xref: /linux/kernel/fork.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 
108 #include <asm/pgalloc.h>
109 #include <linux/uaccess.h>
110 #include <asm/mmu_context.h>
111 #include <asm/cacheflush.h>
112 #include <asm/tlbflush.h>
113 
114 #include <trace/events/sched.h>
115 
116 #define CREATE_TRACE_POINTS
117 #include <trace/events/task.h>
118 
119 #include <kunit/visibility.h>
120 
121 /*
122  * Minimum number of threads to boot the kernel
123  */
124 #define MIN_THREADS 20
125 
126 /*
127  * Maximum number of threads
128  */
129 #define MAX_THREADS FUTEX_TID_MASK
130 
131 /*
132  * Protected counters by write_lock_irq(&tasklist_lock)
133  */
134 unsigned long total_forks;	/* Handle normal Linux uptimes. */
135 int nr_threads;			/* The idle threads do not count.. */
136 
137 static int max_threads;		/* tunable limit on nr_threads */
138 
139 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
140 
141 static const char * const resident_page_types[] = {
142 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
143 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
144 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
145 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
146 };
147 
148 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
149 
150 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
151 
152 #ifdef CONFIG_PROVE_RCU
153 int lockdep_tasklist_lock_is_held(void)
154 {
155 	return lockdep_is_held(&tasklist_lock);
156 }
157 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
158 #endif /* #ifdef CONFIG_PROVE_RCU */
159 
160 int nr_processes(void)
161 {
162 	int cpu;
163 	int total = 0;
164 
165 	for_each_possible_cpu(cpu)
166 		total += per_cpu(process_counts, cpu);
167 
168 	return total;
169 }
170 
171 void __weak arch_release_task_struct(struct task_struct *tsk)
172 {
173 }
174 
175 static struct kmem_cache *task_struct_cachep;
176 
177 static inline struct task_struct *alloc_task_struct_node(int node)
178 {
179 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
180 }
181 
182 static inline void free_task_struct(struct task_struct *tsk)
183 {
184 	kmem_cache_free(task_struct_cachep, tsk);
185 }
186 
187 /*
188  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
189  * kmemcache based allocator.
190  */
191 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
192 
193 #  ifdef CONFIG_VMAP_STACK
194 /*
195  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
196  * flush.  Try to minimize the number of calls by caching stacks.
197  */
198 #define NR_CACHED_STACKS 2
199 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
200 
201 struct vm_stack {
202 	struct rcu_head rcu;
203 	struct vm_struct *stack_vm_area;
204 };
205 
206 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
207 {
208 	unsigned int i;
209 
210 	for (i = 0; i < NR_CACHED_STACKS; i++) {
211 		struct vm_struct *tmp = NULL;
212 
213 		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
214 			return true;
215 	}
216 	return false;
217 }
218 
219 static void thread_stack_free_rcu(struct rcu_head *rh)
220 {
221 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
222 
223 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
224 		return;
225 
226 	vfree(vm_stack);
227 }
228 
229 static void thread_stack_delayed_free(struct task_struct *tsk)
230 {
231 	struct vm_stack *vm_stack = tsk->stack;
232 
233 	vm_stack->stack_vm_area = tsk->stack_vm_area;
234 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
235 }
236 
237 static int free_vm_stack_cache(unsigned int cpu)
238 {
239 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
240 	int i;
241 
242 	for (i = 0; i < NR_CACHED_STACKS; i++) {
243 		struct vm_struct *vm_stack = cached_vm_stacks[i];
244 
245 		if (!vm_stack)
246 			continue;
247 
248 		vfree(vm_stack->addr);
249 		cached_vm_stacks[i] = NULL;
250 	}
251 
252 	return 0;
253 }
254 
255 static int memcg_charge_kernel_stack(struct vm_struct *vm)
256 {
257 	int i;
258 	int ret;
259 	int nr_charged = 0;
260 
261 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
262 
263 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
264 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
265 		if (ret)
266 			goto err;
267 		nr_charged++;
268 	}
269 	return 0;
270 err:
271 	for (i = 0; i < nr_charged; i++)
272 		memcg_kmem_uncharge_page(vm->pages[i], 0);
273 	return ret;
274 }
275 
276 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
277 {
278 	struct vm_struct *vm;
279 	void *stack;
280 	int i;
281 
282 	for (i = 0; i < NR_CACHED_STACKS; i++) {
283 		struct vm_struct *s;
284 
285 		s = this_cpu_xchg(cached_stacks[i], NULL);
286 
287 		if (!s)
288 			continue;
289 
290 		/* Reset stack metadata. */
291 		kasan_unpoison_range(s->addr, THREAD_SIZE);
292 
293 		stack = kasan_reset_tag(s->addr);
294 
295 		/* Clear stale pointers from reused stack. */
296 		memset(stack, 0, THREAD_SIZE);
297 
298 		if (memcg_charge_kernel_stack(s)) {
299 			vfree(s->addr);
300 			return -ENOMEM;
301 		}
302 
303 		tsk->stack_vm_area = s;
304 		tsk->stack = stack;
305 		return 0;
306 	}
307 
308 	/*
309 	 * Allocated stacks are cached and later reused by new threads,
310 	 * so memcg accounting is performed manually on assigning/releasing
311 	 * stacks to tasks. Drop __GFP_ACCOUNT.
312 	 */
313 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
314 				     VMALLOC_START, VMALLOC_END,
315 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
316 				     PAGE_KERNEL,
317 				     0, node, __builtin_return_address(0));
318 	if (!stack)
319 		return -ENOMEM;
320 
321 	vm = find_vm_area(stack);
322 	if (memcg_charge_kernel_stack(vm)) {
323 		vfree(stack);
324 		return -ENOMEM;
325 	}
326 	/*
327 	 * We can't call find_vm_area() in interrupt context, and
328 	 * free_thread_stack() can be called in interrupt context,
329 	 * so cache the vm_struct.
330 	 */
331 	tsk->stack_vm_area = vm;
332 	stack = kasan_reset_tag(stack);
333 	tsk->stack = stack;
334 	return 0;
335 }
336 
337 static void free_thread_stack(struct task_struct *tsk)
338 {
339 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
340 		thread_stack_delayed_free(tsk);
341 
342 	tsk->stack = NULL;
343 	tsk->stack_vm_area = NULL;
344 }
345 
346 #  else /* !CONFIG_VMAP_STACK */
347 
348 static void thread_stack_free_rcu(struct rcu_head *rh)
349 {
350 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
351 }
352 
353 static void thread_stack_delayed_free(struct task_struct *tsk)
354 {
355 	struct rcu_head *rh = tsk->stack;
356 
357 	call_rcu(rh, thread_stack_free_rcu);
358 }
359 
360 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
361 {
362 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
363 					     THREAD_SIZE_ORDER);
364 
365 	if (likely(page)) {
366 		tsk->stack = kasan_reset_tag(page_address(page));
367 		return 0;
368 	}
369 	return -ENOMEM;
370 }
371 
372 static void free_thread_stack(struct task_struct *tsk)
373 {
374 	thread_stack_delayed_free(tsk);
375 	tsk->stack = NULL;
376 }
377 
378 #  endif /* CONFIG_VMAP_STACK */
379 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
380 
381 static struct kmem_cache *thread_stack_cache;
382 
383 static void thread_stack_free_rcu(struct rcu_head *rh)
384 {
385 	kmem_cache_free(thread_stack_cache, rh);
386 }
387 
388 static void thread_stack_delayed_free(struct task_struct *tsk)
389 {
390 	struct rcu_head *rh = tsk->stack;
391 
392 	call_rcu(rh, thread_stack_free_rcu);
393 }
394 
395 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
396 {
397 	unsigned long *stack;
398 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
399 	stack = kasan_reset_tag(stack);
400 	tsk->stack = stack;
401 	return stack ? 0 : -ENOMEM;
402 }
403 
404 static void free_thread_stack(struct task_struct *tsk)
405 {
406 	thread_stack_delayed_free(tsk);
407 	tsk->stack = NULL;
408 }
409 
410 void thread_stack_cache_init(void)
411 {
412 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
413 					THREAD_SIZE, THREAD_SIZE, 0, 0,
414 					THREAD_SIZE, NULL);
415 	BUG_ON(thread_stack_cache == NULL);
416 }
417 
418 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
419 
420 /* SLAB cache for signal_struct structures (tsk->signal) */
421 static struct kmem_cache *signal_cachep;
422 
423 /* SLAB cache for sighand_struct structures (tsk->sighand) */
424 struct kmem_cache *sighand_cachep;
425 
426 /* SLAB cache for files_struct structures (tsk->files) */
427 struct kmem_cache *files_cachep;
428 
429 /* SLAB cache for fs_struct structures (tsk->fs) */
430 struct kmem_cache *fs_cachep;
431 
432 /* SLAB cache for vm_area_struct structures */
433 static struct kmem_cache *vm_area_cachep;
434 
435 /* SLAB cache for mm_struct structures (tsk->mm) */
436 static struct kmem_cache *mm_cachep;
437 
438 #ifdef CONFIG_PER_VMA_LOCK
439 
440 /* SLAB cache for vm_area_struct.lock */
441 static struct kmem_cache *vma_lock_cachep;
442 
443 static bool vma_lock_alloc(struct vm_area_struct *vma)
444 {
445 	vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
446 	if (!vma->vm_lock)
447 		return false;
448 
449 	init_rwsem(&vma->vm_lock->lock);
450 	vma->vm_lock_seq = -1;
451 
452 	return true;
453 }
454 
455 static inline void vma_lock_free(struct vm_area_struct *vma)
456 {
457 	kmem_cache_free(vma_lock_cachep, vma->vm_lock);
458 }
459 
460 #else /* CONFIG_PER_VMA_LOCK */
461 
462 static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
463 static inline void vma_lock_free(struct vm_area_struct *vma) {}
464 
465 #endif /* CONFIG_PER_VMA_LOCK */
466 
467 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
468 {
469 	struct vm_area_struct *vma;
470 
471 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
472 	if (!vma)
473 		return NULL;
474 
475 	vma_init(vma, mm);
476 	if (!vma_lock_alloc(vma)) {
477 		kmem_cache_free(vm_area_cachep, vma);
478 		return NULL;
479 	}
480 
481 	return vma;
482 }
483 
484 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
485 {
486 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
487 
488 	if (!new)
489 		return NULL;
490 
491 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
492 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
493 	/*
494 	 * orig->shared.rb may be modified concurrently, but the clone
495 	 * will be reinitialized.
496 	 */
497 	data_race(memcpy(new, orig, sizeof(*new)));
498 	if (!vma_lock_alloc(new)) {
499 		kmem_cache_free(vm_area_cachep, new);
500 		return NULL;
501 	}
502 	INIT_LIST_HEAD(&new->anon_vma_chain);
503 	vma_numab_state_init(new);
504 	dup_anon_vma_name(orig, new);
505 
506 	return new;
507 }
508 
509 void __vm_area_free(struct vm_area_struct *vma)
510 {
511 	vma_numab_state_free(vma);
512 	free_anon_vma_name(vma);
513 	vma_lock_free(vma);
514 	kmem_cache_free(vm_area_cachep, vma);
515 }
516 
517 #ifdef CONFIG_PER_VMA_LOCK
518 static void vm_area_free_rcu_cb(struct rcu_head *head)
519 {
520 	struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
521 						  vm_rcu);
522 
523 	/* The vma should not be locked while being destroyed. */
524 	VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
525 	__vm_area_free(vma);
526 }
527 #endif
528 
529 void vm_area_free(struct vm_area_struct *vma)
530 {
531 #ifdef CONFIG_PER_VMA_LOCK
532 	call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
533 #else
534 	__vm_area_free(vma);
535 #endif
536 }
537 
538 static void account_kernel_stack(struct task_struct *tsk, int account)
539 {
540 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
541 		struct vm_struct *vm = task_stack_vm_area(tsk);
542 		int i;
543 
544 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
545 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
546 					      account * (PAGE_SIZE / 1024));
547 	} else {
548 		void *stack = task_stack_page(tsk);
549 
550 		/* All stack pages are in the same node. */
551 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
552 				      account * (THREAD_SIZE / 1024));
553 	}
554 }
555 
556 void exit_task_stack_account(struct task_struct *tsk)
557 {
558 	account_kernel_stack(tsk, -1);
559 
560 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
561 		struct vm_struct *vm;
562 		int i;
563 
564 		vm = task_stack_vm_area(tsk);
565 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
566 			memcg_kmem_uncharge_page(vm->pages[i], 0);
567 	}
568 }
569 
570 static void release_task_stack(struct task_struct *tsk)
571 {
572 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
573 		return;  /* Better to leak the stack than to free prematurely */
574 
575 	free_thread_stack(tsk);
576 }
577 
578 #ifdef CONFIG_THREAD_INFO_IN_TASK
579 void put_task_stack(struct task_struct *tsk)
580 {
581 	if (refcount_dec_and_test(&tsk->stack_refcount))
582 		release_task_stack(tsk);
583 }
584 #endif
585 
586 void free_task(struct task_struct *tsk)
587 {
588 #ifdef CONFIG_SECCOMP
589 	WARN_ON_ONCE(tsk->seccomp.filter);
590 #endif
591 	release_user_cpus_ptr(tsk);
592 	scs_release(tsk);
593 
594 #ifndef CONFIG_THREAD_INFO_IN_TASK
595 	/*
596 	 * The task is finally done with both the stack and thread_info,
597 	 * so free both.
