1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/coredump.h> 20 #include <linux/sched/user.h> 21 #include <linux/sched/numa_balancing.h> 22 #include <linux/sched/stat.h> 23 #include <linux/sched/task.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/sched/cputime.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/nsproxy.h> 48 #include <linux/capability.h> 49 #include <linux/cpu.h> 50 #include <linux/cgroup.h> 51 #include <linux/security.h> 52 #include <linux/hugetlb.h> 53 #include <linux/seccomp.h> 54 #include <linux/swap.h> 55 #include <linux/syscalls.h> 56 #include <linux/jiffies.h> 57 #include <linux/futex.h> 58 #include <linux/compat.h> 59 #include <linux/kthread.h> 60 #include <linux/task_io_accounting_ops.h> 61 #include <linux/rcupdate.h> 62 #include <linux/ptrace.h> 63 #include <linux/mount.h> 64 #include <linux/audit.h> 65 #include <linux/memcontrol.h> 66 #include <linux/ftrace.h> 67 #include <linux/proc_fs.h> 68 #include <linux/profile.h> 69 #include <linux/rmap.h> 70 #include <linux/ksm.h> 71 #include <linux/acct.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/tsacct_kern.h> 74 #include <linux/cn_proc.h> 75 #include <linux/freezer.h> 76 #include <linux/delayacct.h> 77 #include <linux/taskstats_kern.h> 78 #include <linux/random.h> 79 #include <linux/tty.h> 80 #include <linux/fs_struct.h> 81 #include <linux/magic.h> 82 #include <linux/perf_event.h> 83 #include <linux/posix-timers.h> 84 #include <linux/user-return-notifier.h> 85 #include <linux/oom.h> 86 #include <linux/khugepaged.h> 87 #include <linux/signalfd.h> 88 #include <linux/uprobes.h> 89 #include <linux/aio.h> 90 #include <linux/compiler.h> 91 #include <linux/sysctl.h> 92 #include <linux/kcov.h> 93 #include <linux/livepatch.h> 94 #include <linux/thread_info.h> 95 #include <linux/stackleak.h> 96 #include <linux/kasan.h> 97 #include <linux/scs.h> 98 #include <linux/io_uring.h> 99 #include <linux/bpf.h> 100 101 #include <asm/pgalloc.h> 102 #include <linux/uaccess.h> 103 #include <asm/mmu_context.h> 104 #include <asm/cacheflush.h> 105 #include <asm/tlbflush.h> 106 107 #include <trace/events/sched.h> 108 109 #define CREATE_TRACE_POINTS 110 #include <trace/events/task.h> 111 112 /* 113 * Minimum number of threads to boot the kernel 114 */ 115 #define MIN_THREADS 20 116 117 /* 118 * Maximum number of threads 119 */ 120 #define MAX_THREADS FUTEX_TID_MASK 121 122 /* 123 * Protected counters by write_lock_irq(&tasklist_lock) 124 */ 125 unsigned long total_forks; /* Handle normal Linux uptimes. */ 126 int nr_threads; /* The idle threads do not count.. */ 127 128 static int max_threads; /* tunable limit on nr_threads */ 129 130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 131 132 static const char * const resident_page_types[] = { 133 NAMED_ARRAY_INDEX(MM_FILEPAGES), 134 NAMED_ARRAY_INDEX(MM_ANONPAGES), 135 NAMED_ARRAY_INDEX(MM_SWAPENTS), 136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 137 }; 138 139 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 140 141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 142 143 #ifdef CONFIG_PROVE_RCU 144 int lockdep_tasklist_lock_is_held(void) 145 { 146 return lockdep_is_held(&tasklist_lock); 147 } 148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 149 #endif /* #ifdef CONFIG_PROVE_RCU */ 150 151 int nr_processes(void) 152 { 153 int cpu; 154 int total = 0; 155 156 for_each_possible_cpu(cpu) 157 total += per_cpu(process_counts, cpu); 158 159 return total; 160 } 161 162 void __weak arch_release_task_struct(struct task_struct *tsk) 163 { 164 } 165 166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 167 static struct kmem_cache *task_struct_cachep; 168 169 static inline struct task_struct *alloc_task_struct_node(int node) 170 { 171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 172 } 173 174 static inline void free_task_struct(struct task_struct *tsk) 175 { 176 kmem_cache_free(task_struct_cachep, tsk); 177 } 178 #endif 179 180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR 181 182 /* 183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 184 * kmemcache based allocator. 185 */ 186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) 187 188 # ifdef CONFIG_VMAP_STACK 189 /* 190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 191 * flush. Try to minimize the number of calls by caching stacks. 192 */ 193 #define NR_CACHED_STACKS 2 194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 195 196 struct vm_stack { 197 struct rcu_head rcu; 198 struct vm_struct *stack_vm_area; 199 }; 200 201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm) 202 { 203 unsigned int i; 204 205 for (i = 0; i < NR_CACHED_STACKS; i++) { 206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL) 207 continue; 208 return true; 209 } 210 return false; 211 } 212 213 static void thread_stack_free_rcu(struct rcu_head *rh) 214 { 215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 216 217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 218 return; 219 220 vfree(vm_stack); 221 } 222 223 static void thread_stack_delayed_free(struct task_struct *tsk) 224 { 225 struct vm_stack *vm_stack = tsk->stack; 226 227 vm_stack->stack_vm_area = tsk->stack_vm_area; 228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 229 } 230 231 static int free_vm_stack_cache(unsigned int cpu) 232 { 233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu); 234 int i; 235 236 for (i = 0; i < NR_CACHED_STACKS; i++) { 237 struct vm_struct *vm_stack = cached_vm_stacks[i]; 238 239 if (!vm_stack) 240 continue; 241 242 vfree(vm_stack->addr); 243 cached_vm_stacks[i] = NULL; 244 } 245 246 return 0; 247 } 248 249 static int memcg_charge_kernel_stack(struct vm_struct *vm) 250 { 251 int i; 252 int ret; 253 254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0); 255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE); 256 257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0); 259 if (ret) 260 goto err; 261 } 262 return 0; 263 err: 264 /* 265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is 266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will 267 * ignore this page. 268 */ 269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 270 memcg_kmem_uncharge_page(vm->pages[i], 0); 271 return ret; 272 } 273 274 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 275 { 276 struct vm_struct *vm; 277 void *stack; 278 int i; 279 280 for (i = 0; i < NR_CACHED_STACKS; i++) { 281 struct vm_struct *s; 282 283 s = this_cpu_xchg(cached_stacks[i], NULL); 284 285 if (!s) 286 continue; 287 288 /* Reset stack metadata. */ 289 kasan_unpoison_range(s->addr, THREAD_SIZE); 290 291 stack = kasan_reset_tag(s->addr); 292 293 /* Clear stale pointers from reused stack. */ 294 memset(stack, 0, THREAD_SIZE); 295 296 if (memcg_charge_kernel_stack(s)) { 297 vfree(s->addr); 298 return -ENOMEM; 299 } 300 301 tsk->stack_vm_area = s; 302 tsk->stack = stack; 303 return 0; 304 } 305 306 /* 307 * Allocated stacks are cached and later reused by new threads, 308 * so memcg accounting is performed manually on assigning/releasing 309 * stacks to tasks. Drop __GFP_ACCOUNT. 310 */ 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN, 312 VMALLOC_START, VMALLOC_END, 313 THREADINFO_GFP & ~__GFP_ACCOUNT, 314 PAGE_KERNEL, 315 0, node, __builtin_return_address(0)); 316 if (!stack) 317 return -ENOMEM; 318 319 vm = find_vm_area(stack); 320 if (memcg_charge_kernel_stack(vm)) { 321 vfree(stack); 322 return -ENOMEM; 323 } 324 /* 325 * We can't call find_vm_area() in interrupt context, and 326 * free_thread_stack() can be called in interrupt context, 327 * so cache the vm_struct. 328 */ 329 tsk->stack_vm_area = vm; 330 stack = kasan_reset_tag(stack); 331 tsk->stack = stack; 332 return 0; 333 } 334 335 static void free_thread_stack(struct task_struct *tsk) 336 { 337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 338 thread_stack_delayed_free(tsk); 339 340 tsk->stack = NULL; 341 tsk->stack_vm_area = NULL; 342 } 343 344 # else /* !CONFIG_VMAP_STACK */ 345 346 static void thread_stack_free_rcu(struct rcu_head *rh) 347 { 348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 349 } 350 351 static void thread_stack_delayed_free(struct task_struct *tsk) 352 { 353 struct rcu_head *rh = tsk->stack; 354 355 call_rcu(rh, thread_stack_free_rcu); 356 } 357 358 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 359 { 360 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 361 THREAD_SIZE_ORDER); 362 363 if (likely(page)) { 364 tsk->stack = kasan_reset_tag(page_address(page)); 365 return 0; 366 } 367 return -ENOMEM; 368 } 369 370 static void free_thread_stack(struct task_struct *tsk) 371 { 372 thread_stack_delayed_free(tsk); 373 tsk->stack = NULL; 374 } 375 376 # endif /* CONFIG_VMAP_STACK */ 377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */ 378 379 static struct kmem_cache *thread_stack_cache; 380 381 static void thread_stack_free_rcu(struct rcu_head *rh) 382 { 383 kmem_cache_free(thread_stack_cache, rh); 384 } 385 386 static void thread_stack_delayed_free(struct task_struct *tsk) 387 { 388 struct rcu_head *rh = tsk->stack; 389 390 call_rcu(rh, thread_stack_free_rcu); 391 } 392 393 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 394 { 395 unsigned long *stack; 396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 397 stack = kasan_reset_tag(stack); 398 tsk->stack = stack; 399 return stack ? 0 : -ENOMEM; 400 } 401 402 static void free_thread_stack(struct task_struct *tsk) 403 { 404 thread_stack_delayed_free(tsk); 405 tsk->stack = NULL; 406 } 407 408 void thread_stack_cache_init(void) 409 { 410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 411 THREAD_SIZE, THREAD_SIZE, 0, 0, 412 THREAD_SIZE, NULL); 413 BUG_ON(thread_stack_cache == NULL); 414 } 415 416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */ 417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 418 419 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 420 { 421 unsigned long *stack; 422 423 stack = arch_alloc_thread_stack_node(tsk, node); 424 tsk->stack = stack; 425 return stack ? 0 : -ENOMEM; 426 } 427 428 static void free_thread_stack(struct task_struct *tsk) 429 { 430 arch_free_thread_stack(tsk); 431 tsk->stack = NULL; 432 } 433 434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */ 435 436 /* SLAB cache for signal_struct structures (tsk->signal) */ 437 static struct kmem_cache *signal_cachep; 438 439 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 440 struct kmem_cache *sighand_cachep; 441 442 /* SLAB cache for files_struct structures (tsk->files) */ 443 struct kmem_cache *files_cachep; 444 445 /* SLAB cache for fs_struct structures (tsk->fs) */ 446 struct kmem_cache *fs_cachep; 447 448 /* SLAB cache for vm_area_struct structures */ 449 static struct kmem_cache *vm_area_cachep; 450 451 /* SLAB cache for mm_struct structures (tsk->mm) */ 452 static struct kmem_cache *mm_cachep; 453 454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm) 455 { 456 struct vm_area_struct *vma; 457 458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 459 if (vma) 460 vma_init(vma, mm); 461 return vma; 462 } 463 464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig) 465 { 466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL); 467 468 if (new) { 469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags); 470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file); 471 /* 472 * orig->shared.rb may be modified concurrently, but the clone 473 * will be reinitialized. 