xref: /linux/kernel/fork.c (revision 704bf317fd21683e5c71a542f5fb5f65271a1582)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69 
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
76 
77 #include <trace/events/sched.h>
78 
79 /*
80  * Protected counters by write_lock_irq(&tasklist_lock)
81  */
82 unsigned long total_forks;	/* Handle normal Linux uptimes. */
83 int nr_threads; 		/* The idle threads do not count.. */
84 
85 int max_threads;		/* tunable limit on nr_threads */
86 
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
88 
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
90 
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
93 {
94 	return lockdep_is_held(&tasklist_lock);
95 }
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
98 
99 int nr_processes(void)
100 {
101 	int cpu;
102 	int total = 0;
103 
104 	for_each_possible_cpu(cpu)
105 		total += per_cpu(process_counts, cpu);
106 
107 	return total;
108 }
109 
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
112 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
113 static struct kmem_cache *task_struct_cachep;
114 #endif
115 
116 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
117 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
118 {
119 #ifdef CONFIG_DEBUG_STACK_USAGE
120 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
121 #else
122 	gfp_t mask = GFP_KERNEL;
123 #endif
124 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
125 }
126 
127 static inline void free_thread_info(struct thread_info *ti)
128 {
129 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
130 }
131 #endif
132 
133 /* SLAB cache for signal_struct structures (tsk->signal) */
134 static struct kmem_cache *signal_cachep;
135 
136 /* SLAB cache for sighand_struct structures (tsk->sighand) */
137 struct kmem_cache *sighand_cachep;
138 
139 /* SLAB cache for files_struct structures (tsk->files) */
140 struct kmem_cache *files_cachep;
141 
142 /* SLAB cache for fs_struct structures (tsk->fs) */
143 struct kmem_cache *fs_cachep;
144 
145 /* SLAB cache for vm_area_struct structures */
146 struct kmem_cache *vm_area_cachep;
147 
148 /* SLAB cache for mm_struct structures (tsk->mm) */
149 static struct kmem_cache *mm_cachep;
150 
151 static void account_kernel_stack(struct thread_info *ti, int account)
152 {
153 	struct zone *zone = page_zone(virt_to_page(ti));
154 
155 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
156 }
157 
158 void free_task(struct task_struct *tsk)
159 {
160 	prop_local_destroy_single(&tsk->dirties);
161 	account_kernel_stack(tsk->stack, -1);
162 	free_thread_info(tsk->stack);
163 	rt_mutex_debug_task_free(tsk);
164 	ftrace_graph_exit_task(tsk);
165 	free_task_struct(tsk);
166 }
167 EXPORT_SYMBOL(free_task);
168 
169 static inline void free_signal_struct(struct signal_struct *sig)
170 {
171 	taskstats_tgid_free(sig);
172 	sched_autogroup_exit(sig);
173 	kmem_cache_free(signal_cachep, sig);
174 }
175 
176 static inline void put_signal_struct(struct signal_struct *sig)
177 {
178 	if (atomic_dec_and_test(&sig->sigcnt))
179 		free_signal_struct(sig);
180 }
181 
182 void __put_task_struct(struct task_struct *tsk)
183 {
184 	WARN_ON(!tsk->exit_state);
185 	WARN_ON(atomic_read(&tsk->usage));
186 	WARN_ON(tsk == current);
187 
188 	exit_creds(tsk);
189 	delayacct_tsk_free(tsk);
190 	put_signal_struct(tsk->signal);
191 
192 	if (!profile_handoff_task(tsk))
193 		free_task(tsk);
194 }
195 
196 /*
197  * macro override instead of weak attribute alias, to workaround
198  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
199  */
200 #ifndef arch_task_cache_init
201 #define arch_task_cache_init()
202 #endif
203 
204 void __init fork_init(unsigned long mempages)
205 {
206 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
207 #ifndef ARCH_MIN_TASKALIGN
208 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
209 #endif
210 	/* create a slab on which task_structs can be allocated */
211 	task_struct_cachep =
212 		kmem_cache_create("task_struct", sizeof(struct task_struct),
213 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
214 #endif
215 
216 	/* do the arch specific task caches init */
217 	arch_task_cache_init();
218 
219 	/*
220 	 * The default maximum number of threads is set to a safe
221 	 * value: the thread structures can take up at most half
222 	 * of memory.
223 	 */
224 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
225 
226 	/*
227 	 * we need to allow at least 20 threads to boot a system
228 	 */
229 	if(max_threads < 20)
230 		max_threads = 20;
231 
232 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
233 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
234 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
235 		init_task.signal->rlim[RLIMIT_NPROC];
236 }
237 
238 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
239 					       struct task_struct *src)
240 {
241 	*dst = *src;
242 	return 0;
243 }
244 
245 static struct task_struct *dup_task_struct(struct task_struct *orig)
246 {
247 	struct task_struct *tsk;
248 	struct thread_info *ti;
249 	unsigned long *stackend;
250 
251 	int err;
252 
253 	prepare_to_copy(orig);
254 
255 	tsk = alloc_task_struct();
256 	if (!tsk)
257 		return NULL;
258 
259 	ti = alloc_thread_info(tsk);
260 	if (!ti) {
261 		free_task_struct(tsk);
262 		return NULL;
263 	}
264 
265  	err = arch_dup_task_struct(tsk, orig);
266 	if (err)
267 		goto out;
268 
269 	tsk->stack = ti;
270 
271 	err = prop_local_init_single(&tsk->dirties);
272 	if (err)
273 		goto out;
274 
275 	setup_thread_stack(tsk, orig);
276 	clear_user_return_notifier(tsk);
277 	clear_tsk_need_resched(tsk);
278 	stackend = end_of_stack(tsk);
279 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
280 
281 #ifdef CONFIG_CC_STACKPROTECTOR
282 	tsk->stack_canary = get_random_int();
283 #endif
284 
285 	/* One for us, one for whoever does the "release_task()" (usually parent) */
286 	atomic_set(&tsk->usage,2);
287 	atomic_set(&tsk->fs_excl, 0);
288 #ifdef CONFIG_BLK_DEV_IO_TRACE
