xref: /linux/kernel/fork.c (revision 6d729e44a55547c009d7a87ea66bff21a8e0afea)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 
68 #include <asm/pgtable.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/cacheflush.h>
73 #include <asm/tlbflush.h>
74 
75 #include <trace/events/sched.h>
76 
77 /*
78  * Protected counters by write_lock_irq(&tasklist_lock)
79  */
80 unsigned long total_forks;	/* Handle normal Linux uptimes. */
81 int nr_threads; 		/* The idle threads do not count.. */
82 
83 int max_threads;		/* tunable limit on nr_threads */
84 
85 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
86 
87 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
88 
89 int nr_processes(void)
90 {
91 	int cpu;
92 	int total = 0;
93 
94 	for_each_online_cpu(cpu)
95 		total += per_cpu(process_counts, cpu);
96 
97 	return total;
98 }
99 
100 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
101 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
102 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
103 static struct kmem_cache *task_struct_cachep;
104 #endif
105 
106 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
107 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
108 {
109 #ifdef CONFIG_DEBUG_STACK_USAGE
110 	gfp_t mask = GFP_KERNEL | __GFP_ZERO;
111 #else
112 	gfp_t mask = GFP_KERNEL;
113 #endif
114 	return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
115 }
116 
117 static inline void free_thread_info(struct thread_info *ti)
118 {
119 	free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
120 }
121 #endif
122 
123 /* SLAB cache for signal_struct structures (tsk->signal) */
124 static struct kmem_cache *signal_cachep;
125 
126 /* SLAB cache for sighand_struct structures (tsk->sighand) */
127 struct kmem_cache *sighand_cachep;
128 
129 /* SLAB cache for files_struct structures (tsk->files) */
130 struct kmem_cache *files_cachep;
131 
132 /* SLAB cache for fs_struct structures (tsk->fs) */
133 struct kmem_cache *fs_cachep;
134 
135 /* SLAB cache for vm_area_struct structures */
136 struct kmem_cache *vm_area_cachep;
137 
138 /* SLAB cache for mm_struct structures (tsk->mm) */
139 static struct kmem_cache *mm_cachep;
140 
141 static void account_kernel_stack(struct thread_info *ti, int account)
142 {
143 	struct zone *zone = page_zone(virt_to_page(ti));
144 
145 	mod_zone_page_state(zone, NR_KERNEL_STACK, account);
146 }
147 
148 void free_task(struct task_struct *tsk)
149 {
150 	prop_local_destroy_single(&tsk->dirties);
151 	account_kernel_stack(tsk->stack, -1);
152 	free_thread_info(tsk->stack);
153 	rt_mutex_debug_task_free(tsk);
154 	ftrace_graph_exit_task(tsk);
155 	free_task_struct(tsk);
156 }
157 EXPORT_SYMBOL(free_task);
158 
159 void __put_task_struct(struct task_struct *tsk)
160 {
161 	WARN_ON(!tsk->exit_state);
162 	WARN_ON(atomic_read(&tsk->usage));
163 	WARN_ON(tsk == current);
164 
165 	exit_creds(tsk);
166 	delayacct_tsk_free(tsk);
167 
168 	if (!profile_handoff_task(tsk))
169 		free_task(tsk);
170 }
171 
172 /*
173  * macro override instead of weak attribute alias, to workaround
174  * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
175  */
176 #ifndef arch_task_cache_init
177 #define arch_task_cache_init()
178 #endif
179 
180 void __init fork_init(unsigned long mempages)
181 {
182 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
183 #ifndef ARCH_MIN_TASKALIGN
184 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
185 #endif
186 	/* create a slab on which task_structs can be allocated */
187 	task_struct_cachep =
188 		kmem_cache_create("task_struct", sizeof(struct task_struct),
189 			ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
190 #endif
191 
192 	/* do the arch specific task caches init */
193 	arch_task_cache_init();
194 
195 	/*
196 	 * The default maximum number of threads is set to a safe
197 	 * value: the thread structures can take up at most half
198 	 * of memory.
199 	 */
200 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
201 
202 	/*
203 	 * we need to allow at least 20 threads to boot a system
204 	 */
205 	if(max_threads < 20)
206 		max_threads = 20;
207 
208 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
209 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
210 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
211 		init_task.signal->rlim[RLIMIT_NPROC];
212 }
213 
214 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
215 					       struct task_struct *src)
216 {
217 	*dst = *src;
218 	return 0;
219 }
220 
221 static struct task_struct *dup_task_struct(struct task_struct *orig)
222 {
223 	struct task_struct *tsk;
224 	struct thread_info *ti;
225 	unsigned long *stackend;
226 
227 	int err;
228 
229 	prepare_to_copy(orig);
230 
231 	tsk = alloc_task_struct();
232 	if (!tsk)
233 		return NULL;
234 
235 	ti = alloc_thread_info(tsk);
236 	if (!ti) {
237 		free_task_struct(tsk);
238 		return NULL;
239 	}
240 
241  	err = arch_dup_task_struct(tsk, orig);
242 	if (err)
243 		goto out;
244 
245 	tsk->stack = ti;
246 
247 	err = prop_local_init_single(&tsk->dirties);
248 	if (err)
249 		goto out;
250 
251 	setup_thread_stack(tsk, orig);
252 	stackend = end_of_stack(tsk);
253 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
254 
255 #ifdef CONFIG_CC_STACKPROTECTOR
256 	tsk->stack_canary = get_random_int();
257 #endif
258 
259 	/* One for us, one for whoever does the "release_task()" (usually parent) */
260 	atomic_set(&tsk->usage,2);
261 	atomic_set(&tsk->fs_excl, 0);
262 #ifdef CONFIG_BLK_DEV_IO_TRACE
263 	tsk->btrace_seq = 0;
264 #endif
265 	tsk->splice_pipe = NULL;
266 
267 	account_kernel_stack(ti, 1);
268 
269 	return tsk;
270 
271 out:
272 	free_thread_info(ti);
273 	free_task_struct(tsk);
274 	return NULL;
275 }
276 
277 #ifdef CONFIG_MMU
278 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
279 {
280 	struct vm_area_struct *mpnt, *tmp, **pprev;
281 	struct rb_node **rb_link, *rb_parent;
