1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/stackprotector.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 # ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 struct vm_stack { 197 struct rcu_head rcu; 198 struct vm_struct *stack_vm_area; 199 }; 200 201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 202 { 203 unsigned int i; 204 205 for (i = 0; i < NR_CACHED_STACKS; i++) { 206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 static void thread_stack_free_rcu(struct rcu_head *rh) 214 { 215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 216 217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 218 return; 219 220 vfree(vm_stack); 221 } 222 223 static void thread_stack_delayed_free(struct task_struct *tsk) 224 { 225 struct vm_stack *vm_stack = tsk->stack; 226 227 vm_stack->stack_vm_area = tsk->stack_vm_area; 228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 229 } 230 231 static int free_vm_stack_cache(unsigned int cpu) 232 { 233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 234 int i; 235 236 for (i = 0; i < NR_CACHED_STACKS; i++) { 237 struct vm_struct *vm_stack = cached_vm_stacks[i]; 238 239 if (!vm_stack) 240 continue; 241 242 vfree(vm_stack->addr); 243 cached_vm_stacks[i] = NULL; 244 } 245 246 return 0; 247 } 248 249 static int memcg_charge_kernel_stack(struct vm_struct *vm) 250 { 251 int i; 252 int ret; 253 254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 256 257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 259 if (ret) 260 goto err; 261 } 262 return 0; 263 err: 264 /* 265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 267 * ignore this page. 268 */ 269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 270 memcg_kmem_uncharge_page(vm->pages[i], 0); 271 return ret; 272 } 273 274 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 275 { 276 struct vm_struct *vm; 277 void *stack; 278 int i; 279 280 for (i = 0; i < NR_CACHED_STACKS; i++) { 281 struct vm_struct *s; 282 283 s = this_cpu_xchg(cached_stacks[i], NULL); 284 285 if (!s) 286 continue; 287 288 /* Reset stack metadata. */ 289 kasan_unpoison_range(s->addr, THREAD_SIZE); 290 291 stack = kasan_reset_tag(s->addr); 292 293 /* Clear stale pointers from reused stack. */ 294 memset(stack, 0, THREAD_SIZE); 295 296 if (memcg_charge_kernel_stack(s)) { 297 vfree(s->addr); 298 return -ENOMEM; 299 } 300 301 tsk->stack_vm_area = s; 302 tsk->stack = stack; 303 return 0; 304 } 305 306 /* 307 * Allocated stacks are cached and later reused by new threads, 308 * so memcg accounting is performed manually on assigning/releasing 309 * stacks to tasks. Drop __GFP_ACCOUNT. 310 */ 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 312 VMALLOC_START, VMALLOC_END, 313 THREADINFO_GFP & ~__GFP_ACCOUNT, 314 PAGE_KERNEL, 315 0, node, __builtin_return_address(0)); 316 if (!stack) 317 return -ENOMEM; 318 319 vm = find_vm_area(stack); 320 if (memcg_charge_kernel_stack(vm)) { 321 vfree(stack); 322 return -ENOMEM; 323 } 324 /* 325 * We can't call find_vm_area() in interrupt context, and 326 * free_thread_stack() can be called in interrupt context, 327 * so cache the vm_struct. 328 */ 329 tsk->stack_vm_area = vm; 330 stack = kasan_reset_tag(stack); 331 tsk->stack = stack; 332 return 0; 333 } 334 335 static void free_thread_stack(struct task_struct *tsk) 336 { 337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 338 thread_stack_delayed_free(tsk); 339 340 tsk->stack = NULL; 341 tsk->stack_vm_area = NULL; 342 } 343 344 # else /* !CONFIG_VMAP_STACK */ 345 346 static void thread_stack_free_rcu(struct rcu_head *rh) 347 { 348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 349 } 350 351 static void thread_stack_delayed_free(struct task_struct *tsk) 352 { 353 struct rcu_head *rh = tsk->stack; 354 355 call_rcu(rh, thread_stack_free_rcu); 356 } 357 358 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 359 { 360 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 361 THREAD_SIZE_ORDER); 362 363 if (likely(page)) { 364 tsk->stack = kasan_reset_tag(page_address(page)); 365 return 0; 366 } 367 return -ENOMEM; 368 } 369 370 static void free_thread_stack(struct task_struct *tsk) 371 { 372 thread_stack_delayed_free(tsk); 373 tsk->stack = NULL; 374 } 375 376 # endif /* CONFIG_VMAP_STACK */ 377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 378 379 static struct kmem_cache *thread_stack_cache; 380 381 static void thread_stack_free_rcu(struct rcu_head *rh) 382 { 383 kmem_cache_free(thread_stack_cache, rh); 384 } 385 386 static void thread_stack_delayed_free(struct task_struct *tsk) 387 { 388 struct rcu_head *rh = tsk->stack; 389 390 call_rcu(rh, thread_stack_free_rcu); 391 } 392 393 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 394 { 395 unsigned long *stack; 396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 397 stack = kasan_reset_tag(stack); 398 tsk->stack = stack; 399 return stack ? 0 : -ENOMEM; 400 } 401 402 static void free_thread_stack(struct task_struct *tsk) 403 { 404 thread_stack_delayed_free(tsk); 405 tsk->stack = NULL; 406 } 407 408 void thread_stack_cache_init(void) 409 { 410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 411 THREAD_SIZE, THREAD_SIZE, 0, 0, 412 THREAD_SIZE, NULL); 413 BUG_ON(thread_stack_cache == NULL); 414 } 415 416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 418 419 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 420 { 421 unsigned long *stack; 422 423 stack = arch_alloc_thread_stack_node(tsk, node); 424 tsk->stack = stack; 425 return stack ? 0 : -ENOMEM; 426 } 427 428 static void free_thread_stack(struct task_struct *tsk) 429 { 430 arch_free_thread_stack(tsk); 431 tsk->stack = NULL; 432 } 433 434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 435 436 /* SLAB cache for signal_struct structures (tsk->signal) */ 437 static struct kmem_cache *signal_cachep; 438 439 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 440 struct kmem_cache *sighand_cachep; 441 442 /* SLAB cache for files_struct structures (tsk->files) */ 443 struct kmem_cache *files_cachep; 444 445 /* SLAB cache for fs_struct structures (tsk->fs) */ 446 struct kmem_cache *fs_cachep; 447 448 /* SLAB cache for vm_area_struct structures */ 449 static struct kmem_cache *vm_area_cachep; 450 451 /* SLAB cache for mm_struct structures (tsk->mm) */ 452 static struct kmem_cache *mm_cachep; 453 454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 455 { 456 struct vm_area_struct *vma; 457 458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 459 if (vma) 460 vma_init(vma, mm); 461 return vma; 462 } 463 464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 465 { 466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 467 468 if (new) { 469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 471 /* 472 * orig->shared.rb may be modified concurrently, but the clone 473 * will be reinitialized. 474 */ 475 data_race(memcpy(new, orig, sizeof(*new))); 476 INIT_LIST_HEAD(&new->anon_vma_chain); 477 dup_anon_vma_name(orig, new); 478 } 479 return new; 480 } 481 482 void vm_area_free(struct vm_area_struct *vma) 483 { 484 free_anon_vma_name(vma); 485 kmem_cache_free(vm_area_cachep, vma); 486 } 487 488 static void account_kernel_stack(struct task_struct *tsk, int account) 489 { 490 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 491 struct vm_struct *vm = task_stack_vm_area(tsk); 492 int i; 493 494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 496 account * (PAGE_SIZE / 1024)); 497 } else { 498 void *stack = task_stack_page(tsk); 499 500 /* All stack pages are in the same node. */ 501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 502 account * (THREAD_SIZE / 1024)); 503 } 504 } 505 506 void exit_task_stack_account(struct task_struct *tsk) 507 { 508 account_kernel_stack(tsk, -1); 509 510 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 511 struct vm_struct *vm; 512 int i; 513 514 vm = task_stack_vm_area(tsk); 515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 516 memcg_kmem_uncharge_page(vm->pages[i], 0); 517 } 518 } 519 520 static void release_task_stack(struct task_struct *tsk) 521 { 522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 523 return; /* Better to leak the stack than to free prematurely */ 524 525 free_thread_stack(tsk); 526 } 527 528 #ifdef CONFIG_THREAD_INFO_IN_TASK 529 void put_task_stack(struct task_struct *tsk) 530 { 531 if (refcount_dec_and_test(&tsk->stack_refcount)) 532 release_task_stack(tsk); 533 } 534 #endif 535 536 void free_task(struct task_struct *tsk) 537 { 538 #ifdef CONFIG_SECCOMP 539 WARN_ON_ONCE(tsk->seccomp.filter); 540 #endif 541 release_user_cpus_ptr(tsk); 542 scs_release(tsk); 543 544 #ifndef CONFIG_THREAD_INFO_IN_TASK 545 /* 546 * The task is finally done with both the stack and thread_info, 547 * so free both. 548 */ 549 release_task_stack(tsk); 550 #else 551 /* 552 * If the task had a separate stack allocation, it should be gone 553 * by now. 554 */ 555 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 556 #endif 557 rt_mutex_debug_task_free(tsk); 558 ftrace_graph_exit_task(tsk); 559 arch_release_task_struct(tsk); 560 if (tsk->flags & PF_KTHREAD) 561 free_kthread_struct(tsk); 562 free_task_struct(tsk); 563 } 564 EXPORT_SYMBOL(free_task); 565 566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 567 { 568 struct file *exe_file; 569 570 exe_file = get_mm_exe_file(oldmm); 571 RCU_INIT_POINTER(mm->exe_file, exe_file); 572 /* 573 * We depend on the oldmm having properly denied write access to the 574 * exe_file already. 575 */ 576 if (exe_file && deny_write_access(exe_file)) 577 pr_warn_once("deny_write_access() failed in %s\n", __func__); 578 } 579 580 #ifdef CONFIG_MMU 581 static __latent_entropy int dup_mmap(struct mm_struct *mm, 582 struct mm_struct *oldmm) 583 { 584 struct vm_area_struct *mpnt, *tmp; 585 int retval; 586 unsigned long charge = 0; 587 LIST_HEAD(uf); 588 VMA_ITERATOR(old_vmi, oldmm, 0); 589 VMA_ITERATOR(vmi, mm, 0); 590 591 uprobe_start_dup_mmap(); 592 if (mmap_write_lock_killable(oldmm)) { 593 retval = -EINTR; 594 goto fail_uprobe_end; 595 } 596 flush_cache_dup_mm(oldmm); 597 uprobe_dup_mmap(oldmm, mm); 598 /* 599 * Not linked in yet - no deadlock potential: 600 */ 601 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 602 603 /* No ordering required: file already has been exposed. */ 604 dup_mm_exe_file(mm, oldmm); 605 606 mm->total_vm = oldmm->total_vm; 607 mm->data_vm = oldmm->data_vm; 608 mm->exec_vm = oldmm->exec_vm; 609 mm->stack_vm = oldmm->stack_vm; 610 611 retval = ksm_fork(mm, oldmm); 612 if (retval) 613 goto out; 614 khugepaged_fork(mm, oldmm); 615 616 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count); 617 if (retval) 618 goto out; 619 620 mt_clear_in_rcu(vmi.mas.tree); 621 for_each_vma(old_vmi, mpnt) { 622 struct file *file; 623 624 if (mpnt->vm_flags & VM_DONTCOPY) { 625 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 626 continue; 627 } 628 charge = 0; 629 /* 630 * Don't duplicate many vmas if we've been oom-killed (for 631 * example) 632 */ 633 if (fatal_signal_pending(current)) { 634 retval = -EINTR; 635 goto loop_out; 636 } 637 if (mpnt->vm_flags & VM_ACCOUNT) { 638 unsigned long len = vma_pages(mpnt); 639 640 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 641 goto fail_nomem; 642 charge = len; 643 } 644 tmp = vm_area_dup(mpnt); 645 if (!tmp) 646 goto fail_nomem; 647 retval = vma_dup_policy(mpnt, tmp); 648 if (retval) 649 goto fail_nomem_policy; 650 tmp->vm_mm = mm; 651 retval = dup_userfaultfd(tmp, &uf); 652 if (retval) 653 goto fail_nomem_anon_vma_fork; 654 if (tmp->vm_flags & VM_WIPEONFORK) { 655 /* 656 * VM_WIPEONFORK gets a clean slate in the child. 