1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/syscall_user_dispatch.h> 57 #include <linux/jiffies.h> 58 #include <linux/futex.h> 59 #include <linux/compat.h> 60 #include <linux/kthread.h> 61 #include <linux/task_io_accounting_ops.h> 62 #include <linux/rcupdate.h> 63 #include <linux/ptrace.h> 64 #include <linux/mount.h> 65 #include <linux/audit.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/proc_fs.h> 69 #include <linux/profile.h> 70 #include <linux/rmap.h> 71 #include <linux/ksm.h> 72 #include <linux/acct.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/tsacct_kern.h> 75 #include <linux/cn_proc.h> 76 #include <linux/freezer.h> 77 #include <linux/delayacct.h> 78 #include <linux/taskstats_kern.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 #include <linux/stackprotector.h> 101 #include <linux/user_events.h> 102 #include <linux/iommu.h> 103 #include <linux/rseq.h> 104 #include <uapi/linux/pidfd.h> 105 #include <linux/pidfs.h> 106 107 #include <asm/pgalloc.h> 108 #include <linux/uaccess.h> 109 #include <asm/mmu_context.h> 110 #include <asm/cacheflush.h> 111 #include <asm/tlbflush.h> 112 113 #include <trace/events/sched.h> 114 115 #define CREATE_TRACE_POINTS 116 #include <trace/events/task.h> 117 118 /* 119 * Minimum number of threads to boot the kernel 120 */ 121 #define MIN_THREADS 20 122 123 /* 124 * Maximum number of threads 125 */ 126 #define MAX_THREADS FUTEX_TID_MASK 127 128 /* 129 * Protected counters by write_lock_irq(&tasklist_lock) 130 */ 131 unsigned long total_forks; /* Handle normal Linux uptimes. */ 132 int nr_threads; /* The idle threads do not count.. */ 133 134 static int max_threads; /* tunable limit on nr_threads */ 135 136 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 137 138 static const char * const resident_page_types[] = { 139 NAMED_ARRAY_INDEX(MM_FILEPAGES), 140 NAMED_ARRAY_INDEX(MM_ANONPAGES), 141 NAMED_ARRAY_INDEX(MM_SWAPENTS), 142 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 143 }; 144 145 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 146 147 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 148 149 #ifdef CONFIG_PROVE_RCU 150 int lockdep_tasklist_lock_is_held(void) 151 { 152 return lockdep_is_held(&tasklist_lock); 153 } 154 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 155 #endif /* #ifdef CONFIG_PROVE_RCU */ 156 157 int nr_processes(void) 158 { 159 int cpu; 160 int total = 0; 161 162 for_each_possible_cpu(cpu) 163 total += per_cpu(process_counts, cpu); 164 165 return total; 166 } 167 168 void __weak arch_release_task_struct(struct task_struct *tsk) 169 { 170 } 171 172 static struct kmem_cache *task_struct_cachep; 173 174 static inline struct task_struct *alloc_task_struct_node(int node) 175 { 176 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 177 } 178 179 static inline void free_task_struct(struct task_struct *tsk) 180 { 181 kmem_cache_free(task_struct_cachep, tsk); 182 } 183 184 /* 185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 186 * kmemcache based allocator. 187 */ 188 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 189 190 # ifdef CONFIG_VMAP_STACK 191 /* 192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 193 * flush. Try to minimize the number of calls by caching stacks. 194 */ 195 #define NR_CACHED_STACKS 2 196 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 197 198 struct vm_stack { 199 struct rcu_head rcu; 200 struct vm_struct *stack_vm_area; 201 }; 202 203 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 204 { 205 unsigned int i; 206 207 for (i = 0; i < NR_CACHED_STACKS; i++) { 208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 209 continue; 210 return true; 211 } 212 return false; 213 } 214 215 static void thread_stack_free_rcu(struct rcu_head *rh) 216 { 217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 218 219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 220 return; 221 222 vfree(vm_stack); 223 } 224 225 static void thread_stack_delayed_free(struct task_struct *tsk) 226 { 227 struct vm_stack *vm_stack = tsk->stack; 228 229 vm_stack->stack_vm_area = tsk->stack_vm_area; 230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 231 } 232 233 static int free_vm_stack_cache(unsigned int cpu) 234 { 235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 236 int i; 237 238 for (i = 0; i < NR_CACHED_STACKS; i++) { 239 struct vm_struct *vm_stack = cached_vm_stacks[i]; 240 241 if (!vm_stack) 242 continue; 243 244 vfree(vm_stack->addr); 245 cached_vm_stacks[i] = NULL; 246 } 247 248 return 0; 249 } 250 251 static int memcg_charge_kernel_stack(struct vm_struct *vm) 252 { 253 int i; 254 int ret; 255 int nr_charged = 0; 256 257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 258 259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 261 if (ret) 262 goto err; 263 nr_charged++; 264 } 265 return 0; 266 err: 267 for (i = 0; i < nr_charged; i++) 268 memcg_kmem_uncharge_page(vm->pages[i], 0); 269 return ret; 270 } 271 272 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 273 { 274 struct vm_struct *vm; 275 void *stack; 276 int i; 277 278 for (i = 0; i < NR_CACHED_STACKS; i++) { 279 struct vm_struct *s; 280 281 s = this_cpu_xchg(cached_stacks[i], NULL); 282 283 if (!s) 284 continue; 285 286 /* Reset stack metadata. */ 287 kasan_unpoison_range(s->addr, THREAD_SIZE); 288 289 stack = kasan_reset_tag(s->addr); 290 291 /* Clear stale pointers from reused stack. */ 292 memset(stack, 0, THREAD_SIZE); 293 294 if (memcg_charge_kernel_stack(s)) { 295 vfree(s->addr); 296 return -ENOMEM; 297 } 298 299 tsk->stack_vm_area = s; 300 tsk->stack = stack; 301 return 0; 302 } 303 304 /* 305 * Allocated stacks are cached and later reused by new threads, 306 * so memcg accounting is performed manually on assigning/releasing 307 * stacks to tasks. Drop __GFP_ACCOUNT. 308 */ 309 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 310 VMALLOC_START, VMALLOC_END, 311 THREADINFO_GFP & ~__GFP_ACCOUNT, 312 PAGE_KERNEL, 313 0, node, __builtin_return_address(0)); 314 if (!stack) 315 return -ENOMEM; 316 317 vm = find_vm_area(stack); 318 if (memcg_charge_kernel_stack(vm)) { 319 vfree(stack); 320 return -ENOMEM; 321 } 322 /* 323 * We can't call find_vm_area() in interrupt context, and 324 * free_thread_stack() can be called in interrupt context, 325 * so cache the vm_struct. 326 */ 327 tsk->stack_vm_area = vm; 328 stack = kasan_reset_tag(stack); 329 tsk->stack = stack; 330 return 0; 331 } 332 333 static void free_thread_stack(struct task_struct *tsk) 334 { 335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 336 thread_stack_delayed_free(tsk); 337 338 tsk->stack = NULL; 339 tsk->stack_vm_area = NULL; 340 } 341 342 # else /* !CONFIG_VMAP_STACK */ 343 344 static void thread_stack_free_rcu(struct rcu_head *rh) 345 { 346 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 347 } 348 349 static void thread_stack_delayed_free(struct task_struct *tsk) 350 { 351 struct rcu_head *rh = tsk->stack; 352 353 call_rcu(rh, thread_stack_free_rcu); 354 } 355 356 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 357 { 358 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 359 THREAD_SIZE_ORDER); 360 361 if (likely(page)) { 362 tsk->stack = kasan_reset_tag(page_address(page)); 363 return 0; 364 } 365 return -ENOMEM; 366 } 367 368 static void free_thread_stack(struct task_struct *tsk) 369 { 370 thread_stack_delayed_free(tsk); 371 tsk->stack = NULL; 372 } 373 374 # endif /* CONFIG_VMAP_STACK */ 375 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 376 377 static struct kmem_cache *thread_stack_cache; 378 379 static void thread_stack_free_rcu(struct rcu_head *rh) 380 { 381 kmem_cache_free(thread_stack_cache, rh); 382 } 383 384 static void thread_stack_delayed_free(struct task_struct *tsk) 385 { 386 struct rcu_head *rh = tsk->stack; 387 388 call_rcu(rh, thread_stack_free_rcu); 389 } 390 391 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 392 { 393 unsigned long *stack; 394 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 395 stack = kasan_reset_tag(stack); 396 tsk->stack = stack; 397 return stack ? 0 : -ENOMEM; 398 } 399 400 static void free_thread_stack(struct task_struct *tsk) 401 { 402 thread_stack_delayed_free(tsk); 403 tsk->stack = NULL; 404 } 405 406 void thread_stack_cache_init(void) 407 { 408 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 409 THREAD_SIZE, THREAD_SIZE, 0, 0, 410 THREAD_SIZE, NULL); 411 BUG_ON(thread_stack_cache == NULL); 412 } 413 414 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 415 416 /* SLAB cache for signal_struct structures (tsk->signal) */ 417 static struct kmem_cache *signal_cachep; 418 419 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 420 struct kmem_cache *sighand_cachep; 421 422 /* SLAB cache for files_struct structures (tsk->files) */ 423 struct kmem_cache *files_cachep; 424 425 /* SLAB cache for fs_struct structures (tsk->fs) */ 426 struct kmem_cache *fs_cachep; 427 428 /* SLAB cache for vm_area_struct structures */ 429 static struct kmem_cache *vm_area_cachep; 430 431 /* SLAB cache for mm_struct structures (tsk->mm) */ 432 static struct kmem_cache *mm_cachep; 433 434 #ifdef CONFIG_PER_VMA_LOCK 435 436 /* SLAB cache for vm_area_struct.lock */ 437 static struct kmem_cache *vma_lock_cachep; 438 439 static bool vma_lock_alloc(struct vm_area_struct *vma) 440 { 441 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL); 442 if (!vma->vm_lock) 443 return false; 444 445 init_rwsem(&vma->vm_lock->lock); 446 vma->vm_lock_seq = -1; 447 448 return true; 449 } 450 451 static inline void vma_lock_free(struct vm_area_struct *vma) 452 { 453 kmem_cache_free(vma_lock_cachep, vma->vm_lock); 454 } 455 456 #else /* CONFIG_PER_VMA_LOCK */ 457 458 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; } 459 static inline void vma_lock_free(struct vm_area_struct *vma) {} 460 461 #endif /* CONFIG_PER_VMA_LOCK */ 462 463 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 464 { 465 struct vm_area_struct *vma; 466 467 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 468 if (!vma) 469 return NULL; 470 471 vma_init(vma, mm); 472 if (!vma_lock_alloc(vma)) { 473 kmem_cache_free(vm_area_cachep, vma); 474 return NULL; 475 } 476 477 return vma; 478 } 479 480 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 481 { 482 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 483 484 if (!new) 485 return NULL; 486 487 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 488 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 489 /* 490 * orig->shared.rb may be modified concurrently, but the clone 491 * will be reinitialized. 