xref: /linux/kernel/fork.c (revision 79b6bb73f888933cbcd20b0ef3976cde67951b72)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104 
105 #include <trace/events/sched.h>
106 
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109 
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114 
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119 
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;	/* Handle normal Linux uptimes. */
124 int nr_threads;			/* The idle threads do not count.. */
125 
126 static int max_threads;		/* tunable limit on nr_threads */
127 
128 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
129 
130 static const char * const resident_page_types[] = {
131 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136 
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138 
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
140 
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 	return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148 
149 int nr_processes(void)
150 {
151 	int cpu;
152 	int total = 0;
153 
154 	for_each_possible_cpu(cpu)
155 		total += per_cpu(process_counts, cpu);
156 
157 	return total;
158 }
159 
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163 
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166 
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171 
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 	kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177 
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179 
180 /*
181  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182  * kmemcache based allocator.
183  */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185 
186 #ifdef CONFIG_VMAP_STACK
187 /*
188  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189  * flush.  Try to minimize the number of calls by caching stacks.
190  */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193 
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 	int i;
198 
199 	for (i = 0; i < NR_CACHED_STACKS; i++) {
200 		struct vm_struct *vm_stack = cached_vm_stacks[i];
201 
202 		if (!vm_stack)
203 			continue;
204 
205 		vfree(vm_stack->addr);
206 		cached_vm_stacks[i] = NULL;
207 	}
208 
209 	return 0;
210 }
211 #endif
212 
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 	void *stack;
217 	int i;
218 
219 	for (i = 0; i < NR_CACHED_STACKS; i++) {
220 		struct vm_struct *s;
221 
222 		s = this_cpu_xchg(cached_stacks[i], NULL);
223 
224 		if (!s)
225 			continue;
226 
227 		/* Clear stale pointers from reused stack. */
228 		memset(s->addr, 0, THREAD_SIZE);
229 
230 		tsk->stack_vm_area = s;
231 		tsk->stack = s->addr;
232 		return s->addr;
233 	}
234 
235 	/*
236 	 * Allocated stacks are cached and later reused by new threads,
237 	 * so memcg accounting is performed manually on assigning/releasing
238 	 * stacks to tasks. Drop __GFP_ACCOUNT.
239 	 */
240 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
241 				     VMALLOC_START, VMALLOC_END,
242 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
243 				     PAGE_KERNEL,
244 				     0, node, __builtin_return_address(0));
245 
246 	/*
247 	 * We can't call find_vm_area() in interrupt context, and
248 	 * free_thread_stack() can be called in interrupt context,
249 	 * so cache the vm_struct.
250 	 */
251 	if (stack) {
252 		tsk->stack_vm_area = find_vm_area(stack);
253 		tsk->stack = stack;
254 	}
255 	return stack;
256 #else
257 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
258 					     THREAD_SIZE_ORDER);
259 
260 	if (likely(page)) {
261 		tsk->stack = page_address(page);
262 		return tsk->stack;
263 	}
264 	return NULL;
265 #endif
266 }
267 
268 static inline void free_thread_stack(struct task_struct *tsk)
269 {
270 #ifdef CONFIG_VMAP_STACK
271 	struct vm_struct *vm = task_stack_vm_area(tsk);
272 
273 	if (vm) {
274 		int i;
275 
276 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
277 			mod_memcg_page_state(vm->pages[i],
278 					     MEMCG_KERNEL_STACK_KB,
279 					     -(int)(PAGE_SIZE / 1024));
280 
281 			memcg_kmem_uncharge(vm->pages[i], 0);
282 		}
283 
284 		for (i = 0; i < NR_CACHED_STACKS; i++) {
285 			if (this_cpu_cmpxchg(cached_stacks[i],
286 					NULL, tsk->stack_vm_area) != NULL)
287 				continue;
288 
289 			return;
290 		}
291 
292 		vfree_atomic(tsk->stack);
293 		return;
294 	}
295 #endif
296 
297 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301 
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 						  int node)
304 {
305 	unsigned long *stack;
306 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 	tsk->stack = stack;
308 	return stack;
309 }
310 
311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 	kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315 
316 void thread_stack_cache_init(void)
317 {
318 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 					THREAD_SIZE, THREAD_SIZE, 0, 0,
320 					THREAD_SIZE, NULL);
321 	BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325 
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328 
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331 
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334 
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337 
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340 
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343 
344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 	struct vm_area_struct *vma;
347 
348 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 	if (vma)
350 		vma_init(vma, mm);
351 	return vma;
352 }
353 
354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357 
358 	if (new) {
359 		*new = *orig;
360 		INIT_LIST_HEAD(&new->anon_vma_chain);
361 	}
362 	return new;
363 }
364 
365 void vm_area_free(struct vm_area_struct *vma)
366 {
367 	kmem_cache_free(vm_area_cachep, vma);
368 }
369 
370 static void account_kernel_stack(struct task_struct *tsk, int account)
371 {
372 	void *stack = task_stack_page(tsk);
373 	struct vm_struct *vm = task_stack_vm_area(tsk);
374 
375 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
376 
377 	if (vm) {
378 		int i;
379 
380 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
381 
382 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
383 			mod_zone_page_state(page_zone(vm->pages[i]),
384 					    NR_KERNEL_STACK_KB,
385 					    PAGE_SIZE / 1024 * account);
386 		}
387 	} else {
388 		/*
389 		 * All stack pages are in the same zone and belong to the
390 		 * same memcg.
391 		 */
392 		struct page *first_page = virt_to_page(stack);
393 
394 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
395 				    THREAD_SIZE / 1024 * account);
396 
397 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
398 				     account * (THREAD_SIZE / 1024));
399 	}
400 }
401 
402 static int memcg_charge_kernel_stack(struct task_struct *tsk)
403 {
404 #ifdef CONFIG_VMAP_STACK
405 	struct vm_struct *vm = task_stack_vm_area(tsk);
406 	int ret;
407 
408 	if (vm) {
409 		int i;
410 
411 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
412 			/*
413 			 * If memcg_kmem_charge() fails, page->mem_cgroup
414 			 * pointer is NULL, and both memcg_kmem_uncharge()
415 			 * and mod_memcg_page_state() in free_thread_stack()
416 			 * will ignore this page. So it's safe.
417 			 */
418 			ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
419 			if (ret)
420 				return ret;
421 
422 			mod_memcg_page_state(vm->pages[i],
423 					     MEMCG_KERNEL_STACK_KB,
424 					     PAGE_SIZE / 1024);
425 		}
426 	}
427 #endif
428 	return 0;
429 }
430 
431 static void release_task_stack(struct task_struct *tsk)
432 {
433 	if (WARN_ON(tsk->state != TASK_DEAD))
434 		return;  /* Better to leak the stack than to free prematurely */
435 
436 	account_kernel_stack(tsk, -1);
437 	free_thread_stack(tsk);
438 	tsk->stack = NULL;
439 #ifdef CONFIG_VMAP_STACK
440 	tsk->stack_vm_area = NULL;
441 #endif
442 }
443 
444 #ifdef CONFIG_THREAD_INFO_IN_TASK
445 void put_task_stack(struct task_struct *tsk)
446 {
447 	if (refcount_dec_and_test(&tsk->stack_refcount))
448 		release_task_stack(tsk);
449 }
450 #endif
451 
452 void free_task(struct task_struct *tsk)
453 {
454 #ifndef CONFIG_THREAD_INFO_IN_TASK
455 	/*
456 	 * The task is finally done with both the stack and thread_info,
457 	 * so free both.
458 	 */
459 	release_task_stack(tsk);
460 #else
461 	/*
462 	 * If the task had a separate stack allocation, it should be gone
463 	 * by now.
464 	 */
465 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
466 #endif
467 	rt_mutex_debug_task_free(tsk);
468 	ftrace_graph_exit_task(tsk);
469 	put_seccomp_filter(tsk);
470 	arch_release_task_struct(tsk);
471 	if (tsk->flags & PF_KTHREAD)
472 		free_kthread_struct(tsk);
473 	free_task_struct(tsk);
474 }
475 EXPORT_SYMBOL(free_task);
476 
477 #ifdef CONFIG_MMU
478 static __latent_entropy int dup_mmap(struct mm_struct *mm,
479 					struct mm_struct *oldmm)
480 {
481 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
482 	struct rb_node **rb_link, *rb_parent;
483 	int retval;
484 	unsigned long charge;
485 	LIST_HEAD(uf);
486 
487 	uprobe_start_dup_mmap();
488 	if (down_write_killable(&oldmm->mmap_sem)) {
489 		retval = -EINTR;
490 		goto fail_uprobe_end;
491 	}
492 	flush_cache_dup_mm(oldmm);
493 	uprobe_dup_mmap(oldmm, mm);
494 	/*
495 	 * Not linked in yet - no deadlock potential:
496 	 */
497 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
498 
499 	/* No ordering required: file already has been exposed. */
500 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
501 
502 	mm->total_vm = oldmm->total_vm;
503 	mm->data_vm = oldmm->data_vm;
504 	mm->exec_vm = oldmm->exec_vm;
505 	mm->stack_vm = oldmm->stack_vm;
506 
507 	rb_link = &mm->mm_rb.rb_node;
508 	rb_parent = NULL;
509 	pprev = &mm->mmap;
510 	retval = ksm_fork(mm, oldmm);
511 	if (retval)
512 		goto out;
513 	retval = khugepaged_fork(mm, oldmm);
514 	if (retval)
515 		goto out;
516 
517 	prev = NULL;
518 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
519 		struct file *file;
520 
521 		if (mpnt->vm_flags & VM_DONTCOPY) {
522 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
523 			continue;
524 		}
525 		charge = 0;
526 		/*
527 		 * Don't duplicate many vmas if we've been oom-killed (for
528 		 * example)
529 		 */
530 		if (fatal_signal_pending(current)) {
531 			retval = -EINTR;
532 			goto out;
533 		}
534 		if (mpnt->vm_flags & VM_ACCOUNT) {
535 			unsigned long len = vma_pages(mpnt);
536 
537 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
538 				goto fail_nomem;
539 			charge = len;
540 		}
541 		tmp = vm_area_dup(mpnt);
542 		if (!tmp)
543 			goto fail_nomem;
544 		retval = vma_dup_policy(mpnt, tmp);
545 		if (retval)
546 			goto fail_nomem_policy;
547 		tmp->vm_mm = mm;
548 		retval = dup_userfaultfd(tmp, &uf);
549 		if (retval)
550 			goto fail_nomem_anon_vma_fork;
551 		if (tmp->vm_flags & VM_WIPEONFORK) {
552 			/* VM_WIPEONFORK gets a clean slate in the child. */
553 			tmp->anon_vma = NULL;
554 			if (anon_vma_prepare(tmp))
555 				goto fail_nomem_anon_vma_fork;
556 		} else if (anon_vma_fork(tmp, mpnt))
557 			goto fail_nomem_anon_vma_fork;
558 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
559 		tmp->vm_next = tmp->vm_prev = NULL;
560 		file = tmp->vm_file;
561 		if (file) {
562 			struct inode *inode = file_inode(file);
563 			struct address_space *mapping = file->f_mapping;
564 
565 			get_file(file);
566 			if (tmp->vm_flags & VM_DENYWRITE)
567 				atomic_dec(&inode->i_writecount);
568 			i_mmap_lock_write(mapping);
569 			if (tmp->vm_flags & VM_SHARED)
570 				atomic_inc(&mapping->i_mmap_writable);
571 			flush_dcache_mmap_lock(mapping);
572 			/* insert tmp into the share list, just after mpnt */
573 			vma_interval_tree_insert_after(tmp, mpnt,
574 					&mapping->i_mmap);
575 			flush_dcache_mmap_unlock(mapping);
576 			i_mmap_unlock_write(mapping);
577 		}
578 
579 		/*
580 		 * Clear hugetlb-related page reserves for children. This only
581 		 * affects MAP_PRIVATE mappings. Faults generated by the child
582 		 * are not guaranteed to succeed, even if read-only
583 		 */
584 		if (is_vm_hugetlb_page(tmp))
585 			reset_vma_resv_huge_pages(tmp);
586 
587 		/*
588 		 * Link in the new vma and copy the page table entries.