474 */ 475 *new = data_race(*orig); 476 INIT_LIST_HEAD(&new->anon_vma_chain); 477 dup_anon_vma_name(orig, new); 478 } 479 return new; 480 } 481 482 void vm_area_free(struct vm_area_struct *vma) 483 { 484 free_anon_vma_name(vma); 485 kmem_cache_free(vm_area_cachep, vma); 486 } 487 488 static void account_kernel_stack(struct task_struct *tsk, int account) 489 { 490 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 491 struct vm_struct *vm = task_stack_vm_area(tsk); 492 int i; 493 494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB, 496 account * (PAGE_SIZE / 1024)); 497 } else { 498 void *stack = task_stack_page(tsk); 499 500 /* All stack pages are in the same node. */ 501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 502 account * (THREAD_SIZE / 1024)); 503 } 504 } 505 506 void exit_task_stack_account(struct task_struct *tsk) 507 { 508 account_kernel_stack(tsk, -1); 509 510 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 511 struct vm_struct *vm; 512 int i; 513 514 vm = task_stack_vm_area(tsk); 515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 516 memcg_kmem_uncharge_page(vm->pages[i], 0); 517 } 518 } 519 520 static void release_task_stack(struct task_struct *tsk) 521 { 522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 523 return; /* Better to leak the stack than to free prematurely */ 524 525 free_thread_stack(tsk); 526 } 527 528 #ifdef CONFIG_THREAD_INFO_IN_TASK 529 void put_task_stack(struct task_struct *tsk) 530 { 531 if (refcount_dec_and_test(&tsk->stack_refcount)) 532 release_task_stack(tsk); 533 } 534 #endif 535 536 void free_task(struct task_struct *tsk) 537 { 538 release_user_cpus_ptr(tsk); 539 scs_release(tsk); 540 541 #ifndef CONFIG_THREAD_INFO_IN_TASK 542 /* 543 * The task is finally done with both the stack and thread_info, 544 * so free both. 545 */ 546 release_task_stack(tsk); 547 #else 548 /* 549 * If the task had a separate stack allocation, it should be gone 550 * by now. 551 */ 552 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 553 #endif 554 rt_mutex_debug_task_free(tsk); 555 ftrace_graph_exit_task(tsk); 556 arch_release_task_struct(tsk); 557 if (tsk->flags & PF_KTHREAD) 558 free_kthread_struct(tsk); 559 free_task_struct(tsk); 560 } 561 EXPORT_SYMBOL(free_task); 562 563 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 564 { 565 struct file *exe_file; 566 567 exe_file = get_mm_exe_file(oldmm); 568 RCU_INIT_POINTER(mm->exe_file, exe_file); 569 /* 570 * We depend on the oldmm having properly denied write access to the 571 * exe_file already. 572 */ 573 if (exe_file && deny_write_access(exe_file)) 574 pr_warn_once("deny_write_access() failed in %s\n", __func__); 575 } 576 577 #ifdef CONFIG_MMU 578 static __latent_entropy int dup_mmap(struct mm_struct *mm, 579 struct mm_struct *oldmm) 580 { 581 struct vm_area_struct *mpnt, *tmp; 582 int retval; 583 unsigned long charge = 0; 584 LIST_HEAD(uf); 585 MA_STATE(old_mas, &oldmm->mm_mt, 0, 0); 586 MA_STATE(mas, &mm->mm_mt, 0, 0); 587 588 uprobe_start_dup_mmap(); 589 if (mmap_write_lock_killable(oldmm)) { 590 retval = -EINTR; 591 goto fail_uprobe_end; 592 } 593 flush_cache_dup_mm(oldmm); 594 uprobe_dup_mmap(oldmm, mm); 595 /* 596 * Not linked in yet - no deadlock potential: 597 */ 598 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING); 599 600 /* No ordering required: file already has been exposed. */ 601 dup_mm_exe_file(mm, oldmm); 602 603 mm->total_vm = oldmm->total_vm; 604 mm->data_vm = oldmm->data_vm; 605 mm->exec_vm = oldmm->exec_vm; 606 mm->stack_vm = oldmm->stack_vm; 607 608 retval = ksm_fork(mm, oldmm); 609 if (retval) 610 goto out; 611 khugepaged_fork(mm, oldmm); 612 613 retval = mas_expected_entries(&mas, oldmm->map_count); 614 if (retval) 615 goto out; 616 617 mas_for_each(&old_mas, mpnt, ULONG_MAX) { 618 struct file *file; 619 620 if (mpnt->vm_flags & VM_DONTCOPY) { 621 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt)); 622 continue; 623 } 624 charge = 0; 625 /* 626 * Don't duplicate many vmas if we've been oom-killed (for 627 * example) 628 */ 629 if (fatal_signal_pending(current)) { 630 retval = -EINTR; 631 goto loop_out; 632 } 633 if (mpnt->vm_flags & VM_ACCOUNT) { 634 unsigned long len = vma_pages(mpnt); 635 636 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */ 637 goto fail_nomem; 638 charge = len; 639 } 640 tmp = vm_area_dup(mpnt); 641 if (!tmp) 642 goto fail_nomem; 643 retval = vma_dup_policy(mpnt, tmp); 644 if (retval) 645 goto fail_nomem_policy; 646 tmp->vm_mm = mm; 647 retval = dup_userfaultfd(tmp, &uf); 648 if (retval) 649 goto fail_nomem_anon_vma_fork; 650 if (tmp->vm_flags & VM_WIPEONFORK) { 651 /* 652 * VM_WIPEONFORK gets a clean slate in the child. 653 * Don't prepare anon_vma until fault since we don't 654 * copy page for current vma. 655 */ 656 tmp->anon_vma = NULL; 657 } else if (anon_vma_fork(tmp, mpnt)) 658 goto fail_nomem_anon_vma_fork; 659 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT); 660 file = tmp->vm_file; 661 if (file) { 662 struct address_space *mapping = file->f_mapping; 663 664 get_file(file); 665 i_mmap_lock_write(mapping); 666 if (tmp->vm_flags & VM_SHARED) 667 mapping_allow_writable(mapping); 668 flush_dcache_mmap_lock(mapping); 669 /* insert tmp into the share list, just after mpnt */ 670 vma_interval_tree_insert_after(tmp, mpnt, 671 &mapping->i_mmap); 672 flush_dcache_mmap_unlock(mapping); 673 i_mmap_unlock_write(mapping); 674 } 675 676 /* 677 * Copy/update hugetlb private vma information. 678 */ 679 if (is_vm_hugetlb_page(tmp)) 680 hugetlb_dup_vma_private(tmp); 681 682 /* Link the vma into the MT */ 683 mas.index = tmp->vm_start; 684 mas.last = tmp->vm_end - 1; 685 mas_store(&mas, tmp); 686 if (mas_is_err(&mas)) 687 goto fail_nomem_mas_store; 688 689 mm->map_count++; 690 if (!(tmp->vm_flags & VM_WIPEONFORK)) 691 retval = copy_page_range(tmp, mpnt); 692 693 if (tmp->vm_ops && tmp->vm_ops->open) 694 tmp->vm_ops->open(tmp); 695 696 if (retval) 697 goto loop_out; 698 } 699 /* a new mm has just been created */ 700 retval = arch_dup_mmap(oldmm, mm); 701 loop_out: 702 mas_destroy(&mas); 703 out: 704 mmap_write_unlock(mm); 705 flush_tlb_mm(oldmm); 706 mmap_write_unlock(oldmm); 707 dup_userfaultfd_complete(&uf); 708 fail_uprobe_end: 709 uprobe_end_dup_mmap(); 710 return retval; 711 712 fail_nomem_mas_store: 713 unlink_anon_vmas(tmp); 714 fail_nomem_anon_vma_fork: 715 mpol_put(vma_policy(tmp)); 716 fail_nomem_policy: 717 vm_area_free(tmp); 718 fail_nomem: 719 retval = -ENOMEM; 720 vm_unacct_memory(charge); 721 goto loop_out; 722 } 723 724 static inline int mm_alloc_pgd(struct mm_struct *mm) 725 { 726 mm->pgd = pgd_alloc(mm); 727 if (unlikely(!mm->pgd)) 728 return -ENOMEM; 729 return 0; 730 } 731 732 static inline void mm_free_pgd(struct mm_struct *mm) 733 { 734 pgd_free(mm, mm->pgd); 735 } 736 #else 737 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm) 738 { 739 mmap_write_lock(oldmm); 740 dup_mm_exe_file(mm, oldmm); 741 mmap_write_unlock(oldmm); 742 return 0; 743 } 744 #define mm_alloc_pgd(mm) (0) 745 #define mm_free_pgd(mm) 746 #endif /* CONFIG_MMU */ 747 748 static void check_mm(struct mm_struct *mm) 749 { 750 int i; 751 752 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 753 "Please make sure 'struct resident_page_types[]' is updated as well"); 754 755 for (i = 0; i < NR_MM_COUNTERS; i++) { 756 long x = percpu_counter_sum(&mm->rss_stat[i]); 757 758 if (likely(!x)) 759 continue; 760 761 /* Making sure this is not due to race with CPU offlining. */ 762 x = percpu_counter_sum_all(&mm->rss_stat[i]); 763 if (unlikely(x)) 764 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n", 765 mm, resident_page_types[i], x); 766 } 767 768 if (mm_pgtables_bytes(mm)) 769 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 770 mm_pgtables_bytes(mm)); 771 772 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 773 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 774 #endif 775 } 776 777 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 778 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 779 780 /* 781 * Called when the last reference to the mm 782 * is dropped: either by a lazy thread or by 783 * mmput. Free the page directory and the mm. 784 */ 785 void __mmdrop(struct mm_struct *mm) 786 { 787 int i; 788 789 BUG_ON(mm == &init_mm); 790 WARN_ON_ONCE(mm == current->mm); 791 WARN_ON_ONCE(mm == current->active_mm); 792 mm_free_pgd(mm); 793 destroy_context(mm); 794 mmu_notifier_subscriptions_destroy(mm); 795 check_mm(mm); 796 put_user_ns(mm->user_ns); 797 mm_pasid_drop(mm); 798 799 for (i = 0; i < NR_MM_COUNTERS; i++) 800 percpu_counter_destroy(&mm->rss_stat[i]); 801 free_mm(mm); 802 } 803 EXPORT_SYMBOL_GPL(__mmdrop); 804 805 static void mmdrop_async_fn(struct work_struct *work) 806 { 807 struct mm_struct *mm; 808 809 mm = container_of(work, struct mm_struct, async_put_work); 810 __mmdrop(mm); 811 } 812 813 static void mmdrop_async(struct mm_struct *mm) 814 { 815 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 816 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 817 schedule_work(&mm->async_put_work); 818 } 819 } 820 821 static inline void free_signal_struct(struct signal_struct *sig) 822 { 823 taskstats_tgid_free(sig); 824 sched_autogroup_exit(sig); 825 /* 826 * __mmdrop is not safe to call from softirq context on x86 due to 827 * pgd_dtor so postpone it to the async context 828 */ 829 if (sig->oom_mm) 830 mmdrop_async(sig->oom_mm); 831 kmem_cache_free(signal_cachep, sig); 832 } 833 834 static inline void put_signal_struct(struct signal_struct *sig) 835 { 836 if (refcount_dec_and_test(&sig->sigcnt)) 837 free_signal_struct(sig); 838 } 839 840 void __put_task_struct(struct task_struct *tsk) 841 { 842 WARN_ON(!tsk->exit_state); 843 WARN_ON(refcount_read(&tsk->usage)); 844 WARN_ON(tsk == current); 845 846 io_uring_free(tsk); 847 cgroup_free(tsk); 848 task_numa_free(tsk, true); 849 security_task_free(tsk); 850 bpf_task_storage_free(tsk); 851 exit_creds(tsk); 852 delayacct_tsk_free(tsk); 853 put_signal_struct(tsk->signal); 854 sched_core_free(tsk); 855 free_task(tsk); 856 } 857 EXPORT_SYMBOL_GPL(__put_task_struct); 858 859 void __init __weak arch_task_cache_init(void) { } 860 861 /* 862 * set_max_threads 863 */ 864 static void set_max_threads(unsigned int max_threads_suggested) 865 { 866 u64 threads; 867 unsigned long nr_pages = totalram_pages(); 868 869 /* 870 * The number of threads shall be limited such that the thread 871 * structures may only consume a small part of the available memory. 872 */ 873 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 874 threads = MAX_THREADS; 875 else 876 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 877 (u64) THREAD_SIZE * 8UL); 878 879 if (threads > max_threads_suggested) 880 threads = max_threads_suggested; 881 882 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 883 } 884 885 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 886 /* Initialized by the architecture: */ 887 int arch_task_struct_size __read_mostly; 888 #endif 889 890 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 891 static void task_struct_whitelist(unsigned long *offset, unsigned long *size) 892 { 893 /* Fetch thread_struct whitelist for the architecture. */ 894 arch_thread_struct_whitelist(offset, size); 895 896 /* 897 * Handle zero-sized whitelist or empty thread_struct, otherwise 898 * adjust offset to position of thread_struct in task_struct. 