xref: /linux/kernel/fork.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/mnt_namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/nsproxy.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/delayacct.h>
49 #include <linux/taskstats_kern.h>
50 #include <linux/random.h>
51 
52 #include <asm/pgtable.h>
53 #include <asm/pgalloc.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 #include <asm/cacheflush.h>
57 #include <asm/tlbflush.h>
58 
59 /*
60  * Protected counters by write_lock_irq(&tasklist_lock)
61  */
62 unsigned long total_forks;	/* Handle normal Linux uptimes. */
63 int nr_threads; 		/* The idle threads do not count.. */
64 
65 int max_threads;		/* tunable limit on nr_threads */
66 
67 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
68 
69 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
70 
71 int nr_processes(void)
72 {
73 	int cpu;
74 	int total = 0;
75 
76 	for_each_online_cpu(cpu)
77 		total += per_cpu(process_counts, cpu);
78 
79 	return total;
80 }
81 
82 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
83 # define alloc_task_struct()	kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
84 # define free_task_struct(tsk)	kmem_cache_free(task_struct_cachep, (tsk))
85 static struct kmem_cache *task_struct_cachep;
86 #endif
87 
88 /* SLAB cache for signal_struct structures (tsk->signal) */
89 static struct kmem_cache *signal_cachep;
90 
91 /* SLAB cache for sighand_struct structures (tsk->sighand) */
92 struct kmem_cache *sighand_cachep;
93 
94 /* SLAB cache for files_struct structures (tsk->files) */
95 struct kmem_cache *files_cachep;
96 
97 /* SLAB cache for fs_struct structures (tsk->fs) */
98 struct kmem_cache *fs_cachep;
99 
100 /* SLAB cache for vm_area_struct structures */
101 struct kmem_cache *vm_area_cachep;
102 
103 /* SLAB cache for mm_struct structures (tsk->mm) */
104 static struct kmem_cache *mm_cachep;
105 
106 void free_task(struct task_struct *tsk)
107 {
108 	free_thread_info(tsk->thread_info);
109 	rt_mutex_debug_task_free(tsk);
110 	free_task_struct(tsk);
111 }
112 EXPORT_SYMBOL(free_task);
113 
114 void __put_task_struct(struct task_struct *tsk)
115 {
116 	WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
117 	WARN_ON(atomic_read(&tsk->usage));
118 	WARN_ON(tsk == current);
119 
120 	security_task_free(tsk);
121 	free_uid(tsk->user);
122 	put_group_info(tsk->group_info);
123 	delayacct_tsk_free(tsk);
124 
125 	if (!profile_handoff_task(tsk))
126 		free_task(tsk);
127 }
128 
129 void __init fork_init(unsigned long mempages)
130 {
131 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
132 #ifndef ARCH_MIN_TASKALIGN
133 #define ARCH_MIN_TASKALIGN	L1_CACHE_BYTES
134 #endif
135 	/* create a slab on which task_structs can be allocated */
136 	task_struct_cachep =
137 		kmem_cache_create("task_struct", sizeof(struct task_struct),
138 			ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
139 #endif
140 
141 	/*
142 	 * The default maximum number of threads is set to a safe
143 	 * value: the thread structures can take up at most half
144 	 * of memory.
145 	 */
146 	max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
147 
148 	/*
149 	 * we need to allow at least 20 threads to boot a system
150 	 */
151 	if(max_threads < 20)
152 		max_threads = 20;
153 
154 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
155 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
156 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
157 		init_task.signal->rlim[RLIMIT_NPROC];
158 }
159 
160 static struct task_struct *dup_task_struct(struct task_struct *orig)
161 {
162 	struct task_struct *tsk;
163 	struct thread_info *ti;
164 
165 	prepare_to_copy(orig);
166 
167 	tsk = alloc_task_struct();
168 	if (!tsk)
169 		return NULL;
170 
171 	ti = alloc_thread_info(tsk);
172 	if (!ti) {
173 		free_task_struct(tsk);
174 		return NULL;
175 	}
176 
177 	*tsk = *orig;
178 	tsk->thread_info = ti;
179 	setup_thread_stack(tsk, orig);
180 
181 #ifdef CONFIG_CC_STACKPROTECTOR
182 	tsk->stack_canary = get_random_int();
183 #endif
184 
185 	/* One for us, one for whoever does the "release_task()" (usually parent) */
186 	atomic_set(&tsk->usage,2);
187 	atomic_set(&tsk->fs_excl, 0);
188 #ifdef CONFIG_BLK_DEV_IO_TRACE
189 	tsk->btrace_seq = 0;
190 #endif
191 	tsk->splice_pipe = NULL;
192 	return tsk;
193 }
194 
195 #ifdef CONFIG_MMU
196 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
197 {
198 	struct vm_area_struct *mpnt, *tmp, **pprev;
199 	struct rb_node **rb_link, *rb_parent;
200 	int retval;
201 	unsigned long charge;
202 	struct mempolicy *pol;
203 
204 	down_write(&oldmm->mmap_sem);
205 	flush_cache_mm(oldmm);
206 	/*
207 	 * Not linked in yet - no deadlock potential:
208 	 */
209 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
210 
211 	mm->locked_vm = 0;
212 	mm->mmap = NULL;
213 	mm->mmap_cache = NULL;
214 	mm->free_area_cache = oldmm->mmap_base;
215 	mm->cached_hole_size = ~0UL;
216 	mm->map_count = 0;
217 	cpus_clear(mm->cpu_vm_mask);
218 	mm->mm_rb = RB_ROOT;
219 	rb_link = &mm->mm_rb.rb_node;
220 	rb_parent = NULL;
221 	pprev = &mm->mmap;
222 
223 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
224 		struct file *file;
225 
226 		if (mpnt->vm_flags & VM_DONTCOPY) {
227 			long pages = vma_pages(mpnt);
228 			mm->total_vm -= pages;
229 			vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
230 								-pages);
231 			continue;
232 		}
233 		charge = 0;
234 		if (mpnt->vm_flags & VM_ACCOUNT) {
235 			unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
236 			if (security_vm_enough_memory(len))
237 				goto fail_nomem;
238 			charge = len;
239 		}
240 		tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
241 		if (!tmp)
242 			goto fail_nomem;
243 		*tmp = *mpnt;
244 		pol = mpol_copy(vma_policy(mpnt));
245 		retval = PTR_ERR(pol);
246 		if (IS_ERR(pol))
247 			goto fail_nomem_policy;
248 		vma_set_policy(tmp, pol);
249 		tmp->vm_flags &= ~VM_LOCKED;
250 		tmp->vm_mm = mm;
251 		tmp->vm_next = NULL;
252 		anon_vma_link(tmp);
253 		file = tmp->vm_file;
254 		if (file) {
255 			struct inode *inode = file->f_path.dentry->d_inode;
256 			get_file(file);
257 			if (tmp->vm_flags & VM_DENYWRITE)
258 				atomic_dec(&inode->i_writecount);
259 
260 			/* insert tmp into the share list, just after mpnt */
261 			spin_lock(&file->f_mapping->i_mmap_lock);
262 			tmp->vm_truncate_count = mpnt->vm_truncate_count;
263 			flush_dcache_mmap_lock(file->f_mapping);
264 			vma_prio_tree_add(tmp, mpnt);
265 			flush_dcache_mmap_unlock(file->f_mapping);
266 			spin_unlock(&file->f_mapping->i_mmap_lock);
267 		}
268 
269 		/*
270 		 * Link in the new vma and copy the page table entries.