589 		 */
590 		*pprev = tmp;
591 		pprev = &tmp->vm_next;
592 		tmp->vm_prev = prev;
593 		prev = tmp;
594 
595 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
596 		rb_link = &tmp->vm_rb.rb_right;
597 		rb_parent = &tmp->vm_rb;
598 
599 		mm->map_count++;
600 		if (!(tmp->vm_flags & VM_WIPEONFORK))
601 			retval = copy_page_range(mm, oldmm, mpnt);
602 
603 		if (tmp->vm_ops && tmp->vm_ops->open)
604 			tmp->vm_ops->open(tmp);
605 
606 		if (retval)
607 			goto out;
608 	}
609 	/* a new mm has just been created */
610 	retval = arch_dup_mmap(oldmm, mm);
611 out:
612 	up_write(&mm->mmap_sem);
613 	flush_tlb_mm(oldmm);
614 	up_write(&oldmm->mmap_sem);
615 	dup_userfaultfd_complete(&uf);
616 fail_uprobe_end:
617 	uprobe_end_dup_mmap();
618 	return retval;
619 fail_nomem_anon_vma_fork:
620 	mpol_put(vma_policy(tmp));
621 fail_nomem_policy:
622 	vm_area_free(tmp);
623 fail_nomem:
624 	retval = -ENOMEM;
625 	vm_unacct_memory(charge);
626 	goto out;
627 }
628 
629 static inline int mm_alloc_pgd(struct mm_struct *mm)
630 {
631 	mm->pgd = pgd_alloc(mm);
632 	if (unlikely(!mm->pgd))
633 		return -ENOMEM;
634 	return 0;
635 }
636 
637 static inline void mm_free_pgd(struct mm_struct *mm)
638 {
639 	pgd_free(mm, mm->pgd);
640 }
641 #else
642 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
643 {
644 	down_write(&oldmm->mmap_sem);
645 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
646 	up_write(&oldmm->mmap_sem);
647 	return 0;
648 }
649 #define mm_alloc_pgd(mm)	(0)
650 #define mm_free_pgd(mm)
651 #endif /* CONFIG_MMU */
652 
653 static void check_mm(struct mm_struct *mm)
654 {
655 	int i;
656 
657 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
658 			 "Please make sure 'struct resident_page_types[]' is updated as well");
659 
660 	for (i = 0; i < NR_MM_COUNTERS; i++) {
661 		long x = atomic_long_read(&mm->rss_stat.count[i]);
662 
663 		if (unlikely(x))
664 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
665 				 mm, resident_page_types[i], x);
666 	}
667 
668 	if (mm_pgtables_bytes(mm))
669 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
670 				mm_pgtables_bytes(mm));
671 
672 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
673 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
674 #endif
675 }
676 
677 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
678 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
679 
680 /*
681  * Called when the last reference to the mm
682  * is dropped: either by a lazy thread or by
683  * mmput. Free the page directory and the mm.
684  */
685 void __mmdrop(struct mm_struct *mm)
686 {
687 	BUG_ON(mm == &init_mm);
688 	WARN_ON_ONCE(mm == current->mm);
689 	WARN_ON_ONCE(mm == current->active_mm);
690 	mm_free_pgd(mm);
691 	destroy_context(mm);
692 	mmu_notifier_mm_destroy(mm);
693 	check_mm(mm);
694 	put_user_ns(mm->user_ns);
695 	free_mm(mm);
696 }
697 EXPORT_SYMBOL_GPL(__mmdrop);
698 
699 static void mmdrop_async_fn(struct work_struct *work)
700 {
701 	struct mm_struct *mm;
702 
703 	mm = container_of(work, struct mm_struct, async_put_work);
704 	__mmdrop(mm);
705 }
706 
707 static void mmdrop_async(struct mm_struct *mm)
708 {
709 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
710 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
711 		schedule_work(&mm->async_put_work);
712 	}
713 }
714 
715 static inline void free_signal_struct(struct signal_struct *sig)
716 {
717 	taskstats_tgid_free(sig);
718 	sched_autogroup_exit(sig);
719 	/*
720 	 * __mmdrop is not safe to call from softirq context on x86 due to
721 	 * pgd_dtor so postpone it to the async context
722 	 */
723 	if (sig->oom_mm)
724 		mmdrop_async(sig->oom_mm);
725 	kmem_cache_free(signal_cachep, sig);
726 }
727 
728 static inline void put_signal_struct(struct signal_struct *sig)
729 {
730 	if (refcount_dec_and_test(&sig->sigcnt))
731 		free_signal_struct(sig);
732 }
733 
734 void __put_task_struct(struct task_struct *tsk)
735 {
736 	WARN_ON(!tsk->exit_state);
737 	WARN_ON(refcount_read(&tsk->usage));
738 	WARN_ON(tsk == current);
739 
740 	cgroup_free(tsk);
741 	task_numa_free(tsk, true);
742 	security_task_free(tsk);
743 	exit_creds(tsk);
744 	delayacct_tsk_free(tsk);
745 	put_signal_struct(tsk->signal);
746 
747 	if (!profile_handoff_task(tsk))
748 		free_task(tsk);
749 }
750 EXPORT_SYMBOL_GPL(__put_task_struct);
751 
752 void __init __weak arch_task_cache_init(void) { }
753 
754 /*
755  * set_max_threads
756  */
757 static void set_max_threads(unsigned int max_threads_suggested)
758 {
759 	u64 threads;
760 	unsigned long nr_pages = totalram_pages();
761 
762 	/*
763 	 * The number of threads shall be limited such that the thread
764 	 * structures may only consume a small part of the available memory.
765 	 */
766 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
767 		threads = MAX_THREADS;
768 	else
769 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
770 				    (u64) THREAD_SIZE * 8UL);
771 
772 	if (threads > max_threads_suggested)
773 		threads = max_threads_suggested;
774 
775 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
776 }
777 
778 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
779 /* Initialized by the architecture: */
780 int arch_task_struct_size __read_mostly;
781 #endif
782 
783 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
784 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
785 {
786 	/* Fetch thread_struct whitelist for the architecture. */
787 	arch_thread_struct_whitelist(offset, size);
788 
789 	/*
790 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
791 	 * adjust offset to position of thread_struct in task_struct.
792 	 */
793 	if (unlikely(*size == 0))
794 		*offset = 0;
795 	else
796 		*offset += offsetof(struct task_struct, thread);
797 }
798 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
799 
800 void __init fork_init(void)
801 {
802 	int i;
803 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
804 #ifndef ARCH_MIN_TASKALIGN
805 #define ARCH_MIN_TASKALIGN	0
806 #endif
807 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
808 	unsigned long useroffset, usersize;
809 
810 	/* create a slab on which task_structs can be allocated */
811 	task_struct_whitelist(&useroffset, &usersize);
812 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
813 			arch_task_struct_size, align,
814 			SLAB_PANIC|SLAB_ACCOUNT,
815 			useroffset, usersize, NULL);
816 #endif
817 
818 	/* do the arch specific task caches init */
819 	arch_task_cache_init();
820 
821 	set_max_threads(MAX_THREADS);
822 
823 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
824 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
825 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
826 		init_task.signal->rlim[RLIMIT_NPROC];
827 
828 	for (i = 0; i < UCOUNT_COUNTS; i++) {
829 		init_user_ns.ucount_max[i] = max_threads/2;
830 	}
831 
832 #ifdef CONFIG_VMAP_STACK
833 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
834 			  NULL, free_vm_stack_cache);
835 #endif
836 
837 	lockdep_init_task(&init_task);
838 	uprobes_init();
839 }
840 
841 int __weak arch_dup_task_struct(struct task_struct *dst,
842 					       struct task_struct *src)
843 {
844 	*dst = *src;
845 	return 0;
846 }
847 
848 void set_task_stack_end_magic(struct task_struct *tsk)
849 {
850 	unsigned long *stackend;
851 
852 	stackend = end_of_stack(tsk);
853 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
854 }
855 
856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
857 {
858 	struct task_struct *tsk;
859 	unsigned long *stack;
860 	struct vm_struct *stack_vm_area __maybe_unused;
861 	int err;
862 
863 	if (node == NUMA_NO_NODE)
864 		node = tsk_fork_get_node(orig);
865 	tsk = alloc_task_struct_node(node);
866 	if (!tsk)
867 		return NULL;
868 
869 	stack = alloc_thread_stack_node(tsk, node);
870 	if (!stack)
871 		goto free_tsk;
872 
873 	if (memcg_charge_kernel_stack(tsk))
874 		goto free_stack;
875 
876 	stack_vm_area = task_stack_vm_area(tsk);
877 
878 	err = arch_dup_task_struct(tsk, orig);
879 
880 	/*
881 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
882 	 * sure they're properly initialized before using any stack-related
883 	 * functions again.
884 	 */
885 	tsk->stack = stack;
886 #ifdef CONFIG_VMAP_STACK
887 	tsk->stack_vm_area = stack_vm_area;
888 #endif
889 #ifdef CONFIG_THREAD_INFO_IN_TASK
890 	refcount_set(&tsk->stack_refcount, 1);
891 #endif
892 
893 	if (err)
894 		goto free_stack;
895 
896 #ifdef CONFIG_SECCOMP
897 	/*
898 	 * We must handle setting up seccomp filters once we're under
899 	 * the sighand lock in case orig has changed between now and
900 	 * then. Until then, filter must be NULL to avoid messing up
901 	 * the usage counts on the error path calling free_task.
902 	 */
903 	tsk->seccomp.filter = NULL;
904 #endif
905 
906 	setup_thread_stack(tsk, orig);
907 	clear_user_return_notifier(tsk);
908 	clear_tsk_need_resched(tsk);
909 	set_task_stack_end_magic(tsk);
910 
911 #ifdef CONFIG_STACKPROTECTOR
912 	tsk->stack_canary = get_random_canary();
913 #endif
914 	if (orig->cpus_ptr == &orig->cpus_mask)
915 		tsk->cpus_ptr = &tsk->cpus_mask;
916 
917 	/*
918 	 * One for the user space visible state that goes away when reaped.
919 	 * One for the scheduler.
