1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/binfmts.h> 41 #include <linux/mman.h> 42 #include <linux/mmu_notifier.h> 43 #include <linux/fs.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/nsproxy.h> 47 #include <linux/capability.h> 48 #include <linux/cpu.h> 49 #include <linux/cgroup.h> 50 #include <linux/security.h> 51 #include <linux/hugetlb.h> 52 #include <linux/seccomp.h> 53 #include <linux/swap.h> 54 #include <linux/syscalls.h> 55 #include <linux/jiffies.h> 56 #include <linux/futex.h> 57 #include <linux/compat.h> 58 #include <linux/kthread.h> 59 #include <linux/task_io_accounting_ops.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ptrace.h> 62 #include <linux/mount.h> 63 #include <linux/audit.h> 64 #include <linux/memcontrol.h> 65 #include <linux/ftrace.h> 66 #include <linux/proc_fs.h> 67 #include <linux/profile.h> 68 #include <linux/rmap.h> 69 #include <linux/ksm.h> 70 #include <linux/acct.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/tsacct_kern.h> 73 #include <linux/cn_proc.h> 74 #include <linux/freezer.h> 75 #include <linux/delayacct.h> 76 #include <linux/taskstats_kern.h> 77 #include <linux/random.h> 78 #include <linux/tty.h> 79 #include <linux/fs_struct.h> 80 #include <linux/magic.h> 81 #include <linux/perf_event.h> 82 #include <linux/posix-timers.h> 83 #include <linux/user-return-notifier.h> 84 #include <linux/oom.h> 85 #include <linux/khugepaged.h> 86 #include <linux/signalfd.h> 87 #include <linux/uprobes.h> 88 #include <linux/aio.h> 89 #include <linux/compiler.h> 90 #include <linux/sysctl.h> 91 #include <linux/kcov.h> 92 #include <linux/livepatch.h> 93 #include <linux/thread_info.h> 94 #include <linux/stackleak.h> 95 #include <linux/kasan.h> 96 #include <linux/scs.h> 97 #include <linux/io_uring.h> 98 #include <linux/bpf.h> 99 #include <linux/sched/mm.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 # ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 struct vm_stack { 197 struct rcu_head rcu; 198 struct vm_struct *stack_vm_area; 199 }; 200 201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 202 { 203 unsigned int i; 204 205 for (i = 0; i < NR_CACHED_STACKS; i++) { 206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 static void thread_stack_free_rcu(struct rcu_head *rh) 214 { 215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 216 217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 218 return; 219 220 vfree(vm_stack); 221 } 222 223 static void thread_stack_delayed_free(struct task_struct *tsk) 224 { 225 struct vm_stack *vm_stack = tsk->stack; 226 227 vm_stack->stack_vm_area = tsk->stack_vm_area; 228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 229 } 230 231 static int free_vm_stack_cache(unsigned int cpu) 232 { 233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 234 int i; 235 236 for (i = 0; i < NR_CACHED_STACKS; i++) { 237 struct vm_struct *vm_stack = cached_vm_stacks[i]; 238 239 if (!vm_stack) 240 continue; 241 242 vfree(vm_stack->addr); 243 cached_vm_stacks[i] = NULL; 244 } 245 246 return 0; 247 } 248 249 static int memcg_charge_kernel_stack(struct vm_struct *vm) 250 { 251 int i; 252 int ret; 253 254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 256 257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 259 if (ret) 260 goto err; 261 } 262 return 0; 263 err: 264 /* 265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 267 * ignore this page. 268 */ 269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 270 memcg_kmem_uncharge_page(vm->pages[i], 0); 271 return ret; 272 } 273 274 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 275 { 276 struct vm_struct *vm; 277 void *stack; 278 int i; 279 280 for (i = 0; i < NR_CACHED_STACKS; i++) { 281 struct vm_struct *s; 282 283 s = this_cpu_xchg(cached_stacks[i], NULL); 284 285 if (!s) 286 continue; 287 288 /* Reset stack metadata. */ 289 kasan_unpoison_range(s->addr, THREAD_SIZE); 290 291 stack = kasan_reset_tag(s->addr); 292 293 /* Clear stale pointers from reused stack. */ 294 memset(stack, 0, THREAD_SIZE); 295 296 if (memcg_charge_kernel_stack(s)) { 297 vfree(s->addr); 298 return -ENOMEM; 299 } 300 301 tsk->stack_vm_area = s; 302 tsk->stack = stack; 303 return 0; 304 } 305 306 /* 307 * Allocated stacks are cached and later reused by new threads, 308 * so memcg accounting is performed manually on assigning/releasing 309 * stacks to tasks. Drop __GFP_ACCOUNT. 310 */ 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 312 VMALLOC_START, VMALLOC_END, 313 THREADINFO_GFP & ~__GFP_ACCOUNT, 314 PAGE_KERNEL, 315 0, node, __builtin_return_address(0)); 316 if (!stack) 317 return -ENOMEM; 318 319 vm = find_vm_area(stack); 320 if (memcg_charge_kernel_stack(vm)) { 321 vfree(stack); 322 return -ENOMEM; 323 } 324 /* 325 * We can't call find_vm_area() in interrupt context, and 326 * free_thread_stack() can be called in interrupt context, 327 * so cache the vm_struct. 328 */ 329 tsk->stack_vm_area = vm; 330 stack = kasan_reset_tag(stack); 331 tsk->stack = stack; 332 return 0; 333 } 334 335 static void free_thread_stack(struct task_struct *tsk) 336 { 337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 338 thread_stack_delayed_free(tsk); 339 340 tsk->stack = NULL; 341 tsk->stack_vm_area = NULL; 342 } 343 344 # else /* !CONFIG_VMAP_STACK */ 345 346 static void thread_stack_free_rcu(struct rcu_head *rh) 347 { 348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 349 } 350 351 static void thread_stack_delayed_free(struct task_struct *tsk) 352 { 353 struct rcu_head *rh = tsk->stack; 354 355 call_rcu(rh, thread_stack_free_rcu); 356 } 357 358 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 359 { 360 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 361 THREAD_SIZE_ORDER); 362 363 if (likely(page)) { 364 tsk->stack = kasan_reset_tag(page_address(page)); 365 return 0; 366 } 367 return -ENOMEM; 368 } 369 370 static void free_thread_stack(struct task_struct *tsk) 371 { 372 thread_stack_delayed_free(tsk); 373 tsk->stack = NULL; 374 } 375 376 # endif /* CONFIG_VMAP_STACK */ 377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 378 379 static struct kmem_cache *thread_stack_cache; 380 381 static void thread_stack_free_rcu(struct rcu_head *rh) 382 { 383 kmem_cache_free(thread_stack_cache, rh); 384 } 385 386 static void thread_stack_delayed_free(struct task_struct *tsk) 387 { 388 struct rcu_head *rh = tsk->stack; 389 390 call_rcu(rh, thread_stack_free_rcu); 391 } 392 393 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 394 { 395 unsigned long *stack; 396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 397 stack = kasan_reset_tag(stack); 398 tsk->stack = stack; 399 return stack ? 0 : -ENOMEM; 400 } 401 402 static void free_thread_stack(struct task_struct *tsk) 403 { 404 thread_stack_delayed_free(tsk); 405 tsk->stack = NULL; 406 } 407 408 void thread_stack_cache_init(void) 409 { 410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 411 THREAD_SIZE, THREAD_SIZE, 0, 0, 412 THREAD_SIZE, NULL); 413 BUG_ON(thread_stack_cache == NULL); 414 } 415 416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 418 419 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 420 { 421 unsigned long *stack; 422 423 stack = arch_alloc_thread_stack_node(tsk, node); 424 tsk->stack = stack; 425 return stack ? 0 : -ENOMEM; 426 } 427 428 static void free_thread_stack(struct task_struct *tsk) 429 { 430 arch_free_thread_stack(tsk); 431 tsk->stack = NULL; 432 } 433 434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 435 436 /* SLAB cache for signal_struct structures (tsk->signal) */ 437 static struct kmem_cache *signal_cachep; 438 439 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 440 struct kmem_cache *sighand_cachep; 441 442 /* SLAB cache for files_struct structures (tsk->files) */ 443 struct kmem_cache *files_cachep; 444 445 /* SLAB cache for fs_struct structures (tsk->fs) */ 446 struct kmem_cache *fs_cachep; 447 448 /* SLAB cache for vm_area_struct structures */ 449 static struct kmem_cache *vm_area_cachep; 450 451 /* SLAB cache for mm_struct structures (tsk->mm) */ 452 static struct kmem_cache *mm_cachep; 453 454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 455 { 456 struct vm_area_struct *vma; 457 458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 459 if (vma) 460 vma_init(vma, mm); 461 return vma; 462 } 463 464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 465 { 466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 467 468 if (new) { 469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 471 /* 472 * orig->shared.rb may be modified concurrently, but the clone 473 * will be reinitialized. 474 */ 475 *new = data_race(*orig); 476 INIT_LIST_HEAD(&new->anon_vma_chain); 477 dup_anon_vma_name(orig, new); 478 } 479 return new; 480 } 481 482 void vm_area_free(struct vm_area_struct *vma) 483 { 484 free_anon_vma_name(vma); 485 kmem_cache_free(vm_area_cachep, vma); 486 } 487 488 static void account_kernel_stack(struct task_struct *tsk, int account) 489 { 490 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 491 struct vm_struct *vm = task_stack_vm_area(tsk); 492 int i; 493 494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 496 account * (PAGE_SIZE / 1024)); 497 } else { 498 void *stack = task_stack_page(tsk); 499 500 /* All stack pages are in the same node. */ 501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 502 account * (THREAD_SIZE / 1024)); 503 } 504 } 505 506 void exit_task_stack_account(struct task_struct *tsk) 507 { 508 account_kernel_stack(tsk, -1); 509 510 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 511 struct vm_struct *vm; 512 int i; 513 514 vm = task_stack_vm_area(tsk); 515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 516 memcg_kmem_uncharge_page(vm->pages[i], 0); 517 } 518 } 519 520 static void release_task_stack(struct task_struct *tsk) 521 { 522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 523 return; /* Better to leak the stack than to free prematurely */ 524 525 free_thread_stack(tsk); 526 } 527 528 #ifdef CONFIG_THREAD_INFO_IN_TASK 529 void put_task_stack(struct task_struct *tsk) 530 { 531 if (refcount_dec_and_test(&tsk->stack_refcount)) 532 release_task_stack(tsk); 533 } 534 #endif 535 536 void free_task(struct task_struct *tsk) 537 { 538 release_user_cpus_ptr(tsk); 539 scs_release(tsk); 540 541 #ifndef CONFIG_THREAD_INFO_IN_TASK 542 /* 543 * The task is finally done with both the stack and thread_info, 544 * so free both. 545 */ 546 release_task_stack(tsk); 547 #else 548 /* 549 * If the task had a separate stack allocation, it should be gone 550 * by now. 551 */ 552 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 553 #endif 554 rt_mutex_debug_task_free(tsk); 555 ftrace_graph_exit_task(tsk); 556 arch_release_task_struct(tsk); 557 if (tsk->flags & PF_KTHREAD) 558 free_kthread_struct(tsk); 559 free_task_struct(tsk); 560 } 561 EXPORT_SYMBOL(free_task); 562 563 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 564 { 565 struct file *exe_file; 566 567 exe_file = get_mm_exe_file(oldmm); 568 RCU_INIT_POINTER(mm->exe_file, exe_file); 569 /* 570 * We depend on the oldmm having properly denied write access to the 571 * exe_file already. 