289 	tsk->btrace_seq = 0;
290 #endif
291 	tsk->splice_pipe = NULL;
292 
293 	account_kernel_stack(ti, 1);
294 
295 	return tsk;
296 
297 out:
298 	free_thread_info(ti);
299 	free_task_struct(tsk);
300 	return NULL;
301 }
302 
303 #ifdef CONFIG_MMU
304 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
305 {
306 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
307 	struct rb_node **rb_link, *rb_parent;
308 	int retval;
309 	unsigned long charge;
310 	struct mempolicy *pol;
311 
312 	down_write(&oldmm->mmap_sem);
313 	flush_cache_dup_mm(oldmm);
314 	/*
315 	 * Not linked in yet - no deadlock potential:
316 	 */
317 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
318 
319 	mm->locked_vm = 0;
320 	mm->mmap = NULL;
321 	mm->mmap_cache = NULL;
322 	mm->free_area_cache = oldmm->mmap_base;
323 	mm->cached_hole_size = ~0UL;
324 	mm->map_count = 0;
325 	cpumask_clear(mm_cpumask(mm));
326 	mm->mm_rb = RB_ROOT;
327 	rb_link = &mm->mm_rb.rb_node;
328 	rb_parent = NULL;
329 	pprev = &mm->mmap;
330 	retval = ksm_fork(mm, oldmm);
331 	if (retval)
332 		goto out;
333 
334 	prev = NULL;
335 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
336 		struct file *file;
337 
338 		if (mpnt->vm_flags & VM_DONTCOPY) {
339 			long pages = vma_pages(mpnt);
340 			mm->total_vm -= pages;
341 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
342 								-pages);
343 			continue;
344 		}
345 		charge = 0;
346 		if (mpnt->vm_flags & VM_ACCOUNT) {
347 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
348 			if (security_vm_enough_memory(len))
349 				goto fail_nomem;
350 			charge = len;
351 		}
352 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
353 		if (!tmp)
354 			goto fail_nomem;
355 		*tmp = *mpnt;
356 		INIT_LIST_HEAD(&tmp->anon_vma_chain);
357 		pol = mpol_dup(vma_policy(mpnt));
358 		retval = PTR_ERR(pol);
359 		if (IS_ERR(pol))
360 			goto fail_nomem_policy;
361 		vma_set_policy(tmp, pol);
362 		tmp->vm_mm = mm;
363 		if (anon_vma_fork(tmp, mpnt))
364 			goto fail_nomem_anon_vma_fork;
365 		tmp->vm_flags &= ~VM_LOCKED;
366 		tmp->vm_next = tmp->vm_prev = NULL;
367 		file = tmp->vm_file;
368 		if (file) {
369 			struct inode *inode = file->f_path.dentry->d_inode;
370 			struct address_space *mapping = file->f_mapping;
371 
372 			get_file(file);
373 			if (tmp->vm_flags & VM_DENYWRITE)
374 				atomic_dec(&inode->i_writecount);
375 			spin_lock(&mapping->i_mmap_lock);
376 			if (tmp->vm_flags & VM_SHARED)
377 				mapping->i_mmap_writable++;
378 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
379 			flush_dcache_mmap_lock(mapping);
380 			/* insert tmp into the share list, just after mpnt */
381 			vma_prio_tree_add(tmp, mpnt);
382 			flush_dcache_mmap_unlock(mapping);
383 			spin_unlock(&mapping->i_mmap_lock);
384 		}
385 
386 		/*
387 		 * Clear hugetlb-related page reserves for children. This only
388 		 * affects MAP_PRIVATE mappings. Faults generated by the child
389 		 * are not guaranteed to succeed, even if read-only
390 		 */
391 		if (is_vm_hugetlb_page(tmp))
392 			reset_vma_resv_huge_pages(tmp);
393 
394 		/*
395 		 * Link in the new vma and copy the page table entries.
396 		 */
397 		*pprev = tmp;
398 		pprev = &tmp->vm_next;
399 		tmp->vm_prev = prev;
400 		prev = tmp;
401 
402 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
403 		rb_link = &tmp->vm_rb.rb_right;
404 		rb_parent = &tmp->vm_rb;
405 
406 		mm->map_count++;
407 		retval = copy_page_range(mm, oldmm, mpnt);
408 
409 		if (tmp->vm_ops && tmp->vm_ops->open)
410 			tmp->vm_ops->open(tmp);
411 
412 		if (retval)
413 			goto out;
414 	}
415 	/* a new mm has just been created */
416 	arch_dup_mmap(oldmm, mm);
417 	retval = 0;
418 out:
419 	up_write(&mm->mmap_sem);
420 	flush_tlb_mm(oldmm);
421 	up_write(&oldmm->mmap_sem);
422 	return retval;
423 fail_nomem_anon_vma_fork:
424 	mpol_put(pol);
425 fail_nomem_policy:
426 	kmem_cache_free(vm_area_cachep, tmp);
427 fail_nomem:
428 	retval = -ENOMEM;
429 	vm_unacct_memory(charge);
430 	goto out;
431 }
432 
433 static inline int mm_alloc_pgd(struct mm_struct * mm)
434 {
435 	mm->pgd = pgd_alloc(mm);
436 	if (unlikely(!mm->pgd))
437 		return -ENOMEM;
438 	return 0;
439 }
440 
441 static inline void mm_free_pgd(struct mm_struct * mm)
442 {
443 	pgd_free(mm, mm->pgd);
444 }
445 #else
446 #define dup_mmap(mm, oldmm)	(0)
447 #define mm_alloc_pgd(mm)	(0)
448 #define mm_free_pgd(mm)
449 #endif /* CONFIG_MMU */
450 
451 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
452 
453 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
454 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
455 
456 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
457 
458 static int __init coredump_filter_setup(char *s)
459 {
460 	default_dump_filter =
461 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
462 		MMF_DUMP_FILTER_MASK;
463 	return 1;
464 }
465 
466 __setup("coredump_filter=", coredump_filter_setup);
467 
468 #include <linux/init_task.h>
469 
470 static void mm_init_aio(struct mm_struct *mm)
471 {
472 #ifdef CONFIG_AIO
473 	spin_lock_init(&mm->ioctx_lock);
474 	INIT_HLIST_HEAD(&mm->ioctx_list);
475 #endif
476 }
477 
478 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
479 {
480 	atomic_set(&mm->mm_users, 1);
481 	atomic_set(&mm->mm_count, 1);
482 	init_rwsem(&mm->mmap_sem);
483 	INIT_LIST_HEAD(&mm->mmlist);
484 	mm->flags = (current->mm) ?
485 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
486 	mm->core_state = NULL;
487 	mm->nr_ptes = 0;
488 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
489 	spin_lock_init(&mm->page_table_lock);
490 	mm->free_area_cache = TASK_UNMAPPED_BASE;
491 	mm->cached_hole_size = ~0UL;
492 	mm_init_aio(mm);
493 	mm_init_owner(mm, p);
494 	atomic_set(&mm->oom_disable_count, 0);
495 
496 	if (likely(!mm_alloc_pgd(mm))) {
497 		mm->def_flags = 0;
498 		mmu_notifier_mm_init(mm);
499 		return mm;
500 	}
501 
502 	free_mm(mm);
503 	return NULL;
504 }
505 
506 /*
507  * Allocate and initialize an mm_struct.