598 	 */
599 	release_task_stack(tsk);
600 #else
601 	/*
602 	 * If the task had a separate stack allocation, it should be gone
603 	 * by now.
604 	 */
605 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
606 #endif
607 	rt_mutex_debug_task_free(tsk);
608 	ftrace_graph_exit_task(tsk);
609 	arch_release_task_struct(tsk);
610 	if (tsk->flags & PF_KTHREAD)
611 		free_kthread_struct(tsk);
612 	bpf_task_storage_free(tsk);
613 	free_task_struct(tsk);
614 }
615 EXPORT_SYMBOL(free_task);
616 
617 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
618 {
619 	struct file *exe_file;
620 
621 	exe_file = get_mm_exe_file(oldmm);
622 	RCU_INIT_POINTER(mm->exe_file, exe_file);
623 }
624 
625 #ifdef CONFIG_MMU
626 static __latent_entropy int dup_mmap(struct mm_struct *mm,
627 					struct mm_struct *oldmm)
628 {
629 	struct vm_area_struct *mpnt, *tmp;
630 	int retval;
631 	unsigned long charge = 0;
632 	LIST_HEAD(uf);
633 	VMA_ITERATOR(vmi, mm, 0);
634 
635 	uprobe_start_dup_mmap();
636 	if (mmap_write_lock_killable(oldmm)) {
637 		retval = -EINTR;
638 		goto fail_uprobe_end;
639 	}
640 	flush_cache_dup_mm(oldmm);
641 	uprobe_dup_mmap(oldmm, mm);
642 	/*
643 	 * Not linked in yet - no deadlock potential:
644 	 */
645 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
646 
647 	/* No ordering required: file already has been exposed. */
648 	dup_mm_exe_file(mm, oldmm);
649 
650 	mm->total_vm = oldmm->total_vm;
651 	mm->data_vm = oldmm->data_vm;
652 	mm->exec_vm = oldmm->exec_vm;
653 	mm->stack_vm = oldmm->stack_vm;
654 
655 	retval = ksm_fork(mm, oldmm);
656 	if (retval)
657 		goto out;
658 	khugepaged_fork(mm, oldmm);
659 
660 	/* Use __mt_dup() to efficiently build an identical maple tree. */
661 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
662 	if (unlikely(retval))
663 		goto out;
664 
665 	mt_clear_in_rcu(vmi.mas.tree);
666 	for_each_vma(vmi, mpnt) {
667 		struct file *file;
668 
669 		vma_start_write(mpnt);
670 		if (mpnt->vm_flags & VM_DONTCOPY) {
671 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
672 						    mpnt->vm_end, GFP_KERNEL);
673 			if (retval)
674 				goto loop_out;
675 
676 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
677 			continue;
678 		}
679 		charge = 0;
680 		/*
681 		 * Don't duplicate many vmas if we've been oom-killed (for
682 		 * example)
683 		 */
684 		if (fatal_signal_pending(current)) {
685 			retval = -EINTR;
686 			goto loop_out;
687 		}
688 		if (mpnt->vm_flags & VM_ACCOUNT) {
689 			unsigned long len = vma_pages(mpnt);
690 
691 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
692 				goto fail_nomem;
693 			charge = len;
694 		}
695 		tmp = vm_area_dup(mpnt);
696 		if (!tmp)
697 			goto fail_nomem;
698 		retval = vma_dup_policy(mpnt, tmp);
699 		if (retval)
700 			goto fail_nomem_policy;
701 		tmp->vm_mm = mm;
702 		retval = dup_userfaultfd(tmp, &uf);
703 		if (retval)
704 			goto fail_nomem_anon_vma_fork;
705 		if (tmp->vm_flags & VM_WIPEONFORK) {
706 			/*
707 			 * VM_WIPEONFORK gets a clean slate in the child.
708 			 * Don't prepare anon_vma until fault since we don't
709 			 * copy page for current vma.
710 			 */
711 			tmp->anon_vma = NULL;
712 		} else if (anon_vma_fork(tmp, mpnt))
713 			goto fail_nomem_anon_vma_fork;
714 		vm_flags_clear(tmp, VM_LOCKED_MASK);
715 		/*
716 		 * Copy/update hugetlb private vma information.
717 		 */
718 		if (is_vm_hugetlb_page(tmp))
719 			hugetlb_dup_vma_private(tmp);
720 
721 		/*
722 		 * Link the vma into the MT. After using __mt_dup(), memory
723 		 * allocation is not necessary here, so it cannot fail.
724 		 */
725 		vma_iter_bulk_store(&vmi, tmp);
726 
727 		mm->map_count++;
728 
729 		if (tmp->vm_ops && tmp->vm_ops->open)
730 			tmp->vm_ops->open(tmp);
731 
732 		file = tmp->vm_file;
733 		if (file) {
734 			struct address_space *mapping = file->f_mapping;
735 
736 			get_file(file);
737 			i_mmap_lock_write(mapping);
738 			if (vma_is_shared_maywrite(tmp))
739 				mapping_allow_writable(mapping);
740 			flush_dcache_mmap_lock(mapping);
741 			/* insert tmp into the share list, just after mpnt */
742 			vma_interval_tree_insert_after(tmp, mpnt,
743 					&mapping->i_mmap);
744 			flush_dcache_mmap_unlock(mapping);
745 			i_mmap_unlock_write(mapping);
746 		}
747 
748 		if (!(tmp->vm_flags & VM_WIPEONFORK))
749 			retval = copy_page_range(tmp, mpnt);
750 
751 		if (retval) {
752 			mpnt = vma_next(&vmi);
753 			goto loop_out;
754 		}
755 	}
756 	/* a new mm has just been created */
757 	retval = arch_dup_mmap(oldmm, mm);
758 loop_out:
759 	vma_iter_free(&vmi);
760 	if (!retval) {
761 		mt_set_in_rcu(vmi.mas.tree);
762 	} else if (mpnt) {
763 		/*
764 		 * The entire maple tree has already been duplicated. If the
765 		 * mmap duplication fails, mark the failure point with
766 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
767 		 * stop releasing VMAs that have not been duplicated after this
768 		 * point.
769 		 */
770 		mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
771 		mas_store(&vmi.mas, XA_ZERO_ENTRY);
772 	}
773 out:
774 	mmap_write_unlock(mm);
775 	flush_tlb_mm(oldmm);
776 	mmap_write_unlock(oldmm);
777 	dup_userfaultfd_complete(&uf);
778 fail_uprobe_end:
779 	uprobe_end_dup_mmap();
780 	return retval;
781 
782 fail_nomem_anon_vma_fork:
783 	mpol_put(vma_policy(tmp));
784 fail_nomem_policy:
785 	vm_area_free(tmp);
786 fail_nomem:
787 	retval = -ENOMEM;
788 	vm_unacct_memory(charge);
789 	goto loop_out;
790 }
791 
792 static inline int mm_alloc_pgd(struct mm_struct *mm)
793 {
794 	mm->pgd = pgd_alloc(mm);
795 	if (unlikely(!mm->pgd))
796 		return -ENOMEM;
797 	return 0;
798 }
799 
800 static inline void mm_free_pgd(struct mm_struct *mm)
801 {
802 	pgd_free(mm, mm->pgd);
803 }
804 #else
805 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
806 {
807 	mmap_write_lock(oldmm);
808 	dup_mm_exe_file(mm, oldmm);
809 	mmap_write_unlock(oldmm);
810 	return 0;
811 }
812 #define mm_alloc_pgd(mm)	(0)
813 #define mm_free_pgd(mm)
814 #endif /* CONFIG_MMU */
815 
816 static void check_mm(struct mm_struct *mm)
817 {
818 	int i;
819 
820 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
821 			 "Please make sure 'struct resident_page_types[]' is updated as well");
822 
823 	for (i = 0; i < NR_MM_COUNTERS; i++) {
824 		long x = percpu_counter_sum(&mm->rss_stat[i]);
825 
826 		if (unlikely(x))
827 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
828 				 mm, resident_page_types[i], x);
829 	}
830 
831 	if (mm_pgtables_bytes(mm))
832 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
833 				mm_pgtables_bytes(mm));
834 
835 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
836 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
837 #endif
838 }
839 
840 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
841 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
842 
843 static void do_check_lazy_tlb(void *arg)
844 {
845 	struct mm_struct *mm = arg;
846 
847 	WARN_ON_ONCE(current->active_mm == mm);
848 }
849 
850 static void do_shoot_lazy_tlb(void *arg)
851 {
852 	struct mm_struct *mm = arg;
853 
854 	if (current->active_mm == mm) {
855 		WARN_ON_ONCE(current->mm);
856 		current->active_mm = &init_mm;
857 		switch_mm(mm, &init_mm, current);
858 	}
859 }
860 
861 static void cleanup_lazy_tlbs(struct mm_struct *mm)
862 {
863 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
864 		/*
865 		 * In this case, lazy tlb mms are refounted and would not reach
866 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
867 		 */
868 		return;
869 	}
870 
871 	/*
872 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
873 	 * requires lazy mm users to switch to another mm when the refcount
874 	 * drops to zero, before the mm is freed. This requires IPIs here to
875 	 * switch kernel threads to init_mm.
876 	 *
877 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
878 	 * switch with the final userspace teardown TLB flush which leaves the
879 	 * mm lazy on this CPU but no others, reducing the need for additional
880 	 * IPIs here. There are cases where a final IPI is still required here,
881 	 * such as the final mmdrop being performed on a different CPU than the
882 	 * one exiting, or kernel threads using the mm when userspace exits.
883 	 *
884 	 * IPI overheads have not found to be expensive, but they could be
885 	 * reduced in a number of possible ways, for example (roughly
886 	 * increasing order of complexity):
887 	 * - The last lazy reference created by exit_mm() could instead switch
888 	 *   to init_mm, however it's probable this will run on the same CPU
889 	 *   immediately afterwards, so this may not reduce IPIs much.
890 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
891 	 * - CPUs store active_mm where it can be remotely checked without a
892 	 *   lock, to filter out false-positives in the cpumask.
893 	 * - After mm_users or mm_count reaches zero, switching away from the
894 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
895 	 *   with some batching or delaying of the final IPIs.
896 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
897 	 *   switching to avoid IPIs completely.
898 	 */
899 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
900 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
901 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
902 }
903 
904 /*
905  * Called when the last reference to the mm
906  * is dropped: either by a lazy thread or by
907  * mmput. Free the page directory and the mm.
908  */
909 void __mmdrop(struct mm_struct *mm)
910 {
911 	BUG_ON(mm == &init_mm);
912 	WARN_ON_ONCE(mm == current->mm);
913 
914 	/* Ensure no CPUs are using this as their lazy tlb mm */
915 	cleanup_lazy_tlbs(mm);
916 
917 	WARN_ON_ONCE(mm == current->active_mm);
918 	mm_free_pgd(mm);
919 	destroy_context(mm);
920 	mmu_notifier_subscriptions_destroy(mm);
921 	check_mm(mm);
922 	put_user_ns(mm->user_ns);
923 	mm_pasid_drop(mm);
924 	mm_destroy_cid(mm);
925 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
926 
927 	free_mm(mm);
928 }
929 EXPORT_SYMBOL_GPL(__mmdrop);
930 
931 static void mmdrop_async_fn(struct work_struct *work)
932 {
933 	struct mm_struct *mm;
934 
935 	mm = container_of(work, struct mm_struct, async_put_work);
936 	__mmdrop(mm);
937 }
938 
939 static void mmdrop_async(struct mm_struct *mm)
940 {
941 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
942 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
943 		schedule_work(&mm->async_put_work);
944 	}
945 }
946 
947 static inline void free_signal_struct(struct signal_struct *sig)
948 {
949 	taskstats_tgid_free(sig);
950 	sched_autogroup_exit(sig);
951 	/*
952 	 * __mmdrop is not safe to call from softirq context on x86 due to
953 	 * pgd_dtor so postpone it to the async context
954 	 */
955 	if (sig->oom_mm)
956 		mmdrop_async(sig->oom_mm);
957 	kmem_cache_free(signal_cachep, sig);
958 }
959 
960 static inline void put_signal_struct(struct signal_struct *sig)
961 {
962 	if (refcount_dec_and_test(&sig->sigcnt))
963 		free_signal_struct(sig);
964 }
965 
966 void __put_task_struct(struct task_struct *tsk)
967 {
968 	WARN_ON(!tsk->exit_state);
969 	WARN_ON(refcount_read(&tsk->usage));
970 	WARN_ON(tsk == current);
971 
972 	io_uring_free(tsk);
973 	cgroup_free(tsk);
974 	task_numa_free(tsk, true);
975 	security_task_free(tsk);
976 	exit_creds(tsk);
977 	delayacct_tsk_free(tsk);
978 	put_signal_struct(tsk->signal);
979 	sched_core_free(tsk);
980 	free_task(tsk);
981 }
982 EXPORT_SYMBOL_GPL(__put_task_struct);
983 
984 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
985 {
986 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
987 
988 	__put_task_struct(task);
989 }
990 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
991 
992 void __init __weak arch_task_cache_init(void) { }
993 
994 /*
995  * set_max_threads
996  */
997 static void __init set_max_threads(unsigned int max_threads_suggested)
998 {
999 	u64 threads;
1000 	unsigned long nr_pages = PHYS_PFN(memblock_phys_mem_size() - memblock_reserved_size());
1001 
1002 	/*
1003 	 * The number of threads shall be limited such that the thread
1004 	 * structures may only consume a small part of the available memory.