572 */ 573 if (exe_file && deny_write_access(exe_file)) 574 pr_warn_once("deny_write_access() failed in %s\n", __func__); 575 } 576 577 #ifdef CONFIG_MMU 578 static __latent_entropy int dup_mmap(struct mm_struct *mm, 579 struct mm_struct *oldmm) 580 { 581 struct vm_area_struct *mpnt, *tmp; 582 int retval; 583 unsigned long charge = 0; 584 LIST_HEAD(uf); 585 MA_STATE(old_mas, &oldmm->mm_mt, 0, 0); 586 MA_STATE(mas, &mm->mm_mt, 0, 0); 587 588 uprobe_start_dup_mmap(); 589 if (mmap_write_lock_killable(oldmm)) { 590 retval = -EINTR; 591 goto fail_uprobe_end; 592 } 593 flush_cache_dup_mm(oldmm); 594 uprobe_dup_mmap(oldmm, mm); 595 /* 596 * Not linked in yet - no deadlock potential: 597 */ 598 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 599 600 /* No ordering required: file already has been exposed. */ 601 dup_mm_exe_file(mm, oldmm); 602 603 mm->total_vm = oldmm->total_vm; 604 mm->data_vm = oldmm->data_vm; 605 mm->exec_vm = oldmm->exec_vm; 606 mm->stack_vm = oldmm->stack_vm; 607 608 retval = ksm_fork(mm, oldmm); 609 if (retval) 610 goto out; 611 khugepaged_fork(mm, oldmm); 612 613 retval = mas_expected_entries(&mas, oldmm->map_count); 614 if (retval) 615 goto out; 616 617 mas_for_each(&old_mas, mpnt, ULONG_MAX) { 618 struct file *file; 619 620 if (mpnt->vm_flags & VM_DONTCOPY) { 621 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 622 continue; 623 } 624 charge = 0; 625 /* 626 * Don't duplicate many vmas if we've been oom-killed (for 627 * example) 628 */ 629 if (fatal_signal_pending(current)) { 630 retval = -EINTR; 631 goto loop_out; 632 } 633 if (mpnt->vm_flags & VM_ACCOUNT) { 634 unsigned long len = vma_pages(mpnt); 635 636 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 637 goto fail_nomem; 638 charge = len; 639 } 640 tmp = vm_area_dup(mpnt); 641 if (!tmp) 642 goto fail_nomem; 643 retval = vma_dup_policy(mpnt, tmp); 644 if (retval) 645 goto fail_nomem_policy; 646 tmp->vm_mm = mm; 647 retval = dup_userfaultfd(tmp, &uf); 648 if (retval) 649 goto fail_nomem_anon_vma_fork; 650 if (tmp->vm_flags & VM_WIPEONFORK) { 651 /* 652 * VM_WIPEONFORK gets a clean slate in the child. 653 * Don't prepare anon_vma until fault since we don't 654 * copy page for current vma. 655 */ 656 tmp->anon_vma = NULL; 657 } else if (anon_vma_fork(tmp, mpnt)) 658 goto fail_nomem_anon_vma_fork; 659 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 660 file = tmp->vm_file; 661 if (file) { 662 struct address_space *mapping = file->f_mapping; 663 664 get_file(file); 665 i_mmap_lock_write(mapping); 666 if (tmp->vm_flags & VM_SHARED) 667 mapping_allow_writable(mapping); 668 flush_dcache_mmap_lock(mapping); 669 /* insert tmp into the share list, just after mpnt */ 670 vma_interval_tree_insert_after(tmp, mpnt, 671 &mapping->i_mmap); 672 flush_dcache_mmap_unlock(mapping); 673 i_mmap_unlock_write(mapping); 674 } 675 676 /* 677 * Clear hugetlb-related page reserves for children. This only 678 * affects MAP_PRIVATE mappings. Faults generated by the child 679 * are not guaranteed to succeed, even if read-only 680 */ 681 if (is_vm_hugetlb_page(tmp)) 682 reset_vma_resv_huge_pages(tmp); 683 684 /* Link the vma into the MT */ 685 mas.index = tmp->vm_start; 686 mas.last = tmp->vm_end - 1; 687 mas_store(&mas, tmp); 688 if (mas_is_err(&mas)) 689 goto fail_nomem_mas_store; 690 691 mm->map_count++; 692 if (!(tmp->vm_flags & VM_WIPEONFORK)) 693 retval = copy_page_range(tmp, mpnt); 694 695 if (tmp->vm_ops && tmp->vm_ops->open) 696 tmp->vm_ops->open(tmp); 697 698 if (retval) 699 goto loop_out; 700 } 701 /* a new mm has just been created */ 702 retval = arch_dup_mmap(oldmm, mm); 703 loop_out: 704 mas_destroy(&mas); 705 out: 706 mmap_write_unlock(mm); 707 flush_tlb_mm(oldmm); 708 mmap_write_unlock(oldmm); 709 dup_userfaultfd_complete(&uf); 710 fail_uprobe_end: 711 uprobe_end_dup_mmap(); 712 return retval; 713 714 fail_nomem_mas_store: 715 unlink_anon_vmas(tmp); 716 fail_nomem_anon_vma_fork: 717 mpol_put(vma_policy(tmp)); 718 fail_nomem_policy: 719 vm_area_free(tmp); 720 fail_nomem: 721 retval = -ENOMEM; 722 vm_unacct_memory(charge); 723 goto loop_out; 724 } 725 726 static inline int mm_alloc_pgd(struct mm_struct *mm) 727 { 728 mm->pgd = pgd_alloc(mm); 729 if (unlikely(!mm->pgd)) 730 return -ENOMEM; 731 return 0; 732 } 733 734 static inline void mm_free_pgd(struct mm_struct *mm) 735 { 736 pgd_free(mm, mm->pgd); 737 } 738 #else 739 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 740 { 741 mmap_write_lock(oldmm); 742 dup_mm_exe_file(mm, oldmm); 743 mmap_write_unlock(oldmm); 744 return 0; 745 } 746 #define mm_alloc_pgd(mm) (0) 747 #define mm_free_pgd(mm) 748 #endif /* CONFIG_MMU */ 749 750 static void check_mm(struct mm_struct *mm) 751 { 752 int i; 753 754 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 755 "Please make sure 'struct resident_page_types[]' is updated as well"); 756 757 for (i = 0; i < NR_MM_COUNTERS; i++) { 758 long x = atomic_long_read(&mm->rss_stat.count[i]); 759 760 if (unlikely(x)) 761 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 762 mm, resident_page_types[i], x); 763 } 764 765 if (mm_pgtables_bytes(mm)) 766 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 767 mm_pgtables_bytes(mm)); 768 769 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 770 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 771 #endif 772 } 773 774 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 775 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 776 777 /* 778 * Called when the last reference to the mm 779 * is dropped: either by a lazy thread or by 780 * mmput. Free the page directory and the mm. 781 */ 782 void __mmdrop(struct mm_struct *mm) 783 { 784 BUG_ON(mm == &init_mm); 785 WARN_ON_ONCE(mm == current->mm); 786 WARN_ON_ONCE(mm == current->active_mm); 787 mm_free_pgd(mm); 788 destroy_context(mm); 789 mmu_notifier_subscriptions_destroy(mm); 790 check_mm(mm); 791 put_user_ns(mm->user_ns); 792 mm_pasid_drop(mm); 793 free_mm(mm); 794 } 795 EXPORT_SYMBOL_GPL(__mmdrop); 796 797 static void mmdrop_async_fn(struct work_struct *work) 798 { 799 struct mm_struct *mm; 800 801 mm = container_of(work, struct mm_struct, async_put_work); 802 __mmdrop(mm); 803 } 804 805 static void mmdrop_async(struct mm_struct *mm) 806 { 807 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 808 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 809 schedule_work(&mm->async_put_work); 810 } 811 } 812 813 static inline void free_signal_struct(struct signal_struct *sig) 814 { 815 taskstats_tgid_free(sig); 816 sched_autogroup_exit(sig); 817 /* 818 * __mmdrop is not safe to call from softirq context on x86 due to 819 * pgd_dtor so postpone it to the async context 820 */ 821 if (sig->oom_mm) 822 mmdrop_async(sig->oom_mm); 823 kmem_cache_free(signal_cachep, sig); 824 } 825 826 static inline void put_signal_struct(struct signal_struct *sig) 827 { 828 if (refcount_dec_and_test(&sig->sigcnt)) 829 free_signal_struct(sig); 830 } 831 832 void __put_task_struct(struct task_struct *tsk) 833 { 834 WARN_ON(!tsk->exit_state); 835 WARN_ON(refcount_read(&tsk->usage)); 836 WARN_ON(tsk == current); 837 838 io_uring_free(tsk); 839 cgroup_free(tsk); 840 task_numa_free(tsk, true); 841 security_task_free(tsk); 842 bpf_task_storage_free(tsk); 843 exit_creds(tsk); 844 delayacct_tsk_free(tsk); 845 put_signal_struct(tsk->signal); 846 sched_core_free(tsk); 847 free_task(tsk); 848 } 849 EXPORT_SYMBOL_GPL(__put_task_struct); 850 851 void __init __weak arch_task_cache_init(void) { } 852 853 /* 854 * set_max_threads 855 */ 856 static void set_max_threads(unsigned int max_threads_suggested) 857 { 858 u64 threads; 859 unsigned long nr_pages = totalram_pages(); 860 861 /* 862 * The number of threads shall be limited such that the thread 863 * structures may only consume a small part of the available memory. 864 */ 865 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 866 threads = MAX_THREADS; 867 else 868 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 869 (u64) THREAD_SIZE * 8UL); 870 871 if (threads > max_threads_suggested) 872 threads = max_threads_suggested; 873 874 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 875 } 876 877 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 878 /* Initialized by the architecture: */ 879 int arch_task_struct_size __read_mostly; 880 #endif 881 882 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 883 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 884 { 885 /* Fetch thread_struct whitelist for the architecture. */ 886 arch_thread_struct_whitelist(offset, size); 887 888 /* 889 * Handle zero-sized whitelist or empty thread_struct, otherwise 890 * adjust offset to position of thread_struct in task_struct. 891 */ 892 if (unlikely(*size == 0)) 893 *offset = 0; 894 else 895 *offset += offsetof(struct task_struct, thread); 896 } 897 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 898 899 void __init fork_init(void) 900 { 901 int i; 902 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 903 #ifndef ARCH_MIN_TASKALIGN 904 #define ARCH_MIN_TASKALIGN 0 905 #endif 906 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 907 unsigned long useroffset, usersize; 908 909 /* create a slab on which task_structs can be allocated */ 910 task_struct_whitelist(&useroffset, &usersize); 911 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 912 arch_task_struct_size, align, 913 SLAB_PANIC|SLAB_ACCOUNT, 914 useroffset, usersize, NULL); 915 #endif 916 917 /* do the arch specific task caches init */ 918 arch_task_cache_init(); 919 920 set_max_threads(MAX_THREADS); 921 922 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 923 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 924 init_task.signal->rlim[RLIMIT_SIGPENDING] = 925 init_task.signal->rlim[RLIMIT_NPROC]; 926 927 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++) 928 init_user_ns.ucount_max[i] = max_threads/2; 929 930 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 931 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 932 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 933 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 934 935 #ifdef CONFIG_VMAP_STACK 936 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 937 NULL, free_vm_stack_cache); 938 #endif 939 940 scs_init(); 941 942 lockdep_init_task(&init_task); 943 uprobes_init(); 944 } 945 946 int __weak arch_dup_task_struct(struct task_struct *dst, 947 struct task_struct *src) 948 { 949 *dst = *src; 950 return 0; 951 } 952 953 void set_task_stack_end_magic(struct task_struct *tsk) 954 { 955 unsigned long *stackend; 956 957 stackend = end_of_stack(tsk); 958 *stackend = STACK_END_MAGIC; /* for overflow detection */ 959 } 960 961 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 962 { 963 struct task_struct *tsk; 964 int err; 965 966 if (node == NUMA_NO_NODE) 967 node = tsk_fork_get_node(orig); 968 tsk = alloc_task_struct_node(node); 969 if (!tsk) 970 return NULL; 971 972 err = arch_dup_task_struct(tsk, orig); 973 if (err) 974 goto free_tsk; 975 976 err = alloc_thread_stack_node(tsk, node); 977 if (err) 978 goto free_tsk; 979 980 #ifdef CONFIG_THREAD_INFO_IN_TASK 981 refcount_set(&tsk->stack_refcount, 1); 982 #endif 983 account_kernel_stack(tsk, 1); 984 985 err = scs_prepare(tsk, node); 986 if (err) 987 goto free_stack; 988 989 #ifdef CONFIG_SECCOMP 990 /* 991 * We must handle setting up seccomp filters once we're under 992 * the sighand lock in case orig has changed between now and 993 * then. Until then, filter must be NULL to avoid messing up 994 * the usage counts on the error path calling free_task. 995 */ 996 tsk->seccomp.filter = NULL; 997 #endif 998 999 setup_thread_stack(tsk, orig); 1000 clear_user_return_notifier(tsk); 1001 clear_tsk_need_resched(tsk); 1002 set_task_stack_end_magic(tsk); 1003 clear_syscall_work_syscall_user_dispatch(tsk); 1004 1005 #ifdef CONFIG_STACKPROTECTOR 1006 tsk->stack_canary = get_random_canary(); 1007 #endif 1008 if (orig->cpus_ptr == &orig->cpus_mask) 1009 tsk->cpus_ptr = &tsk->cpus_mask; 1010 dup_user_cpus_ptr(tsk, orig, node); 1011 1012 /* 1013 * One for the user space visible state that goes away when reaped. 