508  */
509 struct mm_struct * mm_alloc(void)
510 {
511 	struct mm_struct * mm;
512 
513 	mm = allocate_mm();
514 	if (mm) {
515 		memset(mm, 0, sizeof(*mm));
516 		mm = mm_init(mm, current);
517 	}
518 	return mm;
519 }
520 
521 /*
522  * Called when the last reference to the mm
523  * is dropped: either by a lazy thread or by
524  * mmput. Free the page directory and the mm.
525  */
526 void __mmdrop(struct mm_struct *mm)
527 {
528 	BUG_ON(mm == &init_mm);
529 	mm_free_pgd(mm);
530 	destroy_context(mm);
531 	mmu_notifier_mm_destroy(mm);
532 	free_mm(mm);
533 }
534 EXPORT_SYMBOL_GPL(__mmdrop);
535 
536 /*
537  * Decrement the use count and release all resources for an mm.
538  */
539 void mmput(struct mm_struct *mm)
540 {
541 	might_sleep();
542 
543 	if (atomic_dec_and_test(&mm->mm_users)) {
544 		exit_aio(mm);
545 		ksm_exit(mm);
546 		exit_mmap(mm);
547 		set_mm_exe_file(mm, NULL);
548 		if (!list_empty(&mm->mmlist)) {
549 			spin_lock(&mmlist_lock);
550 			list_del(&mm->mmlist);
551 			spin_unlock(&mmlist_lock);
552 		}
553 		put_swap_token(mm);
554 		if (mm->binfmt)
555 			module_put(mm->binfmt->module);
556 		mmdrop(mm);
557 	}
558 }
559 EXPORT_SYMBOL_GPL(mmput);
560 
561 /**
562  * get_task_mm - acquire a reference to the task's mm
563  *
564  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
565  * this kernel workthread has transiently adopted a user mm with use_mm,
566  * to do its AIO) is not set and if so returns a reference to it, after
567  * bumping up the use count.  User must release the mm via mmput()
568  * after use.  Typically used by /proc and ptrace.
569  */
570 struct mm_struct *get_task_mm(struct task_struct *task)
571 {
572 	struct mm_struct *mm;
573 
574 	task_lock(task);
575 	mm = task->mm;
576 	if (mm) {
577 		if (task->flags & PF_KTHREAD)
578 			mm = NULL;
579 		else
580 			atomic_inc(&mm->mm_users);
581 	}
582 	task_unlock(task);
583 	return mm;
584 }
585 EXPORT_SYMBOL_GPL(get_task_mm);
586 
587 /* Please note the differences between mmput and mm_release.
588  * mmput is called whenever we stop holding onto a mm_struct,
589  * error success whatever.
590  *
591  * mm_release is called after a mm_struct has been removed
592  * from the current process.
593  *
594  * This difference is important for error handling, when we
595  * only half set up a mm_struct for a new process and need to restore
596  * the old one.  Because we mmput the new mm_struct before
597  * restoring the old one. . .
598  * Eric Biederman 10 January 1998
599  */
600 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
601 {
602 	struct completion *vfork_done = tsk->vfork_done;
603 
604 	/* Get rid of any futexes when releasing the mm */
605 #ifdef CONFIG_FUTEX
606 	if (unlikely(tsk->robust_list)) {
607 		exit_robust_list(tsk);
608 		tsk->robust_list = NULL;
609 	}
610 #ifdef CONFIG_COMPAT
611 	if (unlikely(tsk->compat_robust_list)) {
612 		compat_exit_robust_list(tsk);
613 		tsk->compat_robust_list = NULL;
614 	}
615 #endif
616 	if (unlikely(!list_empty(&tsk->pi_state_list)))
617 		exit_pi_state_list(tsk);
618 #endif
619 
620 	/* Get rid of any cached register state */
621 	deactivate_mm(tsk, mm);
622 
623 	/* notify parent sleeping on vfork() */
624 	if (vfork_done) {
625 		tsk->vfork_done = NULL;
626 		complete(vfork_done);
627 	}
628 
629 	/*
630 	 * If we're exiting normally, clear a user-space tid field if
631 	 * requested.  We leave this alone when dying by signal, to leave
632 	 * the value intact in a core dump, and to save the unnecessary
633 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
634 	 */
635 	if (tsk->clear_child_tid) {
636 		if (!(tsk->flags & PF_SIGNALED) &&
637 		    atomic_read(&mm->mm_users) > 1) {
638 			/*
639 			 * We don't check the error code - if userspace has
640 			 * not set up a proper pointer then tough luck.
641 			 */
642 			put_user(0, tsk->clear_child_tid);
643 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
644 					1, NULL, NULL, 0);
645 		}
646 		tsk->clear_child_tid = NULL;
647 	}
648 }
649 
650 /*
651  * Allocate a new mm structure and copy contents from the
652  * mm structure of the passed in task structure.
653  */
654 struct mm_struct *dup_mm(struct task_struct *tsk)
655 {
656 	struct mm_struct *mm, *oldmm = current->mm;
657 	int err;
658 
659 	if (!oldmm)
660 		return NULL;
661 
662 	mm = allocate_mm();
663 	if (!mm)
664 		goto fail_nomem;
665 
666 	memcpy(mm, oldmm, sizeof(*mm));
667 
668 	/* Initializing for Swap token stuff */
669 	mm->token_priority = 0;
670 	mm->last_interval = 0;
671 
672 	if (!mm_init(mm, tsk))
673 		goto fail_nomem;
674 
675 	if (init_new_context(tsk, mm))
676 		goto fail_nocontext;
677 
678 	dup_mm_exe_file(oldmm, mm);
679 
680 	err = dup_mmap(mm, oldmm);
681 	if (err)
682 		goto free_pt;
683 
684 	mm->hiwater_rss = get_mm_rss(mm);
685 	mm->hiwater_vm = mm->total_vm;
686 
687 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
688 		goto free_pt;
689 
690 	return mm;
691 
692 free_pt:
693 	/* don't put binfmt in mmput, we haven't got module yet */
694 	mm->binfmt = NULL;
695 	mmput(mm);
696 
697 fail_nomem:
698 	return NULL;
699 
700 fail_nocontext:
701 	/*
702 	 * If init_new_context() failed, we cannot use mmput() to free the mm
703 	 * because it calls destroy_context()
704 	 */
705 	mm_free_pgd(mm);
706 	free_mm(mm);
707 	return NULL;
708 }
709 
710 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
711 {
712 	struct mm_struct * mm, *oldmm;
713 	int retval;
714 
715 	tsk->min_flt = tsk->maj_flt = 0;
716 	tsk->nvcsw = tsk->nivcsw = 0;
717 #ifdef CONFIG_DETECT_HUNG_TASK
718 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
719 #endif
720 
721 	tsk->mm = NULL;
722 	tsk->active_mm = NULL;
723 
724 	/*
725 	 * Are we cloning a kernel thread?
726 	 *
727 	 * We need to steal a active VM for that..
