xref: /linux/kernel/fork.c (revision 733f7e9c18c5e377025c1bfdce6bc9a7d55649be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/tty.h>
79 #include <linux/fs_struct.h>
80 #include <linux/magic.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 #include <linux/stackleak.h>
95 #include <linux/kasan.h>
96 #include <linux/scs.h>
97 #include <linux/io_uring.h>
98 #include <linux/bpf.h>
99 #include <linux/stackprotector.h>
100 
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106 
107 #include <trace/events/sched.h>
108 
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111 
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116 
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121 
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;	/* Handle normal Linux uptimes. */
126 int nr_threads;			/* The idle threads do not count.. */
127 
128 static int max_threads;		/* tunable limit on nr_threads */
129 
130 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
131 
132 static const char * const resident_page_types[] = {
133 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138 
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140 
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142 
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146 	return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150 
151 int nr_processes(void)
152 {
153 	int cpu;
154 	int total = 0;
155 
156 	for_each_possible_cpu(cpu)
157 		total += per_cpu(process_counts, cpu);
158 
159 	return total;
160 }
161 
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165 
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168 
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173 
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 	kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179 
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181 
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187 
188 #  ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195 
196 struct vm_stack {
197 	struct rcu_head rcu;
198 	struct vm_struct *stack_vm_area;
199 };
200 
201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202 {
203 	unsigned int i;
204 
205 	for (i = 0; i < NR_CACHED_STACKS; i++) {
206 		if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207 			continue;
208 		return true;
209 	}
210 	return false;
211 }
212 
213 static void thread_stack_free_rcu(struct rcu_head *rh)
214 {
215 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216 
217 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218 		return;
219 
220 	vfree(vm_stack);
221 }
222 
223 static void thread_stack_delayed_free(struct task_struct *tsk)
224 {
225 	struct vm_stack *vm_stack = tsk->stack;
226 
227 	vm_stack->stack_vm_area = tsk->stack_vm_area;
228 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229 }
230 
231 static int free_vm_stack_cache(unsigned int cpu)
232 {
233 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 	int i;
235 
236 	for (i = 0; i < NR_CACHED_STACKS; i++) {
237 		struct vm_struct *vm_stack = cached_vm_stacks[i];
238 
239 		if (!vm_stack)
240 			continue;
241 
242 		vfree(vm_stack->addr);
243 		cached_vm_stacks[i] = NULL;
244 	}
245 
246 	return 0;
247 }
248 
249 static int memcg_charge_kernel_stack(struct vm_struct *vm)
250 {
251 	int i;
252 	int ret;
253 
254 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256 
257 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259 		if (ret)
260 			goto err;
261 	}
262 	return 0;
263 err:
264 	/*
265 	 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266 	 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267 	 * ignore this page.
268 	 */
269 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270 		memcg_kmem_uncharge_page(vm->pages[i], 0);
271 	return ret;
272 }
273 
274 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
275 {
276 	struct vm_struct *vm;
277 	void *stack;
278 	int i;
279 
280 	for (i = 0; i < NR_CACHED_STACKS; i++) {
281 		struct vm_struct *s;
282 
283 		s = this_cpu_xchg(cached_stacks[i], NULL);
284 
285 		if (!s)
286 			continue;
287 
288 		/* Reset stack metadata. */
289 		kasan_unpoison_range(s->addr, THREAD_SIZE);
290 
291 		stack = kasan_reset_tag(s->addr);
292 
293 		/* Clear stale pointers from reused stack. */
294 		memset(stack, 0, THREAD_SIZE);
295 
296 		if (memcg_charge_kernel_stack(s)) {
297 			vfree(s->addr);
298 			return -ENOMEM;
299 		}
300 
301 		tsk->stack_vm_area = s;
302 		tsk->stack = stack;
303 		return 0;
304 	}
305 
306 	/*
307 	 * Allocated stacks are cached and later reused by new threads,
308 	 * so memcg accounting is performed manually on assigning/releasing
309 	 * stacks to tasks. Drop __GFP_ACCOUNT.
310 	 */
311 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
312 				     VMALLOC_START, VMALLOC_END,
313 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
314 				     PAGE_KERNEL,
315 				     0, node, __builtin_return_address(0));
316 	if (!stack)
317 		return -ENOMEM;
318 
319 	vm = find_vm_area(stack);
320 	if (memcg_charge_kernel_stack(vm)) {
321 		vfree(stack);
322 		return -ENOMEM;
323 	}
324 	/*
325 	 * We can't call find_vm_area() in interrupt context, and
326 	 * free_thread_stack() can be called in interrupt context,
327 	 * so cache the vm_struct.
328 	 */
329 	tsk->stack_vm_area = vm;
330 	stack = kasan_reset_tag(stack);
331 	tsk->stack = stack;
332 	return 0;
333 }
334 
335 static void free_thread_stack(struct task_struct *tsk)
336 {
337 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338 		thread_stack_delayed_free(tsk);
339 
340 	tsk->stack = NULL;
341 	tsk->stack_vm_area = NULL;
342 }
343 
344 #  else /* !CONFIG_VMAP_STACK */
345 
346 static void thread_stack_free_rcu(struct rcu_head *rh)
347 {
348 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349 }
350 
351 static void thread_stack_delayed_free(struct task_struct *tsk)
352 {
353 	struct rcu_head *rh = tsk->stack;
354 
355 	call_rcu(rh, thread_stack_free_rcu);
356 }
357 
358 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
359 {
360 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361 					     THREAD_SIZE_ORDER);
362 
363 	if (likely(page)) {
364 		tsk->stack = kasan_reset_tag(page_address(page));
365 		return 0;
366 	}
367 	return -ENOMEM;
368 }
369 
370 static void free_thread_stack(struct task_struct *tsk)
371 {
372 	thread_stack_delayed_free(tsk);
373 	tsk->stack = NULL;
374 }
375 
376 #  endif /* CONFIG_VMAP_STACK */
377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
378 
379 static struct kmem_cache *thread_stack_cache;
380 
381 static void thread_stack_free_rcu(struct rcu_head *rh)
382 {
383 	kmem_cache_free(thread_stack_cache, rh);
384 }
385 
386 static void thread_stack_delayed_free(struct task_struct *tsk)
387 {
388 	struct rcu_head *rh = tsk->stack;
389 
390 	call_rcu(rh, thread_stack_free_rcu);
391 }
392 
393 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
394 {
395 	unsigned long *stack;
396 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
397 	stack = kasan_reset_tag(stack);
398 	tsk->stack = stack;
399 	return stack ? 0 : -ENOMEM;
400 }
401 
402 static void free_thread_stack(struct task_struct *tsk)
403 {
404 	thread_stack_delayed_free(tsk);
405 	tsk->stack = NULL;
406 }
407 
408 void thread_stack_cache_init(void)
409 {
410 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411 					THREAD_SIZE, THREAD_SIZE, 0, 0,
412 					THREAD_SIZE, NULL);
413 	BUG_ON(thread_stack_cache == NULL);
414 }
415 
416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418 
419 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
420 {
421 	unsigned long *stack;
422 
423 	stack = arch_alloc_thread_stack_node(tsk, node);
424 	tsk->stack = stack;
425 	return stack ? 0 : -ENOMEM;
426 }
427 
428 static void free_thread_stack(struct task_struct *tsk)
429 {
430 	arch_free_thread_stack(tsk);
431 	tsk->stack = NULL;
432 }
433 
434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
435 
436 /* SLAB cache for signal_struct structures (tsk->signal) */
437 static struct kmem_cache *signal_cachep;
438 
439 /* SLAB cache for sighand_struct structures (tsk->sighand) */
440 struct kmem_cache *sighand_cachep;
441 
442 /* SLAB cache for files_struct structures (tsk->files) */
443 struct kmem_cache *files_cachep;
444 
445 /* SLAB cache for fs_struct structures (tsk->fs) */
446 struct kmem_cache *fs_cachep;
447 
448 /* SLAB cache for vm_area_struct structures */
449 static struct kmem_cache *vm_area_cachep;
450 
451 /* SLAB cache for mm_struct structures (tsk->mm) */
452 static struct kmem_cache *mm_cachep;
453 
454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
455 {
456 	struct vm_area_struct *vma;
457 
458 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459 	if (vma)
460 		vma_init(vma, mm);
461 	return vma;
462 }
463 
464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
465 {
466 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
467 
468 	if (new) {
469 		ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470 		ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
471 		/*
472 		 * orig->shared.rb may be modified concurrently, but the clone
473 		 * will be reinitialized.
474 		 */
475 		data_race(memcpy(new, orig, sizeof(*new)));
476 		INIT_LIST_HEAD(&new->anon_vma_chain);
477 		dup_anon_vma_name(orig, new);
478 	}
479 	return new;
480 }
481 
482 void vm_area_free(struct vm_area_struct *vma)
483 {
484 	free_anon_vma_name(vma);
485 	kmem_cache_free(vm_area_cachep, vma);
486 }
487 
488 static void account_kernel_stack(struct task_struct *tsk, int account)
489 {
490 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491 		struct vm_struct *vm = task_stack_vm_area(tsk);
492 		int i;
493 
494 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496 					      account * (PAGE_SIZE / 1024));
497 	} else {
498 		void *stack = task_stack_page(tsk);
499 
500 		/* All stack pages are in the same node. */
501 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
502 				      account * (THREAD_SIZE / 1024));
503 	}
504 }
505 
506 void exit_task_stack_account(struct task_struct *tsk)
507 {
508 	account_kernel_stack(tsk, -1);
509 
510 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511 		struct vm_struct *vm;
512 		int i;
513 
514 		vm = task_stack_vm_area(tsk);
515 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516 			memcg_kmem_uncharge_page(vm->pages[i], 0);
517 	}
518 }
519 
520 static void release_task_stack(struct task_struct *tsk)
521 {
522 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
523 		return;  /* Better to leak the stack than to free prematurely */
524 
525 	free_thread_stack(tsk);
526 }
527 
528 #ifdef CONFIG_THREAD_INFO_IN_TASK
529 void put_task_stack(struct task_struct *tsk)
530 {
531 	if (refcount_dec_and_test(&tsk->stack_refcount))
532 		release_task_stack(tsk);
533 }
534 #endif
535 
536 void free_task(struct task_struct *tsk)
537 {
538 #ifdef CONFIG_SECCOMP
539 	WARN_ON_ONCE(tsk->seccomp.filter);
540 #endif
541 	release_user_cpus_ptr(tsk);
542 	scs_release(tsk);
543 
544 #ifndef CONFIG_THREAD_INFO_IN_TASK
545 	/*
546 	 * The task is finally done with both the stack and thread_info,
547 	 * so free both.
548 	 */
549 	release_task_stack(tsk);
550 #else
551 	/*
552 	 * If the task had a separate stack allocation, it should be gone
553 	 * by now.
554 	 */
555 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
556 #endif
557 	rt_mutex_debug_task_free(tsk);
558 	ftrace_graph_exit_task(tsk);
559 	arch_release_task_struct(tsk);
560 	if (tsk->flags & PF_KTHREAD)
561 		free_kthread_struct(tsk);
562 	free_task_struct(tsk);
563 }
564 EXPORT_SYMBOL(free_task);
565 
566 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
567 {
568 	struct file *exe_file;
569 
570 	exe_file = get_mm_exe_file(oldmm);
571 	RCU_INIT_POINTER(mm->exe_file, exe_file);
572 	/*
573 	 * We depend on the oldmm having properly denied write access to the
574 	 * exe_file already.
575 	 */
576 	if (exe_file && deny_write_access(exe_file))
577 		pr_warn_once("deny_write_access() failed in %s\n", __func__);
578 }
579 
580 #ifdef CONFIG_MMU
581 static __latent_entropy int dup_mmap(struct mm_struct *mm,
582 					struct mm_struct *oldmm)
583 {
584 	struct vm_area_struct *mpnt, *tmp;
585 	int retval;
586 	unsigned long charge = 0;
587 	LIST_HEAD(uf);
588 	VMA_ITERATOR(old_vmi, oldmm, 0);
589 	VMA_ITERATOR(vmi, mm, 0);
590 
591 	uprobe_start_dup_mmap();
592 	if (mmap_write_lock_killable(oldmm)) {
593 		retval = -EINTR;
594 		goto fail_uprobe_end;
595 	}
596 	flush_cache_dup_mm(oldmm);
597 	uprobe_dup_mmap(oldmm, mm);
598 	/*
599 	 * Not linked in yet - no deadlock potential:
600 	 */
601 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
602 
603 	/* No ordering required: file already has been exposed. */
604 	dup_mm_exe_file(mm, oldmm);
605 
606 	mm->total_vm = oldmm->total_vm;
607 	mm->data_vm = oldmm->data_vm;
608 	mm->exec_vm = oldmm->exec_vm;
609 	mm->stack_vm = oldmm->stack_vm;
610 
611 	retval = ksm_fork(mm, oldmm);
612 	if (retval)
613 		goto out;
614 	khugepaged_fork(mm, oldmm);
615 
616 	retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
617 	if (retval)
618 		goto out;
619 
620 	mt_clear_in_rcu(vmi.mas.tree);
621 	for_each_vma(old_vmi, mpnt) {
622 		struct file *file;
623 
624 		if (mpnt->vm_flags & VM_DONTCOPY) {
625 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
626 			continue;
627 		}
628 		charge = 0;
629 		/*
630 		 * Don't duplicate many vmas if we've been oom-killed (for
631 		 * example)
632 		 */
633 		if (fatal_signal_pending(current)) {
634 			retval = -EINTR;
635 			goto loop_out;
636 		}
637 		if (mpnt->vm_flags & VM_ACCOUNT) {
638 			unsigned long len = vma_pages(mpnt);
639 
640 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
641 				goto fail_nomem;
642 			charge = len;
643 		}
644 		tmp = vm_area_dup(mpnt);
645 		if (!tmp)
646 			goto fail_nomem;
647 		retval = vma_dup_policy(mpnt, tmp);
648 		if (retval)
649 			goto fail_nomem_policy;
650 		tmp->vm_mm = mm;
651 		retval = dup_userfaultfd(tmp, &uf);
652 		if (retval)
653 			goto fail_nomem_anon_vma_fork;
654 		if (tmp->vm_flags & VM_WIPEONFORK) {
655 			/*
656 			 * VM_WIPEONFORK gets a clean slate in the child.