899 */ 900 if (unlikely(*size == 0)) 901 *offset = 0; 902 else 903 *offset += offsetof(struct task_struct, thread); 904 } 905 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */ 906 907 void __init fork_init(void) 908 { 909 int i; 910 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR 911 #ifndef ARCH_MIN_TASKALIGN 912 #define ARCH_MIN_TASKALIGN 0 913 #endif 914 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 915 unsigned long useroffset, usersize; 916 917 /* create a slab on which task_structs can be allocated */ 918 task_struct_whitelist(&useroffset, &usersize); 919 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 920 arch_task_struct_size, align, 921 SLAB_PANIC|SLAB_ACCOUNT, 922 useroffset, usersize, NULL); 923 #endif 924 925 /* do the arch specific task caches init */ 926 arch_task_cache_init(); 927 928 set_max_threads(MAX_THREADS); 929 930 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 931 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 932 init_task.signal->rlim[RLIMIT_SIGPENDING] = 933 init_task.signal->rlim[RLIMIT_NPROC]; 934 935 for (i = 0; i < UCOUNT_COUNTS; i++) 936 init_user_ns.ucount_max[i] = max_threads/2; 937 938 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 939 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 940 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 941 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 942 943 #ifdef CONFIG_VMAP_STACK 944 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 945 NULL, free_vm_stack_cache); 946 #endif 947 948 scs_init(); 949 950 lockdep_init_task(&init_task); 951 uprobes_init(); 952 } 953 954 int __weak arch_dup_task_struct(struct task_struct *dst, 955 struct task_struct *src) 956 { 957 *dst = *src; 958 return 0; 959 } 960 961 void set_task_stack_end_magic(struct task_struct *tsk) 962 { 963 unsigned long *stackend; 964 965 stackend = end_of_stack(tsk); 966 *stackend = STACK_END_MAGIC; /* for overflow detection */ 967 } 968 969 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 970 { 971 struct task_struct *tsk; 972 int err; 973 974 if (node == NUMA_NO_NODE) 975 node = tsk_fork_get_node(orig); 976 tsk = alloc_task_struct_node(node); 977 if (!tsk) 978 return NULL; 979 980 err = arch_dup_task_struct(tsk, orig); 981 if (err) 982 goto free_tsk; 983 984 err = alloc_thread_stack_node(tsk, node); 985 if (err) 986 goto free_tsk; 987 988 #ifdef CONFIG_THREAD_INFO_IN_TASK 989 refcount_set(&tsk->stack_refcount, 1); 990 #endif 991 account_kernel_stack(tsk, 1); 992 993 err = scs_prepare(tsk, node); 994 if (err) 995 goto free_stack; 996 997 #ifdef CONFIG_SECCOMP 998 /* 999 * We must handle setting up seccomp filters once we're under 1000 * the sighand lock in case orig has changed between now and 1001 * then. Until then, filter must be NULL to avoid messing up 1002 * the usage counts on the error path calling free_task. 1003 */ 1004 tsk->seccomp.filter = NULL; 1005 #endif 1006 1007 setup_thread_stack(tsk, orig); 1008 clear_user_return_notifier(tsk); 1009 clear_tsk_need_resched(tsk); 1010 set_task_stack_end_magic(tsk); 1011 clear_syscall_work_syscall_user_dispatch(tsk); 1012 1013 #ifdef CONFIG_STACKPROTECTOR 1014 tsk->stack_canary = get_random_canary(); 1015 #endif 1016 if (orig->cpus_ptr == &orig->cpus_mask) 1017 tsk->cpus_ptr = &tsk->cpus_mask; 1018 dup_user_cpus_ptr(tsk, orig, node); 1019 1020 /* 1021 * One for the user space visible state that goes away when reaped. 1022 * One for the scheduler. 1023 */ 1024 refcount_set(&tsk->rcu_users, 2); 1025 /* One for the rcu users */ 1026 refcount_set(&tsk->usage, 1); 1027 #ifdef CONFIG_BLK_DEV_IO_TRACE 1028 tsk->btrace_seq = 0; 1029 #endif 1030 tsk->splice_pipe = NULL; 1031 tsk->task_frag.page = NULL; 1032 tsk->wake_q.next = NULL; 1033 tsk->worker_private = NULL; 1034 1035 kcov_task_init(tsk); 1036 kmsan_task_create(tsk); 1037 kmap_local_fork(tsk); 1038 1039 #ifdef CONFIG_FAULT_INJECTION 1040 tsk->fail_nth = 0; 1041 #endif 1042 1043 #ifdef CONFIG_BLK_CGROUP 1044 tsk->throttle_queue = NULL; 1045 tsk->use_memdelay = 0; 1046 #endif 1047 1048 #ifdef CONFIG_IOMMU_SVA 1049 tsk->pasid_activated = 0; 1050 #endif 1051 1052 #ifdef CONFIG_MEMCG 1053 tsk->active_memcg = NULL; 1054 #endif 1055 1056 #ifdef CONFIG_CPU_SUP_INTEL 1057 tsk->reported_split_lock = 0; 1058 #endif 1059 1060 return tsk; 1061 1062 free_stack: 1063 exit_task_stack_account(tsk); 1064 free_thread_stack(tsk); 1065 free_tsk: 1066 free_task_struct(tsk); 1067 return NULL; 1068 } 1069 1070 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1071 1072 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1073 1074 static int __init coredump_filter_setup(char *s) 1075 { 1076 default_dump_filter = 1077 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1078 MMF_DUMP_FILTER_MASK; 1079 return 1; 1080 } 1081 1082 __setup("coredump_filter=", coredump_filter_setup); 1083 1084 #include <linux/init_task.h> 1085 1086 static void mm_init_aio(struct mm_struct *mm) 1087 { 1088 #ifdef CONFIG_AIO 1089 spin_lock_init(&mm->ioctx_lock); 1090 mm->ioctx_table = NULL; 1091 #endif 1092 } 1093 1094 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1095 struct task_struct *p) 1096 { 1097 #ifdef CONFIG_MEMCG 1098 if (mm->owner == p) 1099 WRITE_ONCE(mm->owner, NULL); 1100 #endif 1101 } 1102 1103 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1104 { 1105 #ifdef CONFIG_MEMCG 1106 mm->owner = p; 1107 #endif 1108 } 1109 1110 static void mm_init_uprobes_state(struct mm_struct *mm) 1111 { 1112 #ifdef CONFIG_UPROBES 1113 mm->uprobes_state.xol_area = NULL; 1114 #endif 1115 } 1116 1117 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1118 struct user_namespace *user_ns) 1119 { 1120 int i; 1121 1122 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1123 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1124 atomic_set(&mm->mm_users, 1); 1125 atomic_set(&mm->mm_count, 1); 1126 seqcount_init(&mm->write_protect_seq); 1127 mmap_init_lock(mm); 1128 INIT_LIST_HEAD(&mm->mmlist); 1129 mm_pgtables_bytes_init(mm); 1130 mm->map_count = 0; 1131 mm->locked_vm = 0; 1132 atomic64_set(&mm->pinned_vm, 0); 1133 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1134 spin_lock_init(&mm->page_table_lock); 1135 spin_lock_init(&mm->arg_lock); 1136 mm_init_cpumask(mm); 1137 mm_init_aio(mm); 1138 mm_init_owner(mm, p); 1139 mm_pasid_init(mm); 1140 RCU_INIT_POINTER(mm->exe_file, NULL); 1141 mmu_notifier_subscriptions_init(mm); 1142 init_tlb_flush_pending(mm); 1143 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 1144 mm->pmd_huge_pte = NULL; 1145 #endif 1146 mm_init_uprobes_state(mm); 1147 hugetlb_count_init(mm); 1148 1149 if (current->mm) { 1150 mm->flags = current->mm->flags & MMF_INIT_MASK; 1151 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1152 } else { 1153 mm->flags = default_dump_filter; 1154 mm->def_flags = 0; 1155 } 1156 1157 if (mm_alloc_pgd(mm)) 1158 goto fail_nopgd; 1159 1160 if (init_new_context(p, mm)) 1161 goto fail_nocontext; 1162 1163 for (i = 0; i < NR_MM_COUNTERS; i++) 1164 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT)) 1165 goto fail_pcpu; 1166 1167 mm->user_ns = get_user_ns(user_ns); 1168 lru_gen_init_mm(mm); 1169 return mm; 1170 1171 fail_pcpu: 1172 while (i > 0) 1173 percpu_counter_destroy(&mm->rss_stat[--i]); 1174 fail_nocontext: 1175 mm_free_pgd(mm); 1176 fail_nopgd: 1177 free_mm(mm); 1178 return NULL; 1179 } 1180 1181 /* 1182 * Allocate and initialize an mm_struct. 1183 */ 1184 struct mm_struct *mm_alloc(void) 1185 { 1186 struct mm_struct *mm; 1187 1188 mm = allocate_mm(); 1189 if (!mm) 1190 return NULL; 1191 1192 memset(mm, 0, sizeof(*mm)); 1193 return mm_init(mm, current, current_user_ns()); 1194 } 1195 1196 static inline void __mmput(struct mm_struct *mm) 1197 { 1198 VM_BUG_ON(atomic_read(&mm->mm_users)); 1199 1200 uprobe_clear_state(mm); 1201 exit_aio(mm); 1202 ksm_exit(mm); 1203 khugepaged_exit(mm); /* must run before exit_mmap */ 1204 exit_mmap(mm); 1205 mm_put_huge_zero_page(mm); 1206 set_mm_exe_file(mm, NULL); 1207 if (!list_empty(&mm->mmlist)) { 1208 spin_lock(&mmlist_lock); 1209 list_del(&mm->mmlist); 1210 spin_unlock(&mmlist_lock); 1211 } 1212 if (mm->binfmt) 1213 module_put(mm->binfmt->module); 1214 lru_gen_del_mm(mm); 1215 mmdrop(mm); 1216 } 1217 1218 /* 1219 * Decrement the use count and release all resources for an mm. 1220 */ 1221 void mmput(struct mm_struct *mm) 1222 { 1223 might_sleep(); 1224 1225 if (atomic_dec_and_test(&mm->mm_users)) 1226 __mmput(mm); 1227 } 1228 EXPORT_SYMBOL_GPL(mmput); 1229 1230 #ifdef CONFIG_MMU 1231 static void mmput_async_fn(struct work_struct *work) 1232 { 1233 struct mm_struct *mm = container_of(work, struct mm_struct, 1234 async_put_work); 1235 1236 __mmput(mm); 1237 } 1238 1239 void mmput_async(struct mm_struct *mm) 1240 { 1241 if (atomic_dec_and_test(&mm->mm_users)) { 1242 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1243 schedule_work(&mm->async_put_work); 1244 } 1245 } 1246 EXPORT_SYMBOL_GPL(mmput_async); 1247 #endif 1248 1249 /** 1250 * set_mm_exe_file - change a reference to the mm's executable file 1251 * 1252 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1253 * 1254 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1255 * invocations: in mmput() nobody alive left, in execve task is single 1256 * threaded. 1257 * 1258 * Can only fail if new_exe_file != NULL. 1259 */ 1260 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1261 { 1262 struct file *old_exe_file; 1263 1264 /* 1265 * It is safe to dereference the exe_file without RCU as 1266 * this function is only called if nobody else can access 1267 * this mm -- see comment above for justification. 1268 */ 1269 old_exe_file = rcu_dereference_raw(mm->exe_file); 1270 1271 if (new_exe_file) { 1272 /* 1273 * We expect the caller (i.e., sys_execve) to already denied 1274 * write access, so this is unlikely to fail. 1275 */ 1276 if (unlikely(deny_write_access(new_exe_file))) 1277 return -EACCES; 1278 get_file(new_exe_file); 1279 } 1280 rcu_assign_pointer(mm->exe_file, new_exe_file); 1281 if (old_exe_file) { 1282 allow_write_access(old_exe_file); 1283 fput(old_exe_file); 1284 } 1285 return 0; 1286 } 1287 1288 /** 1289 * replace_mm_exe_file - replace a reference to the mm's executable file 1290 * 1291 * This changes mm's executable file (shown as symlink /proc/[pid]/exe), 1292 * dealing with concurrent invocation and without grabbing the mmap lock in 1293 * write mode. 1294 * 1295 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1296 */ 1297 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1298 { 1299 struct vm_area_struct *vma; 1300 struct file *old_exe_file; 1301 int ret = 0; 1302 1303 /* Forbid mm->exe_file change if old file still mapped. */ 1304 old_exe_file = get_mm_exe_file(mm); 1305 if (old_exe_file) { 1306 VMA_ITERATOR(vmi, mm, 0); 1307 mmap_read_lock(mm); 1308 for_each_vma(vmi, vma) { 1309 if (!vma->vm_file) 1310 continue; 1311 if (path_equal(&vma->vm_file->f_path, 1312 &old_exe_file->f_path)) { 1313 ret = -EBUSY; 1314 break; 1315 } 1316 } 1317 mmap_read_unlock(mm); 1318 fput(old_exe_file); 1319 if (ret) 1320 return ret; 1321 } 1322 1323 /* set the new file, lockless */ 1324 ret = deny_write_access(new_exe_file); 1325 if (ret) 1326 return -EACCES; 1327 get_file(new_exe_file); 1328 1329 old_exe_file = xchg(&mm->exe_file, new_exe_file); 1330 if (old_exe_file) { 1331 /* 1332 * Don't race with dup_mmap() getting the file and disallowing 1333 * write access while someone might open the file writable. 