728 	 */
729 	oldmm = current->mm;
730 	if (!oldmm)
731 		return 0;
732 
733 	if (clone_flags & CLONE_VM) {
734 		atomic_inc(&oldmm->mm_users);
735 		mm = oldmm;
736 		goto good_mm;
737 	}
738 
739 	retval = -ENOMEM;
740 	mm = dup_mm(tsk);
741 	if (!mm)
742 		goto fail_nomem;
743 
744 good_mm:
745 	/* Initializing for Swap token stuff */
746 	mm->token_priority = 0;
747 	mm->last_interval = 0;
748 	if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
749 		atomic_inc(&mm->oom_disable_count);
750 
751 	tsk->mm = mm;
752 	tsk->active_mm = mm;
753 	return 0;
754 
755 fail_nomem:
756 	return retval;
757 }
758 
759 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
760 {
761 	struct fs_struct *fs = current->fs;
762 	if (clone_flags & CLONE_FS) {
763 		/* tsk->fs is already what we want */
764 		spin_lock(&fs->lock);
765 		if (fs->in_exec) {
766 			spin_unlock(&fs->lock);
767 			return -EAGAIN;
768 		}
769 		fs->users++;
770 		spin_unlock(&fs->lock);
771 		return 0;
772 	}
773 	tsk->fs = copy_fs_struct(fs);
774 	if (!tsk->fs)
775 		return -ENOMEM;
776 	return 0;
777 }
778 
779 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
780 {
781 	struct files_struct *oldf, *newf;
782 	int error = 0;
783 
784 	/*
785 	 * A background process may not have any files ...
786 	 */
787 	oldf = current->files;
788 	if (!oldf)
789 		goto out;
790 
791 	if (clone_flags & CLONE_FILES) {
792 		atomic_inc(&oldf->count);
793 		goto out;
794 	}
795 
796 	newf = dup_fd(oldf, &error);
797 	if (!newf)
798 		goto out;
799 
800 	tsk->files = newf;
801 	error = 0;
802 out:
803 	return error;
804 }
805 
806 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
807 {
808 #ifdef CONFIG_BLOCK
809 	struct io_context *ioc = current->io_context;
810 
811 	if (!ioc)
812 		return 0;
813 	/*
814 	 * Share io context with parent, if CLONE_IO is set
815 	 */
816 	if (clone_flags & CLONE_IO) {
817 		tsk->io_context = ioc_task_link(ioc);
818 		if (unlikely(!tsk->io_context))
819 			return -ENOMEM;
820 	} else if (ioprio_valid(ioc->ioprio)) {
821 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
822 		if (unlikely(!tsk->io_context))
823 			return -ENOMEM;
824 
825 		tsk->io_context->ioprio = ioc->ioprio;
826 	}
827 #endif
828 	return 0;
829 }
830 
831 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
832 {
833 	struct sighand_struct *sig;
834 
835 	if (clone_flags & CLONE_SIGHAND) {
836 		atomic_inc(&current->sighand->count);
837 		return 0;
838 	}
839 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
840 	rcu_assign_pointer(tsk->sighand, sig);
841 	if (!sig)
842 		return -ENOMEM;
843 	atomic_set(&sig->count, 1);
844 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
845 	return 0;
846 }
847 
848 void __cleanup_sighand(struct sighand_struct *sighand)
849 {
850 	if (atomic_dec_and_test(&sighand->count))
851 		kmem_cache_free(sighand_cachep, sighand);
852 }
853 
854 
855 /*
856  * Initialize POSIX timer handling for a thread group.
857  */
858 static void posix_cpu_timers_init_group(struct signal_struct *sig)
859 {
860 	unsigned long cpu_limit;
861 
862 	/* Thread group counters. */
863 	thread_group_cputime_init(sig);
864 
865 	cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
866 	if (cpu_limit != RLIM_INFINITY) {
867 		sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
868 		sig->cputimer.running = 1;
869 	}
870 
871 	/* The timer lists. */
872 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
873 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
874 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
875 }
876 
877 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
878 {
879 	struct signal_struct *sig;
880 
881 	if (clone_flags & CLONE_THREAD)
882 		return 0;
883 
884 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
885 	tsk->signal = sig;
886 	if (!sig)
887 		return -ENOMEM;
888 
889 	sig->nr_threads = 1;
890 	atomic_set(&sig->live, 1);
891 	atomic_set(&sig->sigcnt, 1);
892 	init_waitqueue_head(&sig->wait_chldexit);
893 	if (clone_flags & CLONE_NEWPID)
894 		sig->flags |= SIGNAL_UNKILLABLE;
895 	sig->curr_target = tsk;
896 	init_sigpending(&sig->shared_pending);
897 	INIT_LIST_HEAD(&sig->posix_timers);
898 
899 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
900 	sig->real_timer.function = it_real_fn;
901 
902 	task_lock(current->group_leader);
903 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
904 	task_unlock(current->group_leader);
905 
906 	posix_cpu_timers_init_group(sig);
907 
908 	tty_audit_fork(sig);
909 	sched_autogroup_fork(sig);
910 
911 	sig->oom_adj = current->signal->oom_adj;
912 	sig->oom_score_adj = current->signal->oom_score_adj;
913 
914 	mutex_init(&sig->cred_guard_mutex);
915 
916 	return 0;
917 }
918 
919 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
920 {
921 	unsigned long new_flags = p->flags;
922 
923 	new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
924 	new_flags |= PF_FORKNOEXEC;
925 	new_flags |= PF_STARTING;
926 	p->flags = new_flags;
927 	clear_freeze_flag(p);
928 }
929 
930 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
931 {
932 	current->clear_child_tid = tidptr;
933 
934 	return task_pid_vnr(current);
935 }
936 
937 static void rt_mutex_init_task(struct task_struct *p)
938 {
939 	raw_spin_lock_init(&p->pi_lock);
940 #ifdef CONFIG_RT_MUTEXES
941 	plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
942 	p->pi_blocked_on = NULL;
943 #endif
944 }
945 
946 #ifdef CONFIG_MM_OWNER
947 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
948 {
949 	mm->owner = p;
950 }
951 #endif /* CONFIG_MM_OWNER */
952 
953 /*
954  * Initialize POSIX timer handling for a single task.
955  */
956 static void posix_cpu_timers_init(struct task_struct *tsk)
957 {
958 	tsk->cputime_expires.prof_exp = cputime_zero;
959 	tsk->cputime_expires.virt_exp = cputime_zero;
960 	tsk->cputime_expires.sched_exp = 0;
961 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
962 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
963 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
964 }
965 
966 /*
967  * This creates a new process as a copy of the old one,
968  * but does not actually start it yet.
969  *
970  * It copies the registers, and all the appropriate
971  * parts of the process environment (as per the clone
972  * flags). The actual kick-off is left to the caller.