492 */ 493 data_race(memcpy(new, orig, sizeof(*new))); 494 if (!vma_lock_alloc(new)) { 495 kmem_cache_free(vm_area_cachep, new); 496 return NULL; 497 } 498 INIT_LIST_HEAD(&new->anon_vma_chain); 499 vma_numab_state_init(new); 500 dup_anon_vma_name(orig, new); 501 502 return new; 503 } 504 505 void __vm_area_free(struct vm_area_struct *vma) 506 { 507 vma_numab_state_free(vma); 508 free_anon_vma_name(vma); 509 vma_lock_free(vma); 510 kmem_cache_free(vm_area_cachep, vma); 511 } 512 513 #ifdef CONFIG_PER_VMA_LOCK 514 static void vm_area_free_rcu_cb(struct rcu_head *head) 515 { 516 struct vm_area_struct *vma = container_of(head, struct vm_area_struct, 517 vm_rcu); 518 519 /* The vma should not be locked while being destroyed. */ 520 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma); 521 __vm_area_free(vma); 522 } 523 #endif 524 525 void vm_area_free(struct vm_area_struct *vma) 526 { 527 #ifdef CONFIG_PER_VMA_LOCK 528 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb); 529 #else 530 __vm_area_free(vma); 531 #endif 532 } 533 534 static void account_kernel_stack(struct task_struct *tsk, int account) 535 { 536 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 537 struct vm_struct *vm = task_stack_vm_area(tsk); 538 int i; 539 540 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 541 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 542 account * (PAGE_SIZE / 1024)); 543 } else { 544 void *stack = task_stack_page(tsk); 545 546 /* All stack pages are in the same node. */ 547 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 548 account * (THREAD_SIZE / 1024)); 549 } 550 } 551 552 void exit_task_stack_account(struct task_struct *tsk) 553 { 554 account_kernel_stack(tsk, -1); 555 556 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 557 struct vm_struct *vm; 558 int i; 559 560 vm = task_stack_vm_area(tsk); 561 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 562 memcg_kmem_uncharge_page(vm->pages[i], 0); 563 } 564 } 565 566 static void release_task_stack(struct task_struct *tsk) 567 { 568 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 569 return; /* Better to leak the stack than to free prematurely */ 570 571 free_thread_stack(tsk); 572 } 573 574 #ifdef CONFIG_THREAD_INFO_IN_TASK 575 void put_task_stack(struct task_struct *tsk) 576 { 577 if (refcount_dec_and_test(&tsk->stack_refcount)) 578 release_task_stack(tsk); 579 } 580 #endif 581 582 void free_task(struct task_struct *tsk) 583 { 584 #ifdef CONFIG_SECCOMP 585 WARN_ON_ONCE(tsk->seccomp.filter); 586 #endif 587 release_user_cpus_ptr(tsk); 588 scs_release(tsk); 589 590 #ifndef CONFIG_THREAD_INFO_IN_TASK 591 /* 592 * The task is finally done with both the stack and thread_info, 593 * so free both. 594 */ 595 release_task_stack(tsk); 596 #else 597 /* 598 * If the task had a separate stack allocation, it should be gone 599 * by now. 600 */ 601 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 602 #endif 603 rt_mutex_debug_task_free(tsk); 604 ftrace_graph_exit_task(tsk); 605 arch_release_task_struct(tsk); 606 if (tsk->flags & PF_KTHREAD) 607 free_kthread_struct(tsk); 608 bpf_task_storage_free(tsk); 609 free_task_struct(tsk); 610 } 611 EXPORT_SYMBOL(free_task); 612 613 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 614 { 615 struct file *exe_file; 616 617 exe_file = get_mm_exe_file(oldmm); 618 RCU_INIT_POINTER(mm->exe_file, exe_file); 619 /* 620 * We depend on the oldmm having properly denied write access to the 621 * exe_file already. 622 */ 623 if (exe_file && deny_write_access(exe_file)) 624 pr_warn_once("deny_write_access() failed in %s\n", __func__); 625 } 626 627 #ifdef CONFIG_MMU 628 static __latent_entropy int dup_mmap(struct mm_struct *mm, 629 struct mm_struct *oldmm) 630 { 631 struct vm_area_struct *mpnt, *tmp; 632 int retval; 633 unsigned long charge = 0; 634 LIST_HEAD(uf); 635 VMA_ITERATOR(vmi, mm, 0); 636 637 uprobe_start_dup_mmap(); 638 if (mmap_write_lock_killable(oldmm)) { 639 retval = -EINTR; 640 goto fail_uprobe_end; 641 } 642 flush_cache_dup_mm(oldmm); 643 uprobe_dup_mmap(oldmm, mm); 644 /* 645 * Not linked in yet - no deadlock potential: 646 */ 647 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 648 649 /* No ordering required: file already has been exposed. */ 650 dup_mm_exe_file(mm, oldmm); 651 652 mm->total_vm = oldmm->total_vm; 653 mm->data_vm = oldmm->data_vm; 654 mm->exec_vm = oldmm->exec_vm; 655 mm->stack_vm = oldmm->stack_vm; 656 657 retval = ksm_fork(mm, oldmm); 658 if (retval) 659 goto out; 660 khugepaged_fork(mm, oldmm); 661 662 /* Use __mt_dup() to efficiently build an identical maple tree. */ 663 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL); 664 if (unlikely(retval)) 665 goto out; 666 667 mt_clear_in_rcu(vmi.mas.tree); 668 for_each_vma(vmi, mpnt) { 669 struct file *file; 670 671 vma_start_write(mpnt); 672 if (mpnt->vm_flags & VM_DONTCOPY) { 673 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start, 674 mpnt->vm_end, GFP_KERNEL); 675 if (retval) 676 goto loop_out; 677 678 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 679 continue; 680 } 681 charge = 0; 682 /* 683 * Don't duplicate many vmas if we've been oom-killed (for 684 * example) 685 */ 686 if (fatal_signal_pending(current)) { 687 retval = -EINTR; 688 goto loop_out; 689 } 690 if (mpnt->vm_flags & VM_ACCOUNT) { 691 unsigned long len = vma_pages(mpnt); 692 693 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 694 goto fail_nomem; 695 charge = len; 696 } 697 tmp = vm_area_dup(mpnt); 698 if (!tmp) 699 goto fail_nomem; 700 retval = vma_dup_policy(mpnt, tmp); 701 if (retval) 702 goto fail_nomem_policy; 703 tmp->vm_mm = mm; 704 retval = dup_userfaultfd(tmp, &uf); 705 if (retval) 706 goto fail_nomem_anon_vma_fork; 707 if (tmp->vm_flags & VM_WIPEONFORK) { 708 /* 709 * VM_WIPEONFORK gets a clean slate in the child. 710 * Don't prepare anon_vma until fault since we don't 711 * copy page for current vma. 712 */ 713 tmp->anon_vma = NULL; 714 } else if (anon_vma_fork(tmp, mpnt)) 715 goto fail_nomem_anon_vma_fork; 716 vm_flags_clear(tmp, VM_LOCKED_MASK); 717 /* 718 * Copy/update hugetlb private vma information. 719 */ 720 if (is_vm_hugetlb_page(tmp)) 721 hugetlb_dup_vma_private(tmp); 722 723 /* 724 * Link the vma into the MT. After using __mt_dup(), memory 725 * allocation is not necessary here, so it cannot fail. 726 */ 727 vma_iter_bulk_store(&vmi, tmp); 728 729 mm->map_count++; 730 731 if (tmp->vm_ops && tmp->vm_ops->open) 732 tmp->vm_ops->open(tmp); 733 734 file = tmp->vm_file; 735 if (file) { 736 struct address_space *mapping = file->f_mapping; 737 738 get_file(file); 739 i_mmap_lock_write(mapping); 740 if (vma_is_shared_maywrite(tmp)) 741 mapping_allow_writable(mapping); 742 flush_dcache_mmap_lock(mapping); 743 /* insert tmp into the share list, just after mpnt */ 744 vma_interval_tree_insert_after(tmp, mpnt, 745 &mapping->i_mmap); 746 flush_dcache_mmap_unlock(mapping); 747 i_mmap_unlock_write(mapping); 748 } 749 750 if (!(tmp->vm_flags & VM_WIPEONFORK)) 751 retval = copy_page_range(tmp, mpnt); 752 753 if (retval) { 754 mpnt = vma_next(&vmi); 755 goto loop_out; 756 } 757 } 758 /* a new mm has just been created */ 759 retval = arch_dup_mmap(oldmm, mm); 760 loop_out: 761 vma_iter_free(&vmi); 762 if (!retval) { 763 mt_set_in_rcu(vmi.mas.tree); 764 } else if (mpnt) { 765 /* 766 * The entire maple tree has already been duplicated. If the 767 * mmap duplication fails, mark the failure point with 768 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered, 769 * stop releasing VMAs that have not been duplicated after this 770 * point. 771 */ 772 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1); 773 mas_store(&vmi.mas, XA_ZERO_ENTRY); 774 } 775 out: 776 mmap_write_unlock(mm); 777 flush_tlb_mm(oldmm); 778 mmap_write_unlock(oldmm); 779 dup_userfaultfd_complete(&uf); 780 fail_uprobe_end: 781 uprobe_end_dup_mmap(); 782 return retval; 783 784 fail_nomem_anon_vma_fork: 785 mpol_put(vma_policy(tmp)); 786 fail_nomem_policy: 787 vm_area_free(tmp); 788 fail_nomem: 789 retval = -ENOMEM; 790 vm_unacct_memory(charge); 791 goto loop_out; 792 } 793 794 static inline int mm_alloc_pgd(struct mm_struct *mm) 795 { 796 mm->pgd = pgd_alloc(mm); 797 if (unlikely(!mm->pgd)) 798 return -ENOMEM; 799 return 0; 800 } 801 802 static inline void mm_free_pgd(struct mm_struct *mm) 803 { 804 pgd_free(mm, mm->pgd); 805 } 806 #else 807 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 808 { 809 mmap_write_lock(oldmm); 810 dup_mm_exe_file(mm, oldmm); 811 mmap_write_unlock(oldmm); 812 return 0; 813 } 814 #define mm_alloc_pgd(mm) (0) 815 #define mm_free_pgd(mm) 816 #endif /* CONFIG_MMU */ 817 818 static void check_mm(struct mm_struct *mm) 819 { 820 int i; 821 822 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 823 "Please make sure 'struct resident_page_types[]' is updated as well"); 824 825 for (i = 0; i < NR_MM_COUNTERS; i++) { 826 long x = percpu_counter_sum(&mm->rss_stat[i]); 827 828 if (unlikely(x)) 829 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 830 mm, resident_page_types[i], x); 831 } 832 833 if (mm_pgtables_bytes(mm)) 834 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 835 mm_pgtables_bytes(mm)); 836 837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 838 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 839 #endif 840 } 841 842 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 843 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 844 845 static void do_check_lazy_tlb(void *arg) 846 { 847 struct mm_struct *mm = arg; 848 849 WARN_ON_ONCE(current->active_mm == mm); 850 } 851 852 static void do_shoot_lazy_tlb(void *arg) 853 { 854 struct mm_struct *mm = arg; 855 856 if (current->active_mm == mm) { 857 WARN_ON_ONCE(current->mm); 858 current->active_mm = &init_mm; 859 switch_mm(mm, &init_mm, current); 860 } 861 } 862 863 static void cleanup_lazy_tlbs(struct mm_struct *mm) 864 { 865 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 866 /* 867 * In this case, lazy tlb mms are refounted and would not reach 868 * __mmdrop until all CPUs have switched away and mmdrop()ed. 869 */ 870 return; 871 } 872 873 /* 874 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 875 * requires lazy mm users to switch to another mm when the refcount 876 * drops to zero, before the mm is freed. This requires IPIs here to 877 * switch kernel threads to init_mm. 878 * 879 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 880 * switch with the final userspace teardown TLB flush which leaves the 881 * mm lazy on this CPU but no others, reducing the need for additional 882 * IPIs here. There are cases where a final IPI is still required here, 883 * such as the final mmdrop being performed on a different CPU than the 884 * one exiting, or kernel threads using the mm when userspace exits. 885 * 886 * IPI overheads have not found to be expensive, but they could be 887 * reduced in a number of possible ways, for example (roughly 888 * increasing order of complexity): 889 * - The last lazy reference created by exit_mm() could instead switch 890 * to init_mm, however it's probable this will run on the same CPU 891 * immediately afterwards, so this may not reduce IPIs much. 892 * - A batch of mms requiring IPIs could be gathered and freed at once. 893 * - CPUs store active_mm where it can be remotely checked without a 894 * lock, to filter out false-positives in the cpumask. 895 * - After mm_users or mm_count reaches zero, switching away from the 896 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 897 * with some batching or delaying of the final IPIs. 898 * - A delayed freeing and RCU-like quiescing sequence based on mm 899 * switching to avoid IPIs completely. 