1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/hmm.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/vmacache.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/blkdev.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/stackleak.h> 97 98 #include <asm/pgtable.h> 99 #include <asm/pgalloc.h> 100 #include <linux/uaccess.h> 101 #include <asm/mmu_context.h> 102 #include <asm/cacheflush.h> 103 #include <asm/tlbflush.h> 104 105 #include <trace/events/sched.h> 106 107 #define CREATE_TRACE_POINTS 108 #include <trace/events/task.h> 109 110 /* 111 * Minimum number of threads to boot the kernel 112 */ 113 #define MIN_THREADS 20 114 115 /* 116 * Maximum number of threads 117 */ 118 #define MAX_THREADS FUTEX_TID_MASK 119 120 /* 121 * Protected counters by write_lock_irq(&tasklist_lock) 122 */ 123 unsigned long total_forks; /* Handle normal Linux uptimes. */ 124 int nr_threads; /* The idle threads do not count.. */ 125 126 static int max_threads; /* tunable limit on nr_threads */ 127 128 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 129 130 static const char * const resident_page_types[] = { 131 NAMED_ARRAY_INDEX(MM_FILEPAGES), 132 NAMED_ARRAY_INDEX(MM_ANONPAGES), 133 NAMED_ARRAY_INDEX(MM_SWAPENTS), 134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 135 }; 136 137 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 138 139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 140 141 #ifdef CONFIG_PROVE_RCU 142 int lockdep_tasklist_lock_is_held(void) 143 { 144 return lockdep_is_held(&tasklist_lock); 145 } 146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 147 #endif /* #ifdef CONFIG_PROVE_RCU */ 148 149 int nr_processes(void) 150 { 151 int cpu; 152 int total = 0; 153 154 for_each_possible_cpu(cpu) 155 total += per_cpu(process_counts, cpu); 156 157 return total; 158 } 159 160 void __weak arch_release_task_struct(struct task_struct *tsk) 161 { 162 } 163 164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 165 static struct kmem_cache *task_struct_cachep; 166 167 static inline struct task_struct *alloc_task_struct_node(int node) 168 { 169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 170 } 171 172 static inline void free_task_struct(struct task_struct *tsk) 173 { 174 kmem_cache_free(task_struct_cachep, tsk); 175 } 176 #endif 177 178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 179 180 /* 181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 182 * kmemcache based allocator. 183 */ 184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 185 186 #ifdef CONFIG_VMAP_STACK 187 /* 188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 189 * flush. Try to minimize the number of calls by caching stacks. 190 */ 191 #define NR_CACHED_STACKS 2 192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 193 194 static int free_vm_stack_cache(unsigned int cpu) 195 { 196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 197 int i; 198 199 for (i = 0; i < NR_CACHED_STACKS; i++) { 200 struct vm_struct *vm_stack = cached_vm_stacks[i]; 201 202 if (!vm_stack) 203 continue; 204 205 vfree(vm_stack->addr); 206 cached_vm_stacks[i] = NULL; 207 } 208 209 return 0; 210 } 211 #endif 212 213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node) 214 { 215 #ifdef CONFIG_VMAP_STACK 216 void *stack; 217 int i; 218 219 for (i = 0; i < NR_CACHED_STACKS; i++) { 220 struct vm_struct *s; 221 222 s = this_cpu_xchg(cached_stacks[i], NULL); 223 224 if (!s) 225 continue; 226 227 /* Clear stale pointers from reused stack. */ 228 memset(s->addr, 0, THREAD_SIZE); 229 230 tsk->stack_vm_area = s; 231 tsk->stack = s->addr; 232 return s->addr; 233 } 234 235 /* 236 * Allocated stacks are cached and later reused by new threads, 237 * so memcg accounting is performed manually on assigning/releasing 238 * stacks to tasks. Drop __GFP_ACCOUNT. 239 */ 240 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 241 VMALLOC_START, VMALLOC_END, 242 THREADINFO_GFP & ~__GFP_ACCOUNT, 243 PAGE_KERNEL, 244 0, node, __builtin_return_address(0)); 245 246 /* 247 * We can't call find_vm_area() in interrupt context, and 248 * free_thread_stack() can be called in interrupt context, 249 * so cache the vm_struct. 250 */ 251 if (stack) { 252 tsk->stack_vm_area = find_vm_area(stack); 253 tsk->stack = stack; 254 } 255 return stack; 256 #else 257 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 258 THREAD_SIZE_ORDER); 259 260 if (likely(page)) { 261 tsk->stack = page_address(page); 262 return tsk->stack; 263 } 264 return NULL; 265 #endif 266 } 267 268 static inline void free_thread_stack(struct task_struct *tsk) 269 { 270 #ifdef CONFIG_VMAP_STACK 271 struct vm_struct *vm = task_stack_vm_area(tsk); 272 273 if (vm) { 274 int i; 275 276 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 277 mod_memcg_page_state(vm->pages[i], 278 MEMCG_KERNEL_STACK_KB, 279 -(int)(PAGE_SIZE / 1024)); 280 281 memcg_kmem_uncharge(vm->pages[i], 0); 282 } 283 284 for (i = 0; i < NR_CACHED_STACKS; i++) { 285 if (this_cpu_cmpxchg(cached_stacks[i], 286 NULL, tsk->stack_vm_area) != NULL) 287 continue; 288 289 return; 290 } 291 292 vfree_atomic(tsk->stack); 293 return; 294 } 295 #endif 296 297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER); 298 } 299 # else 300 static struct kmem_cache *thread_stack_cache; 301 302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, 303 int node) 304 { 305 unsigned long *stack; 306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 307 tsk->stack = stack; 308 return stack; 309 } 310 311 static void free_thread_stack(struct task_struct *tsk) 312 { 313 kmem_cache_free(thread_stack_cache, tsk->stack); 314 } 315 316 void thread_stack_cache_init(void) 317 { 318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 319 THREAD_SIZE, THREAD_SIZE, 0, 0, 320 THREAD_SIZE, NULL); 321 BUG_ON(thread_stack_cache == NULL); 322 } 323 # endif 324 #endif 325 326 /* SLAB cache for signal_struct structures (tsk->signal) */ 327 static struct kmem_cache *signal_cachep; 328 329 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 330 struct kmem_cache *sighand_cachep; 331 332 /* SLAB cache for files_struct structures (tsk->files) */ 333 struct kmem_cache *files_cachep; 334 335 /* SLAB cache for fs_struct structures (tsk->fs) */ 336 struct kmem_cache *fs_cachep; 337 338 /* SLAB cache for vm_area_struct structures */ 339 static struct kmem_cache *vm_area_cachep; 340 341 /* SLAB cache for mm_struct structures (tsk->mm) */ 342 static struct kmem_cache *mm_cachep; 343 344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 345 { 346 struct vm_area_struct *vma; 347 348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 349 if (vma) 350 vma_init(vma, mm); 351 return vma; 352 } 353 354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 355 { 356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 357 358 if (new) { 359 *new = *orig; 360 INIT_LIST_HEAD(&new->anon_vma_chain); 361 } 362 return new; 363 } 364 365 void vm_area_free(struct vm_area_struct *vma) 366 { 367 kmem_cache_free(vm_area_cachep, vma); 368 } 369 370 static void account_kernel_stack(struct task_struct *tsk, int account) 371 { 372 void *stack = task_stack_page(tsk); 373 struct vm_struct *vm = task_stack_vm_area(tsk); 374 375 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 376 377 if (vm) { 378 int i; 379 380 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 381 382 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 383 mod_zone_page_state(page_zone(vm->pages[i]), 384 NR_KERNEL_STACK_KB, 385 PAGE_SIZE / 1024 * account); 386 } 387 } else { 388 /* 389 * All stack pages are in the same zone and belong to the 390 * same memcg. 391 */ 392 struct page *first_page = virt_to_page(stack); 393 394 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB, 395 THREAD_SIZE / 1024 * account); 396 397 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB, 398 account * (THREAD_SIZE / 1024)); 399 } 400 } 401 402 static int memcg_charge_kernel_stack(struct task_struct *tsk) 403 { 404 #ifdef CONFIG_VMAP_STACK 405 struct vm_struct *vm = task_stack_vm_area(tsk); 406 int ret; 407 408 if (vm) { 409 int i; 410 411 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 412 /* 413 * If memcg_kmem_charge() fails, page->mem_cgroup 414 * pointer is NULL, and both memcg_kmem_uncharge() 415 * and mod_memcg_page_state() in free_thread_stack() 416 * will ignore this page. So it's safe. 417 */ 418 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0); 419 if (ret) 420 return ret; 421 422 mod_memcg_page_state(vm->pages[i], 423 MEMCG_KERNEL_STACK_KB, 424 PAGE_SIZE / 1024); 425 } 426 } 427 #endif 428 return 0; 429 } 430 431 static void release_task_stack(struct task_struct *tsk) 432 { 433 if (WARN_ON(tsk->state != TASK_DEAD)) 434 return; /* Better to leak the stack than to free prematurely */ 435 436 account_kernel_stack(tsk, -1); 437 free_thread_stack(tsk); 438 tsk->stack = NULL; 439 #ifdef CONFIG_VMAP_STACK 440 tsk->stack_vm_area = NULL; 441 #endif 442 } 443 444 #ifdef CONFIG_THREAD_INFO_IN_TASK 445 void put_task_stack(struct task_struct *tsk) 446 { 447 if (refcount_dec_and_test(&tsk->stack_refcount)) 448 release_task_stack(tsk); 449 } 450 #endif 451 452 void free_task(struct task_struct *tsk) 453 { 454 #ifndef CONFIG_THREAD_INFO_IN_TASK 455 /* 456 * The task is finally done with both the stack and thread_info, 457 * so free both. 458 */ 459 release_task_stack(tsk); 460 #else 461 /* 462 * If the task had a separate stack allocation, it should be gone 463 * by now. 464 */ 465 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 466 #endif 467 rt_mutex_debug_task_free(tsk); 468 ftrace_graph_exit_task(tsk); 469 put_seccomp_filter(tsk); 470 arch_release_task_struct(tsk); 471 if (tsk->flags & PF_KTHREAD) 472 free_kthread_struct(tsk); 473 free_task_struct(tsk); 474 } 475 EXPORT_SYMBOL(free_task); 476 477 #ifdef CONFIG_MMU 478 static __latent_entropy int dup_mmap(struct mm_struct *mm, 479 struct mm_struct *oldmm) 480 { 481 struct vm_area_struct *mpnt, *tmp, *prev, **pprev; 482 struct rb_node **rb_link, *rb_parent; 483 int retval; 484 unsigned long charge; 485 LIST_HEAD(uf); 486 487 uprobe_start_dup_mmap(); 488 if (down_write_killable(&oldmm->mmap_sem)) { 489 retval = -EINTR; 490 goto fail_uprobe_end; 491 } 