1005 	 */
1006 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1007 		threads = MAX_THREADS;
1008 	else
1009 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1010 				    (u64) THREAD_SIZE * 8UL);
1011 
1012 	if (threads > max_threads_suggested)
1013 		threads = max_threads_suggested;
1014 
1015 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1016 }
1017 
1018 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1019 /* Initialized by the architecture: */
1020 int arch_task_struct_size __read_mostly;
1021 #endif
1022 
1023 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1024 {
1025 	/* Fetch thread_struct whitelist for the architecture. */
1026 	arch_thread_struct_whitelist(offset, size);
1027 
1028 	/*
1029 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1030 	 * adjust offset to position of thread_struct in task_struct.
1031 	 */
1032 	if (unlikely(*size == 0))
1033 		*offset = 0;
1034 	else
1035 		*offset += offsetof(struct task_struct, thread);
1036 }
1037 
1038 void __init fork_init(void)
1039 {
1040 	int i;
1041 #ifndef ARCH_MIN_TASKALIGN
1042 #define ARCH_MIN_TASKALIGN	0
1043 #endif
1044 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1045 	unsigned long useroffset, usersize;
1046 
1047 	/* create a slab on which task_structs can be allocated */
1048 	task_struct_whitelist(&useroffset, &usersize);
1049 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1050 			arch_task_struct_size, align,
1051 			SLAB_PANIC|SLAB_ACCOUNT,
1052 			useroffset, usersize, NULL);
1053 
1054 	/* do the arch specific task caches init */
1055 	arch_task_cache_init();
1056 
1057 	set_max_threads(MAX_THREADS);
1058 
1059 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1060 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1061 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1062 		init_task.signal->rlim[RLIMIT_NPROC];
1063 
1064 	for (i = 0; i < UCOUNT_COUNTS; i++)
1065 		init_user_ns.ucount_max[i] = max_threads/2;
1066 
1067 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1068 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1069 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1070 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1071 
1072 #ifdef CONFIG_VMAP_STACK
1073 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1074 			  NULL, free_vm_stack_cache);
1075 #endif
1076 
1077 	scs_init();
1078 
1079 	lockdep_init_task(&init_task);
1080 	uprobes_init();
1081 }
1082 
1083 int __weak arch_dup_task_struct(struct task_struct *dst,
1084 					       struct task_struct *src)
1085 {
1086 	*dst = *src;
1087 	return 0;
1088 }
1089 
1090 void set_task_stack_end_magic(struct task_struct *tsk)
1091 {
1092 	unsigned long *stackend;
1093 
1094 	stackend = end_of_stack(tsk);
1095 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1096 }
1097 
1098 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1099 {
1100 	struct task_struct *tsk;
1101 	int err;
1102 
1103 	if (node == NUMA_NO_NODE)
1104 		node = tsk_fork_get_node(orig);
1105 	tsk = alloc_task_struct_node(node);
1106 	if (!tsk)
1107 		return NULL;
1108 
1109 	err = arch_dup_task_struct(tsk, orig);
1110 	if (err)
1111 		goto free_tsk;
1112 
1113 	err = alloc_thread_stack_node(tsk, node);
1114 	if (err)
1115 		goto free_tsk;
1116 
1117 #ifdef CONFIG_THREAD_INFO_IN_TASK
1118 	refcount_set(&tsk->stack_refcount, 1);
1119 #endif
1120 	account_kernel_stack(tsk, 1);
1121 
1122 	err = scs_prepare(tsk, node);
1123 	if (err)
1124 		goto free_stack;
1125 
1126 #ifdef CONFIG_SECCOMP
1127 	/*
1128 	 * We must handle setting up seccomp filters once we're under
1129 	 * the sighand lock in case orig has changed between now and
1130 	 * then. Until then, filter must be NULL to avoid messing up
1131 	 * the usage counts on the error path calling free_task.
1132 	 */
1133 	tsk->seccomp.filter = NULL;
1134 #endif
1135 
1136 	setup_thread_stack(tsk, orig);
1137 	clear_user_return_notifier(tsk);
1138 	clear_tsk_need_resched(tsk);
1139 	set_task_stack_end_magic(tsk);
1140 	clear_syscall_work_syscall_user_dispatch(tsk);
1141 
1142 #ifdef CONFIG_STACKPROTECTOR
1143 	tsk->stack_canary = get_random_canary();
1144 #endif
1145 	if (orig->cpus_ptr == &orig->cpus_mask)
1146 		tsk->cpus_ptr = &tsk->cpus_mask;
1147 	dup_user_cpus_ptr(tsk, orig, node);
1148 
1149 	/*
1150 	 * One for the user space visible state that goes away when reaped.
1151 	 * One for the scheduler.
1152 	 */
1153 	refcount_set(&tsk->rcu_users, 2);
1154 	/* One for the rcu users */
1155 	refcount_set(&tsk->usage, 1);
1156 #ifdef CONFIG_BLK_DEV_IO_TRACE
1157 	tsk->btrace_seq = 0;
1158 #endif
1159 	tsk->splice_pipe = NULL;
1160 	tsk->task_frag.page = NULL;
1161 	tsk->wake_q.next = NULL;
1162 	tsk->worker_private = NULL;
1163 
1164 	kcov_task_init(tsk);
1165 	kmsan_task_create(tsk);
1166 	kmap_local_fork(tsk);
1167 
1168 #ifdef CONFIG_FAULT_INJECTION
1169 	tsk->fail_nth = 0;
1170 #endif
1171 
1172 #ifdef CONFIG_BLK_CGROUP
1173 	tsk->throttle_disk = NULL;
1174 	tsk->use_memdelay = 0;
1175 #endif
1176 
1177 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1178 	tsk->pasid_activated = 0;
1179 #endif
1180 
1181 #ifdef CONFIG_MEMCG
1182 	tsk->active_memcg = NULL;
1183 #endif
1184 
1185 #ifdef CONFIG_CPU_SUP_INTEL
1186 	tsk->reported_split_lock = 0;
1187 #endif
1188 
1189 #ifdef CONFIG_SCHED_MM_CID
1190 	tsk->mm_cid = -1;
1191 	tsk->last_mm_cid = -1;
1192 	tsk->mm_cid_active = 0;
1193 	tsk->migrate_from_cpu = -1;
1194 #endif
1195 	return tsk;
1196 
1197 free_stack:
1198 	exit_task_stack_account(tsk);
1199 	free_thread_stack(tsk);
1200 free_tsk:
1201 	free_task_struct(tsk);
1202 	return NULL;
1203 }
1204 
1205 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1206 
1207 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1208 
1209 static int __init coredump_filter_setup(char *s)
1210 {
1211 	default_dump_filter =
1212 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1213 		MMF_DUMP_FILTER_MASK;
1214 	return 1;
1215 }
1216 
1217 __setup("coredump_filter=", coredump_filter_setup);
1218 
1219 #include <linux/init_task.h>
1220 
1221 static void mm_init_aio(struct mm_struct *mm)
1222 {
1223 #ifdef CONFIG_AIO
1224 	spin_lock_init(&mm->ioctx_lock);
1225 	mm->ioctx_table = NULL;
1226 #endif
1227 }
1228 
1229 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1230 					   struct task_struct *p)
1231 {
1232 #ifdef CONFIG_MEMCG
1233 	if (mm->owner == p)
1234 		WRITE_ONCE(mm->owner, NULL);
1235 #endif
1236 }
1237 
1238 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1239 {
1240 #ifdef CONFIG_MEMCG
1241 	mm->owner = p;
1242 #endif
1243 }
1244 
1245 static void mm_init_uprobes_state(struct mm_struct *mm)
1246 {
1247 #ifdef CONFIG_UPROBES
1248 	mm->uprobes_state.xol_area = NULL;
1249 #endif
1250 }
1251 
1252 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1253 	struct user_namespace *user_ns)
1254 {
1255 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1256 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1257 	atomic_set(&mm->mm_users, 1);
1258 	atomic_set(&mm->mm_count, 1);
1259 	seqcount_init(&mm->write_protect_seq);
1260 	mmap_init_lock(mm);
1261 	INIT_LIST_HEAD(&mm->mmlist);
1262 #ifdef CONFIG_PER_VMA_LOCK
1263 	mm->mm_lock_seq = 0;
1264 #endif
1265 	mm_pgtables_bytes_init(mm);
1266 	mm->map_count = 0;
1267 	mm->locked_vm = 0;
1268 	atomic64_set(&mm->pinned_vm, 0);
1269 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1270 	spin_lock_init(&mm->page_table_lock);
1271 	spin_lock_init(&mm->arg_lock);
1272 	mm_init_cpumask(mm);
1273 	mm_init_aio(mm);
1274 	mm_init_owner(mm, p);
1275 	mm_pasid_init(mm);
1276 	RCU_INIT_POINTER(mm->exe_file, NULL);
1277 	mmu_notifier_subscriptions_init(mm);
1278 	init_tlb_flush_pending(mm);
1279 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1280 	mm->pmd_huge_pte = NULL;
1281 #endif
1282 	mm_init_uprobes_state(mm);
1283 	hugetlb_count_init(mm);
1284 
1285 	if (current->mm) {
1286 		mm->flags = mmf_init_flags(current->mm->flags);
1287 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1288 	} else {
1289 		mm->flags = default_dump_filter;
1290 		mm->def_flags = 0;
1291 	}
1292 
1293 	if (mm_alloc_pgd(mm))
1294 		goto fail_nopgd;
1295 
1296 	if (init_new_context(p, mm))
1297 		goto fail_nocontext;
1298 
1299 	if (mm_alloc_cid(mm))
1300 		goto fail_cid;
1301 
1302 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1303 				     NR_MM_COUNTERS))
1304 		goto fail_pcpu;
1305 
1306 	mm->user_ns = get_user_ns(user_ns);
1307 	lru_gen_init_mm(mm);
1308 	return mm;
1309 
1310 fail_pcpu:
1311 	mm_destroy_cid(mm);
1312 fail_cid:
1313 	destroy_context(mm);
1314 fail_nocontext:
1315 	mm_free_pgd(mm);
1316 fail_nopgd:
1317 	free_mm(mm);
1318 	return NULL;
1319 }
1320 
1321 /*
1322  * Allocate and initialize an mm_struct.
1323  */
1324 struct mm_struct *mm_alloc(void)
1325 {
1326 	struct mm_struct *mm;
1327 
1328 	mm = allocate_mm();
1329 	if (!mm)
1330 		return NULL;
1331 
1332 	memset(mm, 0, sizeof(*mm));
1333 	return mm_init(mm, current, current_user_ns());
1334 }
1335 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1336 
1337 static inline void __mmput(struct mm_struct *mm)
1338 {
1339 	VM_BUG_ON(atomic_read(&mm->mm_users));
1340 
1341 	uprobe_clear_state(mm);
1342 	exit_aio(mm);
1343 	ksm_exit(mm);
1344 	khugepaged_exit(mm); /* must run before exit_mmap */
1345 	exit_mmap(mm);
1346 	mm_put_huge_zero_folio(mm);
1347 	set_mm_exe_file(mm, NULL);
1348 	if (!list_empty(&mm->mmlist)) {
1349 		spin_lock(&mmlist_lock);
1350 		list_del(&mm->mmlist);
1351 		spin_unlock(&mmlist_lock);
1352 	}
1353 	if (mm->binfmt)
1354 		module_put(mm->binfmt->module);
1355 	lru_gen_del_mm(mm);
1356 	mmdrop(mm);
1357 }
1358 
1359 /*
1360  * Decrement the use count and release all resources for an mm.
1361  */
1362 void mmput(struct mm_struct *mm)
1363 {
1364 	might_sleep();
1365 
1366 	if (atomic_dec_and_test(&mm->mm_users))
1367 		__mmput(mm);
1368 }
1369 EXPORT_SYMBOL_GPL(mmput);
1370 
1371 #ifdef CONFIG_MMU
1372 static void mmput_async_fn(struct work_struct *work)
1373 {
1374 	struct mm_struct *mm = container_of(work, struct mm_struct,
1375 					    async_put_work);
1376 
1377 	__mmput(mm);
1378 }
1379 
1380 void mmput_async(struct mm_struct *mm)
1381 {
1382 	if (atomic_dec_and_test(&mm->mm_users)) {
1383 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1384 		schedule_work(&mm->async_put_work);
1385 	}
1386 }
1387 EXPORT_SYMBOL_GPL(mmput_async);
1388 #endif
1389 
1390 /**
1391  * set_mm_exe_file - change a reference to the mm's executable file
1392  * @mm: The mm to change.