973  */
974 static struct task_struct *copy_process(unsigned long clone_flags,
975 					unsigned long stack_start,
976 					struct pt_regs *regs,
977 					unsigned long stack_size,
978 					int __user *child_tidptr,
979 					struct pid *pid,
980 					int trace)
981 {
982 	int retval;
983 	struct task_struct *p;
984 	int cgroup_callbacks_done = 0;
985 
986 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
987 		return ERR_PTR(-EINVAL);
988 
989 	/*
990 	 * Thread groups must share signals as well, and detached threads
991 	 * can only be started up within the thread group.
992 	 */
993 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
994 		return ERR_PTR(-EINVAL);
995 
996 	/*
997 	 * Shared signal handlers imply shared VM. By way of the above,
998 	 * thread groups also imply shared VM. Blocking this case allows
999 	 * for various simplifications in other code.
1000 	 */
1001 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1002 		return ERR_PTR(-EINVAL);
1003 
1004 	/*
1005 	 * Siblings of global init remain as zombies on exit since they are
1006 	 * not reaped by their parent (swapper). To solve this and to avoid
1007 	 * multi-rooted process trees, prevent global and container-inits
1008 	 * from creating siblings.
1009 	 */
1010 	if ((clone_flags & CLONE_PARENT) &&
1011 				current->signal->flags & SIGNAL_UNKILLABLE)
1012 		return ERR_PTR(-EINVAL);
1013 
1014 	retval = security_task_create(clone_flags);
1015 	if (retval)
1016 		goto fork_out;
1017 
1018 	retval = -ENOMEM;
1019 	p = dup_task_struct(current);
1020 	if (!p)
1021 		goto fork_out;
1022 
1023 	ftrace_graph_init_task(p);
1024 
1025 	rt_mutex_init_task(p);
1026 
1027 #ifdef CONFIG_PROVE_LOCKING
1028 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1029 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1030 #endif
1031 	retval = -EAGAIN;
1032 	if (atomic_read(&p->real_cred->user->processes) >=
1033 			task_rlimit(p, RLIMIT_NPROC)) {
1034 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1035 		    p->real_cred->user != INIT_USER)
1036 			goto bad_fork_free;
1037 	}
1038 
1039 	retval = copy_creds(p, clone_flags);
1040 	if (retval < 0)
1041 		goto bad_fork_free;
1042 
1043 	/*
1044 	 * If multiple threads are within copy_process(), then this check
1045 	 * triggers too late. This doesn't hurt, the check is only there
1046 	 * to stop root fork bombs.
1047 	 */
1048 	retval = -EAGAIN;
1049 	if (nr_threads >= max_threads)
1050 		goto bad_fork_cleanup_count;
1051 
1052 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1053 		goto bad_fork_cleanup_count;
1054 
1055 	p->did_exec = 0;
1056 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1057 	copy_flags(clone_flags, p);
1058 	INIT_LIST_HEAD(&p->children);
1059 	INIT_LIST_HEAD(&p->sibling);
1060 	rcu_copy_process(p);
1061 	p->vfork_done = NULL;
1062 	spin_lock_init(&p->alloc_lock);
1063 
1064 	init_sigpending(&p->pending);
1065 
1066 	p->utime = cputime_zero;
1067 	p->stime = cputime_zero;
1068 	p->gtime = cputime_zero;
1069 	p->utimescaled = cputime_zero;
1070 	p->stimescaled = cputime_zero;
1071 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1072 	p->prev_utime = cputime_zero;
1073 	p->prev_stime = cputime_zero;
1074 #endif
1075 #if defined(SPLIT_RSS_COUNTING)
1076 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1077 #endif
1078 
1079 	p->default_timer_slack_ns = current->timer_slack_ns;
1080 
1081 	task_io_accounting_init(&p->ioac);
1082 	acct_clear_integrals(p);
1083 
1084 	posix_cpu_timers_init(p);
1085 
1086 	p->lock_depth = -1;		/* -1 = no lock */
1087 	do_posix_clock_monotonic_gettime(&p->start_time);
1088 	p->real_start_time = p->start_time;
1089 	monotonic_to_bootbased(&p->real_start_time);
1090 	p->io_context = NULL;
1091 	p->audit_context = NULL;
1092 	cgroup_fork(p);
1093 #ifdef CONFIG_NUMA
1094 	p->mempolicy = mpol_dup(p->mempolicy);
1095  	if (IS_ERR(p->mempolicy)) {
1096  		retval = PTR_ERR(p->mempolicy);
1097  		p->mempolicy = NULL;
1098  		goto bad_fork_cleanup_cgroup;
1099  	}
1100 	mpol_fix_fork_child_flag(p);
1101 #endif
1102 #ifdef CONFIG_TRACE_IRQFLAGS
1103 	p->irq_events = 0;
1104 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1105 	p->hardirqs_enabled = 1;
1106 #else
1107 	p->hardirqs_enabled = 0;
1108 #endif
1109 	p->hardirq_enable_ip = 0;
1110 	p->hardirq_enable_event = 0;
1111 	p->hardirq_disable_ip = _THIS_IP_;
1112 	p->hardirq_disable_event = 0;
1113 	p->softirqs_enabled = 1;
1114 	p->softirq_enable_ip = _THIS_IP_;
1115 	p->softirq_enable_event = 0;
1116 	p->softirq_disable_ip = 0;
1117 	p->softirq_disable_event = 0;
1118 	p->hardirq_context = 0;
1119 	p->softirq_context = 0;
1120 #endif
1121 #ifdef CONFIG_LOCKDEP
1122 	p->lockdep_depth = 0; /* no locks held yet */
1123 	p->curr_chain_key = 0;
1124 	p->lockdep_recursion = 0;
1125 #endif
1126 
1127 #ifdef CONFIG_DEBUG_MUTEXES
1128 	p->blocked_on = NULL; /* not blocked yet */
1129 #endif
1130 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1131 	p->memcg_batch.do_batch = 0;
1132 	p->memcg_batch.memcg = NULL;
1133 #endif
1134 
1135 	/* Perform scheduler related setup. Assign this task to a CPU. */
1136 	sched_fork(p, clone_flags);
1137 
1138 	retval = perf_event_init_task(p);
1139 	if (retval)
1140 		goto bad_fork_cleanup_policy;
1141 
1142 	if ((retval = audit_alloc(p)))
1143 		goto bad_fork_cleanup_policy;
1144 	/* copy all the process information */
1145 	if ((retval = copy_semundo(clone_flags, p)))
1146 		goto bad_fork_cleanup_audit;
1147 	if ((retval = copy_files(clone_flags, p)))
1148 		goto bad_fork_cleanup_semundo;
1149 	if ((retval = copy_fs(clone_flags, p)))
1150 		goto bad_fork_cleanup_files;
1151 	if ((retval = copy_sighand(clone_flags, p)))
1152 		goto bad_fork_cleanup_fs;
1153 	if ((retval = copy_signal(clone_flags, p)))
1154 		goto bad_fork_cleanup_sighand;
1155 	if ((retval = copy_mm(clone_flags, p)))
1156 		goto bad_fork_cleanup_signal;
1157 	if ((retval = copy_namespaces(clone_flags, p)))
1158 		goto bad_fork_cleanup_mm;
1159 	if ((retval = copy_io(clone_flags, p)))
1160 		goto bad_fork_cleanup_namespaces;
1161 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1162 	if (retval)
1163 		goto bad_fork_cleanup_io;
1164 
1165 	if (pid != &init_struct_pid) {
1166 		retval = -ENOMEM;
1167 		pid = alloc_pid(p->nsproxy->pid_ns);
1168 		if (!pid)
1169 			goto bad_fork_cleanup_io;
1170 
1171 		if (clone_flags & CLONE_NEWPID) {
1172 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1173 			if (retval < 0)
1174 				goto bad_fork_free_pid;
1175 		}
1176 	}
1177 
1178 	p->pid = pid_nr(pid);
1179 	p->tgid = p->pid;
1180 	if (clone_flags & CLONE_THREAD)
1181 		p->tgid = current->tgid;
1182 
1183 	if (current->nsproxy != p->nsproxy) {
1184 		retval = ns_cgroup_clone(p, pid);
1185 		if (retval)
1186 			goto bad_fork_free_pid;
1187 	}
1188 
1189 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1190 	/*
1191 	 * Clear TID on mm_release()?