657 * Don't prepare anon_vma until fault since we don't 658 * copy page for current vma. 659 */ 660 tmp->anon_vma = NULL; 661 } else if (anon_vma_fork(tmp, mpnt)) 662 goto fail_nomem_anon_vma_fork; 663 vm_flags_clear(tmp, VM_LOCKED_MASK); 664 file = tmp->vm_file; 665 if (file) { 666 struct address_space *mapping = file->f_mapping; 667 668 get_file(file); 669 i_mmap_lock_write(mapping); 670 if (tmp->vm_flags & VM_SHARED) 671 mapping_allow_writable(mapping); 672 flush_dcache_mmap_lock(mapping); 673 /* insert tmp into the share list, just after mpnt */ 674 vma_interval_tree_insert_after(tmp, mpnt, 675 &mapping->i_mmap); 676 flush_dcache_mmap_unlock(mapping); 677 i_mmap_unlock_write(mapping); 678 } 679 680 /* 681 * Copy/update hugetlb private vma information. 682 */ 683 if (is_vm_hugetlb_page(tmp)) 684 hugetlb_dup_vma_private(tmp); 685 686 /* Link the vma into the MT */ 687 if (vma_iter_bulk_store(&vmi, tmp)) 688 goto fail_nomem_vmi_store; 689 690 mm->map_count++; 691 if (!(tmp->vm_flags & VM_WIPEONFORK)) 692 retval = copy_page_range(tmp, mpnt); 693 694 if (tmp->vm_ops && tmp->vm_ops->open) 695 tmp->vm_ops->open(tmp); 696 697 if (retval) 698 goto loop_out; 699 } 700 /* a new mm has just been created */ 701 retval = arch_dup_mmap(oldmm, mm); 702 loop_out: 703 vma_iter_free(&vmi); 704 if (!retval) 705 mt_set_in_rcu(vmi.mas.tree); 706 out: 707 mmap_write_unlock(mm); 708 flush_tlb_mm(oldmm); 709 mmap_write_unlock(oldmm); 710 dup_userfaultfd_complete(&uf); 711 fail_uprobe_end: 712 uprobe_end_dup_mmap(); 713 return retval; 714 715 fail_nomem_vmi_store: 716 unlink_anon_vmas(tmp); 717 fail_nomem_anon_vma_fork: 718 mpol_put(vma_policy(tmp)); 719 fail_nomem_policy: 720 vm_area_free(tmp); 721 fail_nomem: 722 retval = -ENOMEM; 723 vm_unacct_memory(charge); 724 goto loop_out; 725 } 726 727 static inline int mm_alloc_pgd(struct mm_struct *mm) 728 { 729 mm->pgd = pgd_alloc(mm); 730 if (unlikely(!mm->pgd)) 731 return -ENOMEM; 732 return 0; 733 } 734 735 static inline void mm_free_pgd(struct mm_struct *mm) 736 { 737 pgd_free(mm, mm->pgd); 738 } 739 #else 740 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 741 { 742 mmap_write_lock(oldmm); 743 dup_mm_exe_file(mm, oldmm); 744 mmap_write_unlock(oldmm); 745 return 0; 746 } 747 #define mm_alloc_pgd(mm) (0) 748 #define mm_free_pgd(mm) 749 #endif /* CONFIG_MMU */ 750 751 static void check_mm(struct mm_struct *mm) 752 { 753 int i; 754 755 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 756 "Please make sure 'struct resident_page_types[]' is updated as well"); 757 758 for (i = 0; i < NR_MM_COUNTERS; i++) { 759 long x = percpu_counter_sum(&mm->rss_stat[i]); 760 761 if (unlikely(x)) 762 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 763 mm, resident_page_types[i], x); 764 } 765 766 if (mm_pgtables_bytes(mm)) 767 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 768 mm_pgtables_bytes(mm)); 769 770 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 771 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 772 #endif 773 } 774 775 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 776 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 777 778 /* 779 * Called when the last reference to the mm 780 * is dropped: either by a lazy thread or by 781 * mmput. Free the page directory and the mm. 782 */ 783 void __mmdrop(struct mm_struct *mm) 784 { 785 int i; 786 787 BUG_ON(mm == &init_mm); 788 WARN_ON_ONCE(mm == current->mm); 789 WARN_ON_ONCE(mm == current->active_mm); 790 mm_free_pgd(mm); 791 destroy_context(mm); 792 mmu_notifier_subscriptions_destroy(mm); 793 check_mm(mm); 794 put_user_ns(mm->user_ns); 795 mm_pasid_drop(mm); 796 797 for (i = 0; i < NR_MM_COUNTERS; i++) 798 percpu_counter_destroy(&mm->rss_stat[i]); 799 free_mm(mm); 800 } 801 EXPORT_SYMBOL_GPL(__mmdrop); 802 803 static void mmdrop_async_fn(struct work_struct *work) 804 { 805 struct mm_struct *mm; 806 807 mm = container_of(work, struct mm_struct, async_put_work); 808 __mmdrop(mm); 809 } 810 811 static void mmdrop_async(struct mm_struct *mm) 812 { 813 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 814 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 815 schedule_work(&mm->async_put_work); 816 } 817 } 818 819 static inline void free_signal_struct(struct signal_struct *sig) 820 { 821 taskstats_tgid_free(sig); 822 sched_autogroup_exit(sig); 823 /* 824 * __mmdrop is not safe to call from softirq context on x86 due to 825 * pgd_dtor so postpone it to the async context 826 */ 827 if (sig->oom_mm) 828 mmdrop_async(sig->oom_mm); 829 kmem_cache_free(signal_cachep, sig); 830 } 831 832 static inline void put_signal_struct(struct signal_struct *sig) 833 { 834 if (refcount_dec_and_test(&sig->sigcnt)) 835 free_signal_struct(sig); 836 } 837 838 void __put_task_struct(struct task_struct *tsk) 839 { 840 WARN_ON(!tsk->exit_state); 841 WARN_ON(refcount_read(&tsk->usage)); 842 WARN_ON(tsk == current); 843 844 io_uring_free(tsk); 845 cgroup_free(tsk); 846 task_numa_free(tsk, true); 847 security_task_free(tsk); 848 bpf_task_storage_free(tsk); 849 exit_creds(tsk); 850 delayacct_tsk_free(tsk); 851 put_signal_struct(tsk->signal); 852 sched_core_free(tsk); 853 free_task(tsk); 854 } 855 EXPORT_SYMBOL_GPL(__put_task_struct); 856 857 void __init __weak arch_task_cache_init(void) { } 858 859 /* 860 * set_max_threads 861 */ 862 static void set_max_threads(unsigned int max_threads_suggested) 863 { 864 u64 threads; 865 unsigned long nr_pages = totalram_pages(); 866 867 /* 868 * The number of threads shall be limited such that the thread 869 * structures may only consume a small part of the available memory. 870 */ 871 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 872 threads = MAX_THREADS; 873 else 874 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 875 (u64) THREAD_SIZE * 8UL); 876 877 if (threads > max_threads_suggested) 878 threads = max_threads_suggested; 879 880 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 881 } 882 883 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 884 /* Initialized by the architecture: */ 885 int arch_task_struct_size __read_mostly; 886 #endif 887 888 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 889 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 890 { 891 /* Fetch thread_struct whitelist for the architecture. */ 892 arch_thread_struct_whitelist(offset, size); 893 894 /* 895 * Handle zero-sized whitelist or empty thread_struct, otherwise 896 * adjust offset to position of thread_struct in task_struct. 897 */ 898 if (unlikely(*size == 0)) 899 *offset = 0; 900 else 901 *offset += offsetof(struct task_struct, thread); 902 } 903 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 904 905 void __init fork_init(void) 906 { 907 int i; 908 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 909 #ifndef ARCH_MIN_TASKALIGN 910 #define ARCH_MIN_TASKALIGN 0 911 #endif 912 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 913 unsigned long useroffset, usersize; 914 915 /* create a slab on which task_structs can be allocated */ 916 task_struct_whitelist(&useroffset, &usersize); 917 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 918 arch_task_struct_size, align, 919 SLAB_PANIC|SLAB_ACCOUNT, 920 useroffset, usersize, NULL); 921 #endif 922 923 /* do the arch specific task caches init */ 924 arch_task_cache_init(); 925 926 set_max_threads(MAX_THREADS); 927 928 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 929 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 930 init_task.signal->rlim[RLIMIT_SIGPENDING] = 931 init_task.signal->rlim[RLIMIT_NPROC]; 932 933 for (i = 0; i < UCOUNT_COUNTS; i++) 934 init_user_ns.ucount_max[i] = max_threads/2; 935 936 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 937 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 938 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 939 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 940 941 #ifdef CONFIG_VMAP_STACK 942 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 943 NULL, free_vm_stack_cache); 944 #endif 945 946 scs_init(); 947 948 lockdep_init_task(&init_task); 949 uprobes_init(); 950 } 951 952 int __weak arch_dup_task_struct(struct task_struct *dst, 953 struct task_struct *src) 954 { 955 *dst = *src; 956 return 0; 957 } 958 959 void set_task_stack_end_magic(struct task_struct *tsk) 960 { 961 unsigned long *stackend; 962 963 stackend = end_of_stack(tsk); 964 *stackend = STACK_END_MAGIC; /* for overflow detection */ 965 } 966 967 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 968 { 969 struct task_struct *tsk; 970 int err; 971 972 if (node == NUMA_NO_NODE) 973 node = tsk_fork_get_node(orig); 974 tsk = alloc_task_struct_node(node); 975 if (!tsk) 976 return NULL; 977 978 err = arch_dup_task_struct(tsk, orig); 979 if (err) 980 goto free_tsk; 981 982 err = alloc_thread_stack_node(tsk, node); 983 if (err) 984 goto free_tsk; 985 986 #ifdef CONFIG_THREAD_INFO_IN_TASK 987 refcount_set(&tsk->stack_refcount, 1); 988 #endif 989 account_kernel_stack(tsk, 1); 990 991 err = scs_prepare(tsk, node); 992 if (err) 993 goto free_stack; 994 995 #ifdef CONFIG_SECCOMP 996 /* 997 * We must handle setting up seccomp filters once we're under 998 * the sighand lock in case orig has changed between now and 999 * then. Until then, filter must be NULL to avoid messing up 1000 * the usage counts on the error path calling free_task. 1001 */ 1002 tsk->seccomp.filter = NULL; 1003 #endif 1004 1005 setup_thread_stack(tsk, orig); 1006 clear_user_return_notifier(tsk); 1007 clear_tsk_need_resched(tsk); 1008 set_task_stack_end_magic(tsk); 1009 clear_syscall_work_syscall_user_dispatch(tsk); 1010 1011 #ifdef CONFIG_STACKPROTECTOR 1012 tsk->stack_canary = get_random_canary(); 1013 #endif 1014 if (orig->cpus_ptr == &orig->cpus_mask) 1015 tsk->cpus_ptr = &tsk->cpus_mask; 1016 dup_user_cpus_ptr(tsk, orig, node); 1017 1018 /* 1019 * One for the user space visible state that goes away when reaped. 1020 * One for the scheduler. 