xref: /linux/kernel/fork.c (revision 60b2737de1b1ddfdb90f3ba622634eb49d6f3603)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/ptrace.h>
39 #include <linux/mount.h>
40 #include <linux/audit.h>
41 #include <linux/profile.h>
42 #include <linux/rmap.h>
43 #include <linux/acct.h>
44 
45 #include <asm/pgtable.h>
46 #include <asm/pgalloc.h>
47 #include <asm/uaccess.h>
48 #include <asm/mmu_context.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51 
52 /*
53  * Protected counters by write_lock_irq(&tasklist_lock)
54  */
55 unsigned long total_forks;	/* Handle normal Linux uptimes. */
56 int nr_threads; 		/* The idle threads do not count.. */
57 
58 int max_threads;		/* tunable limit on nr_threads */
59 
60 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
61 
62  __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
63 
64 EXPORT_SYMBOL(tasklist_lock);
65 
66 int nr_processes(void)
67 {
68 	int cpu;
69 	int total = 0;
70 
71 	for_each_online_cpu(cpu)
72 		total += per_cpu(process_counts, cpu);
73 
74 	return total;
75 }
76 
77 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
78 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
79 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
80 static kmem_cache_t *task_struct_cachep;
81 #endif
82 
83 /* SLAB cache for signal_struct structures (tsk->signal) */
84 kmem_cache_t *signal_cachep;
85 
86 /* SLAB cache for sighand_struct structures (tsk->sighand) */
87 kmem_cache_t *sighand_cachep;
88 
89 /* SLAB cache for files_struct structures (tsk->files) */
90 kmem_cache_t *files_cachep;
91 
92 /* SLAB cache for fs_struct structures (tsk->fs) */
93 kmem_cache_t *fs_cachep;
94 
95 /* SLAB cache for vm_area_struct structures */
96 kmem_cache_t *vm_area_cachep;
97 
98 /* SLAB cache for mm_struct structures (tsk->mm) */
99 static kmem_cache_t *mm_cachep;
100 
101 void free_task(struct task_struct *tsk)
102 {
103 	free_thread_info(tsk->thread_info);
104 	free_task_struct(tsk);
105 }
106 EXPORT_SYMBOL(free_task);
107 
108 void __put_task_struct(struct task_struct *tsk)
109 {
110 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
111 	WARN_ON(atomic_read(&tsk->usage));
112 	WARN_ON(tsk == current);
113 
114 	if (unlikely(tsk->audit_context))
115 		audit_free(tsk);
116 	security_task_free(tsk);
117 	free_uid(tsk->user);
118 	put_group_info(tsk->group_info);
119 
120 	if (!profile_handoff_task(tsk))
121 		free_task(tsk);
122 }
123 
124 void __init fork_init(unsigned long mempages)
125 {
126 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
127 #ifndef ARCH_MIN_TASKALIGN
128 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
129 #endif
130 	/* create a slab on which task_structs can be allocated */
131 	task_struct_cachep =
132 		kmem_cache_create("task_struct", sizeof(struct task_struct),
133 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
134 #endif
135 
136 	/*
137 	 * The default maximum number of threads is set to a safe
138 	 * value: the thread structures can take up at most half
139 	 * of memory.
140 	 */
141 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
142 
143 	/*
144 	 * we need to allow at least 20 threads to boot a system
145 	 */
146 	if(max_threads < 20)
147 		max_threads = 20;
148 
149 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
150 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
151 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
152 		init_task.signal->rlim[RLIMIT_NPROC];
153 }
154 
155 static struct task_struct *dup_task_struct(struct task_struct *orig)
156 {
157 	struct task_struct *tsk;
158 	struct thread_info *ti;
159 
160 	prepare_to_copy(orig);
161 
162 	tsk = alloc_task_struct();
163 	if (!tsk)
164 		return NULL;
165 
166 	ti = alloc_thread_info(tsk);
167 	if (!ti) {
168 		free_task_struct(tsk);
169 		return NULL;
170 	}
171 
172 	*ti = *orig->thread_info;
173 	*tsk = *orig;
174 	tsk->thread_info = ti;
175 	ti->task = tsk;
176 
177 	/* One for us, one for whoever does the "release_task()" (usually parent) */
178 	atomic_set(&tsk->usage,2);
179 	return tsk;
180 }
181 
182 #ifdef CONFIG_MMU
183 static inline int dup_mmap(struct mm_struct * mm, struct mm_struct * oldmm)
184 {
185 	struct vm_area_struct * mpnt, *tmp, **pprev;
186 	struct rb_node **rb_link, *rb_parent;
187 	int retval;
188 	unsigned long charge;
189 	struct mempolicy *pol;
190 
191 	down_write(&oldmm->mmap_sem);
192 	flush_cache_mm(current->mm);
193 	mm->locked_vm = 0;
194 	mm->mmap = NULL;
195 	mm->mmap_cache = NULL;
