULL;
2874 	struct cred *new_cred = NULL;
2875 	struct nsproxy *new_nsproxy = NULL;
2876 	int do_sysvsem = 0;
2877 	int err;
2878 
2879 	/*
2880 	 * If unsharing a user namespace must also unshare the thread group
2881 	 * and unshare the filesystem root and working directories.
2882 	 */
2883 	if (unshare_flags & CLONE_NEWUSER)
2884 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2885 	/*
2886 	 * If unsharing vm, must also unshare signal handlers.
2887 	 */
2888 	if (unshare_flags & CLONE_VM)
2889 		unshare_flags |= CLONE_SIGHAND;
2890 	/*
2891 	 * If unsharing a signal handlers, must also unshare the signal queues.
2892 	 */
2893 	if (unshare_flags & CLONE_SIGHAND)
2894 		unshare_flags |= CLONE_THREAD;
2895 	/*
2896 	 * If unsharing namespace, must also unshare filesystem information.
2897 	 */
2898 	if (unshare_flags & CLONE_NEWNS)
2899 		unshare_flags |= CLONE_FS;
2900 
2901 	err = check_unshare_flags(unshare_flags);
2902 	if (err)
2903 		goto bad_unshare_out;
2904 	/*
2905 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2906 	 * to a new ipc namespace, the semaphore arrays from the old
2907 	 * namespace are unreachable.
2908 	 */
2909 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2910 		do_sysvsem = 1;
2911 	err = unshare_fs(unshare_flags, &new_fs);
2912 	if (err)
2913 		goto bad_unshare_out;
2914 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
2915 	if (err)
2916 		goto bad_unshare_cleanup_fs;
2917 	err = unshare_userns(unshare_flags, &new_cred);
2918 	if (err)
2919 		goto bad_unshare_cleanup_fd;
2920 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2921 					 new_cred, new_fs);
2922 	if (err)
2923 		goto bad_unshare_cleanup_cred;
2924 
2925 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2926 		if (do_sysvsem) {
2927 			/*
2928 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2929 			 */
2930 			exit_sem(current);
2931 		}
2932 		if (unshare_flags & CLONE_NEWIPC) {
2933 			/* Orphan segments in old ns (see sem above). */
2934 			exit_shm(current);
2935 			shm_init_task(current);
2936 		}
2937 
2938 		if (new_nsproxy)
2939 			switch_task_namespaces(current, new_nsproxy);
2940 
2941 		task_lock(current);
2942 
2943 		if (new_fs) {
2944 			fs = current->fs;
2945 			spin_lock(&fs->lock);
2946 			current->fs = new_fs;
2947 			if (--fs->users)
2948 				new_fs = NULL;
2949 			else
2950 				new_fs = fs;
2951 			spin_unlock(&fs->lock);
2952 		}
2953 
2954 		if (new_fd) {
2955 			fd = current->files;
2956 			current->files = new_fd;
2957 			new_fd = fd;
2958 		}
2959 
2960 		task_unlock(current);
2961 
2962 		if (new_cred) {
2963 			/* Install the new user namespace */
2964 			commit_creds(new_cred);
2965 			new_cred = NULL;
2966 		}
2967 	}
2968 
2969 	perf_event_namespaces(current);
2970 
2971 bad_unshare_cleanup_cred:
2972 	if (new_cred)
2973 		put_cred(new_cred);
2974 bad_unshare_cleanup_fd:
2975 	if (new_fd)
2976 		put_files_struct(new_fd);
2977 
2978 bad_unshare_cleanup_fs:
2979 	if (new_fs)
2980 		free_fs_struct(new_fs);
2981 
2982 bad_unshare_out:
2983 	return err;
2984 }
2985 
2986 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2987 {
2988 	return ksys_unshare(unshare_flags);
2989 }
2990 
2991 /*
2992  *	Helper to unshare the files of the current task.
2993  *	We don't want to expose copy_files internals to
2994  *	the exec layer of the kernel.
2995  */
2996 
2997 int unshare_files(struct files_struct **displaced)
2998 {
2999 	struct task_struct *task = current;
3000 	struct files_struct *copy = NULL;
3001 	int error;
3002 
3003 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3004 	if (error || !copy) {
3005 		*displaced = NULL;
3006 		return error;
3007 	}
3008 	*displaced = task->files;
3009 	task_lock(task);
3010 	task->files = copy;
3011 	task_unlock(task);
3012 	return 0;
3013 }
3014 
3015 int sysctl_max_threads(struct ctl_table *table, int write,
3016 		       void __user *buffer, size_t *lenp, loff_t *ppos)
3017 {
3018 	struct ctl_table t;
3019 	int ret;
3020 	int threads = max_threads;
3021 	int min = 1;
3022 	int max = MAX_THREADS;
3023 
3024 	t = *table;
3025 	t.data = &threads;
3026 	t.extra1 = &min;
3027 	t.extra2 = &max;
3028 
3029 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3030 	if (ret || !write)
3031 		return ret;
3032 
3033 	max_threads = threads;
3034 
3035 	return 0;
3036 }
3037