282 	int retval;
283 	unsigned long charge;
284 	struct mempolicy *pol;
285 
286 	down_write(&oldmm->mmap_sem);
287 	flush_cache_dup_mm(oldmm);
288 	/*
289 	 * Not linked in yet - no deadlock potential:
290 	 */
291 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
292 
293 	mm->locked_vm = 0;
294 	mm->mmap = NULL;
295 	mm->mmap_cache = NULL;
296 	mm->free_area_cache = oldmm->mmap_base;
297 	mm->cached_hole_size = ~0UL;
298 	mm->map_count = 0;
299 	cpumask_clear(mm_cpumask(mm));
300 	mm->mm_rb = RB_ROOT;
301 	rb_link = &mm->mm_rb.rb_node;
302 	rb_parent = NULL;
303 	pprev = &mm->mmap;
304 	retval = ksm_fork(mm, oldmm);
305 	if (retval)
306 		goto out;
307 
308 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
309 		struct file *file;
310 
311 		if (mpnt->vm_flags & VM_DONTCOPY) {
312 			long pages = vma_pages(mpnt);
313 			mm->total_vm -= pages;
314 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
315 								-pages);
316 			continue;
317 		}
318 		charge = 0;
319 		if (mpnt->vm_flags & VM_ACCOUNT) {
320 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
321 			if (security_vm_enough_memory(len))
322 				goto fail_nomem;
323 			charge = len;
324 		}
325 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
326 		if (!tmp)
327 			goto fail_nomem;
328 		*tmp = *mpnt;
329 		pol = mpol_dup(vma_policy(mpnt));
330 		retval = PTR_ERR(pol);
331 		if (IS_ERR(pol))
332 			goto fail_nomem_policy;
333 		vma_set_policy(tmp, pol);
334 		tmp->vm_flags &= ~VM_LOCKED;
335 		tmp->vm_mm = mm;
336 		tmp->vm_next = NULL;
337 		anon_vma_link(tmp);
338 		file = tmp->vm_file;
339 		if (file) {
340 			struct inode *inode = file->f_path.dentry->d_inode;
341 			struct address_space *mapping = file->f_mapping;
342 
343 			get_file(file);
344 			if (tmp->vm_flags & VM_DENYWRITE)
345 				atomic_dec(&inode->i_writecount);
346 			spin_lock(&mapping->i_mmap_lock);
347 			if (tmp->vm_flags & VM_SHARED)
348 				mapping->i_mmap_writable++;
349 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
350 			flush_dcache_mmap_lock(mapping);
351 			/* insert tmp into the share list, just after mpnt */
352 			vma_prio_tree_add(tmp, mpnt);
353 			flush_dcache_mmap_unlock(mapping);
354 			spin_unlock(&mapping->i_mmap_lock);
355 		}
356 
357 		/*
358 		 * Clear hugetlb-related page reserves for children. This only
359 		 * affects MAP_PRIVATE mappings. Faults generated by the child
360 		 * are not guaranteed to succeed, even if read-only
361 		 */
362 		if (is_vm_hugetlb_page(tmp))
363 			reset_vma_resv_huge_pages(tmp);
364 
365 		/*
366 		 * Link in the new vma and copy the page table entries.
367 		 */
368 		*pprev = tmp;
369 		pprev = &tmp->vm_next;
370 
371 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
372 		rb_link = &tmp->vm_rb.rb_right;
373 		rb_parent = &tmp->vm_rb;
374 
375 		mm->map_count++;
376 		retval = copy_page_range(mm, oldmm, mpnt);
377 
378 		if (tmp->vm_ops && tmp->vm_ops->open)
379 			tmp->vm_ops->open(tmp);
380 
381 		if (retval)
382 			goto out;
383 	}
384 	/* a new mm has just been created */
385 	arch_dup_mmap(oldmm, mm);
386 	retval = 0;
387 out:
388 	up_write(&mm->mmap_sem);
389 	flush_tlb_mm(oldmm);
390 	up_write(&oldmm->mmap_sem);
391 	return retval;
392 fail_nomem_policy:
393 	kmem_cache_free(vm_area_cachep, tmp);
394 fail_nomem:
395 	retval = -ENOMEM;
396 	vm_unacct_memory(charge);
397 	goto out;
398 }
399 
400 static inline int mm_alloc_pgd(struct mm_struct * mm)
401 {
402 	mm->pgd = pgd_alloc(mm);
403 	if (unlikely(!mm->pgd))
404 		return -ENOMEM;
405 	return 0;
406 }
407 
408 static inline void mm_free_pgd(struct mm_struct * mm)
409 {
410 	pgd_free(mm, mm->pgd);
411 }
412 #else
413 #define dup_mmap(mm, oldmm)	(0)
414 #define mm_alloc_pgd(mm)	(0)
415 #define mm_free_pgd(mm)
416 #endif /* CONFIG_MMU */
417 
418 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
419 
420 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
421 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
422 
423 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
424 
425 static int __init coredump_filter_setup(char *s)
426 {
427 	default_dump_filter =
428 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
429 		MMF_DUMP_FILTER_MASK;
430 	return 1;
431 }
432 
433 __setup("coredump_filter=", coredump_filter_setup);
434 
435 #include <linux/init_task.h>
436 
437 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
438 {
439 	atomic_set(&mm->mm_users, 1);
440 	atomic_set(&mm->mm_count, 1);
441 	init_rwsem(&mm->mmap_sem);
442 	INIT_LIST_HEAD(&mm->mmlist);
443 	mm->flags = (current->mm) ?
444 		(current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
445 	mm->core_state = NULL;
446 	mm->nr_ptes = 0;
447 	set_mm_counter(mm, file_rss, 0);
448 	set_mm_counter(mm, anon_rss, 0);
449 	spin_lock_init(&mm->page_table_lock);
450 	spin_lock_init(&mm->ioctx_lock);
451 	INIT_HLIST_HEAD(&mm->ioctx_list);
452 	mm->free_area_cache = TASK_UNMAPPED_BASE;
453 	mm->cached_hole_size = ~0UL;
454 	mm_init_owner(mm, p);
455 
456 	if (likely(!mm_alloc_pgd(mm))) {
457 		mm->def_flags = 0;
458 		mmu_notifier_mm_init(mm);
459 		return mm;
460 	}
461 
462 	free_mm(mm);
463 	return NULL;
464 }
465 
466 /*
467  * Allocate and initialize an mm_struct.
468  */
469 struct mm_struct * mm_alloc(void)
470 {
471 	struct mm_struct * mm;
472 
473 	mm = allocate_mm();
474 	if (mm) {
475 		memset(mm, 0, sizeof(*mm));
476 		mm = mm_init(mm, current);
477 	}
478 	return mm;
479 }
480 
481 /*
482  * Called when the last reference to the mm
483  * is dropped: either by a lazy thread or by
484  * mmput. Free the page directory and the mm.
485  */
486 void __mmdrop(struct mm_struct *mm)
487 {
488 	BUG_ON(mm == &init_mm);
489 	mm_free_pgd(mm);
490 	destroy_context(mm);
491 	mmu_notifier_mm_destroy(mm);
492 	free_mm(mm);
493 }
494 EXPORT_SYMBOL_GPL(__mmdrop);
495 
496 /*
497  * Decrement the use count and release all resources for an mm.