657 			 * Don't prepare anon_vma until fault since we don't
658 			 * copy page for current vma.
659 			 */
660 			tmp->anon_vma = NULL;
661 		} else if (anon_vma_fork(tmp, mpnt))
662 			goto fail_nomem_anon_vma_fork;
663 		vm_flags_clear(tmp, VM_LOCKED_MASK);
664 		file = tmp->vm_file;
665 		if (file) {
666 			struct address_space *mapping = file->f_mapping;
667 
668 			get_file(file);
669 			i_mmap_lock_write(mapping);
670 			if (tmp->vm_flags & VM_SHARED)
671 				mapping_allow_writable(mapping);
672 			flush_dcache_mmap_lock(mapping);
673 			/* insert tmp into the share list, just after mpnt */
674 			vma_interval_tree_insert_after(tmp, mpnt,
675 					&mapping->i_mmap);
676 			flush_dcache_mmap_unlock(mapping);
677 			i_mmap_unlock_write(mapping);
678 		}
679 
680 		/*
681 		 * Copy/update hugetlb private vma information.
682 		 */
683 		if (is_vm_hugetlb_page(tmp))
684 			hugetlb_dup_vma_private(tmp);
685 
686 		/* Link the vma into the MT */
687 		if (vma_iter_bulk_store(&vmi, tmp))
688 			goto fail_nomem_vmi_store;
689 
690 		mm->map_count++;
691 		if (!(tmp->vm_flags & VM_WIPEONFORK))
692 			retval = copy_page_range(tmp, mpnt);
693 
694 		if (tmp->vm_ops && tmp->vm_ops->open)
695 			tmp->vm_ops->open(tmp);
696 
697 		if (retval)
698 			goto loop_out;
699 	}
700 	/* a new mm has just been created */
701 	retval = arch_dup_mmap(oldmm, mm);
702 loop_out:
703 	vma_iter_free(&vmi);
704 	if (!retval)
705 		mt_set_in_rcu(vmi.mas.tree);
706 out:
707 	mmap_write_unlock(mm);
708 	flush_tlb_mm(oldmm);
709 	mmap_write_unlock(oldmm);
710 	dup_userfaultfd_complete(&uf);
711 fail_uprobe_end:
712 	uprobe_end_dup_mmap();
713 	return retval;
714 
715 fail_nomem_vmi_store:
716 	unlink_anon_vmas(tmp);
717 fail_nomem_anon_vma_fork:
718 	mpol_put(vma_policy(tmp));
719 fail_nomem_policy:
720 	vm_area_free(tmp);
721 fail_nomem:
722 	retval = -ENOMEM;
723 	vm_unacct_memory(charge);
724 	goto loop_out;
725 }
726 
727 static inline int mm_alloc_pgd(struct mm_struct *mm)
728 {
729 	mm->pgd = pgd_alloc(mm);
730 	if (unlikely(!mm->pgd))
731 		return -ENOMEM;
732 	return 0;
733 }
734 
735 static inline void mm_free_pgd(struct mm_struct *mm)
736 {
737 	pgd_free(mm, mm->pgd);
738 }
739 #else
740 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
741 {
742 	mmap_write_lock(oldmm);
743 	dup_mm_exe_file(mm, oldmm);
744 	mmap_write_unlock(oldmm);
745 	return 0;
746 }
747 #define mm_alloc_pgd(mm)	(0)
748 #define mm_free_pgd(mm)
749 #endif /* CONFIG_MMU */
750 
751 static void check_mm(struct mm_struct *mm)
752 {
753 	int i;
754 
755 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
756 			 "Please make sure 'struct resident_page_types[]' is updated as well");
757 
758 	for (i = 0; i < NR_MM_COUNTERS; i++) {
759 		long x = percpu_counter_sum(&mm->rss_stat[i]);
760 
761 		if (unlikely(x))
762 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
763 				 mm, resident_page_types[i], x);
764 	}
765 
766 	if (mm_pgtables_bytes(mm))
767 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
768 				mm_pgtables_bytes(mm));
769 
770 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
771 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
772 #endif
773 }
774 
775 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
776 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
777 
778 /*
779  * Called when the last reference to the mm
780  * is dropped: either by a lazy thread or by
781  * mmput. Free the page directory and the mm.
782  */
783 void __mmdrop(struct mm_struct *mm)
784 {
785 	int i;
786 
787 	BUG_ON(mm == &init_mm);
788 	WARN_ON_ONCE(mm == current->mm);
789 	WARN_ON_ONCE(mm == current->active_mm);
790 	mm_free_pgd(mm);
791 	destroy_context(mm);
792 	mmu_notifier_subscriptions_destroy(mm);
793 	check_mm(mm);
794 	put_user_ns(mm->user_ns);
795 	mm_pasid_drop(mm);
796 
797 	for (i = 0; i < NR_MM_COUNTERS; i++)
798 		percpu_counter_destroy(&mm->rss_stat[i]);
799 	free_mm(mm);
800 }
801 EXPORT_SYMBOL_GPL(__mmdrop);
802 
803 static void mmdrop_async_fn(struct work_struct *work)
804 {
805 	struct mm_struct *mm;
806 
807 	mm = container_of(work, struct mm_struct, async_put_work);
808 	__mmdrop(mm);
809 }
810 
811 static void mmdrop_async(struct mm_struct *mm)
812 {
813 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
814 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
815 		schedule_work(&mm->async_put_work);
816 	}
817 }
818 
819 static inline void free_signal_struct(struct signal_struct *sig)
820 {
821 	taskstats_tgid_free(sig);
822 	sched_autogroup_exit(sig);
823 	/*
824 	 * __mmdrop is not safe to call from softirq context on x86 due to
825 	 * pgd_dtor so postpone it to the async context
826 	 */
827 	if (sig->oom_mm)
828 		mmdrop_async(sig->oom_mm);
829 	kmem_cache_free(signal_cachep, sig);
830 }
831 
832 static inline void put_signal_struct(struct signal_struct *sig)
833 {
834 	if (refcount_dec_and_test(&sig->sigcnt))
835 		free_signal_struct(sig);
836 }
837 
838 void __put_task_struct(struct task_struct *tsk)
839 {
840 	WARN_ON(!tsk->exit_state);
841 	WARN_ON(refcount_read(&tsk->usage));
842 	WARN_ON(tsk == current);
843 
844 	io_uring_free(tsk);
845 	cgroup_free(tsk);
846 	task_numa_free(tsk, true);
847 	security_task_free(tsk);
848 	bpf_task_storage_free(tsk);
849 	exit_creds(tsk);
850 	delayacct_tsk_free(tsk);
851 	put_signal_struct(tsk->signal);
852 	sched_core_free(tsk);
853 	free_task(tsk);
854 }
855 EXPORT_SYMBOL_GPL(__put_task_struct);
856 
857 void __init __weak arch_task_cache_init(void) { }
858 
859 /*
860  * set_max_threads
861  */
862 static void set_max_threads(unsigned int max_threads_suggested)
863 {
864 	u64 threads;
865 	unsigned long nr_pages = totalram_pages();
866 
867 	/*
868 	 * The number of threads shall be limited such that the thread
869 	 * structures may only consume a small part of the available memory.
870 	 */
871 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
872 		threads = MAX_THREADS;
873 	else
874 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
875 				    (u64) THREAD_SIZE * 8UL);
876 
877 	if (threads > max_threads_suggested)
878 		threads = max_threads_suggested;
879 
880 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
881 }
882 
883 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
884 /* Initialized by the architecture: */
885 int arch_task_struct_size __read_mostly;
886 #endif
887 
888 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
889 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
890 {
891 	/* Fetch thread_struct whitelist for the architecture. */
892 	arch_thread_struct_whitelist(offset, size);
893 
894 	/*
895 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
896 	 * adjust offset to position of thread_struct in task_struct.
897 	 */
898 	if (unlikely(*size == 0))
899 		*offset = 0;
900 	else
901 		*offset += offsetof(struct task_struct, thread);
902 }
903 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
904 
905 void __init fork_init(void)
906 {
907 	int i;
908 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
909 #ifndef ARCH_MIN_TASKALIGN
910 #define ARCH_MIN_TASKALIGN	0
911 #endif
912 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
913 	unsigned long useroffset, usersize;
914 
915 	/* create a slab on which task_structs can be allocated */
916 	task_struct_whitelist(&useroffset, &usersize);
917 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
918 			arch_task_struct_size, align,
919 			SLAB_PANIC|SLAB_ACCOUNT,
920 			useroffset, usersize, NULL);
921 #endif
922 
923 	/* do the arch specific task caches init */
924 	arch_task_cache_init();
925 
926 	set_max_threads(MAX_THREADS);
927 
928 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
929 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
930 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
931 		init_task.signal->rlim[RLIMIT_NPROC];
932 
933 	for (i = 0; i < UCOUNT_COUNTS; i++)
934 		init_user_ns.ucount_max[i] = max_threads/2;
935 
936 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
937 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
938 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
939 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
940 
941 #ifdef CONFIG_VMAP_STACK
942 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
943 			  NULL, free_vm_stack_cache);
944 #endif
945 
946 	scs_init();
947 
948 	lockdep_init_task(&init_task);
949 	uprobes_init();
950 }
951 
952 int __weak arch_dup_task_struct(struct task_struct *dst,
953 					       struct task_struct *src)
954 {
955 	*dst = *src;
956 	return 0;
957 }
958 
959 void set_task_stack_end_magic(struct task_struct *tsk)
960 {
961 	unsigned long *stackend;
962 
963 	stackend = end_of_stack(tsk);
964 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
965 }
966 
967 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
968 {
969 	struct task_struct *tsk;
970 	int err;
971 
972 	if (node == NUMA_NO_NODE)
973 		node = tsk_fork_get_node(orig);
974 	tsk = alloc_task_struct_node(node);
975 	if (!tsk)
976 		return NULL;
977 
978 	err = arch_dup_task_struct(tsk, orig);
979 	if (err)
980 		goto free_tsk;
981 
982 	err = alloc_thread_stack_node(tsk, node);
983 	if (err)
984 		goto free_tsk;
985 
986 #ifdef CONFIG_THREAD_INFO_IN_TASK
987 	refcount_set(&tsk->stack_refcount, 1);
988 #endif
989 	account_kernel_stack(tsk, 1);
990 
991 	err = scs_prepare(tsk, node);
992 	if (err)
993 		goto free_stack;
994 
995 #ifdef CONFIG_SECCOMP
996 	/*
997 	 * We must handle setting up seccomp filters once we're under
998 	 * the sighand lock in case orig has changed between now and
999 	 * then. Until then, filter must be NULL to avoid messing up
1000 	 * the usage counts on the error path calling free_task.
1001 	 */
1002 	tsk->seccomp.filter = NULL;
1003 #endif
1004 
1005 	setup_thread_stack(tsk, orig);
1006 	clear_user_return_notifier(tsk);
1007 	clear_tsk_need_resched(tsk);
1008 	set_task_stack_end_magic(tsk);
1009 	clear_syscall_work_syscall_user_dispatch(tsk);
1010 
1011 #ifdef CONFIG_STACKPROTECTOR
1012 	tsk->stack_canary = get_random_canary();
1013 #endif
1014 	if (orig->cpus_ptr == &orig->cpus_mask)
1015 		tsk->cpus_ptr = &tsk->cpus_mask;
1016 	dup_user_cpus_ptr(tsk, orig, node);
1017 
1018 	/*
1019 	 * One for the user space visible state that goes away when reaped.
1020 	 * One for the scheduler.