1334 */ 1335 mmap_read_lock(mm); 1336 allow_write_access(old_exe_file); 1337 fput(old_exe_file); 1338 mmap_read_unlock(mm); 1339 } 1340 return 0; 1341 } 1342 1343 /** 1344 * get_mm_exe_file - acquire a reference to the mm's executable file 1345 * 1346 * Returns %NULL if mm has no associated executable file. 1347 * User must release file via fput(). 1348 */ 1349 struct file *get_mm_exe_file(struct mm_struct *mm) 1350 { 1351 struct file *exe_file; 1352 1353 rcu_read_lock(); 1354 exe_file = rcu_dereference(mm->exe_file); 1355 if (exe_file && !get_file_rcu(exe_file)) 1356 exe_file = NULL; 1357 rcu_read_unlock(); 1358 return exe_file; 1359 } 1360 1361 /** 1362 * get_task_exe_file - acquire a reference to the task's executable file 1363 * 1364 * Returns %NULL if task's mm (if any) has no associated executable file or 1365 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1366 * User must release file via fput(). 1367 */ 1368 struct file *get_task_exe_file(struct task_struct *task) 1369 { 1370 struct file *exe_file = NULL; 1371 struct mm_struct *mm; 1372 1373 task_lock(task); 1374 mm = task->mm; 1375 if (mm) { 1376 if (!(task->flags & PF_KTHREAD)) 1377 exe_file = get_mm_exe_file(mm); 1378 } 1379 task_unlock(task); 1380 return exe_file; 1381 } 1382 1383 /** 1384 * get_task_mm - acquire a reference to the task's mm 1385 * 1386 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1387 * this kernel workthread has transiently adopted a user mm with use_mm, 1388 * to do its AIO) is not set and if so returns a reference to it, after 1389 * bumping up the use count. User must release the mm via mmput() 1390 * after use. Typically used by /proc and ptrace. 1391 */ 1392 struct mm_struct *get_task_mm(struct task_struct *task) 1393 { 1394 struct mm_struct *mm; 1395 1396 task_lock(task); 1397 mm = task->mm; 1398 if (mm) { 1399 if (task->flags & PF_KTHREAD) 1400 mm = NULL; 1401 else 1402 mmget(mm); 1403 } 1404 task_unlock(task); 1405 return mm; 1406 } 1407 EXPORT_SYMBOL_GPL(get_task_mm); 1408 1409 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1410 { 1411 struct mm_struct *mm; 1412 int err; 1413 1414 err = down_read_killable(&task->signal->exec_update_lock); 1415 if (err) 1416 return ERR_PTR(err); 1417 1418 mm = get_task_mm(task); 1419 if (mm && mm != current->mm && 1420 !ptrace_may_access(task, mode)) { 1421 mmput(mm); 1422 mm = ERR_PTR(-EACCES); 1423 } 1424 up_read(&task->signal->exec_update_lock); 1425 1426 return mm; 1427 } 1428 1429 static void complete_vfork_done(struct task_struct *tsk) 1430 { 1431 struct completion *vfork; 1432 1433 task_lock(tsk); 1434 vfork = tsk->vfork_done; 1435 if (likely(vfork)) { 1436 tsk->vfork_done = NULL; 1437 complete(vfork); 1438 } 1439 task_unlock(tsk); 1440 } 1441 1442 static int wait_for_vfork_done(struct task_struct *child, 1443 struct completion *vfork) 1444 { 1445 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE; 1446 int killed; 1447 1448 cgroup_enter_frozen(); 1449 killed = wait_for_completion_state(vfork, state); 1450 cgroup_leave_frozen(false); 1451 1452 if (killed) { 1453 task_lock(child); 1454 child->vfork_done = NULL; 1455 task_unlock(child); 1456 } 1457 1458 put_task_struct(child); 1459 return killed; 1460 } 1461 1462 /* Please note the differences between mmput and mm_release. 1463 * mmput is called whenever we stop holding onto a mm_struct, 1464 * error success whatever. 1465 * 1466 * mm_release is called after a mm_struct has been removed 1467 * from the current process. 1468 * 1469 * This difference is important for error handling, when we 1470 * only half set up a mm_struct for a new process and need to restore 1471 * the old one. Because we mmput the new mm_struct before 1472 * restoring the old one. . . 1473 * Eric Biederman 10 January 1998 1474 */ 1475 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1476 { 1477 uprobe_free_utask(tsk); 1478 1479 /* Get rid of any cached register state */ 1480 deactivate_mm(tsk, mm); 1481 1482 /* 1483 * Signal userspace if we're not exiting with a core dump 1484 * because we want to leave the value intact for debugging 1485 * purposes. 1486 */ 1487 if (tsk->clear_child_tid) { 1488 if (atomic_read(&mm->mm_users) > 1) { 1489 /* 1490 * We don't check the error code - if userspace has 1491 * not set up a proper pointer then tough luck. 1492 */ 1493 put_user(0, tsk->clear_child_tid); 1494 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1495 1, NULL, NULL, 0, 0); 1496 } 1497 tsk->clear_child_tid = NULL; 1498 } 1499 1500 /* 1501 * All done, finally we can wake up parent and return this mm to him. 1502 * Also kthread_stop() uses this completion for synchronization. 1503 */ 1504 if (tsk->vfork_done) 1505 complete_vfork_done(tsk); 1506 } 1507 1508 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1509 { 1510 futex_exit_release(tsk); 1511 mm_release(tsk, mm); 1512 } 1513 1514 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1515 { 1516 futex_exec_release(tsk); 1517 mm_release(tsk, mm); 1518 } 1519 1520 /** 1521 * dup_mm() - duplicates an existing mm structure 1522 * @tsk: the task_struct with which the new mm will be associated. 1523 * @oldmm: the mm to duplicate. 1524 * 1525 * Allocates a new mm structure and duplicates the provided @oldmm structure 1526 * content into it. 1527 * 1528 * Return: the duplicated mm or NULL on failure. 1529 */ 1530 static struct mm_struct *dup_mm(struct task_struct *tsk, 1531 struct mm_struct *oldmm) 1532 { 1533 struct mm_struct *mm; 1534 int err; 1535 1536 mm = allocate_mm(); 1537 if (!mm) 1538 goto fail_nomem; 1539 1540 memcpy(mm, oldmm, sizeof(*mm)); 1541 1542 if (!mm_init(mm, tsk, mm->user_ns)) 1543 goto fail_nomem; 1544 1545 err = dup_mmap(mm, oldmm); 1546 if (err) 1547 goto free_pt; 1548 1549 mm->hiwater_rss = get_mm_rss(mm); 1550 mm->hiwater_vm = mm->total_vm; 1551 1552 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1553 goto free_pt; 1554 1555 return mm; 1556 1557 free_pt: 1558 /* don't put binfmt in mmput, we haven't got module yet */ 1559 mm->binfmt = NULL; 1560 mm_init_owner(mm, NULL); 1561 mmput(mm); 1562 1563 fail_nomem: 1564 return NULL; 1565 } 1566 1567 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) 1568 { 1569 struct mm_struct *mm, *oldmm; 1570 1571 tsk->min_flt = tsk->maj_flt = 0; 1572 tsk->nvcsw = tsk->nivcsw = 0; 1573 #ifdef CONFIG_DETECT_HUNG_TASK 1574 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1575 tsk->last_switch_time = 0; 1576 #endif 1577 1578 tsk->mm = NULL; 1579 tsk->active_mm = NULL; 1580 1581 /* 1582 * Are we cloning a kernel thread? 1583 * 1584 * We need to steal a active VM for that.. 1585 */ 1586 oldmm = current->mm; 1587 if (!oldmm) 1588 return 0; 1589 1590 if (clone_flags & CLONE_VM) { 1591 mmget(oldmm); 1592 mm = oldmm; 1593 } else { 1594 mm = dup_mm(tsk, current->mm); 1595 if (!mm) 1596 return -ENOMEM; 1597 } 1598 1599 tsk->mm = mm; 1600 tsk->active_mm = mm; 1601 return 0; 1602 } 1603 1604 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk) 1605 { 1606 struct fs_struct *fs = current->fs; 1607 if (clone_flags & CLONE_FS) { 1608 /* tsk->fs is already what we want */ 1609 spin_lock(&fs->lock); 1610 if (fs->in_exec) { 1611 spin_unlock(&fs->lock); 1612 return -EAGAIN; 1613 } 1614 fs->users++; 1615 spin_unlock(&fs->lock); 1616 return 0; 1617 } 1618 tsk->fs = copy_fs_struct(fs); 1619 if (!tsk->fs) 1620 return -ENOMEM; 1621 return 0; 1622 } 1623 1624 static int copy_files(unsigned long clone_flags, struct task_struct *tsk) 1625 { 1626 struct files_struct *oldf, *newf; 1627 int error = 0; 1628 1629 /* 1630 * A background process may not have any files ... 1631 */ 1632 oldf = current->files; 1633 if (!oldf) 1634 goto out; 1635 1636 if (clone_flags & CLONE_FILES) { 1637 atomic_inc(&oldf->count); 1638 goto out; 1639 } 1640 1641 newf = dup_fd(oldf, NR_OPEN_MAX, &error); 1642 if (!newf) 1643 goto out; 1644 1645 tsk->files = newf; 1646 error = 0; 1647 out: 1648 return error; 1649 } 1650 1651 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk) 1652 { 1653 struct sighand_struct *sig; 1654 1655 if (clone_flags & CLONE_SIGHAND) { 1656 refcount_inc(¤t->sighand->count); 1657 return 0; 1658 } 1659 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1660 RCU_INIT_POINTER(tsk->sighand, sig); 1661 if (!sig) 1662 return -ENOMEM; 1663 1664 refcount_set(&sig->count, 1); 1665 spin_lock_irq(¤t->sighand->siglock); 1666 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1667 spin_unlock_irq(¤t->sighand->siglock); 1668 1669 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1670 if (clone_flags & CLONE_CLEAR_SIGHAND) 1671 flush_signal_handlers(tsk, 0); 1672 1673 return 0; 1674 } 1675 1676 void __cleanup_sighand(struct sighand_struct *sighand) 1677 { 1678 if (refcount_dec_and_test(&sighand->count)) { 1679 signalfd_cleanup(sighand); 1680 /* 1681 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1682 * without an RCU grace period, see __lock_task_sighand(). 1683 */ 1684 kmem_cache_free(sighand_cachep, sighand); 1685 } 1686 } 1687 1688 /* 1689 * Initialize POSIX timer handling for a thread group. 1690 */ 1691 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1692 { 1693 struct posix_cputimers *pct = &sig->posix_cputimers; 1694 unsigned long cpu_limit; 1695 1696 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1697 posix_cputimers_group_init(pct, cpu_limit); 1698 } 1699 1700 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) 1701 { 1702 struct signal_struct *sig; 1703 1704 if (clone_flags & CLONE_THREAD) 1705 return 0; 1706 1707 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1708 tsk->signal = sig; 1709 if (!sig) 1710 return -ENOMEM; 1711 1712 sig->nr_threads = 1; 1713 sig->quick_threads = 1; 1714 atomic_set(&sig->live, 1); 1715 refcount_set(&sig->sigcnt, 1); 1716 1717 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1718 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1719 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1720 1721 init_waitqueue_head(&sig->wait_chldexit); 1722 sig->curr_target = tsk; 1723 init_sigpending(&sig->shared_pending); 1724 INIT_HLIST_HEAD(&sig->multiprocess); 1725 seqlock_init(&sig->stats_lock); 1726 prev_cputime_init(&sig->prev_cputime); 1727 1728 #ifdef CONFIG_POSIX_TIMERS 1729 INIT_LIST_HEAD(&sig->posix_timers); 1730 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1731 sig->real_timer.function = it_real_fn; 1732 #endif 1733 1734 task_lock(current->group_leader); 1735 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1736 task_unlock(current->group_leader); 1737 1738 posix_cpu_timers_init_group(sig); 1739 1740 tty_audit_fork(sig); 1741 sched_autogroup_fork(sig); 1742 1743 sig->oom_score_adj = current->signal->oom_score_adj; 1744 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1745 1746 mutex_init(&sig->cred_guard_mutex); 1747 init_rwsem(&sig->exec_update_lock); 1748 1749 return 0; 1750 } 1751 1752 static void copy_seccomp(struct task_struct *p) 1753 { 1754 #ifdef CONFIG_SECCOMP 1755 /* 1756 * Must be called with sighand->lock held, which is common to 1757 * all threads in the group. Holding cred_guard_mutex is not 1758 * needed because this new task is not yet running and cannot 1759 * be racing exec. 1760 */ 1761 