900 */ 901 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 902 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 903 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 904 } 905 906 /* 907 * Called when the last reference to the mm 908 * is dropped: either by a lazy thread or by 909 * mmput. Free the page directory and the mm. 910 */ 911 void __mmdrop(struct mm_struct *mm) 912 { 913 BUG_ON(mm == &init_mm); 914 WARN_ON_ONCE(mm == current->mm); 915 916 /* Ensure no CPUs are using this as their lazy tlb mm */ 917 cleanup_lazy_tlbs(mm); 918 919 WARN_ON_ONCE(mm == current->active_mm); 920 mm_free_pgd(mm); 921 destroy_context(mm); 922 mmu_notifier_subscriptions_destroy(mm); 923 check_mm(mm); 924 put_user_ns(mm->user_ns); 925 mm_pasid_drop(mm); 926 mm_destroy_cid(mm); 927 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 928 929 free_mm(mm); 930 } 931 EXPORT_SYMBOL_GPL(__mmdrop); 932 933 static void mmdrop_async_fn(struct work_struct *work) 934 { 935 struct mm_struct *mm; 936 937 mm = container_of(work, struct mm_struct, async_put_work); 938 __mmdrop(mm); 939 } 940 941 static void mmdrop_async(struct mm_struct *mm) 942 { 943 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 944 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 945 schedule_work(&mm->async_put_work); 946 } 947 } 948 949 static inline void free_signal_struct(struct signal_struct *sig) 950 { 951 taskstats_tgid_free(sig); 952 sched_autogroup_exit(sig); 953 /* 954 * __mmdrop is not safe to call from softirq context on x86 due to 955 * pgd_dtor so postpone it to the async context 956 */ 957 if (sig->oom_mm) 958 mmdrop_async(sig->oom_mm); 959 kmem_cache_free(signal_cachep, sig); 960 } 961 962 static inline void put_signal_struct(struct signal_struct *sig) 963 { 964 if (refcount_dec_and_test(&sig->sigcnt)) 965 free_signal_struct(sig); 966 } 967 968 void __put_task_struct(struct task_struct *tsk) 969 { 970 WARN_ON(!tsk->exit_state); 971 WARN_ON(refcount_read(&tsk->usage)); 972 WARN_ON(tsk == current); 973 974 io_uring_free(tsk); 975 cgroup_free(tsk); 976 task_numa_free(tsk, true); 977 security_task_free(tsk); 978 exit_creds(tsk); 979 delayacct_tsk_free(tsk); 980 put_signal_struct(tsk->signal); 981 sched_core_free(tsk); 982 free_task(tsk); 983 } 984 EXPORT_SYMBOL_GPL(__put_task_struct); 985 986 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 987 { 988 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 989 990 __put_task_struct(task); 991 } 992 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 993 994 void __init __weak arch_task_cache_init(void) { } 995 996 /* 997 * set_max_threads 998 */ 999 static void set_max_threads(unsigned int max_threads_suggested) 1000 { 1001 u64 threads; 1002 unsigned long nr_pages = totalram_pages(); 1003 1004 /* 1005 * The number of threads shall be limited such that the thread 1006 * structures may only consume a small part of the available memory. 1007 */ 1008 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 1009 threads = MAX_THREADS; 1010 else 1011 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 1012 (u64) THREAD_SIZE * 8UL); 1013 1014 if (threads > max_threads_suggested) 1015 threads = max_threads_suggested; 1016 1017 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 1018 } 1019 1020 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 1021 /* Initialized by the architecture: */ 1022 int arch_task_struct_size __read_mostly; 1023 #endif 1024 1025 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 1026 { 1027 /* Fetch thread_struct whitelist for the architecture. */ 1028 arch_thread_struct_whitelist(offset, size); 1029 1030 /* 1031 * Handle zero-sized whitelist or empty thread_struct, otherwise 1032 * adjust offset to position of thread_struct in task_struct. 1033 */ 1034 if (unlikely(*size == 0)) 1035 *offset = 0; 1036 else 1037 *offset += offsetof(struct task_struct, thread); 1038 } 1039 1040 void __init fork_init(void) 1041 { 1042 int i; 1043 #ifndef ARCH_MIN_TASKALIGN 1044 #define ARCH_MIN_TASKALIGN 0 1045 #endif 1046 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 1047 unsigned long useroffset, usersize; 1048 1049 /* create a slab on which task_structs can be allocated */ 1050 task_struct_whitelist(&useroffset, &usersize); 1051 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 1052 arch_task_struct_size, align, 1053 SLAB_PANIC|SLAB_ACCOUNT, 1054 useroffset, usersize, NULL); 1055 1056 /* do the arch specific task caches init */ 1057 arch_task_cache_init(); 1058 1059 set_max_threads(MAX_THREADS); 1060 1061 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 1062 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 1063 init_task.signal->rlim[RLIMIT_SIGPENDING] = 1064 init_task.signal->rlim[RLIMIT_NPROC]; 1065 1066 for (i = 0; i < UCOUNT_COUNTS; i++) 1067 init_user_ns.ucount_max[i] = max_threads/2; 1068 1069 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 1070 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 1071 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 1073 1074 #ifdef CONFIG_VMAP_STACK 1075 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 1076 NULL, free_vm_stack_cache); 1077 #endif 1078 1079 scs_init(); 1080 1081 lockdep_init_task(&init_task); 1082 uprobes_init(); 1083 } 1084 1085 int __weak arch_dup_task_struct(struct task_struct *dst, 1086 struct task_struct *src) 1087 { 1088 *dst = *src; 1089 return 0; 1090 } 1091 1092 void set_task_stack_end_magic(struct task_struct *tsk) 1093 { 1094 unsigned long *stackend; 1095 1096 stackend = end_of_stack(tsk); 1097 *stackend = STACK_END_MAGIC; /* for overflow detection */ 1098 } 1099 1100 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 1101 { 1102 struct task_struct *tsk; 1103 int err; 1104 1105 if (node == NUMA_NO_NODE) 1106 node = tsk_fork_get_node(orig); 1107 tsk = alloc_task_struct_node(node); 1108 if (!tsk) 1109 return NULL; 1110 1111 err = arch_dup_task_struct(tsk, orig); 1112 if (err) 1113 goto free_tsk; 1114 1115 err = alloc_thread_stack_node(tsk, node); 1116 if (err) 1117 goto free_tsk; 1118 1119 #ifdef CONFIG_THREAD_INFO_IN_TASK 1120 refcount_set(&tsk->stack_refcount, 1); 1121 #endif 1122 account_kernel_stack(tsk, 1); 1123 1124 err = scs_prepare(tsk, node); 1125 if (err) 1126 goto free_stack; 1127 1128 #ifdef CONFIG_SECCOMP 1129 /* 1130 * We must handle setting up seccomp filters once we're under 1131 * the sighand lock in case orig has changed between now and 1132 * then. Until then, filter must be NULL to avoid messing up 1133 * the usage counts on the error path calling free_task. 1134 */ 1135 tsk->seccomp.filter = NULL; 1136 #endif 1137 1138 setup_thread_stack(tsk, orig); 1139 clear_user_return_notifier(tsk); 1140 clear_tsk_need_resched(tsk); 1141 set_task_stack_end_magic(tsk); 1142 clear_syscall_work_syscall_user_dispatch(tsk); 1143 1144 #ifdef CONFIG_STACKPROTECTOR 1145 tsk->stack_canary = get_random_canary(); 1146 #endif 1147 if (orig->cpus_ptr == &orig->cpus_mask) 1148 tsk->cpus_ptr = &tsk->cpus_mask; 1149 dup_user_cpus_ptr(tsk, orig, node); 1150 1151 /* 1152 * One for the user space visible state that goes away when reaped. 1153 * One for the scheduler. 1154 */ 1155 refcount_set(&tsk->rcu_users, 2); 1156 /* One for the rcu users */ 1157 refcount_set(&tsk->usage, 1); 1158 #ifdef CONFIG_BLK_DEV_IO_TRACE 1159 tsk->btrace_seq = 0; 1160 #endif 1161 tsk->splice_pipe = NULL; 1162 tsk->task_frag.page = NULL; 1163 tsk->wake_q.next = NULL; 1164 tsk->worker_private = NULL; 1165 1166 kcov_task_init(tsk); 1167 kmsan_task_create(tsk); 1168 kmap_local_fork(tsk); 1169 1170 #ifdef CONFIG_FAULT_INJECTION 1171 tsk->fail_nth = 0; 1172 #endif 1173 1174 #ifdef CONFIG_BLK_CGROUP 1175 tsk->throttle_disk = NULL; 1176 tsk->use_memdelay = 0; 1177 #endif 1178 1179 #ifdef CONFIG_ARCH_HAS_CPU_PASID 1180 tsk->pasid_activated = 0; 1181 #endif 1182 1183 #ifdef CONFIG_MEMCG 1184 tsk->active_memcg = NULL; 1185 #endif 1186 1187 #ifdef CONFIG_CPU_SUP_INTEL 1188 tsk->reported_split_lock = 0; 1189 #endif 1190 1191 #ifdef CONFIG_SCHED_MM_CID 1192 tsk->mm_cid = -1; 1193 tsk->last_mm_cid = -1; 1194 tsk->mm_cid_active = 0; 1195 tsk->migrate_from_cpu = -1; 1196 #endif 1197 return tsk; 1198 1199 free_stack: 1200 exit_task_stack_account(tsk); 1201 free_thread_stack(tsk); 1202 free_tsk: 1203 free_task_struct(tsk); 1204 return NULL; 1205 } 1206 1207 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1208 1209 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1210 1211 static int __init coredump_filter_setup(char *s) 1212 { 1213 default_dump_filter = 1214 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1215 MMF_DUMP_FILTER_MASK; 1216 return 1; 1217 } 1218 1219 __setup("coredump_filter=", coredump_filter_setup); 1220 1221 #include <linux/init_task.h> 1222 1223 static void mm_init_aio(struct mm_struct *mm) 1224 { 1225 #ifdef CONFIG_AIO 1226 spin_lock_init(&mm->ioctx_lock); 1227 mm->ioctx_table = NULL; 1228 #endif 1229 } 1230 1231 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1232 struct task_struct *p) 1233 { 1234 #ifdef CONFIG_MEMCG 1235 if (mm->owner == p) 1236 WRITE_ONCE(mm->owner, NULL); 1237 #endif 1238 } 1239 1240 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1241 { 1242 #ifdef CONFIG_MEMCG 1243 mm->owner = p; 1244 #endif 1245 } 1246 1247 static void mm_init_uprobes_state(struct mm_struct *mm) 1248 { 1249 #ifdef CONFIG_UPROBES 1250 mm->uprobes_state.xol_area = NULL; 1251 #endif 1252 } 1253 1254 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1255 struct user_namespace *user_ns) 1256 { 1257 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1258 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1259 atomic_set(&mm->mm_users, 1); 1260 atomic_set(&mm->mm_count, 1); 1261 seqcount_init(&mm->write_protect_seq); 1262 mmap_init_lock(mm); 1263 INIT_LIST_HEAD(&mm->mmlist); 1264 #ifdef CONFIG_PER_VMA_LOCK 1265 mm->mm_lock_seq = 0; 1266 #endif 1267 mm_pgtables_bytes_init(mm); 1268 mm->map_count = 0; 1269 mm->locked_vm = 0; 1270 atomic64_set(&mm->pinned_vm, 0); 1271 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1272 spin_lock_init(&mm->page_table_lock); 1273 spin_lock_init(&mm->arg_lock); 1274 mm_init_cpumask(mm); 1275 mm_init_aio(mm); 1276 mm_init_owner(mm, p); 1277 mm_pasid_init(mm); 1278 RCU_INIT_POINTER(mm->exe_file, NULL); 1279 mmu_notifier_subscriptions_init(mm); 1280 init_tlb_flush_pending(mm); 1281 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1282 mm->pmd_huge_pte = NULL; 1283 #endif 1284 mm_init_uprobes_state(mm); 1285 hugetlb_count_init(mm); 1286 1287 if (current->mm) { 1288 mm->flags = mmf_init_flags(current->mm->flags); 1289 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1290 } else { 1291 mm->flags = default_dump_filter; 1292 mm->def_flags = 0; 1293 } 1294 1295 if (mm_alloc_pgd(mm)) 1296 goto fail_nopgd; 1297 1298 if (init_new_context(p, mm)) 1299 goto fail_nocontext; 1300 1301 if (mm_alloc_cid(mm)) 1302 goto fail_cid; 1303 1304 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1305 NR_MM_COUNTERS)) 1306 goto fail_pcpu; 1307 1308 mm->user_ns = get_user_ns(user_ns); 1309 lru_gen_init_mm(mm); 1310 return mm; 1311 1312 fail_pcpu: 1313 mm_destroy_cid(mm); 1314 fail_cid: 1315 destroy_context(mm); 1316 fail_nocontext: 1317 mm_free_pgd(mm); 1318 fail_nopgd: 1319 free_mm(mm); 1320 return NULL; 1321 } 1322 1323 /* 1324 * Allocate and initialize an mm_struct. 1325 */ 1326 struct mm_struct *mm_alloc(void) 1327 { 1328 struct mm_struct *mm; 1329 1330 mm = allocate_mm(); 1331 if (!mm) 1332 return NULL; 1333 1334 memset(mm, 0, sizeof(*mm)); 1335 return mm_init(mm, current, current_user_ns()); 1336 } 1337 1338 static inline void __mmput(struct mm_struct *mm) 1339 { 1340 VM_BUG_ON(atomic_read(&mm->mm_users)); 1341 1342 uprobe_clear_state(mm); 1343 exit_aio(mm); 1344 ksm_exit(mm); 1345 khugepaged_exit(mm); /* must run before exit_mmap */ 1346 exit_mmap(mm); 1347 mm_put_huge_zero_page(mm); 1348 set_mm_exe_file(mm, NULL); 1349 if (!list_empty(&mm->mmlist)) { 1350 spin_lock(&mmlist_lock); 1351 list_del(&mm->mmlist); 1352 spin_unlock(&mmlist_lock); 1353 } 1354 if (mm->binfmt) 1355 module_put(mm->binfmt->module); 1356 lru_gen_del_mm(mm); 1357 mmdrop(mm); 1358 } 1359 1360 /* 1361 * Decrement the use count and release all resources for an mm. 1362 */ 1363 void mmput(struct mm_struct *mm) 1364 { 1365 might_sleep(); 1366 1367 if (atomic_dec_and_test(&mm->mm_users)) 1368 __mmput(mm); 1369 } 1370 EXPORT_SYMBOL_GPL(mmput); 1371 1372 #ifdef CONFIG_MMU 1373 static void mmput_async_fn(struct work_struct *work) 1374 { 1375 struct mm_struct *mm = container_of(work, struct mm_struct, 1376 async_put_work); 1377 1378 __mmput(mm); 1379 } 1380 1381 void mmput_async(struct mm_struct *mm) 1382 { 1383 if (atomic_dec_and_test(&mm->mm_users)) { 1384 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1385 schedule_work(&mm->async_put_work); 1386 } 1387 } 1388 EXPORT_SYMBOL_GPL(mmput_async); 1389 #endif 1390 1391 /** 1392 * set_mm_exe_file - change a reference to the mm's executable file 1393 * @mm: The mm to change. 