196 	mm->free_area_cache = oldmm->mmap_base;
197 	mm->cached_hole_size = ~0UL;
198 	mm->map_count = 0;
199 	set_mm_counter(mm, rss, 0);
200 	set_mm_counter(mm, anon_rss, 0);
201 	cpus_clear(mm->cpu_vm_mask);
202 	mm->mm_rb = RB_ROOT;
203 	rb_link = &mm->mm_rb.rb_node;
204 	rb_parent = NULL;
205 	pprev = &mm->mmap;
206 
207 	for (mpnt = current->mm->mmap ; mpnt ; mpnt = mpnt->vm_next) {
208 		struct file *file;
209 
210 		if (mpnt->vm_flags & VM_DONTCOPY) {
211 			__vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
212 							-vma_pages(mpnt));
213 			continue;
214 		}
215 		charge = 0;
216 		if (mpnt->vm_flags & VM_ACCOUNT) {
217 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
218 			if (security_vm_enough_memory(len))
219 				goto fail_nomem;
220 			charge = len;
221 		}
222 		tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
223 		if (!tmp)
224 			goto fail_nomem;
225 		*tmp = *mpnt;
226 		pol = mpol_copy(vma_policy(mpnt));
227 		retval = PTR_ERR(pol);
228 		if (IS_ERR(pol))
229 			goto fail_nomem_policy;
230 		vma_set_policy(tmp, pol);
231 		tmp->vm_flags &= ~VM_LOCKED;
232 		tmp->vm_mm = mm;
233 		tmp->vm_next = NULL;
234 		anon_vma_link(tmp);
235 		file = tmp->vm_file;
236 		if (file) {
237 			struct inode *inode = file->f_dentry->d_inode;
238 			get_file(file);
239 			if (tmp->vm_flags & VM_DENYWRITE)
240 				atomic_dec(&inode->i_writecount);
241 
242 			/* insert tmp into the share list, just after mpnt */
243 			spin_lock(&file->f_mapping->i_mmap_lock);
244 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
245 			flush_dcache_mmap_lock(file->f_mapping);
246 			vma_prio_tree_add(tmp, mpnt);
247 			flush_dcache_mmap_unlock(file->f_mapping);
248 			spin_unlock(&file->f_mapping->i_mmap_lock);
249 		}
250 
251 		/*
252 		 * Link in the new vma and copy the page table entries:
253 		 * link in first so that swapoff can see swap entries.
254 		 * Note that, exceptionally, here the vma is inserted
255 		 * without holding mm->mmap_sem.
256 		 */
257 		spin_lock(&mm->page_table_lock);
258 		*pprev = tmp;
259 		pprev = &tmp->vm_next;
260 
261 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
262 		rb_link = &tmp->vm_rb.rb_right;
263 		rb_parent = &tmp->vm_rb;
264 
265 		mm->map_count++;
266 		retval = copy_page_range(mm, current->mm, tmp);
267 		spin_unlock(&mm->page_table_lock);
268 
269 		if (tmp->vm_ops && tmp->vm_ops->open)
270 			tmp->vm_ops->open(tmp);
271 
272 		if (retval)
273 			goto out;
274 	}
275 	retval = 0;
276 
277 out:
278 	flush_tlb_mm(current->mm);
279 	up_write(&oldmm->mmap_sem);
280 	return retval;
281 fail_nomem_policy:
282 	kmem_cache_free(vm_area_cachep, tmp);
283 fail_nomem:
284 	retval = -ENOMEM;
285 	vm_unacct_memory(charge);
286 	goto out;
287 }
288 
289 static inline int mm_alloc_pgd(struct mm_struct * mm)
290 {
291 	mm->pgd = pgd_alloc(mm);
292 	if (unlikely(!mm->pgd))
293 		return -ENOMEM;
294 	return 0;
295 }
296 
297 static inline void mm_free_pgd(struct mm_struct * mm)
298 {
299 	pgd_free(mm->pgd);
300 }
301 #else
302 #define dup_mmap(mm, oldmm)	(0)
303 #define mm_alloc_pgd(mm)	(0)
304 #define mm_free_pgd(mm)
305 #endif /* CONFIG_MMU */
306 
307  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
308 
309 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
310 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
311 
312 #include <linux/init_task.h>
313 
314 static struct mm_struct * mm_init(struct mm_struct * mm)
315 {
316 	atomic_set(&mm->mm_users, 1);
317 	atomic_set(&mm->mm_count, 1);
318 	init_rwsem(&mm->mmap_sem);
319 	INIT_LIST_HEAD(&mm->mmlist);
320 	mm->core_waiters = 0;
321 	mm->nr_ptes = 0;
322 	spin_lock_init(&mm->page_table_lock);
323 	rwlock_init(&mm->ioctx_list_lock);
324 	mm->ioctx_list = NULL;
325 	mm->default_kioctx = (struct kioctx)INIT_KIOCTX(mm->default_kioctx, *mm);
326 	mm->free_area_cache = TASK_UNMAPPED_BASE;
327 	mm->cached_hole_size = ~0UL;
328 
329 	if (likely(!mm_alloc_pgd(mm))) {
330 		mm->def_flags = 0;
331 		return mm;
332 	}
333 	free_mm(mm);
334 	return NULL;
335 }
336 
337 /*
338  * Allocate and initialize an mm_struct.
339  */
340 struct mm_struct * mm_alloc(void)
341 {
342 	struct mm_struct * mm;
343 
344 	mm = allocate_mm();
345 	if (mm) {
346 		memset(mm, 0, sizeof(*mm));
347 		mm = mm_init(mm);
348 	}
349 	return mm;
350 }
351 
352 /*
353  * Called when the last reference to the mm
354  * is dropped: either by a lazy thread or by
355  * mmput. Free the page directory and the mm.