assert_spin_locked(¤t->sighand->siglock); 1762 1763 /* Ref-count the new filter user, and assign it. */ 1764 get_seccomp_filter(current); 1765 p->seccomp = current->seccomp; 1766 1767 /* 1768 * Explicitly enable no_new_privs here in case it got set 1769 * between the task_struct being duplicated and holding the 1770 * sighand lock. The seccomp state and nnp must be in sync. 1771 */ 1772 if (task_no_new_privs(current)) 1773 task_set_no_new_privs(p); 1774 1775 /* 1776 * If the parent gained a seccomp mode after copying thread 1777 * flags and between before we held the sighand lock, we have 1778 * to manually enable the seccomp thread flag here. 1779 */ 1780 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1781 set_task_syscall_work(p, SECCOMP); 1782 #endif 1783 } 1784 1785 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1786 { 1787 current->clear_child_tid = tidptr; 1788 1789 return task_pid_vnr(current); 1790 } 1791 1792 static void rt_mutex_init_task(struct task_struct *p) 1793 { 1794 raw_spin_lock_init(&p->pi_lock); 1795 #ifdef CONFIG_RT_MUTEXES 1796 p->pi_waiters = RB_ROOT_CACHED; 1797 p->pi_top_task = NULL; 1798 p->pi_blocked_on = NULL; 1799 #endif 1800 } 1801 1802 static inline void init_task_pid_links(struct task_struct *task) 1803 { 1804 enum pid_type type; 1805 1806 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1807 INIT_HLIST_NODE(&task->pid_links[type]); 1808 } 1809 1810 static inline void 1811 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1812 { 1813 if (type == PIDTYPE_PID) 1814 task->thread_pid = pid; 1815 else 1816 task->signal->pids[type] = pid; 1817 } 1818 1819 static inline void rcu_copy_process(struct task_struct *p) 1820 { 1821 #ifdef CONFIG_PREEMPT_RCU 1822 p->rcu_read_lock_nesting = 0; 1823 p->rcu_read_unlock_special.s = 0; 1824 p->rcu_blocked_node = NULL; 1825 INIT_LIST_HEAD(&p->rcu_node_entry); 1826 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1827 #ifdef CONFIG_TASKS_RCU 1828 p->rcu_tasks_holdout = false; 1829 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1830 p->rcu_tasks_idle_cpu = -1; 1831 #endif /* #ifdef CONFIG_TASKS_RCU */ 1832 #ifdef CONFIG_TASKS_TRACE_RCU 1833 p->trc_reader_nesting = 0; 1834 p->trc_reader_special.s = 0; 1835 INIT_LIST_HEAD(&p->trc_holdout_list); 1836 INIT_LIST_HEAD(&p->trc_blkd_node); 1837 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1838 } 1839 1840 struct pid *pidfd_pid(const struct file *file) 1841 { 1842 if (file->f_op == &pidfd_fops) 1843 return file->private_data; 1844 1845 return ERR_PTR(-EBADF); 1846 } 1847 1848 static int pidfd_release(struct inode *inode, struct file *file) 1849 { 1850 struct pid *pid = file->private_data; 1851 1852 file->private_data = NULL; 1853 put_pid(pid); 1854 return 0; 1855 } 1856 1857 #ifdef CONFIG_PROC_FS 1858 /** 1859 * pidfd_show_fdinfo - print information about a pidfd 1860 * @m: proc fdinfo file 1861 * @f: file referencing a pidfd 1862 * 1863 * Pid: 1864 * This function will print the pid that a given pidfd refers to in the 1865 * pid namespace of the procfs instance. 1866 * If the pid namespace of the process is not a descendant of the pid 1867 * namespace of the procfs instance 0 will be shown as its pid. This is 1868 * similar to calling getppid() on a process whose parent is outside of 1869 * its pid namespace. 1870 * 1871 * NSpid: 1872 * If pid namespaces are supported then this function will also print 1873 * the pid of a given pidfd refers to for all descendant pid namespaces 1874 * starting from the current pid namespace of the instance, i.e. the 1875 * Pid field and the first entry in the NSpid field will be identical. 1876 * If the pid namespace of the process is not a descendant of the pid 1877 * namespace of the procfs instance 0 will be shown as its first NSpid 1878 * entry and no others will be shown. 1879 * Note that this differs from the Pid and NSpid fields in 1880 * /proc/<pid>/status where Pid and NSpid are always shown relative to 1881 * the pid namespace of the procfs instance. The difference becomes 1882 * obvious when sending around a pidfd between pid namespaces from a 1883 * different branch of the tree, i.e. where no ancestral relation is 1884 * present between the pid namespaces: 1885 * - create two new pid namespaces ns1 and ns2 in the initial pid 1886 * namespace (also take care to create new mount namespaces in the 1887 * new pid namespace and mount procfs) 1888 * - create a process with a pidfd in ns1 1889 * - send pidfd from ns1 to ns2 1890 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid 1891 * have exactly one entry, which is 0 1892 */ 1893 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f) 1894 { 1895 struct pid *pid = f->private_data; 1896 struct pid_namespace *ns; 1897 pid_t nr = -1; 1898 1899 if (likely(pid_has_task(pid, PIDTYPE_PID))) { 1900 ns = proc_pid_ns(file_inode(m->file)->i_sb); 1901 nr = pid_nr_ns(pid, ns); 1902 } 1903 1904 seq_put_decimal_ll(m, "Pid:\t", nr); 1905 1906 #ifdef CONFIG_PID_NS 1907 seq_put_decimal_ll(m, "\nNSpid:\t", nr); 1908 if (nr > 0) { 1909 int i; 1910 1911 /* If nr is non-zero it means that 'pid' is valid and that 1912 * ns, i.e. the pid namespace associated with the procfs 1913 * instance, is in the pid namespace hierarchy of pid. 1914 * Start at one below the already printed level. 1915 */ 1916 for (i = ns->level + 1; i <= pid->level; i++) 1917 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr); 1918 } 1919 #endif 1920 seq_putc(m, '\n'); 1921 } 1922 #endif 1923 1924 /* 1925 * Poll support for process exit notification. 1926 */ 1927 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts) 1928 { 1929 struct pid *pid = file->private_data; 1930 __poll_t poll_flags = 0; 1931 1932 poll_wait(file, &pid->wait_pidfd, pts); 1933 1934 /* 1935 * Inform pollers only when the whole thread group exits. 1936 * If the thread group leader exits before all other threads in the 1937 * group, then poll(2) should block, similar to the wait(2) family. 1938 */ 1939 if (thread_group_exited(pid)) 1940 poll_flags = EPOLLIN | EPOLLRDNORM; 1941 1942 return poll_flags; 1943 } 1944 1945 const struct file_operations pidfd_fops = { 1946 .release = pidfd_release, 1947 .poll = pidfd_poll, 1948 #ifdef CONFIG_PROC_FS 1949 .show_fdinfo = pidfd_show_fdinfo, 1950 #endif 1951 }; 1952 1953 static void __delayed_free_task(struct rcu_head *rhp) 1954 { 1955 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1956 1957 free_task(tsk); 1958 } 1959 1960 static __always_inline void delayed_free_task(struct task_struct *tsk) 1961 { 1962 if (IS_ENABLED(CONFIG_MEMCG)) 1963 call_rcu(&tsk->rcu, __delayed_free_task); 1964 else 1965 free_task(tsk); 1966 } 1967 1968 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1969 { 1970 /* Skip if kernel thread */ 1971 if (!tsk->mm) 1972 return; 1973 1974 /* Skip if spawning a thread or using vfork */ 1975 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1976 return; 1977 1978 /* We need to synchronize with __set_oom_adj */ 1979 mutex_lock(&oom_adj_mutex); 1980 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags); 1981 /* Update the values in case they were changed after copy_signal */ 1982 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1983 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1984 mutex_unlock(&oom_adj_mutex); 1985 } 1986 1987 #ifdef CONFIG_RV 1988 static void rv_task_fork(struct task_struct *p) 1989 { 1990 int i; 1991 1992 for (i = 0; i < RV_PER_TASK_MONITORS; i++) 1993 p->rv[i].da_mon.monitoring = false; 1994 } 1995 #else 1996 #define rv_task_fork(p) do {} while (0) 1997 #endif 1998 1999 /* 2000 * This creates a new process as a copy of the old one, 2001 * but does not actually start it yet. 2002 * 2003 * It copies the registers, and all the appropriate 2004 * parts of the process environment (as per the clone 2005 * flags). The actual kick-off is left to the caller. 2006 */ 2007 static __latent_entropy struct task_struct *copy_process( 2008 struct pid *pid, 2009 int trace, 2010 int node, 2011 struct kernel_clone_args *args) 2012 { 2013 int pidfd = -1, retval; 2014 struct task_struct *p; 2015 struct multiprocess_signals delayed; 2016 struct file *pidfile = NULL; 2017 const u64 clone_flags = args->flags; 2018 struct nsproxy *nsp = current->nsproxy; 2019 2020 /* 2021 * Don't allow sharing the root directory with processes in a different 2022 * namespace 2023 */ 2024 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 2025 return ERR_PTR(-EINVAL); 2026 2027 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 2028 return ERR_PTR(-EINVAL); 2029 2030 /* 2031 * Thread groups must share signals as well, and detached threads 2032 * can only be started up within the thread group. 2033 */ 2034 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 2035 return ERR_PTR(-EINVAL); 2036 2037 /* 2038 * Shared signal handlers imply shared VM. By way of the above, 2039 * thread groups also imply shared VM. Blocking this case allows 2040 * for various simplifications in other code. 2041 */ 2042 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2043 return ERR_PTR(-EINVAL); 2044 2045 /* 2046 * Siblings of global init remain as zombies on exit since they are 2047 * not reaped by their parent (swapper). To solve this and to avoid 2048 * multi-rooted process trees, prevent global and container-inits 2049 * from creating siblings. 2050 */ 2051 if ((clone_flags & CLONE_PARENT) && 2052 current->signal->flags & SIGNAL_UNKILLABLE) 2053 return ERR_PTR(-EINVAL); 2054 2055 /* 2056 * If the new process will be in a different pid or user namespace 2057 * do not allow it to share a thread group with the forking task. 2058 */ 2059 if (clone_flags & CLONE_THREAD) { 2060 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2061 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2062 return ERR_PTR(-EINVAL); 2063 } 2064 2065 /* 2066 * If the new process will be in a different time namespace 2067 * do not allow it to share VM or a thread group with the forking task. 2068 */ 2069 if (clone_flags & (CLONE_THREAD | CLONE_VM)) { 2070 if (nsp->time_ns != nsp->time_ns_for_children) 2071 return ERR_PTR(-EINVAL); 2072 } 2073 2074 if (clone_flags & CLONE_PIDFD) { 2075 /* 2076 * - CLONE_DETACHED is blocked so that we can potentially 2077 * reuse it later for CLONE_PIDFD. 2078 * - CLONE_THREAD is blocked until someone really needs it. 2079 */ 2080 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD)) 2081 return ERR_PTR(-EINVAL); 2082 } 2083 2084 /* 2085 * Force any signals received before this point to be delivered 2086 * before the fork happens. Collect up signals sent to multiple 2087 * processes that happen during the fork and delay them so that 2088 * they appear to happen after the fork. 2089 */ 2090 sigemptyset(&delayed.signal); 2091 INIT_HLIST_NODE(&delayed.node); 2092 2093 spin_lock_irq(¤t->sighand->siglock); 2094 if (!(clone_flags & CLONE_THREAD)) 2095 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2096 recalc_sigpending(); 2097 spin_unlock_irq(¤t->sighand->siglock); 2098 retval = -ERESTARTNOINTR; 2099 if (task_sigpending(current)) 2100 goto fork_out; 2101 2102 retval = -ENOMEM; 2103 p = dup_task_struct(current, node); 2104 if (!p) 2105 goto fork_out; 2106 p->flags &= ~PF_KTHREAD; 2107 if (args->kthread) 2108 p->flags |= PF_KTHREAD; 2109 if (args->io_thread) { 2110 /* 2111 * Mark us an IO worker, and block any signal that isn't 2112 * fatal or STOP 2113 */ 2114 p->flags |= PF_IO_WORKER; 2115 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2116 } 2117 2118 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2119 /* 2120 * Clear TID on mm_release()? 