1021 	 */
1022 	refcount_set(&tsk->rcu_users, 2);
1023 	/* One for the rcu users */
1024 	refcount_set(&tsk->usage, 1);
1025 #ifdef CONFIG_BLK_DEV_IO_TRACE
1026 	tsk->btrace_seq = 0;
1027 #endif
1028 	tsk->splice_pipe = NULL;
1029 	tsk->task_frag.page = NULL;
1030 	tsk->wake_q.next = NULL;
1031 	tsk->worker_private = NULL;
1032 
1033 	kcov_task_init(tsk);
1034 	kmsan_task_create(tsk);
1035 	kmap_local_fork(tsk);
1036 
1037 #ifdef CONFIG_FAULT_INJECTION
1038 	tsk->fail_nth = 0;
1039 #endif
1040 
1041 #ifdef CONFIG_BLK_CGROUP
1042 	tsk->throttle_disk = NULL;
1043 	tsk->use_memdelay = 0;
1044 #endif
1045 
1046 #ifdef CONFIG_IOMMU_SVA
1047 	tsk->pasid_activated = 0;
1048 #endif
1049 
1050 #ifdef CONFIG_MEMCG
1051 	tsk->active_memcg = NULL;
1052 #endif
1053 
1054 #ifdef CONFIG_CPU_SUP_INTEL
1055 	tsk->reported_split_lock = 0;
1056 #endif
1057 
1058 #ifdef CONFIG_SCHED_MM_CID
1059 	tsk->mm_cid = -1;
1060 	tsk->mm_cid_active = 0;
1061 #endif
1062 	return tsk;
1063 
1064 free_stack:
1065 	exit_task_stack_account(tsk);
1066 	free_thread_stack(tsk);
1067 free_tsk:
1068 	free_task_struct(tsk);
1069 	return NULL;
1070 }
1071 
1072 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1073 
1074 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1075 
1076 static int __init coredump_filter_setup(char *s)
1077 {
1078 	default_dump_filter =
1079 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1080 		MMF_DUMP_FILTER_MASK;
1081 	return 1;
1082 }
1083 
1084 __setup("coredump_filter=", coredump_filter_setup);
1085 
1086 #include <linux/init_task.h>
1087 
1088 static void mm_init_aio(struct mm_struct *mm)
1089 {
1090 #ifdef CONFIG_AIO
1091 	spin_lock_init(&mm->ioctx_lock);
1092 	mm->ioctx_table = NULL;
1093 #endif
1094 }
1095 
1096 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1097 					   struct task_struct *p)
1098 {
1099 #ifdef CONFIG_MEMCG
1100 	if (mm->owner == p)
1101 		WRITE_ONCE(mm->owner, NULL);
1102 #endif
1103 }
1104 
1105 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1106 {
1107 #ifdef CONFIG_MEMCG
1108 	mm->owner = p;
1109 #endif
1110 }
1111 
1112 static void mm_init_uprobes_state(struct mm_struct *mm)
1113 {
1114 #ifdef CONFIG_UPROBES
1115 	mm->uprobes_state.xol_area = NULL;
1116 #endif
1117 }
1118 
1119 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1120 	struct user_namespace *user_ns)
1121 {
1122 	int i;
1123 
1124 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1125 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1126 	atomic_set(&mm->mm_users, 1);
1127 	atomic_set(&mm->mm_count, 1);
1128 	seqcount_init(&mm->write_protect_seq);
1129 	mmap_init_lock(mm);
1130 	INIT_LIST_HEAD(&mm->mmlist);
1131 	mm_pgtables_bytes_init(mm);
1132 	mm->map_count = 0;
1133 	mm->locked_vm = 0;
1134 	atomic64_set(&mm->pinned_vm, 0);
1135 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1136 	spin_lock_init(&mm->page_table_lock);
1137 	spin_lock_init(&mm->arg_lock);
1138 	mm_init_cpumask(mm);
1139 	mm_init_aio(mm);
1140 	mm_init_owner(mm, p);
1141 	mm_pasid_init(mm);
1142 	RCU_INIT_POINTER(mm->exe_file, NULL);
1143 	mmu_notifier_subscriptions_init(mm);
1144 	init_tlb_flush_pending(mm);
1145 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1146 	mm->pmd_huge_pte = NULL;
1147 #endif
1148 	mm_init_uprobes_state(mm);
1149 	hugetlb_count_init(mm);
1150 
1151 	if (current->mm) {
1152 		mm->flags = current->mm->flags & MMF_INIT_MASK;
1153 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1154 	} else {
1155 		mm->flags = default_dump_filter;
1156 		mm->def_flags = 0;
1157 	}
1158 
1159 	if (mm_alloc_pgd(mm))
1160 		goto fail_nopgd;
1161 
1162 	if (init_new_context(p, mm))
1163 		goto fail_nocontext;
1164 
1165 	for (i = 0; i < NR_MM_COUNTERS; i++)
1166 		if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1167 			goto fail_pcpu;
1168 
1169 	mm->user_ns = get_user_ns(user_ns);
1170 	lru_gen_init_mm(mm);
1171 	mm_init_cid(mm);
1172 	return mm;
1173 
1174 fail_pcpu:
1175 	while (i > 0)
1176 		percpu_counter_destroy(&mm->rss_stat[--i]);
1177 	destroy_context(mm);
1178 fail_nocontext:
1179 	mm_free_pgd(mm);
1180 fail_nopgd:
1181 	free_mm(mm);
1182 	return NULL;
1183 }
1184 
1185 /*
1186  * Allocate and initialize an mm_struct.
1187  */
1188 struct mm_struct *mm_alloc(void)
1189 {
1190 	struct mm_struct *mm;
1191 
1192 	mm = allocate_mm();
1193 	if (!mm)
1194 		return NULL;
1195 
1196 	memset(mm, 0, sizeof(*mm));
1197 	return mm_init(mm, current, current_user_ns());
1198 }
1199 
1200 static inline void __mmput(struct mm_struct *mm)
1201 {
1202 	VM_BUG_ON(atomic_read(&mm->mm_users));
1203 
1204 	uprobe_clear_state(mm);
1205 	exit_aio(mm);
1206 	ksm_exit(mm);
1207 	khugepaged_exit(mm); /* must run before exit_mmap */
1208 	exit_mmap(mm);
1209 	mm_put_huge_zero_page(mm);
1210 	set_mm_exe_file(mm, NULL);
1211 	if (!list_empty(&mm->mmlist)) {
1212 		spin_lock(&mmlist_lock);
1213 		list_del(&mm->mmlist);
1214 		spin_unlock(&mmlist_lock);
1215 	}
1216 	if (mm->binfmt)
1217 		module_put(mm->binfmt->module);
1218 	lru_gen_del_mm(mm);
1219 	mmdrop(mm);
1220 }
1221 
1222 /*
1223  * Decrement the use count and release all resources for an mm.
1224  */
1225 void mmput(struct mm_struct *mm)
1226 {
1227 	might_sleep();
1228 
1229 	if (atomic_dec_and_test(&mm->mm_users))
1230 		__mmput(mm);
1231 }
1232 EXPORT_SYMBOL_GPL(mmput);
1233 
1234 #ifdef CONFIG_MMU
1235 static void mmput_async_fn(struct work_struct *work)
1236 {
1237 	struct mm_struct *mm = container_of(work, struct mm_struct,
1238 					    async_put_work);
1239 
1240 	__mmput(mm);
1241 }
1242 
1243 void mmput_async(struct mm_struct *mm)
1244 {
1245 	if (atomic_dec_and_test(&mm->mm_users)) {
1246 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1247 		schedule_work(&mm->async_put_work);
1248 	}
1249 }
1250 EXPORT_SYMBOL_GPL(mmput_async);
1251 #endif
1252 
1253 /**
1254  * set_mm_exe_file - change a reference to the mm's executable file
1255  *
1256  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1257  *
1258  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1259  * invocations: in mmput() nobody alive left, in execve task is single
1260  * threaded.
1261  *
1262  * Can only fail if new_exe_file != NULL.
1263  */
1264 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1265 {
1266 	struct file *old_exe_file;
1267 
1268 	/*
1269 	 * It is safe to dereference the exe_file without RCU as
1270 	 * this function is only called if nobody else can access
1271 	 * this mm -- see comment above for justification.
1272 	 */
1273 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1274 
1275 	if (new_exe_file) {
1276 		/*
1277 		 * We expect the caller (i.e., sys_execve) to already denied
1278 		 * write access, so this is unlikely to fail.
1279 		 */
1280 		if (unlikely(deny_write_access(new_exe_file)))
1281 			return -EACCES;
1282 		get_file(new_exe_file);
1283 	}
1284 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1285 	if (old_exe_file) {
1286 		allow_write_access(old_exe_file);
1287 		fput(old_exe_file);
1288 	}
1289 	return 0;
1290 }
1291 
1292 /**
1293  * replace_mm_exe_file - replace a reference to the mm's executable file
1294  *
1295  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1296  * dealing with concurrent invocation and without grabbing the mmap lock in
1297  * write mode.
1298  *
1299  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1300  */
1301 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1302 {
1303 	struct vm_area_struct *vma;
1304 	struct file *old_exe_file;
1305 	int ret = 0;
1306 
1307 	/* Forbid mm->exe_file change if old file still mapped. */
1308 	old_exe_file = get_mm_exe_file(mm);
1309 	if (old_exe_file) {
1310 		VMA_ITERATOR(vmi, mm, 0);
1311 		mmap_read_lock(mm);
1312 		for_each_vma(vmi, vma) {
1313 			if (!vma->vm_file)
1314 				continue;
1315 			if (path_equal(&vma->vm_file->f_path,
1316 				       &old_exe_file->f_path)) {
1317 				ret = -EBUSY;
1318 				break;
1319 			}
1320 		}
1321 		mmap_read_unlock(mm);
1322 		fput(old_exe_file);
1323 		if (ret)
1324 			return ret;
1325 	}
1326 
1327 	/* set the new file, lockless */
1328 	ret = deny_write_access(new_exe_file);
1329 	if (ret)
1330 		return -EACCES;
1331 	get_file(new_exe_file);
1332 
1333 	old_exe_file = xchg(&mm->exe_file, new_exe_file);
1334 	if (old_exe_file) {
1335 		/*
1336 		 * Don't race with dup_mmap() getting the file and disallowing
1337 		 * write access while someone might open the file writable.
1338 		 */
1339 		mmap_read_lock(mm);
1340 		allow_write_access(old_exe_file);
1341 		fput(old_exe_file);
1342 		mmap_read_unlock(mm);
1343 	}
1344 	return 0;
1345 }
1346 
1347 /**
1348  * get_mm_exe_file - acquire a reference to the mm's executable file
1349  *
1350  * Returns %NULL if mm has no associated executable file.
1351  * User must release file via fput().
1352  */
1353 struct file *get_mm_exe_file(struct mm_struct *mm)
1354 {
1355 	struct file *exe_file;
1356 
1357 	rcu_read_lock();
1358 	exe_file = rcu_dereference(mm->exe_file);
1359 	if (exe_file && !get_file_rcu(exe_file))
1360 		exe_file = NULL;
1361 	rcu_read_unlock();
1362 	return exe_file;
1363 }
1364 
1365 /**
1366  * get_task_exe_file - acquire a reference to the task's executable file
1367  *
1368  * Returns %NULL if task's mm (if any) has no associated executable file or
1369  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1370  * User must release file via fput().
1371  */
1372 struct file *get_task_exe_file(struct task_struct *task)
1373 {
1374 	struct file *exe_file = NULL;
1375 	struct mm_struct *mm;
1376 
1377 	task_lock(task);
1378 	mm = task->mm;
1379 	if (mm) {
1380 		if (!(task->flags & PF_KTHREAD))
1381 			exe_file = get_mm_exe_file(mm);
1382 	}
1383 	task_unlock(task);
1384 	return exe_file;
1385 }
1386 
1387 /**
1388  * get_task_mm - acquire a reference to the task's mm
1389  *
1390  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1391  * this kernel workthread has transiently adopted a user mm with use_mm,
1392  * to do its AIO) is not set and if so returns a reference to it, after
1393  * bumping up the use count.  User must release the mm via mmput()
1394  * after use.  Typically used by /proc and ptrace.