271 		 */
272 		*pprev = tmp;
273 		pprev = &tmp->vm_next;
274 
275 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
276 		rb_link = &tmp->vm_rb.rb_right;
277 		rb_parent = &tmp->vm_rb;
278 
279 		mm->map_count++;
280 		retval = copy_page_range(mm, oldmm, mpnt);
281 
282 		if (tmp->vm_ops && tmp->vm_ops->open)
283 			tmp->vm_ops->open(tmp);
284 
285 		if (retval)
286 			goto out;
287 	}
288 	retval = 0;
289 out:
290 	up_write(&mm->mmap_sem);
291 	flush_tlb_mm(oldmm);
292 	up_write(&oldmm->mmap_sem);
293 	return retval;
294 fail_nomem_policy:
295 	kmem_cache_free(vm_area_cachep, tmp);
296 fail_nomem:
297 	retval = -ENOMEM;
298 	vm_unacct_memory(charge);
299 	goto out;
300 }
301 
302 static inline int mm_alloc_pgd(struct mm_struct * mm)
303 {
304 	mm->pgd = pgd_alloc(mm);
305 	if (unlikely(!mm->pgd))
306 		return -ENOMEM;
307 	return 0;
308 }
309 
310 static inline void mm_free_pgd(struct mm_struct * mm)
311 {
312 	pgd_free(mm->pgd);
313 }
314 #else
315 #define dup_mmap(mm, oldmm)	(0)
316 #define mm_alloc_pgd(mm)	(0)
317 #define mm_free_pgd(mm)
318 #endif /* CONFIG_MMU */
319 
320  __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
321 
322 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
323 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
324 
325 #include <linux/init_task.h>
326 
327 static struct mm_struct * mm_init(struct mm_struct * mm)
328 {
329 	atomic_set(&mm->mm_users, 1);
330 	atomic_set(&mm->mm_count, 1);
331 	init_rwsem(&mm->mmap_sem);
332 	INIT_LIST_HEAD(&mm->mmlist);
333 	mm->core_waiters = 0;
334 	mm->nr_ptes = 0;
335 	set_mm_counter(mm, file_rss, 0);
336 	set_mm_counter(mm, anon_rss, 0);
337 	spin_lock_init(&mm->page_table_lock);
338 	rwlock_init(&mm->ioctx_list_lock);
339 	mm->ioctx_list = NULL;
340 	mm->free_area_cache = TASK_UNMAPPED_BASE;
341 	mm->cached_hole_size = ~0UL;
342 
343 	if (likely(!mm_alloc_pgd(mm))) {
344 		mm->def_flags = 0;
345 		return mm;
346 	}
347 	free_mm(mm);
348 	return NULL;
349 }
350 
351 /*
352  * Allocate and initialize an mm_struct.
353  */
354 struct mm_struct * mm_alloc(void)
355 {
356 	struct mm_struct * mm;
357 
358 	mm = allocate_mm();
359 	if (mm) {
360 		memset(mm, 0, sizeof(*mm));
361 		mm = mm_init(mm);
362 	}
363 	return mm;
364 }
365 
366 /*
367  * Called when the last reference to the mm
368  * is dropped: either by a lazy thread or by
369  * mmput. Free the page directory and the mm.
370  */
371 void fastcall __mmdrop(struct mm_struct *mm)
372 {
373 	BUG_ON(mm == &init_mm);
374 	mm_free_pgd(mm);
375 	destroy_context(mm);
376 	free_mm(mm);
377 }
378 
379 /*
380  * Decrement the use count and release all resources for an mm.
381  */
382 void mmput(struct mm_struct *mm)
383 {
384 	might_sleep();
385 
386 	if (atomic_dec_and_test(&mm->mm_users)) {
387 		exit_aio(mm);
388 		exit_mmap(mm);
389 		if (!list_empty(&mm->mmlist)) {
390 			spin_lock(&mmlist_lock);
391 			list_del(&mm->mmlist);
392 			spin_unlock(&mmlist_lock);
393 		}
394 		put_swap_token(mm);
395 		mmdrop(mm);
396 	}
397 }
398 EXPORT_SYMBOL_GPL(mmput);
399 
400 /**
401  * get_task_mm - acquire a reference to the task's mm
402  *
403  * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
404  * this kernel workthread has transiently adopted a user mm with use_mm,
405  * to do its AIO) is not set and if so returns a reference to it, after
406  * bumping up the use count.  User must release the mm via mmput()
407  * after use.  Typically used by /proc and ptrace.
408  */
409 struct mm_struct *get_task_mm(struct task_struct *task)
410 {
411 	struct mm_struct *mm;
412 
413 	task_lock(task);
414 	mm = task->mm;
415 	if (mm) {
416 		if (task->flags & PF_BORROWED_MM)
417 			mm = NULL;
418 		else
419 			atomic_inc(&mm->mm_users);
420 	}
421 	task_unlock(task);
422 	return mm;
423 }
424 EXPORT_SYMBOL_GPL(get_task_mm);
425 
426 /* Please note the differences between mmput and mm_release.
427  * mmput is called whenever we stop holding onto a mm_struct,
428  * error success whatever.
429  *
430  * mm_release is called after a mm_struct has been removed
431  * from the current process.
432  *
433  * This difference is important for error handling, when we
434  * only half set up a mm_struct for a new process and need to restore
435  * the old one.  Because we mmput the new mm_struct before
436  * restoring the old one. . .
437  * Eric Biederman 10 January 1998
438  */
439 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
440 {
441 	struct completion *vfork_done = tsk->vfork_done;
442 
443 	/* Get rid of any cached register state */
444 	deactivate_mm(tsk, mm);
445 
446 	/* notify parent sleeping on vfork() */
447 	if (vfork_done) {
448 		tsk->vfork_done = NULL;
449 		complete(vfork_done);
450 	}
451 
452 	/*
453 	 * If we're exiting normally, clear a user-space tid field if
454 	 * requested.  We leave this alone when dying by signal, to leave
455 	 * the value intact in a core dump, and to save the unnecessary
456 	 * trouble otherwise.  Userland only wants this done for a sys_exit.
457 	 */
458 	if (tsk->clear_child_tid
459 	    && !(tsk->flags & PF_SIGNALED)
460 	    && atomic_read(&mm->mm_users) > 1) {
461 		u32 __user * tidptr = tsk->clear_child_tid;
462 		tsk->clear_child_tid = NULL;
463 
464 		/*
465 		 * We don't check the error code - if userspace has
466 		 * not set up a proper pointer then tough luck.
467 		 */
468 		put_user(0, tidptr);
469 		sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
470 	}
471 }
472 
473 /*
474  * Allocate a new mm structure and copy contents from the
475  * mm structure of the passed in task structure.