2121 */ 2122 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2123 2124 ftrace_graph_init_task(p); 2125 2126 rt_mutex_init_task(p); 2127 2128 lockdep_assert_irqs_enabled(); 2129 #ifdef CONFIG_PROVE_LOCKING 2130 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2131 #endif 2132 retval = copy_creds(p, clone_flags); 2133 if (retval < 0) 2134 goto bad_fork_free; 2135 2136 retval = -EAGAIN; 2137 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2138 if (p->real_cred->user != INIT_USER && 2139 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2140 goto bad_fork_cleanup_count; 2141 } 2142 current->flags &= ~PF_NPROC_EXCEEDED; 2143 2144 /* 2145 * If multiple threads are within copy_process(), then this check 2146 * triggers too late. This doesn't hurt, the check is only there 2147 * to stop root fork bombs. 2148 */ 2149 retval = -EAGAIN; 2150 if (data_race(nr_threads >= max_threads)) 2151 goto bad_fork_cleanup_count; 2152 2153 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2154 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2155 p->flags |= PF_FORKNOEXEC; 2156 INIT_LIST_HEAD(&p->children); 2157 INIT_LIST_HEAD(&p->sibling); 2158 rcu_copy_process(p); 2159 p->vfork_done = NULL; 2160 spin_lock_init(&p->alloc_lock); 2161 2162 init_sigpending(&p->pending); 2163 2164 p->utime = p->stime = p->gtime = 0; 2165 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2166 p->utimescaled = p->stimescaled = 0; 2167 #endif 2168 prev_cputime_init(&p->prev_cputime); 2169 2170 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2171 seqcount_init(&p->vtime.seqcount); 2172 p->vtime.starttime = 0; 2173 p->vtime.state = VTIME_INACTIVE; 2174 #endif 2175 2176 #ifdef CONFIG_IO_URING 2177 p->io_uring = NULL; 2178 #endif 2179 2180 #if defined(SPLIT_RSS_COUNTING) 2181 memset(&p->rss_stat, 0, sizeof(p->rss_stat)); 2182 #endif 2183 2184 p->default_timer_slack_ns = current->timer_slack_ns; 2185 2186 #ifdef CONFIG_PSI 2187 p->psi_flags = 0; 2188 #endif 2189 2190 task_io_accounting_init(&p->ioac); 2191 acct_clear_integrals(p); 2192 2193 posix_cputimers_init(&p->posix_cputimers); 2194 2195 p->io_context = NULL; 2196 audit_set_context(p, NULL); 2197 cgroup_fork(p); 2198 if (args->kthread) { 2199 if (!set_kthread_struct(p)) 2200 goto bad_fork_cleanup_delayacct; 2201 } 2202 #ifdef CONFIG_NUMA 2203 p->mempolicy = mpol_dup(p->mempolicy); 2204 if (IS_ERR(p->mempolicy)) { 2205 retval = PTR_ERR(p->mempolicy); 2206 p->mempolicy = NULL; 2207 goto bad_fork_cleanup_delayacct; 2208 } 2209 #endif 2210 #ifdef CONFIG_CPUSETS 2211 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2212 p->cpuset_slab_spread_rotor = NUMA_NO_NODE; 2213 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2214 #endif 2215 #ifdef CONFIG_TRACE_IRQFLAGS 2216 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2217 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2218 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2219 p->softirqs_enabled = 1; 2220 p->softirq_context = 0; 2221 #endif 2222 2223 p->pagefault_disabled = 0; 2224 2225 #ifdef CONFIG_LOCKDEP 2226 lockdep_init_task(p); 2227 #endif 2228 2229 #ifdef CONFIG_DEBUG_MUTEXES 2230 p->blocked_on = NULL; /* not blocked yet */ 2231 #endif 2232 #ifdef CONFIG_BCACHE 2233 p->sequential_io = 0; 2234 p->sequential_io_avg = 0; 2235 #endif 2236 #ifdef CONFIG_BPF_SYSCALL 2237 RCU_INIT_POINTER(p->bpf_storage, NULL); 2238 p->bpf_ctx = NULL; 2239 #endif 2240 2241 /* Perform scheduler related setup. Assign this task to a CPU. */ 2242 retval = sched_fork(clone_flags, p); 2243 if (retval) 2244 goto bad_fork_cleanup_policy; 2245 2246 retval = perf_event_init_task(p, clone_flags); 2247 if (retval) 2248 goto bad_fork_cleanup_policy; 2249 retval = audit_alloc(p); 2250 if (retval) 2251 goto bad_fork_cleanup_perf; 2252 /* copy all the process information */ 2253 shm_init_task(p); 2254 retval = security_task_alloc(p, clone_flags); 2255 if (retval) 2256 goto bad_fork_cleanup_audit; 2257 retval = copy_semundo(clone_flags, p); 2258 if (retval) 2259 goto bad_fork_cleanup_security; 2260 retval = copy_files(clone_flags, p); 2261 if (retval) 2262 goto bad_fork_cleanup_semundo; 2263 retval = copy_fs(clone_flags, p); 2264 if (retval) 2265 goto bad_fork_cleanup_files; 2266 retval = copy_sighand(clone_flags, p); 2267 if (retval) 2268 goto bad_fork_cleanup_fs; 2269 retval = copy_signal(clone_flags, p); 2270 if (retval) 2271 goto bad_fork_cleanup_sighand; 2272 retval = copy_mm(clone_flags, p); 2273 if (retval) 2274 goto bad_fork_cleanup_signal; 2275 retval = copy_namespaces(clone_flags, p); 2276 if (retval) 2277 goto bad_fork_cleanup_mm; 2278 retval = copy_io(clone_flags, p); 2279 if (retval) 2280 goto bad_fork_cleanup_namespaces; 2281 retval = copy_thread(p, args); 2282 if (retval) 2283 goto bad_fork_cleanup_io; 2284 2285 stackleak_task_init(p); 2286 2287 if (pid != &init_struct_pid) { 2288 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2289 args->set_tid_size); 2290 if (IS_ERR(pid)) { 2291 retval = PTR_ERR(pid); 2292 goto bad_fork_cleanup_thread; 2293 } 2294 } 2295 2296 /* 2297 * This has to happen after we've potentially unshared the file 2298 * descriptor table (so that the pidfd doesn't leak into the child 2299 * if the fd table isn't shared). 2300 */ 2301 if (clone_flags & CLONE_PIDFD) { 2302 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC); 2303 if (retval < 0) 2304 goto bad_fork_free_pid; 2305 2306 pidfd = retval; 2307 2308 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid, 2309 O_RDWR | O_CLOEXEC); 2310 if (IS_ERR(pidfile)) { 2311 put_unused_fd(pidfd); 2312 retval = PTR_ERR(pidfile); 2313 goto bad_fork_free_pid; 2314 } 2315 get_pid(pid); /* held by pidfile now */ 2316 2317 retval = put_user(pidfd, args->pidfd); 2318 if (retval) 2319 goto bad_fork_put_pidfd; 2320 } 2321 2322 #ifdef CONFIG_BLOCK 2323 p->plug = NULL; 2324 #endif 2325 futex_init_task(p); 2326 2327 /* 2328 * sigaltstack should be cleared when sharing the same VM 2329 */ 2330 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2331 sas_ss_reset(p); 2332 2333 /* 2334 * Syscall tracing and stepping should be turned off in the 2335 * child regardless of CLONE_PTRACE. 2336 */ 2337 user_disable_single_step(p); 2338 clear_task_syscall_work(p, SYSCALL_TRACE); 2339 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2340 clear_task_syscall_work(p, SYSCALL_EMU); 2341 #endif 2342 clear_tsk_latency_tracing(p); 2343 2344 /* ok, now we should be set up.. */ 2345 p->pid = pid_nr(pid); 2346 if (clone_flags & CLONE_THREAD) { 2347 p->group_leader = current->group_leader; 2348 p->tgid = current->tgid; 2349 } else { 2350 p->group_leader = p; 2351 p->tgid = p->pid; 2352 } 2353 2354 p->nr_dirtied = 0; 2355 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2356 p->dirty_paused_when = 0; 2357 2358 p->pdeath_signal = 0; 2359 INIT_LIST_HEAD(&p->thread_group); 2360 p->task_works = NULL; 2361 clear_posix_cputimers_work(p); 2362 2363 #ifdef CONFIG_KRETPROBES 2364 p->kretprobe_instances.first = NULL; 2365 #endif 2366 #ifdef CONFIG_RETHOOK 2367 p->rethooks.first = NULL; 2368 #endif 2369 2370 /* 2371 * Ensure that the cgroup subsystem policies allow the new process to be 2372 * forked. It should be noted that the new process's css_set can be changed 2373 * between here and cgroup_post_fork() if an organisation operation is in 2374 * progress. 2375 */ 2376 retval = cgroup_can_fork(p, args); 2377 if (retval) 2378 goto bad_fork_put_pidfd; 2379 2380 /* 2381 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2382 * the new task on the correct runqueue. All this *before* the task 2383 * becomes visible. 2384 * 2385 * This isn't part of ->can_fork() because while the re-cloning is 2386 * cgroup specific, it unconditionally needs to place the task on a 2387 * runqueue. 2388 */ 2389 sched_cgroup_fork(p, args); 2390 2391 /* 2392 * From this point on we must avoid any synchronous user-space 2393 * communication until we take the tasklist-lock. In particular, we do 2394 * not want user-space to be able to predict the process start-time by 2395 * stalling fork(2) after we recorded the start_time but before it is 2396 * visible to the system. 2397 */ 2398 2399 p->start_time = ktime_get_ns(); 2400 p->start_boottime = ktime_get_boottime_ns(); 2401 2402 /* 2403 * Make it visible to the rest of the system, but dont wake it up yet. 2404 * Need tasklist lock for parent etc handling! 2405 */ 2406 write_lock_irq(&tasklist_lock); 2407 2408 /* CLONE_PARENT re-uses the old parent */ 2409 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2410 p->real_parent = current->real_parent; 2411 p->parent_exec_id = current->parent_exec_id; 2412 if (clone_flags & CLONE_THREAD) 2413 p->exit_signal = -1; 2414 else 2415 p->exit_signal = current->group_leader->exit_signal; 2416 } else { 2417 p->real_parent = current; 2418 p->parent_exec_id = current->self_exec_id; 2419 p->exit_signal = args->exit_signal; 2420 } 2421 2422 klp_copy_process(p); 2423 2424 sched_core_fork(p); 2425 2426 spin_lock(¤t->sighand->siglock); 2427 2428 /* 2429 * Copy seccomp details explicitly here, in case they were changed 2430 * before holding sighand lock. 2431 */ 2432 copy_seccomp(p); 2433 2434 rv_task_fork(p); 2435 2436 rseq_fork(p, clone_flags); 2437 2438 /* Don't start children in a dying pid namespace */ 2439 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2440 retval = -ENOMEM; 2441 goto bad_fork_cancel_cgroup; 2442 } 2443 2444 /* Let kill terminate clone/fork in the middle */ 2445 if (fatal_signal_pending(current)) { 2446 retval = -EINTR; 2447 goto bad_fork_cancel_cgroup; 2448 } 2449 2450 init_task_pid_links(p); 2451 if (likely(p->pid)) { 2452 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2453 2454 init_task_pid(p, PIDTYPE_PID, pid); 2455 if (thread_group_leader(p)) { 2456 init_task_pid(p, PIDTYPE_TGID, pid); 2457 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2458 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2459 2460 if (is_child_reaper(pid)) { 2461 ns_of_pid(pid)->child_reaper = p; 2462 p->signal->flags |= SIGNAL_UNKILLABLE; 2463 } 2464 p->signal->shared_pending.signal = delayed.signal; 2465 p->signal->tty = tty_kref_get(current->signal->tty); 2466 /* 2467 * Inherit has_child_subreaper flag under the same 2468 * tasklist_lock with adding child to the process tree 2469 * for propagate_has_child_subreaper optimization. 