1395  */
1396 struct mm_struct *get_task_mm(struct task_struct *task)
1397 {
1398 	struct mm_struct *mm;
1399 
1400 	task_lock(task);
1401 	mm = task->mm;
1402 	if (mm) {
1403 		if (task->flags & PF_KTHREAD)
1404 			mm = NULL;
1405 		else
1406 			mmget(mm);
1407 	}
1408 	task_unlock(task);
1409 	return mm;
1410 }
1411 EXPORT_SYMBOL_GPL(get_task_mm);
1412 
1413 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1414 {
1415 	struct mm_struct *mm;
1416 	int err;
1417 
1418 	err =  down_read_killable(&task->signal->exec_update_lock);
1419 	if (err)
1420 		return ERR_PTR(err);
1421 
1422 	mm = get_task_mm(task);
1423 	if (mm && mm != current->mm &&
1424 			!ptrace_may_access(task, mode)) {
1425 		mmput(mm);
1426 		mm = ERR_PTR(-EACCES);
1427 	}
1428 	up_read(&task->signal->exec_update_lock);
1429 
1430 	return mm;
1431 }
1432 
1433 static void complete_vfork_done(struct task_struct *tsk)
1434 {
1435 	struct completion *vfork;
1436 
1437 	task_lock(tsk);
1438 	vfork = tsk->vfork_done;
1439 	if (likely(vfork)) {
1440 		tsk->vfork_done = NULL;
1441 		complete(vfork);
1442 	}
1443 	task_unlock(tsk);
1444 }
1445 
1446 static int wait_for_vfork_done(struct task_struct *child,
1447 				struct completion *vfork)
1448 {
1449 	unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1450 	int killed;
1451 
1452 	cgroup_enter_frozen();
1453 	killed = wait_for_completion_state(vfork, state);
1454 	cgroup_leave_frozen(false);
1455 
1456 	if (killed) {
1457 		task_lock(child);
1458 		child->vfork_done = NULL;
1459 		task_unlock(child);
1460 	}
1461 
1462 	put_task_struct(child);
1463 	return killed;
1464 }
1465 
1466 /* Please note the differences between mmput and mm_release.
1467  * mmput is called whenever we stop holding onto a mm_struct,
1468  * error success whatever.
1469  *
1470  * mm_release is called after a mm_struct has been removed
1471  * from the current process.
1472  *
1473  * This difference is important for error handling, when we
1474  * only half set up a mm_struct for a new process and need to restore
1475  * the old one.  Because we mmput the new mm_struct before
1476  * restoring the old one. . .
1477  * Eric Biederman 10 January 1998
1478  */
1479 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1480 {
1481 	uprobe_free_utask(tsk);
1482 
1483 	/* Get rid of any cached register state */
1484 	deactivate_mm(tsk, mm);
1485 
1486 	/*
1487 	 * Signal userspace if we're not exiting with a core dump
1488 	 * because we want to leave the value intact for debugging
1489 	 * purposes.
1490 	 */
1491 	if (tsk->clear_child_tid) {
1492 		if (atomic_read(&mm->mm_users) > 1) {
1493 			/*
1494 			 * We don't check the error code - if userspace has
1495 			 * not set up a proper pointer then tough luck.
1496 			 */
1497 			put_user(0, tsk->clear_child_tid);
1498 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1499 					1, NULL, NULL, 0, 0);
1500 		}
1501 		tsk->clear_child_tid = NULL;
1502 	}
1503 
1504 	/*
1505 	 * All done, finally we can wake up parent and return this mm to him.
1506 	 * Also kthread_stop() uses this completion for synchronization.
1507 	 */
1508 	if (tsk->vfork_done)
1509 		complete_vfork_done(tsk);
1510 }
1511 
1512 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1513 {
1514 	futex_exit_release(tsk);
1515 	mm_release(tsk, mm);
1516 }
1517 
1518 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1519 {
1520 	futex_exec_release(tsk);
1521 	mm_release(tsk, mm);
1522 }
1523 
1524 /**
1525  * dup_mm() - duplicates an existing mm structure
1526  * @tsk: the task_struct with which the new mm will be associated.
1527  * @oldmm: the mm to duplicate.
1528  *
1529  * Allocates a new mm structure and duplicates the provided @oldmm structure
1530  * content into it.
1531  *
1532  * Return: the duplicated mm or NULL on failure.
1533  */
1534 static struct mm_struct *dup_mm(struct task_struct *tsk,
1535 				struct mm_struct *oldmm)
1536 {
1537 	struct mm_struct *mm;
1538 	int err;
1539 
1540 	mm = allocate_mm();
1541 	if (!mm)
1542 		goto fail_nomem;
1543 
1544 	memcpy(mm, oldmm, sizeof(*mm));
1545 
1546 	if (!mm_init(mm, tsk, mm->user_ns))
1547 		goto fail_nomem;
1548 
1549 	err = dup_mmap(mm, oldmm);
1550 	if (err)
1551 		goto free_pt;
1552 
1553 	mm->hiwater_rss = get_mm_rss(mm);
1554 	mm->hiwater_vm = mm->total_vm;
1555 
1556 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1557 		goto free_pt;
1558 
1559 	return mm;
1560 
1561 free_pt:
1562 	/* don't put binfmt in mmput, we haven't got module yet */
1563 	mm->binfmt = NULL;
1564 	mm_init_owner(mm, NULL);
1565 	mmput(mm);
1566 
1567 fail_nomem:
1568 	return NULL;
1569 }
1570 
1571 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1572 {
1573 	struct mm_struct *mm, *oldmm;
1574 
1575 	tsk->min_flt = tsk->maj_flt = 0;
1576 	tsk->nvcsw = tsk->nivcsw = 0;
1577 #ifdef CONFIG_DETECT_HUNG_TASK
1578 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1579 	tsk->last_switch_time = 0;
1580 #endif
1581 
1582 	tsk->mm = NULL;
1583 	tsk->active_mm = NULL;
1584 
1585 	/*
1586 	 * Are we cloning a kernel thread?
1587 	 *
1588 	 * We need to steal a active VM for that..
1589 	 */
1590 	oldmm = current->mm;
1591 	if (!oldmm)
1592 		return 0;
1593 
1594 	if (clone_flags & CLONE_VM) {
1595 		mmget(oldmm);
1596 		mm = oldmm;
1597 	} else {
1598 		mm = dup_mm(tsk, current->mm);
1599 		if (!mm)
1600 			return -ENOMEM;
1601 	}
1602 
1603 	tsk->mm = mm;
1604 	tsk->active_mm = mm;
1605 	sched_mm_cid_fork(tsk);
1606 	return 0;
1607 }
1608 
1609 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1610 {
1611 	struct fs_struct *fs = current->fs;
1612 	if (clone_flags & CLONE_FS) {
1613 		/* tsk->fs is already what we want */
1614 		spin_lock(&fs->lock);
1615 		if (fs->in_exec) {
1616 			spin_unlock(&fs->lock);
1617 			return -EAGAIN;
1618 		}
1619 		fs->users++;
1620 		spin_unlock(&fs->lock);
1621 		return 0;
1622 	}
1623 	tsk->fs = copy_fs_struct(fs);
1624 	if (!tsk->fs)
1625 		return -ENOMEM;
1626 	return 0;
1627 }
1628 
1629 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1630 		      int no_files)
1631 {
1632 	struct files_struct *oldf, *newf;
1633 	int error = 0;
1634 
1635 	/*
1636 	 * A background process may not have any files ...
1637 	 */
1638 	oldf = current->files;
1639 	if (!oldf)
1640 		goto out;
1641 
1642 	if (no_files) {
1643 		tsk->files = NULL;
1644 		goto out;
1645 	}
1646 
1647 	if (clone_flags & CLONE_FILES) {
1648 		atomic_inc(&oldf->count);
1649 		goto out;
1650 	}
1651 
1652 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1653 	if (!newf)
1654 		goto out;
1655 
1656 	tsk->files = newf;
1657 	error = 0;
1658 out:
1659 	return error;
1660 }
1661 
1662 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1663 {
1664 	struct sighand_struct *sig;
1665 
1666 	if (clone_flags & CLONE_SIGHAND) {
1667 		refcount_inc(&current->sighand->count);
1668 		return 0;
1669 	}
1670 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1671 	RCU_INIT_POINTER(tsk->sighand, sig);
1672 	if (!sig)
1673 		return -ENOMEM;
1674 
1675 	refcount_set(&sig->count, 1);
1676 	spin_lock_irq(&current->sighand->siglock);
1677 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1678 	spin_unlock_irq(&current->sighand->siglock);
1679 
1680 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1681 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1682 		flush_signal_handlers(tsk, 0);
1683 
1684 	return 0;
1685 }
1686 
1687 void __cleanup_sighand(struct sighand_struct *sighand)
1688 {
1689 	if (refcount_dec_and_test(&sighand->count)) {
1690 		signalfd_cleanup(sighand);
1691 		/*
1692 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1693 		 * without an RCU grace period, see __lock_task_sighand().
1694 		 */
1695 		kmem_cache_free(sighand_cachep, sighand);
1696 	}
1697 }
1698 
1699 /*
1700  * Initialize POSIX timer handling for a thread group.
1701  */
1702 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1703 {
1704 	struct posix_cputimers *pct = &sig->posix_cputimers;
1705 	unsigned long cpu_limit;
1706 
1707 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1708 	posix_cputimers_group_init(pct, cpu_limit);
1709 }
1710 
1711 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1712 {
1713 	struct signal_struct *sig;
1714 
1715 	if (clone_flags & CLONE_THREAD)
1716 		return 0;
1717 
1718 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1719 	tsk->signal = sig;
1720 	if (!sig)
1721 		return -ENOMEM;
1722 
1723 	sig->nr_threads = 1;
1724 	sig->quick_threads = 1;
1725 	atomic_set(&sig->live, 1);
1726 	refcount_set(&sig->sigcnt, 1);
1727 
1728 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1729 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1730 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1731 
1732 	init_waitqueue_head(&sig->wait_chldexit);
1733 	sig->curr_target = tsk;
1734 	init_sigpending(&sig->shared_pending);
1735 	INIT_HLIST_HEAD(&sig->multiprocess);
1736 	seqlock_init(&sig->stats_lock);
1737 	prev_cputime_init(&sig->prev_cputime);
1738 
1739 #ifdef CONFIG_POSIX_TIMERS
1740 	INIT_LIST_HEAD(&sig->posix_timers);
1741 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1742 	sig->real_timer.function = it_real_fn;
1743 #endif
1744 
1745 	task_lock(current->group_leader);
1746 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1747 	task_unlock(current->group_leader);
1748 
1749 	posix_cpu_timers_init_group(sig);
1750 
1751 	tty_audit_fork(sig);
1752 	sched_autogroup_fork(sig);
1753 
1754 	sig->oom_score_adj = current->signal->oom_score_adj;
1755 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1756 
1757 	mutex_init(&sig->cred_guard_mutex);
1758 	init_rwsem(&sig->exec_update_lock);
1759 
1760 	return 0;
1761 }
1762 
1763 static void copy_seccomp(struct task_struct *p)
1764 {
1765 #ifdef CONFIG_SECCOMP
1766 	/*
1767 	 * Must be called with sighand->lock held, which is common to
1768 	 * all threads in the group. Holding cred_guard_mutex is not
1769 	 * needed because this new task is not yet running and cannot
1770 	 * be racing exec.
1771 	 */
1772 	assert_spin_locked(&current->sighand->siglock);
1773 
1774 	/* Ref-count the new filter user, and assign it. */
1775 	get_seccomp_filter(current);
1776 	p->seccomp = current->seccomp;
1777 
1778 	/*
1779 	 * Explicitly enable no_new_privs here in case it got set
1780 	 * between the task_struct being duplicated and holding the
1781 	 * sighand lock. The seccomp state and nnp must be in sync.
1782 	 */
1783 	if (task_no_new_privs(current))
1784 		task_set_no_new_privs(p);
1785 
1786 	/*
1787 	 * If the parent gained a seccomp mode after copying thread
1788 	 * flags and between before we held the sighand lock, we have
1789 	 * to manually enable the seccomp thread flag here.
1790 	 */
1791 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1792 		set_task_syscall_work(p, SECCOMP);
1793 #endif
1794 }
1795 
1796 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1797 {
1798 	current->clear_child_tid = tidptr;
1799 
1800 	return task_pid_vnr(current);
1801 }
1802 
1803 static void rt_mutex_init_task(struct task_struct *p)
1804 {
1805 	raw_spin_lock_init(&p->pi_lock);
1806 #ifdef CONFIG_RT_MUTEXES
1807 	p->pi_waiters = RB_ROOT_CACHED;
1808 	p->pi_top_task = NULL;
1809 	p->pi_blocked_on = NULL;
1810 #endif
1811 }
1812 
1813 static inline void init_task_pid_links(struct task_struct *task)
1814 {
1815 	enum pid_type type;
1816 
1817 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1818 		INIT_HLIST_NODE(&task->pid_links[type]);
1819 }
1820 
1821 static inline void
1822 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1823 {
1824 	if (type == PIDTYPE_PID)
1825 		task->thread_pid = pid;
1826 	else
1827 		task->signal->pids[type] = pid;
1828 }
1829 
1830 static inline void rcu_copy_process(struct task_struct *p)
1831 {
1832 #ifdef CONFIG_PREEMPT_RCU
1833 	p->rcu_read_lock_nesting = 0;
1834 	p->rcu_read_unlock_special.s = 0;
1835 	p->rcu_blocked_node = NULL;
1836 	INIT_LIST_HEAD(&p->rcu_node_entry);
1837 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1838 #ifdef CONFIG_TASKS_RCU
1839 	p->rcu_tasks_holdout = false;
1840 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1841 	p->rcu_tasks_idle_cpu = -1;
1842 #endif /* #ifdef CONFIG_TASKS_RCU */
1843 #ifdef CONFIG_TASKS_TRACE_RCU
1844 	p->trc_reader_nesting = 0;
1845 	p->trc_reader_special.s = 0;
1846 	INIT_LIST_HEAD(&p->trc_holdout_list);
1847 	INIT_LIST_HEAD(&p->trc_blkd_node);
1848 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1849 }
1850 
1851 struct pid *pidfd_pid(const struct file *file)
1852 {
1853 	if (file->f_op == &pidfd_fops)
1854 		return file->private_data;
1855 
1856 	return ERR_PTR(-EBADF);
1857 }
1858 
1859 static int pidfd_release(struct inode *inode, struct file *file)
1860 {
1861 	struct pid *pid = file->private_data;
1862 
1863 	file->private_data = NULL;
1864 	put_pid(pid);
1865 	return 0;
1866 }
1867 
1868 #ifdef CONFIG_PROC_FS
1869 /**
1870  * pidfd_show_fdinfo - print information about a pidfd
1871  * @m: proc fdinfo file
1872  * @f: file referencing a pidfd
1873  *
1874  * Pid:
1875  * This function will print the pid that a given pidfd refers to in the
1876  * pid namespace of the procfs instance.