476  */
477 static struct mm_struct *dup_mm(struct task_struct *tsk)
478 {
479 	struct mm_struct *mm, *oldmm = current->mm;
480 	int err;
481 
482 	if (!oldmm)
483 		return NULL;
484 
485 	mm = allocate_mm();
486 	if (!mm)
487 		goto fail_nomem;
488 
489 	memcpy(mm, oldmm, sizeof(*mm));
490 
491 	/* Initializing for Swap token stuff */
492 	mm->token_priority = 0;
493 	mm->last_interval = 0;
494 
495 	if (!mm_init(mm))
496 		goto fail_nomem;
497 
498 	if (init_new_context(tsk, mm))
499 		goto fail_nocontext;
500 
501 	err = dup_mmap(mm, oldmm);
502 	if (err)
503 		goto free_pt;
504 
505 	mm->hiwater_rss = get_mm_rss(mm);
506 	mm->hiwater_vm = mm->total_vm;
507 
508 	return mm;
509 
510 free_pt:
511 	mmput(mm);
512 
513 fail_nomem:
514 	return NULL;
515 
516 fail_nocontext:
517 	/*
518 	 * If init_new_context() failed, we cannot use mmput() to free the mm
519 	 * because it calls destroy_context()
520 	 */
521 	mm_free_pgd(mm);
522 	free_mm(mm);
523 	return NULL;
524 }
525 
526 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
527 {
528 	struct mm_struct * mm, *oldmm;
529 	int retval;
530 
531 	tsk->min_flt = tsk->maj_flt = 0;
532 	tsk->nvcsw = tsk->nivcsw = 0;
533 
534 	tsk->mm = NULL;
535 	tsk->active_mm = NULL;
536 
537 	/*
538 	 * Are we cloning a kernel thread?
539 	 *
540 	 * We need to steal a active VM for that..
541 	 */
542 	oldmm = current->mm;
543 	if (!oldmm)
544 		return 0;
545 
546 	if (clone_flags & CLONE_VM) {
547 		atomic_inc(&oldmm->mm_users);
548 		mm = oldmm;
549 		goto good_mm;
550 	}
551 
552 	retval = -ENOMEM;
553 	mm = dup_mm(tsk);
554 	if (!mm)
555 		goto fail_nomem;
556 
557 good_mm:
558 	/* Initializing for Swap token stuff */
559 	mm->token_priority = 0;
560 	mm->last_interval = 0;
561 
562 	tsk->mm = mm;
563 	tsk->active_mm = mm;
564 	return 0;
565 
566 fail_nomem:
567 	return retval;
568 }
569 
570 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
571 {
572 	struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
573 	/* We don't need to lock fs - think why ;-) */
574 	if (fs) {
575 		atomic_set(&fs->count, 1);
576 		rwlock_init(&fs->lock);
577 		fs->umask = old->umask;
578 		read_lock(&old->lock);
579 		fs->rootmnt = mntget(old->rootmnt);
580 		fs->root = dget(old->root);
581 		fs->pwdmnt = mntget(old->pwdmnt);
582 		fs->pwd = dget(old->pwd);
583 		if (old->altroot) {
584 			fs->altrootmnt = mntget(old->altrootmnt);
585 			fs->altroot = dget(old->altroot);
586 		} else {
587 			fs->altrootmnt = NULL;
588 			fs->altroot = NULL;
589 		}
590 		read_unlock(&old->lock);
591 	}
592 	return fs;
593 }
594 
595 struct fs_struct *copy_fs_struct(struct fs_struct *old)
596 {
597 	return __copy_fs_struct(old);
598 }
599 
600 EXPORT_SYMBOL_GPL(copy_fs_struct);
601 
602 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
603 {
604 	if (clone_flags & CLONE_FS) {
605 		atomic_inc(&current->fs->count);
606 		return 0;
607 	}
608 	tsk->fs = __copy_fs_struct(current->fs);
609 	if (!tsk->fs)
610 		return -ENOMEM;
611 	return 0;
612 }
613 
614 static int count_open_files(struct fdtable *fdt)
615 {
616 	int size = fdt->max_fdset;
617 	int i;
618 
619 	/* Find the last open fd */
620 	for (i = size/(8*sizeof(long)); i > 0; ) {
621 		if (fdt->open_fds->fds_bits[--i])
622 			break;
623 	}
624 	i = (i+1) * 8 * sizeof(long);
625 	return i;
626 }
627 
628 static struct files_struct *alloc_files(void)
629 {
630 	struct files_struct *newf;
631 	struct fdtable *fdt;
632 
633 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
634 	if (!newf)
635 		goto out;
636 
637 	atomic_set(&newf->count, 1);
638 
639 	spin_lock_init(&newf->file_lock);
640 	newf->next_fd = 0;
641 	fdt = &newf->fdtab;
642 	fdt->max_fds = NR_OPEN_DEFAULT;
643 	fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
644 	fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
645 	fdt->open_fds = (fd_set *)&newf->open_fds_init;
646 	fdt->fd = &newf->fd_array[0];
647 	INIT_RCU_HEAD(&fdt->rcu);
648 	fdt->free_files = NULL;
649 	fdt->next = NULL;
650 	rcu_assign_pointer(newf->fdt, fdt);
651 out:
652 	return newf;
653 }
654 
655 /*
656  * Allocate a new files structure and copy contents from the
657  * passed in files structure.
658  * errorp will be valid only when the returned files_struct is NULL.
659  */
660 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
661 {
662 	struct files_struct *newf;
663 	struct file **old_fds, **new_fds;
664 	int open_files, size, i, expand;
665 	struct fdtable *old_fdt, *new_fdt;
666 
667 	*errorp = -ENOMEM;
668 	newf = alloc_files();
669 	if (!newf)
670 		goto out;
671 
672 	spin_lock(&oldf->file_lock);
673 	old_fdt = files_fdtable(oldf);
674 	new_fdt = files_fdtable(newf);
675 	size = old_fdt->max_fdset;
676 	open_files = count_open_files(old_fdt);
677 	expand = 0;
678 
679 	/*
680 	 * Check whether we need to allocate a larger fd array or fd set.
681 	 * Note: we're not a clone task, so the open count won't  change.
682 	 */
683 	if (open_files > new_fdt->max_fdset) {
684 		new_fdt->max_fdset = 0;
685 		expand = 1;
686 	}
687 	if (open_files > new_fdt->max_fds) {
688 		new_fdt->max_fds = 0;
689 		expand = 1;
690 	}
691 
692 	/* if the old fdset gets grown now, we'll only copy up to "size" fds */
693 	if (expand) {
694 		spin_unlock(&oldf->file_lock);
695 		spin_lock(&newf->file_lock);
696 		*errorp = expand_files(newf, open_files-1);
697 		spin_unlock(&newf->file_lock);
698 		if (*errorp < 0)
699 			goto out_release;
700 		new_fdt = files_fdtable(newf);
701 		/*
702 		 * Reacquire the oldf lock and a pointer to its fd table
703 		 * who knows it may have a new bigger fd table. We need
704 		 * the latest pointer.
705 		 */
706 		spin_lock(&oldf->file_lock);
707 		old_fdt = files_fdtable(oldf);
708 	}
709 
710 	old_fds = old_fdt->fd;
711 	new_fds = new_fdt->fd;
712 
713 	memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
714 	memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
715 
716 	for (i = open_files; i != 0; i--) {
717 		struct file *f = *old_fds++;
718 		if (f) {
719 			get_file(f);
720 		} else {
721 			/*
722 			 * The fd may be claimed in the fd bitmap but not yet
723 			 * instantiated in the files array if a sibling thread
724 			 * is partway through open().  So make sure that this
725 			 * fd is available to the new process.