1394 * @new_exe_file: The new file to use. 1395 * 1396 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1397 * 1398 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1399 * invocations: in mmput() nobody alive left, in execve it happens before 1400 * the new mm is made visible to anyone. 1401 * 1402 * Can only fail if new_exe_file != NULL. 1403 */ 1404 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1405 { 1406 struct file *old_exe_file; 1407 1408 /* 1409 * It is safe to dereference the exe_file without RCU as 1410 * this function is only called if nobody else can access 1411 * this mm -- see comment above for justification. 1412 */ 1413 old_exe_file = rcu_dereference_raw(mm->exe_file); 1414 1415 if (new_exe_file) { 1416 /* 1417 * We expect the caller (i.e., sys_execve) to already denied 1418 * write access, so this is unlikely to fail. 1419 */ 1420 if (unlikely(deny_write_access(new_exe_file))) 1421 return -EACCES; 1422 get_file(new_exe_file); 1423 } 1424 rcu_assign_pointer(mm->exe_file, new_exe_file); 1425 if (old_exe_file) { 1426 allow_write_access(old_exe_file); 1427 fput(old_exe_file); 1428 } 1429 return 0; 1430 } 1431 1432 /** 1433 * replace_mm_exe_file - replace a reference to the mm's executable file 1434 * @mm: The mm to change. 1435 * @new_exe_file: The new file to use. 1436 * 1437 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1438 * 1439 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1440 */ 1441 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1442 { 1443 struct vm_area_struct *vma; 1444 struct file *old_exe_file; 1445 int ret = 0; 1446 1447 /* Forbid mm->exe_file change if old file still mapped. */ 1448 old_exe_file = get_mm_exe_file(mm); 1449 if (old_exe_file) { 1450 VMA_ITERATOR(vmi, mm, 0); 1451 mmap_read_lock(mm); 1452 for_each_vma(vmi, vma) { 1453 if (!vma->vm_file) 1454 continue; 1455 if (path_equal(&vma->vm_file->f_path, 1456 &old_exe_file->f_path)) { 1457 ret = -EBUSY; 1458 break; 1459 } 1460 } 1461 mmap_read_unlock(mm); 1462 fput(old_exe_file); 1463 if (ret) 1464 return ret; 1465 } 1466 1467 ret = deny_write_access(new_exe_file); 1468 if (ret) 1469 return -EACCES; 1470 get_file(new_exe_file); 1471 1472 /* set the new file */ 1473 mmap_write_lock(mm); 1474 old_exe_file = rcu_dereference_raw(mm->exe_file); 1475 rcu_assign_pointer(mm->exe_file, new_exe_file); 1476 mmap_write_unlock(mm); 1477 1478 if (old_exe_file) { 1479 allow_write_access(old_exe_file); 1480 fput(old_exe_file); 1481 } 1482 return 0; 1483 } 1484 1485 /** 1486 * get_mm_exe_file - acquire a reference to the mm's executable file 1487 * @mm: The mm of interest. 1488 * 1489 * Returns %NULL if mm has no associated executable file. 1490 * User must release file via fput(). 1491 */ 1492 struct file *get_mm_exe_file(struct mm_struct *mm) 1493 { 1494 struct file *exe_file; 1495 1496 rcu_read_lock(); 1497 exe_file = get_file_rcu(&mm->exe_file); 1498 rcu_read_unlock(); 1499 return exe_file; 1500 } 1501 1502 /** 1503 * get_task_exe_file - acquire a reference to the task's executable file 1504 * @task: The task. 1505 * 1506 * Returns %NULL if task's mm (if any) has no associated executable file or 1507 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1508 * User must release file via fput(). 1509 */ 1510 struct file *get_task_exe_file(struct task_struct *task) 1511 { 1512 struct file *exe_file = NULL; 1513 struct mm_struct *mm; 1514 1515 task_lock(task); 1516 mm = task->mm; 1517 if (mm) { 1518 if (!(task->flags & PF_KTHREAD)) 1519 exe_file = get_mm_exe_file(mm); 1520 } 1521 task_unlock(task); 1522 return exe_file; 1523 } 1524 1525 /** 1526 * get_task_mm - acquire a reference to the task's mm 1527 * @task: The task. 1528 * 1529 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1530 * this kernel workthread has transiently adopted a user mm with use_mm, 1531 * to do its AIO) is not set and if so returns a reference to it, after 1532 * bumping up the use count. User must release the mm via mmput() 1533 * after use. Typically used by /proc and ptrace. 1534 */ 1535 struct mm_struct *get_task_mm(struct task_struct *task) 1536 { 1537 struct mm_struct *mm; 1538 1539 task_lock(task); 1540 mm = task->mm; 1541 if (mm) { 1542 if (task->flags & PF_KTHREAD) 1543 mm = NULL; 1544 else 1545 mmget(mm); 1546 } 1547 task_unlock(task); 1548 return mm; 1549 } 1550 EXPORT_SYMBOL_GPL(get_task_mm); 1551 1552 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1553 { 1554 struct mm_struct *mm; 1555 int err; 1556 1557 err = down_read_killable(&task->signal->exec_update_lock); 1558 if (err) 1559 return ERR_PTR(err); 1560 1561 mm = get_task_mm(task); 1562 if (mm && mm != current->mm && 1563 !ptrace_may_access(task, mode)) { 1564 mmput(mm); 1565 mm = ERR_PTR(-EACCES); 1566 } 1567 up_read(&task->signal->exec_update_lock); 1568 1569 return mm; 1570 } 1571 1572 static void complete_vfork_done(struct task_struct *tsk) 1573 { 1574 struct completion *vfork; 1575 1576 task_lock(tsk); 1577 vfork = tsk->vfork_done; 1578 if (likely(vfork)) { 1579 tsk->vfork_done = NULL; 1580 complete(vfork); 1581 } 1582 task_unlock(tsk); 1583 } 1584 1585 static int wait_for_vfork_done(struct task_struct *child, 1586 struct completion *vfork) 1587 { 1588 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1589 int killed; 1590 1591 cgroup_enter_frozen(); 1592 killed = wait_for_completion_state(vfork, state); 1593 cgroup_leave_frozen(false); 1594 1595 if (killed) { 1596 task_lock(child); 1597 child->vfork_done = NULL; 1598 task_unlock(child); 1599 } 1600 1601 put_task_struct(child); 1602 return killed; 1603 } 1604 1605 /* Please note the differences between mmput and mm_release. 1606 * mmput is called whenever we stop holding onto a mm_struct, 1607 * error success whatever. 1608 * 1609 * mm_release is called after a mm_struct has been removed 1610 * from the current process. 1611 * 1612 * This difference is important for error handling, when we 1613 * only half set up a mm_struct for a new process and need to restore 1614 * the old one. Because we mmput the new mm_struct before 1615 * restoring the old one. . . 1616 * Eric Biederman 10 January 1998 1617 */ 1618 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1619 { 1620 uprobe_free_utask(tsk); 1621 1622 /* Get rid of any cached register state */ 1623 deactivate_mm(tsk, mm); 1624 1625 /* 1626 * Signal userspace if we're not exiting with a core dump 1627 * because we want to leave the value intact for debugging 1628 * purposes. 1629 */ 1630 if (tsk->clear_child_tid) { 1631 if (atomic_read(&mm->mm_users) > 1) { 1632 /* 1633 * We don't check the error code - if userspace has 1634 * not set up a proper pointer then tough luck. 1635 */ 1636 put_user(0, tsk->clear_child_tid); 1637 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1638 1, NULL, NULL, 0, 0); 1639 } 1640 tsk->clear_child_tid = NULL; 1641 } 1642 1643 /* 1644 * All done, finally we can wake up parent and return this mm to him. 1645 * Also kthread_stop() uses this completion for synchronization. 1646 */ 1647 if (tsk->vfork_done) 1648 complete_vfork_done(tsk); 1649 } 1650 1651 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1652 { 1653 futex_exit_release(tsk); 1654 mm_release(tsk, mm); 1655 } 1656 1657 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1658 { 1659 futex_exec_release(tsk); 1660 mm_release(tsk, mm); 1661 } 1662 1663 /** 1664 * dup_mm() - duplicates an existing mm structure 1665 * @tsk: the task_struct with which the new mm will be associated. 1666 * @oldmm: the mm to duplicate. 1667 * 1668 * Allocates a new mm structure and duplicates the provided @oldmm structure 1669 * content into it. 1670 * 1671 * Return: the duplicated mm or NULL on failure. 1672 */ 1673 static struct mm_struct *dup_mm(struct task_struct *tsk, 1674 struct mm_struct *oldmm) 1675 { 1676 struct mm_struct *mm; 1677 int err; 1678 1679 mm = allocate_mm(); 1680 if (!mm) 1681 goto fail_nomem; 1682 1683 memcpy(mm, oldmm, sizeof(*mm)); 1684 1685 if (!mm_init(mm, tsk, mm->user_ns)) 1686 goto fail_nomem; 1687 1688 err = dup_mmap(mm, oldmm); 1689 if (err) 1690 goto free_pt; 1691 1692 mm->hiwater_rss = get_mm_rss(mm); 1693 mm->hiwater_vm = mm->total_vm; 1694 1695 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1696 goto free_pt; 1697 1698 return mm; 1699 1700 free_pt: 1701 /* don't put binfmt in mmput, we haven't got module yet */ 1702 mm->binfmt = NULL; 1703 mm_init_owner(mm, NULL); 1704 mmput(mm); 1705 1706 fail_nomem: 1707 return NULL; 1708 } 1709 1710 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1711 { 1712 struct mm_struct *mm, *oldmm; 1713 1714 tsk->min_flt = tsk->maj_flt = 0; 1715 tsk->nvcsw = tsk->nivcsw = 0; 1716 #ifdef CONFIG_DETECT_HUNG_TASK 1717 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1718 tsk->last_switch_time = 0; 1719 #endif 1720 1721 tsk->mm = NULL; 1722 tsk->active_mm = NULL; 1723 1724 /* 1725 * Are we cloning a kernel thread? 1726 * 1727 * We need to steal a active VM for that.. 1728 */ 1729 oldmm = current->mm; 1730 if (!oldmm) 1731 return 0; 1732 1733 if (clone_flags & CLONE_VM) { 1734 mmget(oldmm); 1735 mm = oldmm; 1736 } else { 1737 mm = dup_mm(tsk, current->mm); 1738 if (!mm) 1739 return -ENOMEM; 1740 } 1741 1742 tsk->mm = mm; 1743 tsk->active_mm = mm; 1744 sched_mm_cid_fork(tsk); 1745 return 0; 1746 } 1747 1748 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1749 { 1750 struct fs_struct *fs = current->fs; 1751 if (clone_flags & CLONE_FS) { 1752 /* tsk->fs is already what we want */ 1753 spin_lock(&fs->lock); 1754 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1755 if (fs->in_exec) { 1756 spin_unlock(&fs->lock); 1757 return -EAGAIN; 1758 } 1759 fs->users++; 1760 spin_unlock(&fs->lock); 1761 return 0; 1762 } 1763 tsk->fs = copy_fs_struct(fs); 1764 if (!tsk->fs) 1765 return -ENOMEM; 1766 return 0; 1767 } 1768 1769 static int copy_files(unsigned long clone_flags, struct task_struct *tsk, 1770 int no_files) 1771 { 1772 struct files_struct *oldf, *newf; 1773 int error = 0; 1774 1775 /* 1776 * A background process may not have any files ... 1777 */ 1778 oldf = current->files; 1779 if (!oldf) 1780 goto out; 1781 1782 if (no_files) { 1783 tsk->files = NULL; 1784 goto out; 1785 } 1786 1787 if (clone_flags & CLONE_FILES) { 1788 atomic_inc(&oldf->count); 1789 goto out; 1790 } 1791 1792 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1793 if (!newf) 1794 goto out; 1795 1796 tsk->files = newf; 1797 error = 0; 1798 out: 1799 return error; 1800 } 1801 1802 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1803 { 1804 struct sighand_struct *sig; 1805 1806 if (clone_flags & CLONE_SIGHAND) { 1807 refcount_inc(¤t->sighand->count); 1808 return 0; 1809 } 1810 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1811 RCU_INIT_POINTER(tsk->sighand, sig); 1812 if (!sig) 1813 return -ENOMEM; 1814 1815 refcount_set(&sig->count, 1); 1816 spin_lock_irq(¤t->sighand->siglock); 1817 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1818 spin_unlock_irq(¤t->sighand->siglock); 1819 1820 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1821 if (clone_flags & CLONE_CLEAR_SIGHAND) 1822 flush_signal_handlers(tsk, 0); 1823 1824 return 0; 1825 } 1826 1827 void __cleanup_sighand(struct sighand_struct *sighand) 1828 { 1829 if (refcount_dec_and_test(&sighand->count)) { 1830 signalfd_cleanup(sighand); 1831 /* 1832 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1833 * without an RCU grace period, see __lock_task_sighand(). 1834 */ 1835 kmem_cache_free(sighand_cachep, sighand); 1836 } 1837 } 1838 1839 /* 1840 * Initialize POSIX timer handling for a thread group. 