1014 * One for the scheduler. 1015 */ 1016 refcount_set(&tsk->rcu_users, 2); 1017 /* One for the rcu users */ 1018 refcount_set(&tsk->usage, 1); 1019 #ifdef CONFIG_BLK_DEV_IO_TRACE 1020 tsk->btrace_seq = 0; 1021 #endif 1022 tsk->splice_pipe = NULL; 1023 tsk->task_frag.page = NULL; 1024 tsk->wake_q.next = NULL; 1025 tsk->worker_private = NULL; 1026 1027 kcov_task_init(tsk); 1028 kmap_local_fork(tsk); 1029 1030 #ifdef CONFIG_FAULT_INJECTION 1031 tsk->fail_nth = 0; 1032 #endif 1033 1034 #ifdef CONFIG_BLK_CGROUP 1035 tsk->throttle_queue = NULL; 1036 tsk->use_memdelay = 0; 1037 #endif 1038 1039 #ifdef CONFIG_IOMMU_SVA 1040 tsk->pasid_activated = 0; 1041 #endif 1042 1043 #ifdef CONFIG_MEMCG 1044 tsk->active_memcg = NULL; 1045 #endif 1046 1047 #ifdef CONFIG_CPU_SUP_INTEL 1048 tsk->reported_split_lock = 0; 1049 #endif 1050 1051 return tsk; 1052 1053 free_stack: 1054 exit_task_stack_account(tsk); 1055 free_thread_stack(tsk); 1056 free_tsk: 1057 free_task_struct(tsk); 1058 return NULL; 1059 } 1060 1061 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1062 1063 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1064 1065 static int __init coredump_filter_setup(char *s) 1066 { 1067 default_dump_filter = 1068 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1069 MMF_DUMP_FILTER_MASK; 1070 return 1; 1071 } 1072 1073 __setup("coredump_filter=", coredump_filter_setup); 1074 1075 #include <linux/init_task.h> 1076 1077 static void mm_init_aio(struct mm_struct *mm) 1078 { 1079 #ifdef CONFIG_AIO 1080 spin_lock_init(&mm->ioctx_lock); 1081 mm->ioctx_table = NULL; 1082 #endif 1083 } 1084 1085 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1086 struct task_struct *p) 1087 { 1088 #ifdef CONFIG_MEMCG 1089 if (mm->owner == p) 1090 WRITE_ONCE(mm->owner, NULL); 1091 #endif 1092 } 1093 1094 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1095 { 1096 #ifdef CONFIG_MEMCG 1097 mm->owner = p; 1098 #endif 1099 } 1100 1101 static void mm_init_uprobes_state(struct mm_struct *mm) 1102 { 1103 #ifdef CONFIG_UPROBES 1104 mm->uprobes_state.xol_area = NULL; 1105 #endif 1106 } 1107 1108 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1109 struct user_namespace *user_ns) 1110 { 1111 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1112 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1113 atomic_set(&mm->mm_users, 1); 1114 atomic_set(&mm->mm_count, 1); 1115 seqcount_init(&mm->write_protect_seq); 1116 mmap_init_lock(mm); 1117 INIT_LIST_HEAD(&mm->mmlist); 1118 mm_pgtables_bytes_init(mm); 1119 mm->map_count = 0; 1120 mm->locked_vm = 0; 1121 atomic64_set(&mm->pinned_vm, 0); 1122 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1123 spin_lock_init(&mm->page_table_lock); 1124 spin_lock_init(&mm->arg_lock); 1125 mm_init_cpumask(mm); 1126 mm_init_aio(mm); 1127 mm_init_owner(mm, p); 1128 mm_pasid_init(mm); 1129 RCU_INIT_POINTER(mm->exe_file, NULL); 1130 mmu_notifier_subscriptions_init(mm); 1131 init_tlb_flush_pending(mm); 1132 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1133 mm->pmd_huge_pte = NULL; 1134 #endif 1135 mm_init_uprobes_state(mm); 1136 hugetlb_count_init(mm); 1137 1138 if (current->mm) { 1139 mm->flags = current->mm->flags & MMF_INIT_MASK; 1140 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1141 } else { 1142 mm->flags = default_dump_filter; 1143 mm->def_flags = 0; 1144 } 1145 1146 if (mm_alloc_pgd(mm)) 1147 goto fail_nopgd; 1148 1149 if (init_new_context(p, mm)) 1150 goto fail_nocontext; 1151 1152 mm->user_ns = get_user_ns(user_ns); 1153 lru_gen_init_mm(mm); 1154 return mm; 1155 1156 fail_nocontext: 1157 mm_free_pgd(mm); 1158 fail_nopgd: 1159 free_mm(mm); 1160 return NULL; 1161 } 1162 1163 /* 1164 * Allocate and initialize an mm_struct. 1165 */ 1166 struct mm_struct *mm_alloc(void) 1167 { 1168 struct mm_struct *mm; 1169 1170 mm = allocate_mm(); 1171 if (!mm) 1172 return NULL; 1173 1174 memset(mm, 0, sizeof(*mm)); 1175 return mm_init(mm, current, current_user_ns()); 1176 } 1177 1178 static inline void __mmput(struct mm_struct *mm) 1179 { 1180 VM_BUG_ON(atomic_read(&mm->mm_users)); 1181 1182 uprobe_clear_state(mm); 1183 exit_aio(mm); 1184 ksm_exit(mm); 1185 khugepaged_exit(mm); /* must run before exit_mmap */ 1186 exit_mmap(mm); 1187 mm_put_huge_zero_page(mm); 1188 set_mm_exe_file(mm, NULL); 1189 if (!list_empty(&mm->mmlist)) { 1190 spin_lock(&mmlist_lock); 1191 list_del(&mm->mmlist); 1192 spin_unlock(&mmlist_lock); 1193 } 1194 if (mm->binfmt) 1195 module_put(mm->binfmt->module); 1196 lru_gen_del_mm(mm); 1197 mmdrop(mm); 1198 } 1199 1200 /* 1201 * Decrement the use count and release all resources for an mm. 1202 */ 1203 void mmput(struct mm_struct *mm) 1204 { 1205 might_sleep(); 1206 1207 if (atomic_dec_and_test(&mm->mm_users)) 1208 __mmput(mm); 1209 } 1210 EXPORT_SYMBOL_GPL(mmput); 1211 1212 #ifdef CONFIG_MMU 1213 static void mmput_async_fn(struct work_struct *work) 1214 { 1215 struct mm_struct *mm = container_of(work, struct mm_struct, 1216 async_put_work); 1217 1218 __mmput(mm); 1219 } 1220 1221 void mmput_async(struct mm_struct *mm) 1222 { 1223 if (atomic_dec_and_test(&mm->mm_users)) { 1224 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1225 schedule_work(&mm->async_put_work); 1226 } 1227 } 1228 #endif 1229 1230 /** 1231 * set_mm_exe_file - change a reference to the mm's executable file 1232 * 1233 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1234 * 1235 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1236 * invocations: in mmput() nobody alive left, in execve task is single 1237 * threaded. 1238 * 1239 * Can only fail if new_exe_file != NULL. 1240 */ 1241 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1242 { 1243 struct file *old_exe_file; 1244 1245 /* 1246 * It is safe to dereference the exe_file without RCU as 1247 * this function is only called if nobody else can access 1248 * this mm -- see comment above for justification. 1249 */ 1250 old_exe_file = rcu_dereference_raw(mm->exe_file); 1251 1252 if (new_exe_file) { 1253 /* 1254 * We expect the caller (i.e., sys_execve) to already denied 1255 * write access, so this is unlikely to fail. 1256 */ 1257 if (unlikely(deny_write_access(new_exe_file))) 1258 return -EACCES; 1259 get_file(new_exe_file); 1260 } 1261 rcu_assign_pointer(mm->exe_file, new_exe_file); 1262 if (old_exe_file) { 1263 allow_write_access(old_exe_file); 1264 fput(old_exe_file); 1265 } 1266 return 0; 1267 } 1268 1269 /** 1270 * replace_mm_exe_file - replace a reference to the mm's executable file 1271 * 1272 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1273 * dealing with concurrent invocation and without grabbing the mmap lock in 1274 * write mode. 1275 * 1276 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1277 */ 1278 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1279 { 1280 struct vm_area_struct *vma; 1281 struct file *old_exe_file; 1282 int ret = 0; 1283 1284 /* Forbid mm->exe_file change if old file still mapped. */ 1285 old_exe_file = get_mm_exe_file(mm); 1286 if (old_exe_file) { 1287 VMA_ITERATOR(vmi, mm, 0); 1288 mmap_read_lock(mm); 1289 for_each_vma(vmi, vma) { 1290 if (!vma->vm_file) 1291 continue; 1292 if (path_equal(&vma->vm_file->f_path, 1293 &old_exe_file->f_path)) { 1294 ret = -EBUSY; 1295 break; 1296 } 1297 } 1298 mmap_read_unlock(mm); 1299 fput(old_exe_file); 1300 if (ret) 1301 return ret; 1302 } 1303 1304 /* set the new file, lockless */ 1305 ret = deny_write_access(new_exe_file); 1306 if (ret) 1307 return -EACCES; 1308 get_file(new_exe_file); 1309 1310 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1311 if (old_exe_file) { 1312 /* 1313 * Don't race with dup_mmap() getting the file and disallowing 1314 * write access while someone might open the file writable. 1315 */ 1316 mmap_read_lock(mm); 1317 allow_write_access(old_exe_file); 1318 fput(old_exe_file); 1319 mmap_read_unlock(mm); 1320 } 1321 return 0; 1322 } 1323 1324 /** 1325 * get_mm_exe_file - acquire a reference to the mm's executable file 1326 * 1327 * Returns %NULL if mm has no associated executable file. 1328 * User must release file via fput(). 1329 */ 1330 struct file *get_mm_exe_file(struct mm_struct *mm) 1331 { 1332 struct file *exe_file; 1333 1334 rcu_read_lock(); 1335 exe_file = rcu_dereference(mm->exe_file); 1336 if (exe_file && !get_file_rcu(exe_file)) 1337 exe_file = NULL; 1338 rcu_read_unlock(); 1339 return exe_file; 1340 } 1341 1342 /** 1343 * get_task_exe_file - acquire a reference to the task's executable file 1344 * 1345 * Returns %NULL if task's mm (if any) has no associated executable file or 1346 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1347 * User must release file via fput(). 1348 */ 1349 struct file *get_task_exe_file(struct task_struct *task) 1350 { 1351 struct file *exe_file = NULL; 1352 struct mm_struct *mm; 1353 1354 task_lock(task); 1355 mm = task->mm; 1356 if (mm) { 1357 if (!(task->flags & PF_KTHREAD)) 1358 exe_file = get_mm_exe_file(mm); 1359 } 1360 task_unlock(task); 1361 return exe_file; 1362 } 1363 1364 /** 1365 * get_task_mm - acquire a reference to the task's mm 1366 * 1367 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1368 * this kernel workthread has transiently adopted a user mm with use_mm, 1369 * to do its AIO) is not set and if so returns a reference to it, after 1370 * bumping up the use count. User must release the mm via mmput() 1371 * after use. Typically used by /proc and ptrace. 