920 	 */
921 	refcount_set(&tsk->rcu_users, 2);
922 	/* One for the rcu users */
923 	refcount_set(&tsk->usage, 1);
924 #ifdef CONFIG_BLK_DEV_IO_TRACE
925 	tsk->btrace_seq = 0;
926 #endif
927 	tsk->splice_pipe = NULL;
928 	tsk->task_frag.page = NULL;
929 	tsk->wake_q.next = NULL;
930 
931 	account_kernel_stack(tsk, 1);
932 
933 	kcov_task_init(tsk);
934 
935 #ifdef CONFIG_FAULT_INJECTION
936 	tsk->fail_nth = 0;
937 #endif
938 
939 #ifdef CONFIG_BLK_CGROUP
940 	tsk->throttle_queue = NULL;
941 	tsk->use_memdelay = 0;
942 #endif
943 
944 #ifdef CONFIG_MEMCG
945 	tsk->active_memcg = NULL;
946 #endif
947 	return tsk;
948 
949 free_stack:
950 	free_thread_stack(tsk);
951 free_tsk:
952 	free_task_struct(tsk);
953 	return NULL;
954 }
955 
956 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
957 
958 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
959 
960 static int __init coredump_filter_setup(char *s)
961 {
962 	default_dump_filter =
963 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
964 		MMF_DUMP_FILTER_MASK;
965 	return 1;
966 }
967 
968 __setup("coredump_filter=", coredump_filter_setup);
969 
970 #include <linux/init_task.h>
971 
972 static void mm_init_aio(struct mm_struct *mm)
973 {
974 #ifdef CONFIG_AIO
975 	spin_lock_init(&mm->ioctx_lock);
976 	mm->ioctx_table = NULL;
977 #endif
978 }
979 
980 static __always_inline void mm_clear_owner(struct mm_struct *mm,
981 					   struct task_struct *p)
982 {
983 #ifdef CONFIG_MEMCG
984 	if (mm->owner == p)
985 		WRITE_ONCE(mm->owner, NULL);
986 #endif
987 }
988 
989 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
990 {
991 #ifdef CONFIG_MEMCG
992 	mm->owner = p;
993 #endif
994 }
995 
996 static void mm_init_uprobes_state(struct mm_struct *mm)
997 {
998 #ifdef CONFIG_UPROBES
999 	mm->uprobes_state.xol_area = NULL;
1000 #endif
1001 }
1002 
1003 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1004 	struct user_namespace *user_ns)
1005 {
1006 	mm->mmap = NULL;
1007 	mm->mm_rb = RB_ROOT;
1008 	mm->vmacache_seqnum = 0;
1009 	atomic_set(&mm->mm_users, 1);
1010 	atomic_set(&mm->mm_count, 1);
1011 	init_rwsem(&mm->mmap_sem);
1012 	INIT_LIST_HEAD(&mm->mmlist);
1013 	mm->core_state = NULL;
1014 	mm_pgtables_bytes_init(mm);
1015 	mm->map_count = 0;
1016 	mm->locked_vm = 0;
1017 	atomic64_set(&mm->pinned_vm, 0);
1018 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1019 	spin_lock_init(&mm->page_table_lock);
1020 	spin_lock_init(&mm->arg_lock);
1021 	mm_init_cpumask(mm);
1022 	mm_init_aio(mm);
1023 	mm_init_owner(mm, p);
1024 	RCU_INIT_POINTER(mm->exe_file, NULL);
1025 	mmu_notifier_mm_init(mm);
1026 	init_tlb_flush_pending(mm);
1027 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1028 	mm->pmd_huge_pte = NULL;
1029 #endif
1030 	mm_init_uprobes_state(mm);
1031 
1032 	if (current->mm) {
1033 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1034 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1035 	} else {
1036 		mm->flags = default_dump_filter;
1037 		mm->def_flags = 0;
1038 	}
1039 
1040 	if (mm_alloc_pgd(mm))
1041 		goto fail_nopgd;
1042 
1043 	if (init_new_context(p, mm))
1044 		goto fail_nocontext;
1045 
1046 	mm->user_ns = get_user_ns(user_ns);
1047 	return mm;
1048 
1049 fail_nocontext:
1050 	mm_free_pgd(mm);
1051 fail_nopgd:
1052 	free_mm(mm);
1053 	return NULL;
1054 }
1055 
1056 /*
1057  * Allocate and initialize an mm_struct.
1058  */
1059 struct mm_struct *mm_alloc(void)
1060 {
1061 	struct mm_struct *mm;
1062 
1063 	mm = allocate_mm();
1064 	if (!mm)
1065 		return NULL;
1066 
1067 	memset(mm, 0, sizeof(*mm));
1068 	return mm_init(mm, current, current_user_ns());
1069 }
1070 
1071 static inline void __mmput(struct mm_struct *mm)
1072 {
1073 	VM_BUG_ON(atomic_read(&mm->mm_users));
1074 
1075 	uprobe_clear_state(mm);
1076 	exit_aio(mm);
1077 	ksm_exit(mm);
1078 	khugepaged_exit(mm); /* must run before exit_mmap */
1079 	exit_mmap(mm);
1080 	mm_put_huge_zero_page(mm);
1081 	set_mm_exe_file(mm, NULL);
1082 	if (!list_empty(&mm->mmlist)) {
1083 		spin_lock(&mmlist_lock);
1084 		list_del(&mm->mmlist);
1085 		spin_unlock(&mmlist_lock);
1086 	}
1087 	if (mm->binfmt)
1088 		module_put(mm->binfmt->module);
1089 	mmdrop(mm);
1090 }
1091 
1092 /*
1093  * Decrement the use count and release all resources for an mm.
1094  */
1095 void mmput(struct mm_struct *mm)
1096 {
1097 	might_sleep();
1098 
1099 	if (atomic_dec_and_test(&mm->mm_users))
1100 		__mmput(mm);
1101 }
1102 EXPORT_SYMBOL_GPL(mmput);
1103 
1104 #ifdef CONFIG_MMU
1105 static void mmput_async_fn(struct work_struct *work)
1106 {
1107 	struct mm_struct *mm = container_of(work, struct mm_struct,
1108 					    async_put_work);
1109 
1110 	__mmput(mm);
1111 }
1112 
1113 void mmput_async(struct mm_struct *mm)
1114 {
1115 	if (atomic_dec_and_test(&mm->mm_users)) {
1116 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1117 		schedule_work(&mm->async_put_work);
1118 	}
1119 }
1120 #endif
1121 
1122 /**
1123  * set_mm_exe_file - change a reference to the mm's executable file
1124  *
1125  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1126  *
1127  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1128  * invocations: in mmput() nobody alive left, in execve task is single
1129  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1130  * mm->exe_file, but does so without using set_mm_exe_file() in order
1131  * to do avoid the need for any locks.
1132  */
1133 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1134 {
1135 	struct file *old_exe_file;
1136 
1137 	/*
1138 	 * It is safe to dereference the exe_file without RCU as
1139 	 * this function is only called if nobody else can access
1140 	 * this mm -- see comment above for justification.
1141 	 */
1142 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1143 
1144 	if (new_exe_file)
1145 		get_file(new_exe_file);
1146 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1147 	if (old_exe_file)
1148 		fput(old_exe_file);
1149 }
1150 
1151 /**
1152  * get_mm_exe_file - acquire a reference to the mm's executable file
1153  *
1154  * Returns %NULL if mm has no associated executable file.
1155  * User must release file via fput().
1156  */
1157 struct file *get_mm_exe_file(struct mm_struct *mm)
1158 {
1159 	struct file *exe_file;
1160 
1161 	rcu_read_lock();
1162 	exe_file = rcu_dereference(mm->exe_file);
1163 	if (exe_file && !get_file_rcu(exe_file))
1164 		exe_file = NULL;
1165 	rcu_read_unlock();
1166 	return exe_file;
1167 }
1168 EXPORT_SYMBOL(get_mm_exe_file);
1169 
1170 /**
1171  * get_task_exe_file - acquire a reference to the task's executable file
1172  *
1173  * Returns %NULL if task's mm (if any) has no associated executable file or
1174  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1175  * User must release file via fput().
1176  */
1177 struct file *get_task_exe_file(struct task_struct *task)
1178 {
1179 	struct file *exe_file = NULL;
1180 	struct mm_struct *mm;
1181 
1182 	task_lock(task);
1183 	mm = task->mm;
1184 	if (mm) {
1185 		if (!(task->flags & PF_KTHREAD))
1186 			exe_file = get_mm_exe_file(mm);
1187 	}
1188 	task_unlock(task);
1189 	return exe_file;
1190 }
1191 EXPORT_SYMBOL(get_task_exe_file);
1192 
1193 /**
1194  * get_task_mm - acquire a reference to the task's mm
1195  *
1196  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1197  * this kernel workthread has transiently adopted a user mm with use_mm,
1198  * to do its AIO) is not set and if so returns a reference to it, after
1199  * bumping up the use count.  User must release the mm via mmput()
1200  * after use.  Typically used by /proc and ptrace.
1201  */
1202 struct mm_struct *get_task_mm(struct task_struct *task)
1203 {
1204 	struct mm_struct *mm;
1205 
1206 	task_lock(task);
1207 	mm = task->mm;
1208 	if (mm) {
1209 		if (task->flags & PF_KTHREAD)
1210 			mm = NULL;
1211 		else
1212 			mmget(mm);
1213 	}
1214 	task_unlock(task);
1215 	return mm;
1216 }
1217 EXPORT_SYMBOL_GPL(get_task_mm);
1218 
1219 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1220 {
1221 	struct mm_struct *mm;
1222 	int err;
1223 
1224 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1225 	if (err)
1226 		return ERR_PTR(err);
1227 
1228 	mm = get_task_mm(task);
1229 	if (mm && mm != current->mm &&
1230 			!ptrace_may_access(task, mode)) {
1231 		mmput(mm);
1232 		mm = ERR_PTR(-EACCES);
1233 	}
1234 	mutex_unlock(&task->signal->cred_guard_mutex);
1235 
1236 	return mm;
1237 }
1238 
1239 static void complete_vfork_done(struct task_struct *tsk)
1240 {
1241 	struct completion *vfork;
1242 
1243 	task_lock(tsk);
1244 	vfork = tsk->vfork_done;
1245 	if (likely(vfork)) {
1246 		tsk->vfork_done = NULL;
1247 		complete(vfork);
1248 	}
1249 	task_unlock(tsk);
1250 }
1251 
1252 static int wait_for_vfork_done(struct task_struct *child,
1253 				struct completion *vfork)
1254 {
1255 	int killed;
1256 
1257 	freezer_do_not_count();
1258 	cgroup_enter_frozen();
1259 	killed = wait_for_completion_killable(vfork);
1260 	cgroup_leave_frozen(false);
1261 	freezer_count();
1262 
1263 	if (killed) {
1264 		task_lock(child);
1265 		child->vfork_done = NULL;
1266 		task_unlock(child);
1267 	}
1268 
1269 	put_task_struct(child);
1270 	return killed;
1271 }
1272 
1273 /* Please note the differences between mmput and mm_release.
1274  * mmput is called whenever we stop holding onto a mm_struct,
1275  * error success whatever.
1276  *
1277  * mm_release is called after a mm_struct has been removed
1278  * from the current process.
1279  *
1280  * This difference is important for error handling, when we
1281  * only half set up a mm_struct for a new process and need to restore
1282  * the old one.  Because we mmput the new mm_struct before
1283  * restoring the old one. . .
1284  * Eric Biederman 10 January 1998
1285  */
1286 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1287 {
1288 	/* Get rid of any futexes when releasing the mm */
1289 #ifdef CONFIG_FUTEX
1290 	if (unlikely(tsk->robust_list)) {
1291 		exit_robust_list(tsk);
1292 		tsk->robust_list = NULL;
1293 	}
1294 #ifdef CONFIG_COMPAT
1295 	if (unlikely(tsk->compat_robust_list)) {
1296 		compat_exit_robust_list(tsk);
1297 		tsk->compat_robust_list = NULL;
1298 	}
1299 #endif
1300 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1301 		exit_pi_state_list(tsk);
1302 #endif
1303 
1304 	uprobe_free_utask(tsk);
1305 
1306 	/* Get rid of any cached register state */
1307 	deactivate_mm(tsk, mm);
1308 
1309 	/*
1310 	 * Signal userspace if we're not exiting with a core dump
1311 	 * because we want to leave the value intact for debugging
1312 	 * purposes.