1841 */ 1842 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1843 { 1844 struct posix_cputimers *pct = &sig->posix_cputimers; 1845 unsigned long cpu_limit; 1846 1847 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1848 posix_cputimers_group_init(pct, cpu_limit); 1849 } 1850 1851 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1852 { 1853 struct signal_struct *sig; 1854 1855 if (clone_flags & CLONE_THREAD) 1856 return 0; 1857 1858 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1859 tsk->signal = sig; 1860 if (!sig) 1861 return -ENOMEM; 1862 1863 sig->nr_threads = 1; 1864 sig->quick_threads = 1; 1865 atomic_set(&sig->live, 1); 1866 refcount_set(&sig->sigcnt, 1); 1867 1868 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1869 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1870 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1871 1872 init_waitqueue_head(&sig->wait_chldexit); 1873 sig->curr_target = tsk; 1874 init_sigpending(&sig->shared_pending); 1875 INIT_HLIST_HEAD(&sig->multiprocess); 1876 seqlock_init(&sig->stats_lock); 1877 prev_cputime_init(&sig->prev_cputime); 1878 1879 #ifdef CONFIG_POSIX_TIMERS 1880 INIT_LIST_HEAD(&sig->posix_timers); 1881 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1882 sig->real_timer.function = it_real_fn; 1883 #endif 1884 1885 task_lock(current->group_leader); 1886 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1887 task_unlock(current->group_leader); 1888 1889 posix_cpu_timers_init_group(sig); 1890 1891 tty_audit_fork(sig); 1892 sched_autogroup_fork(sig); 1893 1894 sig->oom_score_adj = current->signal->oom_score_adj; 1895 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1896 1897 mutex_init(&sig->cred_guard_mutex); 1898 init_rwsem(&sig->exec_update_lock); 1899 1900 return 0; 1901 } 1902 1903 static void copy_seccomp(struct task_struct *p) 1904 { 1905 #ifdef CONFIG_SECCOMP 1906 /* 1907 * Must be called with sighand->lock held, which is common to 1908 * all threads in the group. Holding cred_guard_mutex is not 1909 * needed because this new task is not yet running and cannot 1910 * be racing exec. 1911 */ 1912 assert_spin_locked(¤t->sighand->siglock); 1913 1914 /* Ref-count the new filter user, and assign it. */ 1915 get_seccomp_filter(current); 1916 p->seccomp = current->seccomp; 1917 1918 /* 1919 * Explicitly enable no_new_privs here in case it got set 1920 * between the task_struct being duplicated and holding the 1921 * sighand lock. The seccomp state and nnp must be in sync. 1922 */ 1923 if (task_no_new_privs(current)) 1924 task_set_no_new_privs(p); 1925 1926 /* 1927 * If the parent gained a seccomp mode after copying thread 1928 * flags and between before we held the sighand lock, we have 1929 * to manually enable the seccomp thread flag here. 1930 */ 1931 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1932 set_task_syscall_work(p, SECCOMP); 1933 #endif 1934 } 1935 1936 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1937 { 1938 current->clear_child_tid = tidptr; 1939 1940 return task_pid_vnr(current); 1941 } 1942 1943 static void rt_mutex_init_task(struct task_struct *p) 1944 { 1945 raw_spin_lock_init(&p->pi_lock); 1946 #ifdef CONFIG_RT_MUTEXES 1947 p->pi_waiters = RB_ROOT_CACHED; 1948 p->pi_top_task = NULL; 1949 p->pi_blocked_on = NULL; 1950 #endif 1951 } 1952 1953 static inline void init_task_pid_links(struct task_struct *task) 1954 { 1955 enum pid_type type; 1956 1957 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1958 INIT_HLIST_NODE(&task->pid_links[type]); 1959 } 1960 1961 static inline void 1962 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1963 { 1964 if (type == PIDTYPE_PID) 1965 task->thread_pid = pid; 1966 else 1967 task->signal->pids[type] = pid; 1968 } 1969 1970 static inline void rcu_copy_process(struct task_struct *p) 1971 { 1972 #ifdef CONFIG_PREEMPT_RCU 1973 p->rcu_read_lock_nesting = 0; 1974 p->rcu_read_unlock_special.s = 0; 1975 p->rcu_blocked_node = NULL; 1976 INIT_LIST_HEAD(&p->rcu_node_entry); 1977 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1978 #ifdef CONFIG_TASKS_RCU 1979 p->rcu_tasks_holdout = false; 1980 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1981 p->rcu_tasks_idle_cpu = -1; 1982 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1983 #endif /* #ifdef CONFIG_TASKS_RCU */ 1984 #ifdef CONFIG_TASKS_TRACE_RCU 1985 p->trc_reader_nesting = 0; 1986 p->trc_reader_special.s = 0; 1987 INIT_LIST_HEAD(&p->trc_holdout_list); 1988 INIT_LIST_HEAD(&p->trc_blkd_node); 1989 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1990 } 1991 1992 /** 1993 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1994 * @pid: the struct pid for which to create a pidfd 1995 * @flags: flags of the new @pidfd 1996 * @ret: Where to return the file for the pidfd. 1997 * 1998 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1999 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2000 * 2001 * The helper doesn't perform checks on @pid which makes it useful for pidfds 2002 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and 2003 * pidfd file are prepared. 2004 * 2005 * If this function returns successfully the caller is responsible to either 2006 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2007 * order to install the pidfd into its file descriptor table or they must use 2008 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2009 * respectively. 2010 * 2011 * This function is useful when a pidfd must already be reserved but there 2012 * might still be points of failure afterwards and the caller wants to ensure 2013 * that no pidfd is leaked into its file descriptor table. 2014 * 2015 * Return: On success, a reserved pidfd is returned from the function and a new 2016 * pidfd file is returned in the last argument to the function. On 2017 * error, a negative error code is returned from the function and the 2018 * last argument remains unchanged. 2019 */ 2020 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2021 { 2022 int pidfd; 2023 struct file *pidfd_file; 2024 2025 pidfd = get_unused_fd_flags(O_CLOEXEC); 2026 if (pidfd < 0) 2027 return pidfd; 2028 2029 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR); 2030 if (IS_ERR(pidfd_file)) { 2031 put_unused_fd(pidfd); 2032 return PTR_ERR(pidfd_file); 2033 } 2034 /* 2035 * anon_inode_getfile() ignores everything outside of the 2036 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually. 2037 */ 2038 pidfd_file->f_flags |= (flags & PIDFD_THREAD); 2039 *ret = pidfd_file; 2040 return pidfd; 2041 } 2042 2043 /** 2044 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 2045 * @pid: the struct pid for which to create a pidfd 2046 * @flags: flags of the new @pidfd 2047 * @ret: Where to return the pidfd. 2048 * 2049 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 2050 * caller's file descriptor table. The pidfd is reserved but not installed yet. 2051 * 2052 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 2053 * task identified by @pid must be a thread-group leader. 2054 * 2055 * If this function returns successfully the caller is responsible to either 2056 * call fd_install() passing the returned pidfd and pidfd file as arguments in 2057 * order to install the pidfd into its file descriptor table or they must use 2058 * put_unused_fd() and fput() on the returned pidfd and pidfd file 2059 * respectively. 2060 * 2061 * This function is useful when a pidfd must already be reserved but there 2062 * might still be points of failure afterwards and the caller wants to ensure 2063 * that no pidfd is leaked into its file descriptor table. 2064 * 2065 * Return: On success, a reserved pidfd is returned from the function and a new 2066 * pidfd file is returned in the last argument to the function. On 2067 * error, a negative error code is returned from the function and the 2068 * last argument remains unchanged. 2069 */ 2070 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret) 2071 { 2072 bool thread = flags & PIDFD_THREAD; 2073 2074 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID)) 2075 return -EINVAL; 2076 2077 return __pidfd_prepare(pid, flags, ret); 2078 } 2079 2080 static void __delayed_free_task(struct rcu_head *rhp) 2081 { 2082 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 2083 2084 free_task(tsk); 2085 } 2086 2087 static __always_inline void delayed_free_task(struct task_struct *tsk) 2088 { 2089 if (IS_ENABLED(CONFIG_MEMCG)) 2090 call_rcu(&tsk->rcu, __delayed_free_task); 2091 else 2092 free_task(tsk); 2093 } 2094 2095 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 2096 { 2097 /* Skip if kernel thread */ 2098 if (!tsk->mm) 2099 return; 2100 2101 /* Skip if spawning a thread or using vfork */ 2102 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 2103 return; 2104 2105 /* We need to synchronize with __set_oom_adj */ 2106 mutex_lock(&oom_adj_mutex); 2107 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 2108 /* Update the values in case they were changed after copy_signal */ 2109 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 2110 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 2111 mutex_unlock(&oom_adj_mutex); 2112 } 2113 2114 #ifdef CONFIG_RV 2115 static void rv_task_fork(struct task_struct *p) 2116 { 2117 int i; 2118 2119 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 2120 p->rv[i].da_mon.monitoring = false; 2121 } 2122 #else 2123 #define rv_task_fork(p) do {} while (0) 2124 #endif 2125 2126 /* 2127 * This creates a new process as a copy of the old one, 2128 * but does not actually start it yet. 2129 * 2130 * It copies the registers, and all the appropriate 2131 * parts of the process environment (as per the clone 2132 * flags). The actual kick-off is left to the caller. 2133 */ 2134 __latent_entropy struct task_struct *copy_process( 2135 struct pid *pid, 2136 int trace, 2137 int node, 2138 struct kernel_clone_args *args) 2139 { 2140 int pidfd = -1, retval; 2141 struct task_struct *p; 2142 struct multiprocess_signals delayed; 2143 struct file *pidfile = NULL; 2144 const u64 clone_flags = args->flags; 2145 struct nsproxy *nsp = current->nsproxy; 2146 2147 /* 2148 * Don't allow sharing the root directory with processes in a different 2149 * namespace 2150 */ 2151 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2152 return ERR_PTR(-EINVAL); 2153 2154 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2155 return ERR_PTR(-EINVAL); 2156 2157 /* 2158 * Thread groups must share signals as well, and detached threads 2159 * can only be started up within the thread group. 2160 */ 2161 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2162 return ERR_PTR(-EINVAL); 2163 2164 /* 2165 * Shared signal handlers imply shared VM. By way of the above, 2166 * thread groups also imply shared VM. Blocking this case allows 2167 * for various simplifications in other code. 2168 */ 2169 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2170 return ERR_PTR(-EINVAL); 2171 2172 /* 2173 * Siblings of global init remain as zombies on exit since they are 2174 * not reaped by their parent (swapper). To solve this and to avoid 2175 * multi-rooted process trees, prevent global and container-inits 2176 * from creating siblings. 2177 */ 2178 if ((clone_flags & CLONE_PARENT) && 2179 current->signal->flags & SIGNAL_UNKILLABLE) 2180 return ERR_PTR(-EINVAL); 2181 2182 /* 2183 * If the new process will be in a different pid or user namespace 2184 * do not allow it to share a thread group with the forking task. 2185 */ 2186 if (clone_flags & CLONE_THREAD) { 2187 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2188 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2189 return ERR_PTR(-EINVAL); 2190 } 2191 2192 if (clone_flags & CLONE_PIDFD) { 2193 /* 2194 * - CLONE_DETACHED is blocked so that we can potentially 2195 * reuse it later for CLONE_PIDFD. 