2470 */ 2471 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2472 p->real_parent->signal->is_child_subreaper; 2473 list_add_tail(&p->sibling, &p->real_parent->children); 2474 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2475 attach_pid(p, PIDTYPE_TGID); 2476 attach_pid(p, PIDTYPE_PGID); 2477 attach_pid(p, PIDTYPE_SID); 2478 __this_cpu_inc(process_counts); 2479 } else { 2480 current->signal->nr_threads++; 2481 current->signal->quick_threads++; 2482 atomic_inc(¤t->signal->live); 2483 refcount_inc(¤t->signal->sigcnt); 2484 task_join_group_stop(p); 2485 list_add_tail_rcu(&p->thread_group, 2486 &p->group_leader->thread_group); 2487 list_add_tail_rcu(&p->thread_node, 2488 &p->signal->thread_head); 2489 } 2490 attach_pid(p, PIDTYPE_PID); 2491 nr_threads++; 2492 } 2493 total_forks++; 2494 hlist_del_init(&delayed.node); 2495 spin_unlock(¤t->sighand->siglock); 2496 syscall_tracepoint_update(p); 2497 write_unlock_irq(&tasklist_lock); 2498 2499 if (pidfile) 2500 fd_install(pidfd, pidfile); 2501 2502 proc_fork_connector(p); 2503 sched_post_fork(p); 2504 cgroup_post_fork(p, args); 2505 perf_event_fork(p); 2506 2507 trace_task_newtask(p, clone_flags); 2508 uprobe_copy_process(p, clone_flags); 2509 2510 copy_oom_score_adj(clone_flags, p); 2511 2512 return p; 2513 2514 bad_fork_cancel_cgroup: 2515 sched_core_free(p); 2516 spin_unlock(¤t->sighand->siglock); 2517 write_unlock_irq(&tasklist_lock); 2518 cgroup_cancel_fork(p, args); 2519 bad_fork_put_pidfd: 2520 if (clone_flags & CLONE_PIDFD) { 2521 fput(pidfile); 2522 put_unused_fd(pidfd); 2523 } 2524 bad_fork_free_pid: 2525 if (pid != &init_struct_pid) 2526 free_pid(pid); 2527 bad_fork_cleanup_thread: 2528 exit_thread(p); 2529 bad_fork_cleanup_io: 2530 if (p->io_context) 2531 exit_io_context(p); 2532 bad_fork_cleanup_namespaces: 2533 exit_task_namespaces(p); 2534 bad_fork_cleanup_mm: 2535 if (p->mm) { 2536 mm_clear_owner(p->mm, p); 2537 mmput(p->mm); 2538 } 2539 bad_fork_cleanup_signal: 2540 if (!(clone_flags & CLONE_THREAD)) 2541 free_signal_struct(p->signal); 2542 bad_fork_cleanup_sighand: 2543 __cleanup_sighand(p->sighand); 2544 bad_fork_cleanup_fs: 2545 exit_fs(p); /* blocking */ 2546 bad_fork_cleanup_files: 2547 exit_files(p); /* blocking */ 2548 bad_fork_cleanup_semundo: 2549 exit_sem(p); 2550 bad_fork_cleanup_security: 2551 security_task_free(p); 2552 bad_fork_cleanup_audit: 2553 audit_free(p); 2554 bad_fork_cleanup_perf: 2555 perf_event_free_task(p); 2556 bad_fork_cleanup_policy: 2557 lockdep_free_task(p); 2558 #ifdef CONFIG_NUMA 2559 mpol_put(p->mempolicy); 2560 #endif 2561 bad_fork_cleanup_delayacct: 2562 delayacct_tsk_free(p); 2563 bad_fork_cleanup_count: 2564 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2565 exit_creds(p); 2566 bad_fork_free: 2567 WRITE_ONCE(p->__state, TASK_DEAD); 2568 exit_task_stack_account(p); 2569 put_task_stack(p); 2570 delayed_free_task(p); 2571 fork_out: 2572 spin_lock_irq(¤t->sighand->siglock); 2573 hlist_del_init(&delayed.node); 2574 spin_unlock_irq(¤t->sighand->siglock); 2575 return ERR_PTR(retval); 2576 } 2577 2578 static inline void init_idle_pids(struct task_struct *idle) 2579 { 2580 enum pid_type type; 2581 2582 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2583 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2584 init_task_pid(idle, type, &init_struct_pid); 2585 } 2586 } 2587 2588 static int idle_dummy(void *dummy) 2589 { 2590 /* This function is never called */ 2591 return 0; 2592 } 2593 2594 struct task_struct * __init fork_idle(int cpu) 2595 { 2596 struct task_struct *task; 2597 struct kernel_clone_args args = { 2598 .flags = CLONE_VM, 2599 .fn = &idle_dummy, 2600 .fn_arg = NULL, 2601 .kthread = 1, 2602 .idle = 1, 2603 }; 2604 2605 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2606 if (!IS_ERR(task)) { 2607 init_idle_pids(task); 2608 init_idle(task, cpu); 2609 } 2610 2611 return task; 2612 } 2613 2614 struct mm_struct *copy_init_mm(void) 2615 { 2616 return dup_mm(NULL, &init_mm); 2617 } 2618 2619 /* 2620 * This is like kernel_clone(), but shaved down and tailored to just 2621 * creating io_uring workers. It returns a created task, or an error pointer. 2622 * The returned task is inactive, and the caller must fire it up through 2623 * wake_up_new_task(p). All signals are blocked in the created task. 2624 */ 2625 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2626 { 2627 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2628 CLONE_IO; 2629 struct kernel_clone_args args = { 2630 .flags = ((lower_32_bits(flags) | CLONE_VM | 2631 CLONE_UNTRACED) & ~CSIGNAL), 2632 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2633 .fn = fn, 2634 .fn_arg = arg, 2635 .io_thread = 1, 2636 }; 2637 2638 return copy_process(NULL, 0, node, &args); 2639 } 2640 2641 /* 2642 * Ok, this is the main fork-routine. 2643 * 2644 * It copies the process, and if successful kick-starts 2645 * it and waits for it to finish using the VM if required. 2646 * 2647 * args->exit_signal is expected to be checked for sanity by the caller. 2648 */ 2649 pid_t kernel_clone(struct kernel_clone_args *args) 2650 { 2651 u64 clone_flags = args->flags; 2652 struct completion vfork; 2653 struct pid *pid; 2654 struct task_struct *p; 2655 int trace = 0; 2656 pid_t nr; 2657 2658 /* 2659 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2660 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2661 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2662 * field in struct clone_args and it still doesn't make sense to have 2663 * them both point at the same memory location. Performing this check 2664 * here has the advantage that we don't need to have a separate helper 2665 * to check for legacy clone(). 2666 */ 2667 if ((args->flags & CLONE_PIDFD) && 2668 (args->flags & CLONE_PARENT_SETTID) && 2669 (args->pidfd == args->parent_tid)) 2670 return -EINVAL; 2671 2672 /* 2673 * Determine whether and which event to report to ptracer. When 2674 * called from kernel_thread or CLONE_UNTRACED is explicitly 2675 * requested, no event is reported; otherwise, report if the event 2676 * for the type of forking is enabled. 2677 */ 2678 if (!(clone_flags & CLONE_UNTRACED)) { 2679 if (clone_flags & CLONE_VFORK) 2680 trace = PTRACE_EVENT_VFORK; 2681 else if (args->exit_signal != SIGCHLD) 2682 trace = PTRACE_EVENT_CLONE; 2683 else 2684 trace = PTRACE_EVENT_FORK; 2685 2686 if (likely(!ptrace_event_enabled(current, trace))) 2687 trace = 0; 2688 } 2689 2690 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2691 add_latent_entropy(); 2692 2693 if (IS_ERR(p)) 2694 return PTR_ERR(p); 2695 2696 /* 2697 * Do this prior waking up the new thread - the thread pointer 2698 * might get invalid after that point, if the thread exits quickly. 2699 */ 2700 trace_sched_process_fork(current, p); 2701 2702 pid = get_task_pid(p, PIDTYPE_PID); 2703 nr = pid_vnr(pid); 2704 2705 if (clone_flags & CLONE_PARENT_SETTID) 2706 put_user(nr, args->parent_tid); 2707 2708 if (clone_flags & CLONE_VFORK) { 2709 p->vfork_done = &vfork; 2710 init_completion(&vfork); 2711 get_task_struct(p); 2712 } 2713 2714 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) { 2715 /* lock the task to synchronize with memcg migration */ 2716 task_lock(p); 2717 lru_gen_add_mm(p->mm); 2718 task_unlock(p); 2719 } 2720 2721 wake_up_new_task(p); 2722 2723 /* forking complete and child started to run, tell ptracer */ 2724 if (unlikely(trace)) 2725 ptrace_event_pid(trace, pid); 2726 2727 if (clone_flags & CLONE_VFORK) { 2728 if (!wait_for_vfork_done(p, &vfork)) 2729 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2730 } 2731 2732 put_pid(pid); 2733 return nr; 2734 } 2735 2736 /* 2737 * Create a kernel thread. 2738 */ 2739 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags) 2740 { 2741 struct kernel_clone_args args = { 2742 .flags = ((lower_32_bits(flags) | CLONE_VM | 2743 CLONE_UNTRACED) & ~CSIGNAL), 2744 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2745 .fn = fn, 2746 .fn_arg = arg, 2747 .kthread = 1, 2748 }; 2749 2750 return kernel_clone(&args); 2751 } 2752 2753 /* 2754 * Create a user mode thread. 2755 */ 2756 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2757 { 2758 struct kernel_clone_args args = { 2759 .flags = ((lower_32_bits(flags) | CLONE_VM | 2760 CLONE_UNTRACED) & ~CSIGNAL), 2761 .exit_signal = (lower_32_bits(flags) & CSIGNAL), 2762 .fn = fn, 2763 .fn_arg = arg, 2764 }; 2765 2766 return kernel_clone(&args); 2767 } 2768 2769 #ifdef __ARCH_WANT_SYS_FORK 2770 SYSCALL_DEFINE0(fork) 2771 { 2772 #ifdef CONFIG_MMU 2773 struct kernel_clone_args args = { 2774 .exit_signal = SIGCHLD, 2775 }; 2776 2777 return kernel_clone(&args); 2778 #else 2779 /* can not support in nommu mode */ 2780 return -EINVAL; 2781 #endif 2782 } 2783 #endif 2784 2785 #ifdef __ARCH_WANT_SYS_VFORK 2786 SYSCALL_DEFINE0(vfork) 2787 { 2788 struct kernel_clone_args args = { 2789 .flags = CLONE_VFORK | CLONE_VM, 2790 .exit_signal = SIGCHLD, 2791 }; 2792 2793 return kernel_clone(&args); 2794 } 2795 #endif 2796 2797 #ifdef __ARCH_WANT_SYS_CLONE 2798 #ifdef CONFIG_CLONE_BACKWARDS 2799 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2800 int __user *, parent_tidptr, 2801 unsigned long, tls, 2802 int __user *, child_tidptr) 2803 #elif defined(CONFIG_CLONE_BACKWARDS2) 2804 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2805 int __user *, parent_tidptr, 2806 int __user *, child_tidptr, 2807 unsigned long, tls) 2808 #elif defined(CONFIG_CLONE_BACKWARDS3) 2809 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2810 int, stack_size, 2811 int __user *, parent_tidptr, 2812 int __user *, child_tidptr, 2813 unsigned long, tls) 2814 #else 2815 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2816 int __user *, parent_tidptr, 2817 int __user *, child_tidptr, 2818 unsigned long, tls) 2819 #endif 2820 { 2821 struct kernel_clone_args args = { 2822 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2823 .pidfd = parent_tidptr, 2824 .child_tid = child_tidptr, 2825 .parent_tid = parent_tidptr, 2826 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2827 .stack = newsp, 2828 .tls = tls, 2829 }; 2830 2831 return kernel_clone(&args); 2832 } 2833 #endif 2834 2835 #ifdef __ARCH_WANT_SYS_CLONE3 2836 2837 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2838 struct clone_args __user *uargs, 2839 size_t usize) 2840 { 2841 int err; 2842 struct clone_args args; 2843 pid_t *kset_tid = kargs->set_tid; 2844 2845 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2846 CLONE_ARGS_SIZE_VER0); 2847 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2848 CLONE_ARGS_SIZE_VER1); 2849 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2850 CLONE_ARGS_SIZE_VER2); 2851 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2852 2853 if (unlikely(usize > PAGE_SIZE)) 2854 return -E2BIG; 2855 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2856 return -EINVAL; 2857 2858 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2859 if (err) 2860 return err; 2861 2862 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2863 return -EINVAL; 2864 2865 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2866 return -EINVAL; 2867 2868 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2869 return -EINVAL; 2870 2871 /* 2872 * Verify that higher 32bits of exit_signal are unset and that 2873 * it is a valid signal 2874 */ 2875 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2876 !valid_signal(args.exit_signal))) 2877 return -EINVAL; 2878 2879 if ((args.flags & CLONE_INTO_CGROUP) && 2880 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2881 return -EINVAL; 2882 2883 *kargs = (struct kernel_clone_args){ 2884 .flags = args.flags, 2885 .pidfd = u64_to_user_ptr(args.pidfd), 2886 .child_tid = u64_to_user_ptr(args.child_tid), 2887 .parent_tid = u64_to_user_ptr(args.parent_tid), 2888 .exit_signal = args.exit_signal, 2889 .stack = args.stack, 2890 .stack_size = args.stack_size, 2891 .tls = args.tls, 2892 .set_tid_size = args.set_tid_size, 2893 .cgroup = args.cgroup, 2894 }; 2895 2896 if (args.set_tid && 2897 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2898 (kargs->set_tid_size * sizeof(pid_t)))) 2899 return -EFAULT; 2900 2901 kargs->set_tid = kset_tid; 2902 2903 return 0; 2904 } 2905 2906 /** 2907 * clone3_stack_valid - check and prepare stack 2908 * @kargs: kernel clone args 2909 * 2910 * Verify that the stack arguments userspace gave us are sane. 2911 * In addition, set the stack direction for userspace since it's easy for us to 2912 * determine. 