356  */
357 void fastcall __mmdrop(struct mm_struct *mm)
358 {
359 	BUG_ON(mm == &init_mm);
360 	mm_free_pgd(mm);
361 	destroy_context(mm);
362 	free_mm(mm);
363 }
364 
365 /*
366  * Decrement the use count and release all resources for an mm.
367  */
368 void mmput(struct mm_struct *mm)
369 {
370 	if (atomic_dec_and_test(&mm->mm_users)) {
371 		exit_aio(mm);
372 		exit_mmap(mm);
373 		if (!list_empty(&mm->mmlist)) {
374 			spin_lock(&mmlist_lock);
375 			list_del(&mm->mmlist);
376 			spin_unlock(&mmlist_lock);
377 		}
378 		put_swap_token(mm);
379 		mmdrop(mm);
380 	}
381 }
382 EXPORT_SYMBOL_GPL(mmput);
383 
384 /**
385  * get_task_mm - acquire a reference to the task's mm
386  *
387  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
388  * this kernel workthread has transiently adopted a user mm with use_mm,
389  * to do its AIO) is not set and if so returns a reference to it, after
390  * bumping up the use count.  User must release the mm via mmput()
391  * after use.  Typically used by /proc and ptrace.
392  */
393 struct mm_struct *get_task_mm(struct task_struct *task)
394 {
395 	struct mm_struct *mm;
396 
397 	task_lock(task);
398 	mm = task->mm;
399 	if (mm) {
400 		if (task->flags & PF_BORROWED_MM)
401 			mm = NULL;
402 		else
403 			atomic_inc(&mm->mm_users);
404 	}
405 	task_unlock(task);
406 	return mm;
407 }
408 EXPORT_SYMBOL_GPL(get_task_mm);
409 
410 /* Please note the differences between mmput and mm_release.
411  * mmput is called whenever we stop holding onto a mm_struct,
412  * error success whatever.
413  *
414  * mm_release is called after a mm_struct has been removed
415  * from the current process.
416  *
417  * This difference is important for error handling, when we
418  * only half set up a mm_struct for a new process and need to restore
419  * the old one.  Because we mmput the new mm_struct before
420  * restoring the old one. . .
421  * Eric Biederman 10 January 1998
422  */
423 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
424 {
425 	struct completion *vfork_done = tsk->vfork_done;
426 
427 	/* Get rid of any cached register state */
428 	deactivate_mm(tsk, mm);
429 
430 	/* notify parent sleeping on vfork() */
431 	if (vfork_done) {
432 		tsk->vfork_done = NULL;
433 		complete(vfork_done);
434 	}
435 	if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
436 		u32 __user * tidptr = tsk->clear_child_tid;
437 		tsk->clear_child_tid = NULL;
438 
439 		/*
440 		 * We don't check the error code - if userspace has
441 		 * not set up a proper pointer then tough luck.
442 		 */
443 		put_user(0, tidptr);
444 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
445 	}
446 }
447 
448 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
449 {
450 	struct mm_struct * mm, *oldmm;
451 	int retval;
452 
453 	tsk->min_flt = tsk->maj_flt = 0;
454 	tsk->nvcsw = tsk->nivcsw = 0;
455 
456 	tsk->mm = NULL;
457 	tsk->active_mm = NULL;
458 
459 	/*
460 	 * Are we cloning a kernel thread?
461 	 *
462 	 * We need to steal a active VM for that..
463 	 */
464 	oldmm = current->mm;
465 	if (!oldmm)
466 		return 0;
467 
468 	if (clone_flags & CLONE_VM) {
469 		atomic_inc(&oldmm->mm_users);
470 		mm = oldmm;
471 		/*
472 		 * There are cases where the PTL is held to ensure no
473 		 * new threads start up in user mode using an mm, which
474 		 * allows optimizing out ipis; the tlb_gather_mmu code
475 		 * is an example.