498  */
499 void mmput(struct mm_struct *mm)
500 {
501 	might_sleep();
502 
503 	if (atomic_dec_and_test(&mm->mm_users)) {
504 		exit_aio(mm);
505 		ksm_exit(mm);
506 		exit_mmap(mm);
507 		set_mm_exe_file(mm, NULL);
508 		if (!list_empty(&mm->mmlist)) {
509 			spin_lock(&mmlist_lock);
510 			list_del(&mm->mmlist);
511 			spin_unlock(&mmlist_lock);
512 		}
513 		put_swap_token(mm);
514 		mmdrop(mm);
515 	}
516 }
517 EXPORT_SYMBOL_GPL(mmput);
518 
519 /**
520  * get_task_mm - acquire a reference to the task's mm
521  *
522  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
523  * this kernel workthread has transiently adopted a user mm with use_mm,
524  * to do its AIO) is not set and if so returns a reference to it, after
525  * bumping up the use count.  User must release the mm via mmput()
526  * after use.  Typically used by /proc and ptrace.
527  */
528 struct mm_struct *get_task_mm(struct task_struct *task)
529 {
530 	struct mm_struct *mm;
531 
532 	task_lock(task);
533 	mm = task->mm;
534 	if (mm) {
535 		if (task->flags & PF_KTHREAD)
536 			mm = NULL;
537 		else
538 			atomic_inc(&mm->mm_users);
539 	}
540 	task_unlock(task);
541 	return mm;
542 }
543 EXPORT_SYMBOL_GPL(get_task_mm);
544 
545 /* Please note the differences between mmput and mm_release.
546  * mmput is called whenever we stop holding onto a mm_struct,
547  * error success whatever.
548  *
549  * mm_release is called after a mm_struct has been removed
550  * from the current process.
551  *
552  * This difference is important for error handling, when we
553  * only half set up a mm_struct for a new process and need to restore
554  * the old one.  Because we mmput the new mm_struct before
555  * restoring the old one. . .
556  * Eric Biederman 10 January 1998
557  */
558 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
559 {
560 	struct completion *vfork_done = tsk->vfork_done;
561 
562 	/* Get rid of any futexes when releasing the mm */
563 #ifdef CONFIG_FUTEX
564 	if (unlikely(tsk->robust_list))
565 		exit_robust_list(tsk);
566 #ifdef CONFIG_COMPAT
567 	if (unlikely(tsk->compat_robust_list))
568 		compat_exit_robust_list(tsk);
569 #endif
570 #endif
571 
572 	/* Get rid of any cached register state */
573 	deactivate_mm(tsk, mm);
574 
575 	/* notify parent sleeping on vfork() */
576 	if (vfork_done) {
577 		tsk->vfork_done = NULL;
578 		complete(vfork_done);
579 	}
580 
581 	/*
582 	 * If we're exiting normally, clear a user-space tid field if
583 	 * requested.  We leave this alone when dying by signal, to leave
584 	 * the value intact in a core dump, and to save the unnecessary
585 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
586 	 */
587 	if (tsk->clear_child_tid) {
588 		if (!(tsk->flags & PF_SIGNALED) &&
589 		    atomic_read(&mm->mm_users) > 1) {
590 			/*
591 			 * We don't check the error code - if userspace has
592 			 * not set up a proper pointer then tough luck.
593 			 */
594 			put_user(0, tsk->clear_child_tid);
595 			sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
596 					1, NULL, NULL, 0);
597 		}
598 		tsk->clear_child_tid = NULL;
599 	}
600 }
601 
602 /*
603  * Allocate a new mm structure and copy contents from the
604  * mm structure of the passed in task structure.
605  */
606 struct mm_struct *dup_mm(struct task_struct *tsk)
607 {
608 	struct mm_struct *mm, *oldmm = current->mm;
609 	int err;
610 
611 	if (!oldmm)
612 		return NULL;
613 
614 	mm = allocate_mm();
615 	if (!mm)
616 		goto fail_nomem;
617 
618 	memcpy(mm, oldmm, sizeof(*mm));
619 
620 	/* Initializing for Swap token stuff */
621 	mm->token_priority = 0;
622 	mm->last_interval = 0;
623 
624 	if (!mm_init(mm, tsk))
625 		goto fail_nomem;
626 
627 	if (init_new_context(tsk, mm))
628 		goto fail_nocontext;
629 
630 	dup_mm_exe_file(oldmm, mm);
631 
632 	err = dup_mmap(mm, oldmm);
633 	if (err)
634 		goto free_pt;
635 
636 	mm->hiwater_rss = get_mm_rss(mm);
637 	mm->hiwater_vm = mm->total_vm;
638 
639 	return mm;
640 
641 free_pt:
642 	mmput(mm);
643 
644 fail_nomem:
645 	return NULL;
646 
647 fail_nocontext:
648 	/*
649 	 * If init_new_context() failed, we cannot use mmput() to free the mm
650 	 * because it calls destroy_context()
651 	 */
652 	mm_free_pgd(mm);
653 	free_mm(mm);
654 	return NULL;
655 }
656 
657 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
658 {
659 	struct mm_struct * mm, *oldmm;
660 	int retval;
661 
662 	tsk->min_flt = tsk->maj_flt = 0;
663 	tsk->nvcsw = tsk->nivcsw = 0;
664 #ifdef CONFIG_DETECT_HUNG_TASK
665 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
666 #endif
667 
668 	tsk->mm = NULL;
669 	tsk->active_mm = NULL;
670 
671 	/*
672 	 * Are we cloning a kernel thread?
673 	 *
674 	 * We need to steal a active VM for that..
675 	 */
676 	oldmm = current->mm;
677 	if (!oldmm)
678 		return 0;
679 
680 	if (clone_flags & CLONE_VM) {
681 		atomic_inc(&oldmm->mm_users);
682 		mm = oldmm;
683 		goto good_mm;
684 	}
685 
686 	retval = -ENOMEM;
687 	mm = dup_mm(tsk);
688 	if (!mm)
689 		goto fail_nomem;
690 
691 good_mm:
692 	/* Initializing for Swap token stuff */
693 	mm->token_priority = 0;
694 	mm->last_interval = 0;
695 
696 	tsk->mm = mm;
697 	tsk->active_mm = mm;
698 	return 0;
699 
700 fail_nomem:
701 	return retval;
702 }
703 
704 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
705 {
706 	struct fs_struct *fs = current->fs;
707 	if (clone_flags & CLONE_FS) {
708 		/* tsk->fs is already what we want */
709 		write_lock(&fs->lock);
710 		if (fs->in_exec) {
711 			write_unlock(&fs->lock);
712 			return -EAGAIN;
713 		}
714 		fs->users++;
715 		write_unlock(&fs->lock);
716 		return 0;
717 	}
718 	tsk->fs = copy_fs_struct(fs);
719 	if (!tsk->fs)
720 		return -ENOMEM;
721 	return 0;
722 }
723 
724 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
725 {
726 	struct files_struct *oldf, *newf;
727 	int error = 0;
728 
729 	/*
730 	 * A background process may not have any files ...