1021 */ 1022 refcount_set(&tsk->rcu_users, 2); 1023 /* One for the rcu users */ 1024 refcount_set(&tsk->usage, 1); 1025 #ifdef CONFIG_BLK_DEV_IO_TRACE 1026 tsk->btrace_seq = 0; 1027 #endif 1028 tsk->splice_pipe = NULL; 1029 tsk->task_frag.page = NULL; 1030 tsk->wake_q.next = NULL; 1031 tsk->worker_private = NULL; 1032 1033 kcov_task_init(tsk); 1034 kmsan_task_create(tsk); 1035 kmap_local_fork(tsk); 1036 1037 #ifdef CONFIG_FAULT_INJECTION 1038 tsk->fail_nth = 0; 1039 #endif 1040 1041 #ifdef CONFIG_BLK_CGROUP 1042 tsk->throttle_disk = NULL; 1043 tsk->use_memdelay = 0; 1044 #endif 1045 1046 #ifdef CONFIG_IOMMU_SVA 1047 tsk->pasid_activated = 0; 1048 #endif 1049 1050 #ifdef CONFIG_MEMCG 1051 tsk->active_memcg = NULL; 1052 #endif 1053 1054 #ifdef CONFIG_CPU_SUP_INTEL 1055 tsk->reported_split_lock = 0; 1056 #endif 1057 1058 #ifdef CONFIG_SCHED_MM_CID 1059 tsk->mm_cid = -1; 1060 tsk->mm_cid_active = 0; 1061 #endif 1062 return tsk; 1063 1064 free_stack: 1065 exit_task_stack_account(tsk); 1066 free_thread_stack(tsk); 1067 free_tsk: 1068 free_task_struct(tsk); 1069 return NULL; 1070 } 1071 1072 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1073 1074 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1075 1076 static int __init coredump_filter_setup(char *s) 1077 { 1078 default_dump_filter = 1079 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1080 MMF_DUMP_FILTER_MASK; 1081 return 1; 1082 } 1083 1084 __setup("coredump_filter=", coredump_filter_setup); 1085 1086 #include <linux/init_task.h> 1087 1088 static void mm_init_aio(struct mm_struct *mm) 1089 { 1090 #ifdef CONFIG_AIO 1091 spin_lock_init(&mm->ioctx_lock); 1092 mm->ioctx_table = NULL; 1093 #endif 1094 } 1095 1096 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1097 struct task_struct *p) 1098 { 1099 #ifdef CONFIG_MEMCG 1100 if (mm->owner == p) 1101 WRITE_ONCE(mm->owner, NULL); 1102 #endif 1103 } 1104 1105 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1106 { 1107 #ifdef CONFIG_MEMCG 1108 mm->owner = p; 1109 #endif 1110 } 1111 1112 static void mm_init_uprobes_state(struct mm_struct *mm) 1113 { 1114 #ifdef CONFIG_UPROBES 1115 mm->uprobes_state.xol_area = NULL; 1116 #endif 1117 } 1118 1119 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1120 struct user_namespace *user_ns) 1121 { 1122 int i; 1123 1124 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1125 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1126 atomic_set(&mm->mm_users, 1); 1127 atomic_set(&mm->mm_count, 1); 1128 seqcount_init(&mm->write_protect_seq); 1129 mmap_init_lock(mm); 1130 INIT_LIST_HEAD(&mm->mmlist); 1131 mm_pgtables_bytes_init(mm); 1132 mm->map_count = 0; 1133 mm->locked_vm = 0; 1134 atomic64_set(&mm->pinned_vm, 0); 1135 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1136 spin_lock_init(&mm->page_table_lock); 1137 spin_lock_init(&mm->arg_lock); 1138 mm_init_cpumask(mm); 1139 mm_init_aio(mm); 1140 mm_init_owner(mm, p); 1141 mm_pasid_init(mm); 1142 RCU_INIT_POINTER(mm->exe_file, NULL); 1143 mmu_notifier_subscriptions_init(mm); 1144 init_tlb_flush_pending(mm); 1145 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1146 mm->pmd_huge_pte = NULL; 1147 #endif 1148 mm_init_uprobes_state(mm); 1149 hugetlb_count_init(mm); 1150 1151 if (current->mm) { 1152 mm->flags = current->mm->flags & MMF_INIT_MASK; 1153 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1154 } else { 1155 mm->flags = default_dump_filter; 1156 mm->def_flags = 0; 1157 } 1158 1159 if (mm_alloc_pgd(mm)) 1160 goto fail_nopgd; 1161 1162 if (init_new_context(p, mm)) 1163 goto fail_nocontext; 1164 1165 for (i = 0; i < NR_MM_COUNTERS; i++) 1166 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1167 goto fail_pcpu; 1168 1169 mm->user_ns = get_user_ns(user_ns); 1170 lru_gen_init_mm(mm); 1171 mm_init_cid(mm); 1172 return mm; 1173 1174 fail_pcpu: 1175 while (i > 0) 1176 percpu_counter_destroy(&mm->rss_stat[--i]); 1177 destroy_context(mm); 1178 fail_nocontext: 1179 mm_free_pgd(mm); 1180 fail_nopgd: 1181 free_mm(mm); 1182 return NULL; 1183 } 1184 1185 /* 1186 * Allocate and initialize an mm_struct. 1187 */ 1188 struct mm_struct *mm_alloc(void) 1189 { 1190 struct mm_struct *mm; 1191 1192 mm = allocate_mm(); 1193 if (!mm) 1194 return NULL; 1195 1196 memset(mm, 0, sizeof(*mm)); 1197 return mm_init(mm, current, current_user_ns()); 1198 } 1199 1200 static inline void __mmput(struct mm_struct *mm) 1201 { 1202 VM_BUG_ON(atomic_read(&mm->mm_users)); 1203 1204 uprobe_clear_state(mm); 1205 exit_aio(mm); 1206 ksm_exit(mm); 1207 khugepaged_exit(mm); /* must run before exit_mmap */ 1208 exit_mmap(mm); 1209 mm_put_huge_zero_page(mm); 1210 set_mm_exe_file(mm, NULL); 1211 if (!list_empty(&mm->mmlist)) { 1212 spin_lock(&mmlist_lock); 1213 list_del(&mm->mmlist); 1214 spin_unlock(&mmlist_lock); 1215 } 1216 if (mm->binfmt) 1217 module_put(mm->binfmt->module); 1218 lru_gen_del_mm(mm); 1219 mmdrop(mm); 1220 } 1221 1222 /* 1223 * Decrement the use count and release all resources for an mm. 1224 */ 1225 void mmput(struct mm_struct *mm) 1226 { 1227 might_sleep(); 1228 1229 if (atomic_dec_and_test(&mm->mm_users)) 1230 __mmput(mm); 1231 } 1232 EXPORT_SYMBOL_GPL(mmput); 1233 1234 #ifdef CONFIG_MMU 1235 static void mmput_async_fn(struct work_struct *work) 1236 { 1237 struct mm_struct *mm = container_of(work, struct mm_struct, 1238 async_put_work); 1239 1240 __mmput(mm); 1241 } 1242 1243 void mmput_async(struct mm_struct *mm) 1244 { 1245 if (atomic_dec_and_test(&mm->mm_users)) { 1246 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1247 schedule_work(&mm->async_put_work); 1248 } 1249 } 1250 EXPORT_SYMBOL_GPL(mmput_async); 1251 #endif 1252 1253 /** 1254 * set_mm_exe_file - change a reference to the mm's executable file 1255 * 1256 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1257 * 1258 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1259 * invocations: in mmput() nobody alive left, in execve task is single 1260 * threaded. 1261 * 1262 * Can only fail if new_exe_file != NULL. 1263 */ 1264 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1265 { 1266 struct file *old_exe_file; 1267 1268 /* 1269 * It is safe to dereference the exe_file without RCU as 1270 * this function is only called if nobody else can access 1271 * this mm -- see comment above for justification. 1272 */ 1273 old_exe_file = rcu_dereference_raw(mm->exe_file); 1274 1275 if (new_exe_file) { 1276 /* 1277 * We expect the caller (i.e., sys_execve) to already denied 1278 * write access, so this is unlikely to fail. 1279 */ 1280 if (unlikely(deny_write_access(new_exe_file))) 1281 return -EACCES; 1282 get_file(new_exe_file); 1283 } 1284 rcu_assign_pointer(mm->exe_file, new_exe_file); 1285 if (old_exe_file) { 1286 allow_write_access(old_exe_file); 1287 fput(old_exe_file); 1288 } 1289 return 0; 1290 } 1291 1292 /** 1293 * replace_mm_exe_file - replace a reference to the mm's executable file 1294 * 1295 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1296 * dealing with concurrent invocation and without grabbing the mmap lock in 1297 * write mode. 1298 * 1299 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1300 */ 1301 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1302 { 1303 struct vm_area_struct *vma; 1304 struct file *old_exe_file; 1305 int ret = 0; 1306 1307 /* Forbid mm->exe_file change if old file still mapped. */ 1308 old_exe_file = get_mm_exe_file(mm); 1309 if (old_exe_file) { 1310 VMA_ITERATOR(vmi, mm, 0); 1311 mmap_read_lock(mm); 1312 for_each_vma(vmi, vma) { 1313 if (!vma->vm_file) 1314 continue; 1315 if (path_equal(&vma->vm_file->f_path, 1316 &old_exe_file->f_path)) { 1317 ret = -EBUSY; 1318 break; 1319 } 1320 } 1321 mmap_read_unlock(mm); 1322 fput(old_exe_file); 1323 if (ret) 1324 return ret; 1325 } 1326 1327 /* set the new file, lockless */ 1328 ret = deny_write_access(new_exe_file); 1329 if (ret) 1330 return -EACCES; 1331 get_file(new_exe_file); 1332 1333 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1334 if (old_exe_file) { 1335 /* 1336 * Don't race with dup_mmap() getting the file and disallowing 1337 * write access while someone might open the file writable. 1338 */ 1339 mmap_read_lock(mm); 1340 allow_write_access(old_exe_file); 1341 fput(old_exe_file); 1342 mmap_read_unlock(mm); 1343 } 1344 return 0; 1345 } 1346 1347 /** 1348 * get_mm_exe_file - acquire a reference to the mm's executable file 1349 * 1350 * Returns %NULL if mm has no associated executable file. 1351 * User must release file via fput(). 1352 */ 1353 struct file *get_mm_exe_file(struct mm_struct *mm) 1354 { 1355 struct file *exe_file; 1356 1357 rcu_read_lock(); 1358 exe_file = rcu_dereference(mm->exe_file); 1359 if (exe_file && !get_file_rcu(exe_file)) 1360 exe_file = NULL; 1361 rcu_read_unlock(); 1362 return exe_file; 1363 } 1364 1365 /** 1366 * get_task_exe_file - acquire a reference to the task's executable file 1367 * 1368 * Returns %NULL if task's mm (if any) has no associated executable file or 1369 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1370 * User must release file via fput(). 1371 */ 1372 struct file *get_task_exe_file(struct task_struct *task) 1373 { 1374 struct file *exe_file = NULL; 1375 struct mm_struct *mm; 1376 1377 task_lock(task); 1378 mm = task->mm; 1379 if (mm) { 1380 if (!(task->flags & PF_KTHREAD)) 1381 exe_file = get_mm_exe_file(mm); 1382 } 1383 task_unlock(task); 1384 return exe_file; 1385 } 1386 1387 /** 1388 * get_task_mm - acquire a reference to the task's mm 1389 * 1390 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1391 * this kernel workthread has transiently adopted a user mm with use_mm, 1392 * to do its AIO) is not set and if so returns a reference to it, after 1393 * bumping up the use count. User must release the mm via mmput() 1394 * after use. Typically used by /proc and ptrace. 1395 */ 1396 struct mm_struct *get_task_mm(struct task_struct *task) 1397 { 1398 struct mm_struct *mm; 1399 1400 task_lock(task); 1401 mm = task->mm; 1402 if (mm) { 1403 if (task->flags & PF_KTHREAD) 1404 mm = NULL; 1405 else 1406 mmget(mm); 1407 } 1408 task_unlock(task); 1409 return mm; 1410 } 1411 EXPORT_SYMBOL_GPL(get_task_mm); 1412 1413 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1414 { 1415 struct mm_struct *mm; 1416 int err; 1417 1418 err = down_read_killable(&task->signal->exec_update_lock); 1419 if (err) 1420 return ERR_PTR(err); 1421 1422 mm = get_task_mm(task); 1423 if (mm && mm != current->mm && 1424 !ptrace_may_access(task, mode)) { 1425 mmput(mm); 1426 mm = ERR_PTR(-EACCES); 1427 } 1428 up_read(&task->signal->exec_update_lock); 1429 1430 return mm; 1431 } 1432 1433 static void complete_vfork_done(struct task_struct *tsk) 1434 { 1435 struct completion *vfork; 1436 1437 task_lock(tsk); 1438 vfork = tsk->vfork_done; 1439 if (likely(vfork)) { 1440 tsk->vfork_done = NULL; 1441 complete(vfork); 1442 } 1443 task_unlock(tsk); 1444 } 1445 1446 static int wait_for_vfork_done(struct task_struct *child, 1447 struct completion *vfork) 1448 { 1449 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1450 int killed; 1451 1452 cgroup_enter_frozen(); 1453 killed = wait_for_completion_state(vfork, state); 1454 cgroup_leave_frozen(false); 1455 1456 if (killed) { 1457 task_lock(child); 1458 child->vfork_done = NULL; 1459 task_unlock(child); 1460 } 1461 1462 put_task_struct(child); 1463 return killed; 1464 } 1465 1466 /* Please note the differences between mmput and mm_release. 1467 * mmput is called whenever we stop holding onto a mm_struct, 1468 * error success whatever. 1469 * 1470 * mm_release is called after a mm_struct has been removed 1471 * from the current process. 1472 * 1473 * This difference is important for error handling, when we 1474 * only half set up a mm_struct for a new process and need to restore 1475 * the old one. Because we mmput the new mm_struct before 1476 * restoring the old one. . . 