476 		 */
477 		spin_unlock_wait(&oldmm->page_table_lock);
478 		goto good_mm;
479 	}
480 
481 	retval = -ENOMEM;
482 	mm = allocate_mm();
483 	if (!mm)
484 		goto fail_nomem;
485 
486 	/* Copy the current MM stuff.. */
487 	memcpy(mm, oldmm, sizeof(*mm));
488 	if (!mm_init(mm))
489 		goto fail_nomem;
490 
491 	if (init_new_context(tsk,mm))
492 		goto fail_nocontext;
493 
494 	retval = dup_mmap(mm, oldmm);
495 	if (retval)
496 		goto free_pt;
497 
498 	mm->hiwater_rss = get_mm_counter(mm,rss);
499 	mm->hiwater_vm = mm->total_vm;
500 
501 good_mm:
502 	tsk->mm = mm;
503 	tsk->active_mm = mm;
504 	return 0;
505 
506 free_pt:
507 	mmput(mm);
508 fail_nomem:
509 	return retval;
510 
511 fail_nocontext:
512 	/*
513 	 * If init_new_context() failed, we cannot use mmput() to free the mm
514 	 * because it calls destroy_context()
515 	 */
516 	mm_free_pgd(mm);
517 	free_mm(mm);
518 	return retval;
519 }
520 
521 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
522 {
523 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
524 	/* We don't need to lock fs - think why ;-) */
525 	if (fs) {
526 		atomic_set(&fs->count, 1);
527 		rwlock_init(&fs->lock);
528 		fs->umask = old->umask;
529 		read_lock(&old->lock);
530 		fs->rootmnt = mntget(old->rootmnt);
531 		fs->root = dget(old->root);
532 		fs->pwdmnt = mntget(old->pwdmnt);
533 		fs->pwd = dget(old->pwd);
534 		if (old->altroot) {
535 			fs->altrootmnt = mntget(old->altrootmnt);
536 			fs->altroot = dget(old->altroot);
537 		} else {
538 			fs->altrootmnt = NULL;
539 			fs->altroot = NULL;
540 		}
541 		read_unlock(&old->lock);
542 	}
543 	return fs;
544 }
545 
546 struct fs_struct *copy_fs_struct(struct fs_struct *old)
547 {
548 	return __copy_fs_struct(old);
549 }
550 
551 EXPORT_SYMBOL_GPL(copy_fs_struct);
552 
553 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
554 {
555 	if (clone_flags & CLONE_FS) {
556 		atomic_inc(&current->fs->count);
557 		return 0;
558 	}
559 	tsk->fs = __copy_fs_struct(current->fs);
560 	if (!tsk->fs)
561 		return -ENOMEM;
562 	return 0;
563 }
564 
565 static int count_open_files(struct files_struct *files, int size)
566 {
567 	int i;
568 
569 	/* Find the last open fd */
570 	for (i = size/(8*sizeof(long)); i > 0; ) {
571 		if (files->open_fds->fds_bits[--i])
572 			break;
573 	}
574 	i = (i+1) * 8 * sizeof(long);
575 	return i;
576 }
577 
578 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
579 {
580 	struct files_struct *oldf, *newf;
581 	struct file **old_fds, **new_fds;
582 	int open_files, size, i, error = 0, expand;
583 
584 	/*
585 	 * A background process may not have any files ...
586 	 */
587 	oldf = current->files;
588 	if (!oldf)
589 		goto out;
590 
591 	if (clone_flags & CLONE_FILES) {
592 		atomic_inc(&oldf->count);
593 		goto out;
594 	}
595 
596 	/*
597 	 * Note: we may be using current for both targets (See exec.c)
598 	 * This works because we cache current->files (old) as oldf. Don't
599 	 * break this.
600 	 */
601 	tsk->files = NULL;
602 	error = -ENOMEM;
603 	newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
604 	if (!newf)
605 		goto out;
606 
607 	atomic_set(&newf->count, 1);
608 
609 	spin_lock_init(&newf->file_lock);
610 	newf->next_fd	    = 0;
611 	newf->max_fds	    = NR_OPEN_DEFAULT;
612 	newf->max_fdset	    = __FD_SETSIZE;
613 	newf->close_on_exec = &newf->close_on_exec_init;
614 	newf->open_fds	    = &newf->open_fds_init;
615 	newf->fd	    = &newf->fd_array[0];
616 
617 	spin_lock(&oldf->file_lock);
618 
619 	open_files = count_open_files(oldf, oldf->max_fdset);
620 	expand = 0;
621 
622 	/*
623 	 * Check whether we need to allocate a larger fd array or fd set.
624 	 * Note: we're not a clone task, so the open count won't  change.
625 	 */
626 	if (open_files > newf->max_fdset) {
627 		newf->max_fdset = 0;
628 		expand = 1;
629 	}
630 	if (open_files > newf->max_fds) {
631 		newf->max_fds = 0;
632 		expand = 1;
633 	}
634 
635 	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
636 	if (expand) {
637 		spin_unlock(&oldf->file_lock);
638 		spin_lock(&newf->file_lock);
639 		error = expand_files(newf, open_files-1);
640 		spin_unlock(&newf->file_lock);
641 		if (error < 0)
642 			goto out_release;
643 		spin_lock(&oldf->file_lock);
644 	}
645 
646 	old_fds = oldf->fd;
647 	new_fds = newf->fd;
648 
649 	memcpy(newf->open_fds->fds_bits, oldf->open_fds->fds_bits, open_files/8);
650 	memcpy(newf->close_on_exec->fds_bits, oldf->close_on_exec->fds_bits, open_files/8);
651 
652 	for (i = open_files; i != 0; i--) {
653 		struct file *f = *old_fds++;
654 		if (f) {
655 			get_file(f);
656 		} else {
657 			/*
658 			 * The fd may be claimed in the fd bitmap but not yet
659 			 * instantiated in the files array if a sibling thread
660 			 * is partway through open().  So make sure that this
661 			 * fd is available to the new process.