1313 	 */
1314 	if (tsk->clear_child_tid) {
1315 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1316 		    atomic_read(&mm->mm_users) > 1) {
1317 			/*
1318 			 * We don't check the error code - if userspace has
1319 			 * not set up a proper pointer then tough luck.
1320 			 */
1321 			put_user(0, tsk->clear_child_tid);
1322 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1323 					1, NULL, NULL, 0, 0);
1324 		}
1325 		tsk->clear_child_tid = NULL;
1326 	}
1327 
1328 	/*
1329 	 * All done, finally we can wake up parent and return this mm to him.
1330 	 * Also kthread_stop() uses this completion for synchronization.
1331 	 */
1332 	if (tsk->vfork_done)
1333 		complete_vfork_done(tsk);
1334 }
1335 
1336 /**
1337  * dup_mm() - duplicates an existing mm structure
1338  * @tsk: the task_struct with which the new mm will be associated.
1339  * @oldmm: the mm to duplicate.
1340  *
1341  * Allocates a new mm structure and duplicates the provided @oldmm structure
1342  * content into it.
1343  *
1344  * Return: the duplicated mm or NULL on failure.
1345  */
1346 static struct mm_struct *dup_mm(struct task_struct *tsk,
1347 				struct mm_struct *oldmm)
1348 {
1349 	struct mm_struct *mm;
1350 	int err;
1351 
1352 	mm = allocate_mm();
1353 	if (!mm)
1354 		goto fail_nomem;
1355 
1356 	memcpy(mm, oldmm, sizeof(*mm));
1357 
1358 	if (!mm_init(mm, tsk, mm->user_ns))
1359 		goto fail_nomem;
1360 
1361 	err = dup_mmap(mm, oldmm);
1362 	if (err)
1363 		goto free_pt;
1364 
1365 	mm->hiwater_rss = get_mm_rss(mm);
1366 	mm->hiwater_vm = mm->total_vm;
1367 
1368 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1369 		goto free_pt;
1370 
1371 	return mm;
1372 
1373 free_pt:
1374 	/* don't put binfmt in mmput, we haven't got module yet */
1375 	mm->binfmt = NULL;
1376 	mm_init_owner(mm, NULL);
1377 	mmput(mm);
1378 
1379 fail_nomem:
1380 	return NULL;
1381 }
1382 
1383 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1384 {
1385 	struct mm_struct *mm, *oldmm;
1386 	int retval;
1387 
1388 	tsk->min_flt = tsk->maj_flt = 0;
1389 	tsk->nvcsw = tsk->nivcsw = 0;
1390 #ifdef CONFIG_DETECT_HUNG_TASK
1391 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1392 	tsk->last_switch_time = 0;
1393 #endif
1394 
1395 	tsk->mm = NULL;
1396 	tsk->active_mm = NULL;
1397 
1398 	/*
1399 	 * Are we cloning a kernel thread?
1400 	 *
1401 	 * We need to steal a active VM for that..
1402 	 */
1403 	oldmm = current->mm;
1404 	if (!oldmm)
1405 		return 0;
1406 
1407 	/* initialize the new vmacache entries */
1408 	vmacache_flush(tsk);
1409 
1410 	if (clone_flags & CLONE_VM) {
1411 		mmget(oldmm);
1412 		mm = oldmm;
1413 		goto good_mm;
1414 	}
1415 
1416 	retval = -ENOMEM;
1417 	mm = dup_mm(tsk, current->mm);
1418 	if (!mm)
1419 		goto fail_nomem;
1420 
1421 good_mm:
1422 	tsk->mm = mm;
1423 	tsk->active_mm = mm;
1424 	return 0;
1425 
1426 fail_nomem:
1427 	return retval;
1428 }
1429 
1430 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1431 {
1432 	struct fs_struct *fs = current->fs;
1433 	if (clone_flags & CLONE_FS) {
1434 		/* tsk->fs is already what we want */
1435 		spin_lock(&fs->lock);
1436 		if (fs->in_exec) {
1437 			spin_unlock(&fs->lock);
1438 			return -EAGAIN;
1439 		}
1440 		fs->users++;
1441 		spin_unlock(&fs->lock);
1442 		return 0;
1443 	}
1444 	tsk->fs = copy_fs_struct(fs);
1445 	if (!tsk->fs)
1446 		return -ENOMEM;
1447 	return 0;
1448 }
1449 
1450 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1451 {
1452 	struct files_struct *oldf, *newf;
1453 	int error = 0;
1454 
1455 	/*
1456 	 * A background process may not have any files ...
1457 	 */
1458 	oldf = current->files;
1459 	if (!oldf)
1460 		goto out;
1461 
1462 	if (clone_flags & CLONE_FILES) {
1463 		atomic_inc(&oldf->count);
1464 		goto out;
1465 	}
1466 
1467 	newf = dup_fd(oldf, &error);
1468 	if (!newf)
1469 		goto out;
1470 
1471 	tsk->files = newf;
1472 	error = 0;
1473 out:
1474 	return error;
1475 }
1476 
1477 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1478 {
1479 #ifdef CONFIG_BLOCK
1480 	struct io_context *ioc = current->io_context;
1481 	struct io_context *new_ioc;
1482 
1483 	if (!ioc)
1484 		return 0;
1485 	/*
1486 	 * Share io context with parent, if CLONE_IO is set
1487 	 */
1488 	if (clone_flags & CLONE_IO) {
1489 		ioc_task_link(ioc);
1490 		tsk->io_context = ioc;
1491 	} else if (ioprio_valid(ioc->ioprio)) {
1492 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1493 		if (unlikely(!new_ioc))
1494 			return -ENOMEM;
1495 
1496 		new_ioc->ioprio = ioc->ioprio;
1497 		put_io_context(new_ioc);
1498 	}
1499 #endif
1500 	return 0;
1501 }
1502 
1503 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1504 {
1505 	struct sighand_struct *sig;
1506 
1507 	if (clone_flags & CLONE_SIGHAND) {
1508 		refcount_inc(&current->sighand->count);
1509 		return 0;
1510 	}
1511 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1512 	rcu_assign_pointer(tsk->sighand, sig);
1513 	if (!sig)
1514 		return -ENOMEM;
1515 
1516 	refcount_set(&sig->count, 1);
1517 	spin_lock_irq(&current->sighand->siglock);
1518 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1519 	spin_unlock_irq(&current->sighand->siglock);
1520 
1521 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1522 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1523 		flush_signal_handlers(tsk, 0);
1524 
1525 	return 0;
1526 }
1527 
1528 void __cleanup_sighand(struct sighand_struct *sighand)
1529 {
1530 	if (refcount_dec_and_test(&sighand->count)) {
1531 		signalfd_cleanup(sighand);
1532 		/*
1533 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1534 		 * without an RCU grace period, see __lock_task_sighand().
1535 		 */
1536 		kmem_cache_free(sighand_cachep, sighand);
1537 	}
1538 }
1539 
1540 /*
1541  * Initialize POSIX timer handling for a thread group.
1542  */
1543 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1544 {
1545 	struct posix_cputimers *pct = &sig->posix_cputimers;
1546 	unsigned long cpu_limit;
1547 
1548 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1549 	posix_cputimers_group_init(pct, cpu_limit);
1550 }
1551 
1552 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1553 {
1554 	struct signal_struct *sig;
1555 
1556 	if (clone_flags & CLONE_THREAD)
1557 		return 0;
1558 
1559 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1560 	tsk->signal = sig;
1561 	if (!sig)
1562 		return -ENOMEM;
1563 
1564 	sig->nr_threads = 1;
1565 	atomic_set(&sig->live, 1);
1566 	refcount_set(&sig->sigcnt, 1);
1567 
1568 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1569 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1570 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1571 
1572 	init_waitqueue_head(&sig->wait_chldexit);
1573 	sig->curr_target = tsk;
1574 	init_sigpending(&sig->shared_pending);
1575 	INIT_HLIST_HEAD(&sig->multiprocess);
1576 	seqlock_init(&sig->stats_lock);
1577 	prev_cputime_init(&sig->prev_cputime);
1578 
1579 #ifdef CONFIG_POSIX_TIMERS
1580 	INIT_LIST_HEAD(&sig->posix_timers);
1581 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1582 	sig->real_timer.function = it_real_fn;
1583 #endif
1584 
1585 	task_lock(current->group_leader);
1586 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1587 	task_unlock(current->group_leader);
1588 
1589 	posix_cpu_timers_init_group(sig);
1590 
1591 	tty_audit_fork(sig);
1592 	sched_autogroup_fork(sig);
1593 
1594 	sig->oom_score_adj = current->signal->oom_score_adj;
1595 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1596 
1597 	mutex_init(&sig->cred_guard_mutex);
1598 
1599 	return 0;
1600 }
1601 
1602 static void copy_seccomp(struct task_struct *p)
1603 {
1604 #ifdef CONFIG_SECCOMP
1605 	/*
1606 	 * Must be called with sighand->lock held, which is common to
1607 	 * all threads in the group. Holding cred_guard_mutex is not
1608 	 * needed because this new task is not yet running and cannot
1609 	 * be racing exec.
1610 	 */
1611 	assert_spin_locked(&current->sighand->siglock);
1612 
1613 	/* Ref-count the new filter user, and assign it. */
1614 	get_seccomp_filter(current);
1615 	p->seccomp = current->seccomp;
1616 
1617 	/*
1618 	 * Explicitly enable no_new_privs here in case it got set
1619 	 * between the task_struct being duplicated and holding the
1620 	 * sighand lock. The seccomp state and nnp must be in sync.
1621 	 */
1622 	if (task_no_new_privs(current))
1623 		task_set_no_new_privs(p);
1624 
1625 	/*
1626 	 * If the parent gained a seccomp mode after copying thread
1627 	 * flags and between before we held the sighand lock, we have
1628 	 * to manually enable the seccomp thread flag here.
1629 	 */
1630 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1631 		set_tsk_thread_flag(p, TIF_SECCOMP);
1632 #endif
1633 }
1634 
1635 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1636 {
1637 	current->clear_child_tid = tidptr;
1638 
1639 	return task_pid_vnr(current);
1640 }
1641 
1642 static void rt_mutex_init_task(struct task_struct *p)
1643 {
1644 	raw_spin_lock_init(&p->pi_lock);
1645 #ifdef CONFIG_RT_MUTEXES
1646 	p->pi_waiters = RB_ROOT_CACHED;
1647 	p->pi_top_task = NULL;
1648 	p->pi_blocked_on = NULL;
1649 #endif
1650 }
1651 
1652 static inline void init_task_pid_links(struct task_struct *task)
1653 {
1654 	enum pid_type type;
1655 
1656 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1657 		INIT_HLIST_NODE(&task->pid_links[type]);
1658 	}
1659 }
1660 
1661 static inline void
1662 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1663 {
1664 	if (type == PIDTYPE_PID)
1665 		task->thread_pid = pid;
1666 	else
1667 		task->signal->pids[type] = pid;
1668 }
1669 
1670 static inline void rcu_copy_process(struct task_struct *p)
1671 {
1672 #ifdef CONFIG_PREEMPT_RCU
1673 	p->rcu_read_lock_nesting = 0;
1674 	p->rcu_read_unlock_special.s = 0;
1675 	p->rcu_blocked_node = NULL;
1676 	INIT_LIST_HEAD(&p->rcu_node_entry);
1677 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1678 #ifdef CONFIG_TASKS_RCU
1679 	p->rcu_tasks_holdout = false;
1680 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1681 	p->rcu_tasks_idle_cpu = -1;
1682 #endif /* #ifdef CONFIG_TASKS_RCU */
1683 }
1684 
1685 struct pid *pidfd_pid(const struct file *file)
1686 {
1687 	if (file->f_op == &pidfd_fops)
1688 		return file->private_data;
1689 
1690 	return ERR_PTR(-EBADF);
1691 }
1692 
1693 static int pidfd_release(struct inode *inode, struct file *file)
1694 {
1695 	struct pid *pid = file->private_data;
1696 
1697 	file->private_data = NULL;
1698 	put_pid(pid);
1699 	return 0;
1700 }
1701 
1702 #ifdef CONFIG_PROC_FS
1703 /**
1704  * pidfd_show_fdinfo - print information about a pidfd
1705  * @m: proc fdinfo file
1706  * @f: file referencing a pidfd
1707  *
1708  * Pid:
1709  * This function will print the pid that a given pidfd refers to in the
1710  * pid namespace of the procfs instance.