2196 */ 2197 if (clone_flags & CLONE_DETACHED) 2198 return ERR_PTR(-EINVAL); 2199 } 2200 2201 /* 2202 * Force any signals received before this point to be delivered 2203 * before the fork happens. Collect up signals sent to multiple 2204 * processes that happen during the fork and delay them so that 2205 * they appear to happen after the fork. 2206 */ 2207 sigemptyset(&delayed.signal); 2208 INIT_HLIST_NODE(&delayed.node); 2209 2210 spin_lock_irq(¤t->sighand->siglock); 2211 if (!(clone_flags & CLONE_THREAD)) 2212 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2213 recalc_sigpending(); 2214 spin_unlock_irq(¤t->sighand->siglock); 2215 retval = -ERESTARTNOINTR; 2216 if (task_sigpending(current)) 2217 goto fork_out; 2218 2219 retval = -ENOMEM; 2220 p = dup_task_struct(current, node); 2221 if (!p) 2222 goto fork_out; 2223 p->flags &= ~PF_KTHREAD; 2224 if (args->kthread) 2225 p->flags |= PF_KTHREAD; 2226 if (args->user_worker) { 2227 /* 2228 * Mark us a user worker, and block any signal that isn't 2229 * fatal or STOP 2230 */ 2231 p->flags |= PF_USER_WORKER; 2232 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2233 } 2234 if (args->io_thread) 2235 p->flags |= PF_IO_WORKER; 2236 2237 if (args->name) 2238 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2239 2240 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2241 /* 2242 * Clear TID on mm_release()? 2243 */ 2244 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2245 2246 ftrace_graph_init_task(p); 2247 2248 rt_mutex_init_task(p); 2249 2250 lockdep_assert_irqs_enabled(); 2251 #ifdef CONFIG_PROVE_LOCKING 2252 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2253 #endif 2254 retval = copy_creds(p, clone_flags); 2255 if (retval < 0) 2256 goto bad_fork_free; 2257 2258 retval = -EAGAIN; 2259 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2260 if (p->real_cred->user != INIT_USER && 2261 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2262 goto bad_fork_cleanup_count; 2263 } 2264 current->flags &= ~PF_NPROC_EXCEEDED; 2265 2266 /* 2267 * If multiple threads are within copy_process(), then this check 2268 * triggers too late. This doesn't hurt, the check is only there 2269 * to stop root fork bombs. 2270 */ 2271 retval = -EAGAIN; 2272 if (data_race(nr_threads >= max_threads)) 2273 goto bad_fork_cleanup_count; 2274 2275 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2276 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2277 p->flags |= PF_FORKNOEXEC; 2278 INIT_LIST_HEAD(&p->children); 2279 INIT_LIST_HEAD(&p->sibling); 2280 rcu_copy_process(p); 2281 p->vfork_done = NULL; 2282 spin_lock_init(&p->alloc_lock); 2283 2284 init_sigpending(&p->pending); 2285 2286 p->utime = p->stime = p->gtime = 0; 2287 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2288 p->utimescaled = p->stimescaled = 0; 2289 #endif 2290 prev_cputime_init(&p->prev_cputime); 2291 2292 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2293 seqcount_init(&p->vtime.seqcount); 2294 p->vtime.starttime = 0; 2295 p->vtime.state = VTIME_INACTIVE; 2296 #endif 2297 2298 #ifdef CONFIG_IO_URING 2299 p->io_uring = NULL; 2300 #endif 2301 2302 p->default_timer_slack_ns = current->timer_slack_ns; 2303 2304 #ifdef CONFIG_PSI 2305 p->psi_flags = 0; 2306 #endif 2307 2308 task_io_accounting_init(&p->ioac); 2309 acct_clear_integrals(p); 2310 2311 posix_cputimers_init(&p->posix_cputimers); 2312 2313 p->io_context = NULL; 2314 audit_set_context(p, NULL); 2315 cgroup_fork(p); 2316 if (args->kthread) { 2317 if (!set_kthread_struct(p)) 2318 goto bad_fork_cleanup_delayacct; 2319 } 2320 #ifdef CONFIG_NUMA 2321 p->mempolicy = mpol_dup(p->mempolicy); 2322 if (IS_ERR(p->mempolicy)) { 2323 retval = PTR_ERR(p->mempolicy); 2324 p->mempolicy = NULL; 2325 goto bad_fork_cleanup_delayacct; 2326 } 2327 #endif 2328 #ifdef CONFIG_CPUSETS 2329 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2330 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2331 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2332 #endif 2333 #ifdef CONFIG_TRACE_IRQFLAGS 2334 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2335 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2336 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2337 p->softirqs_enabled = 1; 2338 p->softirq_context = 0; 2339 #endif 2340 2341 p->pagefault_disabled = 0; 2342 2343 #ifdef CONFIG_LOCKDEP 2344 lockdep_init_task(p); 2345 #endif 2346 2347 #ifdef CONFIG_DEBUG_MUTEXES 2348 p->blocked_on = NULL; /* not blocked yet */ 2349 #endif 2350 #ifdef CONFIG_BCACHE 2351 p->sequential_io = 0; 2352 p->sequential_io_avg = 0; 2353 #endif 2354 #ifdef CONFIG_BPF_SYSCALL 2355 RCU_INIT_POINTER(p->bpf_storage, NULL); 2356 p->bpf_ctx = NULL; 2357 #endif 2358 2359 /* Perform scheduler related setup. Assign this task to a CPU. */ 2360 retval = sched_fork(clone_flags, p); 2361 if (retval) 2362 goto bad_fork_cleanup_policy; 2363 2364 retval = perf_event_init_task(p, clone_flags); 2365 if (retval) 2366 goto bad_fork_cleanup_policy; 2367 retval = audit_alloc(p); 2368 if (retval) 2369 goto bad_fork_cleanup_perf; 2370 /* copy all the process information */ 2371 shm_init_task(p); 2372 retval = security_task_alloc(p, clone_flags); 2373 if (retval) 2374 goto bad_fork_cleanup_audit; 2375 retval = copy_semundo(clone_flags, p); 2376 if (retval) 2377 goto bad_fork_cleanup_security; 2378 retval = copy_files(clone_flags, p, args->no_files); 2379 if (retval) 2380 goto bad_fork_cleanup_semundo; 2381 retval = copy_fs(clone_flags, p); 2382 if (retval) 2383 goto bad_fork_cleanup_files; 2384 retval = copy_sighand(clone_flags, p); 2385 if (retval) 2386 goto bad_fork_cleanup_fs; 2387 retval = copy_signal(clone_flags, p); 2388 if (retval) 2389 goto bad_fork_cleanup_sighand; 2390 retval = copy_mm(clone_flags, p); 2391 if (retval) 2392 goto bad_fork_cleanup_signal; 2393 retval = copy_namespaces(clone_flags, p); 2394 if (retval) 2395 goto bad_fork_cleanup_mm; 2396 retval = copy_io(clone_flags, p); 2397 if (retval) 2398 goto bad_fork_cleanup_namespaces; 2399 retval = copy_thread(p, args); 2400 if (retval) 2401 goto bad_fork_cleanup_io; 2402 2403 stackleak_task_init(p); 2404 2405 if (pid != &init_struct_pid) { 2406 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2407 args->set_tid_size); 2408 if (IS_ERR(pid)) { 2409 retval = PTR_ERR(pid); 2410 goto bad_fork_cleanup_thread; 2411 } 2412 } 2413 2414 /* 2415 * This has to happen after we've potentially unshared the file 2416 * descriptor table (so that the pidfd doesn't leak into the child 2417 * if the fd table isn't shared). 2418 */ 2419 if (clone_flags & CLONE_PIDFD) { 2420 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2421 2422 /* Note that no task has been attached to @pid yet. */ 2423 retval = __pidfd_prepare(pid, flags, &pidfile); 2424 if (retval < 0) 2425 goto bad_fork_free_pid; 2426 pidfd = retval; 2427 2428 retval = put_user(pidfd, args->pidfd); 2429 if (retval) 2430 goto bad_fork_put_pidfd; 2431 } 2432 2433 #ifdef CONFIG_BLOCK 2434 p->plug = NULL; 2435 #endif 2436 futex_init_task(p); 2437 2438 /* 2439 * sigaltstack should be cleared when sharing the same VM 2440 */ 2441 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2442 sas_ss_reset(p); 2443 2444 /* 2445 * Syscall tracing and stepping should be turned off in the 2446 * child regardless of CLONE_PTRACE. 2447 */ 2448 user_disable_single_step(p); 2449 clear_task_syscall_work(p, SYSCALL_TRACE); 2450 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2451 clear_task_syscall_work(p, SYSCALL_EMU); 2452 #endif 2453 clear_tsk_latency_tracing(p); 2454 2455 /* ok, now we should be set up.. */ 2456 p->pid = pid_nr(pid); 2457 if (clone_flags & CLONE_THREAD) { 2458 p->group_leader = current->group_leader; 2459 p->tgid = current->tgid; 2460 } else { 2461 p->group_leader = p; 2462 p->tgid = p->pid; 2463 } 2464 2465 p->nr_dirtied = 0; 2466 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2467 p->dirty_paused_when = 0; 2468 2469 p->pdeath_signal = 0; 2470 p->task_works = NULL; 2471 clear_posix_cputimers_work(p); 2472 2473 #ifdef CONFIG_KRETPROBES 2474 p->kretprobe_instances.first = NULL; 2475 #endif 2476 #ifdef CONFIG_RETHOOK 2477 p->rethooks.first = NULL; 2478 #endif 2479 2480 /* 2481 * Ensure that the cgroup subsystem policies allow the new process to be 2482 * forked. It should be noted that the new process's css_set can be changed 2483 * between here and cgroup_post_fork() if an organisation operation is in 2484 * progress. 2485 */ 2486 retval = cgroup_can_fork(p, args); 2487 if (retval) 2488 goto bad_fork_put_pidfd; 2489 2490 /* 2491 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2492 * the new task on the correct runqueue. All this *before* the task 2493 * becomes visible. 2494 * 2495 * This isn't part of ->can_fork() because while the re-cloning is 2496 * cgroup specific, it unconditionally needs to place the task on a 2497 * runqueue. 2498 */ 2499 sched_cgroup_fork(p, args); 2500 2501 /* 2502 * From this point on we must avoid any synchronous user-space 2503 * communication until we take the tasklist-lock. In particular, we do 2504 * not want user-space to be able to predict the process start-time by 2505 * stalling fork(2) after we recorded the start_time but before it is 2506 * visible to the system. 2507 */ 2508 2509 p->start_time = ktime_get_ns(); 2510 p->start_boottime = ktime_get_boottime_ns(); 2511 2512 /* 2513 * Make it visible to the rest of the system, but dont wake it up yet. 2514 * Need tasklist lock for parent etc handling! 2515 */ 2516 write_lock_irq(&tasklist_lock); 2517 2518 /* CLONE_PARENT re-uses the old parent */ 2519 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2520 p->real_parent = current->real_parent; 2521 p->parent_exec_id = current->parent_exec_id; 2522 if (clone_flags & CLONE_THREAD) 2523 p->exit_signal = -1; 2524 else 2525 p->exit_signal = current->group_leader->exit_signal; 2526 } else { 2527 p->real_parent = current; 2528 p->parent_exec_id = current->self_exec_id; 2529 p->exit_signal = args->exit_signal; 2530 } 2531 2532 klp_copy_process(p); 2533 2534 sched_core_fork(p); 2535 2536 spin_lock(¤t->sighand->siglock); 2537 2538 rv_task_fork(p); 2539 2540 rseq_fork(p, clone_flags); 2541 2542 /* Don't start children in a dying pid namespace */ 2543 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2544 retval = -ENOMEM; 2545 goto bad_fork_cancel_cgroup; 2546 } 2547 2548 /* Let kill terminate clone/fork in the middle */ 2549 if (fatal_signal_pending(current)) { 2550 retval = -EINTR; 2551 goto bad_fork_cancel_cgroup; 2552 } 2553 2554 /* No more failure paths after this point. */ 2555 2556 /* 2557 * Copy seccomp details explicitly here, in case they were changed 2558 * before holding sighand lock. 2559 */ 2560 copy_seccomp(p); 2561 2562 init_task_pid_links(p); 2563 if (likely(p->pid)) { 2564 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2565 2566 init_task_pid(p, PIDTYPE_PID, pid); 2567 if (thread_group_leader(p)) { 2568 init_task_pid(p, PIDTYPE_TGID, pid); 2569 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2570 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2571 2572 if (is_child_reaper(pid)) { 2573 ns_of_pid(pid)->child_reaper = p; 2574 p->signal->flags |= SIGNAL_UNKILLABLE; 2575 } 2576 p->signal->shared_pending.signal = delayed.signal; 2577 p->signal->tty = tty_kref_get(current->signal->tty); 2578 /* 2579 * Inherit has_child_subreaper flag under the same 2580 * tasklist_lock with adding child to the process tree 2581 * for propagate_has_child_subreaper optimization. 