1192 	 */
1193 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1194 #ifdef CONFIG_FUTEX
1195 	p->robust_list = NULL;
1196 #ifdef CONFIG_COMPAT
1197 	p->compat_robust_list = NULL;
1198 #endif
1199 	INIT_LIST_HEAD(&p->pi_state_list);
1200 	p->pi_state_cache = NULL;
1201 #endif
1202 	/*
1203 	 * sigaltstack should be cleared when sharing the same VM
1204 	 */
1205 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1206 		p->sas_ss_sp = p->sas_ss_size = 0;
1207 
1208 	/*
1209 	 * Syscall tracing and stepping should be turned off in the
1210 	 * child regardless of CLONE_PTRACE.
1211 	 */
1212 	user_disable_single_step(p);
1213 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1214 #ifdef TIF_SYSCALL_EMU
1215 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1216 #endif
1217 	clear_all_latency_tracing(p);
1218 
1219 	/* ok, now we should be set up.. */
1220 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1221 	p->pdeath_signal = 0;
1222 	p->exit_state = 0;
1223 
1224 	/*
1225 	 * Ok, make it visible to the rest of the system.
1226 	 * We dont wake it up yet.
1227 	 */
1228 	p->group_leader = p;
1229 	INIT_LIST_HEAD(&p->thread_group);
1230 
1231 	/* Now that the task is set up, run cgroup callbacks if
1232 	 * necessary. We need to run them before the task is visible
1233 	 * on the tasklist. */
1234 	cgroup_fork_callbacks(p);
1235 	cgroup_callbacks_done = 1;
1236 
1237 	/* Need tasklist lock for parent etc handling! */
1238 	write_lock_irq(&tasklist_lock);
1239 
1240 	/* CLONE_PARENT re-uses the old parent */
1241 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1242 		p->real_parent = current->real_parent;
1243 		p->parent_exec_id = current->parent_exec_id;
1244 	} else {
1245 		p->real_parent = current;
1246 		p->parent_exec_id = current->self_exec_id;
1247 	}
1248 
1249 	spin_lock(&current->sighand->siglock);
1250 
1251 	/*
1252 	 * Process group and session signals need to be delivered to just the
1253 	 * parent before the fork or both the parent and the child after the
1254 	 * fork. Restart if a signal comes in before we add the new process to
1255 	 * it's process group.
1256 	 * A fatal signal pending means that current will exit, so the new
1257 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1258  	 */
1259 	recalc_sigpending();
1260 	if (signal_pending(current)) {
1261 		spin_unlock(&current->sighand->siglock);
1262 		write_unlock_irq(&tasklist_lock);
1263 		retval = -ERESTARTNOINTR;
1264 		goto bad_fork_free_pid;
1265 	}
1266 
1267 	if (clone_flags & CLONE_THREAD) {
1268 		current->signal->nr_threads++;
1269 		atomic_inc(&current->signal->live);
1270 		atomic_inc(&current->signal->sigcnt);
1271 		p->group_leader = current->group_leader;
1272 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1273 	}
1274 
1275 	if (likely(p->pid)) {
1276 		tracehook_finish_clone(p, clone_flags, trace);
1277 
1278 		if (thread_group_leader(p)) {
1279 			if (clone_flags & CLONE_NEWPID)
1280 				p->nsproxy->pid_ns->child_reaper = p;
1281 
1282 			p->signal->leader_pid = pid;
1283 			p->signal->tty = tty_kref_get(current->signal->tty);
1284 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1285 			attach_pid(p, PIDTYPE_SID, task_session(current));
1286 			list_add_tail(&p->sibling, &p->real_parent->children);
1287 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1288 			__this_cpu_inc(process_counts);
1289 		}
1290 		attach_pid(p, PIDTYPE_PID, pid);
1291 		nr_threads++;
1292 	}
1293 
1294 	total_forks++;
1295 	spin_unlock(&current->sighand->siglock);
1296 	write_unlock_irq(&tasklist_lock);
1297 	proc_fork_connector(p);
1298 	cgroup_post_fork(p);
1299 	perf_event_fork(p);
1300 	return p;
1301 
1302 bad_fork_free_pid:
1303 	if (pid != &init_struct_pid)
1304 		free_pid(pid);
1305 bad_fork_cleanup_io:
1306 	if (p->io_context)
1307 		exit_io_context(p);
1308 bad_fork_cleanup_namespaces:
1309 	exit_task_namespaces(p);
1310 bad_fork_cleanup_mm:
1311 	if (p->mm) {
1312 		task_lock(p);
1313 		if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1314 			atomic_dec(&p->mm->oom_disable_count);
1315 		task_unlock(p);
1316 		mmput(p->mm);
1317 	}
1318 bad_fork_cleanup_signal:
1319 	if (!(clone_flags & CLONE_THREAD))
1320 		free_signal_struct(p->signal);
1321 bad_fork_cleanup_sighand:
1322 	__cleanup_sighand(p->sighand);
1323 bad_fork_cleanup_fs:
1324 	exit_fs(p); /* blocking */
1325 bad_fork_cleanup_files:
1326 	exit_files(p); /* blocking */
1327 bad_fork_cleanup_semundo:
1328 	exit_sem(p);
1329 bad_fork_cleanup_audit:
1330 	audit_free(p);
1331 bad_fork_cleanup_policy:
1332 	perf_event_free_task(p);
1333 #ifdef CONFIG_NUMA
1334 	mpol_put(p->mempolicy);
1335 bad_fork_cleanup_cgroup:
1336 #endif
1337 	cgroup_exit(p, cgroup_callbacks_done);
1338 	delayacct_tsk_free(p);
1339 	module_put(task_thread_info(p)->exec_domain->module);
1340 bad_fork_cleanup_count:
1341 	atomic_dec(&p->cred->user->processes);
1342 	exit_creds(p);
1343 bad_fork_free:
1344 	free_task(p);
1345 fork_out:
1346 	return ERR_PTR(retval);
1347 }
1348 
1349 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1350 {
1351 	memset(regs, 0, sizeof(struct pt_regs));
1352 	return regs;
1353 }
1354 
1355 static inline void init_idle_pids(struct pid_link *links)
1356 {
1357 	enum pid_type type;
1358 
1359 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1360 		INIT_HLIST_NODE(&links[type].node); /* not really needed */
1361 		links[type].pid = &init_struct_pid;
1362 	}
1363 }
1364 
1365 struct task_struct * __cpuinit fork_idle(int cpu)
1366 {
1367 	struct task_struct *task;
1368 	struct pt_regs regs;
1369 
1370 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1371 			    &init_struct_pid, 0);
1372 	if (!IS_ERR(task)) {
1373 		init_idle_pids(task->pids);
1374 		init_idle(task, cpu);
1375 	}
1376 
1377 	return task;
1378 }
1379 
1380 /*
1381  *  Ok, this is the main fork-routine.