492 flush_cache_dup_mm(oldmm); 493 uprobe_dup_mmap(oldmm, mm); 494 /* 495 * Not linked in yet - no deadlock potential: 496 */ 497 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING); 498 499 /* No ordering required: file already has been exposed. */ 500 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 501 502 mm->total_vm = oldmm->total_vm; 503 mm->data_vm = oldmm->data_vm; 504 mm->exec_vm = oldmm->exec_vm; 505 mm->stack_vm = oldmm->stack_vm; 506 507 rb_link = &mm->mm_rb.rb_node; 508 rb_parent = NULL; 509 pprev = &mm->mmap; 510 retval = ksm_fork(mm, oldmm); 511 if (retval) 512 goto out; 513 retval = khugepaged_fork(mm, oldmm); 514 if (retval) 515 goto out; 516 517 prev = NULL; 518 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) { 519 struct file *file; 520 521 if (mpnt->vm_flags & VM_DONTCOPY) { 522 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 523 continue; 524 } 525 charge = 0; 526 /* 527 * Don't duplicate many vmas if we've been oom-killed (for 528 * example) 529 */ 530 if (fatal_signal_pending(current)) { 531 retval = -EINTR; 532 goto out; 533 } 534 if (mpnt->vm_flags & VM_ACCOUNT) { 535 unsigned long len = vma_pages(mpnt); 536 537 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 538 goto fail_nomem; 539 charge = len; 540 } 541 tmp = vm_area_dup(mpnt); 542 if (!tmp) 543 goto fail_nomem; 544 retval = vma_dup_policy(mpnt, tmp); 545 if (retval) 546 goto fail_nomem_policy; 547 tmp->vm_mm = mm; 548 retval = dup_userfaultfd(tmp, &uf); 549 if (retval) 550 goto fail_nomem_anon_vma_fork; 551 if (tmp->vm_flags & VM_WIPEONFORK) { 552 /* VM_WIPEONFORK gets a clean slate in the child. */ 553 tmp->anon_vma = NULL; 554 if (anon_vma_prepare(tmp)) 555 goto fail_nomem_anon_vma_fork; 556 } else if (anon_vma_fork(tmp, mpnt)) 557 goto fail_nomem_anon_vma_fork; 558 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 559 tmp->vm_next = tmp->vm_prev = NULL; 560 file = tmp->vm_file; 561 if (file) { 562 struct inode *inode = file_inode(file); 563 struct address_space *mapping = file->f_mapping; 564 565 get_file(file); 566 if (tmp->vm_flags & VM_DENYWRITE) 567 atomic_dec(&inode->i_writecount); 568 i_mmap_lock_write(mapping); 569 if (tmp->vm_flags & VM_SHARED) 570 atomic_inc(&mapping->i_mmap_writable); 571 flush_dcache_mmap_lock(mapping); 572 /* insert tmp into the share list, just after mpnt */ 573 vma_interval_tree_insert_after(tmp, mpnt, 574 &mapping->i_mmap); 575 flush_dcache_mmap_unlock(mapping); 576 i_mmap_unlock_write(mapping); 577 } 578 579 /* 580 * Clear hugetlb-related page reserves for children. This only 581 * affects MAP_PRIVATE mappings. Faults generated by the child 582 * are not guaranteed to succeed, even if read-only 583 */ 584 if (is_vm_hugetlb_page(tmp)) 585 reset_vma_resv_huge_pages(tmp); 586 587 /* 588 * Link in the new vma and copy the page table entries. 589 */ 590 *pprev = tmp; 591 pprev = &tmp->vm_next; 592 tmp->vm_prev = prev; 593 prev = tmp; 594 595 __vma_link_rb(mm, tmp, rb_link, rb_parent); 596 rb_link = &tmp->vm_rb.rb_right; 597 rb_parent = &tmp->vm_rb; 598 599 mm->map_count++; 600 if (!(tmp->vm_flags & VM_WIPEONFORK)) 601 retval = copy_page_range(mm, oldmm, mpnt); 602 603 if (tmp->vm_ops && tmp->vm_ops->open) 604 tmp->vm_ops->open(tmp); 605 606 if (retval) 607 goto out; 608 } 609 /* a new mm has just been created */ 610 retval = arch_dup_mmap(oldmm, mm); 611 out: 612 up_write(&mm->mmap_sem); 613 flush_tlb_mm(oldmm); 614 up_write(&oldmm->mmap_sem); 615 dup_userfaultfd_complete(&uf); 616 fail_uprobe_end: 617 uprobe_end_dup_mmap(); 618 return retval; 619 fail_nomem_anon_vma_fork: 620 mpol_put(vma_policy(tmp)); 621 fail_nomem_policy: 622 vm_area_free(tmp); 623 fail_nomem: 624 retval = -ENOMEM; 625 vm_unacct_memory(charge); 626 goto out; 627 } 628 629 static inline int mm_alloc_pgd(struct mm_struct *mm) 630 { 631 mm->pgd = pgd_alloc(mm); 632 if (unlikely(!mm->pgd)) 633 return -ENOMEM; 634 return 0; 635 } 636 637 static inline void mm_free_pgd(struct mm_struct *mm) 638 { 639 pgd_free(mm, mm->pgd); 640 } 641 #else 642 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 643 { 644 down_write(&oldmm->mmap_sem); 645 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm)); 646 up_write(&oldmm->mmap_sem); 647 return 0; 648 } 649 #define mm_alloc_pgd(mm) (0) 650 #define mm_free_pgd(mm) 651 #endif /* CONFIG_MMU */ 652 653 static void check_mm(struct mm_struct *mm) 654 { 655 int i; 656 657 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 658 "Please make sure 'struct resident_page_types[]' is updated as well"); 659 660 for (i = 0; i < NR_MM_COUNTERS; i++) { 661 long x = atomic_long_read(&mm->rss_stat.count[i]); 662 663 if (unlikely(x)) 664 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 665 mm, resident_page_types[i], x); 666 } 667 668 if (mm_pgtables_bytes(mm)) 669 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 670 mm_pgtables_bytes(mm)); 671 672 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 673 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 674 #endif 675 } 676 677 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 678 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 679 680 /* 681 * Called when the last reference to the mm 682 * is dropped: either by a lazy thread or by 683 * mmput. Free the page directory and the mm. 684 */ 685 void __mmdrop(struct mm_struct *mm) 686 { 687 BUG_ON(mm == &init_mm); 688 WARN_ON_ONCE(mm == current->mm); 689 WARN_ON_ONCE(mm == current->active_mm); 690 mm_free_pgd(mm); 691 destroy_context(mm); 692 mmu_notifier_mm_destroy(mm); 693 check_mm(mm); 694 put_user_ns(mm->user_ns); 695 free_mm(mm); 696 } 697 EXPORT_SYMBOL_GPL(__mmdrop); 698 699 static void mmdrop_async_fn(struct work_struct *work) 700 { 701 struct mm_struct *mm; 702 703 mm = container_of(work, struct mm_struct, async_put_work); 704 __mmdrop(mm); 705 } 706 707 static void mmdrop_async(struct mm_struct *mm) 708 { 709 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 710 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 711 schedule_work(&mm->async_put_work); 712 } 713 } 714 715 static inline void free_signal_struct(struct signal_struct *sig) 716 { 717 taskstats_tgid_free(sig); 718 sched_autogroup_exit(sig); 719 /* 720 * __mmdrop is not safe to call from softirq context on x86 due to 721 * pgd_dtor so postpone it to the async context 722 */ 723 if (sig->oom_mm) 724 mmdrop_async(sig->oom_mm); 725 kmem_cache_free(signal_cachep, sig); 726 } 727 728 static inline void put_signal_struct(struct signal_struct *sig) 729 { 730 if (refcount_dec_and_test(&sig->sigcnt)) 731 free_signal_struct(sig); 732 } 733 734 void __put_task_struct(struct task_struct *tsk) 735 { 736 WARN_ON(!tsk->exit_state); 737 WARN_ON(refcount_read(&tsk->usage)); 738 WARN_ON(tsk == current); 739 740 cgroup_free(tsk); 741 task_numa_free(tsk, true); 742 security_task_free(tsk); 743 exit_creds(tsk); 744 delayacct_tsk_free(tsk); 745 put_signal_struct(tsk->signal); 746 747 if (!profile_handoff_task(tsk)) 748 free_task(tsk); 749 } 750 EXPORT_SYMBOL_GPL(__put_task_struct); 751 752 void __init __weak arch_task_cache_init(void) { } 753 754 /* 755 * set_max_threads 756 */ 757 static void set_max_threads(unsigned int max_threads_suggested) 758 { 759 u64 threads; 760 unsigned long nr_pages = totalram_pages(); 761 762 /* 763 * The number of threads shall be limited such that the thread 764 * structures may only consume a small part of the available memory. 765 */ 766 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 767 threads = MAX_THREADS; 768 else 769 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 770 (u64) THREAD_SIZE * 8UL); 771 772 if (threads > max_threads_suggested) 773 threads = max_threads_suggested; 774 775 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 776 } 777 778 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 779 /* Initialized by the architecture: */ 780 int arch_task_struct_size __read_mostly; 781 #endif 782 783 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 784 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 785 { 786 /* Fetch thread_struct whitelist for the architecture. */ 787 arch_thread_struct_whitelist(offset, size); 788 789 /* 790 * Handle zero-sized whitelist or empty thread_struct, otherwise 791 * adjust offset to position of thread_struct in task_struct. 792 */ 793 if (unlikely(*size == 0)) 794 *offset = 0; 795 else 796 *offset += offsetof(struct task_struct, thread); 797 } 798 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 799 800 void __init fork_init(void) 801 { 802 int i; 803 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 804 #ifndef ARCH_MIN_TASKALIGN 805 #define ARCH_MIN_TASKALIGN 0 806 #endif 807 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 808 unsigned long useroffset, usersize; 809 810 /* create a slab on which task_structs can be allocated */ 811 task_struct_whitelist(&useroffset, &usersize); 812 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 813 arch_task_struct_size, align, 814 SLAB_PANIC|SLAB_ACCOUNT, 815 useroffset, usersize, NULL); 816 #endif 817 818 /* do the arch specific task caches init */ 819 arch_task_cache_init(); 820 821 set_max_threads(MAX_THREADS); 822 823 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 824 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 825 init_task.signal->rlim[RLIMIT_SIGPENDING] = 826 init_task.signal->rlim[RLIMIT_NPROC]; 827 828 for (i = 0; i < UCOUNT_COUNTS; i++) { 829 init_user_ns.ucount_max[i] = max_threads/2; 830 } 831 832 #ifdef CONFIG_VMAP_STACK 833 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 834 NULL, free_vm_stack_cache); 835 #endif 836 837 lockdep_init_task(&init_task); 838 uprobes_init(); 839 } 840 841 int __weak arch_dup_task_struct(struct task_struct *dst, 842 struct task_struct *src) 843 { 844 *dst = *src; 845 return 0; 846 } 847 848 void set_task_stack_end_magic(struct task_struct *tsk) 849 { 850 unsigned long *stackend; 851 852 stackend = end_of_stack(tsk); 853 *stackend = STACK_END_MAGIC; /* for overflow detection */ 854 } 855 856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 857 { 858 struct task_struct *tsk; 859 unsigned long *stack; 860 struct vm_struct *stack_vm_area __maybe_unused; 861 int err; 862 863 if (node == NUMA_NO_NODE) 864 node = tsk_fork_get_node(orig); 865 tsk = alloc_task_struct_node(node); 866 if (!tsk) 867 return NULL; 868 869 stack = alloc_thread_stack_node(tsk, node); 870 if (!stack) 871 goto free_tsk; 872 873 if (memcg_charge_kernel_stack(tsk)) 874 goto free_stack; 875 876 stack_vm_area = task_stack_vm_area(tsk); 877 878 err = arch_dup_task_struct(tsk, orig); 879 880 /* 881 * arch_dup_task_struct() clobbers the stack-related fields. Make 882 * sure they're properly initialized before using any stack-related 883 * functions again. 