2582 */ 2583 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2584 p->real_parent->signal->is_child_subreaper; 2585 list_add_tail(&p->sibling, &p->real_parent->children); 2586 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2587 attach_pid(p, PIDTYPE_TGID); 2588 attach_pid(p, PIDTYPE_PGID); 2589 attach_pid(p, PIDTYPE_SID); 2590 __this_cpu_inc(process_counts); 2591 } else { 2592 current->signal->nr_threads++; 2593 current->signal->quick_threads++; 2594 atomic_inc(¤t->signal->live); 2595 refcount_inc(¤t->signal->sigcnt); 2596 task_join_group_stop(p); 2597 list_add_tail_rcu(&p->thread_node, 2598 &p->signal->thread_head); 2599 } 2600 attach_pid(p, PIDTYPE_PID); 2601 nr_threads++; 2602 } 2603 total_forks++; 2604 hlist_del_init(&delayed.node); 2605 spin_unlock(¤t->sighand->siglock); 2606 syscall_tracepoint_update(p); 2607 write_unlock_irq(&tasklist_lock); 2608 2609 if (pidfile) 2610 fd_install(pidfd, pidfile); 2611 2612 proc_fork_connector(p); 2613 sched_post_fork(p); 2614 cgroup_post_fork(p, args); 2615 perf_event_fork(p); 2616 2617 trace_task_newtask(p, clone_flags); 2618 uprobe_copy_process(p, clone_flags); 2619 user_events_fork(p, clone_flags); 2620 2621 copy_oom_score_adj(clone_flags, p); 2622 2623 return p; 2624 2625 bad_fork_cancel_cgroup: 2626 sched_core_free(p); 2627 spin_unlock(¤t->sighand->siglock); 2628 write_unlock_irq(&tasklist_lock); 2629 cgroup_cancel_fork(p, args); 2630 bad_fork_put_pidfd: 2631 if (clone_flags & CLONE_PIDFD) { 2632 fput(pidfile); 2633 put_unused_fd(pidfd); 2634 } 2635 bad_fork_free_pid: 2636 if (pid != &init_struct_pid) 2637 free_pid(pid); 2638 bad_fork_cleanup_thread: 2639 exit_thread(p); 2640 bad_fork_cleanup_io: 2641 if (p->io_context) 2642 exit_io_context(p); 2643 bad_fork_cleanup_namespaces: 2644 exit_task_namespaces(p); 2645 bad_fork_cleanup_mm: 2646 if (p->mm) { 2647 mm_clear_owner(p->mm, p); 2648 mmput(p->mm); 2649 } 2650 bad_fork_cleanup_signal: 2651 if (!(clone_flags & CLONE_THREAD)) 2652 free_signal_struct(p->signal); 2653 bad_fork_cleanup_sighand: 2654 __cleanup_sighand(p->sighand); 2655 bad_fork_cleanup_fs: 2656 exit_fs(p); /* blocking */ 2657 bad_fork_cleanup_files: 2658 exit_files(p); /* blocking */ 2659 bad_fork_cleanup_semundo: 2660 exit_sem(p); 2661 bad_fork_cleanup_security: 2662 security_task_free(p); 2663 bad_fork_cleanup_audit: 2664 audit_free(p); 2665 bad_fork_cleanup_perf: 2666 perf_event_free_task(p); 2667 bad_fork_cleanup_policy: 2668 lockdep_free_task(p); 2669 #ifdef CONFIG_NUMA 2670 mpol_put(p->mempolicy); 2671 #endif 2672 bad_fork_cleanup_delayacct: 2673 delayacct_tsk_free(p); 2674 bad_fork_cleanup_count: 2675 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2676 exit_creds(p); 2677 bad_fork_free: 2678 WRITE_ONCE(p->__state, TASK_DEAD); 2679 exit_task_stack_account(p); 2680 put_task_stack(p); 2681 delayed_free_task(p); 2682 fork_out: 2683 spin_lock_irq(¤t->sighand->siglock); 2684 hlist_del_init(&delayed.node); 2685 spin_unlock_irq(¤t->sighand->siglock); 2686 return ERR_PTR(retval); 2687 } 2688 2689 static inline void init_idle_pids(struct task_struct *idle) 2690 { 2691 enum pid_type type; 2692 2693 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2694 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2695 init_task_pid(idle, type, &init_struct_pid); 2696 } 2697 } 2698 2699 static int idle_dummy(void *dummy) 2700 { 2701 /* This function is never called */ 2702 return 0; 2703 } 2704 2705 struct task_struct * __init fork_idle(int cpu) 2706 { 2707 struct task_struct *task; 2708 struct kernel_clone_args args = { 2709 .flags = CLONE_VM, 2710 .fn = &idle_dummy, 2711 .fn_arg = NULL, 2712 .kthread = 1, 2713 .idle = 1, 2714 }; 2715 2716 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2717 if (!IS_ERR(task)) { 2718 init_idle_pids(task); 2719 init_idle(task, cpu); 2720 } 2721 2722 return task; 2723 } 2724 2725 /* 2726 * This is like kernel_clone(), but shaved down and tailored to just 2727 * creating io_uring workers. It returns a created task, or an error pointer. 2728 * The returned task is inactive, and the caller must fire it up through 2729 * wake_up_new_task(p). All signals are blocked in the created task. 2730 */ 2731 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2732 { 2733 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2734 CLONE_IO; 2735 struct kernel_clone_args args = { 2736 .flags = ((lower_32_bits(flags) | CLONE_VM | 2737 CLONE_UNTRACED) & ~CSIGNAL), 2738 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2739 .fn = fn, 2740 .fn_arg = arg, 2741 .io_thread = 1, 2742 .user_worker = 1, 2743 }; 2744 2745 return copy_process(NULL, 0, node, &args); 2746 } 2747 2748 /* 2749 * Ok, this is the main fork-routine. 2750 * 2751 * It copies the process, and if successful kick-starts 2752 * it and waits for it to finish using the VM if required. 2753 * 2754 * args->exit_signal is expected to be checked for sanity by the caller. 2755 */ 2756 pid_t kernel_clone(struct kernel_clone_args *args) 2757 { 2758 u64 clone_flags = args->flags; 2759 struct completion vfork; 2760 struct pid *pid; 2761 struct task_struct *p; 2762 int trace = 0; 2763 pid_t nr; 2764 2765 /* 2766 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2767 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2768 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2769 * field in struct clone_args and it still doesn't make sense to have 2770 * them both point at the same memory location. Performing this check 2771 * here has the advantage that we don't need to have a separate helper 2772 * to check for legacy clone(). 2773 */ 2774 if ((clone_flags & CLONE_PIDFD) && 2775 (clone_flags & CLONE_PARENT_SETTID) && 2776 (args->pidfd == args->parent_tid)) 2777 return -EINVAL; 2778 2779 /* 2780 * Determine whether and which event to report to ptracer. When 2781 * called from kernel_thread or CLONE_UNTRACED is explicitly 2782 * requested, no event is reported; otherwise, report if the event 2783 * for the type of forking is enabled. 2784 */ 2785 if (!(clone_flags & CLONE_UNTRACED)) { 2786 if (clone_flags & CLONE_VFORK) 2787 trace = PTRACE_EVENT_VFORK; 2788 else if (args->exit_signal != SIGCHLD) 2789 trace = PTRACE_EVENT_CLONE; 2790 else 2791 trace = PTRACE_EVENT_FORK; 2792 2793 if (likely(!ptrace_event_enabled(current, trace))) 2794 trace = 0; 2795 } 2796 2797 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2798 add_latent_entropy(); 2799 2800 if (IS_ERR(p)) 2801 return PTR_ERR(p); 2802 2803 /* 2804 * Do this prior waking up the new thread - the thread pointer 2805 * might get invalid after that point, if the thread exits quickly. 2806 */ 2807 trace_sched_process_fork(current, p); 2808 2809 pid = get_task_pid(p, PIDTYPE_PID); 2810 nr = pid_vnr(pid); 2811 2812 if (clone_flags & CLONE_PARENT_SETTID) 2813 put_user(nr, args->parent_tid); 2814 2815 if (clone_flags & CLONE_VFORK) { 2816 p->vfork_done = &vfork; 2817 init_completion(&vfork); 2818 get_task_struct(p); 2819 } 2820 2821 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2822 /* lock the task to synchronize with memcg migration */ 2823 task_lock(p); 2824 lru_gen_add_mm(p->mm); 2825 task_unlock(p); 2826 } 2827 2828 wake_up_new_task(p); 2829 2830 /* forking complete and child started to run, tell ptracer */ 2831 if (unlikely(trace)) 2832 ptrace_event_pid(trace, pid); 2833 2834 if (clone_flags & CLONE_VFORK) { 2835 if (!wait_for_vfork_done(p, &vfork)) 2836 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2837 } 2838 2839 put_pid(pid); 2840 return nr; 2841 } 2842 2843 /* 2844 * Create a kernel thread. 2845 */ 2846 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2847 unsigned long flags) 2848 { 2849 struct kernel_clone_args args = { 2850 .flags = ((lower_32_bits(flags) | CLONE_VM | 2851 CLONE_UNTRACED) & ~CSIGNAL), 2852 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2853 .fn = fn, 2854 .fn_arg = arg, 2855 .name = name, 2856 .kthread = 1, 2857 }; 2858 2859 return kernel_clone(&args); 2860 } 2861 2862 /* 2863 * Create a user mode thread. 2864 */ 2865 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2866 { 2867 struct kernel_clone_args args = { 2868 .flags = ((lower_32_bits(flags) | CLONE_VM | 2869 CLONE_UNTRACED) & ~CSIGNAL), 2870 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2871 .fn = fn, 2872 .fn_arg = arg, 2873 }; 2874 2875 return kernel_clone(&args); 2876 } 2877 2878 #ifdef __ARCH_WANT_SYS_FORK 2879 SYSCALL_DEFINE0(fork) 2880 { 2881 #ifdef CONFIG_MMU 2882 struct kernel_clone_args args = { 2883 .exit_signal = SIGCHLD, 2884 }; 2885 2886 return kernel_clone(&args); 2887 #else 2888 /* can not support in nommu mode */ 2889 return -EINVAL; 2890 #endif 2891 } 2892 #endif 2893 2894 #ifdef __ARCH_WANT_SYS_VFORK 2895 SYSCALL_DEFINE0(vfork) 2896 { 2897 struct kernel_clone_args args = { 2898 .flags = CLONE_VFORK | CLONE_VM, 2899 .exit_signal = SIGCHLD, 2900 }; 2901 2902 return kernel_clone(&args); 2903 } 2904 #endif 2905 2906 #ifdef __ARCH_WANT_SYS_CLONE 2907 #ifdef CONFIG_CLONE_BACKWARDS 2908 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2909 int __user *, parent_tidptr, 2910 unsigned long, tls, 2911 int __user *, child_tidptr) 2912 #elif defined(CONFIG_CLONE_BACKWARDS2) 2913 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2914 int __user *, parent_tidptr, 2915 int __user *, child_tidptr, 2916 unsigned long, tls) 2917 #elif defined(CONFIG_CLONE_BACKWARDS3) 2918 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2919 int, stack_size, 2920 int __user *, parent_tidptr, 2921 int __user *, child_tidptr, 2922 unsigned long, tls) 2923 #else 2924 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2925 int __user *, parent_tidptr, 2926 int __user *, child_tidptr, 2927 unsigned long, tls) 2928 #endif 2929 { 2930 struct kernel_clone_args args = { 2931 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2932 .pidfd = parent_tidptr, 2933 .child_tid = child_tidptr, 2934 .parent_tid = parent_tidptr, 2935 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2936 .stack = newsp, 2937 .tls = tls, 2938 }; 2939 2940 return kernel_clone(&args); 2941 } 2942 #endif 2943 2944 #ifdef __ARCH_WANT_SYS_CLONE3 2945 2946 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2947 struct clone_args __user *uargs, 2948 size_t usize) 2949 { 2950 int err; 2951 struct clone_args args; 2952 pid_t *kset_tid = kargs->set_tid; 2953 2954 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2955 CLONE_ARGS_SIZE_VER0); 2956 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2957 CLONE_ARGS_SIZE_VER1); 2958 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2959 CLONE_ARGS_SIZE_VER2); 2960 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2961 2962 if (unlikely(usize > PAGE_SIZE)) 2963 return -E2BIG; 2964 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2965 return -EINVAL; 2966 2967 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2968 if (err) 2969 return err; 2970 2971 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2972 return -EINVAL; 2973 2974 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2975 return -EINVAL; 2976 2977 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2978 return -EINVAL; 2979 2980 /* 2981 * Verify that higher 32bits of exit_signal are unset and that 2982 * it is a valid signal 2983 */ 2984 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2985 !valid_signal(args.exit_signal))) 2986 return -EINVAL; 2987 2988 if ((args.flags & CLONE_INTO_CGROUP) && 2989 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2990 return -EINVAL; 2991 2992 *kargs = (struct kernel_clone_args){ 2993 .flags = args.flags, 2994 .pidfd = u64_to_user_ptr(args.pidfd), 2995 .child_tid = u64_to_user_ptr(args.child_tid), 2996 .parent_tid = u64_to_user_ptr(args.parent_tid), 2997 .exit_signal = args.exit_signal, 2998 .stack = args.stack, 2999 .stack_size = args.stack_size, 3000 .tls = args.tls, 3001 .set_tid_size = args.set_tid_size, 3002 .cgroup = args.cgroup, 3003 }; 3004 3005 if (args.set_tid && 3006 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 3007 (kargs->set_tid_size * sizeof(pid_t)))) 3008 return -EFAULT; 3009 3010 kargs->set_tid = kset_tid; 3011 3012 return 0; 3013 } 3014 3015 /** 3016 * clone3_stack_valid - check and prepare stack 3017 * @kargs: kernel clone args 3018 * 3019 * Verify that the stack arguments userspace gave us are sane. 3020 * In addition, set the stack direction for userspace since it's easy for us to 3021 * determine. 