1393  * @new_exe_file: The new file to use.
1394  *
1395  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1396  *
1397  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1398  * invocations: in mmput() nobody alive left, in execve it happens before
1399  * the new mm is made visible to anyone.
1400  *
1401  * Can only fail if new_exe_file != NULL.
1402  */
1403 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1404 {
1405 	struct file *old_exe_file;
1406 
1407 	/*
1408 	 * It is safe to dereference the exe_file without RCU as
1409 	 * this function is only called if nobody else can access
1410 	 * this mm -- see comment above for justification.
1411 	 */
1412 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1413 
1414 	if (new_exe_file)
1415 		get_file(new_exe_file);
1416 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1417 	if (old_exe_file)
1418 		fput(old_exe_file);
1419 	return 0;
1420 }
1421 
1422 /**
1423  * replace_mm_exe_file - replace a reference to the mm's executable file
1424  * @mm: The mm to change.
1425  * @new_exe_file: The new file to use.
1426  *
1427  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1428  *
1429  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1430  */
1431 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1432 {
1433 	struct vm_area_struct *vma;
1434 	struct file *old_exe_file;
1435 	int ret = 0;
1436 
1437 	/* Forbid mm->exe_file change if old file still mapped. */
1438 	old_exe_file = get_mm_exe_file(mm);
1439 	if (old_exe_file) {
1440 		VMA_ITERATOR(vmi, mm, 0);
1441 		mmap_read_lock(mm);
1442 		for_each_vma(vmi, vma) {
1443 			if (!vma->vm_file)
1444 				continue;
1445 			if (path_equal(&vma->vm_file->f_path,
1446 				       &old_exe_file->f_path)) {
1447 				ret = -EBUSY;
1448 				break;
1449 			}
1450 		}
1451 		mmap_read_unlock(mm);
1452 		fput(old_exe_file);
1453 		if (ret)
1454 			return ret;
1455 	}
1456 
1457 	get_file(new_exe_file);
1458 
1459 	/* set the new file */
1460 	mmap_write_lock(mm);
1461 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1462 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1463 	mmap_write_unlock(mm);
1464 
1465 	if (old_exe_file)
1466 		fput(old_exe_file);
1467 	return 0;
1468 }
1469 
1470 /**
1471  * get_mm_exe_file - acquire a reference to the mm's executable file
1472  * @mm: The mm of interest.
1473  *
1474  * Returns %NULL if mm has no associated executable file.
1475  * User must release file via fput().
1476  */
1477 struct file *get_mm_exe_file(struct mm_struct *mm)
1478 {
1479 	struct file *exe_file;
1480 
1481 	rcu_read_lock();
1482 	exe_file = get_file_rcu(&mm->exe_file);
1483 	rcu_read_unlock();
1484 	return exe_file;
1485 }
1486 
1487 /**
1488  * get_task_exe_file - acquire a reference to the task's executable file
1489  * @task: The task.
1490  *
1491  * Returns %NULL if task's mm (if any) has no associated executable file or
1492  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1493  * User must release file via fput().
1494  */
1495 struct file *get_task_exe_file(struct task_struct *task)
1496 {
1497 	struct file *exe_file = NULL;
1498 	struct mm_struct *mm;
1499 
1500 	task_lock(task);
1501 	mm = task->mm;
1502 	if (mm) {
1503 		if (!(task->flags & PF_KTHREAD))
1504 			exe_file = get_mm_exe_file(mm);
1505 	}
1506 	task_unlock(task);
1507 	return exe_file;
1508 }
1509 
1510 /**
1511  * get_task_mm - acquire a reference to the task's mm
1512  * @task: The task.
1513  *
1514  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1515  * this kernel workthread has transiently adopted a user mm with use_mm,
1516  * to do its AIO) is not set and if so returns a reference to it, after
1517  * bumping up the use count.  User must release the mm via mmput()
1518  * after use.  Typically used by /proc and ptrace.
1519  */
1520 struct mm_struct *get_task_mm(struct task_struct *task)
1521 {
1522 	struct mm_struct *mm;
1523 
1524 	if (task->flags & PF_KTHREAD)
1525 		return NULL;
1526 
1527 	task_lock(task);
1528 	mm = task->mm;
1529 	if (mm)
1530 		mmget(mm);
1531 	task_unlock(task);
1532 	return mm;
1533 }
1534 EXPORT_SYMBOL_GPL(get_task_mm);
1535 
1536 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1537 {
1538 	struct mm_struct *mm;
1539 	int err;
1540 
1541 	err =  down_read_killable(&task->signal->exec_update_lock);
1542 	if (err)
1543 		return ERR_PTR(err);
1544 
1545 	mm = get_task_mm(task);
1546 	if (mm && mm != current->mm &&
1547 			!ptrace_may_access(task, mode)) {
1548 		mmput(mm);
1549 		mm = ERR_PTR(-EACCES);
1550 	}
1551 	up_read(&task->signal->exec_update_lock);
1552 
1553 	return mm;
1554 }
1555 
1556 static void complete_vfork_done(struct task_struct *tsk)
1557 {
1558 	struct completion *vfork;
1559 
1560 	task_lock(tsk);
1561 	vfork = tsk->vfork_done;
1562 	if (likely(vfork)) {
1563 		tsk->vfork_done = NULL;
1564 		complete(vfork);
1565 	}
1566 	task_unlock(tsk);
1567 }
1568 
1569 static int wait_for_vfork_done(struct task_struct *child,
1570 				struct completion *vfork)
1571 {
1572 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1573 	int killed;
1574 
1575 	cgroup_enter_frozen();
1576 	killed = wait_for_completion_state(vfork, state);
1577 	cgroup_leave_frozen(false);
1578 
1579 	if (killed) {
1580 		task_lock(child);
1581 		child->vfork_done = NULL;
1582 		task_unlock(child);
1583 	}
1584 
1585 	put_task_struct(child);
1586 	return killed;
1587 }
1588 
1589 /* Please note the differences between mmput and mm_release.
1590  * mmput is called whenever we stop holding onto a mm_struct,
1591  * error success whatever.
1592  *
1593  * mm_release is called after a mm_struct has been removed
1594  * from the current process.
1595  *
1596  * This difference is important for error handling, when we
1597  * only half set up a mm_struct for a new process and need to restore
1598  * the old one.  Because we mmput the new mm_struct before
1599  * restoring the old one. . .
1600  * Eric Biederman 10 January 1998
1601  */
1602 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1603 {
1604 	uprobe_free_utask(tsk);
1605 
1606 	/* Get rid of any cached register state */
1607 	deactivate_mm(tsk, mm);
1608 
1609 	/*
1610 	 * Signal userspace if we're not exiting with a core dump
1611 	 * because we want to leave the value intact for debugging
1612 	 * purposes.
1613 	 */
1614 	if (tsk->clear_child_tid) {
1615 		if (atomic_read(&mm->mm_users) > 1) {
1616 			/*
1617 			 * We don't check the error code - if userspace has
1618 			 * not set up a proper pointer then tough luck.
1619 			 */
1620 			put_user(0, tsk->clear_child_tid);
1621 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1622 					1, NULL, NULL, 0, 0);
1623 		}
1624 		tsk->clear_child_tid = NULL;
1625 	}
1626 
1627 	/*
1628 	 * All done, finally we can wake up parent and return this mm to him.
1629 	 * Also kthread_stop() uses this completion for synchronization.
1630 	 */
1631 	if (tsk->vfork_done)
1632 		complete_vfork_done(tsk);
1633 }
1634 
1635 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1636 {
1637 	futex_exit_release(tsk);
1638 	mm_release(tsk, mm);
1639 }
1640 
1641 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1642 {
1643 	futex_exec_release(tsk);
1644 	mm_release(tsk, mm);
1645 }
1646 
1647 /**
1648  * dup_mm() - duplicates an existing mm structure
1649  * @tsk: the task_struct with which the new mm will be associated.
1650  * @oldmm: the mm to duplicate.
1651  *
1652  * Allocates a new mm structure and duplicates the provided @oldmm structure
1653  * content into it.
1654  *
1655  * Return: the duplicated mm or NULL on failure.
1656  */
1657 static struct mm_struct *dup_mm(struct task_struct *tsk,
1658 				struct mm_struct *oldmm)
1659 {
1660 	struct mm_struct *mm;
1661 	int err;
1662 
1663 	mm = allocate_mm();
1664 	if (!mm)
1665 		goto fail_nomem;
1666 
1667 	memcpy(mm, oldmm, sizeof(*mm));
1668 
1669 	if (!mm_init(mm, tsk, mm->user_ns))
1670 		goto fail_nomem;
1671 
1672 	err = dup_mmap(mm, oldmm);
1673 	if (err)
1674 		goto free_pt;
1675 
1676 	mm->hiwater_rss = get_mm_rss(mm);
1677 	mm->hiwater_vm = mm->total_vm;
1678 
1679 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1680 		goto free_pt;
1681 
1682 	return mm;
1683 
1684 free_pt:
1685 	/* don't put binfmt in mmput, we haven't got module yet */
1686 	mm->binfmt = NULL;
1687 	mm_init_owner(mm, NULL);
1688 	mmput(mm);
1689 
1690 fail_nomem:
1691 	return NULL;
1692 }
1693 
1694 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1695 {
1696 	struct mm_struct *mm, *oldmm;
1697 
1698 	tsk->min_flt = tsk->maj_flt = 0;
1699 	tsk->nvcsw = tsk->nivcsw = 0;
1700 #ifdef CONFIG_DETECT_HUNG_TASK
1701 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1702 	tsk->last_switch_time = 0;
1703 #endif
1704 
1705 	tsk->mm = NULL;
1706 	tsk->active_mm = NULL;
1707 
1708 	/*
1709 	 * Are we cloning a kernel thread?
1710 	 *
1711 	 * We need to steal a active VM for that..
1712 	 */
1713 	oldmm = current->mm;
1714 	if (!oldmm)
1715 		return 0;
1716 
1717 	if (clone_flags & CLONE_VM) {
1718 		mmget(oldmm);
1719 		mm = oldmm;
1720 	} else {
1721 		mm = dup_mm(tsk, current->mm);
1722 		if (!mm)
1723 			return -ENOMEM;
1724 	}
1725 
1726 	tsk->mm = mm;
1727 	tsk->active_mm = mm;
1728 	sched_mm_cid_fork(tsk);
1729 	return 0;
1730 }
1731 
1732 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1733 {
1734 	struct fs_struct *fs = current->fs;
1735 	if (clone_flags & CLONE_FS) {
1736 		/* tsk->fs is already what we want */
1737 		spin_lock(&fs->lock);
1738 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1739 		if (fs->in_exec) {
1740 			spin_unlock(&fs->lock);
1741 			return -EAGAIN;
1742 		}
1743 		fs->users++;
1744 		spin_unlock(&fs->lock);
1745 		return 0;
1746 	}
1747 	tsk->fs = copy_fs_struct(fs);
1748 	if (!tsk->fs)
1749 		return -ENOMEM;
1750 	return 0;
1751 }
1752 
1753 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1754 		      int no_files)
1755 {
1756 	struct files_struct *oldf, *newf;
1757 	int error = 0;
1758 
1759 	/*
1760 	 * A background process may not have any files ...
1761 	 */
1762 	oldf = current->files;
1763 	if (!oldf)
1764 		goto out;
1765 
1766 	if (no_files) {
1767 		tsk->files = NULL;
1768 		goto out;
1769 	}
1770 
1771 	if (clone_flags & CLONE_FILES) {
1772 		atomic_inc(&oldf->count);
1773 		goto out;
1774 	}
1775 
1776 	newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1777 	if (!newf)
1778 		goto out;
1779 
1780 	tsk->files = newf;
1781 	error = 0;
1782 out:
1783 	return error;
1784 }
1785 
1786 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1787 {
1788 	struct sighand_struct *sig;
1789 
1790 	if (clone_flags & CLONE_SIGHAND) {
1791 		refcount_inc(&current->sighand->count);
1792 		return 0;
1793 	}
1794 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1795 	RCU_INIT_POINTER(tsk->sighand, sig);
1796 	if (!sig)
1797 		return -ENOMEM;
1798 
1799 	refcount_set(&sig->count, 1);
1800 	spin_lock_irq(&current->sighand->siglock);
1801 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1802 	spin_unlock_irq(&current->sighand->siglock);
1803 
1804 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1805 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1806 		flush_signal_handlers(tsk, 0);
1807 
1808 	return 0;
1809 }
1810 
1811 void __cleanup_sighand(struct sighand_struct *sighand)
1812 {
1813 	if (refcount_dec_and_test(&sighand->count)) {
1814 		signalfd_cleanup(sighand);
1815 		/*
1816 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1817 		 * without an RCU grace period, see __lock_task_sighand().
1818 		 */
1819 		kmem_cache_free(sighand_cachep, sighand);
1820 	}
1821 }
1822 
1823 /*
1824  * Initialize POSIX timer handling for a thread group.