1372 */ 1373 struct mm_struct *get_task_mm(struct task_struct *task) 1374 { 1375 struct mm_struct *mm; 1376 1377 task_lock(task); 1378 mm = task->mm; 1379 if (mm) { 1380 if (task->flags & PF_KTHREAD) 1381 mm = NULL; 1382 else 1383 mmget(mm); 1384 } 1385 task_unlock(task); 1386 return mm; 1387 } 1388 EXPORT_SYMBOL_GPL(get_task_mm); 1389 1390 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1391 { 1392 struct mm_struct *mm; 1393 int err; 1394 1395 err = down_read_killable(&task->signal->exec_update_lock); 1396 if (err) 1397 return ERR_PTR(err); 1398 1399 mm = get_task_mm(task); 1400 if (mm && mm != current->mm && 1401 !ptrace_may_access(task, mode)) { 1402 mmput(mm); 1403 mm = ERR_PTR(-EACCES); 1404 } 1405 up_read(&task->signal->exec_update_lock); 1406 1407 return mm; 1408 } 1409 1410 static void complete_vfork_done(struct task_struct *tsk) 1411 { 1412 struct completion *vfork; 1413 1414 task_lock(tsk); 1415 vfork = tsk->vfork_done; 1416 if (likely(vfork)) { 1417 tsk->vfork_done = NULL; 1418 complete(vfork); 1419 } 1420 task_unlock(tsk); 1421 } 1422 1423 static int wait_for_vfork_done(struct task_struct *child, 1424 struct completion *vfork) 1425 { 1426 int killed; 1427 1428 freezer_do_not_count(); 1429 cgroup_enter_frozen(); 1430 killed = wait_for_completion_killable(vfork); 1431 cgroup_leave_frozen(false); 1432 freezer_count(); 1433 1434 if (killed) { 1435 task_lock(child); 1436 child->vfork_done = NULL; 1437 task_unlock(child); 1438 } 1439 1440 put_task_struct(child); 1441 return killed; 1442 } 1443 1444 /* Please note the differences between mmput and mm_release. 1445 * mmput is called whenever we stop holding onto a mm_struct, 1446 * error success whatever. 1447 * 1448 * mm_release is called after a mm_struct has been removed 1449 * from the current process. 1450 * 1451 * This difference is important for error handling, when we 1452 * only half set up a mm_struct for a new process and need to restore 1453 * the old one. Because we mmput the new mm_struct before 1454 * restoring the old one. . . 1455 * Eric Biederman 10 January 1998 1456 */ 1457 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1458 { 1459 uprobe_free_utask(tsk); 1460 1461 /* Get rid of any cached register state */ 1462 deactivate_mm(tsk, mm); 1463 1464 /* 1465 * Signal userspace if we're not exiting with a core dump 1466 * because we want to leave the value intact for debugging 1467 * purposes. 1468 */ 1469 if (tsk->clear_child_tid) { 1470 if (atomic_read(&mm->mm_users) > 1) { 1471 /* 1472 * We don't check the error code - if userspace has 1473 * not set up a proper pointer then tough luck. 1474 */ 1475 put_user(0, tsk->clear_child_tid); 1476 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1477 1, NULL, NULL, 0, 0); 1478 } 1479 tsk->clear_child_tid = NULL; 1480 } 1481 1482 /* 1483 * All done, finally we can wake up parent and return this mm to him. 1484 * Also kthread_stop() uses this completion for synchronization. 1485 */ 1486 if (tsk->vfork_done) 1487 complete_vfork_done(tsk); 1488 } 1489 1490 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1491 { 1492 futex_exit_release(tsk); 1493 mm_release(tsk, mm); 1494 } 1495 1496 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1497 { 1498 futex_exec_release(tsk); 1499 mm_release(tsk, mm); 1500 } 1501 1502 /** 1503 * dup_mm() - duplicates an existing mm structure 1504 * @tsk: the task_struct with which the new mm will be associated. 1505 * @oldmm: the mm to duplicate. 1506 * 1507 * Allocates a new mm structure and duplicates the provided @oldmm structure 1508 * content into it. 1509 * 1510 * Return: the duplicated mm or NULL on failure. 1511 */ 1512 static struct mm_struct *dup_mm(struct task_struct *tsk, 1513 struct mm_struct *oldmm) 1514 { 1515 struct mm_struct *mm; 1516 int err; 1517 1518 mm = allocate_mm(); 1519 if (!mm) 1520 goto fail_nomem; 1521 1522 memcpy(mm, oldmm, sizeof(*mm)); 1523 1524 if (!mm_init(mm, tsk, mm->user_ns)) 1525 goto fail_nomem; 1526 1527 err = dup_mmap(mm, oldmm); 1528 if (err) 1529 goto free_pt; 1530 1531 mm->hiwater_rss = get_mm_rss(mm); 1532 mm->hiwater_vm = mm->total_vm; 1533 1534 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1535 goto free_pt; 1536 1537 return mm; 1538 1539 free_pt: 1540 /* don't put binfmt in mmput, we haven't got module yet */ 1541 mm->binfmt = NULL; 1542 mm_init_owner(mm, NULL); 1543 mmput(mm); 1544 1545 fail_nomem: 1546 return NULL; 1547 } 1548 1549 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1550 { 1551 struct mm_struct *mm, *oldmm; 1552 1553 tsk->min_flt = tsk->maj_flt = 0; 1554 tsk->nvcsw = tsk->nivcsw = 0; 1555 #ifdef CONFIG_DETECT_HUNG_TASK 1556 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1557 tsk->last_switch_time = 0; 1558 #endif 1559 1560 tsk->mm = NULL; 1561 tsk->active_mm = NULL; 1562 1563 /* 1564 * Are we cloning a kernel thread? 1565 * 1566 * We need to steal a active VM for that.. 1567 */ 1568 oldmm = current->mm; 1569 if (!oldmm) 1570 return 0; 1571 1572 if (clone_flags & CLONE_VM) { 1573 mmget(oldmm); 1574 mm = oldmm; 1575 } else { 1576 mm = dup_mm(tsk, current->mm); 1577 if (!mm) 1578 return -ENOMEM; 1579 } 1580 1581 tsk->mm = mm; 1582 tsk->active_mm = mm; 1583 return 0; 1584 } 1585 1586 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1587 { 1588 struct fs_struct *fs = current->fs; 1589 if (clone_flags & CLONE_FS) { 1590 /* tsk->fs is already what we want */ 1591 spin_lock(&fs->lock); 1592 if (fs->in_exec) { 1593 spin_unlock(&fs->lock); 1594 return -EAGAIN; 1595 } 1596 fs->users++; 1597 spin_unlock(&fs->lock); 1598 return 0; 1599 } 1600 tsk->fs = copy_fs_struct(fs); 1601 if (!tsk->fs) 1602 return -ENOMEM; 1603 return 0; 1604 } 1605 1606 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1607 { 1608 struct files_struct *oldf, *newf; 1609 int error = 0; 1610 1611 /* 1612 * A background process may not have any files ... 1613 */ 1614 oldf = current->files; 1615 if (!oldf) 1616 goto out; 1617 1618 if (clone_flags & CLONE_FILES) { 1619 atomic_inc(&oldf->count); 1620 goto out; 1621 } 1622 1623 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1624 if (!newf) 1625 goto out; 1626 1627 tsk->files = newf; 1628 error = 0; 1629 out: 1630 return error; 1631 } 1632 1633 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1634 { 1635 struct sighand_struct *sig; 1636 1637 if (clone_flags & CLONE_SIGHAND) { 1638 refcount_inc(¤t->sighand->count); 1639 return 0; 1640 } 1641 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1642 RCU_INIT_POINTER(tsk->sighand, sig); 1643 if (!sig) 1644 return -ENOMEM; 1645 1646 refcount_set(&sig->count, 1); 1647 spin_lock_irq(¤t->sighand->siglock); 1648 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1649 spin_unlock_irq(¤t->sighand->siglock); 1650 1651 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1652 if (clone_flags & CLONE_CLEAR_SIGHAND) 1653 flush_signal_handlers(tsk, 0); 1654 1655 return 0; 1656 } 1657 1658 void __cleanup_sighand(struct sighand_struct *sighand) 1659 { 1660 if (refcount_dec_and_test(&sighand->count)) { 1661 signalfd_cleanup(sighand); 1662 /* 1663 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1664 * without an RCU grace period, see __lock_task_sighand(). 1665 */ 1666 kmem_cache_free(sighand_cachep, sighand); 1667 } 1668 } 1669 1670 /* 1671 * Initialize POSIX timer handling for a thread group. 1672 */ 1673 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1674 { 1675 struct posix_cputimers *pct = &sig->posix_cputimers; 1676 unsigned long cpu_limit; 1677 1678 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1679 posix_cputimers_group_init(pct, cpu_limit); 1680 } 1681 1682 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1683 { 1684 struct signal_struct *sig; 1685 1686 if (clone_flags & CLONE_THREAD) 1687 return 0; 1688 1689 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1690 tsk->signal = sig; 1691 if (!sig) 1692 return -ENOMEM; 1693 1694 sig->nr_threads = 1; 1695 atomic_set(&sig->live, 1); 1696 refcount_set(&sig->sigcnt, 1); 1697 1698 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1699 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1700 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1701 1702 init_waitqueue_head(&sig->wait_chldexit); 1703 sig->curr_target = tsk; 1704 init_sigpending(&sig->shared_pending); 1705 INIT_HLIST_HEAD(&sig->multiprocess); 1706 seqlock_init(&sig->stats_lock); 1707 prev_cputime_init(&sig->prev_cputime); 1708 1709 #ifdef CONFIG_POSIX_TIMERS 1710 INIT_LIST_HEAD(&sig->posix_timers); 1711 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1712 sig->real_timer.function = it_real_fn; 1713 #endif 1714 1715 task_lock(current->group_leader); 1716 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1717 task_unlock(current->group_leader); 1718 1719 posix_cpu_timers_init_group(sig); 1720 1721 tty_audit_fork(sig); 1722 sched_autogroup_fork(sig); 1723 1724 sig->oom_score_adj = current->signal->oom_score_adj; 1725 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1726 1727 mutex_init(&sig->cred_guard_mutex); 1728 init_rwsem(&sig->exec_update_lock); 1729 1730 return 0; 1731 } 1732 1733 static void copy_seccomp(struct task_struct *p) 1734 { 1735 #ifdef CONFIG_SECCOMP 1736 /* 1737 * Must be called with sighand->lock held, which is common to 1738 * all threads in the group. Holding cred_guard_mutex is not 1739 * needed because this new task is not yet running and cannot 1740 * be racing exec. 1741 */ 1742 assert_spin_locked(¤t->sighand->siglock); 1743 1744 /* Ref-count the new filter user, and assign it. */ 1745 get_seccomp_filter(current); 1746 p->seccomp = current->seccomp; 1747 1748 /* 1749 * Explicitly enable no_new_privs here in case it got set 1750 * between the task_struct being duplicated and holding the 1751 * sighand lock. The seccomp state and nnp must be in sync. 1752 */ 1753 if (task_no_new_privs(current)) 1754 task_set_no_new_privs(p); 1755 1756 /* 1757 * If the parent gained a seccomp mode after copying thread 1758 * flags and between before we held the sighand lock, we have 1759 * to manually enable the seccomp thread flag here. 1760 */ 1761 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1762 set_task_syscall_work(p, SECCOMP); 1763 #endif 1764 } 1765 1766 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1767 { 1768 current->clear_child_tid = tidptr; 1769 1770 return task_pid_vnr(current); 1771 } 1772 1773 static void rt_mutex_init_task(struct task_struct *p) 1774 { 1775 raw_spin_lock_init(&p->pi_lock); 1776 #ifdef CONFIG_RT_MUTEXES 1777 p->pi_waiters = RB_ROOT_CACHED; 1778 p->pi_top_task = NULL; 1779 p->pi_blocked_on = NULL; 1780 #endif 1781 } 1782 1783 static inline void init_task_pid_links(struct task_struct *task) 1784 { 1785 enum pid_type type; 1786 1787 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1788 INIT_HLIST_NODE(&task->pid_links[type]); 1789 } 1790 1791 static inline void 1792 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1793 { 1794 if (type == PIDTYPE_PID) 1795 task->thread_pid = pid; 1796 else 1797 task->signal->pids[type] = pid; 1798 } 1799 1800 static inline void rcu_copy_process(struct task_struct *p) 1801 { 1802 #ifdef CONFIG_PREEMPT_RCU 1803 p->rcu_read_lock_nesting = 0; 1804 p->rcu_read_unlock_special.s = 0; 1805 p->rcu_blocked_node = NULL; 1806 INIT_LIST_HEAD(&p->rcu_node_entry); 1807 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1808 #ifdef CONFIG_TASKS_RCU 1809 p->rcu_tasks_holdout = false; 1810 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1811 p->rcu_tasks_idle_cpu = -1; 1812 #endif /* #ifdef CONFIG_TASKS_RCU */ 1813 #ifdef CONFIG_TASKS_TRACE_RCU 1814 p->trc_reader_nesting = 0; 1815 p->trc_reader_special.s = 0; 1816 INIT_LIST_HEAD(&p->trc_holdout_list); 1817 INIT_LIST_HEAD(&p->trc_blkd_node); 1818 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1819 } 1820 1821 struct pid *pidfd_pid(const struct file *file) 1822 { 1823 if (file->f_op == &pidfd_fops) 1824 return file->private_data; 1825 1826 return ERR_PTR(-EBADF); 1827 } 1828 1829 static int pidfd_release(struct inode *inode, struct file *file) 1830 { 1831 struct pid *pid = file->private_data; 1832 1833 file->private_data = NULL; 1834 put_pid(pid); 1835 return 0; 1836 } 1837 1838 #ifdef CONFIG_PROC_FS 1839 /** 1840 * pidfd_show_fdinfo - print information about a pidfd 1841 * @m: proc fdinfo file 1842 * @f: file referencing a pidfd 1843 * 1844 * Pid: 1845 * This function will print the pid that a given pidfd refers to in the 1846 * pid namespace of the procfs instance. 