884 */ 885 tsk->stack = stack; 886 #ifdef CONFIG_VMAP_STACK 887 tsk->stack_vm_area = stack_vm_area; 888 #endif 889 #ifdef CONFIG_THREAD_INFO_IN_TASK 890 refcount_set(&tsk->stack_refcount, 1); 891 #endif 892 893 if (err) 894 goto free_stack; 895 896 #ifdef CONFIG_SECCOMP 897 /* 898 * We must handle setting up seccomp filters once we're under 899 * the sighand lock in case orig has changed between now and 900 * then. Until then, filter must be NULL to avoid messing up 901 * the usage counts on the error path calling free_task. 902 */ 903 tsk->seccomp.filter = NULL; 904 #endif 905 906 setup_thread_stack(tsk, orig); 907 clear_user_return_notifier(tsk); 908 clear_tsk_need_resched(tsk); 909 set_task_stack_end_magic(tsk); 910 911 #ifdef CONFIG_STACKPROTECTOR 912 tsk->stack_canary = get_random_canary(); 913 #endif 914 if (orig->cpus_ptr == &orig->cpus_mask) 915 tsk->cpus_ptr = &tsk->cpus_mask; 916 917 /* 918 * One for the user space visible state that goes away when reaped. 919 * One for the scheduler. 920 */ 921 refcount_set(&tsk->rcu_users, 2); 922 /* One for the rcu users */ 923 refcount_set(&tsk->usage, 1); 924 #ifdef CONFIG_BLK_DEV_IO_TRACE 925 tsk->btrace_seq = 0; 926 #endif 927 tsk->splice_pipe = NULL; 928 tsk->task_frag.page = NULL; 929 tsk->wake_q.next = NULL; 930 931 account_kernel_stack(tsk, 1); 932 933 kcov_task_init(tsk); 934 935 #ifdef CONFIG_FAULT_INJECTION 936 tsk->fail_nth = 0; 937 #endif 938 939 #ifdef CONFIG_BLK_CGROUP 940 tsk->throttle_queue = NULL; 941 tsk->use_memdelay = 0; 942 #endif 943 944 #ifdef CONFIG_MEMCG 945 tsk->active_memcg = NULL; 946 #endif 947 return tsk; 948 949 free_stack: 950 free_thread_stack(tsk); 951 free_tsk: 952 free_task_struct(tsk); 953 return NULL; 954 } 955 956 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 957 958 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 959 960 static int __init coredump_filter_setup(char *s) 961 { 962 default_dump_filter = 963 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 964 MMF_DUMP_FILTER_MASK; 965 return 1; 966 } 967 968 __setup("coredump_filter=", coredump_filter_setup); 969 970 #include <linux/init_task.h> 971 972 static void mm_init_aio(struct mm_struct *mm) 973 { 974 #ifdef CONFIG_AIO 975 spin_lock_init(&mm->ioctx_lock); 976 mm->ioctx_table = NULL; 977 #endif 978 } 979 980 static __always_inline void mm_clear_owner(struct mm_struct *mm, 981 struct task_struct *p) 982 { 983 #ifdef CONFIG_MEMCG 984 if (mm->owner == p) 985 WRITE_ONCE(mm->owner, NULL); 986 #endif 987 } 988 989 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 990 { 991 #ifdef CONFIG_MEMCG 992 mm->owner = p; 993 #endif 994 } 995 996 static void mm_init_uprobes_state(struct mm_struct *mm) 997 { 998 #ifdef CONFIG_UPROBES 999 mm->uprobes_state.xol_area = NULL; 1000 #endif 1001 } 1002 1003 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1004 struct user_namespace *user_ns) 1005 { 1006 mm->mmap = NULL; 1007 mm->mm_rb = RB_ROOT; 1008 mm->vmacache_seqnum = 0; 1009 atomic_set(&mm->mm_users, 1); 1010 atomic_set(&mm->mm_count, 1); 1011 init_rwsem(&mm->mmap_sem); 1012 INIT_LIST_HEAD(&mm->mmlist); 1013 mm->core_state = NULL; 1014 mm_pgtables_bytes_init(mm); 1015 mm->map_count = 0; 1016 mm->locked_vm = 0; 1017 atomic64_set(&mm->pinned_vm, 0); 1018 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1019 spin_lock_init(&mm->page_table_lock); 1020 spin_lock_init(&mm->arg_lock); 1021 mm_init_cpumask(mm); 1022 mm_init_aio(mm); 1023 mm_init_owner(mm, p); 1024 RCU_INIT_POINTER(mm->exe_file, NULL); 1025 mmu_notifier_mm_init(mm); 1026 init_tlb_flush_pending(mm); 1027 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1028 mm->pmd_huge_pte = NULL; 1029 #endif 1030 mm_init_uprobes_state(mm); 1031 1032 if (current->mm) { 1033 mm->flags = current->mm->flags & MMF_INIT_MASK; 1034 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1035 } else { 1036 mm->flags = default_dump_filter; 1037 mm->def_flags = 0; 1038 } 1039 1040 if (mm_alloc_pgd(mm)) 1041 goto fail_nopgd; 1042 1043 if (init_new_context(p, mm)) 1044 goto fail_nocontext; 1045 1046 mm->user_ns = get_user_ns(user_ns); 1047 return mm; 1048 1049 fail_nocontext: 1050 mm_free_pgd(mm); 1051 fail_nopgd: 1052 free_mm(mm); 1053 return NULL; 1054 } 1055 1056 /* 1057 * Allocate and initialize an mm_struct. 1058 */ 1059 struct mm_struct *mm_alloc(void) 1060 { 1061 struct mm_struct *mm; 1062 1063 mm = allocate_mm(); 1064 if (!mm) 1065 return NULL; 1066 1067 memset(mm, 0, sizeof(*mm)); 1068 return mm_init(mm, current, current_user_ns()); 1069 } 1070 1071 static inline void __mmput(struct mm_struct *mm) 1072 { 1073 VM_BUG_ON(atomic_read(&mm->mm_users)); 1074 1075 uprobe_clear_state(mm); 1076 exit_aio(mm); 1077 ksm_exit(mm); 1078 khugepaged_exit(mm); /* must run before exit_mmap */ 1079 exit_mmap(mm); 1080 mm_put_huge_zero_page(mm); 1081 set_mm_exe_file(mm, NULL); 1082 if (!list_empty(&mm->mmlist)) { 1083 spin_lock(&mmlist_lock); 1084 list_del(&mm->mmlist); 1085 spin_unlock(&mmlist_lock); 1086 } 1087 if (mm->binfmt) 1088 module_put(mm->binfmt->module); 1089 mmdrop(mm); 1090 } 1091 1092 /* 1093 * Decrement the use count and release all resources for an mm. 1094 */ 1095 void mmput(struct mm_struct *mm) 1096 { 1097 might_sleep(); 1098 1099 if (atomic_dec_and_test(&mm->mm_users)) 1100 __mmput(mm); 1101 } 1102 EXPORT_SYMBOL_GPL(mmput); 1103 1104 #ifdef CONFIG_MMU 1105 static void mmput_async_fn(struct work_struct *work) 1106 { 1107 struct mm_struct *mm = container_of(work, struct mm_struct, 1108 async_put_work); 1109 1110 __mmput(mm); 1111 } 1112 1113 void mmput_async(struct mm_struct *mm) 1114 { 1115 if (atomic_dec_and_test(&mm->mm_users)) { 1116 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1117 schedule_work(&mm->async_put_work); 1118 } 1119 } 1120 #endif 1121 1122 /** 1123 * set_mm_exe_file - change a reference to the mm's executable file 1124 * 1125 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1126 * 1127 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1128 * invocations: in mmput() nobody alive left, in execve task is single 1129 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the 1130 * mm->exe_file, but does so without using set_mm_exe_file() in order 1131 * to do avoid the need for any locks. 1132 */ 1133 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1134 { 1135 struct file *old_exe_file; 1136 1137 /* 1138 * It is safe to dereference the exe_file without RCU as 1139 * this function is only called if nobody else can access 1140 * this mm -- see comment above for justification. 1141 */ 1142 old_exe_file = rcu_dereference_raw(mm->exe_file); 1143 1144 if (new_exe_file) 1145 get_file(new_exe_file); 1146 rcu_assign_pointer(mm->exe_file, new_exe_file); 1147 if (old_exe_file) 1148 fput(old_exe_file); 1149 } 1150 1151 /** 1152 * get_mm_exe_file - acquire a reference to the mm's executable file 1153 * 1154 * Returns %NULL if mm has no associated executable file. 1155 * User must release file via fput(). 1156 */ 1157 struct file *get_mm_exe_file(struct mm_struct *mm) 1158 { 1159 struct file *exe_file; 1160 1161 rcu_read_lock(); 1162 exe_file = rcu_dereference(mm->exe_file); 1163 if (exe_file && !get_file_rcu(exe_file)) 1164 exe_file = NULL; 1165 rcu_read_unlock(); 1166 return exe_file; 1167 } 1168 EXPORT_SYMBOL(get_mm_exe_file); 1169 1170 /** 1171 * get_task_exe_file - acquire a reference to the task's executable file 1172 * 1173 * Returns %NULL if task's mm (if any) has no associated executable file or 1174 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1175 * User must release file via fput(). 1176 */ 1177 struct file *get_task_exe_file(struct task_struct *task) 1178 { 1179 struct file *exe_file = NULL; 1180 struct mm_struct *mm; 1181 1182 task_lock(task); 1183 mm = task->mm; 1184 if (mm) { 1185 if (!(task->flags & PF_KTHREAD)) 1186 exe_file = get_mm_exe_file(mm); 1187 } 1188 task_unlock(task); 1189 return exe_file; 1190 } 1191 EXPORT_SYMBOL(get_task_exe_file); 1192 1193 /** 1194 * get_task_mm - acquire a reference to the task's mm 1195 * 1196 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1197 * this kernel workthread has transiently adopted a user mm with use_mm, 1198 * to do its AIO) is not set and if so returns a reference to it, after 1199 * bumping up the use count. User must release the mm via mmput() 1200 * after use. Typically used by /proc and ptrace. 1201 */ 1202 struct mm_struct *get_task_mm(struct task_struct *task) 1203 { 1204 struct mm_struct *mm; 1205 1206 task_lock(task); 1207 mm = task->mm; 1208 if (mm) { 1209 if (task->flags & PF_KTHREAD) 1210 mm = NULL; 1211 else 1212 mmget(mm); 1213 } 1214 task_unlock(task); 1215 return mm; 1216 } 1217 EXPORT_SYMBOL_GPL(get_task_mm); 1218 1219 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1220 { 1221 struct mm_struct *mm; 1222 int err; 1223 1224 err = mutex_lock_killable(&task->signal->cred_guard_mutex); 1225 if (err) 1226 return ERR_PTR(err); 1227 1228 mm = get_task_mm(task); 1229 if (mm && mm != current->mm && 1230 !ptrace_may_access(task, mode)) { 1231 mmput(mm); 1232 mm = ERR_PTR(-EACCES); 1233 } 1234 mutex_unlock(&task->signal->cred_guard_mutex); 1235 1236 return mm; 1237 } 1238 1239 static void complete_vfork_done(struct task_struct *tsk) 1240 { 1241 struct completion *vfork; 1242 1243 task_lock(tsk); 1244 vfork = tsk->vfork_done; 1245 if (likely(vfork)) { 1246 tsk->vfork_done = NULL; 1247 complete(vfork); 1248 } 1249 task_unlock(tsk); 1250 } 1251 1252 static int wait_for_vfork_done(struct task_struct *child, 1253 struct completion *vfork) 1254 { 1255 int killed; 1256 1257 freezer_do_not_count(); 1258 cgroup_enter_frozen(); 1259 killed = wait_for_completion_killable(vfork); 1260 cgroup_leave_frozen(false); 1261 freezer_count(); 1262 1263 if (killed) { 1264 task_lock(child); 1265 child->vfork_done = NULL; 1266 task_unlock(child); 1267 } 1268 1269 put_task_struct(child); 1270 return killed; 1271 } 1272 1273 /* Please note the differences between mmput and mm_release. 