1477 * Eric Biederman 10 January 1998 1478 */ 1479 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1480 { 1481 uprobe_free_utask(tsk); 1482 1483 /* Get rid of any cached register state */ 1484 deactivate_mm(tsk, mm); 1485 1486 /* 1487 * Signal userspace if we're not exiting with a core dump 1488 * because we want to leave the value intact for debugging 1489 * purposes. 1490 */ 1491 if (tsk->clear_child_tid) { 1492 if (atomic_read(&mm->mm_users) > 1) { 1493 /* 1494 * We don't check the error code - if userspace has 1495 * not set up a proper pointer then tough luck. 1496 */ 1497 put_user(0, tsk->clear_child_tid); 1498 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1499 1, NULL, NULL, 0, 0); 1500 } 1501 tsk->clear_child_tid = NULL; 1502 } 1503 1504 /* 1505 * All done, finally we can wake up parent and return this mm to him. 1506 * Also kthread_stop() uses this completion for synchronization. 1507 */ 1508 if (tsk->vfork_done) 1509 complete_vfork_done(tsk); 1510 } 1511 1512 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1513 { 1514 futex_exit_release(tsk); 1515 mm_release(tsk, mm); 1516 } 1517 1518 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1519 { 1520 futex_exec_release(tsk); 1521 mm_release(tsk, mm); 1522 } 1523 1524 /** 1525 * dup_mm() - duplicates an existing mm structure 1526 * @tsk: the task_struct with which the new mm will be associated. 1527 * @oldmm: the mm to duplicate. 1528 * 1529 * Allocates a new mm structure and duplicates the provided @oldmm structure 1530 * content into it. 1531 * 1532 * Return: the duplicated mm or NULL on failure. 1533 */ 1534 static struct mm_struct *dup_mm(struct task_struct *tsk, 1535 struct mm_struct *oldmm) 1536 { 1537 struct mm_struct *mm; 1538 int err; 1539 1540 mm = allocate_mm(); 1541 if (!mm) 1542 goto fail_nomem; 1543 1544 memcpy(mm, oldmm, sizeof(*mm)); 1545 1546 if (!mm_init(mm, tsk, mm->user_ns)) 1547 goto fail_nomem; 1548 1549 err = dup_mmap(mm, oldmm); 1550 if (err) 1551 goto free_pt; 1552 1553 mm->hiwater_rss = get_mm_rss(mm); 1554 mm->hiwater_vm = mm->total_vm; 1555 1556 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1557 goto free_pt; 1558 1559 return mm; 1560 1561 free_pt: 1562 /* don't put binfmt in mmput, we haven't got module yet */ 1563 mm->binfmt = NULL; 1564 mm_init_owner(mm, NULL); 1565 mmput(mm); 1566 1567 fail_nomem: 1568 return NULL; 1569 } 1570 1571 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1572 { 1573 struct mm_struct *mm, *oldmm; 1574 1575 tsk->min_flt = tsk->maj_flt = 0; 1576 tsk->nvcsw = tsk->nivcsw = 0; 1577 #ifdef CONFIG_DETECT_HUNG_TASK 1578 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1579 tsk->last_switch_time = 0; 1580 #endif 1581 1582 tsk->mm = NULL; 1583 tsk->active_mm = NULL; 1584 1585 /* 1586 * Are we cloning a kernel thread? 1587 * 1588 * We need to steal a active VM for that.. 1589 */ 1590 oldmm = current->mm; 1591 if (!oldmm) 1592 return 0; 1593 1594 if (clone_flags & CLONE_VM) { 1595 mmget(oldmm); 1596 mm = oldmm; 1597 } else { 1598 mm = dup_mm(tsk, current->mm); 1599 if (!mm) 1600 return -ENOMEM; 1601 } 1602 1603 tsk->mm = mm; 1604 tsk->active_mm = mm; 1605 sched_mm_cid_fork(tsk); 1606 return 0; 1607 } 1608 1609 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1610 { 1611 struct fs_struct *fs = current->fs; 1612 if (clone_flags & CLONE_FS) { 1613 /* tsk->fs is already what we want */ 1614 spin_lock(&fs->lock); 1615 if (fs->in_exec) { 1616 spin_unlock(&fs->lock); 1617 return -EAGAIN; 1618 } 1619 fs->users++; 1620 spin_unlock(&fs->lock); 1621 return 0; 1622 } 1623 tsk->fs = copy_fs_struct(fs); 1624 if (!tsk->fs) 1625 return -ENOMEM; 1626 return 0; 1627 } 1628 1629 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1630 int no_files) 1631 { 1632 struct files_struct *oldf, *newf; 1633 int error = 0; 1634 1635 /* 1636 * A background process may not have any files ... 1637 */ 1638 oldf = current->files; 1639 if (!oldf) 1640 goto out; 1641 1642 if (no_files) { 1643 tsk->files = NULL; 1644 goto out; 1645 } 1646 1647 if (clone_flags & CLONE_FILES) { 1648 atomic_inc(&oldf->count); 1649 goto out; 1650 } 1651 1652 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1653 if (!newf) 1654 goto out; 1655 1656 tsk->files = newf; 1657 error = 0; 1658 out: 1659 return error; 1660 } 1661 1662 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1663 { 1664 struct sighand_struct *sig; 1665 1666 if (clone_flags & CLONE_SIGHAND) { 1667 refcount_inc(¤t->sighand->count); 1668 return 0; 1669 } 1670 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1671 RCU_INIT_POINTER(tsk->sighand, sig); 1672 if (!sig) 1673 return -ENOMEM; 1674 1675 refcount_set(&sig->count, 1); 1676 spin_lock_irq(¤t->sighand->siglock); 1677 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1678 spin_unlock_irq(¤t->sighand->siglock); 1679 1680 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1681 if (clone_flags & CLONE_CLEAR_SIGHAND) 1682 flush_signal_handlers(tsk, 0); 1683 1684 return 0; 1685 } 1686 1687 void __cleanup_sighand(struct sighand_struct *sighand) 1688 { 1689 if (refcount_dec_and_test(&sighand->count)) { 1690 signalfd_cleanup(sighand); 1691 /* 1692 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1693 * without an RCU grace period, see __lock_task_sighand(). 1694 */ 1695 kmem_cache_free(sighand_cachep, sighand); 1696 } 1697 } 1698 1699 /* 1700 * Initialize POSIX timer handling for a thread group. 1701 */ 1702 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1703 { 1704 struct posix_cputimers *pct = &sig->posix_cputimers; 1705 unsigned long cpu_limit; 1706 1707 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1708 posix_cputimers_group_init(pct, cpu_limit); 1709 } 1710 1711 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1712 { 1713 struct signal_struct *sig; 1714 1715 if (clone_flags & CLONE_THREAD) 1716 return 0; 1717 1718 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1719 tsk->signal = sig; 1720 if (!sig) 1721 return -ENOMEM; 1722 1723 sig->nr_threads = 1; 1724 sig->quick_threads = 1; 1725 atomic_set(&sig->live, 1); 1726 refcount_set(&sig->sigcnt, 1); 1727 1728 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1729 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1730 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1731 1732 init_waitqueue_head(&sig->wait_chldexit); 1733 sig->curr_target = tsk; 1734 init_sigpending(&sig->shared_pending); 1735 INIT_HLIST_HEAD(&sig->multiprocess); 1736 seqlock_init(&sig->stats_lock); 1737 prev_cputime_init(&sig->prev_cputime); 1738 1739 #ifdef CONFIG_POSIX_TIMERS 1740 INIT_LIST_HEAD(&sig->posix_timers); 1741 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1742 sig->real_timer.function = it_real_fn; 1743 #endif 1744 1745 task_lock(current->group_leader); 1746 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1747 task_unlock(current->group_leader); 1748 1749 posix_cpu_timers_init_group(sig); 1750 1751 tty_audit_fork(sig); 1752 sched_autogroup_fork(sig); 1753 1754 sig->oom_score_adj = current->signal->oom_score_adj; 1755 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1756 1757 mutex_init(&sig->cred_guard_mutex); 1758 init_rwsem(&sig->exec_update_lock); 1759 1760 return 0; 1761 } 1762 1763 static void copy_seccomp(struct task_struct *p) 1764 { 1765 #ifdef CONFIG_SECCOMP 1766 /* 1767 * Must be called with sighand->lock held, which is common to 1768 * all threads in the group. Holding cred_guard_mutex is not 1769 * needed because this new task is not yet running and cannot 1770 * be racing exec. 1771 */ 1772 assert_spin_locked(¤t->sighand->siglock); 1773 1774 /* Ref-count the new filter user, and assign it. */ 1775 get_seccomp_filter(current); 1776 p->seccomp = current->seccomp; 1777 1778 /* 1779 * Explicitly enable no_new_privs here in case it got set 1780 * between the task_struct being duplicated and holding the 1781 * sighand lock. The seccomp state and nnp must be in sync. 1782 */ 1783 if (task_no_new_privs(current)) 1784 task_set_no_new_privs(p); 1785 1786 /* 1787 * If the parent gained a seccomp mode after copying thread 1788 * flags and between before we held the sighand lock, we have 1789 * to manually enable the seccomp thread flag here. 1790 */ 1791 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1792 set_task_syscall_work(p, SECCOMP); 1793 #endif 1794 } 1795 1796 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1797 { 1798 current->clear_child_tid = tidptr; 1799 1800 return task_pid_vnr(current); 1801 } 1802 1803 static void rt_mutex_init_task(struct task_struct *p) 1804 { 1805 raw_spin_lock_init(&p->pi_lock); 1806 #ifdef CONFIG_RT_MUTEXES 1807 p->pi_waiters = RB_ROOT_CACHED; 1808 p->pi_top_task = NULL; 1809 p->pi_blocked_on = NULL; 1810 #endif 1811 } 1812 1813 static inline void init_task_pid_links(struct task_struct *task) 1814 { 1815 enum pid_type type; 1816 1817 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1818 INIT_HLIST_NODE(&task->pid_links[type]); 1819 } 1820 1821 static inline void 1822 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1823 { 1824 if (type == PIDTYPE_PID) 1825 task->thread_pid = pid; 1826 else 1827 task->signal->pids[type] = pid; 1828 } 1829 1830 static inline void rcu_copy_process(struct task_struct *p) 1831 { 1832 #ifdef CONFIG_PREEMPT_RCU 1833 p->rcu_read_lock_nesting = 0; 1834 p->rcu_read_unlock_special.s = 0; 1835 p->rcu_blocked_node = NULL; 1836 INIT_LIST_HEAD(&p->rcu_node_entry); 1837 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1838 #ifdef CONFIG_TASKS_RCU 1839 p->rcu_tasks_holdout = false; 1840 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1841 p->rcu_tasks_idle_cpu = -1; 1842 #endif /* #ifdef CONFIG_TASKS_RCU */ 1843 #ifdef CONFIG_TASKS_TRACE_RCU 1844 p->trc_reader_nesting = 0; 1845 p->trc_reader_special.s = 0; 1846 INIT_LIST_HEAD(&p->trc_holdout_list); 1847 INIT_LIST_HEAD(&p->trc_blkd_node); 1848 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1849 } 1850 1851 struct pid *pidfd_pid(const struct file *file) 1852 { 1853 if (file->f_op == &pidfd_fops) 1854 return file->private_data; 1855 1856 return ERR_PTR(-EBADF); 1857 } 1858 1859 static int pidfd_release(struct inode *inode, struct file *file) 1860 { 1861 struct pid *pid = file->private_data; 1862 1863 file->private_data = NULL; 1864 put_pid(pid); 1865 return 0; 1866 } 1867 1868 #ifdef CONFIG_PROC_FS 1869 /** 1870 * pidfd_show_fdinfo - print information about a pidfd 1871 * @m: proc fdinfo file 1872 * @f: file referencing a pidfd 1873 * 1874 * Pid: 1875 * This function will print the pid that a given pidfd refers to in the 1876 * pid namespace of the procfs instance. 1877 * If the pid namespace of the process is not a descendant of the pid 1878 * namespace of the procfs instance 0 will be shown as its pid. This is 1879 * similar to calling getppid() on a process whose parent is outside of 1880 * its pid namespace. 1881 * 1882 * NSpid: 1883 * If pid namespaces are supported then this function will also print 1884 * the pid of a given pidfd refers to for all descendant pid namespaces 1885 * starting from the current pid namespace of the instance, i.e. the 1886 * Pid field and the first entry in the NSpid field will be identical. 1887 * If the pid namespace of the process is not a descendant of the pid 1888 * namespace of the procfs instance 0 will be shown as its first NSpid 1889 * entry and no others will be shown. 