1847 * If the pid namespace of the process is not a descendant of the pid 1848 * namespace of the procfs instance 0 will be shown as its pid. This is 1849 * similar to calling getppid() on a process whose parent is outside of 1850 * its pid namespace. 1851 * 1852 * NSpid: 1853 * If pid namespaces are supported then this function will also print 1854 * the pid of a given pidfd refers to for all descendant pid namespaces 1855 * starting from the current pid namespace of the instance, i.e. the 1856 * Pid field and the first entry in the NSpid field will be identical. 1857 * If the pid namespace of the process is not a descendant of the pid 1858 * namespace of the procfs instance 0 will be shown as its first NSpid 1859 * entry and no others will be shown. 1860 * Note that this differs from the Pid and NSpid fields in 1861 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1862 * the pid namespace of the procfs instance. The difference becomes 1863 * obvious when sending around a pidfd between pid namespaces from a 1864 * different branch of the tree, i.e. where no ancestral relation is 1865 * present between the pid namespaces: 1866 * - create two new pid namespaces ns1 and ns2 in the initial pid 1867 * namespace (also take care to create new mount namespaces in the 1868 * new pid namespace and mount procfs) 1869 * - create a process with a pidfd in ns1 1870 * - send pidfd from ns1 to ns2 1871 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1872 * have exactly one entry, which is 0 1873 */ 1874 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1875 { 1876 struct pid *pid = f->private_data; 1877 struct pid_namespace *ns; 1878 pid_t nr = -1; 1879 1880 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1881 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1882 nr = pid_nr_ns(pid, ns); 1883 } 1884 1885 seq_put_decimal_ll(m, "Pid:\t", nr); 1886 1887 #ifdef CONFIG_PID_NS 1888 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1889 if (nr > 0) { 1890 int i; 1891 1892 /* If nr is non-zero it means that 'pid' is valid and that 1893 * ns, i.e. the pid namespace associated with the procfs 1894 * instance, is in the pid namespace hierarchy of pid. 1895 * Start at one below the already printed level. 1896 */ 1897 for (i = ns->level + 1; i <= pid->level; i++) 1898 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1899 } 1900 #endif 1901 seq_putc(m, '\n'); 1902 } 1903 #endif 1904 1905 /* 1906 * Poll support for process exit notification. 1907 */ 1908 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1909 { 1910 struct pid *pid = file->private_data; 1911 __poll_t poll_flags = 0; 1912 1913 poll_wait(file, &pid->wait_pidfd, pts); 1914 1915 /* 1916 * Inform pollers only when the whole thread group exits. 1917 * If the thread group leader exits before all other threads in the 1918 * group, then poll(2) should block, similar to the wait(2) family. 1919 */ 1920 if (thread_group_exited(pid)) 1921 poll_flags = EPOLLIN | EPOLLRDNORM; 1922 1923 return poll_flags; 1924 } 1925 1926 const struct file_operations pidfd_fops = { 1927 .release = pidfd_release, 1928 .poll = pidfd_poll, 1929 #ifdef CONFIG_PROC_FS 1930 .show_fdinfo = pidfd_show_fdinfo, 1931 #endif 1932 }; 1933 1934 static void __delayed_free_task(struct rcu_head *rhp) 1935 { 1936 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1937 1938 free_task(tsk); 1939 } 1940 1941 static __always_inline void delayed_free_task(struct task_struct *tsk) 1942 { 1943 if (IS_ENABLED(CONFIG_MEMCG)) 1944 call_rcu(&tsk->rcu, __delayed_free_task); 1945 else 1946 free_task(tsk); 1947 } 1948 1949 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1950 { 1951 /* Skip if kernel thread */ 1952 if (!tsk->mm) 1953 return; 1954 1955 /* Skip if spawning a thread or using vfork */ 1956 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1957 return; 1958 1959 /* We need to synchronize with __set_oom_adj */ 1960 mutex_lock(&oom_adj_mutex); 1961 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1962 /* Update the values in case they were changed after copy_signal */ 1963 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1964 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1965 mutex_unlock(&oom_adj_mutex); 1966 } 1967 1968 #ifdef CONFIG_RV 1969 static void rv_task_fork(struct task_struct *p) 1970 { 1971 int i; 1972 1973 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 1974 p->rv[i].da_mon.monitoring = false; 1975 } 1976 #else 1977 #define rv_task_fork(p) do {} while (0) 1978 #endif 1979 1980 /* 1981 * This creates a new process as a copy of the old one, 1982 * but does not actually start it yet. 1983 * 1984 * It copies the registers, and all the appropriate 1985 * parts of the process environment (as per the clone 1986 * flags). The actual kick-off is left to the caller. 1987 */ 1988 static __latent_entropy struct task_struct *copy_process( 1989 struct pid *pid, 1990 int trace, 1991 int node, 1992 struct kernel_clone_args *args) 1993 { 1994 int pidfd = -1, retval; 1995 struct task_struct *p; 1996 struct multiprocess_signals delayed; 1997 struct file *pidfile = NULL; 1998 const u64 clone_flags = args->flags; 1999 struct nsproxy *nsp = current->nsproxy; 2000 2001 /* 2002 * Don't allow sharing the root directory with processes in a different 2003 * namespace 2004 */ 2005 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2006 return ERR_PTR(-EINVAL); 2007 2008 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2009 return ERR_PTR(-EINVAL); 2010 2011 /* 2012 * Thread groups must share signals as well, and detached threads 2013 * can only be started up within the thread group. 2014 */ 2015 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2016 return ERR_PTR(-EINVAL); 2017 2018 /* 2019 * Shared signal handlers imply shared VM. By way of the above, 2020 * thread groups also imply shared VM. Blocking this case allows 2021 * for various simplifications in other code. 2022 */ 2023 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2024 return ERR_PTR(-EINVAL); 2025 2026 /* 2027 * Siblings of global init remain as zombies on exit since they are 2028 * not reaped by their parent (swapper). To solve this and to avoid 2029 * multi-rooted process trees, prevent global and container-inits 2030 * from creating siblings. 2031 */ 2032 if ((clone_flags & CLONE_PARENT) && 2033 current->signal->flags & SIGNAL_UNKILLABLE) 2034 return ERR_PTR(-EINVAL); 2035 2036 /* 2037 * If the new process will be in a different pid or user namespace 2038 * do not allow it to share a thread group with the forking task. 2039 */ 2040 if (clone_flags & CLONE_THREAD) { 2041 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2042 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2043 return ERR_PTR(-EINVAL); 2044 } 2045 2046 /* 2047 * If the new process will be in a different time namespace 2048 * do not allow it to share VM or a thread group with the forking task. 2049 * 2050 * On vfork, the child process enters the target time namespace only 2051 * after exec. 2052 */ 2053 if ((clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM) { 2054 if (nsp->time_ns != nsp->time_ns_for_children) 2055 return ERR_PTR(-EINVAL); 2056 } 2057 2058 if (clone_flags & CLONE_PIDFD) { 2059 /* 2060 * - CLONE_DETACHED is blocked so that we can potentially 2061 * reuse it later for CLONE_PIDFD. 2062 * - CLONE_THREAD is blocked until someone really needs it. 2063 */ 2064 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2065 return ERR_PTR(-EINVAL); 2066 } 2067 2068 /* 2069 * Force any signals received before this point to be delivered 2070 * before the fork happens. Collect up signals sent to multiple 2071 * processes that happen during the fork and delay them so that 2072 * they appear to happen after the fork. 2073 */ 2074 sigemptyset(&delayed.signal); 2075 INIT_HLIST_NODE(&delayed.node); 2076 2077 spin_lock_irq(¤t->sighand->siglock); 2078 if (!(clone_flags & CLONE_THREAD)) 2079 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2080 recalc_sigpending(); 2081 spin_unlock_irq(¤t->sighand->siglock); 2082 retval = -ERESTARTNOINTR; 2083 if (task_sigpending(current)) 2084 goto fork_out; 2085 2086 retval = -ENOMEM; 2087 p = dup_task_struct(current, node); 2088 if (!p) 2089 goto fork_out; 2090 p->flags &= ~PF_KTHREAD; 2091 if (args->kthread) 2092 p->flags |= PF_KTHREAD; 2093 if (args->io_thread) { 2094 /* 2095 * Mark us an IO worker, and block any signal that isn't 2096 * fatal or STOP 2097 */ 2098 p->flags |= PF_IO_WORKER; 2099 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2100 } 2101 2102 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2103 /* 2104 * Clear TID on mm_release()? 2105 */ 2106 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2107 2108 ftrace_graph_init_task(p); 2109 2110 rt_mutex_init_task(p); 2111 2112 lockdep_assert_irqs_enabled(); 2113 #ifdef CONFIG_PROVE_LOCKING 2114 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2115 #endif 2116 retval = copy_creds(p, clone_flags); 2117 if (retval < 0) 2118 goto bad_fork_free; 2119 2120 retval = -EAGAIN; 2121 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2122 if (p->real_cred->user != INIT_USER && 2123 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2124 goto bad_fork_cleanup_count; 2125 } 2126 current->flags &= ~PF_NPROC_EXCEEDED; 2127 2128 /* 2129 * If multiple threads are within copy_process(), then this check 2130 * triggers too late. This doesn't hurt, the check is only there 2131 * to stop root fork bombs. 