1711  * If the pid namespace of the process is not a descendant of the pid
1712  * namespace of the procfs instance 0 will be shown as its pid. This is
1713  * similar to calling getppid() on a process whose parent is outside of
1714  * its pid namespace.
1715  *
1716  * NSpid:
1717  * If pid namespaces are supported then this function will also print
1718  * the pid of a given pidfd refers to for all descendant pid namespaces
1719  * starting from the current pid namespace of the instance, i.e. the
1720  * Pid field and the first entry in the NSpid field will be identical.
1721  * If the pid namespace of the process is not a descendant of the pid
1722  * namespace of the procfs instance 0 will be shown as its first NSpid
1723  * entry and no others will be shown.
1724  * Note that this differs from the Pid and NSpid fields in
1725  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1726  * the  pid namespace of the procfs instance. The difference becomes
1727  * obvious when sending around a pidfd between pid namespaces from a
1728  * different branch of the tree, i.e. where no ancestoral relation is
1729  * present between the pid namespaces:
1730  * - create two new pid namespaces ns1 and ns2 in the initial pid
1731  *   namespace (also take care to create new mount namespaces in the
1732  *   new pid namespace and mount procfs)
1733  * - create a process with a pidfd in ns1
1734  * - send pidfd from ns1 to ns2
1735  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1736  *   have exactly one entry, which is 0
1737  */
1738 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1739 {
1740 	struct pid *pid = f->private_data;
1741 	struct pid_namespace *ns;
1742 	pid_t nr = -1;
1743 
1744 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1745 		ns = proc_pid_ns(file_inode(m->file));
1746 		nr = pid_nr_ns(pid, ns);
1747 	}
1748 
1749 	seq_put_decimal_ll(m, "Pid:\t", nr);
1750 
1751 #ifdef CONFIG_PID_NS
1752 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1753 	if (nr > 0) {
1754 		int i;
1755 
1756 		/* If nr is non-zero it means that 'pid' is valid and that
1757 		 * ns, i.e. the pid namespace associated with the procfs
1758 		 * instance, is in the pid namespace hierarchy of pid.
1759 		 * Start at one below the already printed level.
1760 		 */
1761 		for (i = ns->level + 1; i <= pid->level; i++)
1762 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1763 	}
1764 #endif
1765 	seq_putc(m, '\n');
1766 }
1767 #endif
1768 
1769 /*
1770  * Poll support for process exit notification.
1771  */
1772 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1773 {
1774 	struct task_struct *task;
1775 	struct pid *pid = file->private_data;
1776 	__poll_t poll_flags = 0;
1777 
1778 	poll_wait(file, &pid->wait_pidfd, pts);
1779 
1780 	rcu_read_lock();
1781 	task = pid_task(pid, PIDTYPE_PID);
1782 	/*
1783 	 * Inform pollers only when the whole thread group exits.
1784 	 * If the thread group leader exits before all other threads in the
1785 	 * group, then poll(2) should block, similar to the wait(2) family.
1786 	 */
1787 	if (!task || (task->exit_state && thread_group_empty(task)))
1788 		poll_flags = EPOLLIN | EPOLLRDNORM;
1789 	rcu_read_unlock();
1790 
1791 	return poll_flags;
1792 }
1793 
1794 const struct file_operations pidfd_fops = {
1795 	.release = pidfd_release,
1796 	.poll = pidfd_poll,
1797 #ifdef CONFIG_PROC_FS
1798 	.show_fdinfo = pidfd_show_fdinfo,
1799 #endif
1800 };
1801 
1802 static void __delayed_free_task(struct rcu_head *rhp)
1803 {
1804 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1805 
1806 	free_task(tsk);
1807 }
1808 
1809 static __always_inline void delayed_free_task(struct task_struct *tsk)
1810 {
1811 	if (IS_ENABLED(CONFIG_MEMCG))
1812 		call_rcu(&tsk->rcu, __delayed_free_task);
1813 	else
1814 		free_task(tsk);
1815 }
1816 
1817 /*
1818  * This creates a new process as a copy of the old one,
1819  * but does not actually start it yet.
1820  *
1821  * It copies the registers, and all the appropriate
1822  * parts of the process environment (as per the clone
1823  * flags). The actual kick-off is left to the caller.
1824  */
1825 static __latent_entropy struct task_struct *copy_process(
1826 					struct pid *pid,
1827 					int trace,
1828 					int node,
1829 					struct kernel_clone_args *args)
1830 {
1831 	int pidfd = -1, retval;
1832 	struct task_struct *p;
1833 	struct multiprocess_signals delayed;
1834 	struct file *pidfile = NULL;
1835 	u64 clone_flags = args->flags;
1836 
1837 	/*
1838 	 * Don't allow sharing the root directory with processes in a different
1839 	 * namespace
1840 	 */
1841 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1842 		return ERR_PTR(-EINVAL);
1843 
1844 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1845 		return ERR_PTR(-EINVAL);
1846 
1847 	/*
1848 	 * Thread groups must share signals as well, and detached threads
1849 	 * can only be started up within the thread group.
1850 	 */
1851 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1852 		return ERR_PTR(-EINVAL);
1853 
1854 	/*
1855 	 * Shared signal handlers imply shared VM. By way of the above,
1856 	 * thread groups also imply shared VM. Blocking this case allows
1857 	 * for various simplifications in other code.
1858 	 */
1859 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1860 		return ERR_PTR(-EINVAL);
1861 
1862 	/*
1863 	 * Siblings of global init remain as zombies on exit since they are
1864 	 * not reaped by their parent (swapper). To solve this and to avoid
1865 	 * multi-rooted process trees, prevent global and container-inits
1866 	 * from creating siblings.
1867 	 */
1868 	if ((clone_flags & CLONE_PARENT) &&
1869 				current->signal->flags & SIGNAL_UNKILLABLE)
1870 		return ERR_PTR(-EINVAL);
1871 
1872 	/*
1873 	 * If the new process will be in a different pid or user namespace
1874 	 * do not allow it to share a thread group with the forking task.
1875 	 */
1876 	if (clone_flags & CLONE_THREAD) {
1877 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1878 		    (task_active_pid_ns(current) !=
1879 				current->nsproxy->pid_ns_for_children))
1880 			return ERR_PTR(-EINVAL);
1881 	}
1882 
1883 	if (clone_flags & CLONE_PIDFD) {
1884 		/*
1885 		 * - CLONE_DETACHED is blocked so that we can potentially
1886 		 *   reuse it later for CLONE_PIDFD.
1887 		 * - CLONE_THREAD is blocked until someone really needs it.
1888 		 */
1889 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1890 			return ERR_PTR(-EINVAL);
1891 	}
1892 
1893 	/*
1894 	 * Force any signals received before this point to be delivered
1895 	 * before the fork happens.  Collect up signals sent to multiple
1896 	 * processes that happen during the fork and delay them so that
1897 	 * they appear to happen after the fork.
1898 	 */
1899 	sigemptyset(&delayed.signal);
1900 	INIT_HLIST_NODE(&delayed.node);
1901 
1902 	spin_lock_irq(&current->sighand->siglock);
1903 	if (!(clone_flags & CLONE_THREAD))
1904 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1905 	recalc_sigpending();
1906 	spin_unlock_irq(&current->sighand->siglock);
1907 	retval = -ERESTARTNOINTR;
1908 	if (signal_pending(current))
1909 		goto fork_out;
1910 
1911 	retval = -ENOMEM;
1912 	p = dup_task_struct(current, node);
1913 	if (!p)
1914 		goto fork_out;
1915 
1916 	/*
1917 	 * This _must_ happen before we call free_task(), i.e. before we jump
1918 	 * to any of the bad_fork_* labels. This is to avoid freeing
1919 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1920 	 * kernel threads (PF_KTHREAD).
1921 	 */
1922 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1923 	/*
1924 	 * Clear TID on mm_release()?
1925 	 */
1926 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1927 
1928 	ftrace_graph_init_task(p);
1929 
1930 	rt_mutex_init_task(p);
1931 
1932 #ifdef CONFIG_PROVE_LOCKING
1933 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1934 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1935 #endif
1936 	retval = -EAGAIN;
1937 	if (atomic_read(&p->real_cred->user->processes) >=
1938 			task_rlimit(p, RLIMIT_NPROC)) {
1939 		if (p->real_cred->user != INIT_USER &&
1940 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1941 			goto bad_fork_free;
1942 	}
1943 	current->flags &= ~PF_NPROC_EXCEEDED;
1944 
1945 	retval = copy_creds(p, clone_flags);
1946 	if (retval < 0)
1947 		goto bad_fork_free;
1948 
1949 	/*
1950 	 * If multiple threads are within copy_process(), then this check
1951 	 * triggers too late. This doesn't hurt, the check is only there
1952 	 * to stop root fork bombs.