1877  * If the pid namespace of the process is not a descendant of the pid
1878  * namespace of the procfs instance 0 will be shown as its pid. This is
1879  * similar to calling getppid() on a process whose parent is outside of
1880  * its pid namespace.
1881  *
1882  * NSpid:
1883  * If pid namespaces are supported then this function will also print
1884  * the pid of a given pidfd refers to for all descendant pid namespaces
1885  * starting from the current pid namespace of the instance, i.e. the
1886  * Pid field and the first entry in the NSpid field will be identical.
1887  * If the pid namespace of the process is not a descendant of the pid
1888  * namespace of the procfs instance 0 will be shown as its first NSpid
1889  * entry and no others will be shown.
1890  * Note that this differs from the Pid and NSpid fields in
1891  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1892  * the  pid namespace of the procfs instance. The difference becomes
1893  * obvious when sending around a pidfd between pid namespaces from a
1894  * different branch of the tree, i.e. where no ancestral relation is
1895  * present between the pid namespaces:
1896  * - create two new pid namespaces ns1 and ns2 in the initial pid
1897  *   namespace (also take care to create new mount namespaces in the
1898  *   new pid namespace and mount procfs)
1899  * - create a process with a pidfd in ns1
1900  * - send pidfd from ns1 to ns2
1901  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1902  *   have exactly one entry, which is 0
1903  */
1904 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1905 {
1906 	struct pid *pid = f->private_data;
1907 	struct pid_namespace *ns;
1908 	pid_t nr = -1;
1909 
1910 	if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1911 		ns = proc_pid_ns(file_inode(m->file)->i_sb);
1912 		nr = pid_nr_ns(pid, ns);
1913 	}
1914 
1915 	seq_put_decimal_ll(m, "Pid:\t", nr);
1916 
1917 #ifdef CONFIG_PID_NS
1918 	seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1919 	if (nr > 0) {
1920 		int i;
1921 
1922 		/* If nr is non-zero it means that 'pid' is valid and that
1923 		 * ns, i.e. the pid namespace associated with the procfs
1924 		 * instance, is in the pid namespace hierarchy of pid.
1925 		 * Start at one below the already printed level.
1926 		 */
1927 		for (i = ns->level + 1; i <= pid->level; i++)
1928 			seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1929 	}
1930 #endif
1931 	seq_putc(m, '\n');
1932 }
1933 #endif
1934 
1935 /*
1936  * Poll support for process exit notification.
1937  */
1938 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1939 {
1940 	struct pid *pid = file->private_data;
1941 	__poll_t poll_flags = 0;
1942 
1943 	poll_wait(file, &pid->wait_pidfd, pts);
1944 
1945 	/*
1946 	 * Inform pollers only when the whole thread group exits.
1947 	 * If the thread group leader exits before all other threads in the
1948 	 * group, then poll(2) should block, similar to the wait(2) family.
1949 	 */
1950 	if (thread_group_exited(pid))
1951 		poll_flags = EPOLLIN | EPOLLRDNORM;
1952 
1953 	return poll_flags;
1954 }
1955 
1956 const struct file_operations pidfd_fops = {
1957 	.release = pidfd_release,
1958 	.poll = pidfd_poll,
1959 #ifdef CONFIG_PROC_FS
1960 	.show_fdinfo = pidfd_show_fdinfo,
1961 #endif
1962 };
1963 
1964 /**
1965  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1966  * @pid:   the struct pid for which to create a pidfd
1967  * @flags: flags of the new @pidfd
1968  * @pidfd: the pidfd to return
1969  *
1970  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1971  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1972 
1973  * The helper doesn't perform checks on @pid which makes it useful for pidfds
1974  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
1975  * pidfd file are prepared.
1976  *
1977  * If this function returns successfully the caller is responsible to either
1978  * call fd_install() passing the returned pidfd and pidfd file as arguments in
1979  * order to install the pidfd into its file descriptor table or they must use
1980  * put_unused_fd() and fput() on the returned pidfd and pidfd file
1981  * respectively.
1982  *
1983  * This function is useful when a pidfd must already be reserved but there
1984  * might still be points of failure afterwards and the caller wants to ensure
1985  * that no pidfd is leaked into its file descriptor table.
1986  *
1987  * Return: On success, a reserved pidfd is returned from the function and a new
1988  *         pidfd file is returned in the last argument to the function. On
1989  *         error, a negative error code is returned from the function and the
1990  *         last argument remains unchanged.
1991  */
1992 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
1993 {
1994 	int pidfd;
1995 	struct file *pidfd_file;
1996 
1997 	if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
1998 		return -EINVAL;
1999 
2000 	pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2001 	if (pidfd < 0)
2002 		return pidfd;
2003 
2004 	pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2005 					flags | O_RDWR | O_CLOEXEC);
2006 	if (IS_ERR(pidfd_file)) {
2007 		put_unused_fd(pidfd);
2008 		return PTR_ERR(pidfd_file);
2009 	}
2010 	get_pid(pid); /* held by pidfd_file now */
2011 	*ret = pidfd_file;
2012 	return pidfd;
2013 }
2014 
2015 /**
2016  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2017  * @pid:   the struct pid for which to create a pidfd
2018  * @flags: flags of the new @pidfd
2019  * @pidfd: the pidfd to return
2020  *
2021  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2022  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2023  *
2024  * The helper verifies that @pid is used as a thread group leader.
2025  *
2026  * If this function returns successfully the caller is responsible to either
2027  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2028  * order to install the pidfd into its file descriptor table or they must use
2029  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2030  * respectively.
2031  *
2032  * This function is useful when a pidfd must already be reserved but there
2033  * might still be points of failure afterwards and the caller wants to ensure
2034  * that no pidfd is leaked into its file descriptor table.
2035  *
2036  * Return: On success, a reserved pidfd is returned from the function and a new
2037  *         pidfd file is returned in the last argument to the function. On
2038  *         error, a negative error code is returned from the function and the
2039  *         last argument remains unchanged.
2040  */
2041 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2042 {
2043 	if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2044 		return -EINVAL;
2045 
2046 	return __pidfd_prepare(pid, flags, ret);
2047 }
2048 
2049 static void __delayed_free_task(struct rcu_head *rhp)
2050 {
2051 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2052 
2053 	free_task(tsk);
2054 }
2055 
2056 static __always_inline void delayed_free_task(struct task_struct *tsk)
2057 {
2058 	if (IS_ENABLED(CONFIG_MEMCG))
2059 		call_rcu(&tsk->rcu, __delayed_free_task);
2060 	else
2061 		free_task(tsk);
2062 }
2063 
2064 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2065 {
2066 	/* Skip if kernel thread */
2067 	if (!tsk->mm)
2068 		return;
2069 
2070 	/* Skip if spawning a thread or using vfork */
2071 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2072 		return;
2073 
2074 	/* We need to synchronize with __set_oom_adj */
2075 	mutex_lock(&oom_adj_mutex);
2076 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2077 	/* Update the values in case they were changed after copy_signal */
2078 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2079 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2080 	mutex_unlock(&oom_adj_mutex);
2081 }
2082 
2083 #ifdef CONFIG_RV
2084 static void rv_task_fork(struct task_struct *p)
2085 {
2086 	int i;
2087 
2088 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2089 		p->rv[i].da_mon.monitoring = false;
2090 }
2091 #else
2092 #define rv_task_fork(p) do {} while (0)
2093 #endif
2094 
2095 /*
2096  * This creates a new process as a copy of the old one,
2097  * but does not actually start it yet.
2098  *
2099  * It copies the registers, and all the appropriate
2100  * parts of the process environment (as per the clone
2101  * flags). The actual kick-off is left to the caller.
2102  */
2103 __latent_entropy struct task_struct *copy_process(
2104 					struct pid *pid,
2105 					int trace,
2106 					int node,
2107 					struct kernel_clone_args *args)
2108 {
2109 	int pidfd = -1, retval;
2110 	struct task_struct *p;
2111 	struct multiprocess_signals delayed;
2112 	struct file *pidfile = NULL;
2113 	const u64 clone_flags = args->flags;
2114 	struct nsproxy *nsp = current->nsproxy;
2115 
2116 	/*
2117 	 * Don't allow sharing the root directory with processes in a different
2118 	 * namespace
2119 	 */
2120 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2121 		return ERR_PTR(-EINVAL);
2122 
2123 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2124 		return ERR_PTR(-EINVAL);
2125 
2126 	/*
2127 	 * Thread groups must share signals as well, and detached threads
2128 	 * can only be started up within the thread group.
2129 	 */
2130 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2131 		return ERR_PTR(-EINVAL);
2132 
2133 	/*
2134 	 * Shared signal handlers imply shared VM. By way of the above,
2135 	 * thread groups also imply shared VM. Blocking this case allows
2136 	 * for various simplifications in other code.
2137 	 */
2138 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2139 		return ERR_PTR(-EINVAL);
2140 
2141 	/*
2142 	 * Siblings of global init remain as zombies on exit since they are
2143 	 * not reaped by their parent (swapper). To solve this and to avoid
2144 	 * multi-rooted process trees, prevent global and container-inits
2145 	 * from creating siblings.
2146 	 */
2147 	if ((clone_flags & CLONE_PARENT) &&
2148 				current->signal->flags & SIGNAL_UNKILLABLE)
2149 		return ERR_PTR(-EINVAL);
2150 
2151 	/*
2152 	 * If the new process will be in a different pid or user namespace
2153 	 * do not allow it to share a thread group with the forking task.
2154 	 */
2155 	if (clone_flags & CLONE_THREAD) {
2156 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2157 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2158 			return ERR_PTR(-EINVAL);
2159 	}
2160 
2161 	if (clone_flags & CLONE_PIDFD) {
2162 		/*
2163 		 * - CLONE_DETACHED is blocked so that we can potentially
2164 		 *   reuse it later for CLONE_PIDFD.
2165 		 * - CLONE_THREAD is blocked until someone really needs it.
2166 		 */
2167 		if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2168 			return ERR_PTR(-EINVAL);
2169 	}
2170 
2171 	/*
2172 	 * Force any signals received before this point to be delivered
2173 	 * before the fork happens.  Collect up signals sent to multiple
2174 	 * processes that happen during the fork and delay them so that
2175 	 * they appear to happen after the fork.
2176 	 */
2177 	sigemptyset(&delayed.signal);
2178 	INIT_HLIST_NODE(&delayed.node);
2179 
2180 	spin_lock_irq(&current->sighand->siglock);
2181 	if (!(clone_flags & CLONE_THREAD))
2182 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2183 	recalc_sigpending();
2184 	spin_unlock_irq(&current->sighand->siglock);
2185 	retval = -ERESTARTNOINTR;
2186 	if (task_sigpending(current))
2187 		goto fork_out;
2188 
2189 	retval = -ENOMEM;
2190 	p = dup_task_struct(current, node);
2191 	if (!p)
2192 		goto fork_out;
2193 	p->flags &= ~PF_KTHREAD;
2194 	if (args->kthread)
2195 		p->flags |= PF_KTHREAD;
2196 	if (args->user_worker)
2197 		p->flags |= PF_USER_WORKER;
2198 	if (args->io_thread) {
2199 		/*
2200 		 * Mark us an IO worker, and block any signal that isn't
2201 		 * fatal or STOP
2202 		 */
2203 		p->flags |= PF_IO_WORKER;
2204 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2205 	}
2206 
2207 	if (args->name)
2208 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2209 
2210 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2211 	/*
2212 	 * Clear TID on mm_release()?