662 			 */
663 			FD_CLR(open_files - i, newf->open_fds);
664 		}
665 		*new_fds++ = f;
666 	}
667 	spin_unlock(&oldf->file_lock);
668 
669 	/* compute the remainder to be cleared */
670 	size = (newf->max_fds - open_files) * sizeof(struct file *);
671 
672 	/* This is long word aligned thus could use a optimized version */
673 	memset(new_fds, 0, size);
674 
675 	if (newf->max_fdset > open_files) {
676 		int left = (newf->max_fdset-open_files)/8;
677 		int start = open_files / (8 * sizeof(unsigned long));
678 
679 		memset(&newf->open_fds->fds_bits[start], 0, left);
680 		memset(&newf->close_on_exec->fds_bits[start], 0, left);
681 	}
682 
683 	tsk->files = newf;
684 	error = 0;
685 out:
686 	return error;
687 
688 out_release:
689 	free_fdset (newf->close_on_exec, newf->max_fdset);
690 	free_fdset (newf->open_fds, newf->max_fdset);
691 	free_fd_array(newf->fd, newf->max_fds);
692 	kmem_cache_free(files_cachep, newf);
693 	goto out;
694 }
695 
696 /*
697  *	Helper to unshare the files of the current task.
698  *	We don't want to expose copy_files internals to
699  *	the exec layer of the kernel.
700  */
701 
702 int unshare_files(void)
703 {
704 	struct files_struct *files  = current->files;
705 	int rc;
706 
707 	if(!files)
708 		BUG();
709 
710 	/* This can race but the race causes us to copy when we don't
711 	   need to and drop the copy */
712 	if(atomic_read(&files->count) == 1)
713 	{
714 		atomic_inc(&files->count);
715 		return 0;
716 	}
717 	rc = copy_files(0, current);
718 	if(rc)
719 		current->files = files;
720 	return rc;
721 }
722 
723 EXPORT_SYMBOL(unshare_files);
724 
725 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
726 {
727 	struct sighand_struct *sig;
728 
729 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
730 		atomic_inc(&current->sighand->count);
731 		return 0;
732 	}
733 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
734 	tsk->sighand = sig;
735 	if (!sig)
736 		return -ENOMEM;
737 	spin_lock_init(&sig->siglock);
738 	atomic_set(&sig->count, 1);
739 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
740 	return 0;
741 }
742 
743 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
744 {
745 	struct signal_struct *sig;
746 	int ret;
747 
748 	if (clone_flags & CLONE_THREAD) {
749 		atomic_inc(&current->signal->count);
750 		atomic_inc(&current->signal->live);
751 		return 0;
752 	}
753 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
754 	tsk->signal = sig;
755 	if (!sig)
756 		return -ENOMEM;
757 
758 	ret = copy_thread_group_keys(tsk);
759 	if (ret < 0) {
760 		kmem_cache_free(signal_cachep, sig);
761 		return ret;
762 	}
763 
764 	atomic_set(&sig->count, 1);
765 	atomic_set(&sig->live, 1);
766 	init_waitqueue_head(&sig->wait_chldexit);
767 	sig->flags = 0;
768 	sig->group_exit_code = 0;
769 	sig->group_exit_task = NULL;
770 	sig->group_stop_count = 0;
771 	sig->curr_target = NULL;
772 	init_sigpending(&sig->shared_pending);
773 	INIT_LIST_HEAD(&sig->posix_timers);
774 
775 	sig->it_real_value = sig->it_real_incr = 0;
776 	sig->real_timer.function = it_real_fn;
777 	sig->real_timer.data = (unsigned long) tsk;
778 	init_timer(&sig->real_timer);
779 
780 	sig->it_virt_expires = cputime_zero;
781 	sig->it_virt_incr = cputime_zero;
782 	sig->it_prof_expires = cputime_zero;
783 	sig->it_prof_incr = cputime_zero;
784 
785 	sig->tty = current->signal->tty;
786 	sig->pgrp = process_group(current);
787 	sig->session = current->signal->session;
788 	sig->leader = 0;	/* session leadership doesn't inherit */
789 	sig->tty_old_pgrp = 0;
790 
791 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
792 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
793 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
794 	sig->sched_time = 0;
795 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
796 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
797 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
798 
799 	task_lock(current->group_leader);
800 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
801 	task_unlock(current->group_leader);
802 
803 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
804 		/*
805 		 * New sole thread in the process gets an expiry time
806 		 * of the whole CPU time limit.
807 		 */
808 		tsk->it_prof_expires =
809 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
810 	}
811 
812 	return 0;
813 }
814 
815 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
816 {
817 	unsigned long new_flags = p->flags;
818 
819 	new_flags &= ~PF_SUPERPRIV;
820 	new_flags |= PF_FORKNOEXEC;
821 	if (!(clone_flags & CLONE_PTRACE))
822 		p->ptrace = 0;
823 	p->flags = new_flags;
824 }
825 
826 asmlinkage long sys_set_tid_address(int __user *tidptr)
827 {
828 	current->clear_child_tid = tidptr;
829 
830 	return current->pid;
831 }
832 
833 /*
834  * This creates a new process as a copy of the old one,
835  * but does not actually start it yet.
836  *
837  * It copies the registers, and all the appropriate
838  * parts of the process environment (as per the clone
839  * flags). The actual kick-off is left to the caller.
840  */
841 static task_t *copy_process(unsigned long clone_flags,
842 				 unsigned long stack_start,
843 				 struct pt_regs *regs,
844 				 unsigned long stack_size,
845 				 int __user *parent_tidptr,
846 				 int __user *child_tidptr,
847 				 int pid)
848 {
849 	int retval;
850 	struct task_struct *p = NULL;
851 
852 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
853 		return ERR_PTR(-EINVAL);
854 
855 	/*
856 	 * Thread groups must share signals as well, and detached threads
857 	 * can only be started up within the thread group.