1953 	 */
1954 	retval = -EAGAIN;
1955 	if (nr_threads >= max_threads)
1956 		goto bad_fork_cleanup_count;
1957 
1958 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1959 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1960 	p->flags |= PF_FORKNOEXEC;
1961 	INIT_LIST_HEAD(&p->children);
1962 	INIT_LIST_HEAD(&p->sibling);
1963 	rcu_copy_process(p);
1964 	p->vfork_done = NULL;
1965 	spin_lock_init(&p->alloc_lock);
1966 
1967 	init_sigpending(&p->pending);
1968 
1969 	p->utime = p->stime = p->gtime = 0;
1970 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1971 	p->utimescaled = p->stimescaled = 0;
1972 #endif
1973 	prev_cputime_init(&p->prev_cputime);
1974 
1975 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1976 	seqcount_init(&p->vtime.seqcount);
1977 	p->vtime.starttime = 0;
1978 	p->vtime.state = VTIME_INACTIVE;
1979 #endif
1980 
1981 #if defined(SPLIT_RSS_COUNTING)
1982 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1983 #endif
1984 
1985 	p->default_timer_slack_ns = current->timer_slack_ns;
1986 
1987 #ifdef CONFIG_PSI
1988 	p->psi_flags = 0;
1989 #endif
1990 
1991 	task_io_accounting_init(&p->ioac);
1992 	acct_clear_integrals(p);
1993 
1994 	posix_cputimers_init(&p->posix_cputimers);
1995 
1996 	p->io_context = NULL;
1997 	audit_set_context(p, NULL);
1998 	cgroup_fork(p);
1999 #ifdef CONFIG_NUMA
2000 	p->mempolicy = mpol_dup(p->mempolicy);
2001 	if (IS_ERR(p->mempolicy)) {
2002 		retval = PTR_ERR(p->mempolicy);
2003 		p->mempolicy = NULL;
2004 		goto bad_fork_cleanup_threadgroup_lock;
2005 	}
2006 #endif
2007 #ifdef CONFIG_CPUSETS
2008 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2009 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2010 	seqcount_init(&p->mems_allowed_seq);
2011 #endif
2012 #ifdef CONFIG_TRACE_IRQFLAGS
2013 	p->irq_events = 0;
2014 	p->hardirqs_enabled = 0;
2015 	p->hardirq_enable_ip = 0;
2016 	p->hardirq_enable_event = 0;
2017 	p->hardirq_disable_ip = _THIS_IP_;
2018 	p->hardirq_disable_event = 0;
2019 	p->softirqs_enabled = 1;
2020 	p->softirq_enable_ip = _THIS_IP_;
2021 	p->softirq_enable_event = 0;
2022 	p->softirq_disable_ip = 0;
2023 	p->softirq_disable_event = 0;
2024 	p->hardirq_context = 0;
2025 	p->softirq_context = 0;
2026 #endif
2027 
2028 	p->pagefault_disabled = 0;
2029 
2030 #ifdef CONFIG_LOCKDEP
2031 	lockdep_init_task(p);
2032 #endif
2033 
2034 #ifdef CONFIG_DEBUG_MUTEXES
2035 	p->blocked_on = NULL; /* not blocked yet */
2036 #endif
2037 #ifdef CONFIG_BCACHE
2038 	p->sequential_io	= 0;
2039 	p->sequential_io_avg	= 0;
2040 #endif
2041 
2042 	/* Perform scheduler related setup. Assign this task to a CPU. */
2043 	retval = sched_fork(clone_flags, p);
2044 	if (retval)
2045 		goto bad_fork_cleanup_policy;
2046 
2047 	retval = perf_event_init_task(p);
2048 	if (retval)
2049 		goto bad_fork_cleanup_policy;
2050 	retval = audit_alloc(p);
2051 	if (retval)
2052 		goto bad_fork_cleanup_perf;
2053 	/* copy all the process information */
2054 	shm_init_task(p);
2055 	retval = security_task_alloc(p, clone_flags);
2056 	if (retval)
2057 		goto bad_fork_cleanup_audit;
2058 	retval = copy_semundo(clone_flags, p);
2059 	if (retval)
2060 		goto bad_fork_cleanup_security;
2061 	retval = copy_files(clone_flags, p);
2062 	if (retval)
2063 		goto bad_fork_cleanup_semundo;
2064 	retval = copy_fs(clone_flags, p);
2065 	if (retval)
2066 		goto bad_fork_cleanup_files;
2067 	retval = copy_sighand(clone_flags, p);
2068 	if (retval)
2069 		goto bad_fork_cleanup_fs;
2070 	retval = copy_signal(clone_flags, p);
2071 	if (retval)
2072 		goto bad_fork_cleanup_sighand;
2073 	retval = copy_mm(clone_flags, p);
2074 	if (retval)
2075 		goto bad_fork_cleanup_signal;
2076 	retval = copy_namespaces(clone_flags, p);
2077 	if (retval)
2078 		goto bad_fork_cleanup_mm;
2079 	retval = copy_io(clone_flags, p);
2080 	if (retval)
2081 		goto bad_fork_cleanup_namespaces;
2082 	retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2083 				 args->tls);
2084 	if (retval)
2085 		goto bad_fork_cleanup_io;
2086 
2087 	stackleak_task_init(p);
2088 
2089 	if (pid != &init_struct_pid) {
2090 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2091 				args->set_tid_size);
2092 		if (IS_ERR(pid)) {
2093 			retval = PTR_ERR(pid);
2094 			goto bad_fork_cleanup_thread;
2095 		}
2096 	}
2097 
2098 	/*
2099 	 * This has to happen after we've potentially unshared the file
2100 	 * descriptor table (so that the pidfd doesn't leak into the child
2101 	 * if the fd table isn't shared).
2102 	 */
2103 	if (clone_flags & CLONE_PIDFD) {
2104 		retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2105 		if (retval < 0)
2106 			goto bad_fork_free_pid;
2107 
2108 		pidfd = retval;
2109 
2110 		pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2111 					      O_RDWR | O_CLOEXEC);
2112 		if (IS_ERR(pidfile)) {
2113 			put_unused_fd(pidfd);
2114 			retval = PTR_ERR(pidfile);
2115 			goto bad_fork_free_pid;
2116 		}
2117 		get_pid(pid);	/* held by pidfile now */
2118 
2119 		retval = put_user(pidfd, args->pidfd);
2120 		if (retval)
2121 			goto bad_fork_put_pidfd;
2122 	}
2123 
2124 #ifdef CONFIG_BLOCK
2125 	p->plug = NULL;
2126 #endif
2127 #ifdef CONFIG_FUTEX
2128 	p->robust_list = NULL;
2129 #ifdef CONFIG_COMPAT
2130 	p->compat_robust_list = NULL;
2131 #endif
2132 	INIT_LIST_HEAD(&p->pi_state_list);
2133 	p->pi_state_cache = NULL;
2134 #endif
2135 	/*
2136 	 * sigaltstack should be cleared when sharing the same VM
2137 	 */
2138 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2139 		sas_ss_reset(p);
2140 
2141 	/*
2142 	 * Syscall tracing and stepping should be turned off in the
2143 	 * child regardless of CLONE_PTRACE.
2144 	 */
2145 	user_disable_single_step(p);
2146 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2147 #ifdef TIF_SYSCALL_EMU
2148 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2149 #endif
2150 	clear_tsk_latency_tracing(p);
2151 
2152 	/* ok, now we should be set up.. */
2153 	p->pid = pid_nr(pid);
2154 	if (clone_flags & CLONE_THREAD) {
2155 		p->exit_signal = -1;
2156 		p->group_leader = current->group_leader;
2157 		p->tgid = current->tgid;
2158 	} else {
2159 		if (clone_flags & CLONE_PARENT)
2160 			p->exit_signal = current->group_leader->exit_signal;
2161 		else
2162 			p->exit_signal = args->exit_signal;
2163 		p->group_leader = p;
2164 		p->tgid = p->pid;
2165 	}
2166 
2167 	p->nr_dirtied = 0;
2168 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2169 	p->dirty_paused_when = 0;
2170 
2171 	p->pdeath_signal = 0;
2172 	INIT_LIST_HEAD(&p->thread_group);
2173 	p->task_works = NULL;
2174 
2175 	cgroup_threadgroup_change_begin(current);
2176 	/*
2177 	 * Ensure that the cgroup subsystem policies allow the new process to be
2178 	 * forked. It should be noted the the new process's css_set can be changed
2179 	 * between here and cgroup_post_fork() if an organisation operation is in
2180 	 * progress.
2181 	 */
2182 	retval = cgroup_can_fork(p);
2183 	if (retval)
2184 		goto bad_fork_cgroup_threadgroup_change_end;
2185 
2186 	/*
2187 	 * From this point on we must avoid any synchronous user-space
2188 	 * communication until we take the tasklist-lock. In particular, we do
2189 	 * not want user-space to be able to predict the process start-time by
2190 	 * stalling fork(2) after we recorded the start_time but before it is
2191 	 * visible to the system.
2192 	 */
2193 
2194 	p->start_time = ktime_get_ns();
2195 	p->real_start_time = ktime_get_boottime_ns();
2196 
2197 	/*
2198 	 * Make it visible to the rest of the system, but dont wake it up yet.
2199 	 * Need tasklist lock for parent etc handling!
2200 	 */
2201 	write_lock_irq(&tasklist_lock);
2202 
2203 	/* CLONE_PARENT re-uses the old parent */
2204 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2205 		p->real_parent = current->real_parent;
2206 		p->parent_exec_id = current->parent_exec_id;
2207 	} else {
2208 		p->real_parent = current;
2209 		p->parent_exec_id = current->self_exec_id;
2210 	}
2211 
2212 	klp_copy_process(p);
2213 
2214 	spin_lock(&current->sighand->siglock);
2215 
2216 	/*
2217 	 * Copy seccomp details explicitly here, in case they were changed
2218 	 * before holding sighand lock.
2219 	 */
2220 	copy_seccomp(p);
2221 
2222 	rseq_fork(p, clone_flags);
2223 
2224 	/* Don't start children in a dying pid namespace */
2225 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2226 		retval = -ENOMEM;
2227 		goto bad_fork_cancel_cgroup;
2228 	}
2229 
2230 	/* Let kill terminate clone/fork in the middle */
2231 	if (fatal_signal_pending(current)) {
2232 		retval = -EINTR;
2233 		goto bad_fork_cancel_cgroup;
2234 	}
2235 
2236 	/* past the last point of failure */
2237 	if (pidfile)
2238 		fd_install(pidfd, pidfile);
2239 
2240 	init_task_pid_links(p);
2241 	if (likely(p->pid)) {
2242 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2243 
2244 		init_task_pid(p, PIDTYPE_PID, pid);
2245 		if (thread_group_leader(p)) {
2246 			init_task_pid(p, PIDTYPE_TGID, pid);
2247 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2248 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2249 
2250 			if (is_child_reaper(pid)) {
2251 				ns_of_pid(pid)->child_reaper = p;
2252 				p->signal->flags |= SIGNAL_UNKILLABLE;
2253 			}
2254 			p->signal->shared_pending.signal = delayed.signal;
2255 			p->signal->tty = tty_kref_get(current->signal->tty);
2256 			/*
2257 			 * Inherit has_child_subreaper flag under the same
2258 			 * tasklist_lock with adding child to the process tree
2259 			 * for propagate_has_child_subreaper optimization.