731 	 */
732 	oldf = current->files;
733 	if (!oldf)
734 		goto out;
735 
736 	if (clone_flags & CLONE_FILES) {
737 		atomic_inc(&oldf->count);
738 		goto out;
739 	}
740 
741 	newf = dup_fd(oldf, &error);
742 	if (!newf)
743 		goto out;
744 
745 	tsk->files = newf;
746 	error = 0;
747 out:
748 	return error;
749 }
750 
751 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
752 {
753 #ifdef CONFIG_BLOCK
754 	struct io_context *ioc = current->io_context;
755 
756 	if (!ioc)
757 		return 0;
758 	/*
759 	 * Share io context with parent, if CLONE_IO is set
760 	 */
761 	if (clone_flags & CLONE_IO) {
762 		tsk->io_context = ioc_task_link(ioc);
763 		if (unlikely(!tsk->io_context))
764 			return -ENOMEM;
765 	} else if (ioprio_valid(ioc->ioprio)) {
766 		tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
767 		if (unlikely(!tsk->io_context))
768 			return -ENOMEM;
769 
770 		tsk->io_context->ioprio = ioc->ioprio;
771 	}
772 #endif
773 	return 0;
774 }
775 
776 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
777 {
778 	struct sighand_struct *sig;
779 
780 	if (clone_flags & CLONE_SIGHAND) {
781 		atomic_inc(&current->sighand->count);
782 		return 0;
783 	}
784 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
785 	rcu_assign_pointer(tsk->sighand, sig);
786 	if (!sig)
787 		return -ENOMEM;
788 	atomic_set(&sig->count, 1);
789 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
790 	return 0;
791 }
792 
793 void __cleanup_sighand(struct sighand_struct *sighand)
794 {
795 	if (atomic_dec_and_test(&sighand->count))
796 		kmem_cache_free(sighand_cachep, sighand);
797 }
798 
799 
800 /*
801  * Initialize POSIX timer handling for a thread group.
802  */
803 static void posix_cpu_timers_init_group(struct signal_struct *sig)
804 {
805 	/* Thread group counters. */
806 	thread_group_cputime_init(sig);
807 
808 	/* Expiration times and increments. */
809 	sig->it[CPUCLOCK_PROF].expires = cputime_zero;
810 	sig->it[CPUCLOCK_PROF].incr = cputime_zero;
811 	sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
812 	sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
813 
814 	/* Cached expiration times. */
815 	sig->cputime_expires.prof_exp = cputime_zero;
816 	sig->cputime_expires.virt_exp = cputime_zero;
817 	sig->cputime_expires.sched_exp = 0;
818 
819 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
820 		sig->cputime_expires.prof_exp =
821 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
822 		sig->cputimer.running = 1;
823 	}
824 
825 	/* The timer lists. */
826 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
827 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
828 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
829 }
830 
831 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
832 {
833 	struct signal_struct *sig;
834 
835 	if (clone_flags & CLONE_THREAD)
836 		return 0;
837 
838 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
839 	tsk->signal = sig;
840 	if (!sig)
841 		return -ENOMEM;
842 
843 	atomic_set(&sig->count, 1);
844 	atomic_set(&sig->live, 1);
845 	init_waitqueue_head(&sig->wait_chldexit);
846 	sig->flags = 0;
847 	if (clone_flags & CLONE_NEWPID)
848 		sig->flags |= SIGNAL_UNKILLABLE;
849 	sig->group_exit_code = 0;
850 	sig->group_exit_task = NULL;
851 	sig->group_stop_count = 0;
852 	sig->curr_target = tsk;
853 	init_sigpending(&sig->shared_pending);
854 	INIT_LIST_HEAD(&sig->posix_timers);
855 
856 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
857 	sig->it_real_incr.tv64 = 0;
858 	sig->real_timer.function = it_real_fn;
859 
860 	sig->leader = 0;	/* session leadership doesn't inherit */
861 	sig->tty_old_pgrp = NULL;
862 	sig->tty = NULL;
863 
864 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
865 	sig->gtime = cputime_zero;
866 	sig->cgtime = cputime_zero;
867 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
868 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
869 	sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
870 	sig->maxrss = sig->cmaxrss = 0;
871 	task_io_accounting_init(&sig->ioac);
872 	sig->sum_sched_runtime = 0;
873 	taskstats_tgid_init(sig);
874 
875 	task_lock(current->group_leader);
876 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
877 	task_unlock(current->group_leader);
878 
879 	posix_cpu_timers_init_group(sig);
880 
881 	acct_init_pacct(&sig->pacct);
882 
883 	tty_audit_fork(sig);
884 
885 	sig->oom_adj = current->signal->oom_adj;
886 
887 	return 0;
888 }
889 
890 void __cleanup_signal(struct signal_struct *sig)
891 {
892 	thread_group_cputime_free(sig);
893 	tty_kref_put(sig->tty);
894 	kmem_cache_free(signal_cachep, sig);
895 }
896 
897 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
898 {
899 	unsigned long new_flags = p->flags;
900 
901 	new_flags &= ~PF_SUPERPRIV;
902 	new_flags |= PF_FORKNOEXEC;
903 	new_flags |= PF_STARTING;
904 	p->flags = new_flags;
905 	clear_freeze_flag(p);
906 }
907 
908 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
909 {
910 	current->clear_child_tid = tidptr;
911 
912 	return task_pid_vnr(current);
913 }
914 
915 static void rt_mutex_init_task(struct task_struct *p)
916 {
917 	spin_lock_init(&p->pi_lock);
918 #ifdef CONFIG_RT_MUTEXES
919 	plist_head_init(&p->pi_waiters, &p->pi_lock);
920 	p->pi_blocked_on = NULL;
921 #endif
922 }
923 
924 #ifdef CONFIG_MM_OWNER
925 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
926 {
927 	mm->owner = p;
928 }
929 #endif /* CONFIG_MM_OWNER */
930 
931 /*
932  * Initialize POSIX timer handling for a single task.
933  */
934 static void posix_cpu_timers_init(struct task_struct *tsk)
935 {
936 	tsk->cputime_expires.prof_exp = cputime_zero;
937 	tsk->cputime_expires.virt_exp = cputime_zero;
938 	tsk->cputime_expires.sched_exp = 0;
939 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
940 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
941 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
942 }
943 
944 /*
945  * This creates a new process as a copy of the old one,
946  * but does not actually start it yet.
947  *
948  * It copies the registers, and all the appropriate
949  * parts of the process environment (as per the clone
950  * flags). The actual kick-off is left to the caller.