1274 * mmput is called whenever we stop holding onto a mm_struct, 1275 * error success whatever. 1276 * 1277 * mm_release is called after a mm_struct has been removed 1278 * from the current process. 1279 * 1280 * This difference is important for error handling, when we 1281 * only half set up a mm_struct for a new process and need to restore 1282 * the old one. Because we mmput the new mm_struct before 1283 * restoring the old one. . . 1284 * Eric Biederman 10 January 1998 1285 */ 1286 void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1287 { 1288 /* Get rid of any futexes when releasing the mm */ 1289 #ifdef CONFIG_FUTEX 1290 if (unlikely(tsk->robust_list)) { 1291 exit_robust_list(tsk); 1292 tsk->robust_list = NULL; 1293 } 1294 #ifdef CONFIG_COMPAT 1295 if (unlikely(tsk->compat_robust_list)) { 1296 compat_exit_robust_list(tsk); 1297 tsk->compat_robust_list = NULL; 1298 } 1299 #endif 1300 if (unlikely(!list_empty(&tsk->pi_state_list))) 1301 exit_pi_state_list(tsk); 1302 #endif 1303 1304 uprobe_free_utask(tsk); 1305 1306 /* Get rid of any cached register state */ 1307 deactivate_mm(tsk, mm); 1308 1309 /* 1310 * Signal userspace if we're not exiting with a core dump 1311 * because we want to leave the value intact for debugging 1312 * purposes. 1313 */ 1314 if (tsk->clear_child_tid) { 1315 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) && 1316 atomic_read(&mm->mm_users) > 1) { 1317 /* 1318 * We don't check the error code - if userspace has 1319 * not set up a proper pointer then tough luck. 1320 */ 1321 put_user(0, tsk->clear_child_tid); 1322 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1323 1, NULL, NULL, 0, 0); 1324 } 1325 tsk->clear_child_tid = NULL; 1326 } 1327 1328 /* 1329 * All done, finally we can wake up parent and return this mm to him. 1330 * Also kthread_stop() uses this completion for synchronization. 1331 */ 1332 if (tsk->vfork_done) 1333 complete_vfork_done(tsk); 1334 } 1335 1336 /** 1337 * dup_mm() - duplicates an existing mm structure 1338 * @tsk: the task_struct with which the new mm will be associated. 1339 * @oldmm: the mm to duplicate. 1340 * 1341 * Allocates a new mm structure and duplicates the provided @oldmm structure 1342 * content into it. 1343 * 1344 * Return: the duplicated mm or NULL on failure. 1345 */ 1346 static struct mm_struct *dup_mm(struct task_struct *tsk, 1347 struct mm_struct *oldmm) 1348 { 1349 struct mm_struct *mm; 1350 int err; 1351 1352 mm = allocate_mm(); 1353 if (!mm) 1354 goto fail_nomem; 1355 1356 memcpy(mm, oldmm, sizeof(*mm)); 1357 1358 if (!mm_init(mm, tsk, mm->user_ns)) 1359 goto fail_nomem; 1360 1361 err = dup_mmap(mm, oldmm); 1362 if (err) 1363 goto free_pt; 1364 1365 mm->hiwater_rss = get_mm_rss(mm); 1366 mm->hiwater_vm = mm->total_vm; 1367 1368 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1369 goto free_pt; 1370 1371 return mm; 1372 1373 free_pt: 1374 /* don't put binfmt in mmput, we haven't got module yet */ 1375 mm->binfmt = NULL; 1376 mm_init_owner(mm, NULL); 1377 mmput(mm); 1378 1379 fail_nomem: 1380 return NULL; 1381 } 1382 1383 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1384 { 1385 struct mm_struct *mm, *oldmm; 1386 int retval; 1387 1388 tsk->min_flt = tsk->maj_flt = 0; 1389 tsk->nvcsw = tsk->nivcsw = 0; 1390 #ifdef CONFIG_DETECT_HUNG_TASK 1391 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1392 tsk->last_switch_time = 0; 1393 #endif 1394 1395 tsk->mm = NULL; 1396 tsk->active_mm = NULL; 1397 1398 /* 1399 * Are we cloning a kernel thread? 1400 * 1401 * We need to steal a active VM for that.. 1402 */ 1403 oldmm = current->mm; 1404 if (!oldmm) 1405 return 0; 1406 1407 /* initialize the new vmacache entries */ 1408 vmacache_flush(tsk); 1409 1410 if (clone_flags & CLONE_VM) { 1411 mmget(oldmm); 1412 mm = oldmm; 1413 goto good_mm; 1414 } 1415 1416 retval = -ENOMEM; 1417 mm = dup_mm(tsk, current->mm); 1418 if (!mm) 1419 goto fail_nomem; 1420 1421 good_mm: 1422 tsk->mm = mm; 1423 tsk->active_mm = mm; 1424 return 0; 1425 1426 fail_nomem: 1427 return retval; 1428 } 1429 1430 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1431 { 1432 struct fs_struct *fs = current->fs; 1433 if (clone_flags & CLONE_FS) { 1434 /* tsk->fs is already what we want */ 1435 spin_lock(&fs->lock); 1436 if (fs->in_exec) { 1437 spin_unlock(&fs->lock); 1438 return -EAGAIN; 1439 } 1440 fs->users++; 1441 spin_unlock(&fs->lock); 1442 return 0; 1443 } 1444 tsk->fs = copy_fs_struct(fs); 1445 if (!tsk->fs) 1446 return -ENOMEM; 1447 return 0; 1448 } 1449 1450 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1451 { 1452 struct files_struct *oldf, *newf; 1453 int error = 0; 1454 1455 /* 1456 * A background process may not have any files ... 1457 */ 1458 oldf = current->files; 1459 if (!oldf) 1460 goto out; 1461 1462 if (clone_flags & CLONE_FILES) { 1463 atomic_inc(&oldf->count); 1464 goto out; 1465 } 1466 1467 newf = dup_fd(oldf, &error); 1468 if (!newf) 1469 goto out; 1470 1471 tsk->files = newf; 1472 error = 0; 1473 out: 1474 return error; 1475 } 1476 1477 static int copy_io(unsigned long clone_flags, struct task_struct *tsk) 1478 { 1479 #ifdef CONFIG_BLOCK 1480 struct io_context *ioc = current->io_context; 1481 struct io_context *new_ioc; 1482 1483 if (!ioc) 1484 return 0; 1485 /* 1486 * Share io context with parent, if CLONE_IO is set 1487 */ 1488 if (clone_flags & CLONE_IO) { 1489 ioc_task_link(ioc); 1490 tsk->io_context = ioc; 1491 } else if (ioprio_valid(ioc->ioprio)) { 1492 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE); 1493 if (unlikely(!new_ioc)) 1494 return -ENOMEM; 1495 1496 new_ioc->ioprio = ioc->ioprio; 1497 put_io_context(new_ioc); 1498 } 1499 #endif 1500 return 0; 1501 } 1502 1503 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1504 { 1505 struct sighand_struct *sig; 1506 1507 if (clone_flags & CLONE_SIGHAND) { 1508 refcount_inc(¤t->sighand->count); 1509 return 0; 1510 } 1511 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1512 rcu_assign_pointer(tsk->sighand, sig); 1513 if (!sig) 1514 return -ENOMEM; 1515 1516 refcount_set(&sig->count, 1); 1517 spin_lock_irq(¤t->sighand->siglock); 1518 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1519 spin_unlock_irq(¤t->sighand->siglock); 1520 1521 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1522 if (clone_flags & CLONE_CLEAR_SIGHAND) 1523 flush_signal_handlers(tsk, 0); 1524 1525 return 0; 1526 } 1527 1528 void __cleanup_sighand(struct sighand_struct *sighand) 1529 { 1530 if (refcount_dec_and_test(&sighand->count)) { 1531 signalfd_cleanup(sighand); 1532 /* 1533 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1534 * without an RCU grace period, see __lock_task_sighand(). 1535 */ 1536 kmem_cache_free(sighand_cachep, sighand); 1537 } 1538 } 1539 1540 /* 1541 * Initialize POSIX timer handling for a thread group. 1542 */ 1543 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1544 { 1545 struct posix_cputimers *pct = &sig->posix_cputimers; 1546 unsigned long cpu_limit; 1547 1548 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1549 posix_cputimers_group_init(pct, cpu_limit); 1550 } 1551 1552 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1553 { 1554 struct signal_struct *sig; 1555 1556 if (clone_flags & CLONE_THREAD) 1557 return 0; 1558 1559 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1560 tsk->signal = sig; 1561 if (!sig) 1562 return -ENOMEM; 1563 1564 sig->nr_threads = 1; 1565 atomic_set(&sig->live, 1); 1566 refcount_set(&sig->sigcnt, 1); 1567 1568 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1569 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1570 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1571 1572 init_waitqueue_head(&sig->wait_chldexit); 1573 sig->curr_target = tsk; 1574 init_sigpending(&sig->shared_pending); 1575 INIT_HLIST_HEAD(&sig->multiprocess); 1576 seqlock_init(&sig->stats_lock); 1577 prev_cputime_init(&sig->prev_cputime); 1578 1579 #ifdef CONFIG_POSIX_TIMERS 1580 INIT_LIST_HEAD(&sig->posix_timers); 1581 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1582 sig->real_timer.function = it_real_fn; 1583 #endif 1584 1585 task_lock(current->group_leader); 1586 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1587 task_unlock(current->group_leader); 1588 1589 posix_cpu_timers_init_group(sig); 1590 1591 tty_audit_fork(sig); 1592 sched_autogroup_fork(sig); 1593 1594 sig->oom_score_adj = current->signal->oom_score_adj; 1595 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1596 1597 mutex_init(&sig->cred_guard_mutex); 1598 1599 return 0; 1600 } 1601 1602 static void copy_seccomp(struct task_struct *p) 1603 { 1604 #ifdef CONFIG_SECCOMP 1605 /* 1606 * Must be called with sighand->lock held, which is common to 1607 * all threads in the group. Holding cred_guard_mutex is not 1608 * needed because this new task is not yet running and cannot 1609 * be racing exec. 1610 */ 1611 assert_spin_locked(¤t->sighand->siglock); 1612 1613 /* Ref-count the new filter user, and assign it. */ 1614 get_seccomp_filter(current); 1615 p->seccomp = current->seccomp; 1616 1617 /* 1618 * Explicitly enable no_new_privs here in case it got set 1619 * between the task_struct being duplicated and holding the 1620 * sighand lock. The seccomp state and nnp must be in sync. 1621 */ 1622 if (task_no_new_privs(current)) 1623 task_set_no_new_privs(p); 1624 1625 /* 1626 * If the parent gained a seccomp mode after copying thread 1627 * flags and between before we held the sighand lock, we have 1628 * to manually enable the seccomp thread flag here. 1629 */ 1630 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1631 set_tsk_thread_flag(p, TIF_SECCOMP); 1632 #endif 1633 } 1634 1635 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1636 { 1637 current->clear_child_tid = tidptr; 1638 1639 return task_pid_vnr(current); 1640 } 1641 1642 static void rt_mutex_init_task(struct task_struct *p) 1643 { 1644 raw_spin_lock_init(&p->pi_lock); 1645 #ifdef CONFIG_RT_MUTEXES 1646 