2260 			 */
2261 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2262 							 p->real_parent->signal->is_child_subreaper;
2263 			list_add_tail(&p->sibling, &p->real_parent->children);
2264 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2265 			attach_pid(p, PIDTYPE_TGID);
2266 			attach_pid(p, PIDTYPE_PGID);
2267 			attach_pid(p, PIDTYPE_SID);
2268 			__this_cpu_inc(process_counts);
2269 		} else {
2270 			current->signal->nr_threads++;
2271 			atomic_inc(&current->signal->live);
2272 			refcount_inc(&current->signal->sigcnt);
2273 			task_join_group_stop(p);
2274 			list_add_tail_rcu(&p->thread_group,
2275 					  &p->group_leader->thread_group);
2276 			list_add_tail_rcu(&p->thread_node,
2277 					  &p->signal->thread_head);
2278 		}
2279 		attach_pid(p, PIDTYPE_PID);
2280 		nr_threads++;
2281 	}
2282 	total_forks++;
2283 	hlist_del_init(&delayed.node);
2284 	spin_unlock(&current->sighand->siglock);
2285 	syscall_tracepoint_update(p);
2286 	write_unlock_irq(&tasklist_lock);
2287 
2288 	proc_fork_connector(p);
2289 	cgroup_post_fork(p);
2290 	cgroup_threadgroup_change_end(current);
2291 	perf_event_fork(p);
2292 
2293 	trace_task_newtask(p, clone_flags);
2294 	uprobe_copy_process(p, clone_flags);
2295 
2296 	return p;
2297 
2298 bad_fork_cancel_cgroup:
2299 	spin_unlock(&current->sighand->siglock);
2300 	write_unlock_irq(&tasklist_lock);
2301 	cgroup_cancel_fork(p);
2302 bad_fork_cgroup_threadgroup_change_end:
2303 	cgroup_threadgroup_change_end(current);
2304 bad_fork_put_pidfd:
2305 	if (clone_flags & CLONE_PIDFD) {
2306 		fput(pidfile);
2307 		put_unused_fd(pidfd);
2308 	}
2309 bad_fork_free_pid:
2310 	if (pid != &init_struct_pid)
2311 		free_pid(pid);
2312 bad_fork_cleanup_thread:
2313 	exit_thread(p);
2314 bad_fork_cleanup_io:
2315 	if (p->io_context)
2316 		exit_io_context(p);
2317 bad_fork_cleanup_namespaces:
2318 	exit_task_namespaces(p);
2319 bad_fork_cleanup_mm:
2320 	if (p->mm) {
2321 		mm_clear_owner(p->mm, p);
2322 		mmput(p->mm);
2323 	}
2324 bad_fork_cleanup_signal:
2325 	if (!(clone_flags & CLONE_THREAD))
2326 		free_signal_struct(p->signal);
2327 bad_fork_cleanup_sighand:
2328 	__cleanup_sighand(p->sighand);
2329 bad_fork_cleanup_fs:
2330 	exit_fs(p); /* blocking */
2331 bad_fork_cleanup_files:
2332 	exit_files(p); /* blocking */
2333 bad_fork_cleanup_semundo:
2334 	exit_sem(p);
2335 bad_fork_cleanup_security:
2336 	security_task_free(p);
2337 bad_fork_cleanup_audit:
2338 	audit_free(p);
2339 bad_fork_cleanup_perf:
2340 	perf_event_free_task(p);
2341 bad_fork_cleanup_policy:
2342 	lockdep_free_task(p);
2343 #ifdef CONFIG_NUMA
2344 	mpol_put(p->mempolicy);
2345 bad_fork_cleanup_threadgroup_lock:
2346 #endif
2347 	delayacct_tsk_free(p);
2348 bad_fork_cleanup_count:
2349 	atomic_dec(&p->cred->user->processes);
2350 	exit_creds(p);
2351 bad_fork_free:
2352 	p->state = TASK_DEAD;
2353 	put_task_stack(p);
2354 	delayed_free_task(p);
2355 fork_out:
2356 	spin_lock_irq(&current->sighand->siglock);
2357 	hlist_del_init(&delayed.node);
2358 	spin_unlock_irq(&current->sighand->siglock);
2359 	return ERR_PTR(retval);
2360 }
2361 
2362 static inline void init_idle_pids(struct task_struct *idle)
2363 {
2364 	enum pid_type type;
2365 
2366 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2367 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2368 		init_task_pid(idle, type, &init_struct_pid);
2369 	}
2370 }
2371 
2372 struct task_struct *fork_idle(int cpu)
2373 {
2374 	struct task_struct *task;
2375 	struct kernel_clone_args args = {
2376 		.flags = CLONE_VM,
2377 	};
2378 
2379 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2380 	if (!IS_ERR(task)) {
2381 		init_idle_pids(task);
2382 		init_idle(task, cpu);
2383 	}
2384 
2385 	return task;
2386 }
2387 
2388 struct mm_struct *copy_init_mm(void)
2389 {
2390 	return dup_mm(NULL, &init_mm);
2391 }
2392 
2393 /*
2394  *  Ok, this is the main fork-routine.
2395  *
2396  * It copies the process, and if successful kick-starts
2397  * it and waits for it to finish using the VM if required.
2398  *
2399  * args->exit_signal is expected to be checked for sanity by the caller.
2400  */
2401 long _do_fork(struct kernel_clone_args *args)
2402 {
2403 	u64 clone_flags = args->flags;
2404 	struct completion vfork;
2405 	struct pid *pid;
2406 	struct task_struct *p;
2407 	int trace = 0;
2408 	long nr;
2409 
2410 	/*
2411 	 * Determine whether and which event to report to ptracer.  When
2412 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2413 	 * requested, no event is reported; otherwise, report if the event
2414 	 * for the type of forking is enabled.
2415 	 */
2416 	if (!(clone_flags & CLONE_UNTRACED)) {
2417 		if (clone_flags & CLONE_VFORK)
2418 			trace = PTRACE_EVENT_VFORK;
2419 		else if (args->exit_signal != SIGCHLD)
2420 			trace = PTRACE_EVENT_CLONE;
2421 		else
2422 			trace = PTRACE_EVENT_FORK;
2423 
2424 		if (likely(!ptrace_event_enabled(current, trace)))
2425 			trace = 0;
2426 	}
2427 
2428 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2429 	add_latent_entropy();
2430 
2431 	if (IS_ERR(p))
2432 		return PTR_ERR(p);
2433 
2434 	/*
2435 	 * Do this prior waking up the new thread - the thread pointer
2436 	 * might get invalid after that point, if the thread exits quickly.
2437 	 */
2438 	trace_sched_process_fork(current, p);
2439 
2440 	pid = get_task_pid(p, PIDTYPE_PID);
2441 	nr = pid_vnr(pid);
2442 
2443 	if (clone_flags & CLONE_PARENT_SETTID)
2444 		put_user(nr, args->parent_tid);
2445 
2446 	if (clone_flags & CLONE_VFORK) {
2447 		p->vfork_done = &vfork;
2448 		init_completion(&vfork);
2449 		get_task_struct(p);
2450 	}
2451 
2452 	wake_up_new_task(p);
2453 
2454 	/* forking complete and child started to run, tell ptracer */
2455 	if (unlikely(trace))
2456 		ptrace_event_pid(trace, pid);
2457 
2458 	if (clone_flags & CLONE_VFORK) {
2459 		if (!wait_for_vfork_done(p, &vfork))
2460 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2461 	}
2462 
2463 	put_pid(pid);
2464 	return nr;
2465 }
2466 
2467 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2468 {
2469 	/* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2470 	if ((kargs->flags & CLONE_PIDFD) &&
2471 	    (kargs->flags & CLONE_PARENT_SETTID))
2472 		return false;
2473 
2474 	return true;
2475 }
2476 
2477 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2478 /* For compatibility with architectures that call do_fork directly rather than
2479  * using the syscall entry points below. */
2480 long do_fork(unsigned long clone_flags,
2481 	      unsigned long stack_start,
2482 	      unsigned long stack_size,
2483 	      int __user *parent_tidptr,
2484 	      int __user *child_tidptr)
2485 {
2486 	struct kernel_clone_args args = {
2487 		.flags		= (clone_flags & ~CSIGNAL),
2488 		.pidfd		= parent_tidptr,
2489 		.child_tid	= child_tidptr,
2490 		.parent_tid	= parent_tidptr,
2491 		.exit_signal	= (clone_flags & CSIGNAL),
2492 		.stack		= stack_start,
2493 		.stack_size	= stack_size,
2494 	};
2495 
2496 	if (!legacy_clone_args_valid(&args))
2497 		return -EINVAL;
2498 
2499 	return _do_fork(&args);
2500 }
2501 #endif
2502 
2503 /*
2504  * Create a kernel thread.
2505  */
2506 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2507 {
2508 	struct kernel_clone_args args = {
2509 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2510 		.exit_signal	= (flags & CSIGNAL),
2511 		.stack		= (unsigned long)fn,
2512 		.stack_size	= (unsigned long)arg,
2513 	};
2514 
2515 	return _do_fork(&args);
2516 }
2517 
2518 #ifdef __ARCH_WANT_SYS_FORK
2519 SYSCALL_DEFINE0(fork)
2520 {
2521 #ifdef CONFIG_MMU
2522 	struct kernel_clone_args args = {
2523 		.exit_signal = SIGCHLD,
2524 	};
2525 
2526 	return _do_fork(&args);
2527 #else
2528 	/* can not support in nommu mode */
2529 	return -EINVAL;
2530 #endif
2531 }
2532 #endif
2533 
2534 #ifdef __ARCH_WANT_SYS_VFORK
2535 SYSCALL_DEFINE0(vfork)
2536 {
2537 	struct kernel_clone_args args = {
2538 		.flags		= CLONE_VFORK | CLONE_VM,
2539 		.exit_signal	= SIGCHLD,
2540 	};
2541 
2542 	return _do_fork(&args);
2543 }
2544 #endif
2545 
2546 #ifdef __ARCH_WANT_SYS_CLONE
2547 #ifdef CONFIG_CLONE_BACKWARDS
2548 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2549 		 int __user *, parent_tidptr,
2550 		 unsigned long, tls,
2551 		 int __user *, child_tidptr)
2552 #elif defined(CONFIG_CLONE_BACKWARDS2)
2553 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2554 		 int __user *, parent_tidptr,
2555 		 int __user *, child_tidptr,
2556 		 unsigned long, tls)
2557 #elif defined(CONFIG_CLONE_BACKWARDS3)
2558 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2559 		int, stack_size,
2560 		int __user *, parent_tidptr,
2561 		int __user *, child_tidptr,
2562 		unsigned long, tls)
2563 #else
2564 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2565 		 int __user *, parent_tidptr,
2566 		 int __user *, child_tidptr,
2567 		 unsigned long, tls)
2568 #endif
2569 {
2570 	struct kernel_clone_args args = {
2571 		.flags		= (clone_flags & ~CSIGNAL),
2572 		.pidfd		= parent_tidptr,
2573 		.child_tid	= child_tidptr,
2574 		.parent_tid	= parent_tidptr,
2575 		.exit_signal	= (clone_flags & CSIGNAL),
2576 		.stack		= newsp,
2577 		.tls		= tls,
2578 	};
2579 
2580 	if (!legacy_clone_args_valid(&args))
2581 		return -EINVAL;
2582 
2583 	return _do_fork(&args);
2584 }
2585 #endif
2586 
2587 #ifdef __ARCH_WANT_SYS_CLONE3
2588 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2589 					      struct clone_args __user *uargs,
2590 					      size_t usize)
2591 {
2592 	int err;
2593 	struct clone_args args;
2594 	pid_t *kset_tid = kargs->set_tid;
2595 
2596 	if (unlikely(usize > PAGE_SIZE))
2597 		return -E2BIG;
2598 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2599 		return -EINVAL;
2600 
2601 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2602 	if (err)
2603 		return err;
2604 
2605 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2606 		return -EINVAL;
2607 
2608 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2609 		return -EINVAL;
2610 
2611 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2612 		return -EINVAL;
2613 
2614 	/*
2615 	 * Verify that higher 32bits of exit_signal are unset and that
2616 	 * it is a valid signal
2617 	 */
2618 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2619 		     !valid_signal(args.exit_signal)))
2620 		return -EINVAL;
2621 
2622 	*kargs = (struct kernel_clone_args){
2623 		.flags		= args.flags,
2624 		.pidfd		= u64_to_user_ptr(args.pidfd),
2625 		.child_tid	= u64_to_user_ptr(args.child_tid),
2626 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2627 		.exit_signal	= args.exit_signal,
2628 		.stack		= args.stack,
2629 		.stack_size	= args.stack_size,
2630 		.tls		= args.tls,
2631 		.set_tid_size	= args.set_tid_size,
2632 	};
2633 
2634 	if (args.set_tid &&
2635 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2636 			(kargs->set_tid_size * sizeof(pid_t))))
2637 		return -EFAULT;
2638 
2639 	kargs->set_tid = kset_tid;
2640 
2641 	return 0;
2642 }
2643 
2644 /**
2645  * clone3_stack_valid - check and prepare stack
2646  * @kargs: kernel clone args
2647  *
2648  * Verify that the stack arguments userspace gave us are sane.
2649  * In addition, set the stack direction for userspace since it's easy for us to
2650  * determine.