858 	 */
859 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
860 		return ERR_PTR(-EINVAL);
861 
862 	/*
863 	 * Shared signal handlers imply shared VM. By way of the above,
864 	 * thread groups also imply shared VM. Blocking this case allows
865 	 * for various simplifications in other code.
866 	 */
867 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
868 		return ERR_PTR(-EINVAL);
869 
870 	retval = security_task_create(clone_flags);
871 	if (retval)
872 		goto fork_out;
873 
874 	retval = -ENOMEM;
875 	p = dup_task_struct(current);
876 	if (!p)
877 		goto fork_out;
878 
879 	retval = -EAGAIN;
880 	if (atomic_read(&p->user->processes) >=
881 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
882 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
883 				p->user != &root_user)
884 			goto bad_fork_free;
885 	}
886 
887 	atomic_inc(&p->user->__count);
888 	atomic_inc(&p->user->processes);
889 	get_group_info(p->group_info);
890 
891 	/*
892 	 * If multiple threads are within copy_process(), then this check
893 	 * triggers too late. This doesn't hurt, the check is only there
894 	 * to stop root fork bombs.
895 	 */
896 	if (nr_threads >= max_threads)
897 		goto bad_fork_cleanup_count;
898 
899 	if (!try_module_get(p->thread_info->exec_domain->module))
900 		goto bad_fork_cleanup_count;
901 
902 	if (p->binfmt && !try_module_get(p->binfmt->module))
903 		goto bad_fork_cleanup_put_domain;
904 
905 	p->did_exec = 0;
906 	copy_flags(clone_flags, p);
907 	p->pid = pid;
908 	retval = -EFAULT;
909 	if (clone_flags & CLONE_PARENT_SETTID)
910 		if (put_user(p->pid, parent_tidptr))
911 			goto bad_fork_cleanup;
912 
913 	p->proc_dentry = NULL;
914 
915 	INIT_LIST_HEAD(&p->children);
916 	INIT_LIST_HEAD(&p->sibling);
917 	p->vfork_done = NULL;
918 	spin_lock_init(&p->alloc_lock);
919 	spin_lock_init(&p->proc_lock);
920 
921 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
922 	init_sigpending(&p->pending);
923 
924 	p->utime = cputime_zero;
925 	p->stime = cputime_zero;
926  	p->sched_time = 0;
927 	p->rchar = 0;		/* I/O counter: bytes read */
928 	p->wchar = 0;		/* I/O counter: bytes written */
929 	p->syscr = 0;		/* I/O counter: read syscalls */
930 	p->syscw = 0;		/* I/O counter: write syscalls */
931 	acct_clear_integrals(p);
932 
933  	p->it_virt_expires = cputime_zero;
934 	p->it_prof_expires = cputime_zero;
935  	p->it_sched_expires = 0;
936  	INIT_LIST_HEAD(&p->cpu_timers[0]);
937  	INIT_LIST_HEAD(&p->cpu_timers[1]);
938  	INIT_LIST_HEAD(&p->cpu_timers[2]);
939 
940 	p->lock_depth = -1;		/* -1 = no lock */
941 	do_posix_clock_monotonic_gettime(&p->start_time);
942 	p->security = NULL;
943 	p->io_context = NULL;
944 	p->io_wait = NULL;
945 	p->audit_context = NULL;
946 #ifdef CONFIG_NUMA
947  	p->mempolicy = mpol_copy(p->mempolicy);
948  	if (IS_ERR(p->mempolicy)) {
949  		retval = PTR_ERR(p->mempolicy);
950  		p->mempolicy = NULL;
951  		goto bad_fork_cleanup;
952  	}
953 #endif
954 
955 	p->tgid = p->pid;
956 	if (clone_flags & CLONE_THREAD)
957 		p->tgid = current->tgid;
958 
959 	if ((retval = security_task_alloc(p)))
960 		goto bad_fork_cleanup_policy;
961 	if ((retval = audit_alloc(p)))
962 		goto bad_fork_cleanup_security;
963 	/* copy all the process information */
964 	if ((retval = copy_semundo(clone_flags, p)))
965 		goto bad_fork_cleanup_audit;
966 	if ((retval = copy_files(clone_flags, p)))
967 		goto bad_fork_cleanup_semundo;
968 	if ((retval = copy_fs(clone_flags, p)))
969 		goto bad_fork_cleanup_files;
970 	if ((retval = copy_sighand(clone_flags, p)))
971 		goto bad_fork_cleanup_fs;
972 	if ((retval = copy_signal(clone_flags, p)))
973 		goto bad_fork_cleanup_sighand;
974 	if ((retval = copy_mm(clone_flags, p)))
975 		goto bad_fork_cleanup_signal;
976 	if ((retval = copy_keys(clone_flags, p)))
977 		goto bad_fork_cleanup_mm;
978 	if ((retval = copy_namespace(clone_flags, p)))
979 		goto bad_fork_cleanup_keys;
980 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
981 	if (retval)
982 		goto bad_fork_cleanup_namespace;
983 
984 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
985 	/*
986 	 * Clear TID on mm_release()?