726 			 */
727 			FD_CLR(open_files - i, new_fdt->open_fds);
728 		}
729 		rcu_assign_pointer(*new_fds++, f);
730 	}
731 	spin_unlock(&oldf->file_lock);
732 
733 	/* compute the remainder to be cleared */
734 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
735 
736 	/* This is long word aligned thus could use a optimized version */
737 	memset(new_fds, 0, size);
738 
739 	if (new_fdt->max_fdset > open_files) {
740 		int left = (new_fdt->max_fdset-open_files)/8;
741 		int start = open_files / (8 * sizeof(unsigned long));
742 
743 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
744 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
745 	}
746 
747 out:
748 	return newf;
749 
750 out_release:
751 	free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
752 	free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
753 	free_fd_array(new_fdt->fd, new_fdt->max_fds);
754 	kmem_cache_free(files_cachep, newf);
755 	return NULL;
756 }
757 
758 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
759 {
760 	struct files_struct *oldf, *newf;
761 	int error = 0;
762 
763 	/*
764 	 * A background process may not have any files ...
765 	 */
766 	oldf = current->files;
767 	if (!oldf)
768 		goto out;
769 
770 	if (clone_flags & CLONE_FILES) {
771 		atomic_inc(&oldf->count);
772 		goto out;
773 	}
774 
775 	/*
776 	 * Note: we may be using current for both targets (See exec.c)
777 	 * This works because we cache current->files (old) as oldf. Don't
778 	 * break this.
779 	 */
780 	tsk->files = NULL;
781 	newf = dup_fd(oldf, &error);
782 	if (!newf)
783 		goto out;
784 
785 	tsk->files = newf;
786 	error = 0;
787 out:
788 	return error;
789 }
790 
791 /*
792  *	Helper to unshare the files of the current task.
793  *	We don't want to expose copy_files internals to
794  *	the exec layer of the kernel.
795  */
796 
797 int unshare_files(void)
798 {
799 	struct files_struct *files  = current->files;
800 	int rc;
801 
802 	BUG_ON(!files);
803 
804 	/* This can race but the race causes us to copy when we don't
805 	   need to and drop the copy */
806 	if(atomic_read(&files->count) == 1)
807 	{
808 		atomic_inc(&files->count);
809 		return 0;
810 	}
811 	rc = copy_files(0, current);
812 	if(rc)
813 		current->files = files;
814 	return rc;
815 }
816 
817 EXPORT_SYMBOL(unshare_files);
818 
819 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
820 {
821 	struct sighand_struct *sig;
822 
823 	if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
824 		atomic_inc(&current->sighand->count);
825 		return 0;
826 	}
827 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
828 	rcu_assign_pointer(tsk->sighand, sig);
829 	if (!sig)
830 		return -ENOMEM;
831 	atomic_set(&sig->count, 1);
832 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
833 	return 0;
834 }
835 
836 void __cleanup_sighand(struct sighand_struct *sighand)
837 {
838 	if (atomic_dec_and_test(&sighand->count))
839 		kmem_cache_free(sighand_cachep, sighand);
840 }
841 
842 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
843 {
844 	struct signal_struct *sig;
845 	int ret;
846 
847 	if (clone_flags & CLONE_THREAD) {
848 		atomic_inc(&current->signal->count);
849 		atomic_inc(&current->signal->live);
850 		return 0;
851 	}
852 	sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
853 	tsk->signal = sig;
854 	if (!sig)
855 		return -ENOMEM;
856 
857 	ret = copy_thread_group_keys(tsk);
858 	if (ret < 0) {
859 		kmem_cache_free(signal_cachep, sig);
860 		return ret;
861 	}
862 
863 	atomic_set(&sig->count, 1);
864 	atomic_set(&sig->live, 1);
865 	init_waitqueue_head(&sig->wait_chldexit);
866 	sig->flags = 0;
867 	sig->group_exit_code = 0;
868 	sig->group_exit_task = NULL;
869 	sig->group_stop_count = 0;
870 	sig->curr_target = NULL;
871 	init_sigpending(&sig->shared_pending);
872 	INIT_LIST_HEAD(&sig->posix_timers);
873 
874 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
875 	sig->it_real_incr.tv64 = 0;
876 	sig->real_timer.function = it_real_fn;
877 	sig->tsk = tsk;
878 
879 	sig->it_virt_expires = cputime_zero;
880 	sig->it_virt_incr = cputime_zero;
881 	sig->it_prof_expires = cputime_zero;
882 	sig->it_prof_incr = cputime_zero;
883 
884 	sig->leader = 0;	/* session leadership doesn't inherit */
885 	sig->tty_old_pgrp = 0;
886 
887 	sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
888 	sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
889 	sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
890 	sig->sched_time = 0;
891 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
892 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
893 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
894 	taskstats_tgid_init(sig);
895 
896 	task_lock(current->group_leader);
897 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
898 	task_unlock(current->group_leader);
899 
900 	if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
901 		/*
902 		 * New sole thread in the process gets an expiry time
903 		 * of the whole CPU time limit.
904 		 */
905 		tsk->it_prof_expires =
906 			secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
907 	}
908 	acct_init_pacct(&sig->pacct);
909 
910 	return 0;
911 }
912 
913 void __cleanup_signal(struct signal_struct *sig)
914 {
915 	exit_thread_group_keys(sig);
916 	kmem_cache_free(signal_cachep, sig);
917 }
918 
919 static inline void cleanup_signal(struct task_struct *tsk)
920 {
921 	struct signal_struct *sig = tsk->signal;
922 
923 	atomic_dec(&sig->live);
924 
925 	if (atomic_dec_and_test(&sig->count))
926 		__cleanup_signal(sig);
927 }
928 
929 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
930 {
931 	unsigned long new_flags = p->flags;
932 
933 	new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
934 	new_flags |= PF_FORKNOEXEC;
935 	if (!(clone_flags & CLONE_PTRACE))
936 		p->ptrace = 0;
937 	p->flags = new_flags;
938 }
939 
940 asmlinkage long sys_set_tid_address(int __user *tidptr)
941 {
942 	current->clear_child_tid = tidptr;
943 
944 	return current->pid;
945 }
946 
947 static inline void rt_mutex_init_task(struct task_struct *p)
948 {
949 #ifdef CONFIG_RT_MUTEXES
950 	spin_lock_init(&p->pi_lock);
951 	plist_head_init(&p->pi_waiters, &p->pi_lock);
952 	p->pi_blocked_on = NULL;
953 #endif
954 }
955 
956 /*
957  * This creates a new process as a copy of the old one,
958  * but does not actually start it yet.
959  *
960  * It copies the registers, and all the appropriate
961  * parts of the process environment (as per the clone
962  * flags). The actual kick-off is left to the caller.
963  */
964 static struct task_struct *copy_process(unsigned long clone_flags,
965 					unsigned long stack_start,
966 					struct pt_regs *regs,
967 					unsigned long stack_size,
968 					int __user *parent_tidptr,
969 					int __user *child_tidptr,
970 					int pid)
971 {
972 	int retval;
973 	struct task_struct *p = NULL;
974 
975 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
976 		return ERR_PTR(-EINVAL);
977 
978 	/*
979 	 * Thread groups must share signals as well, and detached threads
980 	 * can only be started up within the thread group.