p->pi_waiters = RB_ROOT_CACHED; 1647 p->pi_top_task = NULL; 1648 p->pi_blocked_on = NULL; 1649 #endif 1650 } 1651 1652 static inline void init_task_pid_links(struct task_struct *task) 1653 { 1654 enum pid_type type; 1655 1656 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 1657 INIT_HLIST_NODE(&task->pid_links[type]); 1658 } 1659 } 1660 1661 static inline void 1662 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1663 { 1664 if (type == PIDTYPE_PID) 1665 task->thread_pid = pid; 1666 else 1667 task->signal->pids[type] = pid; 1668 } 1669 1670 static inline void rcu_copy_process(struct task_struct *p) 1671 { 1672 #ifdef CONFIG_PREEMPT_RCU 1673 p->rcu_read_lock_nesting = 0; 1674 p->rcu_read_unlock_special.s = 0; 1675 p->rcu_blocked_node = NULL; 1676 INIT_LIST_HEAD(&p->rcu_node_entry); 1677 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1678 #ifdef CONFIG_TASKS_RCU 1679 p->rcu_tasks_holdout = false; 1680 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1681 p->rcu_tasks_idle_cpu = -1; 1682 #endif /* #ifdef CONFIG_TASKS_RCU */ 1683 } 1684 1685 struct pid *pidfd_pid(const struct file *file) 1686 { 1687 if (file->f_op == &pidfd_fops) 1688 return file->private_data; 1689 1690 return ERR_PTR(-EBADF); 1691 } 1692 1693 static int pidfd_release(struct inode *inode, struct file *file) 1694 { 1695 struct pid *pid = file->private_data; 1696 1697 file->private_data = NULL; 1698 put_pid(pid); 1699 return 0; 1700 } 1701 1702 #ifdef CONFIG_PROC_FS 1703 /** 1704 * pidfd_show_fdinfo - print information about a pidfd 1705 * @m: proc fdinfo file 1706 * @f: file referencing a pidfd 1707 * 1708 * Pid: 1709 * This function will print the pid that a given pidfd refers to in the 1710 * pid namespace of the procfs instance. 1711 * If the pid namespace of the process is not a descendant of the pid 1712 * namespace of the procfs instance 0 will be shown as its pid. This is 1713 * similar to calling getppid() on a process whose parent is outside of 1714 * its pid namespace. 1715 * 1716 * NSpid: 1717 * If pid namespaces are supported then this function will also print 1718 * the pid of a given pidfd refers to for all descendant pid namespaces 1719 * starting from the current pid namespace of the instance, i.e. the 1720 * Pid field and the first entry in the NSpid field will be identical. 1721 * If the pid namespace of the process is not a descendant of the pid 1722 * namespace of the procfs instance 0 will be shown as its first NSpid 1723 * entry and no others will be shown. 1724 * Note that this differs from the Pid and NSpid fields in 1725 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1726 * the pid namespace of the procfs instance. The difference becomes 1727 * obvious when sending around a pidfd between pid namespaces from a 1728 * different branch of the tree, i.e. where no ancestoral relation is 1729 * present between the pid namespaces: 1730 * - create two new pid namespaces ns1 and ns2 in the initial pid 1731 * namespace (also take care to create new mount namespaces in the 1732 * new pid namespace and mount procfs) 1733 * - create a process with a pidfd in ns1 1734 * - send pidfd from ns1 to ns2 1735 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1736 * have exactly one entry, which is 0 1737 */ 1738 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1739 { 1740 struct pid *pid = f->private_data; 1741 struct pid_namespace *ns; 1742 pid_t nr = -1; 1743 1744 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1745 ns = proc_pid_ns(file_inode(m->file)); 1746 nr = pid_nr_ns(pid, ns); 1747 } 1748 1749 seq_put_decimal_ll(m, "Pid:\t", nr); 1750 1751 #ifdef CONFIG_PID_NS 1752 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1753 if (nr > 0) { 1754 int i; 1755 1756 /* If nr is non-zero it means that 'pid' is valid and that 1757 * ns, i.e. the pid namespace associated with the procfs 1758 * instance, is in the pid namespace hierarchy of pid. 1759 * Start at one below the already printed level. 1760 */ 1761 for (i = ns->level + 1; i <= pid->level; i++) 1762 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1763 } 1764 #endif 1765 seq_putc(m, '\n'); 1766 } 1767 #endif 1768 1769 /* 1770 * Poll support for process exit notification. 1771 */ 1772 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1773 { 1774 struct task_struct *task; 1775 struct pid *pid = file->private_data; 1776 __poll_t poll_flags = 0; 1777 1778 poll_wait(file, &pid->wait_pidfd, pts); 1779 1780 rcu_read_lock(); 1781 task = pid_task(pid, PIDTYPE_PID); 1782 /* 1783 * Inform pollers only when the whole thread group exits. 1784 * If the thread group leader exits before all other threads in the 1785 * group, then poll(2) should block, similar to the wait(2) family. 1786 */ 1787 if (!task || (task->exit_state && thread_group_empty(task))) 1788 poll_flags = EPOLLIN | EPOLLRDNORM; 1789 rcu_read_unlock(); 1790 1791 return poll_flags; 1792 } 1793 1794 const struct file_operations pidfd_fops = { 1795 .release = pidfd_release, 1796 .poll = pidfd_poll, 1797 #ifdef CONFIG_PROC_FS 1798 .show_fdinfo = pidfd_show_fdinfo, 1799 #endif 1800 }; 1801 1802 static void __delayed_free_task(struct rcu_head *rhp) 1803 { 1804 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1805 1806 free_task(tsk); 1807 } 1808 1809 static __always_inline void delayed_free_task(struct task_struct *tsk) 1810 { 1811 if (IS_ENABLED(CONFIG_MEMCG)) 1812 call_rcu(&tsk->rcu, __delayed_free_task); 1813 else 1814 free_task(tsk); 1815 } 1816 1817 /* 1818 * This creates a new process as a copy of the old one, 1819 * but does not actually start it yet. 1820 * 1821 * It copies the registers, and all the appropriate 1822 * parts of the process environment (as per the clone 1823 * flags). The actual kick-off is left to the caller. 1824 */ 1825 static __latent_entropy struct task_struct *copy_process( 1826 struct pid *pid, 1827 int trace, 1828 int node, 1829 struct kernel_clone_args *args) 1830 { 1831 int pidfd = -1, retval; 1832 struct task_struct *p; 1833 struct multiprocess_signals delayed; 1834 struct file *pidfile = NULL; 1835 u64 clone_flags = args->flags; 1836 1837 /* 1838 * Don't allow sharing the root directory with processes in a different 1839 * namespace 1840 */ 1841 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1842 return ERR_PTR(-EINVAL); 1843 1844 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1845 return ERR_PTR(-EINVAL); 1846 1847 /* 1848 * Thread groups must share signals as well, and detached threads 1849 * can only be started up within the thread group. 1850 */ 1851 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1852 return ERR_PTR(-EINVAL); 1853 1854 /* 1855 * Shared signal handlers imply shared VM. By way of the above, 1856 * thread groups also imply shared VM. Blocking this case allows 1857 * for various simplifications in other code. 1858 */ 1859 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 1860 return ERR_PTR(-EINVAL); 1861 1862 /* 1863 * Siblings of global init remain as zombies on exit since they are 1864 * not reaped by their parent (swapper). To solve this and to avoid 1865 * multi-rooted process trees, prevent global and container-inits 1866 * from creating siblings. 1867 */ 1868 if ((clone_flags & CLONE_PARENT) && 1869 current->signal->flags & SIGNAL_UNKILLABLE) 1870 return ERR_PTR(-EINVAL); 1871 1872 /* 1873 * If the new process will be in a different pid or user namespace 1874 * do not allow it to share a thread group with the forking task. 1875 */ 1876 if (clone_flags & CLONE_THREAD) { 1877 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 1878 (task_active_pid_ns(current) != 1879 current->nsproxy->pid_ns_for_children)) 1880 return ERR_PTR(-EINVAL); 1881 } 1882 1883 if (clone_flags & CLONE_PIDFD) { 1884 /* 1885 * - CLONE_DETACHED is blocked so that we can potentially 1886 * reuse it later for CLONE_PIDFD. 1887 * - CLONE_THREAD is blocked until someone really needs it. 1888 */ 1889 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 1890 return ERR_PTR(-EINVAL); 1891 } 1892 1893 /* 1894 * Force any signals received before this point to be delivered 1895 * before the fork happens. Collect up signals sent to multiple 1896 * processes that happen during the fork and delay them so that 1897 * they appear to happen after the fork. 1898 */ 1899 sigemptyset(&delayed.signal); 1900 INIT_HLIST_NODE(&delayed.node); 1901 1902 spin_lock_irq(¤t->sighand->siglock); 1903 if (!(clone_flags & CLONE_THREAD)) 1904 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 1905 recalc_sigpending(); 1906 spin_unlock_irq(¤t->sighand->siglock); 1907 retval = -ERESTARTNOINTR; 1908 if (signal_pending(current)) 1909 goto fork_out; 1910 1911 retval = -ENOMEM; 1912 p = dup_task_struct(current, node); 1913 if (!p) 1914 goto fork_out; 1915 1916 /* 1917 * This _must_ happen before we call free_task(), i.e. before we jump 1918 * to any of the bad_fork_* labels. This is to avoid freeing 1919 * p->set_child_tid which is (ab)used as a kthread's data pointer for 1920 * kernel threads (PF_KTHREAD). 1921 */ 1922 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 1923 /* 1924 * Clear TID on mm_release()? 1925 */ 1926 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 1927 1928 ftrace_graph_init_task(p); 1929 1930 rt_mutex_init_task(p); 1931 1932 #ifdef CONFIG_PROVE_LOCKING 1933 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled); 1934 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 1935 #endif 1936 retval = -EAGAIN; 1937 if (atomic_read(&p->real_cred->user->processes) >= 1938 task_rlimit(p, RLIMIT_NPROC)) { 1939 if (p->real_cred->user != INIT_USER && 1940 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 1941 goto bad_fork_free; 1942 } 1943 current->flags &= ~PF_NPROC_EXCEEDED; 1944 1945 retval = copy_creds(p, clone_flags); 1946 if (retval < 0) 1947 goto bad_fork_free; 1948 1949 /* 1950 * If multiple threads are within copy_process(), then this check 1951 * triggers too late. This doesn't hurt, the check is only there 1952 * to stop root fork bombs. 