2651  */
2652 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2653 {
2654 	if (kargs->stack == 0) {
2655 		if (kargs->stack_size > 0)
2656 			return false;
2657 	} else {
2658 		if (kargs->stack_size == 0)
2659 			return false;
2660 
2661 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2662 			return false;
2663 
2664 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2665 		kargs->stack += kargs->stack_size;
2666 #endif
2667 	}
2668 
2669 	return true;
2670 }
2671 
2672 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2673 {
2674 	/* Verify that no unknown flags are passed along. */
2675 	if (kargs->flags & ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND))
2676 		return false;
2677 
2678 	/*
2679 	 * - make the CLONE_DETACHED bit reuseable for clone3
2680 	 * - make the CSIGNAL bits reuseable for clone3
2681 	 */
2682 	if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2683 		return false;
2684 
2685 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2686 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2687 		return false;
2688 
2689 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2690 	    kargs->exit_signal)
2691 		return false;
2692 
2693 	if (!clone3_stack_valid(kargs))
2694 		return false;
2695 
2696 	return true;
2697 }
2698 
2699 /**
2700  * clone3 - create a new process with specific properties
2701  * @uargs: argument structure
2702  * @size:  size of @uargs
2703  *
2704  * clone3() is the extensible successor to clone()/clone2().
2705  * It takes a struct as argument that is versioned by its size.
2706  *
2707  * Return: On success, a positive PID for the child process.
2708  *         On error, a negative errno number.
2709  */
2710 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2711 {
2712 	int err;
2713 
2714 	struct kernel_clone_args kargs;
2715 	pid_t set_tid[MAX_PID_NS_LEVEL];
2716 
2717 	kargs.set_tid = set_tid;
2718 
2719 	err = copy_clone_args_from_user(&kargs, uargs, size);
2720 	if (err)
2721 		return err;
2722 
2723 	if (!clone3_args_valid(&kargs))
2724 		return -EINVAL;
2725 
2726 	return _do_fork(&kargs);
2727 }
2728 #endif
2729 
2730 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2731 {
2732 	struct task_struct *leader, *parent, *child;
2733 	int res;
2734 
2735 	read_lock(&tasklist_lock);
2736 	leader = top = top->group_leader;
2737 down:
2738 	for_each_thread(leader, parent) {
2739 		list_for_each_entry(child, &parent->children, sibling) {
2740 			res = visitor(child, data);
2741 			if (res) {
2742 				if (res < 0)
2743 					goto out;
2744 				leader = child;
2745 				goto down;
2746 			}
2747 up:
2748 			;
2749 		}
2750 	}
2751 
2752 	if (leader != top) {
2753 		child = leader;
2754 		parent = child->real_parent;
2755 		leader = parent->group_leader;
2756 		goto up;
2757 	}
2758 out:
2759 	read_unlock(&tasklist_lock);
2760 }
2761 
2762 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2763 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2764 #endif
2765 
2766 static void sighand_ctor(void *data)
2767 {
2768 	struct sighand_struct *sighand = data;
2769 
2770 	spin_lock_init(&sighand->siglock);
2771 	init_waitqueue_head(&sighand->signalfd_wqh);
2772 }
2773 
2774 void __init proc_caches_init(void)
2775 {
2776 	unsigned int mm_size;
2777 
2778 	sighand_cachep = kmem_cache_create("sighand_cache",
2779 			sizeof(struct sighand_struct), 0,
2780 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2781 			SLAB_ACCOUNT, sighand_ctor);
2782 	signal_cachep = kmem_cache_create("signal_cache",
2783 			sizeof(struct signal_struct), 0,
2784 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2785 			NULL);
2786 	files_cachep = kmem_cache_create("files_cache",
2787 			sizeof(struct files_struct), 0,
2788 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2789 			NULL);
2790 	fs_cachep = kmem_cache_create("fs_cache",
2791 			sizeof(struct fs_struct), 0,
2792 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2793 			NULL);
2794 
2795 	/*
2796 	 * The mm_cpumask is located at the end of mm_struct, and is
2797 	 * dynamically sized based on the maximum CPU number this system
2798 	 * can have, taking hotplug into account (nr_cpu_ids).
2799 	 */
2800 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2801 
2802 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2803 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2804 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2805 			offsetof(struct mm_struct, saved_auxv),
2806 			sizeof_field(struct mm_struct, saved_auxv),
2807 			NULL);
2808 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2809 	mmap_init();
2810 	nsproxy_cache_init();
2811 }
2812 
2813 /*
2814  * Check constraints on flags passed to the unshare system call.
2815  */
2816 static int check_unshare_flags(unsigned long unshare_flags)
2817 {
2818 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2819 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2820 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2821 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2822 		return -EINVAL;
2823 	/*
2824 	 * Not implemented, but pretend it works if there is nothing
2825 	 * to unshare.  Note that unsharing the address space or the
2826 	 * signal handlers also need to unshare the signal queues (aka
2827 	 * CLONE_THREAD).
2828 	 */
2829 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2830 		if (!thread_group_empty(current))
2831 			return -EINVAL;
2832 	}
2833 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2834 		if (refcount_read(&current->sighand->count) > 1)
2835 			return -EINVAL;
2836 	}
2837 	if (unshare_flags & CLONE_VM) {
2838 		if (!current_is_single_threaded())
2839 			return -EINVAL;
2840 	}
2841 
2842 	return 0;
2843 }
2844 
2845 /*
2846  * Unshare the filesystem structure if it is being shared
2847  */
2848 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2849 {
2850 	struct fs_struct *fs = current->fs;
2851 
2852 	if (!(unshare_flags & CLONE_FS) || !fs)
2853 		return 0;
2854 
2855 	/* don't need lock here; in the worst case we'll do useless copy */
2856 	if (fs->users == 1)
2857 		return 0;
2858 
2859 	*new_fsp = copy_fs_struct(fs);
2860 	if (!*new_fsp)
2861 		return -ENOMEM;
2862 
2863 	return 0;
2864 }
2865 
2866 /*
2867  * Unshare file descriptor table if it is being shared
2868  */
2869 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2870 {
2871 	struct files_struct *fd = current->files;
2872 	int error = 0;
2873 
2874 	if ((unshare_flags & CLONE_FILES) &&
2875 	    (fd && atomic_read(&fd->count) > 1)) {
2876 		*new_fdp = dup_fd(fd, &error);
2877 		if (!*new_fdp)
2878 			return error;
2879 	}
2880 
2881 	return 0;
2882 }
2883 
2884 /*
2885  * unshare allows a process to 'unshare' part of the process
2886  * context which was originally shared using clone.  copy_*
2887  * functions used by do_fork() cannot be used here directly
2888  * because they modify an inactive task_struct that is being
2889  * constructed. Here we are modifying the current, active,
2890  * task_struct.
2891  */
2892 int ksys_unshare(unsigned long unshare_flags)
2893 {
2894 	struct fs_struct *fs, *new_fs = NULL;
2895 	struct files_struct *fd, *new_fd = NULL;
2896 	struct cred *new_cred = NULL;
2897 	struct nsproxy *new_nsproxy = NULL;
2898 	int do_sysvsem = 0;
2899 	int err;
2900 
2901 	/*
2902 	 * If unsharing a user namespace must also unshare the thread group
2903 	 * and unshare the filesystem root and working directories.
2904 	 */
2905 	if (unshare_flags & CLONE_NEWUSER)
2906 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2907 	/*
2908 	 * If unsharing vm, must also unshare signal handlers.
2909 	 */
2910 	if (unshare_flags & CLONE_VM)
2911 		unshare_flags |= CLONE_SIGHAND;
2912 	/*
2913 	 * If unsharing a signal handlers, must also unshare the signal queues.
2914 	 */
2915 	if (unshare_flags & CLONE_SIGHAND)
2916 		unshare_flags |= CLONE_THREAD;
2917 	/*
2918 	 * If unsharing namespace, must also unshare filesystem information.
2919 	 */
2920 	if (unshare_flags & CLONE_NEWNS)
2921 		unshare_flags |= CLONE_FS;
2922 
2923 	err = check_unshare_flags(unshare_flags);
2924 	if (err)
2925 		goto bad_unshare_out;
2926 	/*
2927 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2928 	 * to a new ipc namespace, the semaphore arrays from the old
2929 	 * namespace are unreachable.
2930 	 */
2931 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2932 		do_sysvsem = 1;
2933 	err = unshare_fs(unshare_flags, &new_fs);
2934 	if (err)
2935 		goto bad_unshare_out;
2936 	err = unshare_fd(unshare_flags, &new_fd);
2937 	if (err)
2938 		goto bad_unshare_cleanup_fs;
2939 	err = unshare_userns(unshare_flags, &new_cred);
2940 	if (err)
2941 		goto bad_unshare_cleanup_fd;
2942 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2943 					 new_cred, new_fs);
2944 	if (err)
2945 		goto bad_unshare_cleanup_cred;
2946 
2947 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2948 		if (do_sysvsem) {
2949 			/*
2950 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2951 			 */
2952 			exit_sem(current);
2953 		}
2954 		if (unshare_flags & CLONE_NEWIPC) {
2955 			/* Orphan segments in old ns (see sem above). */
2956 			exit_shm(current);
2957 			shm_init_task(current);
2958 		}
2959 
2960 		if (new_nsproxy)
2961 			switch_task_namespaces(current, new_nsproxy);
2962 
2963 		task_lock(current);
2964 
2965 		if (new_fs) {
2966 			fs = current->fs;
2967 			spin_lock(&fs->lock);
2968 			current->fs = new_fs;
2969 			if (--fs->users)
2970 				new_fs = NULL;
2971 			else
2972 				new_fs = fs;
2973 			spin_unlock(&fs->lock);
2974 		}
2975 
2976 		if (new_fd) {
2977 			fd = current->files;
2978 			current->files = new_fd;
2979 			new_fd = fd;
2980 		}
2981 
2982 		task_unlock(current);
2983 
2984 		if (new_cred) {
2985 			/* Install the new user namespace */
2986 			commit_creds(new_cred);
2987 			new_cred = NULL;
2988 		}
2989 	}
2990 
2991 	perf_event_namespaces(current);
2992 
2993 bad_unshare_cleanup_cred:
2994 	if (new_cred)
2995 		put_cred(new_cred);
2996 bad_unshare_cleanup_fd:
2997 	if (new_fd)
2998 		put_files_struct(new_fd);
2999 
3000 bad_unshare_cleanup_fs:
3001 	if (new_fs)
3002 		free_fs_struct(new_fs);
3003 
3004 bad_unshare_out:
3005 	return err;
3006 }
3007 
3008 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3009 {
3010 	return ksys_unshare(unshare_flags);
3011 }
3012 
3013 /*
3014  *	Helper to unshare the files of the current task.
3015  *	We don't want to expose copy_files internals to
3016  *	the exec layer of the kernel.
3017  */
3018 
3019 int unshare_files(struct files_struct **displaced)
3020 {
3021 	struct task_struct *task = current;
3022 	struct files_struct *copy = NULL;
3023 	int error;
3024 
3025 	error = unshare_fd(CLONE_FILES, &copy);
3026 	if (error || !copy) {
3027 		*displaced = NULL;
3028 		return error;
3029 	}
3030 	*displaced = task->files;
3031 	task_lock(task);
3032 	task->files = copy;
3033 	task_unlock(task);
3034 	return 0;
3035 }
3036 
3037 int sysctl_max_threads(struct ctl_table *table, int write,
3038 		       void __user *buffer, size_t *lenp, loff_t *ppos)
3039 {
3040 	struct ctl_table t;
3041 	int ret;
3042 	int threads = max_threads;
3043 	int min = 1;
3044 	int max = MAX_THREADS;
3045 
3046 	t = *table;
3047 	t.data = &threads;
3048 	t.extra1 = &min;
3049 	t.extra2 = &max;
3050 
3051 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3052 	if (ret || !write)
3053 		return ret;
3054 
3055 	max_threads = threads;
3056 
3057 	return 0;
3058 }
3059