981 	 */
982 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
983 		return ERR_PTR(-EINVAL);
984 
985 	/*
986 	 * Shared signal handlers imply shared VM. By way of the above,
987 	 * thread groups also imply shared VM. Blocking this case allows
988 	 * for various simplifications in other code.
989 	 */
990 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
991 		return ERR_PTR(-EINVAL);
992 
993 	retval = security_task_create(clone_flags);
994 	if (retval)
995 		goto fork_out;
996 
997 	retval = -ENOMEM;
998 	p = dup_task_struct(current);
999 	if (!p)
1000 		goto fork_out;
1001 
1002 	rt_mutex_init_task(p);
1003 
1004 #ifdef CONFIG_TRACE_IRQFLAGS
1005 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1006 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1007 #endif
1008 	retval = -EAGAIN;
1009 	if (atomic_read(&p->user->processes) >=
1010 			p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1011 		if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1012 				p->user != &root_user)
1013 			goto bad_fork_free;
1014 	}
1015 
1016 	atomic_inc(&p->user->__count);
1017 	atomic_inc(&p->user->processes);
1018 	get_group_info(p->group_info);
1019 
1020 	/*
1021 	 * If multiple threads are within copy_process(), then this check
1022 	 * triggers too late. This doesn't hurt, the check is only there
1023 	 * to stop root fork bombs.
1024 	 */
1025 	if (nr_threads >= max_threads)
1026 		goto bad_fork_cleanup_count;
1027 
1028 	if (!try_module_get(task_thread_info(p)->exec_domain->module))
1029 		goto bad_fork_cleanup_count;
1030 
1031 	if (p->binfmt && !try_module_get(p->binfmt->module))
1032 		goto bad_fork_cleanup_put_domain;
1033 
1034 	p->did_exec = 0;
1035 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1036 	copy_flags(clone_flags, p);
1037 	p->pid = pid;
1038 	retval = -EFAULT;
1039 	if (clone_flags & CLONE_PARENT_SETTID)
1040 		if (put_user(p->pid, parent_tidptr))
1041 			goto bad_fork_cleanup_delays_binfmt;
1042 
1043 	INIT_LIST_HEAD(&p->children);
1044 	INIT_LIST_HEAD(&p->sibling);
1045 	p->vfork_done = NULL;
1046 	spin_lock_init(&p->alloc_lock);
1047 
1048 	clear_tsk_thread_flag(p, TIF_SIGPENDING);
1049 	init_sigpending(&p->pending);
1050 
1051 	p->utime = cputime_zero;
1052 	p->stime = cputime_zero;
1053  	p->sched_time = 0;
1054 	p->rchar = 0;		/* I/O counter: bytes read */
1055 	p->wchar = 0;		/* I/O counter: bytes written */
1056 	p->syscr = 0;		/* I/O counter: read syscalls */
1057 	p->syscw = 0;		/* I/O counter: write syscalls */
1058 	acct_clear_integrals(p);
1059 
1060  	p->it_virt_expires = cputime_zero;
1061 	p->it_prof_expires = cputime_zero;
1062  	p->it_sched_expires = 0;
1063  	INIT_LIST_HEAD(&p->cpu_timers[0]);
1064  	INIT_LIST_HEAD(&p->cpu_timers[1]);
1065  	INIT_LIST_HEAD(&p->cpu_timers[2]);
1066 
1067 	p->lock_depth = -1;		/* -1 = no lock */
1068 	do_posix_clock_monotonic_gettime(&p->start_time);
1069 	p->security = NULL;
1070 	p->io_context = NULL;
1071 	p->io_wait = NULL;
1072 	p->audit_context = NULL;
1073 	cpuset_fork(p);
1074 #ifdef CONFIG_NUMA
1075  	p->mempolicy = mpol_copy(p->mempolicy);
1076  	if (IS_ERR(p->mempolicy)) {
1077  		retval = PTR_ERR(p->mempolicy);
1078  		p->mempolicy = NULL;
1079  		goto bad_fork_cleanup_cpuset;
1080  	}
1081 	mpol_fix_fork_child_flag(p);
1082 #endif
1083 #ifdef CONFIG_TRACE_IRQFLAGS
1084 	p->irq_events = 0;
1085 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1086 	p->hardirqs_enabled = 1;
1087 #else
1088 	p->hardirqs_enabled = 0;
1089 #endif
1090 	p->hardirq_enable_ip = 0;
1091 	p->hardirq_enable_event = 0;
1092 	p->hardirq_disable_ip = _THIS_IP_;
1093 	p->hardirq_disable_event = 0;
1094 	p->softirqs_enabled = 1;
1095 	p->softirq_enable_ip = _THIS_IP_;
1096 	p->softirq_enable_event = 0;
1097 	p->softirq_disable_ip = 0;
1098 	p->softirq_disable_event = 0;
1099 	p->hardirq_context = 0;
1100 	p->softirq_context = 0;
1101 #endif
1102 #ifdef CONFIG_LOCKDEP
1103 	p->lockdep_depth = 0; /* no locks held yet */
1104 	p->curr_chain_key = 0;
1105 	p->lockdep_recursion = 0;
1106 #endif
1107 
1108 #ifdef CONFIG_DEBUG_MUTEXES
1109 	p->blocked_on = NULL; /* not blocked yet */
1110 #endif
1111 
1112 	p->tgid = p->pid;
1113 	if (clone_flags & CLONE_THREAD)
1114 		p->tgid = current->tgid;
1115 
1116 	if ((retval = security_task_alloc(p)))
1117 		goto bad_fork_cleanup_policy;
1118 	if ((retval = audit_alloc(p)))
1119 		goto bad_fork_cleanup_security;
1120 	/* copy all the process information */
1121 	if ((retval = copy_semundo(clone_flags, p)))
1122 		goto bad_fork_cleanup_audit;
1123 	if ((retval = copy_files(clone_flags, p)))
1124 		goto bad_fork_cleanup_semundo;
1125 	if ((retval = copy_fs(clone_flags, p)))
1126 		goto bad_fork_cleanup_files;
1127 	if ((retval = copy_sighand(clone_flags, p)))
1128 		goto bad_fork_cleanup_fs;
1129 	if ((retval = copy_signal(clone_flags, p)))
1130 		goto bad_fork_cleanup_sighand;
1131 	if ((retval = copy_mm(clone_flags, p)))
1132 		goto bad_fork_cleanup_signal;
1133 	if ((retval = copy_keys(clone_flags, p)))
1134 		goto bad_fork_cleanup_mm;
1135 	if ((retval = copy_namespaces(clone_flags, p)))
1136 		goto bad_fork_cleanup_keys;
1137 	retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1138 	if (retval)
1139 		goto bad_fork_cleanup_namespaces;
1140 
1141 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1142 	/*
1143 	 * Clear TID on mm_release()?