1890 * Note that this differs from the Pid and NSpid fields in 1891 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1892 * the pid namespace of the procfs instance. The difference becomes 1893 * obvious when sending around a pidfd between pid namespaces from a 1894 * different branch of the tree, i.e. where no ancestral relation is 1895 * present between the pid namespaces: 1896 * - create two new pid namespaces ns1 and ns2 in the initial pid 1897 * namespace (also take care to create new mount namespaces in the 1898 * new pid namespace and mount procfs) 1899 * - create a process with a pidfd in ns1 1900 * - send pidfd from ns1 to ns2 1901 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1902 * have exactly one entry, which is 0 1903 */ 1904 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1905 { 1906 struct pid *pid = f->private_data; 1907 struct pid_namespace *ns; 1908 pid_t nr = -1; 1909 1910 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1911 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1912 nr = pid_nr_ns(pid, ns); 1913 } 1914 1915 seq_put_decimal_ll(m, "Pid:\t", nr); 1916 1917 #ifdef CONFIG_PID_NS 1918 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1919 if (nr > 0) { 1920 int i; 1921 1922 /* If nr is non-zero it means that 'pid' is valid and that 1923 * ns, i.e. the pid namespace associated with the procfs 1924 * instance, is in the pid namespace hierarchy of pid. 1925 * Start at one below the already printed level. 1926 */ 1927 for (i = ns->level + 1; i <= pid->level; i++) 1928 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1929 } 1930 #endif 1931 seq_putc(m, '\n'); 1932 } 1933 #endif 1934 1935 /* 1936 * Poll support for process exit notification. 1937 */ 1938 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1939 { 1940 struct pid *pid = file->private_data; 1941 __poll_t poll_flags = 0; 1942 1943 poll_wait(file, &pid->wait_pidfd, pts); 1944 1945 /* 1946 * Inform pollers only when the whole thread group exits. 1947 * If the thread group leader exits before all other threads in the 1948 * group, then poll(2) should block, similar to the wait(2) family. 1949 */ 1950 if (thread_group_exited(pid)) 1951 poll_flags = EPOLLIN | EPOLLRDNORM; 1952 1953 return poll_flags; 1954 } 1955 1956 const struct file_operations pidfd_fops = { 1957 .release = pidfd_release, 1958 .poll = pidfd_poll, 1959 #ifdef CONFIG_PROC_FS 1960 .show_fdinfo = pidfd_show_fdinfo, 1961 #endif 1962 }; 1963 1964 /** 1965 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1966 * @pid: the struct pid for which to create a pidfd 1967 * @flags: flags of the new @pidfd 1968 * @pidfd: the pidfd to return 1969 * 1970 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1971 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1972 1973 * The helper doesn't perform checks on @pid which makes it useful for pidfds 1974 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 1975 * pidfd file are prepared. 1976 * 1977 * If this function returns successfully the caller is responsible to either 1978 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1979 * order to install the pidfd into its file descriptor table or they must use 1980 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1981 * respectively. 1982 * 1983 * This function is useful when a pidfd must already be reserved but there 1984 * might still be points of failure afterwards and the caller wants to ensure 1985 * that no pidfd is leaked into its file descriptor table. 1986 * 1987 * Return: On success, a reserved pidfd is returned from the function and a new 1988 * pidfd file is returned in the last argument to the function. On 1989 * error, a negative error code is returned from the function and the 1990 * last argument remains unchanged. 1991 */ 1992 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 1993 { 1994 int pidfd; 1995 struct file *pidfd_file; 1996 1997 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC)) 1998 return -EINVAL; 1999 2000 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2001 if (pidfd < 0) 2002 return pidfd; 2003 2004 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2005 flags | O_RDWR | O_CLOEXEC); 2006 if (IS_ERR(pidfd_file)) { 2007 put_unused_fd(pidfd); 2008 return PTR_ERR(pidfd_file); 2009 } 2010 get_pid(pid); /* held by pidfd_file now */ 2011 *ret = pidfd_file; 2012 return pidfd; 2013 } 2014 2015 /** 2016 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2017 * @pid: the struct pid for which to create a pidfd 2018 * @flags: flags of the new @pidfd 2019 * @pidfd: the pidfd to return 2020 * 2021 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2022 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2023 * 2024 * The helper verifies that @pid is used as a thread group leader. 2025 * 2026 * If this function returns successfully the caller is responsible to either 2027 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2028 * order to install the pidfd into its file descriptor table or they must use 2029 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2030 * respectively. 2031 * 2032 * This function is useful when a pidfd must already be reserved but there 2033 * might still be points of failure afterwards and the caller wants to ensure 2034 * that no pidfd is leaked into its file descriptor table. 2035 * 2036 * Return: On success, a reserved pidfd is returned from the function and a new 2037 * pidfd file is returned in the last argument to the function. On 2038 * error, a negative error code is returned from the function and the 2039 * last argument remains unchanged. 2040 */ 2041 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2042 { 2043 if (!pid || !pid_has_task(pid, PIDTYPE_TGID)) 2044 return -EINVAL; 2045 2046 return __pidfd_prepare(pid, flags, ret); 2047 } 2048 2049 static void __delayed_free_task(struct rcu_head *rhp) 2050 { 2051 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2052 2053 free_task(tsk); 2054 } 2055 2056 static __always_inline void delayed_free_task(struct task_struct *tsk) 2057 { 2058 if (IS_ENABLED(CONFIG_MEMCG)) 2059 call_rcu(&tsk->rcu, __delayed_free_task); 2060 else 2061 free_task(tsk); 2062 } 2063 2064 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2065 { 2066 /* Skip if kernel thread */ 2067 if (!tsk->mm) 2068 return; 2069 2070 /* Skip if spawning a thread or using vfork */ 2071 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2072 return; 2073 2074 /* We need to synchronize with __set_oom_adj */ 2075 mutex_lock(&oom_adj_mutex); 2076 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2077 /* Update the values in case they were changed after copy_signal */ 2078 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2079 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2080 mutex_unlock(&oom_adj_mutex); 2081 } 2082 2083 #ifdef CONFIG_RV 2084 static void rv_task_fork(struct task_struct *p) 2085 { 2086 int i; 2087 2088 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2089 p->rv[i].da_mon.monitoring = false; 2090 } 2091 #else 2092 #define rv_task_fork(p) do {} while (0) 2093 #endif 2094 2095 /* 2096 * This creates a new process as a copy of the old one, 2097 * but does not actually start it yet. 2098 * 2099 * It copies the registers, and all the appropriate 2100 * parts of the process environment (as per the clone 2101 * flags). The actual kick-off is left to the caller. 2102 */ 2103 __latent_entropy struct task_struct *copy_process( 2104 struct pid *pid, 2105 int trace, 2106 int node, 2107 struct kernel_clone_args *args) 2108 { 2109 int pidfd = -1, retval; 2110 struct task_struct *p; 2111 struct multiprocess_signals delayed; 2112 struct file *pidfile = NULL; 2113 const u64 clone_flags = args->flags; 2114 struct nsproxy *nsp = current->nsproxy; 2115 2116 /* 2117 * Don't allow sharing the root directory with processes in a different 2118 * namespace 2119 */ 2120 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2121 return ERR_PTR(-EINVAL); 2122 2123 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2124 return ERR_PTR(-EINVAL); 2125 2126 /* 2127 * Thread groups must share signals as well, and detached threads 2128 * can only be started up within the thread group. 2129 */ 2130 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2131 return ERR_PTR(-EINVAL); 2132 2133 /* 2134 * Shared signal handlers imply shared VM. By way of the above, 2135 * thread groups also imply shared VM. Blocking this case allows 2136 * for various simplifications in other code. 2137 */ 2138 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2139 return ERR_PTR(-EINVAL); 2140 2141 /* 2142 * Siblings of global init remain as zombies on exit since they are 2143 * not reaped by their parent (swapper). To solve this and to avoid 2144 * multi-rooted process trees, prevent global and container-inits 2145 * from creating siblings. 2146 */ 2147 if ((clone_flags & CLONE_PARENT) && 2148 current->signal->flags & SIGNAL_UNKILLABLE) 2149 return ERR_PTR(-EINVAL); 2150 2151 /* 2152 * If the new process will be in a different pid or user namespace 2153 * do not allow it to share a thread group with the forking task. 2154 */ 2155 if (clone_flags & CLONE_THREAD) { 2156 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2157 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2158 return ERR_PTR(-EINVAL); 2159 } 2160 2161 if (clone_flags & CLONE_PIDFD) { 2162 /* 2163 * - CLONE_DETACHED is blocked so that we can potentially 2164 * reuse it later for CLONE_PIDFD. 2165 * - CLONE_THREAD is blocked until someone really needs it. 2166 */ 2167 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2168 return ERR_PTR(-EINVAL); 2169 } 2170 2171 /* 2172 * Force any signals received before this point to be delivered 2173 * before the fork happens. Collect up signals sent to multiple 2174 * processes that happen during the fork and delay them so that 2175 * they appear to happen after the fork. 2176 */ 2177 sigemptyset(&delayed.signal); 2178 INIT_HLIST_NODE(&delayed.node); 2179 2180 spin_lock_irq(¤t->sighand->siglock); 2181 if (!(clone_flags & CLONE_THREAD)) 2182 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2183 recalc_sigpending(); 2184 spin_unlock_irq(¤t->sighand->siglock); 2185 retval = -ERESTARTNOINTR; 2186 if (task_sigpending(current)) 2187 goto fork_out; 2188 2189 retval = -ENOMEM; 2190 p = dup_task_struct(current, node); 2191 if (!p) 2192 goto fork_out; 2193 p->flags &= ~PF_KTHREAD; 2194 if (args->kthread) 2195 p->flags |= PF_KTHREAD; 2196 if (args->user_worker) 2197 p->flags |= PF_USER_WORKER; 2198 if (args->io_thread) { 2199 /* 2200 * Mark us an IO worker, and block any signal that isn't 2201 * fatal or STOP 2202 */ 2203 p->flags |= PF_IO_WORKER; 2204 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2205 } 2206 2207 if (args->name) 2208 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2209 2210 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2211 /* 2212 * Clear TID on mm_release()? 