2132 */ 2133 retval = -EAGAIN; 2134 if (data_race(nr_threads >= max_threads)) 2135 goto bad_fork_cleanup_count; 2136 2137 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2138 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2139 p->flags |= PF_FORKNOEXEC; 2140 INIT_LIST_HEAD(&p->children); 2141 INIT_LIST_HEAD(&p->sibling); 2142 rcu_copy_process(p); 2143 p->vfork_done = NULL; 2144 spin_lock_init(&p->alloc_lock); 2145 2146 init_sigpending(&p->pending); 2147 2148 p->utime = p->stime = p->gtime = 0; 2149 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2150 p->utimescaled = p->stimescaled = 0; 2151 #endif 2152 prev_cputime_init(&p->prev_cputime); 2153 2154 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2155 seqcount_init(&p->vtime.seqcount); 2156 p->vtime.starttime = 0; 2157 p->vtime.state = VTIME_INACTIVE; 2158 #endif 2159 2160 #ifdef CONFIG_IO_URING 2161 p->io_uring = NULL; 2162 #endif 2163 2164 #if defined(SPLIT_RSS_COUNTING) 2165 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2166 #endif 2167 2168 p->default_timer_slack_ns = current->timer_slack_ns; 2169 2170 #ifdef CONFIG_PSI 2171 p->psi_flags = 0; 2172 #endif 2173 2174 task_io_accounting_init(&p->ioac); 2175 acct_clear_integrals(p); 2176 2177 posix_cputimers_init(&p->posix_cputimers); 2178 2179 p->io_context = NULL; 2180 audit_set_context(p, NULL); 2181 cgroup_fork(p); 2182 if (args->kthread) { 2183 if (!set_kthread_struct(p)) 2184 goto bad_fork_cleanup_delayacct; 2185 } 2186 #ifdef CONFIG_NUMA 2187 p->mempolicy = mpol_dup(p->mempolicy); 2188 if (IS_ERR(p->mempolicy)) { 2189 retval = PTR_ERR(p->mempolicy); 2190 p->mempolicy = NULL; 2191 goto bad_fork_cleanup_delayacct; 2192 } 2193 #endif 2194 #ifdef CONFIG_CPUSETS 2195 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2196 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2197 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2198 #endif 2199 #ifdef CONFIG_TRACE_IRQFLAGS 2200 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2201 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2202 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2203 p->softirqs_enabled = 1; 2204 p->softirq_context = 0; 2205 #endif 2206 2207 p->pagefault_disabled = 0; 2208 2209 #ifdef CONFIG_LOCKDEP 2210 lockdep_init_task(p); 2211 #endif 2212 2213 #ifdef CONFIG_DEBUG_MUTEXES 2214 p->blocked_on = NULL; /* not blocked yet */ 2215 #endif 2216 #ifdef CONFIG_BCACHE 2217 p->sequential_io = 0; 2218 p->sequential_io_avg = 0; 2219 #endif 2220 #ifdef CONFIG_BPF_SYSCALL 2221 RCU_INIT_POINTER(p->bpf_storage, NULL); 2222 p->bpf_ctx = NULL; 2223 #endif 2224 2225 /* Perform scheduler related setup. Assign this task to a CPU. */ 2226 retval = sched_fork(clone_flags, p); 2227 if (retval) 2228 goto bad_fork_cleanup_policy; 2229 2230 retval = perf_event_init_task(p, clone_flags); 2231 if (retval) 2232 goto bad_fork_cleanup_policy; 2233 retval = audit_alloc(p); 2234 if (retval) 2235 goto bad_fork_cleanup_perf; 2236 /* copy all the process information */ 2237 shm_init_task(p); 2238 retval = security_task_alloc(p, clone_flags); 2239 if (retval) 2240 goto bad_fork_cleanup_audit; 2241 retval = copy_semundo(clone_flags, p); 2242 if (retval) 2243 goto bad_fork_cleanup_security; 2244 retval = copy_files(clone_flags, p); 2245 if (retval) 2246 goto bad_fork_cleanup_semundo; 2247 retval = copy_fs(clone_flags, p); 2248 if (retval) 2249 goto bad_fork_cleanup_files; 2250 retval = copy_sighand(clone_flags, p); 2251 if (retval) 2252 goto bad_fork_cleanup_fs; 2253 retval = copy_signal(clone_flags, p); 2254 if (retval) 2255 goto bad_fork_cleanup_sighand; 2256 retval = copy_mm(clone_flags, p); 2257 if (retval) 2258 goto bad_fork_cleanup_signal; 2259 retval = copy_namespaces(clone_flags, p); 2260 if (retval) 2261 goto bad_fork_cleanup_mm; 2262 retval = copy_io(clone_flags, p); 2263 if (retval) 2264 goto bad_fork_cleanup_namespaces; 2265 retval = copy_thread(p, args); 2266 if (retval) 2267 goto bad_fork_cleanup_io; 2268 2269 stackleak_task_init(p); 2270 2271 if (pid != &init_struct_pid) { 2272 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2273 args->set_tid_size); 2274 if (IS_ERR(pid)) { 2275 retval = PTR_ERR(pid); 2276 goto bad_fork_cleanup_thread; 2277 } 2278 } 2279 2280 /* 2281 * This has to happen after we've potentially unshared the file 2282 * descriptor table (so that the pidfd doesn't leak into the child 2283 * if the fd table isn't shared). 2284 */ 2285 if (clone_flags & CLONE_PIDFD) { 2286 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2287 if (retval < 0) 2288 goto bad_fork_free_pid; 2289 2290 pidfd = retval; 2291 2292 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2293 O_RDWR | O_CLOEXEC); 2294 if (IS_ERR(pidfile)) { 2295 put_unused_fd(pidfd); 2296 retval = PTR_ERR(pidfile); 2297 goto bad_fork_free_pid; 2298 } 2299 get_pid(pid); /* held by pidfile now */ 2300 2301 retval = put_user(pidfd, args->pidfd); 2302 if (retval) 2303 goto bad_fork_put_pidfd; 2304 } 2305 2306 #ifdef CONFIG_BLOCK 2307 p->plug = NULL; 2308 #endif 2309 futex_init_task(p); 2310 2311 /* 2312 * sigaltstack should be cleared when sharing the same VM 2313 */ 2314 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2315 sas_ss_reset(p); 2316 2317 /* 2318 * Syscall tracing and stepping should be turned off in the 2319 * child regardless of CLONE_PTRACE. 2320 */ 2321 user_disable_single_step(p); 2322 clear_task_syscall_work(p, SYSCALL_TRACE); 2323 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2324 clear_task_syscall_work(p, SYSCALL_EMU); 2325 #endif 2326 clear_tsk_latency_tracing(p); 2327 2328 /* ok, now we should be set up.. */ 2329 p->pid = pid_nr(pid); 2330 if (clone_flags & CLONE_THREAD) { 2331 p->group_leader = current->group_leader; 2332 p->tgid = current->tgid; 2333 } else { 2334 p->group_leader = p; 2335 p->tgid = p->pid; 2336 } 2337 2338 p->nr_dirtied = 0; 2339 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2340 p->dirty_paused_when = 0; 2341 2342 p->pdeath_signal = 0; 2343 INIT_LIST_HEAD(&p->thread_group); 2344 p->task_works = NULL; 2345 clear_posix_cputimers_work(p); 2346 2347 #ifdef CONFIG_KRETPROBES 2348 p->kretprobe_instances.first = NULL; 2349 #endif 2350 #ifdef CONFIG_RETHOOK 2351 p->rethooks.first = NULL; 2352 #endif 2353 2354 /* 2355 * Ensure that the cgroup subsystem policies allow the new process to be 2356 * forked. It should be noted that the new process's css_set can be changed 2357 * between here and cgroup_post_fork() if an organisation operation is in 2358 * progress. 2359 */ 2360 retval = cgroup_can_fork(p, args); 2361 if (retval) 2362 goto bad_fork_put_pidfd; 2363 2364 /* 2365 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2366 * the new task on the correct runqueue. All this *before* the task 2367 * becomes visible. 2368 * 2369 * This isn't part of ->can_fork() because while the re-cloning is 2370 * cgroup specific, it unconditionally needs to place the task on a 2371 * runqueue. 2372 */ 2373 sched_cgroup_fork(p, args); 2374 2375 /* 2376 * From this point on we must avoid any synchronous user-space 2377 * communication until we take the tasklist-lock. In particular, we do 2378 * not want user-space to be able to predict the process start-time by 2379 * stalling fork(2) after we recorded the start_time but before it is 2380 * visible to the system. 2381 */ 2382 2383 p->start_time = ktime_get_ns(); 2384 p->start_boottime = ktime_get_boottime_ns(); 2385 2386 /* 2387 * Make it visible to the rest of the system, but dont wake it up yet. 2388 * Need tasklist lock for parent etc handling! 2389 */ 2390 write_lock_irq(&tasklist_lock); 2391 2392 /* CLONE_PARENT re-uses the old parent */ 2393 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2394 p->real_parent = current->real_parent; 2395 p->parent_exec_id = current->parent_exec_id; 2396 if (clone_flags & CLONE_THREAD) 2397 p->exit_signal = -1; 2398 else 2399 p->exit_signal = current->group_leader->exit_signal; 2400 } else { 2401 p->real_parent = current; 2402 p->parent_exec_id = current->self_exec_id; 2403 p->exit_signal = args->exit_signal; 2404 } 2405 2406 klp_copy_process(p); 2407 2408 sched_core_fork(p); 2409 2410 spin_lock(¤t->sighand->siglock); 2411 2412 /* 2413 * Copy seccomp details explicitly here, in case they were changed 2414 * before holding sighand lock. 2415 */ 2416 copy_seccomp(p); 2417 2418 rv_task_fork(p); 2419 2420 rseq_fork(p, clone_flags); 2421 2422 /* Don't start children in a dying pid namespace */ 2423 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2424 retval = -ENOMEM; 2425 goto bad_fork_cancel_cgroup; 2426 } 2427 2428 /* Let kill terminate clone/fork in the middle */ 2429 if (fatal_signal_pending(current)) { 2430 retval = -EINTR; 2431 goto bad_fork_cancel_cgroup; 2432 } 2433 2434 init_task_pid_links(p); 2435 if (likely(p->pid)) { 2436 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2437 2438 init_task_pid(p, PIDTYPE_PID, pid); 2439 if (thread_group_leader(p)) { 2440 init_task_pid(p, PIDTYPE_TGID, pid); 2441 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2442 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2443 2444 if (is_child_reaper(pid)) { 2445 ns_of_pid(pid)->child_reaper = p; 2446 p->signal->flags |= SIGNAL_UNKILLABLE; 2447 } 2448 p->signal->shared_pending.signal = delayed.signal; 2449 p->signal->tty = tty_kref_get(current->signal->tty); 2450 /* 2451 * Inherit has_child_subreaper flag under the same 2452 * tasklist_lock with adding child to the process tree 2453 * for propagate_has_child_subreaper optimization. 2454 */ 2455 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2456 p->real_parent->signal->is_child_subreaper; 2457 list_add_tail(&p->sibling, &p->real_parent->children); 2458 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2459 attach_pid(p, PIDTYPE_TGID); 2460 attach_pid(p, PIDTYPE_PGID); 2461 attach_pid(p, PIDTYPE_SID); 2462 __this_cpu_inc(process_counts); 2463 } else { 2464 current->signal->nr_threads++; 2465 atomic_inc(¤t->signal->live); 2466 refcount_inc(¤t->signal->sigcnt); 2467 task_join_group_stop(p); 2468 list_add_tail_rcu(&p->thread_group, 2469 &p->group_leader->thread_group); 2470 list_add_tail_rcu(&p->thread_node, 2471 &p->signal->thread_head); 2472 } 2473 attach_pid(p, PIDTYPE_PID); 2474 nr_threads++; 2475 } 2476 total_forks++; 2477 hlist_del_init(&delayed.node); 2478 spin_unlock(¤t->sighand->siglock); 2479 syscall_tracepoint_update(p); 2480 write_unlock_irq(&tasklist_lock); 2481 2482 if (pidfile) 2483 fd_install(pidfd, pidfile); 2484 2485 proc_fork_connector(p); 2486 sched_post_fork(p); 2487 cgroup_post_fork(p, args); 2488 perf_event_fork(p); 2489 2490 trace_task_newtask(p, clone_flags); 2491 uprobe_copy_process(p, clone_flags); 2492 2493 copy_oom_score_adj(clone_flags, p); 2494 2495 return p; 2496 2497 bad_fork_cancel_cgroup: 2498 sched_core_free(p); 2499 spin_unlock(¤t->sighand->siglock); 2500 write_unlock_irq(&tasklist_lock); 2501 cgroup_cancel_fork(p, args); 2502 bad_fork_put_pidfd: 2503 if (clone_flags & CLONE_PIDFD) { 2504 fput(pidfile); 2505 put_unused_fd(pidfd); 2506 } 2507 bad_fork_free_pid: 2508 if (pid != &init_struct_pid) 2509 free_pid(pid); 2510 bad_fork_cleanup_thread: 2511 exit_thread(p); 2512 bad_fork_cleanup_io: 2513 if (p->io_context) 2514 exit_io_context(p); 2515 bad_fork_cleanup_namespaces: 2516 exit_task_namespaces(p); 2517 bad_fork_cleanup_mm: 2518 if (p->mm) { 2519 mm_clear_owner(p->mm, p); 2520 mmput(p->mm); 2521 } 2522 bad_fork_cleanup_signal: 2523 if (!