1144 	 */
1145 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1146 	p->robust_list = NULL;
1147 #ifdef CONFIG_COMPAT
1148 	p->compat_robust_list = NULL;
1149 #endif
1150 	INIT_LIST_HEAD(&p->pi_state_list);
1151 	p->pi_state_cache = NULL;
1152 
1153 	/*
1154 	 * sigaltstack should be cleared when sharing the same VM
1155 	 */
1156 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1157 		p->sas_ss_sp = p->sas_ss_size = 0;
1158 
1159 	/*
1160 	 * Syscall tracing should be turned off in the child regardless
1161 	 * of CLONE_PTRACE.
1162 	 */
1163 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1164 #ifdef TIF_SYSCALL_EMU
1165 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1166 #endif
1167 
1168 	/* Our parent execution domain becomes current domain
1169 	   These must match for thread signalling to apply */
1170 	p->parent_exec_id = p->self_exec_id;
1171 
1172 	/* ok, now we should be set up.. */
1173 	p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1174 	p->pdeath_signal = 0;
1175 	p->exit_state = 0;
1176 
1177 	/*
1178 	 * Ok, make it visible to the rest of the system.
1179 	 * We dont wake it up yet.
1180 	 */
1181 	p->group_leader = p;
1182 	INIT_LIST_HEAD(&p->thread_group);
1183 	INIT_LIST_HEAD(&p->ptrace_children);
1184 	INIT_LIST_HEAD(&p->ptrace_list);
1185 
1186 	/* Perform scheduler related setup. Assign this task to a CPU. */
1187 	sched_fork(p, clone_flags);
1188 
1189 	/* Need tasklist lock for parent etc handling! */
1190 	write_lock_irq(&tasklist_lock);
1191 
1192 	/* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1193 	p->ioprio = current->ioprio;
1194 
1195 	/*
1196 	 * The task hasn't been attached yet, so its cpus_allowed mask will
1197 	 * not be changed, nor will its assigned CPU.
1198 	 *
1199 	 * The cpus_allowed mask of the parent may have changed after it was
1200 	 * copied first time - so re-copy it here, then check the child's CPU
1201 	 * to ensure it is on a valid CPU (and if not, just force it back to
1202 	 * parent's CPU). This avoids alot of nasty races.
1203 	 */
1204 	p->cpus_allowed = current->cpus_allowed;
1205 	if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1206 			!cpu_online(task_cpu(p))))
1207 		set_task_cpu(p, smp_processor_id());
1208 
1209 	/* CLONE_PARENT re-uses the old parent */
1210 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1211 		p->real_parent = current->real_parent;
1212 	else
1213 		p->real_parent = current;
1214 	p->parent = p->real_parent;
1215 
1216 	spin_lock(&current->sighand->siglock);
1217 
1218 	/*
1219 	 * Process group and session signals need to be delivered to just the
1220 	 * parent before the fork or both the parent and the child after the
1221 	 * fork. Restart if a signal comes in before we add the new process to
1222 	 * it's process group.
1223 	 * A fatal signal pending means that current will exit, so the new
1224 	 * thread can't slip out of an OOM kill (or normal SIGKILL).
1225  	 */
1226  	recalc_sigpending();
1227 	if (signal_pending(current)) {
1228 		spin_unlock(&current->sighand->siglock);
1229 		write_unlock_irq(&tasklist_lock);
1230 		retval = -ERESTARTNOINTR;
1231 		goto bad_fork_cleanup_namespaces;
1232 	}
1233 
1234 	if (clone_flags & CLONE_THREAD) {
1235 		p->group_leader = current->group_leader;
1236 		list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1237 
1238 		if (!cputime_eq(current->signal->it_virt_expires,
1239 				cputime_zero) ||
1240 		    !cputime_eq(current->signal->it_prof_expires,
1241 				cputime_zero) ||
1242 		    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1243 		    !list_empty(&current->signal->cpu_timers[0]) ||
1244 		    !list_empty(&current->signal->cpu_timers[1]) ||
1245 		    !list_empty(&current->signal->cpu_timers[2])) {
1246 			/*
1247 			 * Have child wake up on its first tick to check
1248 			 * for process CPU timers.
1249 			 */
1250 			p->it_prof_expires = jiffies_to_cputime(1);
1251 		}
1252 	}
1253 
1254 	if (likely(p->pid)) {
1255 		add_parent(p);
1256 		if (unlikely(p->ptrace & PT_PTRACED))
1257 			__ptrace_link(p, current->parent);
1258 
1259 		if (thread_group_leader(p)) {
1260 			p->signal->tty = current->signal->tty;
1261 			p->signal->pgrp = process_group(current);
1262 			set_signal_session(p->signal, process_session(current));
1263 			attach_pid(p, PIDTYPE_PGID, process_group(p));
1264 			attach_pid(p, PIDTYPE_SID, process_session(p));
1265 
1266 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
1267 			__get_cpu_var(process_counts)++;
1268 		}
1269 		attach_pid(p, PIDTYPE_PID, p->pid);
1270 		nr_threads++;
1271 	}
1272 
1273 	total_forks++;
1274 	spin_unlock(&current->sighand->siglock);
1275 	write_unlock_irq(&tasklist_lock);
1276 	proc_fork_connector(p);
1277 	return p;
1278 
1279 bad_fork_cleanup_namespaces:
1280 	exit_task_namespaces(p);
1281 bad_fork_cleanup_keys:
1282 	exit_keys(p);
1283 bad_fork_cleanup_mm:
1284 	if (p->mm)
1285 		mmput(p->mm);
1286 bad_fork_cleanup_signal:
1287 	cleanup_signal(p);
1288 bad_fork_cleanup_sighand:
1289 	__cleanup_sighand(p->sighand);
1290 bad_fork_cleanup_fs:
1291 	exit_fs(p); /* blocking */
1292 bad_fork_cleanup_files:
1293 	exit_files(p); /* blocking */
1294 bad_fork_cleanup_semundo:
1295 	exit_sem(p);
1296 bad_fork_cleanup_audit:
1297 	audit_free(p);
1298 bad_fork_cleanup_security:
1299 	security_task_free(p);
1300 bad_fork_cleanup_policy:
1301 #ifdef CONFIG_NUMA
1302 	mpol_free(p->mempolicy);
1303 bad_fork_cleanup_cpuset:
1304 #endif
1305 	cpuset_exit(p);
1306 bad_fork_cleanup_delays_binfmt:
1307 	delayacct_tsk_free(p);
1308 	if (p->binfmt)
1309 		module_put(p->binfmt->module);
1310 bad_fork_cleanup_put_domain:
1311 	module_put(task_thread_info(p)->exec_domain->module);
1312 bad_fork_cleanup_count:
1313 	put_group_info(p->group_info);
1314 	atomic_dec(&p->user->processes);
1315 	free_uid(p->user);
1316 bad_fork_free:
1317 	free_task(p);
1318 fork_out:
1319 	return ERR_PTR(retval);
1320 }
1321 
1322 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1323 {
1324 	memset(regs, 0, sizeof(struct pt_regs));
1325 	return regs;
1326 }
1327 
1328 struct task_struct * __devinit fork_idle(int cpu)
1329 {
1330 	struct task_struct *task;
1331 	struct pt_regs regs;
1332 
1333 	task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1334 	if (!IS_ERR(task))
1335 		init_idle(task, cpu);
1336 
1337 	return task;
1338 }
1339 
1340 static inline int fork_traceflag (unsigned clone_flags)
1341 {
1342 	if (clone_flags & CLONE_UNTRACED)
1343 		return 0;
1344 	else if (clone_flags & CLONE_VFORK) {
1345 		if (current->ptrace & PT_TRACE_VFORK)
1346 			return PTRACE_EVENT_VFORK;
1347 	} else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1348 		if (current->ptrace & PT_TRACE_CLONE)
1349 			return PTRACE_EVENT_CLONE;
1350 	} else if (current->ptrace & PT_TRACE_FORK)
1351 		return PTRACE_EVENT_FORK;
1352 
1353 	return 0;
1354 }
1355 
1356 /*
1357  *  Ok, this is the main fork-routine.