2213 	 */
2214 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2215 
2216 	ftrace_graph_init_task(p);
2217 
2218 	rt_mutex_init_task(p);
2219 
2220 	lockdep_assert_irqs_enabled();
2221 #ifdef CONFIG_PROVE_LOCKING
2222 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2223 #endif
2224 	retval = copy_creds(p, clone_flags);
2225 	if (retval < 0)
2226 		goto bad_fork_free;
2227 
2228 	retval = -EAGAIN;
2229 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2230 		if (p->real_cred->user != INIT_USER &&
2231 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2232 			goto bad_fork_cleanup_count;
2233 	}
2234 	current->flags &= ~PF_NPROC_EXCEEDED;
2235 
2236 	/*
2237 	 * If multiple threads are within copy_process(), then this check
2238 	 * triggers too late. This doesn't hurt, the check is only there
2239 	 * to stop root fork bombs.
2240 	 */
2241 	retval = -EAGAIN;
2242 	if (data_race(nr_threads >= max_threads))
2243 		goto bad_fork_cleanup_count;
2244 
2245 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2246 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2247 	p->flags |= PF_FORKNOEXEC;
2248 	INIT_LIST_HEAD(&p->children);
2249 	INIT_LIST_HEAD(&p->sibling);
2250 	rcu_copy_process(p);
2251 	p->vfork_done = NULL;
2252 	spin_lock_init(&p->alloc_lock);
2253 
2254 	init_sigpending(&p->pending);
2255 
2256 	p->utime = p->stime = p->gtime = 0;
2257 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2258 	p->utimescaled = p->stimescaled = 0;
2259 #endif
2260 	prev_cputime_init(&p->prev_cputime);
2261 
2262 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2263 	seqcount_init(&p->vtime.seqcount);
2264 	p->vtime.starttime = 0;
2265 	p->vtime.state = VTIME_INACTIVE;
2266 #endif
2267 
2268 #ifdef CONFIG_IO_URING
2269 	p->io_uring = NULL;
2270 #endif
2271 
2272 #if defined(SPLIT_RSS_COUNTING)
2273 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2274 #endif
2275 
2276 	p->default_timer_slack_ns = current->timer_slack_ns;
2277 
2278 #ifdef CONFIG_PSI
2279 	p->psi_flags = 0;
2280 #endif
2281 
2282 	task_io_accounting_init(&p->ioac);
2283 	acct_clear_integrals(p);
2284 
2285 	posix_cputimers_init(&p->posix_cputimers);
2286 
2287 	p->io_context = NULL;
2288 	audit_set_context(p, NULL);
2289 	cgroup_fork(p);
2290 	if (args->kthread) {
2291 		if (!set_kthread_struct(p))
2292 			goto bad_fork_cleanup_delayacct;
2293 	}
2294 #ifdef CONFIG_NUMA
2295 	p->mempolicy = mpol_dup(p->mempolicy);
2296 	if (IS_ERR(p->mempolicy)) {
2297 		retval = PTR_ERR(p->mempolicy);
2298 		p->mempolicy = NULL;
2299 		goto bad_fork_cleanup_delayacct;
2300 	}
2301 #endif
2302 #ifdef CONFIG_CPUSETS
2303 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2304 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2305 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2306 #endif
2307 #ifdef CONFIG_TRACE_IRQFLAGS
2308 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2309 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2310 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2311 	p->softirqs_enabled		= 1;
2312 	p->softirq_context		= 0;
2313 #endif
2314 
2315 	p->pagefault_disabled = 0;
2316 
2317 #ifdef CONFIG_LOCKDEP
2318 	lockdep_init_task(p);
2319 #endif
2320 
2321 #ifdef CONFIG_DEBUG_MUTEXES
2322 	p->blocked_on = NULL; /* not blocked yet */
2323 #endif
2324 #ifdef CONFIG_BCACHE
2325 	p->sequential_io	= 0;
2326 	p->sequential_io_avg	= 0;
2327 #endif
2328 #ifdef CONFIG_BPF_SYSCALL
2329 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2330 	p->bpf_ctx = NULL;
2331 #endif
2332 
2333 	/* Perform scheduler related setup. Assign this task to a CPU. */
2334 	retval = sched_fork(clone_flags, p);
2335 	if (retval)
2336 		goto bad_fork_cleanup_policy;
2337 
2338 	retval = perf_event_init_task(p, clone_flags);
2339 	if (retval)
2340 		goto bad_fork_cleanup_policy;
2341 	retval = audit_alloc(p);
2342 	if (retval)
2343 		goto bad_fork_cleanup_perf;
2344 	/* copy all the process information */
2345 	shm_init_task(p);
2346 	retval = security_task_alloc(p, clone_flags);
2347 	if (retval)
2348 		goto bad_fork_cleanup_audit;
2349 	retval = copy_semundo(clone_flags, p);
2350 	if (retval)
2351 		goto bad_fork_cleanup_security;
2352 	retval = copy_files(clone_flags, p, args->no_files);
2353 	if (retval)
2354 		goto bad_fork_cleanup_semundo;
2355 	retval = copy_fs(clone_flags, p);
2356 	if (retval)
2357 		goto bad_fork_cleanup_files;
2358 	retval = copy_sighand(clone_flags, p);
2359 	if (retval)
2360 		goto bad_fork_cleanup_fs;
2361 	retval = copy_signal(clone_flags, p);
2362 	if (retval)
2363 		goto bad_fork_cleanup_sighand;
2364 	retval = copy_mm(clone_flags, p);
2365 	if (retval)
2366 		goto bad_fork_cleanup_signal;
2367 	retval = copy_namespaces(clone_flags, p);
2368 	if (retval)
2369 		goto bad_fork_cleanup_mm;
2370 	retval = copy_io(clone_flags, p);
2371 	if (retval)
2372 		goto bad_fork_cleanup_namespaces;
2373 	retval = copy_thread(p, args);
2374 	if (retval)
2375 		goto bad_fork_cleanup_io;
2376 
2377 	if (args->ignore_signals)
2378 		ignore_signals(p);
2379 
2380 	stackleak_task_init(p);
2381 
2382 	if (pid != &init_struct_pid) {
2383 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2384 				args->set_tid_size);
2385 		if (IS_ERR(pid)) {
2386 			retval = PTR_ERR(pid);
2387 			goto bad_fork_cleanup_thread;
2388 		}
2389 	}
2390 
2391 	/*
2392 	 * This has to happen after we've potentially unshared the file
2393 	 * descriptor table (so that the pidfd doesn't leak into the child
2394 	 * if the fd table isn't shared).
2395 	 */
2396 	if (clone_flags & CLONE_PIDFD) {
2397 		/* Note that no task has been attached to @pid yet. */
2398 		retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
2399 		if (retval < 0)
2400 			goto bad_fork_free_pid;
2401 		pidfd = retval;
2402 
2403 		retval = put_user(pidfd, args->pidfd);
2404 		if (retval)
2405 			goto bad_fork_put_pidfd;
2406 	}
2407 
2408 #ifdef CONFIG_BLOCK
2409 	p->plug = NULL;
2410 #endif
2411 	futex_init_task(p);
2412 
2413 	/*
2414 	 * sigaltstack should be cleared when sharing the same VM
2415 	 */
2416 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2417 		sas_ss_reset(p);
2418 
2419 	/*
2420 	 * Syscall tracing and stepping should be turned off in the
2421 	 * child regardless of CLONE_PTRACE.
2422 	 */
2423 	user_disable_single_step(p);
2424 	clear_task_syscall_work(p, SYSCALL_TRACE);
2425 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2426 	clear_task_syscall_work(p, SYSCALL_EMU);
2427 #endif
2428 	clear_tsk_latency_tracing(p);
2429 
2430 	/* ok, now we should be set up.. */
2431 	p->pid = pid_nr(pid);
2432 	if (clone_flags & CLONE_THREAD) {
2433 		p->group_leader = current->group_leader;
2434 		p->tgid = current->tgid;
2435 	} else {
2436 		p->group_leader = p;
2437 		p->tgid = p->pid;
2438 	}
2439 
2440 	p->nr_dirtied = 0;
2441 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2442 	p->dirty_paused_when = 0;
2443 
2444 	p->pdeath_signal = 0;
2445 	INIT_LIST_HEAD(&p->thread_group);
2446 	p->task_works = NULL;
2447 	clear_posix_cputimers_work(p);
2448 
2449 #ifdef CONFIG_KRETPROBES
2450 	p->kretprobe_instances.first = NULL;
2451 #endif
2452 #ifdef CONFIG_RETHOOK
2453 	p->rethooks.first = NULL;
2454 #endif
2455 
2456 	/*
2457 	 * Ensure that the cgroup subsystem policies allow the new process to be
2458 	 * forked. It should be noted that the new process's css_set can be changed
2459 	 * between here and cgroup_post_fork() if an organisation operation is in
2460 	 * progress.
2461 	 */
2462 	retval = cgroup_can_fork(p, args);
2463 	if (retval)
2464 		goto bad_fork_put_pidfd;
2465 
2466 	/*
2467 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2468 	 * the new task on the correct runqueue. All this *before* the task
2469 	 * becomes visible.
2470 	 *
2471 	 * This isn't part of ->can_fork() because while the re-cloning is
2472 	 * cgroup specific, it unconditionally needs to place the task on a
2473 	 * runqueue.
2474 	 */
2475 	sched_cgroup_fork(p, args);
2476 
2477 	/*
2478 	 * From this point on we must avoid any synchronous user-space
2479 	 * communication until we take the tasklist-lock. In particular, we do
2480 	 * not want user-space to be able to predict the process start-time by
2481 	 * stalling fork(2) after we recorded the start_time but before it is
2482 	 * visible to the system.
2483 	 */
2484 
2485 	p->start_time = ktime_get_ns();
2486 	p->start_boottime = ktime_get_boottime_ns();
2487 
2488 	/*
2489 	 * Make it visible to the rest of the system, but dont wake it up yet.
2490 	 * Need tasklist lock for parent etc handling!
2491 	 */
2492 	write_lock_irq(&tasklist_lock);
2493 
2494 	/* CLONE_PARENT re-uses the old parent */
2495 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2496 		p->real_parent = current->real_parent;
2497 		p->parent_exec_id = current->parent_exec_id;
2498 		if (clone_flags & CLONE_THREAD)
2499 			p->exit_signal = -1;
2500 		else
2501 			p->exit_signal = current->group_leader->exit_signal;
2502 	} else {
2503 		p->real_parent = current;
2504 		p->parent_exec_id = current->self_exec_id;
2505 		p->exit_signal = args->exit_signal;
2506 	}
2507 
2508 	klp_copy_process(p);
2509 
2510 	sched_core_fork(p);
2511 
2512 	spin_lock(&current->sighand->siglock);
2513 
2514 	rv_task_fork(p);
2515 
2516 	rseq_fork(p, clone_flags);
2517 
2518 	/* Don't start children in a dying pid namespace */
2519 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2520 		retval = -ENOMEM;
2521 		goto bad_fork_cancel_cgroup;
2522 	}
2523 
2524 	/* Let kill terminate clone/fork in the middle */
2525 	if (fatal_signal_pending(current)) {
2526 		retval = -EINTR;
2527 		goto bad_fork_cancel_cgroup;
2528 	}
2529 
2530 	/* No more failure paths after this point. */
2531 
2532 	/*
2533 	 * Copy seccomp details explicitly here, in case they were changed
2534 	 * before holding sighand lock.
2535 	 */
2536 	copy_seccomp(p);
2537 
2538 	init_task_pid_links(p);
2539 	if (likely(p->pid)) {
2540 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2541 
2542 		init_task_pid(p, PIDTYPE_PID, pid);
2543 		if (thread_group_leader(p)) {
2544 			init_task_pid(p, PIDTYPE_TGID, pid);
2545 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2546 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2547 
2548 			if (is_child_reaper(pid)) {
2549 				ns_of_pid(pid)->child_reaper = p;
2550 				p->signal->flags |= SIGNAL_UNKILLABLE;
2551 			}
2552 			p->signal->shared_pending.signal = delayed.signal;
2553 			p->signal->tty = tty_kref_get(current->signal->tty);
2554 			/*
2555 			 * Inherit has_child_subreaper flag under the same
2556 			 * tasklist_lock with adding child to the process tree
2557 			 * for propagate_has_child_subreaper optimization.