2213 */ 2214 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2215 2216 ftrace_graph_init_task(p); 2217 2218 rt_mutex_init_task(p); 2219 2220 lockdep_assert_irqs_enabled(); 2221 #ifdef CONFIG_PROVE_LOCKING 2222 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2223 #endif 2224 retval = copy_creds(p, clone_flags); 2225 if (retval < 0) 2226 goto bad_fork_free; 2227 2228 retval = -EAGAIN; 2229 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2230 if (p->real_cred->user != INIT_USER && 2231 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2232 goto bad_fork_cleanup_count; 2233 } 2234 current->flags &= ~PF_NPROC_EXCEEDED; 2235 2236 /* 2237 * If multiple threads are within copy_process(), then this check 2238 * triggers too late. This doesn't hurt, the check is only there 2239 * to stop root fork bombs. 2240 */ 2241 retval = -EAGAIN; 2242 if (data_race(nr_threads >= max_threads)) 2243 goto bad_fork_cleanup_count; 2244 2245 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2246 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2247 p->flags |= PF_FORKNOEXEC; 2248 INIT_LIST_HEAD(&p->children); 2249 INIT_LIST_HEAD(&p->sibling); 2250 rcu_copy_process(p); 2251 p->vfork_done = NULL; 2252 spin_lock_init(&p->alloc_lock); 2253 2254 init_sigpending(&p->pending); 2255 2256 p->utime = p->stime = p->gtime = 0; 2257 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2258 p->utimescaled = p->stimescaled = 0; 2259 #endif 2260 prev_cputime_init(&p->prev_cputime); 2261 2262 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2263 seqcount_init(&p->vtime.seqcount); 2264 p->vtime.starttime = 0; 2265 p->vtime.state = VTIME_INACTIVE; 2266 #endif 2267 2268 #ifdef CONFIG_IO_URING 2269 p->io_uring = NULL; 2270 #endif 2271 2272 #if defined(SPLIT_RSS_COUNTING) 2273 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2274 #endif 2275 2276 p->default_timer_slack_ns = current->timer_slack_ns; 2277 2278 #ifdef CONFIG_PSI 2279 p->psi_flags = 0; 2280 #endif 2281 2282 task_io_accounting_init(&p->ioac); 2283 acct_clear_integrals(p); 2284 2285 posix_cputimers_init(&p->posix_cputimers); 2286 2287 p->io_context = NULL; 2288 audit_set_context(p, NULL); 2289 cgroup_fork(p); 2290 if (args->kthread) { 2291 if (!set_kthread_struct(p)) 2292 goto bad_fork_cleanup_delayacct; 2293 } 2294 #ifdef CONFIG_NUMA 2295 p->mempolicy = mpol_dup(p->mempolicy); 2296 if (IS_ERR(p->mempolicy)) { 2297 retval = PTR_ERR(p->mempolicy); 2298 p->mempolicy = NULL; 2299 goto bad_fork_cleanup_delayacct; 2300 } 2301 #endif 2302 #ifdef CONFIG_CPUSETS 2303 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2304 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2305 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2306 #endif 2307 #ifdef CONFIG_TRACE_IRQFLAGS 2308 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2309 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2310 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2311 p->softirqs_enabled = 1; 2312 p->softirq_context = 0; 2313 #endif 2314 2315 p->pagefault_disabled = 0; 2316 2317 #ifdef CONFIG_LOCKDEP 2318 lockdep_init_task(p); 2319 #endif 2320 2321 #ifdef CONFIG_DEBUG_MUTEXES 2322 p->blocked_on = NULL; /* not blocked yet */ 2323 #endif 2324 #ifdef CONFIG_BCACHE 2325 p->sequential_io = 0; 2326 p->sequential_io_avg = 0; 2327 #endif 2328 #ifdef CONFIG_BPF_SYSCALL 2329 RCU_INIT_POINTER(p->bpf_storage, NULL); 2330 p->bpf_ctx = NULL; 2331 #endif 2332 2333 /* Perform scheduler related setup. Assign this task to a CPU. */ 2334 retval = sched_fork(clone_flags, p); 2335 if (retval) 2336 goto bad_fork_cleanup_policy; 2337 2338 retval = perf_event_init_task(p, clone_flags); 2339 if (retval) 2340 goto bad_fork_cleanup_policy; 2341 retval = audit_alloc(p); 2342 if (retval) 2343 goto bad_fork_cleanup_perf; 2344 /* copy all the process information */ 2345 shm_init_task(p); 2346 retval = security_task_alloc(p, clone_flags); 2347 if (retval) 2348 goto bad_fork_cleanup_audit; 2349 retval = copy_semundo(clone_flags, p); 2350 if (retval) 2351 goto bad_fork_cleanup_security; 2352 retval = copy_files(clone_flags, p, args->no_files); 2353 if (retval) 2354 goto bad_fork_cleanup_semundo; 2355 retval = copy_fs(clone_flags, p); 2356 if (retval) 2357 goto bad_fork_cleanup_files; 2358 retval = copy_sighand(clone_flags, p); 2359 if (retval) 2360 goto bad_fork_cleanup_fs; 2361 retval = copy_signal(clone_flags, p); 2362 if (retval) 2363 goto bad_fork_cleanup_sighand; 2364 retval = copy_mm(clone_flags, p); 2365 if (retval) 2366 goto bad_fork_cleanup_signal; 2367 retval = copy_namespaces(clone_flags, p); 2368 if (retval) 2369 goto bad_fork_cleanup_mm; 2370 retval = copy_io(clone_flags, p); 2371 if (retval) 2372 goto bad_fork_cleanup_namespaces; 2373 retval = copy_thread(p, args); 2374 if (retval) 2375 goto bad_fork_cleanup_io; 2376 2377 if (args->ignore_signals) 2378 ignore_signals(p); 2379 2380 stackleak_task_init(p); 2381 2382 if (pid != &init_struct_pid) { 2383 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2384 args->set_tid_size); 2385 if (IS_ERR(pid)) { 2386 retval = PTR_ERR(pid); 2387 goto bad_fork_cleanup_thread; 2388 } 2389 } 2390 2391 /* 2392 * This has to happen after we've potentially unshared the file 2393 * descriptor table (so that the pidfd doesn't leak into the child 2394 * if the fd table isn't shared). 2395 */ 2396 if (clone_flags & CLONE_PIDFD) { 2397 /* Note that no task has been attached to @pid yet. */ 2398 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile); 2399 if (retval < 0) 2400 goto bad_fork_free_pid; 2401 pidfd = retval; 2402 2403 retval = put_user(pidfd, args->pidfd); 2404 if (retval) 2405 goto bad_fork_put_pidfd; 2406 } 2407 2408 #ifdef CONFIG_BLOCK 2409 p->plug = NULL; 2410 #endif 2411 futex_init_task(p); 2412 2413 /* 2414 * sigaltstack should be cleared when sharing the same VM 2415 */ 2416 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2417 sas_ss_reset(p); 2418 2419 /* 2420 * Syscall tracing and stepping should be turned off in the 2421 * child regardless of CLONE_PTRACE. 2422 */ 2423 user_disable_single_step(p); 2424 clear_task_syscall_work(p, SYSCALL_TRACE); 2425 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2426 clear_task_syscall_work(p, SYSCALL_EMU); 2427 #endif 2428 clear_tsk_latency_tracing(p); 2429 2430 /* ok, now we should be set up.. */ 2431 p->pid = pid_nr(pid); 2432 if (clone_flags & CLONE_THREAD) { 2433 p->group_leader = current->group_leader; 2434 p->tgid = current->tgid; 2435 } else { 2436 p->group_leader = p; 2437 p->tgid = p->pid; 2438 } 2439 2440 p->nr_dirtied = 0; 2441 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2442 p->dirty_paused_when = 0; 2443 2444 p->pdeath_signal = 0; 2445 INIT_LIST_HEAD(&p->thread_group); 2446 p->task_works = NULL; 2447 clear_posix_cputimers_work(p); 2448 2449 #ifdef CONFIG_KRETPROBES 2450 p->kretprobe_instances.first = NULL; 2451 #endif 2452 #ifdef CONFIG_RETHOOK 2453 p->rethooks.first = NULL; 2454 #endif 2455 2456 /* 2457 * Ensure that the cgroup subsystem policies allow the new process to be 2458 * forked. It should be noted that the new process's css_set can be changed 2459 * between here and cgroup_post_fork() if an organisation operation is in 2460 * progress. 2461 */ 2462 retval = cgroup_can_fork(p, args); 2463 if (retval) 2464 goto bad_fork_put_pidfd; 2465 2466 /* 2467 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2468 * the new task on the correct runqueue. All this *before* the task 2469 * becomes visible. 2470 * 2471 * This isn't part of ->can_fork() because while the re-cloning is 2472 * cgroup specific, it unconditionally needs to place the task on a 2473 * runqueue. 2474 */ 2475 sched_cgroup_fork(p, args); 2476 2477 /* 2478 * From this point on we must avoid any synchronous user-space 2479 * communication until we take the tasklist-lock. In particular, we do 2480 * not want user-space to be able to predict the process start-time by 2481 * stalling fork(2) after we recorded the start_time but before it is 2482 * visible to the system. 2483 */ 2484 2485 p->start_time = ktime_get_ns(); 2486 p->start_boottime = ktime_get_boottime_ns(); 2487 2488 /* 2489 * Make it visible to the rest of the system, but dont wake it up yet. 2490 * Need tasklist lock for parent etc handling! 2491 */ 2492 write_lock_irq(&tasklist_lock); 2493 2494 /* CLONE_PARENT re-uses the old parent */ 2495 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2496 p->real_parent = current->real_parent; 2497 p->parent_exec_id = current->parent_exec_id; 2498 if (clone_flags & CLONE_THREAD) 2499 p->exit_signal = -1; 2500 else 2501 p->exit_signal = current->group_leader->exit_signal; 2502 } else { 2503 p->real_parent = current; 2504 p->parent_exec_id = current->self_exec_id; 2505 p->exit_signal = args->exit_signal; 2506 } 2507 2508 klp_copy_process(p); 2509 2510 sched_core_fork(p); 2511 2512 spin_lock(¤t->sighand->siglock); 2513 2514 rv_task_fork(p); 2515 2516 rseq_fork(p, clone_flags); 2517 2518 /* Don't start children in a dying pid namespace */ 2519 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2520 retval = -ENOMEM; 2521 goto bad_fork_cancel_cgroup; 2522 } 2523 2524 /* Let kill terminate clone/fork in the middle */ 2525 if (fatal_signal_pending(current)) { 2526 retval = -EINTR; 2527 goto bad_fork_cancel_cgroup; 2528 } 2529 2530 /* No more failure paths after this point. */ 2531 2532 /* 2533 * Copy seccomp details explicitly here, in case they were changed 2534 * before holding sighand lock. 2535 */ 2536 copy_seccomp(p); 2537 2538 init_task_pid_links(p); 2539 if (likely(p->pid)) { 2540 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2541 2542 init_task_pid(p, PIDTYPE_PID, pid); 2543 if (thread_group_leader(p)) { 2544 init_task_pid(p, PIDTYPE_TGID, pid); 2545 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2546 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2547 2548 if (is_child_reaper(pid)) { 2549 ns_of_pid(pid)->child_reaper = p; 2550 p->signal->flags |= SIGNAL_UNKILLABLE; 2551 } 2552 p->signal->shared_pending.signal = delayed.signal; 2553 p->signal->tty = tty_kref_get(current->signal->tty); 2554 /* 2555 * Inherit has_child_subreaper flag under the same 2556 * tasklist_lock with adding child to the process tree 2557 * for propagate_has_child_subreaper optimization. 2558 */ 2559 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2560 p->real_parent->signal->is_child_subreaper; 2561 list_add_tail(&p->sibling, &p->real_parent->children); 2562 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2563 attach_pid(p, PIDTYPE_TGID); 2564 attach_pid(p, PIDTYPE_PGID); 2565 attach_pid(p, PIDTYPE_SID); 2566 __this_cpu_inc(process_counts); 2567 } else { 2568 current->signal->nr_threads++; 2569 current->signal->quick_threads++; 2570 atomic_inc(¤t->signal->live); 2571 refcount_inc(¤t->signal->sigcnt); 2572 task_join_group_stop(p); 2573 list_add_tail_rcu(&p->thread_group, 2574 &p->group_leader->thread_group); 2575 list_add_tail_rcu(&p->thread_node, 2576 &p->signal->thread_head); 2577 } 2578 attach_pid(p, PIDTYPE_PID); 2579 nr_threads++; 2580 } 2581 total_forks++; 2582 hlist_del_init(&delayed.node); 2583 spin_unlock(¤t->sighand->siglock); 2584 syscall_tracepoint_update(p); 2585 write_unlock_irq(&tasklist_lock); 2586 2587 if (pidfile) 2588 fd_install(pidfd, pidfile); 2589 2590 proc_fork_connector(p); 2591 sched_post_fork(p); 2592 cgroup_post_fork(p, args); 2593 perf_event_fork(p); 2594 2595 trace_task_newtask(p, clone_flags); 2596 uprobe_copy_process(p, clone_flags); 2597 2598 copy_oom_score_adj(clone_flags, p); 2599 2600 return p; 2601 2602 bad_fork_cancel_cgroup: 2603 sched_core_free(p); 2604 spin_unlock(¤t->sighand->siglock); 2605 write_unlock_irq(&tasklist_lock); 2606 cgroup_cancel_fork(p, args); 2607 bad_fork_put_pidfd: 2608 if (clone_flags & CLONE_PIDFD) { 2609 fput(pidfile); 2610 put_unused_fd(pidfd); 2611 } 2612 bad_fork_free_pid: 2613 if (pid != &init_struct_pid) 2614 free_pid(pid); 2615 bad_fork_cleanup_thread: 2616 exit_thread(p); 2617 bad_fork_cleanup_io: 2618 if (p->io_context) 2619 exit_io_context(p); 2620 bad_fork_cleanup_namespaces: 2621 exit_task_namespaces(p); 2622 bad_fork_cleanup_mm: 2623 if (p->mm) { 2624 mm_clear_owner(p->mm, p); 2625 mmput(p->mm); 2626 } 2627 bad_fork_cleanup_signal: 2628 if (!