(clone_flags & CLONE_THREAD)) 2524 free_signal_struct(p->signal); 2525 bad_fork_cleanup_sighand: 2526 __cleanup_sighand(p->sighand); 2527 bad_fork_cleanup_fs: 2528 exit_fs(p); /* blocking */ 2529 bad_fork_cleanup_files: 2530 exit_files(p); /* blocking */ 2531 bad_fork_cleanup_semundo: 2532 exit_sem(p); 2533 bad_fork_cleanup_security: 2534 security_task_free(p); 2535 bad_fork_cleanup_audit: 2536 audit_free(p); 2537 bad_fork_cleanup_perf: 2538 perf_event_free_task(p); 2539 bad_fork_cleanup_policy: 2540 lockdep_free_task(p); 2541 #ifdef CONFIG_NUMA 2542 mpol_put(p->mempolicy); 2543 #endif 2544 bad_fork_cleanup_delayacct: 2545 delayacct_tsk_free(p); 2546 bad_fork_cleanup_count: 2547 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2548 exit_creds(p); 2549 bad_fork_free: 2550 WRITE_ONCE(p->__state, TASK_DEAD); 2551 exit_task_stack_account(p); 2552 put_task_stack(p); 2553 delayed_free_task(p); 2554 fork_out: 2555 spin_lock_irq(¤t->sighand->siglock); 2556 hlist_del_init(&delayed.node); 2557 spin_unlock_irq(¤t->sighand->siglock); 2558 return ERR_PTR(retval); 2559 } 2560 2561 static inline void init_idle_pids(struct task_struct *idle) 2562 { 2563 enum pid_type type; 2564 2565 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2566 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2567 init_task_pid(idle, type, &init_struct_pid); 2568 } 2569 } 2570 2571 static int idle_dummy(void *dummy) 2572 { 2573 /* This function is never called */ 2574 return 0; 2575 } 2576 2577 struct task_struct * __init fork_idle(int cpu) 2578 { 2579 struct task_struct *task; 2580 struct kernel_clone_args args = { 2581 .flags = CLONE_VM, 2582 .fn = &idle_dummy, 2583 .fn_arg = NULL, 2584 .kthread = 1, 2585 .idle = 1, 2586 }; 2587 2588 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2589 if (!IS_ERR(task)) { 2590 init_idle_pids(task); 2591 init_idle(task, cpu); 2592 } 2593 2594 return task; 2595 } 2596 2597 struct mm_struct *copy_init_mm(void) 2598 { 2599 return dup_mm(NULL, &init_mm); 2600 } 2601 2602 /* 2603 * This is like kernel_clone(), but shaved down and tailored to just 2604 * creating io_uring workers. It returns a created task, or an error pointer. 2605 * The returned task is inactive, and the caller must fire it up through 2606 * wake_up_new_task(p). All signals are blocked in the created task. 2607 */ 2608 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2609 { 2610 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2611 CLONE_IO; 2612 struct kernel_clone_args args = { 2613 .flags = ((lower_32_bits(flags) | CLONE_VM | 2614 CLONE_UNTRACED) & ~CSIGNAL), 2615 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2616 .fn = fn, 2617 .fn_arg = arg, 2618 .io_thread = 1, 2619 }; 2620 2621 return copy_process(NULL, 0, node, &args); 2622 } 2623 2624 /* 2625 * Ok, this is the main fork-routine. 2626 * 2627 * It copies the process, and if successful kick-starts 2628 * it and waits for it to finish using the VM if required. 2629 * 2630 * args->exit_signal is expected to be checked for sanity by the caller. 2631 */ 2632 pid_t kernel_clone(struct kernel_clone_args *args) 2633 { 2634 u64 clone_flags = args->flags; 2635 struct completion vfork; 2636 struct pid *pid; 2637 struct task_struct *p; 2638 int trace = 0; 2639 pid_t nr; 2640 2641 /* 2642 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2643 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2644 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2645 * field in struct clone_args and it still doesn't make sense to have 2646 * them both point at the same memory location. Performing this check 2647 * here has the advantage that we don't need to have a separate helper 2648 * to check for legacy clone(). 2649 */ 2650 if ((args->flags & CLONE_PIDFD) && 2651 (args->flags & CLONE_PARENT_SETTID) && 2652 (args->pidfd == args->parent_tid)) 2653 return -EINVAL; 2654 2655 /* 2656 * Determine whether and which event to report to ptracer. When 2657 * called from kernel_thread or CLONE_UNTRACED is explicitly 2658 * requested, no event is reported; otherwise, report if the event 2659 * for the type of forking is enabled. 2660 */ 2661 if (!(clone_flags & CLONE_UNTRACED)) { 2662 if (clone_flags & CLONE_VFORK) 2663 trace = PTRACE_EVENT_VFORK; 2664 else if (args->exit_signal != SIGCHLD) 2665 trace = PTRACE_EVENT_CLONE; 2666 else 2667 trace = PTRACE_EVENT_FORK; 2668 2669 if (likely(!ptrace_event_enabled(current, trace))) 2670 trace = 0; 2671 } 2672 2673 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2674 add_latent_entropy(); 2675 2676 if (IS_ERR(p)) 2677 return PTR_ERR(p); 2678 2679 /* 2680 * Do this prior waking up the new thread - the thread pointer 2681 * might get invalid after that point, if the thread exits quickly. 2682 */ 2683 trace_sched_process_fork(current, p); 2684 2685 pid = get_task_pid(p, PIDTYPE_PID); 2686 nr = pid_vnr(pid); 2687 2688 if (clone_flags & CLONE_PARENT_SETTID) 2689 put_user(nr, args->parent_tid); 2690 2691 if (clone_flags & CLONE_VFORK) { 2692 p->vfork_done = &vfork; 2693 init_completion(&vfork); 2694 get_task_struct(p); 2695 } 2696 2697 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2698 /* lock the task to synchronize with memcg migration */ 2699 task_lock(p); 2700 lru_gen_add_mm(p->mm); 2701 task_unlock(p); 2702 } 2703 2704 wake_up_new_task(p); 2705 2706 /* forking complete and child started to run, tell ptracer */ 2707 if (unlikely(trace)) 2708 ptrace_event_pid(trace, pid); 2709 2710 if (clone_flags & CLONE_VFORK) { 2711 if (!wait_for_vfork_done(p, &vfork)) 2712 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2713 } 2714 2715 put_pid(pid); 2716 return nr; 2717 } 2718 2719 /* 2720 * Create a kernel thread. 2721 */ 2722 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2723 { 2724 struct kernel_clone_args args = { 2725 .flags = ((lower_32_bits(flags) | CLONE_VM | 2726 CLONE_UNTRACED) & ~CSIGNAL), 2727 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2728 .fn = fn, 2729 .fn_arg = arg, 2730 .kthread = 1, 2731 }; 2732 2733 return kernel_clone(&args); 2734 } 2735 2736 /* 2737 * Create a user mode thread. 2738 */ 2739 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2740 { 2741 struct kernel_clone_args args = { 2742 .flags = ((lower_32_bits(flags) | CLONE_VM | 2743 CLONE_UNTRACED) & ~CSIGNAL), 2744 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2745 .fn = fn, 2746 .fn_arg = arg, 2747 }; 2748 2749 return kernel_clone(&args); 2750 } 2751 2752 #ifdef __ARCH_WANT_SYS_FORK 2753 SYSCALL_DEFINE0(fork) 2754 { 2755 #ifdef CONFIG_MMU 2756 struct kernel_clone_args args = { 2757 .exit_signal = SIGCHLD, 2758 }; 2759 2760 return kernel_clone(&args); 2761 #else 2762 /* can not support in nommu mode */ 2763 return -EINVAL; 2764 #endif 2765 } 2766 #endif 2767 2768 #ifdef __ARCH_WANT_SYS_VFORK 2769 SYSCALL_DEFINE0(vfork) 2770 { 2771 struct kernel_clone_args args = { 2772 .flags = CLONE_VFORK | CLONE_VM, 2773 .exit_signal = SIGCHLD, 2774 }; 2775 2776 return kernel_clone(&args); 2777 } 2778 #endif 2779 2780 #ifdef __ARCH_WANT_SYS_CLONE 2781 #ifdef CONFIG_CLONE_BACKWARDS 2782 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2783 int __user *, parent_tidptr, 2784 unsigned long, tls, 2785 int __user *, child_tidptr) 2786 #elif defined(CONFIG_CLONE_BACKWARDS2) 2787 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2788 int __user *, parent_tidptr, 2789 int __user *, child_tidptr, 2790 unsigned long, tls) 2791 #elif defined(CONFIG_CLONE_BACKWARDS3) 2792 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2793 int, stack_size, 2794 int __user *, parent_tidptr, 2795 int __user *, child_tidptr, 2796 unsigned long, tls) 2797 #else 2798 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2799 int __user *, parent_tidptr, 2800 int __user *, child_tidptr, 2801 unsigned long, tls) 2802 #endif 2803 { 2804 struct kernel_clone_args args = { 2805 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2806 .pidfd = parent_tidptr, 2807 .child_tid = child_tidptr, 2808 .parent_tid = parent_tidptr, 2809 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2810 .stack = newsp, 2811 .tls = tls, 2812 }; 2813 2814 return kernel_clone(&args); 2815 } 2816 #endif 2817 2818 #ifdef __ARCH_WANT_SYS_CLONE3 2819 2820 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2821 struct clone_args __user *uargs, 2822 size_t usize) 2823 { 2824 int err; 2825 struct clone_args args; 2826 pid_t *kset_tid = kargs->set_tid; 2827 2828 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2829 CLONE_ARGS_SIZE_VER0); 2830 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2831 CLONE_ARGS_SIZE_VER1); 2832 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2833 CLONE_ARGS_SIZE_VER2); 2834 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2835 2836 if (unlikely(usize > PAGE_SIZE)) 2837 return -E2BIG; 2838 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2839 return -EINVAL; 2840 2841 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2842 if (err) 2843 return err; 2844 2845 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2846 return -EINVAL; 2847 2848 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2849 return -EINVAL; 2850 2851 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2852 return -EINVAL; 2853 2854 /* 2855 * Verify that higher 32bits of exit_signal are unset and that 2856 * it is a valid signal 2857 */ 2858 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2859 !valid_signal(args.exit_signal))) 2860 return -EINVAL; 2861 2862 if ((args.flags & CLONE_INTO_CGROUP) && 2863 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2864 return -EINVAL; 2865 2866 *kargs = (struct kernel_clone_args){ 2867 .flags = args.flags, 2868 .pidfd = u64_to_user_ptr(args.pidfd), 2869 .child_tid = u64_to_user_ptr(args.child_tid), 2870 .parent_tid = u64_to_user_ptr(args.parent_tid), 2871 .exit_signal = args.exit_signal, 2872 .stack = args.stack, 2873 .stack_size = args.stack_size, 2874 .tls = args.tls, 2875 .set_tid_size = args.set_tid_size, 2876 .cgroup = args.cgroup, 2877 }; 2878 2879 if (args.set_tid && 2880 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2881 (kargs->set_tid_size * sizeof(pid_t)))) 2882 return -EFAULT; 2883 2884 kargs->set_tid = kset_tid; 2885 2886 return 0; 2887 } 2888 2889 /** 2890 * clone3_stack_valid - check and prepare stack 2891 * @kargs: kernel clone args 2892 * 2893 * Verify that the stack arguments userspace gave us are sane. 2894 * In addition, set the stack direction for userspace since it's easy for us to 2895 * determine. 