951  */
952 static struct task_struct *copy_process(unsigned long clone_flags,
953 					unsigned long stack_start,
954 					struct pt_regs *regs,
955 					unsigned long stack_size,
956 					int __user *child_tidptr,
957 					struct pid *pid,
958 					int trace)
959 {
960 	int retval;
961 	struct task_struct *p;
962 	int cgroup_callbacks_done = 0;
963 
964 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
965 		return ERR_PTR(-EINVAL);
966 
967 	/*
968 	 * Thread groups must share signals as well, and detached threads
969 	 * can only be started up within the thread group.
970 	 */
971 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
972 		return ERR_PTR(-EINVAL);
973 
974 	/*
975 	 * Shared signal handlers imply shared VM. By way of the above,
976 	 * thread groups also imply shared VM. Blocking this case allows
977 	 * for various simplifications in other code.
978 	 */
979 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
980 		return ERR_PTR(-EINVAL);
981 
982 	retval = security_task_create(clone_flags);
983 	if (retval)
984 		goto fork_out;
985 
986 	retval = -ENOMEM;
987 	p = dup_task_struct(current);
988 	if (!p)
989 		goto fork_out;
990 
991 	ftrace_graph_init_task(p);
992 
993 	rt_mutex_init_task(p);
994 
995 #ifdef CONFIG_PROVE_LOCKING
996 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
997 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
998 #endif
999 	retval = -EAGAIN;
1000 	if (atomic_read(&p->real_cred->user->processes) >=
1001 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1002 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1003 		    p->real_cred->user != INIT_USER)
1004 			goto bad_fork_free;
1005 	}
1006 
1007 	retval = copy_creds(p, clone_flags);
1008 	if (retval < 0)
1009 		goto bad_fork_free;
1010 
1011 	/*
1012 	 * If multiple threads are within copy_process(), then this check
1013 	 * triggers too late. This doesn't hurt, the check is only there
1014 	 * to stop root fork bombs.
1015 	 */
1016 	retval = -EAGAIN;
1017 	if (nr_threads >= max_threads)
1018 		goto bad_fork_cleanup_count;
1019 
1020 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1021 		goto bad_fork_cleanup_count;
1022 
1023 	if (p->binfmt && !try_module_get(p->binfmt->module))
1024 		goto bad_fork_cleanup_put_domain;
1025 
1026 	p->did_exec = 0;
1027 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1028 	copy_flags(clone_flags, p);
1029 	INIT_LIST_HEAD(&p->children);
1030 	INIT_LIST_HEAD(&p->sibling);
1031 	rcu_copy_process(p);
1032 	p->vfork_done = NULL;
1033 	spin_lock_init(&p->alloc_lock);
1034 
1035 	init_sigpending(&p->pending);
1036 
1037 	p->utime = cputime_zero;
1038 	p->stime = cputime_zero;
1039 	p->gtime = cputime_zero;
1040 	p->utimescaled = cputime_zero;
1041 	p->stimescaled = cputime_zero;
1042 	p->prev_utime = cputime_zero;
1043 	p->prev_stime = cputime_zero;
1044 
1045 	p->default_timer_slack_ns = current->timer_slack_ns;
1046 
1047 	task_io_accounting_init(&p->ioac);
1048 	acct_clear_integrals(p);
1049 
1050 	posix_cpu_timers_init(p);
1051 
1052 	p->lock_depth = -1;		/* -1 = no lock */
1053 	do_posix_clock_monotonic_gettime(&p->start_time);
1054 	p->real_start_time = p->start_time;
1055 	monotonic_to_bootbased(&p->real_start_time);
1056 	p->io_context = NULL;
1057 	p->audit_context = NULL;
1058 	cgroup_fork(p);
1059 #ifdef CONFIG_NUMA
1060 	p->mempolicy = mpol_dup(p->mempolicy);
1061  	if (IS_ERR(p->mempolicy)) {
1062  		retval = PTR_ERR(p->mempolicy);
1063  		p->mempolicy = NULL;
1064  		goto bad_fork_cleanup_cgroup;
1065  	}
1066 	mpol_fix_fork_child_flag(p);
1067 #endif
1068 #ifdef CONFIG_TRACE_IRQFLAGS
1069 	p->irq_events = 0;
1070 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1071 	p->hardirqs_enabled = 1;
1072 #else
1073 	p->hardirqs_enabled = 0;
1074 #endif
1075 	p->hardirq_enable_ip = 0;
1076 	p->hardirq_enable_event = 0;
1077 	p->hardirq_disable_ip = _THIS_IP_;
1078 	p->hardirq_disable_event = 0;
1079 	p->softirqs_enabled = 1;
1080 	p->softirq_enable_ip = _THIS_IP_;
1081 	p->softirq_enable_event = 0;
1082 	p->softirq_disable_ip = 0;
1083 	p->softirq_disable_event = 0;
1084 	p->hardirq_context = 0;
1085 	p->softirq_context = 0;
1086 #endif
1087 #ifdef CONFIG_LOCKDEP
1088 	p->lockdep_depth = 0; /* no locks held yet */
1089 	p->curr_chain_key = 0;
1090 	p->lockdep_recursion = 0;
1091 #endif
1092 
1093 #ifdef CONFIG_DEBUG_MUTEXES
1094 	p->blocked_on = NULL; /* not blocked yet */
1095 #endif
1096 
1097 	p->bts = NULL;
1098 
1099 	p->stack_start = stack_start;
1100 
1101 	/* Perform scheduler related setup. Assign this task to a CPU. */
1102 	sched_fork(p, clone_flags);
1103 
1104 	retval = perf_event_init_task(p);
1105 	if (retval)
1106 		goto bad_fork_cleanup_policy;
1107 
1108 	if ((retval = audit_alloc(p)))
1109 		goto bad_fork_cleanup_policy;
1110 	/* copy all the process information */
1111 	if ((retval = copy_semundo(clone_flags, p)))
1112 		goto bad_fork_cleanup_audit;
1113 	if ((retval = copy_files(clone_flags, p)))
1114 		goto bad_fork_cleanup_semundo;
1115 	if ((retval = copy_fs(clone_flags, p)))
1116 		goto bad_fork_cleanup_files;
1117 	if ((retval = copy_sighand(clone_flags, p)))
1118 		goto bad_fork_cleanup_fs;
1119 	if ((retval = copy_signal(clone_flags, p)))
1120 		goto bad_fork_cleanup_sighand;
1121 	if ((retval = copy_mm(clone_flags, p)))
1122 		goto bad_fork_cleanup_signal;
1123 	if ((retval = copy_namespaces(clone_flags, p)))
1124 		goto bad_fork_cleanup_mm;
1125 	if ((retval = copy_io(clone_flags, p)))
1126 		goto bad_fork_cleanup_namespaces;
1127 	retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1128 	if (retval)
1129 		goto bad_fork_cleanup_io;
1130 
1131 	if (pid != &init_struct_pid) {
1132 		retval = -ENOMEM;
1133 		pid = alloc_pid(p->nsproxy->pid_ns);
1134 		if (!pid)
1135 			goto bad_fork_cleanup_io;
1136 
1137 		if (clone_flags & CLONE_NEWPID) {
1138 			retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1139 			if (retval < 0)
1140 				goto bad_fork_free_pid;
1141 		}
1142 	}
1143 
1144 	p->pid = pid_nr(pid);
1145 	p->tgid = p->pid;
1146 	if (clone_flags & CLONE_THREAD)
1147 		p->tgid = current->tgid;
1148 
1149 	if (current->nsproxy != p->nsproxy) {
1150 		retval = ns_cgroup_clone(p, pid);
1151 		if (retval)
1152 			goto bad_fork_free_pid;
1153 	}
1154 
1155 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1156 	/*
1157 	 * Clear TID on mm_release()?