(clone_flags & CLONE_THREAD)) 2629 free_signal_struct(p->signal); 2630 bad_fork_cleanup_sighand: 2631 __cleanup_sighand(p->sighand); 2632 bad_fork_cleanup_fs: 2633 exit_fs(p); /* blocking */ 2634 bad_fork_cleanup_files: 2635 exit_files(p); /* blocking */ 2636 bad_fork_cleanup_semundo: 2637 exit_sem(p); 2638 bad_fork_cleanup_security: 2639 security_task_free(p); 2640 bad_fork_cleanup_audit: 2641 audit_free(p); 2642 bad_fork_cleanup_perf: 2643 perf_event_free_task(p); 2644 bad_fork_cleanup_policy: 2645 lockdep_free_task(p); 2646 #ifdef CONFIG_NUMA 2647 mpol_put(p->mempolicy); 2648 #endif 2649 bad_fork_cleanup_delayacct: 2650 delayacct_tsk_free(p); 2651 bad_fork_cleanup_count: 2652 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2653 exit_creds(p); 2654 bad_fork_free: 2655 WRITE_ONCE(p->__state, TASK_DEAD); 2656 exit_task_stack_account(p); 2657 put_task_stack(p); 2658 delayed_free_task(p); 2659 fork_out: 2660 spin_lock_irq(¤t->sighand->siglock); 2661 hlist_del_init(&delayed.node); 2662 spin_unlock_irq(¤t->sighand->siglock); 2663 return ERR_PTR(retval); 2664 } 2665 2666 static inline void init_idle_pids(struct task_struct *idle) 2667 { 2668 enum pid_type type; 2669 2670 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2671 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2672 init_task_pid(idle, type, &init_struct_pid); 2673 } 2674 } 2675 2676 static int idle_dummy(void *dummy) 2677 { 2678 /* This function is never called */ 2679 return 0; 2680 } 2681 2682 struct task_struct * __init fork_idle(int cpu) 2683 { 2684 struct task_struct *task; 2685 struct kernel_clone_args args = { 2686 .flags = CLONE_VM, 2687 .fn = &idle_dummy, 2688 .fn_arg = NULL, 2689 .kthread = 1, 2690 .idle = 1, 2691 }; 2692 2693 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2694 if (!IS_ERR(task)) { 2695 init_idle_pids(task); 2696 init_idle(task, cpu); 2697 } 2698 2699 return task; 2700 } 2701 2702 /* 2703 * This is like kernel_clone(), but shaved down and tailored to just 2704 * creating io_uring workers. It returns a created task, or an error pointer. 2705 * The returned task is inactive, and the caller must fire it up through 2706 * wake_up_new_task(p). All signals are blocked in the created task. 2707 */ 2708 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2709 { 2710 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2711 CLONE_IO; 2712 struct kernel_clone_args args = { 2713 .flags = ((lower_32_bits(flags) | CLONE_VM | 2714 CLONE_UNTRACED) & ~CSIGNAL), 2715 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2716 .fn = fn, 2717 .fn_arg = arg, 2718 .io_thread = 1, 2719 .user_worker = 1, 2720 }; 2721 2722 return copy_process(NULL, 0, node, &args); 2723 } 2724 2725 /* 2726 * Ok, this is the main fork-routine. 2727 * 2728 * It copies the process, and if successful kick-starts 2729 * it and waits for it to finish using the VM if required. 2730 * 2731 * args->exit_signal is expected to be checked for sanity by the caller. 2732 */ 2733 pid_t kernel_clone(struct kernel_clone_args *args) 2734 { 2735 u64 clone_flags = args->flags; 2736 struct completion vfork; 2737 struct pid *pid; 2738 struct task_struct *p; 2739 int trace = 0; 2740 pid_t nr; 2741 2742 /* 2743 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2744 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2745 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2746 * field in struct clone_args and it still doesn't make sense to have 2747 * them both point at the same memory location. Performing this check 2748 * here has the advantage that we don't need to have a separate helper 2749 * to check for legacy clone(). 2750 */ 2751 if ((args->flags & CLONE_PIDFD) && 2752 (args->flags & CLONE_PARENT_SETTID) && 2753 (args->pidfd == args->parent_tid)) 2754 return -EINVAL; 2755 2756 /* 2757 * Determine whether and which event to report to ptracer. When 2758 * called from kernel_thread or CLONE_UNTRACED is explicitly 2759 * requested, no event is reported; otherwise, report if the event 2760 * for the type of forking is enabled. 2761 */ 2762 if (!(clone_flags & CLONE_UNTRACED)) { 2763 if (clone_flags & CLONE_VFORK) 2764 trace = PTRACE_EVENT_VFORK; 2765 else if (args->exit_signal != SIGCHLD) 2766 trace = PTRACE_EVENT_CLONE; 2767 else 2768 trace = PTRACE_EVENT_FORK; 2769 2770 if (likely(!ptrace_event_enabled(current, trace))) 2771 trace = 0; 2772 } 2773 2774 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2775 add_latent_entropy(); 2776 2777 if (IS_ERR(p)) 2778 return PTR_ERR(p); 2779 2780 /* 2781 * Do this prior waking up the new thread - the thread pointer 2782 * might get invalid after that point, if the thread exits quickly. 2783 */ 2784 trace_sched_process_fork(current, p); 2785 2786 pid = get_task_pid(p, PIDTYPE_PID); 2787 nr = pid_vnr(pid); 2788 2789 if (clone_flags & CLONE_PARENT_SETTID) 2790 put_user(nr, args->parent_tid); 2791 2792 if (clone_flags & CLONE_VFORK) { 2793 p->vfork_done = &vfork; 2794 init_completion(&vfork); 2795 get_task_struct(p); 2796 } 2797 2798 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2799 /* lock the task to synchronize with memcg migration */ 2800 task_lock(p); 2801 lru_gen_add_mm(p->mm); 2802 task_unlock(p); 2803 } 2804 2805 wake_up_new_task(p); 2806 2807 /* forking complete and child started to run, tell ptracer */ 2808 if (unlikely(trace)) 2809 ptrace_event_pid(trace, pid); 2810 2811 if (clone_flags & CLONE_VFORK) { 2812 if (!wait_for_vfork_done(p, &vfork)) 2813 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2814 } 2815 2816 put_pid(pid); 2817 return nr; 2818 } 2819 2820 /* 2821 * Create a kernel thread. 2822 */ 2823 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2824 unsigned long flags) 2825 { 2826 struct kernel_clone_args args = { 2827 .flags = ((lower_32_bits(flags) | CLONE_VM | 2828 CLONE_UNTRACED) & ~CSIGNAL), 2829 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2830 .fn = fn, 2831 .fn_arg = arg, 2832 .name = name, 2833 .kthread = 1, 2834 }; 2835 2836 return kernel_clone(&args); 2837 } 2838 2839 /* 2840 * Create a user mode thread. 2841 */ 2842 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2843 { 2844 struct kernel_clone_args args = { 2845 .flags = ((lower_32_bits(flags) | CLONE_VM | 2846 CLONE_UNTRACED) & ~CSIGNAL), 2847 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2848 .fn = fn, 2849 .fn_arg = arg, 2850 }; 2851 2852 return kernel_clone(&args); 2853 } 2854 2855 #ifdef __ARCH_WANT_SYS_FORK 2856 SYSCALL_DEFINE0(fork) 2857 { 2858 #ifdef CONFIG_MMU 2859 struct kernel_clone_args args = { 2860 .exit_signal = SIGCHLD, 2861 }; 2862 2863 return kernel_clone(&args); 2864 #else 2865 /* can not support in nommu mode */ 2866 return -EINVAL; 2867 #endif 2868 } 2869 #endif 2870 2871 #ifdef __ARCH_WANT_SYS_VFORK 2872 SYSCALL_DEFINE0(vfork) 2873 { 2874 struct kernel_clone_args args = { 2875 .flags = CLONE_VFORK | CLONE_VM, 2876 .exit_signal = SIGCHLD, 2877 }; 2878 2879 return kernel_clone(&args); 2880 } 2881 #endif 2882 2883 #ifdef __ARCH_WANT_SYS_CLONE 2884 #ifdef CONFIG_CLONE_BACKWARDS 2885 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2886 int __user *, parent_tidptr, 2887 unsigned long, tls, 2888 int __user *, child_tidptr) 2889 #elif defined(CONFIG_CLONE_BACKWARDS2) 2890 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2891 int __user *, parent_tidptr, 2892 int __user *, child_tidptr, 2893 unsigned long, tls) 2894 #elif defined(CONFIG_CLONE_BACKWARDS3) 2895 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2896 int, stack_size, 2897 int __user *, parent_tidptr, 2898 int __user *, child_tidptr, 2899 unsigned long, tls) 2900 #else 2901 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2902 int __user *, parent_tidptr, 2903 int __user *, child_tidptr, 2904 unsigned long, tls) 2905 #endif 2906 { 2907 struct kernel_clone_args args = { 2908 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2909 .pidfd = parent_tidptr, 2910 .child_tid = child_tidptr, 2911 .parent_tid = parent_tidptr, 2912 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2913 .stack = newsp, 2914 .tls = tls, 2915 }; 2916 2917 return kernel_clone(&args); 2918 } 2919 #endif 2920 2921 #ifdef __ARCH_WANT_SYS_CLONE3 2922 2923 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2924 struct clone_args __user *uargs, 2925 size_t usize) 2926 { 2927 int err; 2928 struct clone_args args; 2929 pid_t *kset_tid = kargs->set_tid; 2930 2931 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2932 CLONE_ARGS_SIZE_VER0); 2933 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2934 CLONE_ARGS_SIZE_VER1); 2935 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2936 CLONE_ARGS_SIZE_VER2); 2937 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2938 2939 if (unlikely(usize > PAGE_SIZE)) 2940 return -E2BIG; 2941 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2942 return -EINVAL; 2943 2944 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2945 if (err) 2946 return err; 2947 2948 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2949 return -EINVAL; 2950 2951 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2952 return -EINVAL; 2953 2954 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2955 return -EINVAL; 2956 2957 /* 2958 * Verify that higher 32bits of exit_signal are unset and that 2959 * it is a valid signal 2960 */ 2961 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2962 !valid_signal(args.exit_signal))) 2963 return -EINVAL; 2964 2965 if ((args.flags & CLONE_INTO_CGROUP) && 2966 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2967 return -EINVAL; 2968 2969 *kargs = (struct kernel_clone_args){ 2970 .flags = args.flags, 2971 .pidfd = u64_to_user_ptr(args.pidfd), 2972 .child_tid = u64_to_user_ptr(args.child_tid), 2973 .parent_tid = u64_to_user_ptr(args.parent_tid), 2974 .exit_signal = args.exit_signal, 2975 .stack = args.stack, 2976 .stack_size = args.stack_size, 2977 .tls = args.tls, 2978 .set_tid_size = args.set_tid_size, 2979 .cgroup = args.cgroup, 2980 }; 2981 2982 if (args.set_tid && 2983 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2984 (kargs->set_tid_size * sizeof(pid_t)))) 2985 return -EFAULT; 2986 2987 kargs->set_tid = kset_tid; 2988 2989 return 0; 2990 } 2991 2992 /** 2993 * clone3_stack_valid - check and prepare stack 2994 * @kargs: kernel clone args 2995 * 2996 * Verify that the stack arguments userspace gave us are sane. 2997 * In addition, set the stack direction for userspace since it's easy for us to 2998 * determine. 