3022 */ 3023 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 3024 { 3025 if (kargs->stack == 0) { 3026 if (kargs->stack_size > 0) 3027 return false; 3028 } else { 3029 if (kargs->stack_size == 0) 3030 return false; 3031 3032 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 3033 return false; 3034 3035 #if !defined(CONFIG_STACK_GROWSUP) 3036 kargs->stack += kargs->stack_size; 3037 #endif 3038 } 3039 3040 return true; 3041 } 3042 3043 static bool clone3_args_valid(struct kernel_clone_args *kargs) 3044 { 3045 /* Verify that no unknown flags are passed along. */ 3046 if (kargs->flags & 3047 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 3048 return false; 3049 3050 /* 3051 * - make the CLONE_DETACHED bit reusable for clone3 3052 * - make the CSIGNAL bits reusable for clone3 3053 */ 3054 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 3055 return false; 3056 3057 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 3058 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 3059 return false; 3060 3061 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 3062 kargs->exit_signal) 3063 return false; 3064 3065 if (!clone3_stack_valid(kargs)) 3066 return false; 3067 3068 return true; 3069 } 3070 3071 /** 3072 * sys_clone3 - create a new process with specific properties 3073 * @uargs: argument structure 3074 * @size: size of @uargs 3075 * 3076 * clone3() is the extensible successor to clone()/clone2(). 3077 * It takes a struct as argument that is versioned by its size. 3078 * 3079 * Return: On success, a positive PID for the child process. 3080 * On error, a negative errno number. 3081 */ 3082 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 3083 { 3084 int err; 3085 3086 struct kernel_clone_args kargs; 3087 pid_t set_tid[MAX_PID_NS_LEVEL]; 3088 3089 kargs.set_tid = set_tid; 3090 3091 err = copy_clone_args_from_user(&kargs, uargs, size); 3092 if (err) 3093 return err; 3094 3095 if (!clone3_args_valid(&kargs)) 3096 return -EINVAL; 3097 3098 return kernel_clone(&kargs); 3099 } 3100 #endif 3101 3102 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 3103 { 3104 struct task_struct *leader, *parent, *child; 3105 int res; 3106 3107 read_lock(&tasklist_lock); 3108 leader = top = top->group_leader; 3109 down: 3110 for_each_thread(leader, parent) { 3111 list_for_each_entry(child, &parent->children, sibling) { 3112 res = visitor(child, data); 3113 if (res) { 3114 if (res < 0) 3115 goto out; 3116 leader = child; 3117 goto down; 3118 } 3119 up: 3120 ; 3121 } 3122 } 3123 3124 if (leader != top) { 3125 child = leader; 3126 parent = child->real_parent; 3127 leader = parent->group_leader; 3128 goto up; 3129 } 3130 out: 3131 read_unlock(&tasklist_lock); 3132 } 3133 3134 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3135 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3136 #endif 3137 3138 static void sighand_ctor(void *data) 3139 { 3140 struct sighand_struct *sighand = data; 3141 3142 spin_lock_init(&sighand->siglock); 3143 init_waitqueue_head(&sighand->signalfd_wqh); 3144 } 3145 3146 void __init mm_cache_init(void) 3147 { 3148 unsigned int mm_size; 3149 3150 /* 3151 * The mm_cpumask is located at the end of mm_struct, and is 3152 * dynamically sized based on the maximum CPU number this system 3153 * can have, taking hotplug into account (nr_cpu_ids). 3154 */ 3155 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3156 3157 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3158 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3159 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3160 offsetof(struct mm_struct, saved_auxv), 3161 sizeof_field(struct mm_struct, saved_auxv), 3162 NULL); 3163 } 3164 3165 void __init proc_caches_init(void) 3166 { 3167 sighand_cachep = kmem_cache_create("sighand_cache", 3168 sizeof(struct sighand_struct), 0, 3169 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3170 SLAB_ACCOUNT, sighand_ctor); 3171 signal_cachep = kmem_cache_create("signal_cache", 3172 sizeof(struct signal_struct), 0, 3173 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3174 NULL); 3175 files_cachep = kmem_cache_create("files_cache", 3176 sizeof(struct files_struct), 0, 3177 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3178 NULL); 3179 fs_cachep = kmem_cache_create("fs_cache", 3180 sizeof(struct fs_struct), 0, 3181 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3182 NULL); 3183 3184 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3185 #ifdef CONFIG_PER_VMA_LOCK 3186 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT); 3187 #endif 3188 mmap_init(); 3189 nsproxy_cache_init(); 3190 } 3191 3192 /* 3193 * Check constraints on flags passed to the unshare system call. 3194 */ 3195 static int check_unshare_flags(unsigned long unshare_flags) 3196 { 3197 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3198 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3199 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3200 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3201 CLONE_NEWTIME)) 3202 return -EINVAL; 3203 /* 3204 * Not implemented, but pretend it works if there is nothing 3205 * to unshare. Note that unsharing the address space or the 3206 * signal handlers also need to unshare the signal queues (aka 3207 * CLONE_THREAD). 3208 */ 3209 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3210 if (!thread_group_empty(current)) 3211 return -EINVAL; 3212 } 3213 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3214 if (refcount_read(¤t->sighand->count) > 1) 3215 return -EINVAL; 3216 } 3217 if (unshare_flags & CLONE_VM) { 3218 if (!current_is_single_threaded()) 3219 return -EINVAL; 3220 } 3221 3222 return 0; 3223 } 3224 3225 /* 3226 * Unshare the filesystem structure if it is being shared 3227 */ 3228 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3229 { 3230 struct fs_struct *fs = current->fs; 3231 3232 if (!(unshare_flags & CLONE_FS) || !fs) 3233 return 0; 3234 3235 /* don't need lock here; in the worst case we'll do useless copy */ 3236 if (fs->users == 1) 3237 return 0; 3238 3239 *new_fsp = copy_fs_struct(fs); 3240 if (!*new_fsp) 3241 return -ENOMEM; 3242 3243 return 0; 3244 } 3245 3246 /* 3247 * Unshare file descriptor table if it is being shared 3248 */ 3249 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3250 struct files_struct **new_fdp) 3251 { 3252 struct files_struct *fd = current->files; 3253 int error = 0; 3254 3255 if ((unshare_flags & CLONE_FILES) && 3256 (fd && atomic_read(&fd->count) > 1)) { 3257 *new_fdp = dup_fd(fd, max_fds, &error); 3258 if (!*new_fdp) 3259 return error; 3260 } 3261 3262 return 0; 3263 } 3264 3265 /* 3266 * unshare allows a process to 'unshare' part of the process 3267 * context which was originally shared using clone. copy_* 3268 * functions used by kernel_clone() cannot be used here directly 3269 * because they modify an inactive task_struct that is being 3270 * constructed. Here we are modifying the current, active, 3271 * task_struct. 3272 */ 3273 int ksys_unshare(unsigned long unshare_flags) 3274 { 3275 struct fs_struct *fs, *new_fs = NULL; 3276 struct files_struct *new_fd = NULL; 3277 struct cred *new_cred = NULL; 3278 struct nsproxy *new_nsproxy = NULL; 3279 int do_sysvsem = 0; 3280 int err; 3281 3282 /* 3283 * If unsharing a user namespace must also unshare the thread group 3284 * and unshare the filesystem root and working directories. 3285 */ 3286 if (unshare_flags & CLONE_NEWUSER) 3287 unshare_flags |= CLONE_THREAD | CLONE_FS; 3288 /* 3289 * If unsharing vm, must also unshare signal handlers. 3290 */ 3291 if (unshare_flags & CLONE_VM) 3292 unshare_flags |= CLONE_SIGHAND; 3293 /* 3294 * If unsharing a signal handlers, must also unshare the signal queues. 3295 */ 3296 if (unshare_flags & CLONE_SIGHAND) 3297 unshare_flags |= CLONE_THREAD; 3298 /* 3299 * If unsharing namespace, must also unshare filesystem information. 3300 */ 3301 if (unshare_flags & CLONE_NEWNS) 3302 unshare_flags |= CLONE_FS; 3303 3304 err = check_unshare_flags(unshare_flags); 3305 if (err) 3306 goto bad_unshare_out; 3307 /* 3308 * CLONE_NEWIPC must also detach from the undolist: after switching 3309 * to a new ipc namespace, the semaphore arrays from the old 3310 * namespace are unreachable. 3311 */ 3312 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3313 do_sysvsem = 1; 3314 err = unshare_fs(unshare_flags, &new_fs); 3315 if (err) 3316 goto bad_unshare_out; 3317 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3318 if (err) 3319 goto bad_unshare_cleanup_fs; 3320 err = unshare_userns(unshare_flags, &new_cred); 3321 if (err) 3322 goto bad_unshare_cleanup_fd; 3323 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3324 new_cred, new_fs); 3325 if (err) 3326 goto bad_unshare_cleanup_cred; 3327 3328 if (new_cred) { 3329 err = set_cred_ucounts(new_cred); 3330 if (err) 3331 goto bad_unshare_cleanup_cred; 3332 } 3333 3334 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3335 if (do_sysvsem) { 3336 /* 3337 * CLONE_SYSVSEM is equivalent to sys_exit(). 3338 */ 3339 exit_sem(current); 3340 } 3341 if (unshare_flags & CLONE_NEWIPC) { 3342 /* Orphan segments in old ns (see sem above). */ 3343 exit_shm(current); 3344 shm_init_task(current); 3345 } 3346 3347 if (new_nsproxy) 3348 switch_task_namespaces(current, new_nsproxy); 3349 3350 task_lock(current); 3351 3352 if (new_fs) { 3353 fs = current->fs; 3354 spin_lock(&fs->lock); 3355 current->fs = new_fs; 3356 if (--fs->users) 3357 new_fs = NULL; 3358 else 3359 new_fs = fs; 3360 spin_unlock(&fs->lock); 3361 } 3362 3363 if (new_fd) 3364 swap(current->files, new_fd); 3365 3366 task_unlock(current); 3367 3368 if (new_cred) { 3369 /* Install the new user namespace */ 3370 commit_creds(new_cred); 3371 new_cred = NULL; 3372 } 3373 } 3374 3375 perf_event_namespaces(current); 3376 3377 bad_unshare_cleanup_cred: 3378 if (new_cred) 3379 put_cred(new_cred); 3380 bad_unshare_cleanup_fd: 3381 if (new_fd) 3382 put_files_struct(new_fd); 3383 3384 bad_unshare_cleanup_fs: 3385 if (new_fs) 3386 free_fs_struct(new_fs); 3387 3388 bad_unshare_out: 3389 return err; 3390 } 3391 3392 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3393 { 3394 return ksys_unshare(unshare_flags); 3395 } 3396 3397 /* 3398 * Helper to unshare the files of the current task. 3399 * We don't want to expose copy_files internals to 3400 * the exec layer of the kernel. 3401 */ 3402 3403 int unshare_files(void) 3404 { 3405 struct task_struct *task = current; 3406 struct files_struct *old, *copy = NULL; 3407 int error; 3408 3409 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3410 if (error || !copy) 3411 return error; 3412 3413 old = task->files; 3414 task_lock(task); 3415 task->files = copy; 3416 task_unlock(task); 3417 put_files_struct(old); 3418 return 0; 3419 } 3420 3421 int sysctl_max_threads(struct ctl_table *table, int write, 3422 void *buffer, size_t *lenp, loff_t *ppos) 3423 { 3424 struct ctl_table t; 3425 int ret; 3426 int threads = max_threads; 3427 int min = 1; 3428 int max = MAX_THREADS; 3429 3430 t = *table; 3431 t.data = &threads; 3432 t.extra1 = &min; 3433 t.extra2 = &max; 3434 3435 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3436 if (ret || !write) 3437 return ret; 3438 3439 max_threads = threads; 3440 3441 return 0; 3442 } 3443