1158 	 */
1159 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1160 #ifdef CONFIG_FUTEX
1161 	p->robust_list = NULL;
1162 #ifdef CONFIG_COMPAT
1163 	p->compat_robust_list = NULL;
1164 #endif
1165 	INIT_LIST_HEAD(&p->pi_state_list);
1166 	p->pi_state_cache = NULL;
1167 #endif
1168 	/*
1169 	 * sigaltstack should be cleared when sharing the same VM
1170 	 */
1171 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1172 		p->sas_ss_sp = p->sas_ss_size = 0;
1173 
1174 	/*
1175 	 * Syscall tracing should be turned off in the child regardless
1176 	 * of CLONE_PTRACE.
1177 	 */
1178 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1179 #ifdef TIF_SYSCALL_EMU
1180 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1181 #endif
1182 	clear_all_latency_tracing(p);
1183 
1184 	/* ok, now we should be set up.. */
1185 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1186 	p->pdeath_signal = 0;
1187 	p->exit_state = 0;
1188 
1189 	/*
1190 	 * Ok, make it visible to the rest of the system.
1191 	 * We dont wake it up yet.
1192 	 */
1193 	p->group_leader = p;
1194 	INIT_LIST_HEAD(&p->thread_group);
1195 
1196 	/* Now that the task is set up, run cgroup callbacks if
1197 	 * necessary. We need to run them before the task is visible
1198 	 * on the tasklist. */
1199 	cgroup_fork_callbacks(p);
1200 	cgroup_callbacks_done = 1;
1201 
1202 	/* Need tasklist lock for parent etc handling! */
1203 	write_lock_irq(&tasklist_lock);
1204 
1205 	/*
1206 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1207 	 * not be changed, nor will its assigned CPU.
1208 	 *
1209 	 * The cpus_allowed mask of the parent may have changed after it was
1210 	 * copied first time - so re-copy it here, then check the child's CPU
1211 	 * to ensure it is on a valid CPU (and if not, just force it back to
1212 	 * parent's CPU). This avoids alot of nasty races.
1213 	 */
1214 	p->cpus_allowed = current->cpus_allowed;
1215 	p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1216 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1217 			!cpu_online(task_cpu(p))))
1218 		set_task_cpu(p, smp_processor_id());
1219 
1220 	/* CLONE_PARENT re-uses the old parent */
1221 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1222 		p->real_parent = current->real_parent;
1223 		p->parent_exec_id = current->parent_exec_id;
1224 	} else {
1225 		p->real_parent = current;
1226 		p->parent_exec_id = current->self_exec_id;
1227 	}
1228 
1229 	spin_lock(&current->sighand->siglock);
1230 
1231 	/*
1232 	 * Process group and session signals need to be delivered to just the
1233 	 * parent before the fork or both the parent and the child after the
1234 	 * fork. Restart if a signal comes in before we add the new process to
1235 	 * it's process group.
1236 	 * A fatal signal pending means that current will exit, so the new
1237 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1238  	 */
1239 	recalc_sigpending();
1240 	if (signal_pending(current)) {
1241 		spin_unlock(&current->sighand->siglock);
1242 		write_unlock_irq(&tasklist_lock);
1243 		retval = -ERESTARTNOINTR;
1244 		goto bad_fork_free_pid;
1245 	}
1246 
1247 	if (clone_flags & CLONE_THREAD) {
1248 		atomic_inc(&current->signal->count);
1249 		atomic_inc(&current->signal->live);
1250 		p->group_leader = current->group_leader;
1251 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1252 	}
1253 
1254 	if (likely(p->pid)) {
1255 		list_add_tail(&p->sibling, &p->real_parent->children);
1256 		tracehook_finish_clone(p, clone_flags, trace);
1257 
1258 		if (thread_group_leader(p)) {
1259 			if (clone_flags & CLONE_NEWPID)
1260 				p->nsproxy->pid_ns->child_reaper = p;
1261 
1262 			p->signal->leader_pid = pid;
1263 			tty_kref_put(p->signal->tty);
1264 			p->signal->tty = tty_kref_get(current->signal->tty);
1265 			attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1266 			attach_pid(p, PIDTYPE_SID, task_session(current));
1267 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1268 			__get_cpu_var(process_counts)++;
1269 		}
1270 		attach_pid(p, PIDTYPE_PID, pid);
1271 		nr_threads++;
1272 	}
1273 
1274 	total_forks++;
1275 	spin_unlock(&current->sighand->siglock);
1276 	write_unlock_irq(&tasklist_lock);
1277 	proc_fork_connector(p);
1278 	cgroup_post_fork(p);
1279 	perf_event_fork(p);
1280 	return p;
1281 
1282 bad_fork_free_pid:
1283 	if (pid != &init_struct_pid)
1284 		free_pid(pid);
1285 bad_fork_cleanup_io:
1286 	put_io_context(p->io_context);
1287 bad_fork_cleanup_namespaces:
1288 	exit_task_namespaces(p);
1289 bad_fork_cleanup_mm:
1290 	if (p->mm)
1291 		mmput(p->mm);
1292 bad_fork_cleanup_signal:
1293 	if (!(clone_flags & CLONE_THREAD))
1294 		__cleanup_signal(p->signal);
1295 bad_fork_cleanup_sighand:
1296 	__cleanup_sighand(p->sighand);
1297 bad_fork_cleanup_fs:
1298 	exit_fs(p); /* blocking */
1299 bad_fork_cleanup_files:
1300 	exit_files(p); /* blocking */
1301 bad_fork_cleanup_semundo:
1302 	exit_sem(p);
1303 bad_fork_cleanup_audit:
1304 	audit_free(p);
1305 bad_fork_cleanup_policy:
1306 	perf_event_free_task(p);
1307 #ifdef CONFIG_NUMA
1308 	mpol_put(p->mempolicy);
1309 bad_fork_cleanup_cgroup:
1310 #endif
1311 	cgroup_exit(p, cgroup_callbacks_done);
1312 	delayacct_tsk_free(p);
1313 	if (p->binfmt)
1314 		module_put(p->binfmt->module);
1315 bad_fork_cleanup_put_domain:
1316 	module_put(task_thread_info(p)->exec_domain->module);
1317 bad_fork_cleanup_count:
1318 	atomic_dec(&p->cred->user->processes);
1319 	exit_creds(p);
1320 bad_fork_free:
1321 	free_task(p);
1322 fork_out:
1323 	return ERR_PTR(retval);
1324 }
1325 
1326 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1327 {
1328 	memset(regs, 0, sizeof(struct pt_regs));
1329 	return regs;
1330 }
1331 
1332 struct task_struct * __cpuinit fork_idle(int cpu)
1333 {
1334 	struct task_struct *task;
1335 	struct pt_regs regs;
1336 
1337 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1338 			    &init_struct_pid, 0);
1339 	if (!IS_ERR(task))
1340 		init_idle(task, cpu);
1341 
1342 	return task;
1343 }
1344 
1345 /*
1346  *  Ok, this is the main fork-routine.