987 	 */
988 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
989 
990 	/*
991 	 * Syscall tracing should be turned off in the child regardless
992 	 * of CLONE_PTRACE.
993 	 */
994 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
995 
996 	/* Our parent execution domain becomes current domain
997 	   These must match for thread signalling to apply */
998 
999 	p->parent_exec_id = p->self_exec_id;
1000 
1001 	/* ok, now we should be set up.. */
1002 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1003 	p->pdeath_signal = 0;
1004 	p->exit_state = 0;
1005 
1006 	/* Perform scheduler related setup */
1007 	sched_fork(p);
1008 
1009 	/*
1010 	 * Ok, make it visible to the rest of the system.
1011 	 * We dont wake it up yet.
1012 	 */
1013 	p->group_leader = p;
1014 	INIT_LIST_HEAD(&p->ptrace_children);
1015 	INIT_LIST_HEAD(&p->ptrace_list);
1016 
1017 	/* Need tasklist lock for parent etc handling! */
1018 	write_lock_irq(&tasklist_lock);
1019 
1020 	/*
1021 	 * The task hasn't been attached yet, so cpus_allowed mask cannot
1022 	 * have changed. The cpus_allowed mask of the parent may have
1023 	 * changed after it was copied first time, and it may then move to
1024 	 * another CPU - so we re-copy it here and set the child's CPU to
1025 	 * the parent's CPU. This avoids alot of nasty races.
1026 	 */
1027 	p->cpus_allowed = current->cpus_allowed;
1028 	set_task_cpu(p, smp_processor_id());
1029 
1030 	/*
1031 	 * Check for pending SIGKILL! The new thread should not be allowed
1032 	 * to slip out of an OOM kill. (or normal SIGKILL.)
1033 	 */
1034 	if (sigismember(&current->pending.signal, SIGKILL)) {
1035 		write_unlock_irq(&tasklist_lock);
1036 		retval = -EINTR;
1037 		goto bad_fork_cleanup_namespace;
1038 	}
1039 
1040 	/* CLONE_PARENT re-uses the old parent */
1041 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1042 		p->real_parent = current->real_parent;
1043 	else
1044 		p->real_parent = current;
1045 	p->parent = p->real_parent;
1046 
1047 	if (clone_flags & CLONE_THREAD) {
1048 		spin_lock(&current->sighand->siglock);
1049 		/*
1050 		 * Important: if an exit-all has been started then
1051 		 * do not create this new thread - the whole thread
1052 		 * group is supposed to exit anyway.
1053 		 */
1054 		if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1055 			spin_unlock(&current->sighand->siglock);
1056 			write_unlock_irq(&tasklist_lock);
1057 			retval = -EAGAIN;
1058 			goto bad_fork_cleanup_namespace;
1059 		}
1060 		p->group_leader = current->group_leader;
1061 
1062 		if (current->signal->group_stop_count > 0) {
1063 			/*
1064 			 * There is an all-stop in progress for the group.
1065 			 * We ourselves will stop as soon as we check signals.
1066 			 * Make the new thread part of that group stop too.
1067 			 */
1068 			current->signal->group_stop_count++;
1069 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1070 		}
1071 
1072 		if (!cputime_eq(current->signal->it_virt_expires,
1073 				cputime_zero) ||
1074 		    !cputime_eq(current->signal->it_prof_expires,
1075 				cputime_zero) ||
1076 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1077 		    !list_empty(&current->signal->cpu_timers[0]) ||
1078 		    !list_empty(&current->signal->cpu_timers[1]) ||
1079 		    !list_empty(&current->signal->cpu_timers[2])) {
1080 			/*
1081 			 * Have child wake up on its first tick to check
1082 			 * for process CPU timers.
1083 			 */
1084 			p->it_prof_expires = jiffies_to_cputime(1);
1085 		}
1086 
1087 		spin_unlock(&current->sighand->siglock);
1088 	}
1089 
1090 	SET_LINKS(p);
1091 	if (unlikely(p->ptrace & PT_PTRACED))
1092 		__ptrace_link(p, current->parent);
1093 
1094 	cpuset_fork(p);
1095 
1096 	attach_pid(p, PIDTYPE_PID, p->pid);
1097 	attach_pid(p, PIDTYPE_TGID, p->tgid);
1098 	if (thread_group_leader(p)) {
1099 		attach_pid(p, PIDTYPE_PGID, process_group(p));
1100 		attach_pid(p, PIDTYPE_SID, p->signal->session);
1101 		if (p->pid)
1102 			__get_cpu_var(process_counts)++;
1103 	}
1104 
1105 	nr_threads++;
1106 	total_forks++;
1107 	write_unlock_irq(&tasklist_lock);
1108 	retval = 0;
1109 
1110 fork_out:
1111 	if (retval)
1112 		return ERR_PTR(retval);
1113 	return p;
1114 
1115 bad_fork_cleanup_namespace:
1116 	exit_namespace(p);
1117 bad_fork_cleanup_keys:
1118 	exit_keys(p);
1119 bad_fork_cleanup_mm:
1120 	if (p->mm)
1121 		mmput(p->mm);
1122 bad_fork_cleanup_signal:
1123 	exit_signal(p);
1124 bad_fork_cleanup_sighand:
1125 	exit_sighand(p);
1126 bad_fork_cleanup_fs:
1127 	exit_fs(p); /* blocking */