2558 			 */
2559 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2560 							 p->real_parent->signal->is_child_subreaper;
2561 			list_add_tail(&p->sibling, &p->real_parent->children);
2562 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2563 			attach_pid(p, PIDTYPE_TGID);
2564 			attach_pid(p, PIDTYPE_PGID);
2565 			attach_pid(p, PIDTYPE_SID);
2566 			__this_cpu_inc(process_counts);
2567 		} else {
2568 			current->signal->nr_threads++;
2569 			current->signal->quick_threads++;
2570 			atomic_inc(&current->signal->live);
2571 			refcount_inc(&current->signal->sigcnt);
2572 			task_join_group_stop(p);
2573 			list_add_tail_rcu(&p->thread_group,
2574 					  &p->group_leader->thread_group);
2575 			list_add_tail_rcu(&p->thread_node,
2576 					  &p->signal->thread_head);
2577 		}
2578 		attach_pid(p, PIDTYPE_PID);
2579 		nr_threads++;
2580 	}
2581 	total_forks++;
2582 	hlist_del_init(&delayed.node);
2583 	spin_unlock(&current->sighand->siglock);
2584 	syscall_tracepoint_update(p);
2585 	write_unlock_irq(&tasklist_lock);
2586 
2587 	if (pidfile)
2588 		fd_install(pidfd, pidfile);
2589 
2590 	proc_fork_connector(p);
2591 	sched_post_fork(p);
2592 	cgroup_post_fork(p, args);
2593 	perf_event_fork(p);
2594 
2595 	trace_task_newtask(p, clone_flags);
2596 	uprobe_copy_process(p, clone_flags);
2597 
2598 	copy_oom_score_adj(clone_flags, p);
2599 
2600 	return p;
2601 
2602 bad_fork_cancel_cgroup:
2603 	sched_core_free(p);
2604 	spin_unlock(&current->sighand->siglock);
2605 	write_unlock_irq(&tasklist_lock);
2606 	cgroup_cancel_fork(p, args);
2607 bad_fork_put_pidfd:
2608 	if (clone_flags & CLONE_PIDFD) {
2609 		fput(pidfile);
2610 		put_unused_fd(pidfd);
2611 	}
2612 bad_fork_free_pid:
2613 	if (pid != &init_struct_pid)
2614 		free_pid(pid);
2615 bad_fork_cleanup_thread:
2616 	exit_thread(p);
2617 bad_fork_cleanup_io:
2618 	if (p->io_context)
2619 		exit_io_context(p);
2620 bad_fork_cleanup_namespaces:
2621 	exit_task_namespaces(p);
2622 bad_fork_cleanup_mm:
2623 	if (p->mm) {
2624 		mm_clear_owner(p->mm, p);
2625 		mmput(p->mm);
2626 	}
2627 bad_fork_cleanup_signal:
2628 	if (!(clone_flags & CLONE_THREAD))
2629 		free_signal_struct(p->signal);
2630 bad_fork_cleanup_sighand:
2631 	__cleanup_sighand(p->sighand);
2632 bad_fork_cleanup_fs:
2633 	exit_fs(p); /* blocking */
2634 bad_fork_cleanup_files:
2635 	exit_files(p); /* blocking */
2636 bad_fork_cleanup_semundo:
2637 	exit_sem(p);
2638 bad_fork_cleanup_security:
2639 	security_task_free(p);
2640 bad_fork_cleanup_audit:
2641 	audit_free(p);
2642 bad_fork_cleanup_perf:
2643 	perf_event_free_task(p);
2644 bad_fork_cleanup_policy:
2645 	lockdep_free_task(p);
2646 #ifdef CONFIG_NUMA
2647 	mpol_put(p->mempolicy);
2648 #endif
2649 bad_fork_cleanup_delayacct:
2650 	delayacct_tsk_free(p);
2651 bad_fork_cleanup_count:
2652 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2653 	exit_creds(p);
2654 bad_fork_free:
2655 	WRITE_ONCE(p->__state, TASK_DEAD);
2656 	exit_task_stack_account(p);
2657 	put_task_stack(p);
2658 	delayed_free_task(p);
2659 fork_out:
2660 	spin_lock_irq(&current->sighand->siglock);
2661 	hlist_del_init(&delayed.node);
2662 	spin_unlock_irq(&current->sighand->siglock);
2663 	return ERR_PTR(retval);
2664 }
2665 
2666 static inline void init_idle_pids(struct task_struct *idle)
2667 {
2668 	enum pid_type type;
2669 
2670 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2671 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2672 		init_task_pid(idle, type, &init_struct_pid);
2673 	}
2674 }
2675 
2676 static int idle_dummy(void *dummy)
2677 {
2678 	/* This function is never called */
2679 	return 0;
2680 }
2681 
2682 struct task_struct * __init fork_idle(int cpu)
2683 {
2684 	struct task_struct *task;
2685 	struct kernel_clone_args args = {
2686 		.flags		= CLONE_VM,
2687 		.fn		= &idle_dummy,
2688 		.fn_arg		= NULL,
2689 		.kthread	= 1,
2690 		.idle		= 1,
2691 	};
2692 
2693 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2694 	if (!IS_ERR(task)) {
2695 		init_idle_pids(task);
2696 		init_idle(task, cpu);
2697 	}
2698 
2699 	return task;
2700 }
2701 
2702 /*
2703  * This is like kernel_clone(), but shaved down and tailored to just
2704  * creating io_uring workers. It returns a created task, or an error pointer.
2705  * The returned task is inactive, and the caller must fire it up through
2706  * wake_up_new_task(p). All signals are blocked in the created task.
2707  */
2708 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2709 {
2710 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2711 				CLONE_IO;
2712 	struct kernel_clone_args args = {
2713 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2714 				    CLONE_UNTRACED) & ~CSIGNAL),
2715 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2716 		.fn		= fn,
2717 		.fn_arg		= arg,
2718 		.io_thread	= 1,
2719 		.user_worker	= 1,
2720 	};
2721 
2722 	return copy_process(NULL, 0, node, &args);
2723 }
2724 
2725 /*
2726  *  Ok, this is the main fork-routine.
2727  *
2728  * It copies the process, and if successful kick-starts
2729  * it and waits for it to finish using the VM if required.
2730  *
2731  * args->exit_signal is expected to be checked for sanity by the caller.
2732  */
2733 pid_t kernel_clone(struct kernel_clone_args *args)
2734 {
2735 	u64 clone_flags = args->flags;
2736 	struct completion vfork;
2737 	struct pid *pid;
2738 	struct task_struct *p;
2739 	int trace = 0;
2740 	pid_t nr;
2741 
2742 	/*
2743 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2744 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2745 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2746 	 * field in struct clone_args and it still doesn't make sense to have
2747 	 * them both point at the same memory location. Performing this check
2748 	 * here has the advantage that we don't need to have a separate helper
2749 	 * to check for legacy clone().
2750 	 */
2751 	if ((args->flags & CLONE_PIDFD) &&
2752 	    (args->flags & CLONE_PARENT_SETTID) &&
2753 	    (args->pidfd == args->parent_tid))
2754 		return -EINVAL;
2755 
2756 	/*
2757 	 * Determine whether and which event to report to ptracer.  When
2758 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2759 	 * requested, no event is reported; otherwise, report if the event
2760 	 * for the type of forking is enabled.
2761 	 */
2762 	if (!(clone_flags & CLONE_UNTRACED)) {
2763 		if (clone_flags & CLONE_VFORK)
2764 			trace = PTRACE_EVENT_VFORK;
2765 		else if (args->exit_signal != SIGCHLD)
2766 			trace = PTRACE_EVENT_CLONE;
2767 		else
2768 			trace = PTRACE_EVENT_FORK;
2769 
2770 		if (likely(!ptrace_event_enabled(current, trace)))
2771 			trace = 0;
2772 	}
2773 
2774 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2775 	add_latent_entropy();
2776 
2777 	if (IS_ERR(p))
2778 		return PTR_ERR(p);
2779 
2780 	/*
2781 	 * Do this prior waking up the new thread - the thread pointer
2782 	 * might get invalid after that point, if the thread exits quickly.
2783 	 */
2784 	trace_sched_process_fork(current, p);
2785 
2786 	pid = get_task_pid(p, PIDTYPE_PID);
2787 	nr = pid_vnr(pid);
2788 
2789 	if (clone_flags & CLONE_PARENT_SETTID)
2790 		put_user(nr, args->parent_tid);
2791 
2792 	if (clone_flags & CLONE_VFORK) {
2793 		p->vfork_done = &vfork;
2794 		init_completion(&vfork);
2795 		get_task_struct(p);
2796 	}
2797 
2798 	if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2799 		/* lock the task to synchronize with memcg migration */
2800 		task_lock(p);
2801 		lru_gen_add_mm(p->mm);
2802 		task_unlock(p);
2803 	}
2804 
2805 	wake_up_new_task(p);
2806 
2807 	/* forking complete and child started to run, tell ptracer */
2808 	if (unlikely(trace))
2809 		ptrace_event_pid(trace, pid);
2810 
2811 	if (clone_flags & CLONE_VFORK) {
2812 		if (!wait_for_vfork_done(p, &vfork))
2813 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2814 	}
2815 
2816 	put_pid(pid);
2817 	return nr;
2818 }
2819 
2820 /*
2821  * Create a kernel thread.
2822  */
2823 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2824 		    unsigned long flags)
2825 {
2826 	struct kernel_clone_args args = {
2827 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2828 				    CLONE_UNTRACED) & ~CSIGNAL),
2829 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2830 		.fn		= fn,
2831 		.fn_arg		= arg,
2832 		.name		= name,
2833 		.kthread	= 1,
2834 	};
2835 
2836 	return kernel_clone(&args);
2837 }
2838 
2839 /*
2840  * Create a user mode thread.
2841  */
2842 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2843 {
2844 	struct kernel_clone_args args = {
2845 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2846 				    CLONE_UNTRACED) & ~CSIGNAL),
2847 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2848 		.fn		= fn,
2849 		.fn_arg		= arg,
2850 	};
2851 
2852 	return kernel_clone(&args);
2853 }
2854 
2855 #ifdef __ARCH_WANT_SYS_FORK
2856 SYSCALL_DEFINE0(fork)
2857 {
2858 #ifdef CONFIG_MMU
2859 	struct kernel_clone_args args = {
2860 		.exit_signal = SIGCHLD,
2861 	};
2862 
2863 	return kernel_clone(&args);
2864 #else
2865 	/* can not support in nommu mode */
2866 	return -EINVAL;
2867 #endif
2868 }
2869 #endif
2870 
2871 #ifdef __ARCH_WANT_SYS_VFORK
2872 SYSCALL_DEFINE0(vfork)
2873 {
2874 	struct kernel_clone_args args = {
2875 		.flags		= CLONE_VFORK | CLONE_VM,
2876 		.exit_signal	= SIGCHLD,
2877 	};
2878 
2879 	return kernel_clone(&args);
2880 }
2881 #endif
2882 
2883 #ifdef __ARCH_WANT_SYS_CLONE
2884 #ifdef CONFIG_CLONE_BACKWARDS
2885 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2886 		 int __user *, parent_tidptr,
2887 		 unsigned long, tls,
2888 		 int __user *, child_tidptr)
2889 #elif defined(CONFIG_CLONE_BACKWARDS2)
2890 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2891 		 int __user *, parent_tidptr,
2892 		 int __user *, child_tidptr,
2893 		 unsigned long, tls)
2894 #elif defined(CONFIG_CLONE_BACKWARDS3)
2895 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2896 		int, stack_size,
2897 		int __user *, parent_tidptr,
2898 		int __user *, child_tidptr,
2899 		unsigned long, tls)
2900 #else
2901 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2902 		 int __user *, parent_tidptr,
2903 		 int __user *, child_tidptr,
2904 		 unsigned long, tls)
2905 #endif
2906 {
2907 	struct kernel_clone_args args = {
2908 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2909 		.pidfd		= parent_tidptr,
2910 		.child_tid	= child_tidptr,
2911 		.parent_tid	= parent_tidptr,
2912 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2913 		.stack		= newsp,
2914 		.tls		= tls,
2915 	};
2916 
2917 	return kernel_clone(&args);
2918 }
2919 #endif
2920 
2921 #ifdef __ARCH_WANT_SYS_CLONE3
2922 
2923 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2924 					      struct clone_args __user *uargs,
2925 					      size_t usize)
2926 {
2927 	int err;
2928 	struct clone_args args;
2929 	pid_t *kset_tid = kargs->set_tid;
2930 
2931 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2932 		     CLONE_ARGS_SIZE_VER0);
2933 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2934 		     CLONE_ARGS_SIZE_VER1);
2935 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2936 		     CLONE_ARGS_SIZE_VER2);
2937 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2938 
2939 	if (unlikely(usize > PAGE_SIZE))
2940 		return -E2BIG;
2941 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2942 		return -EINVAL;
2943 
2944 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2945 	if (err)
2946 		return err;
2947 
2948 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2949 		return -EINVAL;
2950 
2951 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2952 		return -EINVAL;
2953 
2954 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2955 		return -EINVAL;
2956 
2957 	/*
2958 	 * Verify that higher 32bits of exit_signal are unset and that
2959 	 * it is a valid signal
2960 	 */
2961 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2962 		     !valid_signal(args.exit_signal)))
2963 		return -EINVAL;
2964 
2965 	if ((args.flags & CLONE_INTO_CGROUP) &&
2966 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2967 		return -EINVAL;
2968 
2969 	*kargs = (struct kernel_clone_args){
2970 		.flags		= args.flags,
2971 		.pidfd		= u64_to_user_ptr(args.pidfd),
2972 		.child_tid	= u64_to_user_ptr(args.child_tid),
2973 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2974 		.exit_signal	= args.exit_signal,
2975 		.stack		= args.stack,
2976 		.stack_size	= args.stack_size,
2977 		.tls		= args.tls,
2978 		.set_tid_size	= args.set_tid_size,
2979 		.cgroup		= args.cgroup,
2980 	};
2981 
2982 	if (args.set_tid &&
2983 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2984 			(kargs->set_tid_size * sizeof(pid_t))))
2985 		return -EFAULT;
2986 
2987 	kargs->set_tid = kset_tid;
2988 
2989 	return 0;
2990 }
2991 
2992 /**
2993  * clone3_stack_valid - check and prepare stack
2994  * @kargs: kernel clone args
2995  *
2996  * Verify that the stack arguments userspace gave us are sane.