1953 */ 1954 retval = -EAGAIN; 1955 if (nr_threads >= max_threads) 1956 goto bad_fork_cleanup_count; 1957 1958 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 1959 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE); 1960 p->flags |= PF_FORKNOEXEC; 1961 INIT_LIST_HEAD(&p->children); 1962 INIT_LIST_HEAD(&p->sibling); 1963 rcu_copy_process(p); 1964 p->vfork_done = NULL; 1965 spin_lock_init(&p->alloc_lock); 1966 1967 init_sigpending(&p->pending); 1968 1969 p->utime = p->stime = p->gtime = 0; 1970 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1971 p->utimescaled = p->stimescaled = 0; 1972 #endif 1973 prev_cputime_init(&p->prev_cputime); 1974 1975 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1976 seqcount_init(&p->vtime.seqcount); 1977 p->vtime.starttime = 0; 1978 p->vtime.state = VTIME_INACTIVE; 1979 #endif 1980 1981 #if defined(SPLIT_RSS_COUNTING) 1982 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 1983 #endif 1984 1985 p->default_timer_slack_ns = current->timer_slack_ns; 1986 1987 #ifdef CONFIG_PSI 1988 p->psi_flags = 0; 1989 #endif 1990 1991 task_io_accounting_init(&p->ioac); 1992 acct_clear_integrals(p); 1993 1994 posix_cputimers_init(&p->posix_cputimers); 1995 1996 p->io_context = NULL; 1997 audit_set_context(p, NULL); 1998 cgroup_fork(p); 1999 #ifdef CONFIG_NUMA 2000 p->mempolicy = mpol_dup(p->mempolicy); 2001 if (IS_ERR(p->mempolicy)) { 2002 retval = PTR_ERR(p->mempolicy); 2003 p->mempolicy = NULL; 2004 goto bad_fork_cleanup_threadgroup_lock; 2005 } 2006 #endif 2007 #ifdef CONFIG_CPUSETS 2008 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2009 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2010 seqcount_init(&p->mems_allowed_seq); 2011 #endif 2012 #ifdef CONFIG_TRACE_IRQFLAGS 2013 p->irq_events = 0; 2014 p->hardirqs_enabled = 0; 2015 p->hardirq_enable_ip = 0; 2016 p->hardirq_enable_event = 0; 2017 p->hardirq_disable_ip = _THIS_IP_; 2018 p->hardirq_disable_event = 0; 2019 p->softirqs_enabled = 1; 2020 p->softirq_enable_ip = _THIS_IP_; 2021 p->softirq_enable_event = 0; 2022 p->softirq_disable_ip = 0; 2023 p->softirq_disable_event = 0; 2024 p->hardirq_context = 0; 2025 p->softirq_context = 0; 2026 #endif 2027 2028 p->pagefault_disabled = 0; 2029 2030 #ifdef CONFIG_LOCKDEP 2031 lockdep_init_task(p); 2032 #endif 2033 2034 #ifdef CONFIG_DEBUG_MUTEXES 2035 p->blocked_on = NULL; /* not blocked yet */ 2036 #endif 2037 #ifdef CONFIG_BCACHE 2038 p->sequential_io = 0; 2039 p->sequential_io_avg = 0; 2040 #endif 2041 2042 /* Perform scheduler related setup. Assign this task to a CPU. */ 2043 retval = sched_fork(clone_flags, p); 2044 if (retval) 2045 goto bad_fork_cleanup_policy; 2046 2047 retval = perf_event_init_task(p); 2048 if (retval) 2049 goto bad_fork_cleanup_policy; 2050 retval = audit_alloc(p); 2051 if (retval) 2052 goto bad_fork_cleanup_perf; 2053 /* copy all the process information */ 2054 shm_init_task(p); 2055 retval = security_task_alloc(p, clone_flags); 2056 if (retval) 2057 goto bad_fork_cleanup_audit; 2058 retval = copy_semundo(clone_flags, p); 2059 if (retval) 2060 goto bad_fork_cleanup_security; 2061 retval = copy_files(clone_flags, p); 2062 if (retval) 2063 goto bad_fork_cleanup_semundo; 2064 retval = copy_fs(clone_flags, p); 2065 if (retval) 2066 goto bad_fork_cleanup_files; 2067 retval = copy_sighand(clone_flags, p); 2068 if (retval) 2069 goto bad_fork_cleanup_fs; 2070 retval = copy_signal(clone_flags, p); 2071 if (retval) 2072 goto bad_fork_cleanup_sighand; 2073 retval = copy_mm(clone_flags, p); 2074 if (retval) 2075 goto bad_fork_cleanup_signal; 2076 retval = copy_namespaces(clone_flags, p); 2077 if (retval) 2078 goto bad_fork_cleanup_mm; 2079 retval = copy_io(clone_flags, p); 2080 if (retval) 2081 goto bad_fork_cleanup_namespaces; 2082 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p, 2083 args->tls); 2084 if (retval) 2085 goto bad_fork_cleanup_io; 2086 2087 stackleak_task_init(p); 2088 2089 if (pid != &init_struct_pid) { 2090 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2091 args->set_tid_size); 2092 if (IS_ERR(pid)) { 2093 retval = PTR_ERR(pid); 2094 goto bad_fork_cleanup_thread; 2095 } 2096 } 2097 2098 /* 2099 * This has to happen after we've potentially unshared the file 2100 * descriptor table (so that the pidfd doesn't leak into the child 2101 * if the fd table isn't shared). 2102 */ 2103 if (clone_flags & CLONE_PIDFD) { 2104 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2105 if (retval < 0) 2106 goto bad_fork_free_pid; 2107 2108 pidfd = retval; 2109 2110 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2111 O_RDWR | O_CLOEXEC); 2112 if (IS_ERR(pidfile)) { 2113 put_unused_fd(pidfd); 2114 retval = PTR_ERR(pidfile); 2115 goto bad_fork_free_pid; 2116 } 2117 get_pid(pid); /* held by pidfile now */ 2118 2119 retval = put_user(pidfd, args->pidfd); 2120 if (retval) 2121 goto bad_fork_put_pidfd; 2122 } 2123 2124 #ifdef CONFIG_BLOCK 2125 p->plug = NULL; 2126 #endif 2127 #ifdef CONFIG_FUTEX 2128 p->robust_list = NULL; 2129 #ifdef CONFIG_COMPAT 2130 p->compat_robust_list = NULL; 2131 #endif 2132 INIT_LIST_HEAD(&p->pi_state_list); 2133 p->pi_state_cache = NULL; 2134 #endif 2135 /* 2136 * sigaltstack should be cleared when sharing the same VM 2137 */ 2138 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2139 sas_ss_reset(p); 2140 2141 /* 2142 * Syscall tracing and stepping should be turned off in the 2143 * child regardless of CLONE_PTRACE. 2144 */ 2145 user_disable_single_step(p); 2146 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE); 2147 #ifdef TIF_SYSCALL_EMU 2148 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU); 2149 #endif 2150 clear_tsk_latency_tracing(p); 2151 2152 /* ok, now we should be set up.. */ 2153 p->pid = pid_nr(pid); 2154 if (clone_flags & CLONE_THREAD) { 2155 p->exit_signal = -1; 2156 p->group_leader = current->group_leader; 2157 p->tgid = current->tgid; 2158 } else { 2159 if (clone_flags & CLONE_PARENT) 2160 p->exit_signal = current->group_leader->exit_signal; 2161 else 2162 p->exit_signal = args->exit_signal; 2163 p->group_leader = p; 2164 p->tgid = p->pid; 2165 } 2166 2167 p->nr_dirtied = 0; 2168 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2169 p->dirty_paused_when = 0; 2170 2171 p->pdeath_signal = 0; 2172 INIT_LIST_HEAD(&p->thread_group); 2173 p->task_works = NULL; 2174 2175 cgroup_threadgroup_change_begin(current); 2176 /* 2177 * Ensure that the cgroup subsystem policies allow the new process to be 2178 * forked. It should be noted the the new process's css_set can be changed 2179 * between here and cgroup_post_fork() if an organisation operation is in 2180 * progress. 2181 */ 2182 retval = cgroup_can_fork(p); 2183 if (retval) 2184 goto bad_fork_cgroup_threadgroup_change_end; 2185 2186 /* 2187 * From this point on we must avoid any synchronous user-space 2188 * communication until we take the tasklist-lock. In particular, we do 2189 * not want user-space to be able to predict the process start-time by 2190 * stalling fork(2) after we recorded the start_time but before it is 2191 * visible to the system. 2192 */ 2193 2194 p->start_time = ktime_get_ns(); 2195 p->real_start_time = ktime_get_boottime_ns(); 2196 2197 /* 2198 * Make it visible to the rest of the system, but dont wake it up yet. 2199 * Need tasklist lock for parent etc handling! 2200 */ 2201 write_lock_irq(&tasklist_lock); 2202 2203 /* CLONE_PARENT re-uses the old parent */ 2204 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2205 p->real_parent = current->real_parent; 2206 p->parent_exec_id = current->parent_exec_id; 2207 } else { 2208 p->real_parent = current; 2209 p->parent_exec_id = current->self_exec_id; 2210 } 2211 2212 klp_copy_process(p); 2213 2214 spin_lock(¤t->sighand->siglock); 2215 2216 /* 2217 * Copy seccomp details explicitly here, in case they were changed 2218 * before holding sighand lock. 2219 */ 2220 copy_seccomp(p); 2221 2222 rseq_fork(p, clone_flags); 2223 2224 /* Don't start children in a dying pid namespace */ 2225 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2226 retval = -ENOMEM; 2227 goto bad_fork_cancel_cgroup; 2228 } 2229 2230 /* Let kill terminate clone/fork in the middle */ 2231 if (fatal_signal_pending(current)) { 2232 retval = -EINTR; 2233 goto bad_fork_cancel_cgroup; 2234 } 2235 2236 /* past the last point of failure */ 2237 if (pidfile) 2238 fd_install(pidfd, pidfile); 2239 2240 init_task_pid_links(p); 2241 if (likely(p->pid)) { 2242 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2243 2244 init_task_pid(p, PIDTYPE_PID, pid); 2245 if (thread_group_leader(p)) { 2246 init_task_pid(p, PIDTYPE_TGID, pid); 2247 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2248 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2249 2250 if (is_child_reaper(pid)) { 2251 ns_of_pid(pid)->child_reaper = p; 2252 p->signal->flags |= SIGNAL_UNKILLABLE; 2253 } 2254 p->signal->shared_pending.signal = delayed.signal; 2255 p->signal->tty = tty_kref_get(current->signal->tty); 2256 /* 2257 * Inherit has_child_subreaper flag under the same 2258 * tasklist_lock with adding child to the process tree 2259 * for propagate_has_child_subreaper optimization. 2260 */ 2261 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2262 p->real_parent->signal->is_child_subreaper; 2263 list_add_tail(&p->sibling, &p->real_parent->children); 2264 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2265 attach_pid(p, PIDTYPE_TGID); 2266 attach_pid(p, PIDTYPE_PGID); 2267 attach_pid(p, PIDTYPE_SID); 2268 __this_cpu_inc(process_counts); 2269 } else { 2270 current->signal->nr_threads++; 2271 atomic_inc(¤t->signal->live); 2272 refcount_inc(¤t->signal->sigcnt); 2273 task_join_group_stop(p); 2274 list_add_tail_rcu(&p->thread_group, 2275 &p->group_leader->thread_group); 2276 list_add_tail_rcu(&p->thread_node, 2277 &p->signal->thread_head); 2278 } 2279 attach_pid(p, PIDTYPE_PID); 2280 nr_threads++; 2281 } 2282 total_forks++; 2283 hlist_del_init(&delayed.node); 2284 spin_unlock(¤t->sighand->siglock); 2285 syscall_tracepoint_update(p); 2286 write_unlock_irq(&tasklist_lock); 2287 2288 proc_fork_connector(p); 2289 cgroup_post_fork(p); 2290 cgroup_threadgroup_change_end(current); 2291 perf_event_fork(p); 2292 2293 trace_task_newtask(p, clone_flags); 2294 uprobe_copy_process(p, clone_flags); 2295 2296 return p; 2297 2298 bad_fork_cancel_cgroup: 2299 spin_unlock(¤t->sighand->siglock); 2300 write_unlock_irq(&tasklist_lock); 2301 cgroup_cancel_fork(p); 2302 bad_fork_cgroup_threadgroup_change_end: 2303 cgroup_threadgroup_change_end(current); 2304 bad_fork_put_pidfd: 2305 if (clone_flags & CLONE_PIDFD) { 2306 fput(pidfile); 2307 put_unused_fd(pidfd); 2308 } 2309 bad_fork_free_pid: 2310 if (pid != &init_struct_pid) 2311 free_pid(pid); 2312 bad_fork_cleanup_thread: 2313 exit_thread(p); 2314 bad_fork_cleanup_io: 2315 if (p->io_context) 2316 exit_io_context(p); 2317 bad_fork_cleanup_namespaces: 2318 exit_task_namespaces(p); 2319 bad_fork_cleanup_mm: 2320 if (p->mm) { 2321 mm_clear_owner(p->mm, p); 2322 mmput(p->mm); 2323 } 2324 bad_fork_cleanup_signal: 2325 if (!