2999 */ 3000 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3001 { 3002 if (kargs->stack == 0) { 3003 if (kargs->stack_size > 0) 3004 return false; 3005 } else { 3006 if (kargs->stack_size == 0) 3007 return false; 3008 3009 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3010 return false; 3011 3012 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 3013 kargs->stack += kargs->stack_size; 3014 #endif 3015 } 3016 3017 return true; 3018 } 3019 3020 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3021 { 3022 /* Verify that no unknown flags are passed along. */ 3023 if (kargs->flags & 3024 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3025 return false; 3026 3027 /* 3028 * - make the CLONE_DETACHED bit reusable for clone3 3029 * - make the CSIGNAL bits reusable for clone3 3030 */ 3031 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3032 return false; 3033 3034 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3035 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3036 return false; 3037 3038 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3039 kargs->exit_signal) 3040 return false; 3041 3042 if (!clone3_stack_valid(kargs)) 3043 return false; 3044 3045 return true; 3046 } 3047 3048 /** 3049 * clone3 - create a new process with specific properties 3050 * @uargs: argument structure 3051 * @size: size of @uargs 3052 * 3053 * clone3() is the extensible successor to clone()/clone2(). 3054 * It takes a struct as argument that is versioned by its size. 3055 * 3056 * Return: On success, a positive PID for the child process. 3057 * On error, a negative errno number. 3058 */ 3059 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3060 { 3061 int err; 3062 3063 struct kernel_clone_args kargs; 3064 pid_t set_tid[MAX_PID_NS_LEVEL]; 3065 3066 kargs.set_tid = set_tid; 3067 3068 err = copy_clone_args_from_user(&kargs, uargs, size); 3069 if (err) 3070 return err; 3071 3072 if (!clone3_args_valid(&kargs)) 3073 return -EINVAL; 3074 3075 return kernel_clone(&kargs); 3076 } 3077 #endif 3078 3079 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3080 { 3081 struct task_struct *leader, *parent, *child; 3082 int res; 3083 3084 read_lock(&tasklist_lock); 3085 leader = top = top->group_leader; 3086 down: 3087 for_each_thread(leader, parent) { 3088 list_for_each_entry(child, &parent->children, sibling) { 3089 res = visitor(child, data); 3090 if (res) { 3091 if (res < 0) 3092 goto out; 3093 leader = child; 3094 goto down; 3095 } 3096 up: 3097 ; 3098 } 3099 } 3100 3101 if (leader != top) { 3102 child = leader; 3103 parent = child->real_parent; 3104 leader = parent->group_leader; 3105 goto up; 3106 } 3107 out: 3108 read_unlock(&tasklist_lock); 3109 } 3110 3111 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3112 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3113 #endif 3114 3115 static void sighand_ctor(void *data) 3116 { 3117 struct sighand_struct *sighand = data; 3118 3119 spin_lock_init(&sighand->siglock); 3120 init_waitqueue_head(&sighand->signalfd_wqh); 3121 } 3122 3123 void __init mm_cache_init(void) 3124 { 3125 unsigned int mm_size; 3126 3127 /* 3128 * The mm_cpumask is located at the end of mm_struct, and is 3129 * dynamically sized based on the maximum CPU number this system 3130 * can have, taking hotplug into account (nr_cpu_ids). 3131 */ 3132 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3133 3134 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3135 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3136 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3137 offsetof(struct mm_struct, saved_auxv), 3138 sizeof_field(struct mm_struct, saved_auxv), 3139 NULL); 3140 } 3141 3142 void __init proc_caches_init(void) 3143 { 3144 sighand_cachep = kmem_cache_create("sighand_cache", 3145 sizeof(struct sighand_struct), 0, 3146 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3147 SLAB_ACCOUNT, sighand_ctor); 3148 signal_cachep = kmem_cache_create("signal_cache", 3149 sizeof(struct signal_struct), 0, 3150 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3151 NULL); 3152 files_cachep = kmem_cache_create("files_cache", 3153 sizeof(struct files_struct), 0, 3154 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3155 NULL); 3156 fs_cachep = kmem_cache_create("fs_cache", 3157 sizeof(struct fs_struct), 0, 3158 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3159 NULL); 3160 3161 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3162 mmap_init(); 3163 nsproxy_cache_init(); 3164 } 3165 3166 /* 3167 * Check constraints on flags passed to the unshare system call. 3168 */ 3169 static int check_unshare_flags(unsigned long unshare_flags) 3170 { 3171 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3172 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3173 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3174 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3175 CLONE_NEWTIME)) 3176 return -EINVAL; 3177 /* 3178 * Not implemented, but pretend it works if there is nothing 3179 * to unshare. Note that unsharing the address space or the 3180 * signal handlers also need to unshare the signal queues (aka 3181 * CLONE_THREAD). 3182 */ 3183 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3184 if (!thread_group_empty(current)) 3185 return -EINVAL; 3186 } 3187 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3188 if (refcount_read(¤t->sighand->count) > 1) 3189 return -EINVAL; 3190 } 3191 if (unshare_flags & CLONE_VM) { 3192 if (!current_is_single_threaded()) 3193 return -EINVAL; 3194 } 3195 3196 return 0; 3197 } 3198 3199 /* 3200 * Unshare the filesystem structure if it is being shared 3201 */ 3202 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3203 { 3204 struct fs_struct *fs = current->fs; 3205 3206 if (!(unshare_flags & CLONE_FS) || !fs) 3207 return 0; 3208 3209 /* don't need lock here; in the worst case we'll do useless copy */ 3210 if (fs->users == 1) 3211 return 0; 3212 3213 *new_fsp = copy_fs_struct(fs); 3214 if (!*new_fsp) 3215 return -ENOMEM; 3216 3217 return 0; 3218 } 3219 3220 /* 3221 * Unshare file descriptor table if it is being shared 3222 */ 3223 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3224 struct files_struct **new_fdp) 3225 { 3226 struct files_struct *fd = current->files; 3227 int error = 0; 3228 3229 if ((unshare_flags & CLONE_FILES) && 3230 (fd && atomic_read(&fd->count) > 1)) { 3231 *new_fdp = dup_fd(fd, max_fds, &error); 3232 if (!*new_fdp) 3233 return error; 3234 } 3235 3236 return 0; 3237 } 3238 3239 /* 3240 * unshare allows a process to 'unshare' part of the process 3241 * context which was originally shared using clone. copy_* 3242 * functions used by kernel_clone() cannot be used here directly 3243 * because they modify an inactive task_struct that is being 3244 * constructed. Here we are modifying the current, active, 3245 * task_struct. 3246 */ 3247 int ksys_unshare(unsigned long unshare_flags) 3248 { 3249 struct fs_struct *fs, *new_fs = NULL; 3250 struct files_struct *new_fd = NULL; 3251 struct cred *new_cred = NULL; 3252 struct nsproxy *new_nsproxy = NULL; 3253 int do_sysvsem = 0; 3254 int err; 3255 3256 /* 3257 * If unsharing a user namespace must also unshare the thread group 3258 * and unshare the filesystem root and working directories. 3259 */ 3260 if (unshare_flags & CLONE_NEWUSER) 3261 unshare_flags |= CLONE_THREAD | CLONE_FS; 3262 /* 3263 * If unsharing vm, must also unshare signal handlers. 3264 */ 3265 if (unshare_flags & CLONE_VM) 3266 unshare_flags |= CLONE_SIGHAND; 3267 /* 3268 * If unsharing a signal handlers, must also unshare the signal queues. 3269 */ 3270 if (unshare_flags & CLONE_SIGHAND) 3271 unshare_flags |= CLONE_THREAD; 3272 /* 3273 * If unsharing namespace, must also unshare filesystem information. 3274 */ 3275 if (unshare_flags & CLONE_NEWNS) 3276 unshare_flags |= CLONE_FS; 3277 3278 err = check_unshare_flags(unshare_flags); 3279 if (err) 3280 goto bad_unshare_out; 3281 /* 3282 * CLONE_NEWIPC must also detach from the undolist: after switching 3283 * to a new ipc namespace, the semaphore arrays from the old 3284 * namespace are unreachable. 3285 */ 3286 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3287 do_sysvsem = 1; 3288 err = unshare_fs(unshare_flags, &new_fs); 3289 if (err) 3290 goto bad_unshare_out; 3291 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3292 if (err) 3293 goto bad_unshare_cleanup_fs; 3294 err = unshare_userns(unshare_flags, &new_cred); 3295 if (err) 3296 goto bad_unshare_cleanup_fd; 3297 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3298 new_cred, new_fs); 3299 if (err) 3300 goto bad_unshare_cleanup_cred; 3301 3302 if (new_cred) { 3303 err = set_cred_ucounts(new_cred); 3304 if (err) 3305 goto bad_unshare_cleanup_cred; 3306 } 3307 3308 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3309 if (do_sysvsem) { 3310 /* 3311 * CLONE_SYSVSEM is equivalent to sys_exit(). 3312 */ 3313 exit_sem(current); 3314 } 3315 if (unshare_flags & CLONE_NEWIPC) { 3316 /* Orphan segments in old ns (see sem above). */ 3317 exit_shm(current); 3318 shm_init_task(current); 3319 } 3320 3321 if (new_nsproxy) 3322 switch_task_namespaces(current, new_nsproxy); 3323 3324 task_lock(current); 3325 3326 if (new_fs) { 3327 fs = current->fs; 3328 spin_lock(&fs->lock); 3329 current->fs = new_fs; 3330 if (--fs->users) 3331 new_fs = NULL; 3332 else 3333 new_fs = fs; 3334 spin_unlock(&fs->lock); 3335 } 3336 3337 if (new_fd) 3338 swap(current->files, new_fd); 3339 3340 task_unlock(current); 3341 3342 if (new_cred) { 3343 /* Install the new user namespace */ 3344 commit_creds(new_cred); 3345 new_cred = NULL; 3346 } 3347 } 3348 3349 perf_event_namespaces(current); 3350 3351 bad_unshare_cleanup_cred: 3352 if (new_cred) 3353 put_cred(new_cred); 3354 bad_unshare_cleanup_fd: 3355 if (new_fd) 3356 put_files_struct(new_fd); 3357 3358 bad_unshare_cleanup_fs: 3359 if (new_fs) 3360 free_fs_struct(new_fs); 3361 3362 bad_unshare_out: 3363 return err; 3364 } 3365 3366 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3367 { 3368 return ksys_unshare(unshare_flags); 3369 } 3370 3371 /* 3372 * Helper to unshare the files of the current task. 3373 * We don't want to expose copy_files internals to 3374 * the exec layer of the kernel. 3375 */ 3376 3377 int unshare_files(void) 3378 { 3379 struct task_struct *task = current; 3380 struct files_struct *old, *copy = NULL; 3381 int error; 3382 3383 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3384 if (error || !copy) 3385 return error; 3386 3387 old = task->files; 3388 task_lock(task); 3389 task->files = copy; 3390 task_unlock(task); 3391 put_files_struct(old); 3392 return 0; 3393 } 3394 3395 int sysctl_max_threads(struct ctl_table *table, int write, 3396 void *buffer, size_t *lenp, loff_t *ppos) 3397 { 3398 struct ctl_table t; 3399 int ret; 3400 int threads = max_threads; 3401 int min = 1; 3402 int max = MAX_THREADS; 3403 3404 t = *table; 3405 t.data = &threads; 3406 t.extra1 = &min; 3407 t.extra2 = &max; 3408 3409 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3410 if (ret || !write) 3411 return ret; 3412 3413 max_threads = threads; 3414 3415 return 0; 3416 } 3417