1358  *
1359  * It copies the process, and if successful kick-starts
1360  * it and waits for it to finish using the VM if required.
1361  */
1362 long do_fork(unsigned long clone_flags,
1363 	      unsigned long stack_start,
1364 	      struct pt_regs *regs,
1365 	      unsigned long stack_size,
1366 	      int __user *parent_tidptr,
1367 	      int __user *child_tidptr)
1368 {
1369 	struct task_struct *p;
1370 	int trace = 0;
1371 	struct pid *pid = alloc_pid();
1372 	long nr;
1373 
1374 	if (!pid)
1375 		return -EAGAIN;
1376 	nr = pid->nr;
1377 	if (unlikely(current->ptrace)) {
1378 		trace = fork_traceflag (clone_flags);
1379 		if (trace)
1380 			clone_flags |= CLONE_PTRACE;
1381 	}
1382 
1383 	p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1384 	/*
1385 	 * Do this prior waking up the new thread - the thread pointer
1386 	 * might get invalid after that point, if the thread exits quickly.
1387 	 */
1388 	if (!IS_ERR(p)) {
1389 		struct completion vfork;
1390 
1391 		if (clone_flags & CLONE_VFORK) {
1392 			p->vfork_done = &vfork;
1393 			init_completion(&vfork);
1394 		}
1395 
1396 		if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1397 			/*
1398 			 * We'll start up with an immediate SIGSTOP.
1399 			 */
1400 			sigaddset(&p->pending.signal, SIGSTOP);
1401 			set_tsk_thread_flag(p, TIF_SIGPENDING);
1402 		}
1403 
1404 		if (!(clone_flags & CLONE_STOPPED))
1405 			wake_up_new_task(p, clone_flags);
1406 		else
1407 			p->state = TASK_STOPPED;
1408 
1409 		if (unlikely (trace)) {
1410 			current->ptrace_message = nr;
1411 			ptrace_notify ((trace << 8) | SIGTRAP);
1412 		}
1413 
1414 		if (clone_flags & CLONE_VFORK) {
1415 			wait_for_completion(&vfork);
1416 			if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1417 				current->ptrace_message = nr;
1418 				ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1419 			}
1420 		}
1421 	} else {
1422 		free_pid(pid);
1423 		nr = PTR_ERR(p);
1424 	}
1425 	return nr;
1426 }
1427 
1428 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1429 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1430 #endif
1431 
1432 static void sighand_ctor(void *data, struct kmem_cache *cachep, unsigned long flags)
1433 {
1434 	struct sighand_struct *sighand = data;
1435 
1436 	if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1437 					SLAB_CTOR_CONSTRUCTOR)
1438 		spin_lock_init(&sighand->siglock);
1439 }
1440 
1441 void __init proc_caches_init(void)
1442 {
1443 	sighand_cachep = kmem_cache_create("sighand_cache",
1444 			sizeof(struct sighand_struct), 0,
1445 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1446 			sighand_ctor, NULL);
1447 	signal_cachep = kmem_cache_create("signal_cache",
1448 			sizeof(struct signal_struct), 0,
1449 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1450 	files_cachep = kmem_cache_create("files_cache",
1451 			sizeof(struct files_struct), 0,
1452 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1453 	fs_cachep = kmem_cache_create("fs_cache",
1454 			sizeof(struct fs_struct), 0,
1455 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1456 	vm_area_cachep = kmem_cache_create("vm_area_struct",
1457 			sizeof(struct vm_area_struct), 0,
1458 			SLAB_PANIC, NULL, NULL);
1459 	mm_cachep = kmem_cache_create("mm_struct",
1460 			sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1461 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1462 }
1463 
1464 
1465 /*
1466  * Check constraints on flags passed to the unshare system call and
1467  * force unsharing of additional process context as appropriate.
1468  */
1469 static inline void check_unshare_flags(unsigned long *flags_ptr)
1470 {
1471 	/*
1472 	 * If unsharing a thread from a thread group, must also
1473 	 * unshare vm.
1474 	 */
1475 	if (*flags_ptr & CLONE_THREAD)
1476 		*flags_ptr |= CLONE_VM;
1477 
1478 	/*
1479 	 * If unsharing vm, must also unshare signal handlers.
1480 	 */
1481 	if (*flags_ptr & CLONE_VM)
1482 		*flags_ptr |= CLONE_SIGHAND;
1483 
1484 	/*
1485 	 * If unsharing signal handlers and the task was created
1486 	 * using CLONE_THREAD, then must unshare the thread
1487 	 */
1488 	if ((*flags_ptr & CLONE_SIGHAND) &&
1489 	    (atomic_read(&current->signal->count) > 1))
1490 		*flags_ptr |= CLONE_THREAD;
1491 
1492 	/*
1493 	 * If unsharing namespace, must also unshare filesystem information.