(clone_flags & CLONE_THREAD)) 2326 free_signal_struct(p->signal); 2327 bad_fork_cleanup_sighand: 2328 __cleanup_sighand(p->sighand); 2329 bad_fork_cleanup_fs: 2330 exit_fs(p); /* blocking */ 2331 bad_fork_cleanup_files: 2332 exit_files(p); /* blocking */ 2333 bad_fork_cleanup_semundo: 2334 exit_sem(p); 2335 bad_fork_cleanup_security: 2336 security_task_free(p); 2337 bad_fork_cleanup_audit: 2338 audit_free(p); 2339 bad_fork_cleanup_perf: 2340 perf_event_free_task(p); 2341 bad_fork_cleanup_policy: 2342 lockdep_free_task(p); 2343 #ifdef CONFIG_NUMA 2344 mpol_put(p->mempolicy); 2345 bad_fork_cleanup_threadgroup_lock: 2346 #endif 2347 delayacct_tsk_free(p); 2348 bad_fork_cleanup_count: 2349 atomic_dec(&p->cred->user->processes); 2350 exit_creds(p); 2351 bad_fork_free: 2352 p->state = TASK_DEAD; 2353 put_task_stack(p); 2354 delayed_free_task(p); 2355 fork_out: 2356 spin_lock_irq(¤t->sighand->siglock); 2357 hlist_del_init(&delayed.node); 2358 spin_unlock_irq(¤t->sighand->siglock); 2359 return ERR_PTR(retval); 2360 } 2361 2362 static inline void init_idle_pids(struct task_struct *idle) 2363 { 2364 enum pid_type type; 2365 2366 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2367 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2368 init_task_pid(idle, type, &init_struct_pid); 2369 } 2370 } 2371 2372 struct task_struct *fork_idle(int cpu) 2373 { 2374 struct task_struct *task; 2375 struct kernel_clone_args args = { 2376 .flags = CLONE_VM, 2377 }; 2378 2379 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2380 if (!IS_ERR(task)) { 2381 init_idle_pids(task); 2382 init_idle(task, cpu); 2383 } 2384 2385 return task; 2386 } 2387 2388 struct mm_struct *copy_init_mm(void) 2389 { 2390 return dup_mm(NULL, &init_mm); 2391 } 2392 2393 /* 2394 * Ok, this is the main fork-routine. 2395 * 2396 * It copies the process, and if successful kick-starts 2397 * it and waits for it to finish using the VM if required. 2398 * 2399 * args->exit_signal is expected to be checked for sanity by the caller. 2400 */ 2401 long _do_fork(struct kernel_clone_args *args) 2402 { 2403 u64 clone_flags = args->flags; 2404 struct completion vfork; 2405 struct pid *pid; 2406 struct task_struct *p; 2407 int trace = 0; 2408 long nr; 2409 2410 /* 2411 * Determine whether and which event to report to ptracer. When 2412 * called from kernel_thread or CLONE_UNTRACED is explicitly 2413 * requested, no event is reported; otherwise, report if the event 2414 * for the type of forking is enabled. 2415 */ 2416 if (!(clone_flags & CLONE_UNTRACED)) { 2417 if (clone_flags & CLONE_VFORK) 2418 trace = PTRACE_EVENT_VFORK; 2419 else if (args->exit_signal != SIGCHLD) 2420 trace = PTRACE_EVENT_CLONE; 2421 else 2422 trace = PTRACE_EVENT_FORK; 2423 2424 if (likely(!ptrace_event_enabled(current, trace))) 2425 trace = 0; 2426 } 2427 2428 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2429 add_latent_entropy(); 2430 2431 if (IS_ERR(p)) 2432 return PTR_ERR(p); 2433 2434 /* 2435 * Do this prior waking up the new thread - the thread pointer 2436 * might get invalid after that point, if the thread exits quickly. 2437 */ 2438 trace_sched_process_fork(current, p); 2439 2440 pid = get_task_pid(p, PIDTYPE_PID); 2441 nr = pid_vnr(pid); 2442 2443 if (clone_flags & CLONE_PARENT_SETTID) 2444 put_user(nr, args->parent_tid); 2445 2446 if (clone_flags & CLONE_VFORK) { 2447 p->vfork_done = &vfork; 2448 init_completion(&vfork); 2449 get_task_struct(p); 2450 } 2451 2452 wake_up_new_task(p); 2453 2454 /* forking complete and child started to run, tell ptracer */ 2455 if (unlikely(trace)) 2456 ptrace_event_pid(trace, pid); 2457 2458 if (clone_flags & CLONE_VFORK) { 2459 if (!wait_for_vfork_done(p, &vfork)) 2460 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2461 } 2462 2463 put_pid(pid); 2464 return nr; 2465 } 2466 2467 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs) 2468 { 2469 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */ 2470 if ((kargs->flags & CLONE_PIDFD) && 2471 (kargs->flags & CLONE_PARENT_SETTID)) 2472 return false; 2473 2474 return true; 2475 } 2476 2477 #ifndef CONFIG_HAVE_COPY_THREAD_TLS 2478 /* For compatibility with architectures that call do_fork directly rather than 2479 * using the syscall entry points below. */ 2480 long do_fork(unsigned long clone_flags, 2481 unsigned long stack_start, 2482 unsigned long stack_size, 2483 int __user *parent_tidptr, 2484 int __user *child_tidptr) 2485 { 2486 struct kernel_clone_args args = { 2487 .flags = (clone_flags & ~CSIGNAL), 2488 .pidfd = parent_tidptr, 2489 .child_tid = child_tidptr, 2490 .parent_tid = parent_tidptr, 2491 .exit_signal = (clone_flags & CSIGNAL), 2492 .stack = stack_start, 2493 .stack_size = stack_size, 2494 }; 2495 2496 if (!legacy_clone_args_valid(&args)) 2497 return -EINVAL; 2498 2499 return _do_fork(&args); 2500 } 2501 #endif 2502 2503 /* 2504 * Create a kernel thread. 2505 */ 2506 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2507 { 2508 struct kernel_clone_args args = { 2509 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), 2510 .exit_signal = (flags & CSIGNAL), 2511 .stack = (unsigned long)fn, 2512 .stack_size = (unsigned long)arg, 2513 }; 2514 2515 return _do_fork(&args); 2516 } 2517 2518 #ifdef __ARCH_WANT_SYS_FORK 2519 SYSCALL_DEFINE0(fork) 2520 { 2521 #ifdef CONFIG_MMU 2522 struct kernel_clone_args args = { 2523 .exit_signal = SIGCHLD, 2524 }; 2525 2526 return _do_fork(&args); 2527 #else 2528 /* can not support in nommu mode */ 2529 return -EINVAL; 2530 #endif 2531 } 2532 #endif 2533 2534 #ifdef __ARCH_WANT_SYS_VFORK 2535 SYSCALL_DEFINE0(vfork) 2536 { 2537 struct kernel_clone_args args = { 2538 .flags = CLONE_VFORK | CLONE_VM, 2539 .exit_signal = SIGCHLD, 2540 }; 2541 2542 return _do_fork(&args); 2543 } 2544 #endif 2545 2546 #ifdef __ARCH_WANT_SYS_CLONE 2547 #ifdef CONFIG_CLONE_BACKWARDS 2548 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2549 int __user *, parent_tidptr, 2550 unsigned long, tls, 2551 int __user *, child_tidptr) 2552 #elif defined(CONFIG_CLONE_BACKWARDS2) 2553 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2554 int __user *, parent_tidptr, 2555 int __user *, child_tidptr, 2556 unsigned long, tls) 2557 #elif defined(CONFIG_CLONE_BACKWARDS3) 2558 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2559 int, stack_size, 2560 int __user *, parent_tidptr, 2561 int __user *, child_tidptr, 2562 unsigned long, tls) 2563 #else 2564 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2565 int __user *, parent_tidptr, 2566 int __user *, child_tidptr, 2567 unsigned long, tls) 2568 #endif 2569 { 2570 struct kernel_clone_args args = { 2571 .flags = (clone_flags & ~CSIGNAL), 2572 .pidfd = parent_tidptr, 2573 .child_tid = child_tidptr, 2574 .parent_tid = parent_tidptr, 2575 .exit_signal = (clone_flags & CSIGNAL), 2576 .stack = newsp, 2577 .tls = tls, 2578 }; 2579 2580 if (!legacy_clone_args_valid(&args)) 2581 return -EINVAL; 2582 2583 return _do_fork(&args); 2584 } 2585 #endif 2586 2587 #ifdef __ARCH_WANT_SYS_CLONE3 2588 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2589 struct clone_args __user *uargs, 2590 size_t usize) 2591 { 2592 int err; 2593 struct clone_args args; 2594 pid_t *kset_tid = kargs->set_tid; 2595 2596 if (unlikely(usize > PAGE_SIZE)) 2597 return -E2BIG; 2598 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2599 return -EINVAL; 2600 2601 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2602 if (err) 2603 return err; 2604 2605 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2606 return -EINVAL; 2607 2608 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2609 return -EINVAL; 2610 2611 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2612 return -EINVAL; 2613 2614 /* 2615 * Verify that higher 32bits of exit_signal are unset and that 2616 * it is a valid signal 2617 */ 2618 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2619 !valid_signal(args.exit_signal))) 2620 return -EINVAL; 2621 2622 *kargs = (struct kernel_clone_args){ 2623 .flags = args.flags, 2624 .pidfd = u64_to_user_ptr(args.pidfd), 2625 .child_tid = u64_to_user_ptr(args.child_tid), 2626 .parent_tid = u64_to_user_ptr(args.parent_tid), 2627 .exit_signal = args.exit_signal, 2628 .stack = args.stack, 2629 .stack_size = args.stack_size, 2630 .tls = args.tls, 2631 .set_tid_size = args.set_tid_size, 2632 }; 2633 2634 if (args.set_tid && 2635 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2636 (kargs->set_tid_size * sizeof(pid_t)))) 2637 return -EFAULT; 2638 2639 kargs->set_tid = kset_tid; 2640 2641 return 0; 2642 } 2643 2644 /** 2645 * clone3_stack_valid - check and prepare stack 2646 * @kargs: kernel clone args 2647 * 2648 * Verify that the stack arguments userspace gave us are sane. 2649 * In addition, set the stack direction for userspace since it's easy for us to 2650 * determine. 2651 */ 2652 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2653 { 2654 if (kargs->stack == 0) { 2655 if (kargs->stack_size > 0) 2656 return false; 2657 } else { 2658 if (kargs->stack_size == 0) 2659 return false; 2660 2661 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2662 return false; 2663 2664 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2665 kargs->stack += kargs->stack_size; 2666 #endif 2667 } 2668 2669 return true; 2670 } 2671 2672 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2673 { 2674 /* Verify that no unknown flags are passed along. */ 2675 if (kargs->flags & ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND)) 2676 return false; 2677 2678 /* 2679 * - make the CLONE_DETACHED bit reuseable for clone3 2680 * - make the CSIGNAL bits reuseable for clone3 2681 */ 2682 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2683 return false; 2684 2685 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2686 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2687 return false; 2688 2689 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2690 kargs->exit_signal) 2691 return false; 2692 2693 if (!clone3_stack_valid(kargs)) 2694 return false; 2695 2696 return true; 2697 } 2698 2699 /** 2700 * clone3 - create a new process with specific properties 2701 * @uargs: argument structure 2702 * @size: size of @uargs 2703 * 2704 * clone3() is the extensible successor to clone()/clone2(). 