1825  */
1826 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1827 {
1828 	struct posix_cputimers *pct = &sig->posix_cputimers;
1829 	unsigned long cpu_limit;
1830 
1831 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1832 	posix_cputimers_group_init(pct, cpu_limit);
1833 }
1834 
1835 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1836 {
1837 	struct signal_struct *sig;
1838 
1839 	if (clone_flags & CLONE_THREAD)
1840 		return 0;
1841 
1842 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1843 	tsk->signal = sig;
1844 	if (!sig)
1845 		return -ENOMEM;
1846 
1847 	sig->nr_threads = 1;
1848 	sig->quick_threads = 1;
1849 	atomic_set(&sig->live, 1);
1850 	refcount_set(&sig->sigcnt, 1);
1851 
1852 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1853 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1854 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1855 
1856 	init_waitqueue_head(&sig->wait_chldexit);
1857 	sig->curr_target = tsk;
1858 	init_sigpending(&sig->shared_pending);
1859 	INIT_HLIST_HEAD(&sig->multiprocess);
1860 	seqlock_init(&sig->stats_lock);
1861 	prev_cputime_init(&sig->prev_cputime);
1862 
1863 #ifdef CONFIG_POSIX_TIMERS
1864 	INIT_HLIST_HEAD(&sig->posix_timers);
1865 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1866 	sig->real_timer.function = it_real_fn;
1867 #endif
1868 
1869 	task_lock(current->group_leader);
1870 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1871 	task_unlock(current->group_leader);
1872 
1873 	posix_cpu_timers_init_group(sig);
1874 
1875 	tty_audit_fork(sig);
1876 	sched_autogroup_fork(sig);
1877 
1878 	sig->oom_score_adj = current->signal->oom_score_adj;
1879 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1880 
1881 	mutex_init(&sig->cred_guard_mutex);
1882 	init_rwsem(&sig->exec_update_lock);
1883 
1884 	return 0;
1885 }
1886 
1887 static void copy_seccomp(struct task_struct *p)
1888 {
1889 #ifdef CONFIG_SECCOMP
1890 	/*
1891 	 * Must be called with sighand->lock held, which is common to
1892 	 * all threads in the group. Holding cred_guard_mutex is not
1893 	 * needed because this new task is not yet running and cannot
1894 	 * be racing exec.
1895 	 */
1896 	assert_spin_locked(&current->sighand->siglock);
1897 
1898 	/* Ref-count the new filter user, and assign it. */
1899 	get_seccomp_filter(current);
1900 	p->seccomp = current->seccomp;
1901 
1902 	/*
1903 	 * Explicitly enable no_new_privs here in case it got set
1904 	 * between the task_struct being duplicated and holding the
1905 	 * sighand lock. The seccomp state and nnp must be in sync.
1906 	 */
1907 	if (task_no_new_privs(current))
1908 		task_set_no_new_privs(p);
1909 
1910 	/*
1911 	 * If the parent gained a seccomp mode after copying thread
1912 	 * flags and between before we held the sighand lock, we have
1913 	 * to manually enable the seccomp thread flag here.
1914 	 */
1915 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1916 		set_task_syscall_work(p, SECCOMP);
1917 #endif
1918 }
1919 
1920 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1921 {
1922 	current->clear_child_tid = tidptr;
1923 
1924 	return task_pid_vnr(current);
1925 }
1926 
1927 static void rt_mutex_init_task(struct task_struct *p)
1928 {
1929 	raw_spin_lock_init(&p->pi_lock);
1930 #ifdef CONFIG_RT_MUTEXES
1931 	p->pi_waiters = RB_ROOT_CACHED;
1932 	p->pi_top_task = NULL;
1933 	p->pi_blocked_on = NULL;
1934 #endif
1935 }
1936 
1937 static inline void init_task_pid_links(struct task_struct *task)
1938 {
1939 	enum pid_type type;
1940 
1941 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1942 		INIT_HLIST_NODE(&task->pid_links[type]);
1943 }
1944 
1945 static inline void
1946 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1947 {
1948 	if (type == PIDTYPE_PID)
1949 		task->thread_pid = pid;
1950 	else
1951 		task->signal->pids[type] = pid;
1952 }
1953 
1954 static inline void rcu_copy_process(struct task_struct *p)
1955 {
1956 #ifdef CONFIG_PREEMPT_RCU
1957 	p->rcu_read_lock_nesting = 0;
1958 	p->rcu_read_unlock_special.s = 0;
1959 	p->rcu_blocked_node = NULL;
1960 	INIT_LIST_HEAD(&p->rcu_node_entry);
1961 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1962 #ifdef CONFIG_TASKS_RCU
1963 	p->rcu_tasks_holdout = false;
1964 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1965 	p->rcu_tasks_idle_cpu = -1;
1966 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1967 #endif /* #ifdef CONFIG_TASKS_RCU */
1968 #ifdef CONFIG_TASKS_TRACE_RCU
1969 	p->trc_reader_nesting = 0;
1970 	p->trc_reader_special.s = 0;
1971 	INIT_LIST_HEAD(&p->trc_holdout_list);
1972 	INIT_LIST_HEAD(&p->trc_blkd_node);
1973 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1974 }
1975 
1976 /**
1977  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1978  * @pid:   the struct pid for which to create a pidfd
1979  * @flags: flags of the new @pidfd
1980  * @ret: Where to return the file for the pidfd.
1981  *
1982  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1983  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1984  *
1985  * The helper doesn't perform checks on @pid which makes it useful for pidfds
1986  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
1987  * pidfd file are prepared.
1988  *
1989  * If this function returns successfully the caller is responsible to either
1990  * call fd_install() passing the returned pidfd and pidfd file as arguments in
1991  * order to install the pidfd into its file descriptor table or they must use
1992  * put_unused_fd() and fput() on the returned pidfd and pidfd file
1993  * respectively.
1994  *
1995  * This function is useful when a pidfd must already be reserved but there
1996  * might still be points of failure afterwards and the caller wants to ensure
1997  * that no pidfd is leaked into its file descriptor table.
1998  *
1999  * Return: On success, a reserved pidfd is returned from the function and a new
2000  *         pidfd file is returned in the last argument to the function. On
2001  *         error, a negative error code is returned from the function and the
2002  *         last argument remains unchanged.
2003  */
2004 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2005 {
2006 	int pidfd;
2007 	struct file *pidfd_file;
2008 
2009 	pidfd = get_unused_fd_flags(O_CLOEXEC);
2010 	if (pidfd < 0)
2011 		return pidfd;
2012 
2013 	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2014 	if (IS_ERR(pidfd_file)) {
2015 		put_unused_fd(pidfd);
2016 		return PTR_ERR(pidfd_file);
2017 	}
2018 	/*
2019 	 * anon_inode_getfile() ignores everything outside of the
2020 	 * O_ACCMODE | O_NONBLOCK mask, set PIDFD_THREAD manually.
2021 	 */
2022 	pidfd_file->f_flags |= (flags & PIDFD_THREAD);
2023 	*ret = pidfd_file;
2024 	return pidfd;
2025 }
2026 
2027 /**
2028  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2029  * @pid:   the struct pid for which to create a pidfd
2030  * @flags: flags of the new @pidfd
2031  * @ret: Where to return the pidfd.
2032  *
2033  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2034  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2035  *
2036  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2037  * task identified by @pid must be a thread-group leader.
2038  *
2039  * If this function returns successfully the caller is responsible to either
2040  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2041  * order to install the pidfd into its file descriptor table or they must use
2042  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2043  * respectively.
2044  *
2045  * This function is useful when a pidfd must already be reserved but there
2046  * might still be points of failure afterwards and the caller wants to ensure
2047  * that no pidfd is leaked into its file descriptor table.
2048  *
2049  * Return: On success, a reserved pidfd is returned from the function and a new
2050  *         pidfd file is returned in the last argument to the function. On
2051  *         error, a negative error code is returned from the function and the
2052  *         last argument remains unchanged.
2053  */
2054 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2055 {
2056 	bool thread = flags & PIDFD_THREAD;
2057 
2058 	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2059 		return -EINVAL;
2060 
2061 	return __pidfd_prepare(pid, flags, ret);
2062 }
2063 
2064 static void __delayed_free_task(struct rcu_head *rhp)
2065 {
2066 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2067 
2068 	free_task(tsk);
2069 }
2070 
2071 static __always_inline void delayed_free_task(struct task_struct *tsk)
2072 {
2073 	if (IS_ENABLED(CONFIG_MEMCG))
2074 		call_rcu(&tsk->rcu, __delayed_free_task);
2075 	else
2076 		free_task(tsk);
2077 }
2078 
2079 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2080 {
2081 	/* Skip if kernel thread */
2082 	if (!tsk->mm)
2083 		return;
2084 
2085 	/* Skip if spawning a thread or using vfork */
2086 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2087 		return;
2088 
2089 	/* We need to synchronize with __set_oom_adj */
2090 	mutex_lock(&oom_adj_mutex);
2091 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2092 	/* Update the values in case they were changed after copy_signal */
2093 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2094 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2095 	mutex_unlock(&oom_adj_mutex);
2096 }
2097 
2098 #ifdef CONFIG_RV
2099 static void rv_task_fork(struct task_struct *p)
2100 {
2101 	int i;
2102 
2103 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2104 		p->rv[i].da_mon.monitoring = false;
2105 }
2106 #else
2107 #define rv_task_fork(p) do {} while (0)
2108 #endif
2109 
2110 /*
2111  * This creates a new process as a copy of the old one,
2112  * but does not actually start it yet.
2113  *
2114  * It copies the registers, and all the appropriate
2115  * parts of the process environment (as per the clone
2116  * flags). The actual kick-off is left to the caller.
2117  */
2118 __latent_entropy struct task_struct *copy_process(
2119 					struct pid *pid,
2120 					int trace,
2121 					int node,
2122 					struct kernel_clone_args *args)
2123 {
2124 	int pidfd = -1, retval;
2125 	struct task_struct *p;
2126 	struct multiprocess_signals delayed;
2127 	struct file *pidfile = NULL;
2128 	const u64 clone_flags = args->flags;
2129 	struct nsproxy *nsp = current->nsproxy;
2130 
2131 	/*
2132 	 * Don't allow sharing the root directory with processes in a different
2133 	 * namespace
2134 	 */
2135 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2136 		return ERR_PTR(-EINVAL);
2137 
2138 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2139 		return ERR_PTR(-EINVAL);
2140 
2141 	/*
2142 	 * Thread groups must share signals as well, and detached threads
2143 	 * can only be started up within the thread group.
2144 	 */
2145 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2146 		return ERR_PTR(-EINVAL);
2147 
2148 	/*
2149 	 * Shared signal handlers imply shared VM. By way of the above,
2150 	 * thread groups also imply shared VM. Blocking this case allows
2151 	 * for various simplifications in other code.
2152 	 */
2153 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2154 		return ERR_PTR(-EINVAL);
2155 
2156 	/*
2157 	 * Siblings of global init remain as zombies on exit since they are
2158 	 * not reaped by their parent (swapper). To solve this and to avoid
2159 	 * multi-rooted process trees, prevent global and container-inits
2160 	 * from creating siblings.
2161 	 */
2162 	if ((clone_flags & CLONE_PARENT) &&
2163 				current->signal->flags & SIGNAL_UNKILLABLE)
2164 		return ERR_PTR(-EINVAL);
2165 
2166 	/*
2167 	 * If the new process will be in a different pid or user namespace
2168 	 * do not allow it to share a thread group with the forking task.
2169 	 */
2170 	if (clone_flags & CLONE_THREAD) {
2171 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2172 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2173 			return ERR_PTR(-EINVAL);
2174 	}
2175 
2176 	if (clone_flags & CLONE_PIDFD) {
2177 		/*
2178 		 * - CLONE_DETACHED is blocked so that we can potentially
2179 		 *   reuse it later for CLONE_PIDFD.
2180 		 */
2181 		if (clone_flags & CLONE_DETACHED)
2182 			return ERR_PTR(-EINVAL);
2183 	}
2184 
2185 	/*
2186 	 * Force any signals received before this point to be delivered
2187 	 * before the fork happens.  Collect up signals sent to multiple
2188 	 * processes that happen during the fork and delay them so that
2189 	 * they appear to happen after the fork.
2190 	 */
2191 	sigemptyset(&delayed.signal);
2192 	INIT_HLIST_NODE(&delayed.node);
2193 
2194 	spin_lock_irq(&current->sighand->siglock);
2195 	if (!(clone_flags & CLONE_THREAD))
2196 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2197 	recalc_sigpending();
2198 	spin_unlock_irq(&current->sighand->siglock);
2199 	retval = -ERESTARTNOINTR;
2200 	if (task_sigpending(current))
2201 		goto fork_out;
2202 
2203 	retval = -ENOMEM;
2204 	p = dup_task_struct(current, node);
2205 	if (!p)
2206 		goto fork_out;
2207 	p->flags &= ~PF_KTHREAD;
2208 	if (args->kthread)
2209 		p->flags |= PF_KTHREAD;
2210 	if (args->user_worker) {
2211 		/*
2212 		 * Mark us a user worker, and block any signal that isn't
2213 		 * fatal or STOP
2214 		 */
2215 		p->flags |= PF_USER_WORKER;
2216 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2217 	}
2218 	if (args->io_thread)
2219 		p->flags |= PF_IO_WORKER;
2220 
2221 	if (args->name)
2222 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2223 
2224 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2225 	/*
2226 	 * Clear TID on mm_release()?