1494 	 */
1495 	if (*flags_ptr & CLONE_NEWNS)
1496 		*flags_ptr |= CLONE_FS;
1497 }
1498 
1499 /*
1500  * Unsharing of tasks created with CLONE_THREAD is not supported yet
1501  */
1502 static int unshare_thread(unsigned long unshare_flags)
1503 {
1504 	if (unshare_flags & CLONE_THREAD)
1505 		return -EINVAL;
1506 
1507 	return 0;
1508 }
1509 
1510 /*
1511  * Unshare the filesystem structure if it is being shared
1512  */
1513 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1514 {
1515 	struct fs_struct *fs = current->fs;
1516 
1517 	if ((unshare_flags & CLONE_FS) &&
1518 	    (fs && atomic_read(&fs->count) > 1)) {
1519 		*new_fsp = __copy_fs_struct(current->fs);
1520 		if (!*new_fsp)
1521 			return -ENOMEM;
1522 	}
1523 
1524 	return 0;
1525 }
1526 
1527 /*
1528  * Unshare the mnt_namespace structure if it is being shared
1529  */
1530 static int unshare_mnt_namespace(unsigned long unshare_flags,
1531 		struct mnt_namespace **new_nsp, struct fs_struct *new_fs)
1532 {
1533 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
1534 
1535 	if ((unshare_flags & CLONE_NEWNS) && ns) {
1536 		if (!capable(CAP_SYS_ADMIN))
1537 			return -EPERM;
1538 
1539 		*new_nsp = dup_mnt_ns(current, new_fs ? new_fs : current->fs);
1540 		if (!*new_nsp)
1541 			return -ENOMEM;
1542 	}
1543 
1544 	return 0;
1545 }
1546 
1547 /*
1548  * Unsharing of sighand is not supported yet
1549  */
1550 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1551 {
1552 	struct sighand_struct *sigh = current->sighand;
1553 
1554 	if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1555 		return -EINVAL;
1556 	else
1557 		return 0;
1558 }
1559 
1560 /*
1561  * Unshare vm if it is being shared
1562  */
1563 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1564 {
1565 	struct mm_struct *mm = current->mm;
1566 
1567 	if ((unshare_flags & CLONE_VM) &&
1568 	    (mm && atomic_read(&mm->mm_users) > 1)) {
1569 		return -EINVAL;
1570 	}
1571 
1572 	return 0;
1573 }
1574 
1575 /*
1576  * Unshare file descriptor table if it is being shared
1577  */
1578 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1579 {
1580 	struct files_struct *fd = current->files;
1581 	int error = 0;
1582 
1583 	if ((unshare_flags & CLONE_FILES) &&
1584 	    (fd && atomic_read(&fd->count) > 1)) {
1585 		*new_fdp = dup_fd(fd, &error);
1586 		if (!*new_fdp)
1587 			return error;
1588 	}
1589 
1590 	return 0;
1591 }
1592 
1593 /*
1594  * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1595  * supported yet
1596  */
1597 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1598 {
1599 	if (unshare_flags & CLONE_SYSVSEM)
1600 		return -EINVAL;
1601 
1602 	return 0;
1603 }
1604 
1605 #ifndef CONFIG_IPC_NS
1606 static inline int unshare_ipcs(unsigned long flags, struct ipc_namespace **ns)
1607 {
1608 	if (flags & CLONE_NEWIPC)
1609 		return -EINVAL;
1610 
1611 	return 0;
1612 }
1613 #endif
1614 
1615 /*
1616  * unshare allows a process to 'unshare' part of the process
1617  * context which was originally shared using clone.  copy_*
1618  * functions used by do_fork() cannot be used here directly
1619  * because they modify an inactive task_struct that is being
1620  * constructed. Here we are modifying the current, active,
1621  * task_struct.
1622  */
1623 asmlinkage long sys_unshare(unsigned long unshare_flags)
1624 {
1625 	int err = 0;
1626 	struct fs_struct *fs, *new_fs = NULL;
1627 	struct mnt_namespace *ns, *new_ns = NULL;
1628 	struct sighand_struct *new_sigh = NULL;
1629 	struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1630 	struct files_struct *fd, *new_fd = NULL;
1631 	struct sem_undo_list *new_ulist = NULL;
1632 	struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1633 	struct uts_namespace *uts, *new_uts = NULL;
1634 	struct ipc_namespace *ipc, *new_ipc = NULL;
1635 
1636 	check_unshare_flags(&unshare_flags);
1637 
1638 	/* Return -EINVAL for all unsupported flags */
1639 	err = -EINVAL;
1640 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1641 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1642 				CLONE_NEWUTS|CLONE_NEWIPC))
1643 		goto bad_unshare_out;
1644 
1645 	if ((err = unshare_thread(unshare_flags)))
1646 		goto bad_unshare_out;
1647 	if ((err = unshare_fs(unshare_flags, &new_fs)))
1648 		goto bad_unshare_cleanup_thread;
1649 	if ((err = unshare_mnt_namespace(unshare_flags, &new_ns, new_fs)))
1650 		goto bad_unshare_cleanup_fs;
1651 	if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1652 		goto bad_unshare_cleanup_ns;
1653 	if ((err = unshare_vm(unshare_flags, &new_mm)))
1654 		goto bad_unshare_cleanup_sigh;
1655 	if ((err = unshare_fd(unshare_flags, &new_fd)))
1656 		goto bad_unshare_cleanup_vm;
1657 	if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1658 		goto bad_unshare_cleanup_fd;
1659 	if ((err = unshare_utsname(unshare_flags, &new_uts)))
1660 		goto bad_unshare_cleanup_semundo;
1661 	if ((err = unshare_ipcs(unshare_flags, &new_ipc)))
1662 		goto bad_unshare_cleanup_uts;
1663 
1664 	if (new_ns || new_uts || new_ipc) {
1665 		old_nsproxy = current->nsproxy;
1666 		new_nsproxy = dup_namespaces(old_nsproxy);
1667 		if (!new_nsproxy) {
1668 			err = -ENOMEM;
1669 			goto bad_unshare_cleanup_ipc;
1670 		}
1671 	}
1672 
1673 	if (new_fs || new_ns || new_mm || new_fd || new_ulist ||
1674 				new_uts || new_ipc) {
1675 
1676 		task_lock(current);
1677 
1678 		if (new_nsproxy) {
1679 			current->nsproxy = new_nsproxy;
1680 			new_nsproxy = old_nsproxy;
1681 		}
1682 
1683 		if (new_fs) {
1684 			fs = current->fs;
1685 			current->fs = new_fs;
1686 			new_fs = fs;
1687 		}
1688 
1689 		if (new_ns) {
1690 			ns = current->nsproxy->mnt_ns;
1691 			current->nsproxy->mnt_ns = new_ns;
1692 			new_ns = ns;
1693 		}
1694 
1695 		if (new_mm) {
1696 			mm = current->mm;
1697 			active_mm = current->active_mm;
1698 			current->mm = new_mm;
1699 			current->active_mm = new_mm;
1700 			activate_mm(active_mm, new_mm);
1701 			new_mm = mm;
1702 		}
1703 
1704 		if (new_fd) {
1705 			fd = current->files;
1706 			current->files = new_fd;
1707 			new_fd = fd;
1708 		}
1709 
1710 		if (new_uts) {
1711 			uts = current->nsproxy->uts_ns;
1712 			current->nsproxy->uts_ns = new_uts;
1713 			new_uts = uts;
1714 		}
1715 
1716 		if (new_ipc) {
1717 			ipc = current->nsproxy->ipc_ns;
1718 			current->nsproxy->ipc_ns = new_ipc;
1719 			new_ipc = ipc;
1720 		}
1721 
1722 		task_unlock(current);
1723 	}
1724 
1725 	if (new_nsproxy)
1726 		put_nsproxy(new_nsproxy);
1727 
1728 bad_unshare_cleanup_ipc:
1729 	if (new_ipc)
1730 		put_ipc_ns(new_ipc);
1731 
1732 bad_unshare_cleanup_uts:
1733 	if (new_uts)
1734 		put_uts_ns(new_uts);
1735 
1736 bad_unshare_cleanup_semundo:
1737 bad_unshare_cleanup_fd:
1738 	if (new_fd)
1739 		put_files_struct(new_fd);
1740 
1741 bad_unshare_cleanup_vm:
1742 	if (new_mm)
1743 		mmput(new_mm);
1744 
1745 bad_unshare_cleanup_sigh:
1746 	if (new_sigh)
1747 		if (atomic_dec_and_test(&new_sigh->count))
1748 			kmem_cache_free(sighand_cachep, new_sigh);
1749 
1750 bad_unshare_cleanup_ns:
1751 	if (new_ns)
1752 		put_mnt_ns(new_ns);
1753 
1754 bad_unshare_cleanup_fs:
1755 	if (new_fs)
1756 		put_fs_struct(new_fs);
1757 
1758 bad_unshare_cleanup_thread:
1759 bad_unshare_out:
1760 	return err;
1761 }
1762