2705 * It takes a struct as argument that is versioned by its size. 2706 * 2707 * Return: On success, a positive PID for the child process. 2708 * On error, a negative errno number. 2709 */ 2710 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2711 { 2712 int err; 2713 2714 struct kernel_clone_args kargs; 2715 pid_t set_tid[MAX_PID_NS_LEVEL]; 2716 2717 kargs.set_tid = set_tid; 2718 2719 err = copy_clone_args_from_user(&kargs, uargs, size); 2720 if (err) 2721 return err; 2722 2723 if (!clone3_args_valid(&kargs)) 2724 return -EINVAL; 2725 2726 return _do_fork(&kargs); 2727 } 2728 #endif 2729 2730 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2731 { 2732 struct task_struct *leader, *parent, *child; 2733 int res; 2734 2735 read_lock(&tasklist_lock); 2736 leader = top = top->group_leader; 2737 down: 2738 for_each_thread(leader, parent) { 2739 list_for_each_entry(child, &parent->children, sibling) { 2740 res = visitor(child, data); 2741 if (res) { 2742 if (res < 0) 2743 goto out; 2744 leader = child; 2745 goto down; 2746 } 2747 up: 2748 ; 2749 } 2750 } 2751 2752 if (leader != top) { 2753 child = leader; 2754 parent = child->real_parent; 2755 leader = parent->group_leader; 2756 goto up; 2757 } 2758 out: 2759 read_unlock(&tasklist_lock); 2760 } 2761 2762 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2763 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2764 #endif 2765 2766 static void sighand_ctor(void *data) 2767 { 2768 struct sighand_struct *sighand = data; 2769 2770 spin_lock_init(&sighand->siglock); 2771 init_waitqueue_head(&sighand->signalfd_wqh); 2772 } 2773 2774 void __init proc_caches_init(void) 2775 { 2776 unsigned int mm_size; 2777 2778 sighand_cachep = kmem_cache_create("sighand_cache", 2779 sizeof(struct sighand_struct), 0, 2780 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 2781 SLAB_ACCOUNT, sighand_ctor); 2782 signal_cachep = kmem_cache_create("signal_cache", 2783 sizeof(struct signal_struct), 0, 2784 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2785 NULL); 2786 files_cachep = kmem_cache_create("files_cache", 2787 sizeof(struct files_struct), 0, 2788 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2789 NULL); 2790 fs_cachep = kmem_cache_create("fs_cache", 2791 sizeof(struct fs_struct), 0, 2792 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2793 NULL); 2794 2795 /* 2796 * The mm_cpumask is located at the end of mm_struct, and is 2797 * dynamically sized based on the maximum CPU number this system 2798 * can have, taking hotplug into account (nr_cpu_ids). 2799 */ 2800 mm_size = sizeof(struct mm_struct) + cpumask_size(); 2801 2802 mm_cachep = kmem_cache_create_usercopy("mm_struct", 2803 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 2804 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 2805 offsetof(struct mm_struct, saved_auxv), 2806 sizeof_field(struct mm_struct, saved_auxv), 2807 NULL); 2808 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 2809 mmap_init(); 2810 nsproxy_cache_init(); 2811 } 2812 2813 /* 2814 * Check constraints on flags passed to the unshare system call. 2815 */ 2816 static int check_unshare_flags(unsigned long unshare_flags) 2817 { 2818 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 2819 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 2820 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 2821 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP)) 2822 return -EINVAL; 2823 /* 2824 * Not implemented, but pretend it works if there is nothing 2825 * to unshare. Note that unsharing the address space or the 2826 * signal handlers also need to unshare the signal queues (aka 2827 * CLONE_THREAD). 2828 */ 2829 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 2830 if (!thread_group_empty(current)) 2831 return -EINVAL; 2832 } 2833 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 2834 if (refcount_read(¤t->sighand->count) > 1) 2835 return -EINVAL; 2836 } 2837 if (unshare_flags & CLONE_VM) { 2838 if (!current_is_single_threaded()) 2839 return -EINVAL; 2840 } 2841 2842 return 0; 2843 } 2844 2845 /* 2846 * Unshare the filesystem structure if it is being shared 2847 */ 2848 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 2849 { 2850 struct fs_struct *fs = current->fs; 2851 2852 if (!(unshare_flags & CLONE_FS) || !fs) 2853 return 0; 2854 2855 /* don't need lock here; in the worst case we'll do useless copy */ 2856 if (fs->users == 1) 2857 return 0; 2858 2859 *new_fsp = copy_fs_struct(fs); 2860 if (!*new_fsp) 2861 return -ENOMEM; 2862 2863 return 0; 2864 } 2865 2866 /* 2867 * Unshare file descriptor table if it is being shared 2868 */ 2869 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 2870 { 2871 struct files_struct *fd = current->files; 2872 int error = 0; 2873 2874 if ((unshare_flags & CLONE_FILES) && 2875 (fd && atomic_read(&fd->count) > 1)) { 2876 *new_fdp = dup_fd(fd, &error); 2877 if (!*new_fdp) 2878 return error; 2879 } 2880 2881 return 0; 2882 } 2883 2884 /* 2885 * unshare allows a process to 'unshare' part of the process 2886 * context which was originally shared using clone. copy_* 2887 * functions used by do_fork() cannot be used here directly 2888 * because they modify an inactive task_struct that is being 2889 * constructed. Here we are modifying the current, active, 2890 * task_struct. 2891 */ 2892 int ksys_unshare(unsigned long unshare_flags) 2893 { 2894 struct fs_struct *fs, *new_fs = NULL; 2895 struct files_struct *fd, *new_fd = NULL; 2896 struct cred *new_cred = NULL; 2897 struct nsproxy *new_nsproxy = NULL; 2898 int do_sysvsem = 0; 2899 int err; 2900 2901 /* 2902 * If unsharing a user namespace must also unshare the thread group 2903 * and unshare the filesystem root and working directories. 2904 */ 2905 if (unshare_flags & CLONE_NEWUSER) 2906 unshare_flags |= CLONE_THREAD | CLONE_FS; 2907 /* 2908 * If unsharing vm, must also unshare signal handlers. 2909 */ 2910 if (unshare_flags & CLONE_VM) 2911 unshare_flags |= CLONE_SIGHAND; 2912 /* 2913 * If unsharing a signal handlers, must also unshare the signal queues. 2914 */ 2915 if (unshare_flags & CLONE_SIGHAND) 2916 unshare_flags |= CLONE_THREAD; 2917 /* 2918 * If unsharing namespace, must also unshare filesystem information. 2919 */ 2920 if (unshare_flags & CLONE_NEWNS) 2921 unshare_flags |= CLONE_FS; 2922 2923 err = check_unshare_flags(unshare_flags); 2924 if (err) 2925 goto bad_unshare_out; 2926 /* 2927 * CLONE_NEWIPC must also detach from the undolist: after switching 2928 * to a new ipc namespace, the semaphore arrays from the old 2929 * namespace are unreachable. 2930 */ 2931 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 2932 do_sysvsem = 1; 2933 err = unshare_fs(unshare_flags, &new_fs); 2934 if (err) 2935 goto bad_unshare_out; 2936 err = unshare_fd(unshare_flags, &new_fd); 2937 if (err) 2938 goto bad_unshare_cleanup_fs; 2939 err = unshare_userns(unshare_flags, &new_cred); 2940 if (err) 2941 goto bad_unshare_cleanup_fd; 2942 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 2943 new_cred, new_fs); 2944 if (err) 2945 goto bad_unshare_cleanup_cred; 2946 2947 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 2948 if (do_sysvsem) { 2949 /* 2950 * CLONE_SYSVSEM is equivalent to sys_exit(). 2951 */ 2952 exit_sem(current); 2953 } 2954 if (unshare_flags & CLONE_NEWIPC) { 2955 /* Orphan segments in old ns (see sem above). */ 2956 exit_shm(current); 2957 shm_init_task(current); 2958 } 2959 2960 if (new_nsproxy) 2961 switch_task_namespaces(current, new_nsproxy); 2962 2963 task_lock(current); 2964 2965 if (new_fs) { 2966 fs = current->fs; 2967 spin_lock(&fs->lock); 2968 current->fs = new_fs; 2969 if (--fs->users) 2970 new_fs = NULL; 2971 else 2972 new_fs = fs; 2973 spin_unlock(&fs->lock); 2974 } 2975 2976 if (new_fd) { 2977 fd = current->files; 2978 current->files = new_fd; 2979 new_fd = fd; 2980 } 2981 2982 task_unlock(current); 2983 2984 if (new_cred) { 2985 /* Install the new user namespace */ 2986 commit_creds(new_cred); 2987 new_cred = NULL; 2988 } 2989 } 2990 2991 perf_event_namespaces(current); 2992 2993 bad_unshare_cleanup_cred: 2994 if (new_cred) 2995 put_cred(new_cred); 2996 bad_unshare_cleanup_fd: 2997 if (new_fd) 2998 put_files_struct(new_fd); 2999 3000 bad_unshare_cleanup_fs: 3001 if (new_fs) 3002 free_fs_struct(new_fs); 3003 3004 bad_unshare_out: 3005 return err; 3006 } 3007 3008 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3009 { 3010 return ksys_unshare(unshare_flags); 3011 } 3012 3013 /* 3014 * Helper to unshare the files of the current task. 3015 * We don't want to expose copy_files internals to 3016 * the exec layer of the kernel. 3017 */ 3018 3019 int unshare_files(struct files_struct **displaced) 3020 { 3021 struct task_struct *task = current; 3022 struct files_struct *copy = NULL; 3023 int error; 3024 3025 error = unshare_fd(CLONE_FILES, ©); 3026 if (error || !copy) { 3027 *displaced = NULL; 3028 return error; 3029 } 3030 *displaced = task->files; 3031 task_lock(task); 3032 task->files = copy; 3033 task_unlock(task); 3034 return 0; 3035 } 3036 3037 int sysctl_max_threads(struct ctl_table *table, int write, 3038 void __user *buffer, size_t *lenp, loff_t *ppos) 3039 { 3040 struct ctl_table t; 3041 int ret; 3042 int threads = max_threads; 3043 int min = 1; 3044 int max = MAX_THREADS; 3045 3046 t = *table; 3047 t.data = &threads; 3048 t.extra1 = &min; 3049 t.extra2 = &max; 3050 3051 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3052 if (ret || !write) 3053 return ret; 3054 3055 max_threads = threads; 3056 3057 return 0; 3058 } 3059