1128 bad_fork_cleanup_files:
1129 	exit_files(p); /* blocking */
1130 bad_fork_cleanup_semundo:
1131 	exit_sem(p);
1132 bad_fork_cleanup_audit:
1133 	audit_free(p);
1134 bad_fork_cleanup_security:
1135 	security_task_free(p);
1136 bad_fork_cleanup_policy:
1137 #ifdef CONFIG_NUMA
1138 	mpol_free(p->mempolicy);
1139 #endif
1140 bad_fork_cleanup:
1141 	if (p->binfmt)
1142 		module_put(p->binfmt->module);
1143 bad_fork_cleanup_put_domain:
1144 	module_put(p->thread_info->exec_domain->module);
1145 bad_fork_cleanup_count:
1146 	put_group_info(p->group_info);
1147 	atomic_dec(&p->user->processes);
1148 	free_uid(p->user);
1149 bad_fork_free:
1150 	free_task(p);
1151 	goto fork_out;
1152 }
1153 
1154 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1155 {
1156 	memset(regs, 0, sizeof(struct pt_regs));
1157 	return regs;
1158 }
1159 
1160 task_t * __devinit fork_idle(int cpu)
1161 {
1162 	task_t *task;
1163 	struct pt_regs regs;
1164 
1165 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1166 	if (!task)
1167 		return ERR_PTR(-ENOMEM);
1168 	init_idle(task, cpu);
1169 	unhash_process(task);
1170 	return task;
1171 }
1172 
1173 static inline int fork_traceflag (unsigned clone_flags)
1174 {
1175 	if (clone_flags & CLONE_UNTRACED)
1176 		return 0;
1177 	else if (clone_flags & CLONE_VFORK) {
1178 		if (current->ptrace & PT_TRACE_VFORK)
1179 			return PTRACE_EVENT_VFORK;
1180 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1181 		if (current->ptrace & PT_TRACE_CLONE)
1182 			return PTRACE_EVENT_CLONE;
1183 	} else if (current->ptrace & PT_TRACE_FORK)
1184 		return PTRACE_EVENT_FORK;
1185 
1186 	return 0;
1187 }
1188 
1189 /*
1190  *  Ok, this is the main fork-routine.
1191  *
1192  * It copies the process, and if successful kick-starts
1193  * it and waits for it to finish using the VM if required.
1194  */
1195 long do_fork(unsigned long clone_flags,
1196 	      unsigned long stack_start,
1197 	      struct pt_regs *regs,
1198 	      unsigned long stack_size,
1199 	      int __user *parent_tidptr,
1200 	      int __user *child_tidptr)
1201 {
1202 	struct task_struct *p;
1203 	int trace = 0;
1204 	long pid = alloc_pidmap();
1205 
1206 	if (pid < 0)
1207 		return -EAGAIN;
1208 	if (unlikely(current->ptrace)) {
1209 		trace = fork_traceflag (clone_flags);
1210 		if (trace)
1211 			clone_flags |= CLONE_PTRACE;
1212 	}
1213 
1214 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1215 	/*
1216 	 * Do this prior waking up the new thread - the thread pointer
1217 	 * might get invalid after that point, if the thread exits quickly.
1218 	 */
1219 	if (!IS_ERR(p)) {
1220 		struct completion vfork;
1221 
1222 		if (clone_flags & CLONE_VFORK) {
1223 			p->vfork_done = &vfork;
1224 			init_completion(&vfork);
1225 		}
1226 
1227 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1228 			/*
1229 			 * We'll start up with an immediate SIGSTOP.
1230 			 */
1231 			sigaddset(&p->pending.signal, SIGSTOP);
1232 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1233 		}
1234 
1235 		if (!(clone_flags & CLONE_STOPPED))
1236 			wake_up_new_task(p, clone_flags);
1237 		else
1238 			p->state = TASK_STOPPED;
1239 
1240 		if (unlikely (trace)) {
1241 			current->ptrace_message = pid;
1242 			ptrace_notify ((trace << 8) | SIGTRAP);
1243 		}
1244 
1245 		if (clone_flags & CLONE_VFORK) {
1246 			wait_for_completion(&vfork);
1247 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1248 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1249 		}
1250 	} else {
1251 		free_pidmap(pid);
1252 		pid = PTR_ERR(p);
1253 	}
1254 	return pid;
1255 }
1256 
1257 void __init proc_caches_init(void)
1258 {
1259 	sighand_cachep = kmem_cache_create("sighand_cache",
1260 			sizeof(struct sighand_struct), 0,
1261 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1262 	signal_cachep = kmem_cache_create("signal_cache",
1263 			sizeof(struct signal_struct), 0,
1264 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1265 	files_cachep = kmem_cache_create("files_cache",
1266 			sizeof(struct files_struct), 0,
1267 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1268 	fs_cachep = kmem_cache_create("fs_cache",
1269 			sizeof(struct fs_struct), 0,
1270 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1271 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1272 			sizeof(struct vm_area_struct), 0,
1273 			SLAB_PANIC, NULL, NULL);
1274 	mm_cachep = kmem_cache_create("mm_struct",
1275 			sizeof(struct mm_struct), 0,
1276 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1277 }
1278