1347  *
1348  * It copies the process, and if successful kick-starts
1349  * it and waits for it to finish using the VM if required.
1350  */
1351 long do_fork(unsigned long clone_flags,
1352 	      unsigned long stack_start,
1353 	      struct pt_regs *regs,
1354 	      unsigned long stack_size,
1355 	      int __user *parent_tidptr,
1356 	      int __user *child_tidptr)
1357 {
1358 	struct task_struct *p;
1359 	int trace = 0;
1360 	long nr;
1361 
1362 	/*
1363 	 * Do some preliminary argument and permissions checking before we
1364 	 * actually start allocating stuff
1365 	 */
1366 	if (clone_flags & CLONE_NEWUSER) {
1367 		if (clone_flags & CLONE_THREAD)
1368 			return -EINVAL;
1369 		/* hopefully this check will go away when userns support is
1370 		 * complete
1371 		 */
1372 		if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1373 				!capable(CAP_SETGID))
1374 			return -EPERM;
1375 	}
1376 
1377 	/*
1378 	 * We hope to recycle these flags after 2.6.26
1379 	 */
1380 	if (unlikely(clone_flags & CLONE_STOPPED)) {
1381 		static int __read_mostly count = 100;
1382 
1383 		if (count > 0 && printk_ratelimit()) {
1384 			char comm[TASK_COMM_LEN];
1385 
1386 			count--;
1387 			printk(KERN_INFO "fork(): process `%s' used deprecated "
1388 					"clone flags 0x%lx\n",
1389 				get_task_comm(comm, current),
1390 				clone_flags & CLONE_STOPPED);
1391 		}
1392 	}
1393 
1394 	/*
1395 	 * When called from kernel_thread, don't do user tracing stuff.
1396 	 */
1397 	if (likely(user_mode(regs)))
1398 		trace = tracehook_prepare_clone(clone_flags);
1399 
1400 	p = copy_process(clone_flags, stack_start, regs, stack_size,
1401 			 child_tidptr, NULL, trace);
1402 	/*
1403 	 * Do this prior waking up the new thread - the thread pointer
1404 	 * might get invalid after that point, if the thread exits quickly.
1405 	 */
1406 	if (!IS_ERR(p)) {
1407 		struct completion vfork;
1408 
1409 		trace_sched_process_fork(current, p);
1410 
1411 		nr = task_pid_vnr(p);
1412 
1413 		if (clone_flags & CLONE_PARENT_SETTID)
1414 			put_user(nr, parent_tidptr);
1415 
1416 		if (clone_flags & CLONE_VFORK) {
1417 			p->vfork_done = &vfork;
1418 			init_completion(&vfork);
1419 		}
1420 
1421 		audit_finish_fork(p);
1422 		tracehook_report_clone(regs, clone_flags, nr, p);
1423 
1424 		/*
1425 		 * We set PF_STARTING at creation in case tracing wants to
1426 		 * use this to distinguish a fully live task from one that
1427 		 * hasn't gotten to tracehook_report_clone() yet.  Now we
1428 		 * clear it and set the child going.
1429 		 */
1430 		p->flags &= ~PF_STARTING;
1431 
1432 		if (unlikely(clone_flags & CLONE_STOPPED)) {
1433 			/*
1434 			 * We'll start up with an immediate SIGSTOP.
1435 			 */
1436 			sigaddset(&p->pending.signal, SIGSTOP);
1437 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1438 			__set_task_state(p, TASK_STOPPED);
1439 		} else {
1440 			wake_up_new_task(p, clone_flags);
1441 		}
1442 
1443 		tracehook_report_clone_complete(trace, regs,
1444 						clone_flags, nr, p);
1445 
1446 		if (clone_flags & CLONE_VFORK) {
1447 			freezer_do_not_count();
1448 			wait_for_completion(&vfork);
1449 			freezer_count();
1450 			tracehook_report_vfork_done(p, nr);
1451 		}
1452 	} else {
1453 		nr = PTR_ERR(p);
1454 	}
1455 	return nr;
1456 }
1457 
1458 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1459 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1460 #endif
1461 
1462 static void sighand_ctor(void *data)
1463 {
1464 	struct sighand_struct *sighand = data;
1465 
1466 	spin_lock_init(&sighand->siglock);
1467 	init_waitqueue_head(&sighand->signalfd_wqh);
1468 }
1469 
1470 void __init proc_caches_init(void)
1471 {
1472 	sighand_cachep = kmem_cache_create("sighand_cache",
1473 			sizeof(struct sighand_struct), 0,
1474 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1475 			SLAB_NOTRACK, sighand_ctor);
1476 	signal_cachep = kmem_cache_create("signal_cache",
1477 			sizeof(struct signal_struct), 0,
1478 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1479 	files_cachep = kmem_cache_create("files_cache",
1480 			sizeof(struct files_struct), 0,
1481 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1482 	fs_cachep = kmem_cache_create("fs_cache",
1483 			sizeof(struct fs_struct), 0,
1484 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1485 	mm_cachep = kmem_cache_create("mm_struct",
1486 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1487 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1488 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1489 	mmap_init();
1490 }
1491 
1492 /*
1493  * Check constraints on flags passed to the unshare system call and
1494  * force unsharing of additional process context as appropriate.
1495  */
1496 static void check_unshare_flags(unsigned long *flags_ptr)
1497 {
1498 	/*
1499 	 * If unsharing a thread from a thread group, must also
1500 	 * unshare vm.
1501 	 */
1502 	if (*flags_ptr & CLONE_THREAD)
1503 		*flags_ptr |= CLONE_VM;
1504 
1505 	/*
1506 	 * If unsharing vm, must also unshare signal handlers.
1507 	 */
1508 	if (*flags_ptr & CLONE_VM)
1509 		*flags_ptr |= CLONE_SIGHAND;
1510 
1511 	/*
1512 	 * If unsharing signal handlers and the task was created
1513 	 * using CLONE_THREAD, then must unshare the thread
1514 	 */
1515 	if ((*flags_ptr & CLONE_SIGHAND) &&
1516 	    (atomic_read(&current->signal->count) > 1))
1517 		*flags_ptr |= CLONE_THREAD;
1518 
1519 	/*
1520 	 * If unsharing namespace, must also unshare filesystem information.