2997  * In addition, set the stack direction for userspace since it's easy for us to
2998  * determine.
2999  */
3000 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3001 {
3002 	if (kargs->stack == 0) {
3003 		if (kargs->stack_size > 0)
3004 			return false;
3005 	} else {
3006 		if (kargs->stack_size == 0)
3007 			return false;
3008 
3009 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3010 			return false;
3011 
3012 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3013 		kargs->stack += kargs->stack_size;
3014 #endif
3015 	}
3016 
3017 	return true;
3018 }
3019 
3020 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3021 {
3022 	/* Verify that no unknown flags are passed along. */
3023 	if (kargs->flags &
3024 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3025 		return false;
3026 
3027 	/*
3028 	 * - make the CLONE_DETACHED bit reusable for clone3
3029 	 * - make the CSIGNAL bits reusable for clone3
3030 	 */
3031 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3032 		return false;
3033 
3034 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3035 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3036 		return false;
3037 
3038 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3039 	    kargs->exit_signal)
3040 		return false;
3041 
3042 	if (!clone3_stack_valid(kargs))
3043 		return false;
3044 
3045 	return true;
3046 }
3047 
3048 /**
3049  * clone3 - create a new process with specific properties
3050  * @uargs: argument structure
3051  * @size:  size of @uargs
3052  *
3053  * clone3() is the extensible successor to clone()/clone2().
3054  * It takes a struct as argument that is versioned by its size.
3055  *
3056  * Return: On success, a positive PID for the child process.
3057  *         On error, a negative errno number.
3058  */
3059 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3060 {
3061 	int err;
3062 
3063 	struct kernel_clone_args kargs;
3064 	pid_t set_tid[MAX_PID_NS_LEVEL];
3065 
3066 	kargs.set_tid = set_tid;
3067 
3068 	err = copy_clone_args_from_user(&kargs, uargs, size);
3069 	if (err)
3070 		return err;
3071 
3072 	if (!clone3_args_valid(&kargs))
3073 		return -EINVAL;
3074 
3075 	return kernel_clone(&kargs);
3076 }
3077 #endif
3078 
3079 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3080 {
3081 	struct task_struct *leader, *parent, *child;
3082 	int res;
3083 
3084 	read_lock(&tasklist_lock);
3085 	leader = top = top->group_leader;
3086 down:
3087 	for_each_thread(leader, parent) {
3088 		list_for_each_entry(child, &parent->children, sibling) {
3089 			res = visitor(child, data);
3090 			if (res) {
3091 				if (res < 0)
3092 					goto out;
3093 				leader = child;
3094 				goto down;
3095 			}
3096 up:
3097 			;
3098 		}
3099 	}
3100 
3101 	if (leader != top) {
3102 		child = leader;
3103 		parent = child->real_parent;
3104 		leader = parent->group_leader;
3105 		goto up;
3106 	}
3107 out:
3108 	read_unlock(&tasklist_lock);
3109 }
3110 
3111 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3112 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3113 #endif
3114 
3115 static void sighand_ctor(void *data)
3116 {
3117 	struct sighand_struct *sighand = data;
3118 
3119 	spin_lock_init(&sighand->siglock);
3120 	init_waitqueue_head(&sighand->signalfd_wqh);
3121 }
3122 
3123 void __init mm_cache_init(void)
3124 {
3125 	unsigned int mm_size;
3126 
3127 	/*
3128 	 * The mm_cpumask is located at the end of mm_struct, and is
3129 	 * dynamically sized based on the maximum CPU number this system
3130 	 * can have, taking hotplug into account (nr_cpu_ids).
3131 	 */
3132 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3133 
3134 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3135 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3136 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3137 			offsetof(struct mm_struct, saved_auxv),
3138 			sizeof_field(struct mm_struct, saved_auxv),
3139 			NULL);
3140 }
3141 
3142 void __init proc_caches_init(void)
3143 {
3144 	sighand_cachep = kmem_cache_create("sighand_cache",
3145 			sizeof(struct sighand_struct), 0,
3146 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3147 			SLAB_ACCOUNT, sighand_ctor);
3148 	signal_cachep = kmem_cache_create("signal_cache",
3149 			sizeof(struct signal_struct), 0,
3150 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3151 			NULL);
3152 	files_cachep = kmem_cache_create("files_cache",
3153 			sizeof(struct files_struct), 0,
3154 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3155 			NULL);
3156 	fs_cachep = kmem_cache_create("fs_cache",
3157 			sizeof(struct fs_struct), 0,
3158 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3159 			NULL);
3160 
3161 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3162 	mmap_init();
3163 	nsproxy_cache_init();
3164 }
3165 
3166 /*
3167  * Check constraints on flags passed to the unshare system call.
3168  */
3169 static int check_unshare_flags(unsigned long unshare_flags)
3170 {
3171 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3172 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3173 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3174 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3175 				CLONE_NEWTIME))
3176 		return -EINVAL;
3177 	/*
3178 	 * Not implemented, but pretend it works if there is nothing
3179 	 * to unshare.  Note that unsharing the address space or the
3180 	 * signal handlers also need to unshare the signal queues (aka
3181 	 * CLONE_THREAD).
3182 	 */
3183 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3184 		if (!thread_group_empty(current))
3185 			return -EINVAL;
3186 	}
3187 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3188 		if (refcount_read(&current->sighand->count) > 1)
3189 			return -EINVAL;
3190 	}
3191 	if (unshare_flags & CLONE_VM) {
3192 		if (!current_is_single_threaded())
3193 			return -EINVAL;
3194 	}
3195 
3196 	return 0;
3197 }
3198 
3199 /*
3200  * Unshare the filesystem structure if it is being shared
3201  */
3202 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3203 {
3204 	struct fs_struct *fs = current->fs;
3205 
3206 	if (!(unshare_flags & CLONE_FS) || !fs)
3207 		return 0;
3208 
3209 	/* don't need lock here; in the worst case we'll do useless copy */
3210 	if (fs->users == 1)
3211 		return 0;
3212 
3213 	*new_fsp = copy_fs_struct(fs);
3214 	if (!*new_fsp)
3215 		return -ENOMEM;
3216 
3217 	return 0;
3218 }
3219 
3220 /*
3221  * Unshare file descriptor table if it is being shared
3222  */
3223 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3224 	       struct files_struct **new_fdp)
3225 {
3226 	struct files_struct *fd = current->files;
3227 	int error = 0;
3228 
3229 	if ((unshare_flags & CLONE_FILES) &&
3230 	    (fd && atomic_read(&fd->count) > 1)) {
3231 		*new_fdp = dup_fd(fd, max_fds, &error);
3232 		if (!*new_fdp)
3233 			return error;
3234 	}
3235 
3236 	return 0;
3237 }
3238 
3239 /*
3240  * unshare allows a process to 'unshare' part of the process
3241  * context which was originally shared using clone.  copy_*
3242  * functions used by kernel_clone() cannot be used here directly
3243  * because they modify an inactive task_struct that is being
3244  * constructed. Here we are modifying the current, active,
3245  * task_struct.
3246  */
3247 int ksys_unshare(unsigned long unshare_flags)
3248 {
3249 	struct fs_struct *fs, *new_fs = NULL;
3250 	struct files_struct *new_fd = NULL;
3251 	struct cred *new_cred = NULL;
3252 	struct nsproxy *new_nsproxy = NULL;
3253 	int do_sysvsem = 0;
3254 	int err;
3255 
3256 	/*
3257 	 * If unsharing a user namespace must also unshare the thread group
3258 	 * and unshare the filesystem root and working directories.
3259 	 */
3260 	if (unshare_flags & CLONE_NEWUSER)
3261 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3262 	/*
3263 	 * If unsharing vm, must also unshare signal handlers.
3264 	 */
3265 	if (unshare_flags & CLONE_VM)
3266 		unshare_flags |= CLONE_SIGHAND;
3267 	/*
3268 	 * If unsharing a signal handlers, must also unshare the signal queues.
3269 	 */
3270 	if (unshare_flags & CLONE_SIGHAND)
3271 		unshare_flags |= CLONE_THREAD;
3272 	/*
3273 	 * If unsharing namespace, must also unshare filesystem information.
3274 	 */
3275 	if (unshare_flags & CLONE_NEWNS)
3276 		unshare_flags |= CLONE_FS;
3277 
3278 	err = check_unshare_flags(unshare_flags);
3279 	if (err)
3280 		goto bad_unshare_out;
3281 	/*
3282 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3283 	 * to a new ipc namespace, the semaphore arrays from the old
3284 	 * namespace are unreachable.
3285 	 */
3286 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3287 		do_sysvsem = 1;
3288 	err = unshare_fs(unshare_flags, &new_fs);
3289 	if (err)
3290 		goto bad_unshare_out;
3291 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3292 	if (err)
3293 		goto bad_unshare_cleanup_fs;
3294 	err = unshare_userns(unshare_flags, &new_cred);
3295 	if (err)
3296 		goto bad_unshare_cleanup_fd;
3297 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3298 					 new_cred, new_fs);
3299 	if (err)
3300 		goto bad_unshare_cleanup_cred;
3301 
3302 	if (new_cred) {
3303 		err = set_cred_ucounts(new_cred);
3304 		if (err)
3305 			goto bad_unshare_cleanup_cred;
3306 	}
3307 
3308 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3309 		if (do_sysvsem) {
3310 			/*
3311 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3312 			 */
3313 			exit_sem(current);
3314 		}
3315 		if (unshare_flags & CLONE_NEWIPC) {
3316 			/* Orphan segments in old ns (see sem above). */
3317 			exit_shm(current);
3318 			shm_init_task(current);
3319 		}
3320 
3321 		if (new_nsproxy)
3322 			switch_task_namespaces(current, new_nsproxy);
3323 
3324 		task_lock(current);
3325 
3326 		if (new_fs) {
3327 			fs = current->fs;
3328 			spin_lock(&fs->lock);
3329 			current->fs = new_fs;
3330 			if (--fs->users)
3331 				new_fs = NULL;
3332 			else
3333 				new_fs = fs;
3334 			spin_unlock(&fs->lock);
3335 		}
3336 
3337 		if (new_fd)
3338 			swap(current->files, new_fd);
3339 
3340 		task_unlock(current);
3341 
3342 		if (new_cred) {
3343 			/* Install the new user namespace */
3344 			commit_creds(new_cred);
3345 			new_cred = NULL;
3346 		}
3347 	}
3348 
3349 	perf_event_namespaces(current);
3350 
3351 bad_unshare_cleanup_cred:
3352 	if (new_cred)
3353 		put_cred(new_cred);
3354 bad_unshare_cleanup_fd:
3355 	if (new_fd)
3356 		put_files_struct(new_fd);
3357 
3358 bad_unshare_cleanup_fs:
3359 	if (new_fs)
3360 		free_fs_struct(new_fs);
3361 
3362 bad_unshare_out:
3363 	return err;
3364 }
3365 
3366 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3367 {
3368 	return ksys_unshare(unshare_flags);
3369 }
3370 
3371 /*
3372  *	Helper to unshare the files of the current task.
3373  *	We don't want to expose copy_files internals to
3374  *	the exec layer of the kernel.
3375  */
3376 
3377 int unshare_files(void)
3378 {
3379 	struct task_struct *task = current;
3380 	struct files_struct *old, *copy = NULL;
3381 	int error;
3382 
3383 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3384 	if (error || !copy)
3385 		return error;
3386 
3387 	old = task->files;
3388 	task_lock(task);
3389 	task->files = copy;
3390 	task_unlock(task);
3391 	put_files_struct(old);
3392 	return 0;
3393 }
3394 
3395 int sysctl_max_threads(struct ctl_table *table, int write,
3396 		       void *buffer, size_t *lenp, loff_t *ppos)
3397 {
3398 	struct ctl_table t;
3399 	int ret;
3400 	int threads = max_threads;
3401 	int min = 1;
3402 	int max = MAX_THREADS;
3403 
3404 	t = *table;
3405 	t.data = &threads;
3406 	t.extra1 = &min;
3407 	t.extra2 = &max;
3408 
3409 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3410 	if (ret || !write)
3411 		return ret;
3412 
3413 	max_threads = threads;
3414 
3415 	return 0;
3416 }
3417