2227 	 */
2228 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2229 
2230 	ftrace_graph_init_task(p);
2231 
2232 	rt_mutex_init_task(p);
2233 
2234 	lockdep_assert_irqs_enabled();
2235 #ifdef CONFIG_PROVE_LOCKING
2236 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2237 #endif
2238 	retval = copy_creds(p, clone_flags);
2239 	if (retval < 0)
2240 		goto bad_fork_free;
2241 
2242 	retval = -EAGAIN;
2243 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2244 		if (p->real_cred->user != INIT_USER &&
2245 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2246 			goto bad_fork_cleanup_count;
2247 	}
2248 	current->flags &= ~PF_NPROC_EXCEEDED;
2249 
2250 	/*
2251 	 * If multiple threads are within copy_process(), then this check
2252 	 * triggers too late. This doesn't hurt, the check is only there
2253 	 * to stop root fork bombs.
2254 	 */
2255 	retval = -EAGAIN;
2256 	if (data_race(nr_threads >= max_threads))
2257 		goto bad_fork_cleanup_count;
2258 
2259 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2260 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2261 	p->flags |= PF_FORKNOEXEC;
2262 	INIT_LIST_HEAD(&p->children);
2263 	INIT_LIST_HEAD(&p->sibling);
2264 	rcu_copy_process(p);
2265 	p->vfork_done = NULL;
2266 	spin_lock_init(&p->alloc_lock);
2267 
2268 	init_sigpending(&p->pending);
2269 
2270 	p->utime = p->stime = p->gtime = 0;
2271 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2272 	p->utimescaled = p->stimescaled = 0;
2273 #endif
2274 	prev_cputime_init(&p->prev_cputime);
2275 
2276 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2277 	seqcount_init(&p->vtime.seqcount);
2278 	p->vtime.starttime = 0;
2279 	p->vtime.state = VTIME_INACTIVE;
2280 #endif
2281 
2282 #ifdef CONFIG_IO_URING
2283 	p->io_uring = NULL;
2284 #endif
2285 
2286 	p->default_timer_slack_ns = current->timer_slack_ns;
2287 
2288 #ifdef CONFIG_PSI
2289 	p->psi_flags = 0;
2290 #endif
2291 
2292 	task_io_accounting_init(&p->ioac);
2293 	acct_clear_integrals(p);
2294 
2295 	posix_cputimers_init(&p->posix_cputimers);
2296 
2297 	p->io_context = NULL;
2298 	audit_set_context(p, NULL);
2299 	cgroup_fork(p);
2300 	if (args->kthread) {
2301 		if (!set_kthread_struct(p))
2302 			goto bad_fork_cleanup_delayacct;
2303 	}
2304 #ifdef CONFIG_NUMA
2305 	p->mempolicy = mpol_dup(p->mempolicy);
2306 	if (IS_ERR(p->mempolicy)) {
2307 		retval = PTR_ERR(p->mempolicy);
2308 		p->mempolicy = NULL;
2309 		goto bad_fork_cleanup_delayacct;
2310 	}
2311 #endif
2312 #ifdef CONFIG_CPUSETS
2313 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2314 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2315 #endif
2316 #ifdef CONFIG_TRACE_IRQFLAGS
2317 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2318 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2319 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2320 	p->softirqs_enabled		= 1;
2321 	p->softirq_context		= 0;
2322 #endif
2323 
2324 	p->pagefault_disabled = 0;
2325 
2326 #ifdef CONFIG_LOCKDEP
2327 	lockdep_init_task(p);
2328 #endif
2329 
2330 #ifdef CONFIG_DEBUG_MUTEXES
2331 	p->blocked_on = NULL; /* not blocked yet */
2332 #endif
2333 #ifdef CONFIG_BCACHE
2334 	p->sequential_io	= 0;
2335 	p->sequential_io_avg	= 0;
2336 #endif
2337 #ifdef CONFIG_BPF_SYSCALL
2338 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2339 	p->bpf_ctx = NULL;
2340 #endif
2341 
2342 	/* Perform scheduler related setup. Assign this task to a CPU. */
2343 	retval = sched_fork(clone_flags, p);
2344 	if (retval)
2345 		goto bad_fork_cleanup_policy;
2346 
2347 	retval = perf_event_init_task(p, clone_flags);
2348 	if (retval)
2349 		goto bad_fork_cleanup_policy;
2350 	retval = audit_alloc(p);
2351 	if (retval)
2352 		goto bad_fork_cleanup_perf;
2353 	/* copy all the process information */
2354 	shm_init_task(p);
2355 	retval = security_task_alloc(p, clone_flags);
2356 	if (retval)
2357 		goto bad_fork_cleanup_audit;
2358 	retval = copy_semundo(clone_flags, p);
2359 	if (retval)
2360 		goto bad_fork_cleanup_security;
2361 	retval = copy_files(clone_flags, p, args->no_files);
2362 	if (retval)
2363 		goto bad_fork_cleanup_semundo;
2364 	retval = copy_fs(clone_flags, p);
2365 	if (retval)
2366 		goto bad_fork_cleanup_files;
2367 	retval = copy_sighand(clone_flags, p);
2368 	if (retval)
2369 		goto bad_fork_cleanup_fs;
2370 	retval = copy_signal(clone_flags, p);
2371 	if (retval)
2372 		goto bad_fork_cleanup_sighand;
2373 	retval = copy_mm(clone_flags, p);
2374 	if (retval)
2375 		goto bad_fork_cleanup_signal;
2376 	retval = copy_namespaces(clone_flags, p);
2377 	if (retval)
2378 		goto bad_fork_cleanup_mm;
2379 	retval = copy_io(clone_flags, p);
2380 	if (retval)
2381 		goto bad_fork_cleanup_namespaces;
2382 	retval = copy_thread(p, args);
2383 	if (retval)
2384 		goto bad_fork_cleanup_io;
2385 
2386 	stackleak_task_init(p);
2387 
2388 	if (pid != &init_struct_pid) {
2389 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2390 				args->set_tid_size);
2391 		if (IS_ERR(pid)) {
2392 			retval = PTR_ERR(pid);
2393 			goto bad_fork_cleanup_thread;
2394 		}
2395 	}
2396 
2397 	/*
2398 	 * This has to happen after we've potentially unshared the file
2399 	 * descriptor table (so that the pidfd doesn't leak into the child
2400 	 * if the fd table isn't shared).
2401 	 */
2402 	if (clone_flags & CLONE_PIDFD) {
2403 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2404 
2405 		/* Note that no task has been attached to @pid yet. */
2406 		retval = __pidfd_prepare(pid, flags, &pidfile);
2407 		if (retval < 0)
2408 			goto bad_fork_free_pid;
2409 		pidfd = retval;
2410 
2411 		retval = put_user(pidfd, args->pidfd);
2412 		if (retval)
2413 			goto bad_fork_put_pidfd;
2414 	}
2415 
2416 #ifdef CONFIG_BLOCK
2417 	p->plug = NULL;
2418 #endif
2419 	futex_init_task(p);
2420 
2421 	/*
2422 	 * sigaltstack should be cleared when sharing the same VM
2423 	 */
2424 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2425 		sas_ss_reset(p);
2426 
2427 	/*
2428 	 * Syscall tracing and stepping should be turned off in the
2429 	 * child regardless of CLONE_PTRACE.
2430 	 */
2431 	user_disable_single_step(p);
2432 	clear_task_syscall_work(p, SYSCALL_TRACE);
2433 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2434 	clear_task_syscall_work(p, SYSCALL_EMU);
2435 #endif
2436 	clear_tsk_latency_tracing(p);
2437 
2438 	/* ok, now we should be set up.. */
2439 	p->pid = pid_nr(pid);
2440 	if (clone_flags & CLONE_THREAD) {
2441 		p->group_leader = current->group_leader;
2442 		p->tgid = current->tgid;
2443 	} else {
2444 		p->group_leader = p;
2445 		p->tgid = p->pid;
2446 	}
2447 
2448 	p->nr_dirtied = 0;
2449 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2450 	p->dirty_paused_when = 0;
2451 
2452 	p->pdeath_signal = 0;
2453 	p->task_works = NULL;
2454 	clear_posix_cputimers_work(p);
2455 
2456 #ifdef CONFIG_KRETPROBES
2457 	p->kretprobe_instances.first = NULL;
2458 #endif
2459 #ifdef CONFIG_RETHOOK
2460 	p->rethooks.first = NULL;
2461 #endif
2462 
2463 	/*
2464 	 * Ensure that the cgroup subsystem policies allow the new process to be
2465 	 * forked. It should be noted that the new process's css_set can be changed
2466 	 * between here and cgroup_post_fork() if an organisation operation is in
2467 	 * progress.
2468 	 */
2469 	retval = cgroup_can_fork(p, args);
2470 	if (retval)
2471 		goto bad_fork_put_pidfd;
2472 
2473 	/*
2474 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2475 	 * the new task on the correct runqueue. All this *before* the task
2476 	 * becomes visible.
2477 	 *
2478 	 * This isn't part of ->can_fork() because while the re-cloning is
2479 	 * cgroup specific, it unconditionally needs to place the task on a
2480 	 * runqueue.
2481 	 */
2482 	sched_cgroup_fork(p, args);
2483 
2484 	/*
2485 	 * From this point on we must avoid any synchronous user-space
2486 	 * communication until we take the tasklist-lock. In particular, we do
2487 	 * not want user-space to be able to predict the process start-time by
2488 	 * stalling fork(2) after we recorded the start_time but before it is
2489 	 * visible to the system.
2490 	 */
2491 
2492 	p->start_time = ktime_get_ns();
2493 	p->start_boottime = ktime_get_boottime_ns();
2494 
2495 	/*
2496 	 * Make it visible to the rest of the system, but dont wake it up yet.
2497 	 * Need tasklist lock for parent etc handling!
2498 	 */
2499 	write_lock_irq(&tasklist_lock);
2500 
2501 	/* CLONE_PARENT re-uses the old parent */
2502 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2503 		p->real_parent = current->real_parent;
2504 		p->parent_exec_id = current->parent_exec_id;
2505 		if (clone_flags & CLONE_THREAD)
2506 			p->exit_signal = -1;
2507 		else
2508 			p->exit_signal = current->group_leader->exit_signal;
2509 	} else {
2510 		p->real_parent = current;
2511 		p->parent_exec_id = current->self_exec_id;
2512 		p->exit_signal = args->exit_signal;
2513 	}
2514 
2515 	klp_copy_process(p);
2516 
2517 	sched_core_fork(p);
2518 
2519 	spin_lock(&current->sighand->siglock);
2520 
2521 	rv_task_fork(p);
2522 
2523 	rseq_fork(p, clone_flags);
2524 
2525 	/* Don't start children in a dying pid namespace */
2526 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2527 		retval = -ENOMEM;
2528 		goto bad_fork_cancel_cgroup;
2529 	}
2530 
2531 	/* Let kill terminate clone/fork in the middle */
2532 	if (fatal_signal_pending(current)) {
2533 		retval = -EINTR;
2534 		goto bad_fork_cancel_cgroup;
2535 	}
2536 
2537 	/* No more failure paths after this point. */
2538 
2539 	/*
2540 	 * Copy seccomp details explicitly here, in case they were changed
2541 	 * before holding sighand lock.
2542 	 */
2543 	copy_seccomp(p);
2544 
2545 	init_task_pid_links(p);
2546 	if (likely(p->pid)) {
2547 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2548 
2549 		init_task_pid(p, PIDTYPE_PID, pid);
2550 		if (thread_group_leader(p)) {
2551 			init_task_pid(p, PIDTYPE_TGID, pid);
2552 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2553 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2554 
2555 			if (is_child_reaper(pid)) {
2556 				ns_of_pid(pid)->child_reaper = p;
2557 				p->signal->flags |= SIGNAL_UNKILLABLE;
2558 			}
2559 			p->signal->shared_pending.signal = delayed.signal;
2560 			p->signal->tty = tty_kref_get(current->signal->tty);
2561 			/*
2562 			 * Inherit has_child_subreaper flag under the same
2563 			 * tasklist_lock with adding child to the process tree
2564 			 * for propagate_has_child_subreaper optimization.