1382  *
1383  * It copies the process, and if successful kick-starts
1384  * it and waits for it to finish using the VM if required.
1385  */
1386 long do_fork(unsigned long clone_flags,
1387 	      unsigned long stack_start,
1388 	      struct pt_regs *regs,
1389 	      unsigned long stack_size,
1390 	      int __user *parent_tidptr,
1391 	      int __user *child_tidptr)
1392 {
1393 	struct task_struct *p;
1394 	int trace = 0;
1395 	long nr;
1396 
1397 	/*
1398 	 * Do some preliminary argument and permissions checking before we
1399 	 * actually start allocating stuff
1400 	 */
1401 	if (clone_flags & CLONE_NEWUSER) {
1402 		if (clone_flags & CLONE_THREAD)
1403 			return -EINVAL;
1404 		/* hopefully this check will go away when userns support is
1405 		 * complete
1406 		 */
1407 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1408 				!capable(CAP_SETGID))
1409 			return -EPERM;
1410 	}
1411 
1412 	/*
1413 	 * We hope to recycle these flags after 2.6.26
1414 	 */
1415 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1416 		static int __read_mostly count = 100;
1417 
1418 		if (count > 0 && printk_ratelimit()) {
1419 			char comm[TASK_COMM_LEN];
1420 
1421 			count--;
1422 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1423 					"clone flags 0x%lx\n",
1424 				get_task_comm(comm, current),
1425 				clone_flags & CLONE_STOPPED);
1426 		}
1427 	}
1428 
1429 	/*
1430 	 * When called from kernel_thread, don't do user tracing stuff.
1431 	 */
1432 	if (likely(user_mode(regs)))
1433 		trace = tracehook_prepare_clone(clone_flags);
1434 
1435 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1436 			 child_tidptr, NULL, trace);
1437 	/*
1438 	 * Do this prior waking up the new thread - the thread pointer
1439 	 * might get invalid after that point, if the thread exits quickly.
1440 	 */
1441 	if (!IS_ERR(p)) {
1442 		struct completion vfork;
1443 
1444 		trace_sched_process_fork(current, p);
1445 
1446 		nr = task_pid_vnr(p);
1447 
1448 		if (clone_flags & CLONE_PARENT_SETTID)
1449 			put_user(nr, parent_tidptr);
1450 
1451 		if (clone_flags & CLONE_VFORK) {
1452 			p->vfork_done = &vfork;
1453 			init_completion(&vfork);
1454 		}
1455 
1456 		audit_finish_fork(p);
1457 		tracehook_report_clone(regs, clone_flags, nr, p);
1458 
1459 		/*
1460 		 * We set PF_STARTING at creation in case tracing wants to
1461 		 * use this to distinguish a fully live task from one that
1462 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1463 		 * clear it and set the child going.
1464 		 */
1465 		p->flags &= ~PF_STARTING;
1466 
1467 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1468 			/*
1469 			 * We'll start up with an immediate SIGSTOP.
1470 			 */
1471 			sigaddset(&p->pending.signal, SIGSTOP);
1472 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1473 			__set_task_state(p, TASK_STOPPED);
1474 		} else {
1475 			wake_up_new_task(p, clone_flags);
1476 		}
1477 
1478 		tracehook_report_clone_complete(trace, regs,
1479 						clone_flags, nr, p);
1480 
1481 		if (clone_flags & CLONE_VFORK) {
1482 			freezer_do_not_count();
1483 			wait_for_completion(&vfork);
1484 			freezer_count();
1485 			tracehook_report_vfork_done(p, nr);
1486 		}
1487 	} else {
1488 		nr = PTR_ERR(p);
1489 	}
1490 	return nr;
1491 }
1492 
1493 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1494 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1495 #endif
1496 
1497 static void sighand_ctor(void *data)
1498 {
1499 	struct sighand_struct *sighand = data;
1500 
1501 	spin_lock_init(&sighand->siglock);
1502 	init_waitqueue_head(&sighand->signalfd_wqh);
1503 }
1504 
1505 void __init proc_caches_init(void)
1506 {
1507 	sighand_cachep = kmem_cache_create("sighand_cache",
1508 			sizeof(struct sighand_struct), 0,
1509 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1510 			SLAB_NOTRACK, sighand_ctor);
1511 	signal_cachep = kmem_cache_create("signal_cache",
1512 			sizeof(struct signal_struct), 0,
1513 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1514 	files_cachep = kmem_cache_create("files_cache",
1515 			sizeof(struct files_struct), 0,
1516 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1517 	fs_cachep = kmem_cache_create("fs_cache",
1518 			sizeof(struct fs_struct), 0,
1519 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1520 	mm_cachep = kmem_cache_create("mm_struct",
1521 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1522 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1523 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1524 	mmap_init();
1525 }
1526 
1527 /*
1528  * Check constraints on flags passed to the unshare system call and
1529  * force unsharing of additional process context as appropriate.
1530  */
1531 static void check_unshare_flags(unsigned long *flags_ptr)
1532 {
1533 	/*
1534 	 * If unsharing a thread from a thread group, must also
1535 	 * unshare vm.
1536 	 */
1537 	if (*flags_ptr & CLONE_THREAD)
1538 		*flags_ptr |= CLONE_VM;
1539 
1540 	/*
1541 	 * If unsharing vm, must also unshare signal handlers.