2896 */ 2897 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2898 { 2899 if (kargs->stack == 0) { 2900 if (kargs->stack_size > 0) 2901 return false; 2902 } else { 2903 if (kargs->stack_size == 0) 2904 return false; 2905 2906 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2907 return false; 2908 2909 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2910 kargs->stack += kargs->stack_size; 2911 #endif 2912 } 2913 2914 return true; 2915 } 2916 2917 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2918 { 2919 /* Verify that no unknown flags are passed along. */ 2920 if (kargs->flags & 2921 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2922 return false; 2923 2924 /* 2925 * - make the CLONE_DETACHED bit reusable for clone3 2926 * - make the CSIGNAL bits reusable for clone3 2927 */ 2928 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2929 return false; 2930 2931 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2932 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2933 return false; 2934 2935 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2936 kargs->exit_signal) 2937 return false; 2938 2939 if (!clone3_stack_valid(kargs)) 2940 return false; 2941 2942 return true; 2943 } 2944 2945 /** 2946 * clone3 - create a new process with specific properties 2947 * @uargs: argument structure 2948 * @size: size of @uargs 2949 * 2950 * clone3() is the extensible successor to clone()/clone2(). 2951 * It takes a struct as argument that is versioned by its size. 2952 * 2953 * Return: On success, a positive PID for the child process. 2954 * On error, a negative errno number. 2955 */ 2956 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2957 { 2958 int err; 2959 2960 struct kernel_clone_args kargs; 2961 pid_t set_tid[MAX_PID_NS_LEVEL]; 2962 2963 kargs.set_tid = set_tid; 2964 2965 err = copy_clone_args_from_user(&kargs, uargs, size); 2966 if (err) 2967 return err; 2968 2969 if (!clone3_args_valid(&kargs)) 2970 return -EINVAL; 2971 2972 return kernel_clone(&kargs); 2973 } 2974 #endif 2975 2976 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2977 { 2978 struct task_struct *leader, *parent, *child; 2979 int res; 2980 2981 read_lock(&tasklist_lock); 2982 leader = top = top->group_leader; 2983 down: 2984 for_each_thread(leader, parent) { 2985 list_for_each_entry(child, &parent->children, sibling) { 2986 res = visitor(child, data); 2987 if (res) { 2988 if (res < 0) 2989 goto out; 2990 leader = child; 2991 goto down; 2992 } 2993 up: 2994 ; 2995 } 2996 } 2997 2998 if (leader != top) { 2999 child = leader; 3000 parent = child->real_parent; 3001 leader = parent->group_leader; 3002 goto up; 3003 } 3004 out: 3005 read_unlock(&tasklist_lock); 3006 } 3007 3008 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3009 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3010 #endif 3011 3012 static void sighand_ctor(void *data) 3013 { 3014 struct sighand_struct *sighand = data; 3015 3016 spin_lock_init(&sighand->siglock); 3017 init_waitqueue_head(&sighand->signalfd_wqh); 3018 } 3019 3020 void __init proc_caches_init(void) 3021 { 3022 unsigned int mm_size; 3023 3024 sighand_cachep = kmem_cache_create("sighand_cache", 3025 sizeof(struct sighand_struct), 0, 3026 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3027 SLAB_ACCOUNT, sighand_ctor); 3028 signal_cachep = kmem_cache_create("signal_cache", 3029 sizeof(struct signal_struct), 0, 3030 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3031 NULL); 3032 files_cachep = kmem_cache_create("files_cache", 3033 sizeof(struct files_struct), 0, 3034 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3035 NULL); 3036 fs_cachep = kmem_cache_create("fs_cache", 3037 sizeof(struct fs_struct), 0, 3038 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3039 NULL); 3040 3041 /* 3042 * The mm_cpumask is located at the end of mm_struct, and is 3043 * dynamically sized based on the maximum CPU number this system 3044 * can have, taking hotplug into account (nr_cpu_ids). 3045 */ 3046 mm_size = sizeof(struct mm_struct) + cpumask_size(); 3047 3048 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3049 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3050 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3051 offsetof(struct mm_struct, saved_auxv), 3052 sizeof_field(struct mm_struct, saved_auxv), 3053 NULL); 3054 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3055 mmap_init(); 3056 nsproxy_cache_init(); 3057 } 3058 3059 /* 3060 * Check constraints on flags passed to the unshare system call. 3061 */ 3062 static int check_unshare_flags(unsigned long unshare_flags) 3063 { 3064 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3065 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3066 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3067 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3068 CLONE_NEWTIME)) 3069 return -EINVAL; 3070 /* 3071 * Not implemented, but pretend it works if there is nothing 3072 * to unshare. Note that unsharing the address space or the 3073 * signal handlers also need to unshare the signal queues (aka 3074 * CLONE_THREAD). 3075 */ 3076 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3077 if (!thread_group_empty(current)) 3078 return -EINVAL; 3079 } 3080 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3081 if (refcount_read(¤t->sighand->count) > 1) 3082 return -EINVAL; 3083 } 3084 if (unshare_flags & CLONE_VM) { 3085 if (!current_is_single_threaded()) 3086 return -EINVAL; 3087 } 3088 3089 return 0; 3090 } 3091 3092 /* 3093 * Unshare the filesystem structure if it is being shared 3094 */ 3095 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3096 { 3097 struct fs_struct *fs = current->fs; 3098 3099 if (!(unshare_flags & CLONE_FS) || !fs) 3100 return 0; 3101 3102 /* don't need lock here; in the worst case we'll do useless copy */ 3103 if (fs->users == 1) 3104 return 0; 3105 3106 *new_fsp = copy_fs_struct(fs); 3107 if (!*new_fsp) 3108 return -ENOMEM; 3109 3110 return 0; 3111 } 3112 3113 /* 3114 * Unshare file descriptor table if it is being shared 3115 */ 3116 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3117 struct files_struct **new_fdp) 3118 { 3119 struct files_struct *fd = current->files; 3120 int error = 0; 3121 3122 if ((unshare_flags & CLONE_FILES) && 3123 (fd && atomic_read(&fd->count) > 1)) { 3124 *new_fdp = dup_fd(fd, max_fds, &error); 3125 if (!*new_fdp) 3126 return error; 3127 } 3128 3129 return 0; 3130 } 3131 3132 /* 3133 * unshare allows a process to 'unshare' part of the process 3134 * context which was originally shared using clone. copy_* 3135 * functions used by kernel_clone() cannot be used here directly 3136 * because they modify an inactive task_struct that is being 3137 * constructed. Here we are modifying the current, active, 3138 * task_struct. 3139 */ 3140 int ksys_unshare(unsigned long unshare_flags) 3141 { 3142 struct fs_struct *fs, *new_fs = NULL; 3143 struct files_struct *new_fd = NULL; 3144 struct cred *new_cred = NULL; 3145 struct nsproxy *new_nsproxy = NULL; 3146 int do_sysvsem = 0; 3147 int err; 3148 3149 /* 3150 * If unsharing a user namespace must also unshare the thread group 3151 * and unshare the filesystem root and working directories. 3152 */ 3153 if (unshare_flags & CLONE_NEWUSER) 3154 unshare_flags |= CLONE_THREAD | CLONE_FS; 3155 /* 3156 * If unsharing vm, must also unshare signal handlers. 3157 */ 3158 if (unshare_flags & CLONE_VM) 3159 unshare_flags |= CLONE_SIGHAND; 3160 /* 3161 * If unsharing a signal handlers, must also unshare the signal queues. 3162 */ 3163 if (unshare_flags & CLONE_SIGHAND) 3164 unshare_flags |= CLONE_THREAD; 3165 /* 3166 * If unsharing namespace, must also unshare filesystem information. 3167 */ 3168 if (unshare_flags & CLONE_NEWNS) 3169 unshare_flags |= CLONE_FS; 3170 3171 err = check_unshare_flags(unshare_flags); 3172 if (err) 3173 goto bad_unshare_out; 3174 /* 3175 * CLONE_NEWIPC must also detach from the undolist: after switching 3176 * to a new ipc namespace, the semaphore arrays from the old 3177 * namespace are unreachable. 3178 */ 3179 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3180 do_sysvsem = 1; 3181 err = unshare_fs(unshare_flags, &new_fs); 3182 if (err) 3183 goto bad_unshare_out; 3184 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3185 if (err) 3186 goto bad_unshare_cleanup_fs; 3187 err = unshare_userns(unshare_flags, &new_cred); 3188 if (err) 3189 goto bad_unshare_cleanup_fd; 3190 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3191 new_cred, new_fs); 3192 if (err) 3193 goto bad_unshare_cleanup_cred; 3194 3195 if (new_cred) { 3196 err = set_cred_ucounts(new_cred); 3197 if (err) 3198 goto bad_unshare_cleanup_cred; 3199 } 3200 3201 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3202 if (do_sysvsem) { 3203 /* 3204 * CLONE_SYSVSEM is equivalent to sys_exit(). 3205 */ 3206 exit_sem(current); 3207 } 3208 if (unshare_flags & CLONE_NEWIPC) { 3209 /* Orphan segments in old ns (see sem above). */ 3210 exit_shm(current); 3211 shm_init_task(current); 3212 } 3213 3214 if (new_nsproxy) 3215 switch_task_namespaces(current, new_nsproxy); 3216 3217 task_lock(current); 3218 3219 if (new_fs) { 3220 fs = current->fs; 3221 spin_lock(&fs->lock); 3222 current->fs = new_fs; 3223 if (--fs->users) 3224 new_fs = NULL; 3225 else 3226 new_fs = fs; 3227 spin_unlock(&fs->lock); 3228 } 3229 3230 if (new_fd) 3231 swap(current->files, new_fd); 3232 3233 task_unlock(current); 3234 3235 if (new_cred) { 3236 /* Install the new user namespace */ 3237 commit_creds(new_cred); 3238 new_cred = NULL; 3239 } 3240 } 3241 3242 perf_event_namespaces(current); 3243 3244 bad_unshare_cleanup_cred: 3245 if (new_cred) 3246 put_cred(new_cred); 3247 bad_unshare_cleanup_fd: 3248 if (new_fd) 3249 put_files_struct(new_fd); 3250 3251 bad_unshare_cleanup_fs: 3252 if (new_fs) 3253 free_fs_struct(new_fs); 3254 3255 bad_unshare_out: 3256 return err; 3257 } 3258 3259 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3260 { 3261 return ksys_unshare(unshare_flags); 3262 } 3263 3264 /* 3265 * Helper to unshare the files of the current task. 3266 * We don't want to expose copy_files internals to 3267 * the exec layer of the kernel. 3268 */ 3269 3270 int unshare_files(void) 3271 { 3272 struct task_struct *task = current; 3273 struct files_struct *old, *copy = NULL; 3274 int error; 3275 3276 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3277 if (error || !copy) 3278 return error; 3279 3280 old = task->files; 3281 task_lock(task); 3282 task->files = copy; 3283 task_unlock(task); 3284 put_files_struct(old); 3285 return 0; 3286 } 3287 3288 int sysctl_max_threads(struct ctl_table *table, int write, 3289 void *buffer, size_t *lenp, loff_t *ppos) 3290 { 3291 struct ctl_table t; 3292 int ret; 3293 int threads = max_threads; 3294 int min = 1; 3295 int max = MAX_THREADS; 3296 3297 t = *table; 3298 t.data = &threads; 3299 t.extra1 = &min; 3300 t.extra2 = &max; 3301 3302 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3303 if (ret || !write) 3304 return ret; 3305 3306 max_threads = threads; 3307 3308 return 0; 3309 } 3310