2565 			 */
2566 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2567 							 p->real_parent->signal->is_child_subreaper;
2568 			list_add_tail(&p->sibling, &p->real_parent->children);
2569 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2570 			attach_pid(p, PIDTYPE_TGID);
2571 			attach_pid(p, PIDTYPE_PGID);
2572 			attach_pid(p, PIDTYPE_SID);
2573 			__this_cpu_inc(process_counts);
2574 		} else {
2575 			current->signal->nr_threads++;
2576 			current->signal->quick_threads++;
2577 			atomic_inc(&current->signal->live);
2578 			refcount_inc(&current->signal->sigcnt);
2579 			task_join_group_stop(p);
2580 			list_add_tail_rcu(&p->thread_node,
2581 					  &p->signal->thread_head);
2582 		}
2583 		attach_pid(p, PIDTYPE_PID);
2584 		nr_threads++;
2585 	}
2586 	total_forks++;
2587 	hlist_del_init(&delayed.node);
2588 	spin_unlock(&current->sighand->siglock);
2589 	syscall_tracepoint_update(p);
2590 	write_unlock_irq(&tasklist_lock);
2591 
2592 	if (pidfile)
2593 		fd_install(pidfd, pidfile);
2594 
2595 	proc_fork_connector(p);
2596 	sched_post_fork(p);
2597 	cgroup_post_fork(p, args);
2598 	perf_event_fork(p);
2599 
2600 	trace_task_newtask(p, clone_flags);
2601 	uprobe_copy_process(p, clone_flags);
2602 	user_events_fork(p, clone_flags);
2603 
2604 	copy_oom_score_adj(clone_flags, p);
2605 
2606 	return p;
2607 
2608 bad_fork_cancel_cgroup:
2609 	sched_core_free(p);
2610 	spin_unlock(&current->sighand->siglock);
2611 	write_unlock_irq(&tasklist_lock);
2612 	cgroup_cancel_fork(p, args);
2613 bad_fork_put_pidfd:
2614 	if (clone_flags & CLONE_PIDFD) {
2615 		fput(pidfile);
2616 		put_unused_fd(pidfd);
2617 	}
2618 bad_fork_free_pid:
2619 	if (pid != &init_struct_pid)
2620 		free_pid(pid);
2621 bad_fork_cleanup_thread:
2622 	exit_thread(p);
2623 bad_fork_cleanup_io:
2624 	if (p->io_context)
2625 		exit_io_context(p);
2626 bad_fork_cleanup_namespaces:
2627 	exit_task_namespaces(p);
2628 bad_fork_cleanup_mm:
2629 	if (p->mm) {
2630 		mm_clear_owner(p->mm, p);
2631 		mmput(p->mm);
2632 	}
2633 bad_fork_cleanup_signal:
2634 	if (!(clone_flags & CLONE_THREAD))
2635 		free_signal_struct(p->signal);
2636 bad_fork_cleanup_sighand:
2637 	__cleanup_sighand(p->sighand);
2638 bad_fork_cleanup_fs:
2639 	exit_fs(p); /* blocking */
2640 bad_fork_cleanup_files:
2641 	exit_files(p); /* blocking */
2642 bad_fork_cleanup_semundo:
2643 	exit_sem(p);
2644 bad_fork_cleanup_security:
2645 	security_task_free(p);
2646 bad_fork_cleanup_audit:
2647 	audit_free(p);
2648 bad_fork_cleanup_perf:
2649 	perf_event_free_task(p);
2650 bad_fork_cleanup_policy:
2651 	lockdep_free_task(p);
2652 #ifdef CONFIG_NUMA
2653 	mpol_put(p->mempolicy);
2654 #endif
2655 bad_fork_cleanup_delayacct:
2656 	delayacct_tsk_free(p);
2657 bad_fork_cleanup_count:
2658 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2659 	exit_creds(p);
2660 bad_fork_free:
2661 	WRITE_ONCE(p->__state, TASK_DEAD);
2662 	exit_task_stack_account(p);
2663 	put_task_stack(p);
2664 	delayed_free_task(p);
2665 fork_out:
2666 	spin_lock_irq(&current->sighand->siglock);
2667 	hlist_del_init(&delayed.node);
2668 	spin_unlock_irq(&current->sighand->siglock);
2669 	return ERR_PTR(retval);
2670 }
2671 
2672 static inline void init_idle_pids(struct task_struct *idle)
2673 {
2674 	enum pid_type type;
2675 
2676 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2677 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2678 		init_task_pid(idle, type, &init_struct_pid);
2679 	}
2680 }
2681 
2682 static int idle_dummy(void *dummy)
2683 {
2684 	/* This function is never called */
2685 	return 0;
2686 }
2687 
2688 struct task_struct * __init fork_idle(int cpu)
2689 {
2690 	struct task_struct *task;
2691 	struct kernel_clone_args args = {
2692 		.flags		= CLONE_VM,
2693 		.fn		= &idle_dummy,
2694 		.fn_arg		= NULL,
2695 		.kthread	= 1,
2696 		.idle		= 1,
2697 	};
2698 
2699 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2700 	if (!IS_ERR(task)) {
2701 		init_idle_pids(task);
2702 		init_idle(task, cpu);
2703 	}
2704 
2705 	return task;
2706 }
2707 
2708 /*
2709  * This is like kernel_clone(), but shaved down and tailored to just
2710  * creating io_uring workers. It returns a created task, or an error pointer.
2711  * The returned task is inactive, and the caller must fire it up through
2712  * wake_up_new_task(p). All signals are blocked in the created task.
2713  */
2714 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2715 {
2716 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2717 				CLONE_IO;
2718 	struct kernel_clone_args args = {
2719 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2720 				    CLONE_UNTRACED) & ~CSIGNAL),
2721 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2722 		.fn		= fn,
2723 		.fn_arg		= arg,
2724 		.io_thread	= 1,
2725 		.user_worker	= 1,
2726 	};
2727 
2728 	return copy_process(NULL, 0, node, &args);
2729 }
2730 
2731 /*
2732  *  Ok, this is the main fork-routine.
2733  *
2734  * It copies the process, and if successful kick-starts
2735  * it and waits for it to finish using the VM if required.
2736  *
2737  * args->exit_signal is expected to be checked for sanity by the caller.
2738  */
2739 pid_t kernel_clone(struct kernel_clone_args *args)
2740 {
2741 	u64 clone_flags = args->flags;
2742 	struct completion vfork;
2743 	struct pid *pid;
2744 	struct task_struct *p;
2745 	int trace = 0;
2746 	pid_t nr;
2747 
2748 	/*
2749 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2750 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2751 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2752 	 * field in struct clone_args and it still doesn't make sense to have
2753 	 * them both point at the same memory location. Performing this check
2754 	 * here has the advantage that we don't need to have a separate helper
2755 	 * to check for legacy clone().
2756 	 */
2757 	if ((clone_flags & CLONE_PIDFD) &&
2758 	    (clone_flags & CLONE_PARENT_SETTID) &&
2759 	    (args->pidfd == args->parent_tid))
2760 		return -EINVAL;
2761 
2762 	/*
2763 	 * Determine whether and which event to report to ptracer.  When
2764 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2765 	 * requested, no event is reported; otherwise, report if the event
2766 	 * for the type of forking is enabled.
2767 	 */
2768 	if (!(clone_flags & CLONE_UNTRACED)) {
2769 		if (clone_flags & CLONE_VFORK)
2770 			trace = PTRACE_EVENT_VFORK;
2771 		else if (args->exit_signal != SIGCHLD)
2772 			trace = PTRACE_EVENT_CLONE;
2773 		else
2774 			trace = PTRACE_EVENT_FORK;
2775 
2776 		if (likely(!ptrace_event_enabled(current, trace)))
2777 			trace = 0;
2778 	}
2779 
2780 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2781 	add_latent_entropy();
2782 
2783 	if (IS_ERR(p))
2784 		return PTR_ERR(p);
2785 
2786 	/*
2787 	 * Do this prior waking up the new thread - the thread pointer
2788 	 * might get invalid after that point, if the thread exits quickly.
2789 	 */
2790 	trace_sched_process_fork(current, p);
2791 
2792 	pid = get_task_pid(p, PIDTYPE_PID);
2793 	nr = pid_vnr(pid);
2794 
2795 	if (clone_flags & CLONE_PARENT_SETTID)
2796 		put_user(nr, args->parent_tid);
2797 
2798 	if (clone_flags & CLONE_VFORK) {
2799 		p->vfork_done = &vfork;
2800 		init_completion(&vfork);
2801 		get_task_struct(p);
2802 	}
2803 
2804 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2805 		/* lock the task to synchronize with memcg migration */
2806 		task_lock(p);
2807 		lru_gen_add_mm(p->mm);
2808 		task_unlock(p);
2809 	}
2810 
2811 	wake_up_new_task(p);
2812 
2813 	/* forking complete and child started to run, tell ptracer */
2814 	if (unlikely(trace))
2815 		ptrace_event_pid(trace, pid);
2816 
2817 	if (clone_flags & CLONE_VFORK) {
2818 		if (!wait_for_vfork_done(p, &vfork))
2819 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2820 	}
2821 
2822 	put_pid(pid);
2823 	return nr;
2824 }
2825 
2826 /*
2827  * Create a kernel thread.
2828  */
2829 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2830 		    unsigned long flags)
2831 {
2832 	struct kernel_clone_args args = {
2833 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2834 				    CLONE_UNTRACED) & ~CSIGNAL),
2835 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2836 		.fn		= fn,
2837 		.fn_arg		= arg,
2838 		.name		= name,
2839 		.kthread	= 1,
2840 	};
2841 
2842 	return kernel_clone(&args);
2843 }
2844 
2845 /*
2846  * Create a user mode thread.
2847  */
2848 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2849 {
2850 	struct kernel_clone_args args = {
2851 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2852 				    CLONE_UNTRACED) & ~CSIGNAL),
2853 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2854 		.fn		= fn,
2855 		.fn_arg		= arg,
2856 	};
2857 
2858 	return kernel_clone(&args);
2859 }
2860 
2861 #ifdef __ARCH_WANT_SYS_FORK
2862 SYSCALL_DEFINE0(fork)
2863 {
2864 #ifdef CONFIG_MMU
2865 	struct kernel_clone_args args = {
2866 		.exit_signal = SIGCHLD,
2867 	};
2868 
2869 	return kernel_clone(&args);
2870 #else
2871 	/* can not support in nommu mode */
2872 	return -EINVAL;
2873 #endif
2874 }
2875 #endif
2876 
2877 #ifdef __ARCH_WANT_SYS_VFORK
2878 SYSCALL_DEFINE0(vfork)
2879 {
2880 	struct kernel_clone_args args = {
2881 		.flags		= CLONE_VFORK | CLONE_VM,
2882 		.exit_signal	= SIGCHLD,
2883 	};
2884 
2885 	return kernel_clone(&args);
2886 }
2887 #endif
2888 
2889 #ifdef __ARCH_WANT_SYS_CLONE
2890 #ifdef CONFIG_CLONE_BACKWARDS
2891 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2892 		 int __user *, parent_tidptr,
2893 		 unsigned long, tls,
2894 		 int __user *, child_tidptr)
2895 #elif defined(CONFIG_CLONE_BACKWARDS2)
2896 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2897 		 int __user *, parent_tidptr,
2898 		 int __user *, child_tidptr,
2899 		 unsigned long, tls)
2900 #elif defined(CONFIG_CLONE_BACKWARDS3)
2901 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2902 		int, stack_size,
2903 		int __user *, parent_tidptr,
2904 		int __user *, child_tidptr,
2905 		unsigned long, tls)
2906 #else
2907 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2908 		 int __user *, parent_tidptr,
2909 		 int __user *, child_tidptr,
2910 		 unsigned long, tls)
2911 #endif
2912 {
2913 	struct kernel_clone_args args = {
2914 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2915 		.pidfd		= parent_tidptr,
2916 		.child_tid	= child_tidptr,
2917 		.parent_tid	= parent_tidptr,
2918 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2919 		.stack		= newsp,
2920 		.tls		= tls,
2921 	};
2922 
2923 	return kernel_clone(&args);
2924 }
2925 #endif
2926 
2927 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2928 					      struct clone_args __user *uargs,
2929 					      size_t usize)
2930 {
2931 	int err;
2932 	struct clone_args args;
2933 	pid_t *kset_tid = kargs->set_tid;
2934 
2935 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2936 		     CLONE_ARGS_SIZE_VER0);
2937 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2938 		     CLONE_ARGS_SIZE_VER1);
2939 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2940 		     CLONE_ARGS_SIZE_VER2);
2941 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2942 
2943 	if (unlikely(usize > PAGE_SIZE))
2944 		return -E2BIG;
2945 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2946 		return -EINVAL;
2947 
2948 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2949 	if (err)
2950 		return err;
2951 
2952 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2953 		return -EINVAL;
2954 
2955 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2956 		return -EINVAL;
2957 
2958 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2959 		return -EINVAL;
2960 
2961 	/*
2962 	 * Verify that higher 32bits of exit_signal are unset and that
2963 	 * it is a valid signal
2964 	 */
2965 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2966 		     !valid_signal(args.exit_signal)))
2967 		return -EINVAL;
2968 
2969 	if ((args.flags & CLONE_INTO_CGROUP) &&
2970 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2971 		return -EINVAL;
2972 
2973 	*kargs = (struct kernel_clone_args){
2974 		.flags		= args.flags,
2975 		.pidfd		= u64_to_user_ptr(args.pidfd),
2976 		.child_tid	= u64_to_user_ptr(args.child_tid),
2977 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2978 		.exit_signal	= args.exit_signal,
2979 		.stack		= args.stack,
2980 		.stack_size	= args.stack_size,
2981 		.tls		= args.tls,
2982 		.set_tid_size	= args.set_tid_size,
2983 		.cgroup		= args.cgroup,
2984 	};
2985 
2986 	if (args.set_tid &&
2987 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2988 			(kargs->set_tid_size * sizeof(pid_t))))
2989 		return -EFAULT;
2990 
2991 	kargs->set_tid = kset_tid;
2992 
2993 	return 0;
2994 }
2995 
2996 /**
2997  * clone3_stack_valid - check and prepare stack
2998  * @kargs: kernel clone args
2999  *
3000  * Verify that the stack arguments userspace gave us are sane.