1542 	 */
1543 	if (*flags_ptr & CLONE_VM)
1544 		*flags_ptr |= CLONE_SIGHAND;
1545 
1546 	/*
1547 	 * If unsharing namespace, must also unshare filesystem information.
1548 	 */
1549 	if (*flags_ptr & CLONE_NEWNS)
1550 		*flags_ptr |= CLONE_FS;
1551 }
1552 
1553 /*
1554  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1555  */
1556 static int unshare_thread(unsigned long unshare_flags)
1557 {
1558 	if (unshare_flags & CLONE_THREAD)
1559 		return -EINVAL;
1560 
1561 	return 0;
1562 }
1563 
1564 /*
1565  * Unshare the filesystem structure if it is being shared
1566  */
1567 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1568 {
1569 	struct fs_struct *fs = current->fs;
1570 
1571 	if (!(unshare_flags & CLONE_FS) || !fs)
1572 		return 0;
1573 
1574 	/* don't need lock here; in the worst case we'll do useless copy */
1575 	if (fs->users == 1)
1576 		return 0;
1577 
1578 	*new_fsp = copy_fs_struct(fs);
1579 	if (!*new_fsp)
1580 		return -ENOMEM;
1581 
1582 	return 0;
1583 }
1584 
1585 /*
1586  * Unsharing of sighand is not supported yet
1587  */
1588 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1589 {
1590 	struct sighand_struct *sigh = current->sighand;
1591 
1592 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1593 		return -EINVAL;
1594 	else
1595 		return 0;
1596 }
1597 
1598 /*
1599  * Unshare vm if it is being shared
1600  */
1601 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1602 {
1603 	struct mm_struct *mm = current->mm;
1604 
1605 	if ((unshare_flags & CLONE_VM) &&
1606 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1607 		return -EINVAL;
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 /*
1614  * Unshare file descriptor table if it is being shared
1615  */
1616 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1617 {
1618 	struct files_struct *fd = current->files;
1619 	int error = 0;
1620 
1621 	if ((unshare_flags & CLONE_FILES) &&
1622 	    (fd && atomic_read(&fd->count) > 1)) {
1623 		*new_fdp = dup_fd(fd, &error);
1624 		if (!*new_fdp)
1625 			return error;
1626 	}
1627 
1628 	return 0;
1629 }
1630 
1631 /*
1632  * unshare allows a process to 'unshare' part of the process
1633  * context which was originally shared using clone.  copy_*
1634  * functions used by do_fork() cannot be used here directly
1635  * because they modify an inactive task_struct that is being
1636  * constructed. Here we are modifying the current, active,
1637  * task_struct.
1638  */
1639 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1640 {
1641 	int err = 0;
1642 	struct fs_struct *fs, *new_fs = NULL;
1643 	struct sighand_struct *new_sigh = NULL;
1644 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1645 	struct files_struct *fd, *new_fd = NULL;
1646 	struct nsproxy *new_nsproxy = NULL;
1647 	int do_sysvsem = 0;
1648 
1649 	check_unshare_flags(&unshare_flags);
1650 
1651 	/* Return -EINVAL for all unsupported flags */
1652 	err = -EINVAL;
1653 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1654 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1655 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1656 		goto bad_unshare_out;
1657 
1658 	/*
1659 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1660 	 * to a new ipc namespace, the semaphore arrays from the old
1661 	 * namespace are unreachable.
1662 	 */
1663 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1664 		do_sysvsem = 1;
1665 	if ((err = unshare_thread(unshare_flags)))
1666 		goto bad_unshare_out;
1667 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1668 		goto bad_unshare_cleanup_thread;
1669 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1670 		goto bad_unshare_cleanup_fs;
1671 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1672 		goto bad_unshare_cleanup_sigh;
1673 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1674 		goto bad_unshare_cleanup_vm;
1675 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1676 			new_fs)))
1677 		goto bad_unshare_cleanup_fd;
1678 
1679 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1680 		if (do_sysvsem) {
1681 			/*
1682 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1683 			 */
1684 			exit_sem(current);
1685 		}
1686 
1687 		if (new_nsproxy) {
1688 			switch_task_namespaces(current, new_nsproxy);
1689 			new_nsproxy = NULL;
1690 		}
1691 
1692 		task_lock(current);
1693 
1694 		if (new_fs) {
1695 			fs = current->fs;
1696 			spin_lock(&fs->lock);
1697 			current->fs = new_fs;
1698 			if (--fs->users)
1699 				new_fs = NULL;
1700 			else
1701 				new_fs = fs;
1702 			spin_unlock(&fs->lock);
1703 		}
1704 
1705 		if (new_mm) {
1706 			mm = current->mm;
1707 			active_mm = current->active_mm;
1708 			current->mm = new_mm;
1709 			current->active_mm = new_mm;
1710 			if (current->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
1711 				atomic_dec(&mm->oom_disable_count);
1712 				atomic_inc(&new_mm->oom_disable_count);
1713 			}
1714 			activate_mm(active_mm, new_mm);
1715 			new_mm = mm;
1716 		}
1717 
1718 		if (new_fd) {
1719 			fd = current->files;
1720 			current->files = new_fd;
1721 			new_fd = fd;
1722 		}
1723 
1724 		task_unlock(current);
1725 	}
1726 
1727 	if (new_nsproxy)
1728 		put_nsproxy(new_nsproxy);
1729 
1730 bad_unshare_cleanup_fd:
1731 	if (new_fd)
1732 		put_files_struct(new_fd);
1733 
1734 bad_unshare_cleanup_vm:
1735 	if (new_mm)
1736 		mmput(new_mm);
1737 
1738 bad_unshare_cleanup_sigh:
1739 	if (new_sigh)
1740 		if (atomic_dec_and_test(&new_sigh->count))
1741 			kmem_cache_free(sighand_cachep, new_sigh);
1742 
1743 bad_unshare_cleanup_fs:
1744 	if (new_fs)
1745 		free_fs_struct(new_fs);
1746 
1747 bad_unshare_cleanup_thread:
1748 bad_unshare_out:
1749 	return err;
1750 }
1751 
1752 /*
1753  *	Helper to unshare the files of the current task.
1754  *	We don't want to expose copy_files internals to
1755  *	the exec layer of the kernel.
1756  */
1757 
1758 int unshare_files(struct files_struct **displaced)
1759 {
1760 	struct task_struct *task = current;
1761 	struct files_struct *copy = NULL;
1762 	int error;
1763 
1764 	error = unshare_fd(CLONE_FILES, &copy);
1765 	if (error || !copy) {
1766 		*displaced = NULL;
1767 		return error;
1768 	}
1769 	*displaced = task->files;
1770 	task_lock(task);
1771 	task->files = copy;
1772 	task_unlock(task);
1773 	return 0;
1774 }
1775