1521 	 */
1522 	if (*flags_ptr & CLONE_NEWNS)
1523 		*flags_ptr |= CLONE_FS;
1524 }
1525 
1526 /*
1527  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1528  */
1529 static int unshare_thread(unsigned long unshare_flags)
1530 {
1531 	if (unshare_flags & CLONE_THREAD)
1532 		return -EINVAL;
1533 
1534 	return 0;
1535 }
1536 
1537 /*
1538  * Unshare the filesystem structure if it is being shared
1539  */
1540 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1541 {
1542 	struct fs_struct *fs = current->fs;
1543 
1544 	if (!(unshare_flags & CLONE_FS) || !fs)
1545 		return 0;
1546 
1547 	/* don't need lock here; in the worst case we'll do useless copy */
1548 	if (fs->users == 1)
1549 		return 0;
1550 
1551 	*new_fsp = copy_fs_struct(fs);
1552 	if (!*new_fsp)
1553 		return -ENOMEM;
1554 
1555 	return 0;
1556 }
1557 
1558 /*
1559  * Unsharing of sighand is not supported yet
1560  */
1561 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1562 {
1563 	struct sighand_struct *sigh = current->sighand;
1564 
1565 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1566 		return -EINVAL;
1567 	else
1568 		return 0;
1569 }
1570 
1571 /*
1572  * Unshare vm if it is being shared
1573  */
1574 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1575 {
1576 	struct mm_struct *mm = current->mm;
1577 
1578 	if ((unshare_flags & CLONE_VM) &&
1579 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1580 		return -EINVAL;
1581 	}
1582 
1583 	return 0;
1584 }
1585 
1586 /*
1587  * Unshare file descriptor table if it is being shared
1588  */
1589 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1590 {
1591 	struct files_struct *fd = current->files;
1592 	int error = 0;
1593 
1594 	if ((unshare_flags & CLONE_FILES) &&
1595 	    (fd && atomic_read(&fd->count) > 1)) {
1596 		*new_fdp = dup_fd(fd, &error);
1597 		if (!*new_fdp)
1598 			return error;
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 /*
1605  * unshare allows a process to 'unshare' part of the process
1606  * context which was originally shared using clone.  copy_*
1607  * functions used by do_fork() cannot be used here directly
1608  * because they modify an inactive task_struct that is being
1609  * constructed. Here we are modifying the current, active,
1610  * task_struct.
1611  */
1612 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1613 {
1614 	int err = 0;
1615 	struct fs_struct *fs, *new_fs = NULL;
1616 	struct sighand_struct *new_sigh = NULL;
1617 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1618 	struct files_struct *fd, *new_fd = NULL;
1619 	struct nsproxy *new_nsproxy = NULL;
1620 	int do_sysvsem = 0;
1621 
1622 	check_unshare_flags(&unshare_flags);
1623 
1624 	/* Return -EINVAL for all unsupported flags */
1625 	err = -EINVAL;
1626 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1627 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1628 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1629 		goto bad_unshare_out;
1630 
1631 	/*
1632 	 * CLONE_NEWIPC must also detach from the undolist: after switching
1633 	 * to a new ipc namespace, the semaphore arrays from the old
1634 	 * namespace are unreachable.
1635 	 */
1636 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1637 		do_sysvsem = 1;
1638 	if ((err = unshare_thread(unshare_flags)))
1639 		goto bad_unshare_out;
1640 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1641 		goto bad_unshare_cleanup_thread;
1642 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1643 		goto bad_unshare_cleanup_fs;
1644 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1645 		goto bad_unshare_cleanup_sigh;
1646 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1647 		goto bad_unshare_cleanup_vm;
1648 	if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1649 			new_fs)))
1650 		goto bad_unshare_cleanup_fd;
1651 
1652 	if (new_fs ||  new_mm || new_fd || do_sysvsem || new_nsproxy) {
1653 		if (do_sysvsem) {
1654 			/*
1655 			 * CLONE_SYSVSEM is equivalent to sys_exit().
1656 			 */
1657 			exit_sem(current);
1658 		}
1659 
1660 		if (new_nsproxy) {
1661 			switch_task_namespaces(current, new_nsproxy);
1662 			new_nsproxy = NULL;
1663 		}
1664 
1665 		task_lock(current);
1666 
1667 		if (new_fs) {
1668 			fs = current->fs;
1669 			write_lock(&fs->lock);
1670 			current->fs = new_fs;
1671 			if (--fs->users)
1672 				new_fs = NULL;
1673 			else
1674 				new_fs = fs;
1675 			write_unlock(&fs->lock);
1676 		}
1677 
1678 		if (new_mm) {
1679 			mm = current->mm;
1680 			active_mm = current->active_mm;
1681 			current->mm = new_mm;
1682 			current->active_mm = new_mm;
1683 			activate_mm(active_mm, new_mm);
1684 			new_mm = mm;
1685 		}
1686 
1687 		if (new_fd) {
1688 			fd = current->files;
1689 			current->files = new_fd;
1690 			new_fd = fd;
1691 		}
1692 
1693 		task_unlock(current);
1694 	}
1695 
1696 	if (new_nsproxy)
1697 		put_nsproxy(new_nsproxy);
1698 
1699 bad_unshare_cleanup_fd:
1700 	if (new_fd)
1701 		put_files_struct(new_fd);
1702 
1703 bad_unshare_cleanup_vm:
1704 	if (new_mm)
1705 		mmput(new_mm);
1706 
1707 bad_unshare_cleanup_sigh:
1708 	if (new_sigh)
1709 		if (atomic_dec_and_test(&new_sigh->count))
1710 			kmem_cache_free(sighand_cachep, new_sigh);
1711 
1712 bad_unshare_cleanup_fs:
1713 	if (new_fs)
1714 		free_fs_struct(new_fs);
1715 
1716 bad_unshare_cleanup_thread:
1717 bad_unshare_out:
1718 	return err;
1719 }
1720 
1721 /*
1722  *	Helper to unshare the files of the current task.
1723  *	We don't want to expose copy_files internals to
1724  *	the exec layer of the kernel.
1725  */
1726 
1727 int unshare_files(struct files_struct **displaced)
1728 {
1729 	struct task_struct *task = current;
1730 	struct files_struct *copy = NULL;
1731 	int error;
1732 
1733 	error = unshare_fd(CLONE_FILES, &copy);
1734 	if (error || !copy) {
1735 		*displaced = NULL;
1736 		return error;
1737 	}
1738 	*displaced = task->files;
1739 	task_lock(task);
1740 	task->files = copy;
1741 	task_unlock(task);
1742 	return 0;
1743 }
1744