3001  * In addition, set the stack direction for userspace since it's easy for us to
3002  * determine.
3003  */
3004 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3005 {
3006 	if (kargs->stack == 0) {
3007 		if (kargs->stack_size > 0)
3008 			return false;
3009 	} else {
3010 		if (kargs->stack_size == 0)
3011 			return false;
3012 
3013 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3014 			return false;
3015 
3016 #if !defined(CONFIG_STACK_GROWSUP)
3017 		kargs->stack += kargs->stack_size;
3018 #endif
3019 	}
3020 
3021 	return true;
3022 }
3023 
3024 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3025 {
3026 	/* Verify that no unknown flags are passed along. */
3027 	if (kargs->flags &
3028 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3029 		return false;
3030 
3031 	/*
3032 	 * - make the CLONE_DETACHED bit reusable for clone3
3033 	 * - make the CSIGNAL bits reusable for clone3
3034 	 */
3035 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3036 		return false;
3037 
3038 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3039 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3040 		return false;
3041 
3042 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3043 	    kargs->exit_signal)
3044 		return false;
3045 
3046 	if (!clone3_stack_valid(kargs))
3047 		return false;
3048 
3049 	return true;
3050 }
3051 
3052 /**
3053  * sys_clone3 - create a new process with specific properties
3054  * @uargs: argument structure
3055  * @size:  size of @uargs
3056  *
3057  * clone3() is the extensible successor to clone()/clone2().
3058  * It takes a struct as argument that is versioned by its size.
3059  *
3060  * Return: On success, a positive PID for the child process.
3061  *         On error, a negative errno number.
3062  */
3063 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3064 {
3065 	int err;
3066 
3067 	struct kernel_clone_args kargs;
3068 	pid_t set_tid[MAX_PID_NS_LEVEL];
3069 
3070 #ifdef __ARCH_BROKEN_SYS_CLONE3
3071 #warning clone3() entry point is missing, please fix
3072 	return -ENOSYS;
3073 #endif
3074 
3075 	kargs.set_tid = set_tid;
3076 
3077 	err = copy_clone_args_from_user(&kargs, uargs, size);
3078 	if (err)
3079 		return err;
3080 
3081 	if (!clone3_args_valid(&kargs))
3082 		return -EINVAL;
3083 
3084 	return kernel_clone(&kargs);
3085 }
3086 
3087 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3088 {
3089 	struct task_struct *leader, *parent, *child;
3090 	int res;
3091 
3092 	read_lock(&tasklist_lock);
3093 	leader = top = top->group_leader;
3094 down:
3095 	for_each_thread(leader, parent) {
3096 		list_for_each_entry(child, &parent->children, sibling) {
3097 			res = visitor(child, data);
3098 			if (res) {
3099 				if (res < 0)
3100 					goto out;
3101 				leader = child;
3102 				goto down;
3103 			}
3104 up:
3105 			;
3106 		}
3107 	}
3108 
3109 	if (leader != top) {
3110 		child = leader;
3111 		parent = child->real_parent;
3112 		leader = parent->group_leader;
3113 		goto up;
3114 	}
3115 out:
3116 	read_unlock(&tasklist_lock);
3117 }
3118 
3119 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3120 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3121 #endif
3122 
3123 static void sighand_ctor(void *data)
3124 {
3125 	struct sighand_struct *sighand = data;
3126 
3127 	spin_lock_init(&sighand->siglock);
3128 	init_waitqueue_head(&sighand->signalfd_wqh);
3129 }
3130 
3131 void __init mm_cache_init(void)
3132 {
3133 	unsigned int mm_size;
3134 
3135 	/*
3136 	 * The mm_cpumask is located at the end of mm_struct, and is
3137 	 * dynamically sized based on the maximum CPU number this system
3138 	 * can have, taking hotplug into account (nr_cpu_ids).
3139 	 */
3140 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3141 
3142 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3143 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3144 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3145 			offsetof(struct mm_struct, saved_auxv),
3146 			sizeof_field(struct mm_struct, saved_auxv),
3147 			NULL);
3148 }
3149 
3150 void __init proc_caches_init(void)
3151 {
3152 	sighand_cachep = kmem_cache_create("sighand_cache",
3153 			sizeof(struct sighand_struct), 0,
3154 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3155 			SLAB_ACCOUNT, sighand_ctor);
3156 	signal_cachep = kmem_cache_create("signal_cache",
3157 			sizeof(struct signal_struct), 0,
3158 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3159 			NULL);
3160 	files_cachep = kmem_cache_create("files_cache",
3161 			sizeof(struct files_struct), 0,
3162 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3163 			NULL);
3164 	fs_cachep = kmem_cache_create("fs_cache",
3165 			sizeof(struct fs_struct), 0,
3166 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3167 			NULL);
3168 
3169 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3170 #ifdef CONFIG_PER_VMA_LOCK
3171 	vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3172 #endif
3173 	mmap_init();
3174 	nsproxy_cache_init();
3175 }
3176 
3177 /*
3178  * Check constraints on flags passed to the unshare system call.
3179  */
3180 static int check_unshare_flags(unsigned long unshare_flags)
3181 {
3182 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3183 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3184 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3185 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3186 				CLONE_NEWTIME))
3187 		return -EINVAL;
3188 	/*
3189 	 * Not implemented, but pretend it works if there is nothing
3190 	 * to unshare.  Note that unsharing the address space or the
3191 	 * signal handlers also need to unshare the signal queues (aka
3192 	 * CLONE_THREAD).
3193 	 */
3194 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3195 		if (!thread_group_empty(current))
3196 			return -EINVAL;
3197 	}
3198 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3199 		if (refcount_read(&current->sighand->count) > 1)
3200 			return -EINVAL;
3201 	}
3202 	if (unshare_flags & CLONE_VM) {
3203 		if (!current_is_single_threaded())
3204 			return -EINVAL;
3205 	}
3206 
3207 	return 0;
3208 }
3209 
3210 /*
3211  * Unshare the filesystem structure if it is being shared
3212  */
3213 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3214 {
3215 	struct fs_struct *fs = current->fs;
3216 
3217 	if (!(unshare_flags & CLONE_FS) || !fs)
3218 		return 0;
3219 
3220 	/* don't need lock here; in the worst case we'll do useless copy */
3221 	if (fs->users == 1)
3222 		return 0;
3223 
3224 	*new_fsp = copy_fs_struct(fs);
3225 	if (!*new_fsp)
3226 		return -ENOMEM;
3227 
3228 	return 0;
3229 }
3230 
3231 /*
3232  * Unshare file descriptor table if it is being shared
3233  */
3234 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3235 	       struct files_struct **new_fdp)
3236 {
3237 	struct files_struct *fd = current->files;
3238 	int error = 0;
3239 
3240 	if ((unshare_flags & CLONE_FILES) &&
3241 	    (fd && atomic_read(&fd->count) > 1)) {
3242 		*new_fdp = dup_fd(fd, max_fds, &error);
3243 		if (!*new_fdp)
3244 			return error;
3245 	}
3246 
3247 	return 0;
3248 }
3249 
3250 /*
3251  * unshare allows a process to 'unshare' part of the process
3252  * context which was originally shared using clone.  copy_*
3253  * functions used by kernel_clone() cannot be used here directly
3254  * because they modify an inactive task_struct that is being
3255  * constructed. Here we are modifying the current, active,
3256  * task_struct.
3257  */
3258 int ksys_unshare(unsigned long unshare_flags)
3259 {
3260 	struct fs_struct *fs, *new_fs = NULL;
3261 	struct files_struct *new_fd = NULL;
3262 	struct cred *new_cred = NULL;
3263 	struct nsproxy *new_nsproxy = NULL;
3264 	int do_sysvsem = 0;
3265 	int err;
3266 
3267 	/*
3268 	 * If unsharing a user namespace must also unshare the thread group
3269 	 * and unshare the filesystem root and working directories.
3270 	 */
3271 	if (unshare_flags & CLONE_NEWUSER)
3272 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3273 	/*
3274 	 * If unsharing vm, must also unshare signal handlers.
3275 	 */
3276 	if (unshare_flags & CLONE_VM)
3277 		unshare_flags |= CLONE_SIGHAND;
3278 	/*
3279 	 * If unsharing a signal handlers, must also unshare the signal queues.
3280 	 */
3281 	if (unshare_flags & CLONE_SIGHAND)
3282 		unshare_flags |= CLONE_THREAD;
3283 	/*
3284 	 * If unsharing namespace, must also unshare filesystem information.
3285 	 */
3286 	if (unshare_flags & CLONE_NEWNS)
3287 		unshare_flags |= CLONE_FS;
3288 
3289 	err = check_unshare_flags(unshare_flags);
3290 	if (err)
3291 		goto bad_unshare_out;
3292 	/*
3293 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3294 	 * to a new ipc namespace, the semaphore arrays from the old
3295 	 * namespace are unreachable.
3296 	 */
3297 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3298 		do_sysvsem = 1;
3299 	err = unshare_fs(unshare_flags, &new_fs);
3300 	if (err)
3301 		goto bad_unshare_out;
3302 	err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3303 	if (err)
3304 		goto bad_unshare_cleanup_fs;
3305 	err = unshare_userns(unshare_flags, &new_cred);
3306 	if (err)
3307 		goto bad_unshare_cleanup_fd;
3308 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3309 					 new_cred, new_fs);
3310 	if (err)
3311 		goto bad_unshare_cleanup_cred;
3312 
3313 	if (new_cred) {
3314 		err = set_cred_ucounts(new_cred);
3315 		if (err)
3316 			goto bad_unshare_cleanup_cred;
3317 	}
3318 
3319 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3320 		if (do_sysvsem) {
3321 			/*
3322 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3323 			 */
3324 			exit_sem(current);
3325 		}
3326 		if (unshare_flags & CLONE_NEWIPC) {
3327 			/* Orphan segments in old ns (see sem above). */
3328 			exit_shm(current);
3329 			shm_init_task(current);
3330 		}
3331 
3332 		if (new_nsproxy)
3333 			switch_task_namespaces(current, new_nsproxy);
3334 
3335 		task_lock(current);
3336 
3337 		if (new_fs) {
3338 			fs = current->fs;
3339 			spin_lock(&fs->lock);
3340 			current->fs = new_fs;
3341 			if (--fs->users)
3342 				new_fs = NULL;
3343 			else
3344 				new_fs = fs;
3345 			spin_unlock(&fs->lock);
3346 		}
3347 
3348 		if (new_fd)
3349 			swap(current->files, new_fd);
3350 
3351 		task_unlock(current);
3352 
3353 		if (new_cred) {
3354 			/* Install the new user namespace */
3355 			commit_creds(new_cred);
3356 			new_cred = NULL;
3357 		}
3358 	}
3359 
3360 	perf_event_namespaces(current);
3361 
3362 bad_unshare_cleanup_cred:
3363 	if (new_cred)
3364 		put_cred(new_cred);
3365 bad_unshare_cleanup_fd:
3366 	if (new_fd)
3367 		put_files_struct(new_fd);
3368 
3369 bad_unshare_cleanup_fs:
3370 	if (new_fs)
3371 		free_fs_struct(new_fs);
3372 
3373 bad_unshare_out:
3374 	return err;
3375 }
3376 
3377 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3378 {
3379 	return ksys_unshare(unshare_flags);
3380 }
3381 
3382 /*
3383  *	Helper to unshare the files of the current task.
3384  *	We don't want to expose copy_files internals to
3385  *	the exec layer of the kernel.
3386  */
3387 
3388 int unshare_files(void)
3389 {
3390 	struct task_struct *task = current;
3391 	struct files_struct *old, *copy = NULL;
3392 	int error;
3393 
3394 	error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3395 	if (error || !copy)
3396 		return error;
3397 
3398 	old = task->files;
3399 	task_lock(task);
3400 	task->files = copy;
3401 	task_unlock(task);
3402 	put_files_struct(old);
3403 	return 0;
3404 }
3405 
3406 int sysctl_max_threads(const struct ctl_table *table, int write,
3407 		       void *buffer, size_t *lenp, loff_t *ppos)
3408 {
3409 	struct ctl_table t;
3410 	int ret;
3411 	int threads = max_threads;
3412 	int min = 1;
3413 	int max = MAX_THREADS;
3414 
3415 	t = *table;
3416 	t.data = &threads;
3417 	t.extra1 = &min;
3418 	t.extra2 = &max;
3419 
3420 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3421 	if (ret || !write)
3422 		return ret;
3423 
3424 	max_threads = threads;
3425 
3426 	return 0;
3427 }
3428