2913 */ 2914 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2915 { 2916 if (kargs->stack == 0) { 2917 if (kargs->stack_size > 0) 2918 return false; 2919 } else { 2920 if (kargs->stack_size == 0) 2921 return false; 2922 2923 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2924 return false; 2925 2926 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64) 2927 kargs->stack += kargs->stack_size; 2928 #endif 2929 } 2930 2931 return true; 2932 } 2933 2934 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2935 { 2936 /* Verify that no unknown flags are passed along. */ 2937 if (kargs->flags & 2938 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2939 return false; 2940 2941 /* 2942 * - make the CLONE_DETACHED bit reusable for clone3 2943 * - make the CSIGNAL bits reusable for clone3 2944 */ 2945 if (kargs->flags & (CLONE_DETACHED | CSIGNAL)) 2946 return false; 2947 2948 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2949 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2950 return false; 2951 2952 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2953 kargs->exit_signal) 2954 return false; 2955 2956 if (!clone3_stack_valid(kargs)) 2957 return false; 2958 2959 return true; 2960 } 2961 2962 /** 2963 * clone3 - create a new process with specific properties 2964 * @uargs: argument structure 2965 * @size: size of @uargs 2966 * 2967 * clone3() is the extensible successor to clone()/clone2(). 2968 * It takes a struct as argument that is versioned by its size. 2969 * 2970 * Return: On success, a positive PID for the child process. 2971 * On error, a negative errno number. 2972 */ 2973 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2974 { 2975 int err; 2976 2977 struct kernel_clone_args kargs; 2978 pid_t set_tid[MAX_PID_NS_LEVEL]; 2979 2980 kargs.set_tid = set_tid; 2981 2982 err = copy_clone_args_from_user(&kargs, uargs, size); 2983 if (err) 2984 return err; 2985 2986 if (!clone3_args_valid(&kargs)) 2987 return -EINVAL; 2988 2989 return kernel_clone(&kargs); 2990 } 2991 #endif 2992 2993 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2994 { 2995 struct task_struct *leader, *parent, *child; 2996 int res; 2997 2998 read_lock(&tasklist_lock); 2999 leader = top = top->group_leader; 3000 down: 3001 for_each_thread(leader, parent) { 3002 list_for_each_entry(child, &parent->children, sibling) { 3003 res = visitor(child, data); 3004 if (res) { 3005 if (res < 0) 3006 goto out; 3007 leader = child; 3008 goto down; 3009 } 3010 up: 3011 ; 3012 } 3013 } 3014 3015 if (leader != top) { 3016 child = leader; 3017 parent = child->real_parent; 3018 leader = parent->group_leader; 3019 goto up; 3020 } 3021 out: 3022 read_unlock(&tasklist_lock); 3023 } 3024 3025 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 3026 #define ARCH_MIN_MMSTRUCT_ALIGN 0 3027 #endif 3028 3029 static void sighand_ctor(void *data) 3030 { 3031 struct sighand_struct *sighand = data; 3032 3033 spin_lock_init(&sighand->siglock); 3034 init_waitqueue_head(&sighand->signalfd_wqh); 3035 } 3036 3037 void __init proc_caches_init(void) 3038 { 3039 unsigned int mm_size; 3040 3041 sighand_cachep = kmem_cache_create("sighand_cache", 3042 sizeof(struct sighand_struct), 0, 3043 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3044 SLAB_ACCOUNT, sighand_ctor); 3045 signal_cachep = kmem_cache_create("signal_cache", 3046 sizeof(struct signal_struct), 0, 3047 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3048 NULL); 3049 files_cachep = kmem_cache_create("files_cache", 3050 sizeof(struct files_struct), 0, 3051 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3052 NULL); 3053 fs_cachep = kmem_cache_create("fs_cache", 3054 sizeof(struct fs_struct), 0, 3055 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3056 NULL); 3057 3058 /* 3059 * The mm_cpumask is located at the end of mm_struct, and is 3060 * dynamically sized based on the maximum CPU number this system 3061 * can have, taking hotplug into account (nr_cpu_ids). 3062 */ 3063 mm_size = sizeof(struct mm_struct) + cpumask_size(); 3064 3065 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3066 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3067 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3068 offsetof(struct mm_struct, saved_auxv), 3069 sizeof_field(struct mm_struct, saved_auxv), 3070 NULL); 3071 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT); 3072 mmap_init(); 3073 nsproxy_cache_init(); 3074 } 3075 3076 /* 3077 * Check constraints on flags passed to the unshare system call. 3078 */ 3079 static int check_unshare_flags(unsigned long unshare_flags) 3080 { 3081 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3082 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3083 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3084 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3085 CLONE_NEWTIME)) 3086 return -EINVAL; 3087 /* 3088 * Not implemented, but pretend it works if there is nothing 3089 * to unshare. Note that unsharing the address space or the 3090 * signal handlers also need to unshare the signal queues (aka 3091 * CLONE_THREAD). 3092 */ 3093 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3094 if (!thread_group_empty(current)) 3095 return -EINVAL; 3096 } 3097 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3098 if (refcount_read(¤t->sighand->count) > 1) 3099 return -EINVAL; 3100 } 3101 if (unshare_flags & CLONE_VM) { 3102 if (!current_is_single_threaded()) 3103 return -EINVAL; 3104 } 3105 3106 return 0; 3107 } 3108 3109 /* 3110 * Unshare the filesystem structure if it is being shared 3111 */ 3112 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3113 { 3114 struct fs_struct *fs = current->fs; 3115 3116 if (!(unshare_flags & CLONE_FS) || !fs) 3117 return 0; 3118 3119 /* don't need lock here; in the worst case we'll do useless copy */ 3120 if (fs->users == 1) 3121 return 0; 3122 3123 *new_fsp = copy_fs_struct(fs); 3124 if (!*new_fsp) 3125 return -ENOMEM; 3126 3127 return 0; 3128 } 3129 3130 /* 3131 * Unshare file descriptor table if it is being shared 3132 */ 3133 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds, 3134 struct files_struct **new_fdp) 3135 { 3136 struct files_struct *fd = current->files; 3137 int error = 0; 3138 3139 if ((unshare_flags & CLONE_FILES) && 3140 (fd && atomic_read(&fd->count) > 1)) { 3141 *new_fdp = dup_fd(fd, max_fds, &error); 3142 if (!*new_fdp) 3143 return error; 3144 } 3145 3146 return 0; 3147 } 3148 3149 /* 3150 * unshare allows a process to 'unshare' part of the process 3151 * context which was originally shared using clone. copy_* 3152 * functions used by kernel_clone() cannot be used here directly 3153 * because they modify an inactive task_struct that is being 3154 * constructed. Here we are modifying the current, active, 3155 * task_struct. 3156 */ 3157 int ksys_unshare(unsigned long unshare_flags) 3158 { 3159 struct fs_struct *fs, *new_fs = NULL; 3160 struct files_struct *new_fd = NULL; 3161 struct cred *new_cred = NULL; 3162 struct nsproxy *new_nsproxy = NULL; 3163 int do_sysvsem = 0; 3164 int err; 3165 3166 /* 3167 * If unsharing a user namespace must also unshare the thread group 3168 * and unshare the filesystem root and working directories. 3169 */ 3170 if (unshare_flags & CLONE_NEWUSER) 3171 unshare_flags |= CLONE_THREAD | CLONE_FS; 3172 /* 3173 * If unsharing vm, must also unshare signal handlers. 3174 */ 3175 if (unshare_flags & CLONE_VM) 3176 unshare_flags |= CLONE_SIGHAND; 3177 /* 3178 * If unsharing a signal handlers, must also unshare the signal queues. 3179 */ 3180 if (unshare_flags & CLONE_SIGHAND) 3181 unshare_flags |= CLONE_THREAD; 3182 /* 3183 * If unsharing namespace, must also unshare filesystem information. 3184 */ 3185 if (unshare_flags & CLONE_NEWNS) 3186 unshare_flags |= CLONE_FS; 3187 3188 err = check_unshare_flags(unshare_flags); 3189 if (err) 3190 goto bad_unshare_out; 3191 /* 3192 * CLONE_NEWIPC must also detach from the undolist: after switching 3193 * to a new ipc namespace, the semaphore arrays from the old 3194 * namespace are unreachable. 3195 */ 3196 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3197 do_sysvsem = 1; 3198 err = unshare_fs(unshare_flags, &new_fs); 3199 if (err) 3200 goto bad_unshare_out; 3201 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd); 3202 if (err) 3203 goto bad_unshare_cleanup_fs; 3204 err = unshare_userns(unshare_flags, &new_cred); 3205 if (err) 3206 goto bad_unshare_cleanup_fd; 3207 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3208 new_cred, new_fs); 3209 if (err) 3210 goto bad_unshare_cleanup_cred; 3211 3212 if (new_cred) { 3213 err = set_cred_ucounts(new_cred); 3214 if (err) 3215 goto bad_unshare_cleanup_cred; 3216 } 3217 3218 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3219 if (do_sysvsem) { 3220 /* 3221 * CLONE_SYSVSEM is equivalent to sys_exit(). 3222 */ 3223 exit_sem(current); 3224 } 3225 if (unshare_flags & CLONE_NEWIPC) { 3226 /* Orphan segments in old ns (see sem above). */ 3227 exit_shm(current); 3228 shm_init_task(current); 3229 } 3230 3231 if (new_nsproxy) 3232 switch_task_namespaces(current, new_nsproxy); 3233 3234 task_lock(current); 3235 3236 if (new_fs) { 3237 fs = current->fs; 3238 spin_lock(&fs->lock); 3239 current->fs = new_fs; 3240 if (--fs->users) 3241 new_fs = NULL; 3242 else 3243 new_fs = fs; 3244 spin_unlock(&fs->lock); 3245 } 3246 3247 if (new_fd) 3248 swap(current->files, new_fd); 3249 3250 task_unlock(current); 3251 3252 if (new_cred) { 3253 /* Install the new user namespace */ 3254 commit_creds(new_cred); 3255 new_cred = NULL; 3256 } 3257 } 3258 3259 perf_event_namespaces(current); 3260 3261 bad_unshare_cleanup_cred: 3262 if (new_cred) 3263 put_cred(new_cred); 3264 bad_unshare_cleanup_fd: 3265 if (new_fd) 3266 put_files_struct(new_fd); 3267 3268 bad_unshare_cleanup_fs: 3269 if (new_fs) 3270 free_fs_struct(new_fs); 3271 3272 bad_unshare_out: 3273 return err; 3274 } 3275 3276 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3277 { 3278 return ksys_unshare(unshare_flags); 3279 } 3280 3281 /* 3282 * Helper to unshare the files of the current task. 3283 * We don't want to expose copy_files internals to 3284 * the exec layer of the kernel. 3285 */ 3286 3287 int unshare_files(void) 3288 { 3289 struct task_struct *task = current; 3290 struct files_struct *old, *copy = NULL; 3291 int error; 3292 3293 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©); 3294 if (error || !copy) 3295 return error; 3296 3297 old = task->files; 3298 task_lock(task); 3299 task->files = copy; 3300 task_unlock(task); 3301 put_files_struct(old); 3302 return 0; 3303 } 3304 3305 int sysctl_max_threads(struct ctl_table *table, int write, 3306 void *buffer, size_t *lenp, loff_t *ppos) 3307 { 3308 struct ctl_table t; 3309 int ret; 3310 int threads = max_threads; 3311 int min = 1; 3312 int max = MAX_THREADS; 3313 3314 t = *table; 3315 t.data = &threads; 3316 t.extra1 = &min; 3317 t.extra2 = &max; 3318 3319 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3320 if (ret || !write) 3321 return ret; 3322 3323 max_threads = threads; 3324 3325 return 0; 3326 } 3327